l

L

e e i e s s o gt o

e %
i ;'~§,.L;w.if§',>

ADAQSO0779

R e U
L)

REPRESENTING AND TEACHING KNOWLEDGE FOR
TROUBLESHOOTING/DEBUGGING

by
Keith T. Wescourt and Linda Hemphill

TECHNICAL REPORT NO. 292

0DC FILE COPY*

February 1, 1978

PSYCHOLOGY AND EDUCATION SERIES

S s

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES
~ STANFORD UNIVERSITY
STANFORD, ‘CALIFORNIA

~DISTRIBUTION STATEMENT A
Approved for public releass;

Distribution Unlimited

REPRESENTING AND TEACHING KNOWLEDGE FOR

TROUBLESHOOTING/ DEBUGGING

Keith T. Wescourt
Linda Hemphill

Contract No. NOOOlL-77-C-0124, effective November 1, 1976.
Expiration Date: October 31, 1977.
Amount of Contract: $96,688.
Principal Investigator, Keith T. Wescourt, (415) L497-411T.
Contractor: Institute for Mathematical Studies in
the Social Sciences
Stanford University
Stanford, CA 94305

Sponsored by:

Office of Naval Research

Contract Authority No. NR 15L4-394

Scientific Officers: Dr. Marshall Farr and
Dr. Henry Halff

and

Advanced Research Project Agency
ARPA Order No. 3339
“Program Code No. 61101E

The views and conclusions contained in this document are those of the ﬂ
authors and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of the Advanced Research
Projects Agency, the Office of Naval Research, or the U.S. Government.

Approved for public release; distribution unlimited. Reproduction in
whole or in part is permitted for any purpose of the United States
Government.

—

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)
READ INSTRUCTIONS

REPORT DOCUMENTAT'ON PAGE BEFORE COMPLETING FORM

1. REPORT NUM, /"‘“"“2-"’_‘" T — 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATA —
(14]TR-29 g : W Nové- 31

4. TITLE (and Subiltle)

c Representing and Teaching Knowledge for
Troubleshooting/Debuggiix.g_ o sir i i o ol 6. PERFORMING ORG, REPORT NUMBER
%) ' Technical Report No. 2927

7. AUTHOR(s) ®. CONTRACT OR GRANT NUMBER(s)

_ e >
Keith T/ Wescourt & Linda/Hemphill @qﬁ?lh;n-c-q‘leh,f____.w
' V1YARRPA 5ra'e.r‘-i.3_339\
WA ASK

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::gsa.kg NT PR EIS'
Institute for Mathematical Studies in the o

1
Social Sciences, Stanford University, ‘//ér\’
Stanford, California 94305 /g—’ NR 154394 7

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORY DATE [/ -
Personnel & Training Research Programs February 1, Igﬁg joiiet
Office of Naval Research (Code 458) 13. NUMBER OF —
Arlington, VA 22217 142 (:a Z 4 5. F—;'J

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of thies repo

Unclassified

Sa, DECLASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it difterent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
problem solving, debugging, troubleshooting, reasoning, instruction, complex
learning, computer programming, artificial intelligence (AIL), knowledge
representations, heuristics

20. ABSTRACT (Continue on reverse side If necessary and Identify by block number)

~As society's dependence on technology increases, the need for competent
technicians who can maintain and repair complex systems increases as well.
Present methods of teaching troubleshooting/debugging remain primitive and
expensive, relying on students to discover effective and efficlent problem-
solving methods by observation and practice in relatively unstructured
environments. The goal of the present project was to identify the types of

knowledge necessary and useful for competent troubleshooting/debugging and

DD . on'5; 1473 €oiTion oF 1 NOV 68 15 OBSOLETE
S/N 0102.LF 014.6601

SECURITY CLASSIFICATION OF THIS PAGE (When Data Bntered)

& PTO3P

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

to examine how new approaches to formal instruction might influence the attain-
ment of competence by students. In particular, the research focused on the
role of general strategies in troubleshooting/debugging and how they might be
represented and taught explicitly and directly in order to avoid the cost and
other drawbacks of learning indirectly by observation and practice.

