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ABSTRACT

This survey covers the theory and application of Lagrangean tech-

niques to discrete optimization problems. A discussion of the applica-

tions includes integer programming special structures which can be ex-

ploited by Lagrangean techniques, multi—item production scheduling and

inventory control problems, and the traveling salesman problem. The

relationship of Lagrangean techniques to duality theory and convex analy-

sis is given including a discussion of algorithms to solve the dual

problems. Duality theory for integer programming and its relationship

to the cutting plane method is reviewed. The use of Lagrangean tech-

niques in conjunction with branch and bound is presented in a general

framework for solving discrete optimization problems.
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1. Introduction

Lagrangean techniques were proposed for discrete optimization problems

as far back as 1955 when Lon e and Savage suggested a simple method for trying

• 
to solve zero—one integer programming (IP) problems. We use their method as

a starting point for discussing many of the developments since then. The

behavior of Lagrangean techniques In analyzing and solving zero—one IP problems

is typical of their use on other discrete optimization problems discussed in

later sections.

Specifically , consider the zero—one IP problem

v = m in cx

s.t. Ax ~ b (1)
x~~= O o r 1.

Let denote a component of c, aj a column of A with components au ,  and b~

a component of b. Letting u represent a non—negative vector of Lagrange

multipliers on the right hand side b , the method proceeds by computing the

Lagrangean

= -üb + minimum 1 (c+i~A)x}. (2)
x
j

O o r l

• The function L°(ü) is clearly optimized by any zero—one solution R satisfying

(o ifc~+~ia~~> O

~~=~~~O o r l if c ~+Zia~~= O  (3)

11 if c .+ffa < 0

In the introduction, we pose and discuss a number of questions about this

method and its relevance to optimizing the original IP problem (1). In

• -
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several instances , we will state results without proof. These results will

either be proven in la ter sections , or reference will be given to papers con-

taining the relevant proofs.

• When is a zero-one solution 5~ which is optimalin the Lagrange an also optimal in the given 1P
prob lem?

In order to answer this question, we must recognize that the underlying

goal of Lagrangean techniques is to try to establish the following sufficient

optimality conditions.

OPTIMALITY CONDITIONS: The pair (~ ,ii ) , where iE is zero—one and ii~O , is said

to satisfy the optimality conditions for the zero—one IP problem (1) if

(I )  L°(ii )  = —iib + (c+üA)i~

( ii)  ii (Ai~—b) = 0

(lii) Ai~~~b.

It can be shown that if the zero—one solution ~E satisfies the optimality

cond itions f o r  some ~i, then ic is optimal in problem (1). This result is

demonstrated in greater generality in section 3. The Implication for the

Lagrangean analysis is that i computed by (3) is optimal in problem (1) if

it satisfies Ai ~ b with equality on rows where > 0.

Of cours e, we should not expect that i computed by (3) will even be

f eas ible in (1) , much less optimal. According to the optimality conditions,

however, such an ~ is optimal in any zero—one IP problem derived from (1)

by replac ing b with Ai + ô where iS is any non—negative vector satisfying

0 for I such that > 0. This property of i makes Lagrangean tech-

niques useful in computing zero—one solutions to I? problems with soft con-

s tra ints or in parame tr ic analys is of  an IP pr oblem over a f amily of r igh t 
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3

hand sides. Parametric analysis of discrete optimization problems is dis-

cussed again in section 6.

How should the vector ~i of Lagrange multipliers be
selected? Can we guarantee tha t there will be one
which produ ces an optimal solution to the origina l

• 1? problem?

An arbitrary ~ f ails to produce an optimal ~ beca use ~ajjij > b1 on

some rows or 
~
aij~j 

< b
i on other rows with 

> 0. In order to change ~

so that the resulting ~ is closer to being f ea sible and/or optimal , we could

consider increasing i~ on the f ormer rows and decreas ing 
~~ 

on the la tter

rows. A convergent t~tonnement approach of this type is non—trivial to

construct because we must simultaneously deal with desired changes on a

number of rows. Systematic adjustment of ii can be achieved, however, by

recognizing that there is a dual problem and a duality theory underlying the

Lagrangean techniques. We discuss this point here briefly and In more detail

in section 3.

For any u ~ 0, it can easily be shown that L°(u)  is a lower bound on v,

the minimal IP objective function cost in (1). The best choice of u is any

one which yields the greatest lower bound , or equivalently , any u which is

optimal in the dual problem

• 0 0d = max L (u)
(4)

s.t. u~~~O.

The reason f o r  this choice is tha t if  
~i can yield by (3)  an op timal i to

the primal problem (1), then i1 is optimal in (4). The validity of this

statement can be verified by direct appeal to the optimality conditions using

the weak dual ity cond ition L°(u)  ~ v for any u � 0. Thus, a stra tegy f o r  



- - — .-~~~~
-—- - - —-

~~~~~~~
—

4

trying to solve the primal problem (1) is to compute an optimal solution

ii to the dual problem (4) , and then try to find a complementary zero—one

solution i for which the optimality conditions hold.

A f undamental question abou t Lagrangea n techniques is whether or not

an optimal dual solution to (4) can be guaranteed to produce an optimal

solution to the primal IP problem (1). It turns out that the answer is no,

although fail—safe methods exist and will be discussed for using the dual to

solve the primal. If (4) cannot produce an optimal solution to (1), we say

there is a duality ~~~~~~~~ .

Insight into why a duality gap occurs is gained by observing that

problem (4)  is equivalent to the LP dual of  the LP relaxa tion of  (1)  which

results by replacing xj = 0 or 1 by the constraints 0 ~ Xj ~ 
1. This was

first pointed out by Neuihauser and Uliman (1968). Here we use the term

relaxation in the f ormal  sense; tha t is , a mathematical programming problem

is a relaxation of another given problem if its set of feasible solutions

contains the set of feasible solutions to the given problem. The fact that

dualization of (1) is equivalent to convexification of it is no accident

because the equivalence of these two operations is valid f or arbitrary

mathematical programming problems (see Magnanti, Shapiro and Wagner (1976)).

For discrete optimization problems, the convexified relaxations are LP

problems. Geoffrion (1974) has used the expression Lagrangean relaxation to

describe this equivalence. Insights and solution methods for the primal problem

are derived from both the dualization and convexification viewpoints.

How shou ld the dua l problem be BOlVed?

We remarked above that problem (4) is nothing more than the dual to

the ordinary LP relaxation of (1). Thus, a vec tor of  op timal dual var iables
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could be calcula ted by apply ing the simplex algorithm to the LP relaxation

of (1). The use of Lagrangean techniques as a distinct approach to discrete

optimization has proven theoretically and computationally important for three

reasons. First, dual problems derived from more complex discrete optimization

problems than (1) can be represented as LP problems, but ones of immense

size which cannot be explicitly constructed and then solved by the simplex

method. Included in this category are dual problems more complex than (4)

derived from (1) when (4) fails to solve (1). These are discussed in sections

2 and 4. From this point of view, the Lagrangean techniques applied to dis-

crete optimization problems are a special case of dual decomposition methods

for large scale LP problems (e.g., see Lasdon(1970)).

A second reason for considering the application of Lagrangean techniques

to dual problems, in addition to the simplex method , Is that the simplex

method is exact and the dual problems are relaxation approximations. It is

sometimes more effective to use an approximate method to compute quickly a

good , but non—optimal, solution to a dual problem. In section 3, we consider

alternative methods to the simplex method for solving dual problems and dis-

cuss their relation to the simplex method . The underlying idea is to treat

dual problems as nondifferentiable steepest ascent problems taking into

account the fact that the Lagrangean L° is concave.

• Lagrangean techniques as a distinct approach to discrete optimization

• problems emphasizes the need they satisfy to exploit special structures which

arise in various models. This point is discussed in more detail in section 2.

What should be done if there is a duality gap ?

As we shall see In section 3, a duality gap manifests itself by the corn— 

•~~~~~~~~~~~~~~~~~~~~~~ ---~~~~ _ • ~~ _ - -- •
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putation of a fractional solution to the LP relaxation of problem (1). When

this occurs , there are two complementary approaches which permit the analys is

of problem (1) to continue and an optimal solution to be calculated . One

• approach is to branch on a var iable at a f r ac tional level in the LP relaxa tion;

namely, use branch and bound. The integration of Lagrangean techniques with

branch and bound is given in section 5. The other approach is to strengthen the

• dual problem (4) is by restricting the solutions permitted in the Lagrangean

minimization to be a strict subset of the zero—one solutions. This is

accomplished in a systematic fashion by the use of group theory and is dis-

cussed in section 4.

2. ExploIting Special Structures

Lagrangean techniques can be used to exploit special structures arising

in IP and discrete optimization problems to construct efficient computational

schemes. Moreover, identification and exploitation of special structures

often provide insights into how discrete optimization models can be extended

In new and richer applications.

The class of problems we consider first is

v =m i n cx

s.t. Ax ~ b (5)

xcX ~ Rn,

where X is a discrete set with special structure. For example, X may consist 

~~~ — - ..- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ -~~~~~~
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of the multiple—choice constraints

x4 = 1  for all k
jcJ ~k (6)

= 0 or 1,

where the sets are disjoint. Another example occurs when X corresponds to

a network optimization problem. In this case, the representation of X can

either be as a totally unimodular system of linear inequalities , or as

a network. Other IP examples are discussed by Geoffrlon (1974).

The Lagrangean derived from (5) for any u�O is

L(u) = -ub + min(c+uA)x. 
(1)xcX

We expect L(u) to be much easier to compute than v because of the special

form of X. Depending on the structure of X, the specific algorithm used

to compute L may be a “good” algorithm in the termInology of Edmonds (1971)

or Karp (1975); that is, the number of elementary operations required to

compute L(u) is bounded by a polynomial of parameters of the problem. Even

if it is not “good” in a strictly theoretical sense, the algorithm may be

quite efficient empirically and derived from some simple dynamic programming

recursion or list processing scheme. Examples will be given later in this

section. Finally, in most instances the x calculations in (7) will be integer

and may provide a useful starting point for heuristic methods to compute good

solutions to (5).

Most discrete optimization problems stated in general terms can be

formulated as IP problems, although sometimes with difficulty and ineff I—

ciently. We illustrate with two examples how Lagrangean techniques are

useful in handling special structures which are poorly represented by systems 

-~~~~~~ 
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of linear inequalities.

• We consider a manufacturing system consisting of I Items for which pro—

• duction is to be scheduled at minimum cost over T time periods. The demand

for item I In period t is the nonnegative integer rj~
; this demand must be

met by stock from inventory or by production during the period. Let the

variable xi~ denote the production of item I in period t. The inventory of

• item i at the end of period t is

~it ~
‘i,t—l + ~~~ — ri~ 

t—l,.. .

where we assume 
~~~~~~~~~~ 

= 0, or equivalently, initial inventory has been

netted out of the ri~
. Associated with xi~ 

is a direct unit cost of pro-

duction cit
. Similarly, associated with y~~ Is a direct unit cost of

holdIng inventory hit
. The problem is complicated by the fact that positive

production of Item i In period t uses up a quantity a1 + bjxj~ 
of a scarce

resource to be shared among the I items. The parameters a1 
and b1 are

assumed to be nonnegative. The use of Lagrangean techniques on this type of

problem was originally proposed by Manne (1958). The model and analysis was

extended by D. Zielinski and Gomory (1965) and has been applied by Lasdon and

Terjung (1971).

This problem can be written as the mixed integer programming problem

I T
v minimum ~ ~ 

(cj~xj +h1 y1 ) (8a)
i=l t=l t

s.t. 

~ 

(a
iiSj~

+bixj~) ~ 
t = l,...,T; (8b)



~~~~~~~~~~T L ~~~~ T ----- - --—-—- -----
~~~~~~~ 

-
~~~~~~~~~~

--
~~
---- -~~ 

—
~~~

— - -  — -
~ 
-

9

f o r  i —

— 
j 5 

— 

~ 

(8c)

s — 1,... ,T

~ ~~~~~ 
, t — l,...,T (8d)

xj~~~~
O , y j~~~~O (8e)

iSj~~= O orl , t 1 ,...,T

T
where Mit = E r

1 
is an upper bound on the amount we would want to produce of i

• a— t

in period t .  The cons tra ints (8b ) state tha t shared resource usage cannot

exceed q .  The constraints (8c) relate accumulated production and demand

through period t to ending inventory in period t, and the nonnegativity of

the y~~ implies demand must be met and not delayed (backlogged) . The con-

straints (8d) ensure that iS
~~~ 

1, and therefore the fixed charge resource

usage a
~ 

Is  I ncurred , if production ~~~ is positive in period t. Problem (8)

is a mixed integer programming problem with IT zero—one variables, 21T con-

tinuous variables and T + 2IT constraints. For the application of Lasdon

and Terjung (1971) , these figures are 240 zero—one variables, 480 continuous

var iables , and 486 constraints which is a mixed integer programming problem

of significant size.

For f uture ref eren ce, def ine the set

N1 
{(sSj~

,xi~
,yi~) , t 1,. . .  ,T I i S 1~ ,x1~~,y 1~

satisfy (8c), (8d), (8e)}.

This set describes a feasible production schedule for item I ignoring the — 

• - -•-• • -- -~~~~-- -—-- - - - ---- • - ---- ----- - • ---_--••----- •- -  • • • -~- ••• _ • .- • - • -•~~~~~~~~~~~~~ ---~~~~ -• - ~~——--~~--



-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

10

joint contraints (8b). The integer programming formulation (8) is not

effective because it fails to exploit the special network structure of the

sets Ni. This can be accomplished by Lagrangean techniques as follows.