Related work on troubleshooting/debugging was examined and in conjunction
with a logical analysis contributed to a characterization of troubleshooting/
debugging problems and problem-solving processes that emphasizes their gener-
ality across a number of technical fields and informal contexts. The analysis
also suggests that debugging is a fundamental aspect of almost all learning
and problem solving. One result of the analysis was the formulation of an
information-processing model of a general troubleshooting/debugging strategy,
which describes the types of reasoning processes needed, some of the factors
governing selection of alternative processes in solving a problem, and an
explicit control strategy.

Extensive examination of a corpus of data from students learning computer
programming was undertaken, and some further limited debugging data were col-
lected from both experienced and inexperienced programmers. These data are
consistent with a hypothesis that expert debuggers do not necessarily have
superior general strategies, but instead that their expertise derives from
specific and sometimes idiosyncratic knowledge acquired through experience.
Inexperienced programmers lack this knowledge, but in addition some of them
have a defective general strategy as well. In an attempt to obtain a rigorous
characterization of the differences and defects in the debugging strategy of
the programming students, an effort was made to apply a model-oriented data
analysis method reported in the literature. However, the method was unsuc-
cessful for the data available and may have more basic limitations. As a
consequence only informal conclusions about the defective strategies used by
some inexperienced debuggers could be developed: (1) they are deficient in
program testing and so fail to find bugs; (2) they do not collect or use avail-
able data about the effects of a bug to constrain their reasoning; (3) they
have a low threshold for attempting minor and sometimes irrational repairs;
and (4) they do not backtrack well from unsuccessful repair attempts.

A small-scale study was conducted to determine the effects of presenting
a tutorial text, which explicitly describes a few general heuristics designed
to correct these strategy deficits, to novice programmers. The data indicate
a marginal increase in the apparent use of some of the heuristics by the pro-
grammers who studied the text compared to a group who did not. In addition,
comments elicited from the students were generally favorable to presenting
problem-solving strategies explicitly, as they were in the tutorial. However,
the success of the groups in solving debugging test problems did not differ.
There were several methodological limitations and problems encountered in the
study which further confound the results. More general methodological issues
for studies designed to investigate instruction in troubleshooting/debugging
also became apparent. One of the most important is analysis of complex
problem-solving data: if the causes of differences in ability are to be spec-
ified in detail and if the effects of direct problem-solving instruction are
to be assessed, then it will be necessary to perfect model-based data analysis
methods.

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Summary

~ M lhoua

As society’s dependence on technology increases,%the need for
competent technicians who can maintain and repair complex_ systems (5 [ner€asS/ A’) oy
increases as well. cPresent methods of teaching : "
troubleshooting/debugging remain primitive and expensive, relying on
students to discover effective and efficient problem-solving methods by
observation and practice in relatively unstructured environments. The
goal of the present project was to identify the types of knowledge
necessary and useful for competent troubleshooting/debugging and to
examine how new approaches to formal instruction might influence the
attainment of competence by students. In particular, the research
focused on the role of general strategies in troubleshooting/debugging
and how they might be represented and taught explicitly and directly in
order to avoid the cost and other drawbacks of learning indirectly by
observation and practice. _

I

!

Related work on troubleshooting/debugging was examined and in
conjunction with a logical/analysis contributed to a characterization of
troubleshooting/debugging/problems and problem-solving processes that
emphasizes their generality across a number of technical fields and
informal contexts. The fnalysis -also;suggests that debugging is a
fundamental aspect of almost all learning and problem solving. One
result of the analysis was the formulation of an information-processing
model of a general troubleshooting/debugging strategy, which describes
the types of reasoning processes needed, some of the factors governing
selection of alternative processes in solving a problem, and an explicit
control strategy.