Assign Lagrange multipliers .i~ � 0 to the scarce resources and place

the constra ints (8b) in the object ive f unction to f o r m  the Lagrangean

T
L(u) = — 

~~ u~q~
t=1

I T
+ minimum 

~ 
{(c jt+utbj) xit + u

~
aiiS

i~ 
+ h~~y1~ }.(d~~ ,x1~ ,y1~ ) cN 1 1=1 t—l

Letting

Li(u) = 

6 
minimum 

N t~1 
{ (c

i~
+utbi

) xjt + u
~
ai

iS
i~ 

+ hj~
yj~

} ,  (10)
it,xit ,y it C

the Lagrange an f unction clearly separa tes to become

T I
L( u) = — 

~ u~q~ + ~ L~(u).
t=l i=l

Each of the problems (10) is a simple dynamic programming shortest—route

calculation for scheduling item i where the Lagrange multipliers on shared

resources adjust the costs as shown. Notice that it is easy to add any

additional constraint on the problem of schedulIng item I which can be

accommodated by the network representation ; for example, permitting pro—

duction in period t only if inventory falls below a preassigned level.

Unfortunately , we must give up something in using Lagrangean techniques

on the mixed IF (8) to exploit the special structure of the sets N
1
. In

_ _ _ _ _ _ _  __ __ - • - - •~~-- •~~~~ • • • • • • •
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the context of this application, the optimality conditions we seek but may

• not achieve involve Lagrange multipliers which permit! each of the I items to

be separately scheduled by the dynamic programming calculation L1 
while

achieving a global minimum. As we see I n the next section, this can be at

least approximately accomplished if the number of joint constraints Is small

relative to I.

In summary , the application of Lagrangean techniques just discussed

involves the synthesis of a number of simple dynamic programming models under

• joint constraints into a more complex model. In a similar fashion, F isher (1973)

appl ied Lagran %ean techniques to problems where a number of  jobs are to be

• scheduled , each accord ing to a prec edence or CPM network, and the joint con—

straints are machine capacity. Another example is the cutting stock problem

• of Gilmore and Gomory (1963). In this model, a knapsack problem Is  used to

generate cutting patterns and the joint constraints are on demand to be satis—

fled by some combination of the patterns generated.

The traveling salesman problem is a less obvious case where an underlying

graph structure can be exploited to provide effective computational procedures.

The problem Is  def ined over a complete graph g with n nodes and symmetric

lengths c
ii 

— c
ii 

for all edges <i,j> . The objective is to find a minimum

length tour of the n nodes , or in other words , a simple cycle of n edges and

minimal length. This problem has several IP formulations involving 
n(n—l)

variables xjj for the n edges <i,j> in the complete graph.

One such IP formulation consists of approximately 2” constra ints

ensuring f o r  f easible subgraph s of  n edges that (I )  the degree at each node is

2 and (ii) no cycle is formed among a subset of the nodes excluding node 1. The

set of subgraphs of n edges satisfying (ii) has a very efficient characterization. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
• • • • •
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A 1—tree defined on the graph g is a subgraph which is a tree on the. nodes

2,...,n and which is connected to node 1 by exactly two edges. The collection

of subgraphs of n edges satisf ying (ii) is precisely the set r of 1—trees .

Thus , the traveling salesman problem can be written as the IP problem

n—l n
v m in 

~ ~ c~~x1i=l j=i+l

s.t. 
~ 

x~1 
+ ~ x14 = 2 i l ,... ,n (11)

k<i j>i

ii (n-i)
XCT E R  ~

The implication of the formulation (11)~ 
however , Is that we wish to deal with the

1—tree constraints implicitly rather than as a system of linear inequalities

involving the zero—one variables x
11
.

Held and Karp (1970) discovered this partitioning of the craveling

salesman problem and suggested the use of Lagrange multipliers on the degree

constraints. For ucR~, the Lagra ngean is

n n-l n
L(u) —2 ~ u~ + minimum ~ ~ (c

1~ 
+ u1 + u )x 11 

(12)
1=1 xer 1=1 j i+l

This calculation is particularly easy to perform because It is essentially

the problem of finding a minimum spanning tree in a graph. A “greedy” or

“myopic” algorithm is available for this problem which is “good” in the theo—

retical sense and very efficient empirically (Kruskal(l956) and Edmonds(l97l)).

The traveling salesman problem is only a substructure arising in

applications of discrete optimization including vehicle routing and chemical

reactor sequencing. Lagrangean techniques can be used to synthesize the

-- --~~~~~~~~~~~ - - ~~~~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~

- - - - -
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routing or scheduling problems into a more complex model. In a similar

application, Gomory and Hu(1964) discovered the importance of the spanning

tree as a substructure arising in the synthesis of communications networks.

• Specifically, a maximum spann ing tree problem is solved to determine the

capacities in conm~unications links required for the attainment of desired

levels of flows. Lagrangean techniques can be used to iteratively select

• the spanning tree on which to perform the analysis until the communications

problem is solved at minimum cost.

All of  the special structures discussed above ar ise naturally in

applications. By contrast, a recent approach to IP involvel the construction

of a special structure which we use as a surrogate for the constraints

Ax ~ b. The approach requires that A and b in problem (1) have integer

coefficients; henceforth we assume this to be the case. For expositional

convenience , we rewrite the inequalities as equalities Ax + Is = b where

now we require the slack variables to be integer because A and b are integer.

The system Ax + IS b Is aggregated to form a system of linear con—

gruences which we view as an equation defined over a finite abelian group .

The idea of using group theory to analyze IP problems was first suggested

by Comory (1965) ,  although his specific approach was very different. We

follow here the approach of Bell and Shapiro (1976). Specifically, consider

the abelian group G Z ~~ Z ~~~~~~~ where the q1 are integers greaterq
1 

q2 -

than 1, Z is the cyclic group of order q1 and “s” denotes direct sum.1

Let ~
m denote the set of all integer rn—vectors, and construct a homomor—

phism $ from 2
m into C as follows. For each row I, we associate an element



_ • • •~~~• - - -  ~~~~ •~~~~~~~~~~~~ - - —~~~~~~~~~~~~ —~~~-—•
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r of C and f o r  any zcZm, •(z) — E Z
i
C i. We apply $ to both sides of  the

i—i.

linear system Ax +Is = b to aggregate it into the group equation

a x + 
~ 

c~ ~ = 8, where a
1 

$(aj). B 
= $(b). It is easy to see

j—l i—l

that any integer x,s satisfying Ax + Is = b also satisfies the group equation.

Therefore, we can add the group equation to the zero—one IP problem (1)

without eliminating any feasible solutions. This gives us

mm cx (13a)

s.t. Ax + Is = b (l3b)

a x + Z c~s~ = B (l 3c)
j=l 1=1

x
1 

= 0 or 1, 5i = 0,1,2 (13d)

For f uture ref erence , let

= ((x,s) (x ,s) satisfies (l3c) and (13d)).