Extensive examination of a corpus of data from students learning
computer programming was undertaken, and some further limited debugging
data were collected from both experienced and inexperienced programmers.
These data are consistent with a hypothesis that expert debuggers do not
necessarily have superior general strategies, but instead that their
expertise derives from specific and sometimes idiosyncratic knowledge
acquired through experience. Inexperienced programmers lack this
knowledge, but in addition some of them have a defective general
strategy as well. In an attempt to obtain a rigorous characterization
of the differences and defects in the debugging strategy of the
programming students, an effort was made to apply a model-oriented data
analysis method reported in the literature. However, the method was
unsuccessful for the data available and may have more basic limitations.
As a consequence only informal conclusions about the defective
strategies used by some inexperienced debuggers could be developed: (1)
they are deficient in program testing and so fail to find bugs; (2) they
do not collect or use available data about the effects of a bug to
constrain their reasoning; (3) they have a low threshold for attempting
minor and sometimes irrational repairs; and (4) they do not backtrack
well from unsuccessful repair attempts.

A small-scale study was conducted to determine the effects of
presenting a tutorial text, which explicitly describes a few general

A

/

L----'-'"--l--------—-n---—-------._...r TR

heuristics designed to correct these strategy deficits. to novice
programmers. The data indicate a marginal increase in the apparent use
of some of the heuristics by the programmers who studied the text
compared to a group who did not. In addition. comments elicited from
the students were generally favorable to presently problem-solving
strategies explicitly, as they were in the tutorial. However, the
success of the groups in solving debugging test problems did not differ.
There were several methodological limitations and problems encountered
in the study which further confound the results. More general
methodological issues for studies designed to investigate instruction in
troubleshooting/debugging also became apparent. One of the most
important is analysis of complex problem-solving data: if the causes of
differences in ability are to be specified in detail and if the effects
of direct problem-solving instruction are to be assessed, then it will
be necessary to perfect model-based data analysis methods.

i) i eedamu aliia oy B 5 A

REPRESENTING AND TEACHING KNOWLEDGE FOR

TROUBLESHOOTING/DEBUGGING

by

R T

Keith T. Wescourt and Linda Hemphill

February 1, 1978

Institute for Mathematical Studies in the Social Sciences
Stanford University
Stanford, California

Acknowledgements

| We wish to recognize the participation of Diana Egly, Alex

§ Strong, Mary Dageforde, Roger Cole, and Marian Beard, all of who

E contributed to this research in several roles. We thank Drs. Marshall
i Farr and Henry Halff, Personnel & Training Research Programs, Office of
F Naval Research, and Dr. Harry O°Neil, Jr., Program Manager, Cybernetics
Technology Office, Defense Advanced Research Projects Agency, for their
support and encouragement throughout the project.

This research was sponsored by ONR Contract NOOOl4-77-C-0124.
Contract Authority No. NR 154-394.

—

The increasing dependence of our society on technology is a
phenomenon. Complex systems continue to perform new functions and
become more sophisticated. For example, consider their role in modern
commercial aviation. There are of course the modern jet aircraft
incorporating dozens of electrical, electronic, and mechanical systems.
But there are also the networks of radar and communication systems for
controlling air traffic and the computerized scheduling and reservation
systems for coordinating flights and access to them by passengers and
cargo. 1t is difficult to imagine how the demands our society now
places on commercial aviation could be satisfied without these complex
systems. Such systems hav become equally indispensible throughout our
society.

Error or failure is always a threat when relying on a complex
system. The result might merely be inconvenience, as it would if an
airline’s reservation system lost track of a passenger’s reservation.
Or, it could be disaster, if, for example. an aircraft’s radar failed in
flight under conditions of poor visibility. Preventive maintenance and
repair of complex systems is therefore an important concern. One
response to the problem have been efforts to develop better types of
technical data for both routine maintenance and repair procedures to
accompany complex systems (Potter & Thomas, 19/6). A second,
complementary response. one with which this report is concerned, is to
provide better training for the people responsible for testing and

repairing complex systems.