Lagrangean techniques are applied by dualizing with respect to the

original constraints Ax + Is = b. For u�0, this gives us the Lagrangean

L(u) = —ub + minimum {(c+uA)x + us} (14)
(x ,s)€X

The calculation (14) can be carried out quite efficiently by list pro—

cessing algorithms with the computation time determined mainly by the

order of the group. (See Shapiro (1968), Clover (1969) , Corry , Nor thrup

and Shapiro (1973).) It is easy to see that for a non—trivial group C

_ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(i.e., IGI � 2), tht~ Lcgrangean L gives higher lower bounds than L° f r o m

section 1 since not all zero—one solutions x are included in Y for some value

of a. The selection of G and homomorphism $ is discussed again in section 4.

We have not attempted to be exhaustive in our discussion of  the various

discrete optimization models for which Lagrangean techniques have been suc-

cessfully applied. Lagrangean techniques have also been applied to scheduling

nuclear reac tors (Muks tad t ( l 9 7 7) ) ,  the generalized assignment problem (Ross

and Soland(l975)) and multi—commodity flow problems (Held, Wolf e  and

• Crowder(l974)).

3. Duality Theory and the Calculation of Lagrange Multipliers

Implicit in the use of Lagrangean techniques is a duality theory for

the optimal selection of the multipliers. We study this theory by considering

the discrete optimization problem in the general form

v m in f ( x )

s.t. g(x) ~ b (15)

x c X ~ Rn,

where f  is a scalar valued f unction def ined on R”, g is a f unction f r om R”

to Rm, and X is a discrete set. If there is no x C X satisfying g(x) ~ b, we

take v — +~~~. With very little loss of  general ity ,  we assume tha t X is a f inite

set; say X — {x t
}
T 

. Implicit in this formulation is the assumption that
t—1

the cons tra ints g (x)  i b make the problem substantially more d if f icul t to

solve. Lagrangean techniques are applied by putting non—negative multipliers
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on the cons tra ints g (x)  ~ b and placing them in the objective function.

Thus, the Lagrangean f unction der ived f r om 0.5 ) is

L(u) = —ub + minimum {f(x) + ug(x) )

xeX
(16)

—ub + minimum {f(xt) + ug(x t ) }
t’l ,.. .,T

As we saw in the previous section, the specific algorithm used to compute L

may be a “good” algorithm, but even if it is not good , the intention is that

it is quite efficient empirically and derived from a simple dynamic programming

recursion or list processing scheme. Since X is finite, L is re al valued f o r

all u. Moreover, it is a continuous, but nondifferentiable, concave function

(Rockafellar (1970)).

The combinatorial nature of the algorithms used in the Lagrangean calcu-

lation is a main distinguishing characteristic of the use of Lagrangean tech-

niques in discrete optimization . This is in contrast to the application of

Lagrangean techniques in nonlinear programming where f and g are differentiable,

X — Rn and the Lagrangean is minimized by solving the nonlinear system

Vf(x) + uvg(x) = 0. A second distinguishing characteristic of the use of

Lagrangean techniques in discrete optimization is the non—differentiability of

L, due to the discreteness of X. This makes the dual problem discussed below

a non—differentiable optimization problem.

As it was for the zero—one IP problem discussed in the introduction , the

selection of u in the Lagrangean is dictated by our desire to establish suf—

ficient optiinality conditions for (15).

OPTIMALITY CONDITIONS: The pair ~~~~~ where xcX and u�0, is said to satisfy

_ _ _ _ _ _ _ _ _ _ _ _ _ _  _
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the optimality conditions for the discrete optimization problem (15) if

(i) L(u) — —~b + f(~ )  + 
~

g ( )

(ii) ~i(g(~ )  — b) — 0

(iii) g(~) ~ b.

• Theorem 1: If (i,ii) satisfy the optimality conditions for the discrete

• optimIzation problem (15) , then 5E is optimal In (15).

Proof: The solution ~ is clearly feasible in (15) since ~cX and g(i) ~ b

by condition (iii). Let 5tcX be any other feasible solution in (15). Then

by condition (1) ,

L(ii) — —i~b + f(i) + iig(~) ~ —~b + f ( x )  + iig (~) ~

where the final inequality follows because ulO and g () — b�O. But by condi-

tion (ii), L(~ )  = f (
~) and therefore f(i) ~ f(i) for all feasible ,c. Il

Implicit in the proof of theorem 1 was a proof of the following Important

result.

Corollary 1 (weak duality). For any u~0, L( u) ~ v.

Our primary goal in selecting u is to find one providing the greatest lower

bound , or in other words , one which is op timal in the dual problem

d = max L(u) (17)
s .t.  u�D

Corollary 2. If (i ,i~) satisfy the optimality conditions for the discrete

optimization problem (15), then ii is optimal In the dual problem (17).

Proof : We have L(~) — -.
~ib + f(~) + üg(~

)  = f (
~) = v by theorem 1. Since

L (u) ~~. v f o r  all u~O by corollary 1, we have L(u) ~ L (
~) for all ulO. 

( I
Thus, the indicated strategy for the application of Lagrangean tech-

niques is to first find an optimal ti in the dual problem. Once this has been 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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done, we then try to f ind a complementary i~rX for which the optimality conditions

hold by calculating one or more solutions x satisfying L(ii) — —iib+f(x)+~g(x).

There Is no guarantee that this strategy will succeed because (a) there may

be no ii optimal in the dual for which the optimality conditions can be made to

hold for some ~~X; (b) the specific optimal ~i we calculated does not admit

the optimality conditions for any jcX; or (c) the specific ~ (or i’s) in X

selected by minimizing the Lagrangean do not satisfy the optimality conditions

a1tho~igh some other icX which is minimal in the Lagrangean does satisfy them.

Lagrangean techniques can be applied in a fail—safe manner , however , if

they are embedded in branch and bound searches. This is discussed In section 5.

Alternatively, for some discrete optimization problems, it is possible to

strengthen the dual problem If It fails to yield an optimal solution to the

primal problem. Under certain conditions , the dual can be successively

strengthened until the optimality conditions are found to hold . This is dis-

cussed in section 4.

For any u ~ 0, it is easy to see by direct appeal to the optimality

conditions that satisfying L(~) = -~b+f( ) + ~ig( ) is optimal in (15)

with b replaced by g(x) + 6 where 6 is non—negative and satisfies

= 0 if u i > 0. Thus, Lagrangean techniques can be used in a heuristic

manner to generate approximately optimal solutions to (15) when the constraints

g(x) ~ b are soft. Even if these constraints are not soft, heuristic methods

exploiting the specific structure of (15) can be applied to perturb an

infeasible x which almost satisfies the constraints to try to find a good

feasible solution. D’Aversa(1977) has had success with this approach on IP

problems. 
-

—- -_—  - - -~~~~~~~~~~~ -~~~ ~~~~~~~~~ - -~~~~-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



There are two distinct but related approaches to solving (17); it can

be viewed as a steepest ascent, nondifferentiable optimization problem, or

as a large scale linear programming problem. We discuss first the steepest

ascent approach. Our development is similar to that given in Fisher, Nor thup

and Shapiro (1975) ; see also Grinold (1970), (1972) and Shapiro (1977).

Although L is not everywhere differentiable, ascent methods can be constructed

using a generalization of the gradient. An m—vector y is called a subgradient

of L at u if
L(u) ~ L(u) + (u—~)y for all u.

For any subgradient, it can easily be shown that the half space {uI(u—ii)y~0}

contains all solutions to the dual with higher values of L. In other words,

any subgradient appears to point in a direction of ascen t of L at i~. A readily

available subgrad ient is

S~
=g (

~
) — b  (18)

where ~ is any solution in X satisfying L(ii) = —iib+f(~ )+~ig(i). If there

is a unique xcX minimizing L at i , then L is differentiable there and V is

the gradient.

The subgradient optimization method (Held and Karp (1971) , Held , Wolfe

and Crowder (1974)) uses these subgradients to generate a sequence {U
k

} of

non—negative solutions to (17) by the rule

k+l k k
Uj  — max {O,ui + ekYI} i1 ,...,m

where is any subgradient selected In (18) and > 0 is the step length.

For example, if 0k obeys 0k -

~ 

0+ and Z8
k 

+a , then it can be shown that

L(uk) -~ d (Poljak (1967)). Alternatively , f inite convergence to any target
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value a<d can be achieved if

a (a L(u15)
8 — 

k (19)
k lI y~(Il2

• where I ~ukJ ( denotes Euclidean norm and C
1 

< < 2—c
2 

for c1 > 0, C
2 

> 0.

• The latter choice of 0k is usually an 
uncertain calculation in practice,

however , because the value d is not known and therefore a target value d<d

cannot be chosen with certainty .

There is no guarantee when using subgradlent optimization that

L(u~~
1) > L(uk) although practice has shown that increasing lower bounds can

be expected on most steps under the correct combination of artistic expertise

and luck. Thus, subgradient optimization using the rule (19) for the step

length is essentially a heuristic method with theoretical as well as empirical

justification. It can be combined with convergent ascent methods for solving

(17) based on the simplex method which we now discuss.

The dual problem (17) Is equivalent to the LP problem

d max v

v ~ 
_ub+f(xt) + ug(xt) t=l,...,T (20)

u � O ,

because, for any u ~ 0, the maximal choice v(u) of V is

—ub + minimum {f(xt) + ug(xt) )  = L ( u ) .
t=l,.. . ,T

Problem (20) is usually a large scale LP because the number T of constraints

can easily be on the order of thousands or millions. For example, in the •

traveling salesman dual problem discussed in section 2 , T equals the number of

1—trees defined on a graph of n nodes. The LP dual to (20) is
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T
d mm ~ f (x t )A t 

(21a)
t— l

T
s.t. ~ g(x~)A~ � b (21b)

t=l

T
(2lc)

t=1

~ 0, t=l ,. . . ,T (2ld)

• This version of the dual problem clearly illustrates the nature of the

convexification inherent in the application of Lagrangean techniques to

the discrete optimization problem (15).

For decomposable discrete optimization problems with separable

Lagrangeans such as the multi—item production scheduling and inventory control

• problem (10), the dual problem in the form (21) has a convexification constraint

(2lc) for each component in the Lagrangean. The number of such constraints for

the production scheduling problem is I (the number of items being scheduled),

and the number of joint constraints (2lb) is T (one for each time period). If

I > T, then an optimal solution to (21) found by a simplex algorithm will have

pure strategies for at least I — T items; that is, one A variable equal to one

for these items. If I >> T, then Lagrangean techniques give a good approxi-

mation to an optimal solution to (10) because pure strategies are selected for

most of the items. Roughly speaking, when I >> T, the duality gap between (10)

and its dual is small.

Solution of the dual problem in its LP form (20) or (21) can be accom—

pu shed by a number of algorithms. One possibility is generalized linear

programming, otherwise known as Dantzig—Wolfe decomposition (see Dantzig

and Wolfe (1960) , Lasdon (1970), or Magnan ti, Shapiro and Wagner (1976)).

Generalized linear programming proceeds by solving (21) with a subset of

• --~~~~~~-~~~~~~ — —•— - —-- —~~•—- -~~~~ _--——~~~~~~~~~~~ - ~~~~~~~~~ •— • • --_ ~~~~~~~~~~~~~~~~~~
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the T columns ; this LP problem is called the Master Problem. A potential

new column for the Master is generated by finding icX satisfying

— + ¶b+f (~ )— 5~g(~ ) ,  where ~ ~ 0 is the vector of optimal 12 shadow prices

on rows (21b) calculated for the Master problem . If L(—i~) < ib+O, where 8 is

the optimal shadow price on the convexity row (21c), then the new column

is added to the Master with new A variable. If L(—~) — ~b+~ (the “> “ case

is not possible), then the optimal solution to the Master is optimal in the

version (21) of the dual problem .

Note that if we required A
~ 

to be integer in version (21) of the dual

problem, then (21) would be equivalent to the primal problem (15). Moreover,

the dual solves the primal problem (15) if there is exactly one A
~ 

at a positive

level in the optimal solution to (20); say, Ar 
— l, At 

— 0, t ~ r. In that

case, xrcX is the optimal solution to the primal problem and we have found it

by the use of Lagrangean techniques. Conversely, suppose more than one At is

at a positive level In the optimal solution to (21) , say A
1 

> 0,... 
~
Ar 

> 0,

— 0, t � r+l. Then in all likelihood the solution E A
tx

t is not in X
t—l

since X is discrete and the dual problem has failed to yield an optimal solu-

tion to the primal problem (15). Even if y E )~x~ is in X, there is no
t—l

guarantee that y is optimal because optimality conditions (ii) and (iii)

can fail to hold for y. In the next section we discuss how this difficulty

can be overcome , at least in theory , and in section 5 we discuss the use of

Lagrangean techniques in conj unction with branch and bound .
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Generalized linear programming has some drawbacks as a technique for

generating Lagrange multipliers in discrete optimization. It has not per-

formed consistently (Orchard—Hays (1968)) although recent modifications of

the approach such as BOXSTEP (Hogan, Marsten and Blankenship (1975)) have

• performed better. A second difficulty Is that it does not produce monotoni—

cally increasing lower bounds to the primal objective function minimum.

Monotonically increasing bounds are desirable for computational efficiency

when Lagrangean techniques are used with branch and bound . A hybrid approach

that is under investigation is to use subgradient optimization on the dual

problem as an opening strategy and then switch to generalized linear program-

ming when it slows down or performs erratically. The hope is that the gen-

eralized linear programming algorithm will then perform well because the first

Master LP will have an effective set of columns generated by subgradient opti-

mization with which to optimize.

• An alternative convergent algorithm for: the dual problem is an ascent

method based on a generalized version of the primal—dual simplex algorithm.

We present this method mainly because it provides insights into the theory of

nondifferentiable optimization which is central to the selection of Lagrange

multipliers for discrete optimization problems. Its computational effectiveness

Is uncertain although it has been iumlemented successfully for IP dual problems

(see Fisher, Northup and Shapiro(1975) which also contains proofs of assertions).

The idea of the primal—dual ascent alg&...ithm can best be developed by

considering a difficulty which can occur in trying to find a direction of

ascent at a point ~ with positive components where L is non—differentiable.

The situation is depicted in figure 1. The vectors and are distinct

subgradients of L at ~ and they both point into the half space containing

points u such that L(u) � L(~). Neither of these subgradients points in a

direction of ascent of L; the directions of ascent are given by the shaded
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region which is the intersection of the two half spaces {ut(u—~
i)y’

~
O) and

{uI(u—ii)y2~0}.

In general, feasible directions of ascent of L at a point ~ can be dis-

covered only by considering at least implicitly the collection of all sub—

gradients at that point. This set Is called the subdifferential and denoted

by &(~i). The directional derivative VL(ii;v) of L at the point ii in the

feasible direction v is given by (see Grinold(1970))

VL(~ ;v) minimum vy (22)
yc6L(i~)

The relation (22) Is used to construct an 12 problem yielding a feasible

direction of ascent, if there is one; namely, a feasible direction v such

that VL(ii;v) > 0. Two sets to be used in the construction of the

direction finding TI are

= 5vcR
m O

~
vi~

]. for I such that i11—O;
—l~v~~l for i such that

and
T(u) = {tIL(u) = —ub + f(xt) + ug(xt)}.

Without loss of generality, we can limit our search for a feasible direction

of ascent to the set V(~). The subdifferential &L(u) is the convex hull of

the points — g(xt)_b , tcT(~i), and this permits us to characterize the direc—

tional derivative by the formula

VL(~ ;v) - minimum vyt (23)
t cT (u)

If the non—negative vector U is not optimal in the dual problem , then

a direction of ascent of L at can be found by solving the TI problem

_ _ _ _  
_ _  •
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V — max V

v ~~ vy
t 

, tcT6i) (24)

vcV(ii).

Conversely, if ii is optimal in the dual problem, then V 0  is the optimal

objective function value in (24). Note that from (23) we have

V — maximum minimum vyt

vcV(11) t”l,.. . ,T

- maximum VL(ii;v)

vcV(~i)

and the 12 (24) will pick out a direction of ascent with VL(ii;v) > 0 If

there is one.

Once an ascent direction v ~ 0 with VL(ii ;v) = V>0 has been computed

from (24), the step length 0>0 in that direction is chosen to be the maxi-

mal value of B satisfying L(i~+0v) = L(~)+0V. This odd choice of 0 is needed

to ensure convergence of the ascent method by guaranteeing that the quantity

V strictly decreases from dual feasible point to dual feasible point (under

the usual 12 non—degeneracy assumptions). This is the criterion of the

primal—dual simplex algorithm which in fact we are applying to the dual

problem in the dual TI forms (20) and (21).

The difficulty with problem (24) is the possibly large number of con—

straints v I vyt since the set T(u) can be large. This can be overcome by

successive generation of rows for (24) as follows. Suppose we solve (24)

with rows defined for y~ , tcT’(~) ~ T(~) and obtain an apparent direction

v’ of ascent satisfying 7’ — min imum v~y~ > 0. We compute as before the
tcT’ (t)

maximal value 0’ of 0 such that L(G+Ov’) — L(j i)+0V ’. If 0’ > 0, then we

- - -• --~~~~~~~~~~~~~~ - , • • —•- • — • •-~~- - -~~‘-  A
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proceed to i~ + 0max ’
~ 

If 0 ’ — 0, then it can be shown that we have found as

a result of the line search a subgradient y5, scT(~) — T ’(~~) ,  which satisfies

V ’ > v’y8. In the latter case, we add V I vy8 to the abbreviated version

of (24) and repeat the direction finding procedure by resolving it.

The dual problem is solved and ~ is found to be optimal if and only if

• V — 0 in problem (24). Some additional insight is gained if we consider the

II dual to (24)

V t n in~~~~~s +  

~4iCIc(ii)

s.t. 
~ V~

A~ 
— s1 

+ s~ — 0 i —1,... ,m (25)

tcT(fl)

~ = 1
tcT(U)

~~~~~~ s~~ �0 , s~~� O ,

where I(~ ) — {iI
~i 

— 0) . Problem (25) states , in effect , that ~ Is optimal

in the dual problem if and only if there exists a subgradient ~c6L(~) satis—

fying j
~ 

— 0 for i such that U
1 

> 0 and 1 0 for I such that ~ 0.

Moreover, the columns y~ for tcT(~) and A
~ 

> 0 are an optimal set of columns

for the dual problem in the form (21).

The close relationship among the concepts of dualization, convexification

and the differentiability of L is again evident. Specifically, a sufficient,

- 

but not necessary, condition for there to be no duality gap is that L is

differentiable at some optimal solution ~~ . If such Is the case, then 6L()

consists of the single vector ~—g(~)—b which by necessity is the optimal

column in (25). The necessary and sufficient condition for dual problem

optimality that V—0 in (25) imjlies that x satisfies the optimality conditions

Implying it is optimal in the primal problem. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • • • •
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4. Resolution of Duality Gaps

We have mentioned several times in previous sections that a dual

problem may fail to solve a given primal problem because of a duality gap.

In this section, we examine how Lagrange techniques can be extended to

guarantee the construction of a dual problem which yields an optimal solution

to the primal problem. The development will be presented mainly in terms of

the zero—one IP problem (1) as developed in Bell and Shapiro (1976), but the

theory is applicable to the general class of discrete optimization problems

(15). The theory permits the complete resolution of duality gaps. Neverthe-

less, numerical excesses can occur on some problems making it difficult, in

practice to follow the theory to its conclusion . The practical resolution

of this difficulty is to imbed the dual analysis in branch and bound as des-

cribed in section 5. Although it was not realized at the time It was invented ,

the cutting plane method for IP (Gomory (1958)) is a method for resolving IP

duality gaps. We will make this connection in our development here, indicate

why the cutting plane method proved to be empirically inefficient and argue

that the dual approach to IP largely supercedes the cutting plane method .

We saw In section two how a dual prob lem to the zero—one IP problem (1)

could be constructed using a group homomorphism to aggregate the equations

Ax I b. The relationship of this IP dual problem to problem (1) can be

investigated using the duality theory developed in the previous section.

Recall that the Lagrangean for the IP dual was defined for u~O as (see (14))

L(u) - -ub + minimum {(c+uA)x + us},

(x ,s)c~

where 
.



V — {(x, s)~ Z aj xj  + ~ 
c~ s~ — B, X~—0 or 1, ~~~~~~~~~~~~~~ (26)

3—1 1—1

Although the slack variables in V are not explicitly bounded , we can without

loss of generality limit V to a finite set, say V {(x t,st)}~_1. This is

because any feasible slack vector s — b—Ax is implicitly bounded by the zero—

one constraints on x.

The general discrete optimization dual problem in the form (21) is

specialized to give the following representation of the IP dual problem

T
d mm 

~ 
(cxt) A

tt—l

T
s.t. 

~ 
(Axt+Ist)A

t 
— b (27)

t—l

T
— 1

t—l
A t>0

This formulation of the IP dual problem provides us with the insights

necessary to make several important connections between Lagrangean techniques

and the cutting plane method. The convexification in problem (27) can be

written in more compact form as

d = mm cx
(28)

s.t. xc{x!Ax+Is b, 0~x~Sl, O1s11M1} A

where “1 ]“ denotes convex hull and M
i is the upper bound on the slack variable

In words , the IP dual problem is effectively the problem of minimizing

cx over the intersection of the LP feasible region with the polyhedron fY ) .

Inequalities based on the faces of (VI are cuts , and there will generally be

an extremely large number of them. The computational inefficiency of the cutting 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A
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plane method is due in large part to the algorithmic ambiguity created by this

proliferation of cuts.

Lagrangean techniques and the IP dual problem provide a rationale for

selecting cuts, but in the process, makes the use of cuts largely superfluous.

For any u�0, the inequality

(c+uA)x+us � L(u)+ub (29)

is a supporting hyperplane of [VI. Since V contains all feasible solutions

to the zero—one IP problem, (29) is a valid cut which can be added to any

LP relaxation of the problem which included the constraints Ax+Is b.

Its effect on an LP relaxation would be to ensure that the objective function

value cx would be at least L(u) (Shapiro (1971)). Thus, the strongest cut

in terms of forcing the objective function to increase is one derived from

a dual vector u’~ that is optimal in the dual problem. Furthermore, the pro-

cedure for selecting a cut according to this criterion is to solve the dual

problem by one or more of the methods of the previous section which, as we

see from problem (28), implicitly considers all cuts (i.e., all faces of (fl)

without generating any of them.

If an optimal solution to the dual problem produces an optimal solution

to the zero—one IP problem, then a cut is not needed. If, on the other hand,

an optimal zero—one solution is not produced, then a cut of the form (29)

written with respect to an optimal dual solution u~ has the same effect on

the objective function as all the cuts implied by [Y]. The addition of such

a cut to an LP relaxation would permit the IP dual analysis to continue in

the sense that a stronger IP dual of the form (27) could be derived. However,

the construction of Bell and Shapiro (1977) attacks more directly the problem

of strengthening the IP dual when it does not produce an optimal solution to

the zero—one IP problem. 

—~~~~~~~~~~~~ - - - - -~~ - - •— • rn—---~~~~~ -
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Solution of the zero—one IP problem (1) by Lagrangean techniques is

constructively achieved by generating a finite sequence of groups (C
K

sets 
~~~~~ 

and TI dual problems analogous to (27) with objective function

value dk. The groups have the property that is a subgroup of G~~
’, implying

by the construction that ~ ~
k and therefore that v ~ d

1
~~ ~ d

k. The

critical step in this approach to solving (1) is that if an optimal solution

to the kth dual does not yield an optimal solution to (1), then we are able

tO construct c
k+1 

50 that !
1
~~ ;?. The construction uses as its point of

departure the following result.

Theorem 2 (Bell and Shapiro): If only one A
t 

is positive In an optimal

basic solution to (27), then the corresponding solution (xt,st) is optimal

in the zero—one IP problem. On the other hand, if more than one is

positive, then all the (xt,st) corresponding to basic A t are infeasible

in the zero—one IP problem.

When more than one A
t 

is positive in an optimal basic solution to

(27), then we can use a number theoretic procedure on the columns in (27)

with A
t positive to construct a new group with the property that the corres-

ponding (xt,st) are infeasible in the new group equation. Thus, they are

not considered in the Lagrangean calculation. Since at least two solutions

are eliminated each time the dual is strengthened, and since the set of (x,s)

to be considered is finite, the process converges to an IP dual problem of

the form (27) which yields an optimal solution to the zero—one IP problem.

Computational experience with the IP dual problem (27) is given in

Fisher, Northup and Shapiro(l975). D’Aversa (l977) has encoded the iterative

_ _  - - 
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IP dual analysis outlined above and experimentation is underway with it.

The IP dual approach has been extended to mixed IP by Bell(l977) and

Northup and Shapiro (l977). Burdet and Johnson(l975) have applied some con-

cepts from convex analysis in the construction of IP methods which bear a

resemblance to the methods just discussed. 
-

The approach just outlined is applicable to the general discrete opti-

mization problem (21) as long as g(xt)_b is a rational vector. If more

than one A
~ 

is positive in (21), a group structure could be induced which

would exclude infeasible solutions x~ from consideration in the Lagrangean

(16). This would be accomplished by intersecting X with the set of

solutions satisfying a group equation which would, however , make the algorithm

for the Lagrangean more complex. See Bell(1973) for an application of this

approach to the traveling salesman dual problem to maximize the Lagrangean (12).

5. Uses of Lagrangean techniques in branch and bound

Branch and bound is a method guaranteed to find an optimal solution

to the general discrete optimization problem (15) by a systematic search

of the discrete solution set X. The efficiency of the search is determined

In large part by the strength of the bounds used in limiting It. Bounds

are often derived from LP relaxations of a given discrete optimization

problem which, as we have seen, arise naturally as dual problems for selecting

Lagrange multipliers. Lagrangean analyses can also be used to indicate the

most promising variables on which to branch. Conversely, branch and bound

can be viewed as a method for perturbing a given discrete optimization

problem when Lagrangean techniques fail to yield an optimal solution to it.
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We describe the integration of Lagrangean techniques with branch and

bound in terms of the general discrete optimization problem (15). Our develop-

ment follows closely that of Fisher, Northup and Shapiro (1975). The branch

and bound search of the set X is done in a non—redundant and implicitly exhaus-

tive fashion. At any stage of computation, the least cost known solution

xcX satisfying g(x)Ib is called the incumbent with incumbent cost z~f(x).

Branch and bound generates a sequence of subproblems of the form

v(Xk) mm f(x)

s.t. g(x) ~ b, (30)

where X. The set is selected to preserve the special structure

of X. If we can find an optimal solution to (30), then we have implicitly

tested all subproblems of the form (30) with replaced by Xt s~ xk and

such subproblems do not have to be explicitly enumerated . The same conclusion

holds if we can ascertain that v(Xk) ~ z without actually discovering

the precise value of v(Xk). If either of these two cases obtain, then we

say that the subproblem (30) has been fathomed. If it is not fathomed, then

we separate (30) into new subproblems of the form (30) with replaced

by X~, 1—1 ,... ,L , and

Lu x1 
— ~~ ~~ A ]CL2 = ,, £1 ~

Lagrangean techniques are used to try to fathom the subprobletn (30) by

solutiQn of the dual problem

k k
d(X ) — max L(u;X ~ (31)

s.t. u � 0

A
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where

L(u;Xk) — —ub + minimum (f(x)+ug(x)}
k 

(32)
xcX

The use of (31) in analyzing (30) is illustrated in figure 2 taken from

Fisher, Northup and Shapiro (1975) which we now discuss step by step.

Steps 1 and 2: Often the inital subproblem list consists of only

one subproblem corresponding to X.

Step 3: A good starting dual solution u ~ 0 is usually

available from previous computations.

Step 4: Computing the Lagrangean can be a network optimization

problem, shortest route type computation for integer programming, minimum

spanning tree for the traveling salesman problem, dynamic programming shortest

route computation for resource constrained network scheduling problems, etc.

Step 5: As a result of step 4, the lower bound L(u;Xk) on

v(Xk) is available, and it should be clear that (30) is fathomed if

L(u;Xk) ~ z since L(u;Xk) � v(Xk) .

Steps 6, 7, 8: Let xexk be an optimal solution in (32) and suppose

x is feasible, i.e. g(x) ~ b . Since (30) was not fathomed (step 5), we

have L(~ ;X
k) f(x) + ~i(g(ic)—b) < z with the quantity ~(g(i~)—b) 1 0 . Thus,

it may or may not be true that f6c) < z , but if so, then the incumbent ;

should be replaced by x . In any case, if x is feasible, we have by the

duality theory discussed in section 3 that f(x) + ~(g(~)—b) < v(X15 ~ f (x )

and therefore x is optimal in (30) if ~(g(x)—b) = 0 ; i.e., if complementary

slackness holds.

Step 9: This may be a test for optimality in the dual of the

current . Alternatively, it may be a test of recent improvement in the
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dual lower bound. If generalized linear programming is used to solve the

dual, then it provides at each iteration an upper bound d on d(Xk). Thus,

if ~ < z , we know that the subproblem (30) will never be fathomed by

bound by the given dual. Finally, as we indicated in section 4, if the given

dual problem proves unsatisfactory, then it can sometimes be strengthened

depending on the nature of the primal problem.

Step 10: The selection of a new u ~ 0 depends upon the

methods discussed in section 3 being used and which of these methods have

proven effective on the same type of problem in the past. When subgradient

optimization is used , the incumbent value z can be used l~n place of d as

the target value in selecting the step length (19). The rationale for this

choice is the desire to fathom (30) by bound using the dual by finding

� 0 such that L(u;Xk) ~ z . Computational experience has shown that sub—

gradient optimization has a good chance of quickly finding such a ~ if

d ( Xk) is somewhat above z and it also produces monotonlcally increasing

• lower bounds. Conversely, if d(Xk) < z and z is used as the target , the

lower bounds produced by subgradient optimization will not be monotonic and

a wobbling pattern will be Observed . In the latter case, persistence with

the dual (step 9) is not attractive.

Steps 11, 12: The separation of the given subproblem can often be

done on the basis of information provided by the dual problem. For example,

in integer programming, the problem may be separated into two descendants

with a zero—one variable x
1 

set to zero and one respectively, where X
j

is chosen so that the reduced cost is minimal. It is important to point out

that the greatest lower bound obtained during the dual analysis of (30) re—

I kmains a valid lower bound on a subproblem derived from (30) with X ~ X

____________________________ 
_ _ _ _ _ _ _ _  4
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In step 12, the new aubproblem selected from the subproblem list can be one

with low or minimal lower bound.

There are some constructs used in branch and bound derived from or related

to Lagrangean techniques which we will not cover in any detail. One such con—

• struct is the calculation of penalties relative to a given LP relaxation of a

discrete optimization problem (see Dakin(l965), Driebeek(l966), Healy(l964),

Tomlin(197l)). A penalty for a zero—one IP problem, for example, is a lower

bound estimate on the increase in cost of the primal objective function value

as the result of separating the IP problem by fixing a specific variable at

zero and one. Another construct is the surrogate constraint which is given

in the form

• f(x) + u(g(x)—b) < z

for any u � 0 (see Geoffrion(l969) or Clover(l968)). The idea Is that this

• 
constraint can be added to (30) since any feasible solution with lower cost

• than z will satisfy it. The constraint has a strong effect on the analysis

• of subproblems derived from (30) if u is chosen to be optimal or near

optimal in the dual (31). Ceoffrion(1974) discusses in greater detail

penalties and surrogate constraints from the Lagrangean point of view.

6. Future research and applications areas

We have seen that Lagrangean techniques have already been widely used

to analyze discrete optimization problems. Nevertheless, further progress

should be possible in the use of these techniques, particularly in their

integration with branch and bound, and the construction of fast hybrid

algorithms for solving dual problems. We saw in section five that a family
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of related dual problems is generated and used in conjunction with branch

and bound. The relationship between these duals is incompletely understood

as are methods for exploiting the relationship in their optimization. Some

work in this direction has been done by Marsten and Morin(l976). They

give a new way to use linear programming to compute bounds on LP relaxations

in branch and bound. Specifically , a resource—space tour is defined such

that each simplex pivot yields a bound for every unfathomed subproblem in

the branch and bound search.

Sensitivity and parametric analysis of IP problems is an area of current

research interest and considerable practical importance in which Lagrangean

techniques can play a significant role. Geoffrion and Nauss(1977) give an

overview of the work done thus far in this area. Shapiro(l976) discusses

how the constructs from section 4 can be used in sensitivity analysis.

Multicriterion IP is a particularly desirable type of parametric analysis

which has not yet been implemented. The idea would be to use the branch and

bound search to generate a number of feasible [P solutions which are optimal

or near optimal under various objective functions. The work required to find

a number of interesting mixed IP solutions may be little more than that of

finding a single optimal solution. Parametric variation of the right hand

side is studied by Marsten and Morin(1975) .

Another recent area of considerable research interest in which Lagrangean

techniques are applicable is in the analysis of heuristic methods for combina— •

ton al optimization. Cornuejols, Fisher and Nemhauser(1977) develop a

“greedy” heuristic to generate feasible solutions to a class of location pro—

blems and use Lagrangean techniques to assess the error in objective function

optimality.
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