If a system does not operate as it should either during testing

NPTy v——

USSR OIP——

or during actual use-- if the oil pressure warning light comes on in an
aircraft, if ground radar incorrectly indicates the position of
aircraft, or if the reservation system allows two passengers on the same
flight to be assigned to seat lUA--, then a human technician must be

summoned to solve the problem of locating and correcting the cause of

the failure. This type of problem solving is referred to in different

contexts as troubleshooting or debugging. The objective of ''good"

troubleshooting/debugging is to locate and correct the cause of failures
efficiently, without undue cost of materials and time. An electronics

technician does not want to replace several components in a circuit if

N —— T I

he has reason to believe that only one of them is faulted and that he
can identify and replace just that one in a reasonable amount of time.
Similarly, a computer programmer faced with a program that generates
incorrect results wants to make a relatively limited correction. one
that does not entail recoding parts of the program that perform their
function adequately.

Expert troubleshooters, those technicians (or technical
consultants) who make difficult repair problems seem easy and
"impossible" ones only difficult, have always been highly valued and are
often regarded as artists, since their expertise is so poorly
understood. Demand for their services can only grow as complex
technology spreads. However, advancing technologies have introduced
features such as built-in test systems, modular system organization, and

miniaturization that make efficient troubleshooting of routine types of

failures in even the most complex systems possible for technicians with
more limited skill. Unfortunately, many newly trained technicians have

difficulty even with routine problems and become competent only after

TR

— -

e

they have had considerable field experience. Thus, maintenance costs
are high and, in settings where there is a high-rate of personnel
turnover, there tends to be a chronic shortage of competent technicians.
The research described in this report investigated the bases for
competence and expertise in troubleshooting, as seen in the context of
computer program debugging. The goal was to identify the types of
knowledge necessary and useful for competent debugging and to determine
whether new approaches to formal instruction might facilitate the

attainment of competent debugging ability by new programmers.

Troubleshooting/debugging as a general aspect of problem solving

Situations that pose a problem of locating and correcting the
cause of a failure are not limited to electronics, mechanics, and
computer programming and do not necessarily include complex technologv.
In some contexts, the parallels are straightforward enough to have
extended the common usage of the terms '"troubleshooting' and
"debugging'. Management consultants are often called troubleshooters.
Using the methods of operations research, they locate causes of
inefficiency in an organization (corporations, agencies, etc.) and
suggest corrections to its structure or procedures. The scope of these
repairs is constrained by cost much as are those a technician can make
in order to bring a device up to specifications.

Less obviously, the behavior of a teacher tutoring a single
student shares features with that of a troubleshooter. In tutoring. the
teacher asks questions evaluates the student’s responses, and provides
explanations in a continuing dialog (Figure l). The purpose of some of

his questions is to elicit answers that identify specific inaccuracies

Rty Lol o o & sy

1l T: Do you think it rains much in Oregon?

(Case selection: Oregon is a paradigm case of a first order
causal model of rainfall. :
Diagnosis: ask for a prediction about a particular case.)

2 S: No
(S°s predictior is wrong)

3 7: Why do you think it doesn’t rain much in Oregon?
(Diagnosis: ask for any factors.)

4 S: I’'m not exactly sure - just hypothesizing - it seems to me that
the surrounding states have rather dry climate, but I really don’t
know anything about the geography of Oregon.

(S°s error is due to a proximity inference; S has no
knowledge of relevant factors)

5 o It does in fact rain a lot in Oregon. Can you guess what
causes the rain there?

(Correction: inform student.
Diagnosis: ask for prior factors.)

6 S: Well, let me see -~ I have a feeling that there is a mountain
range nearby and the ocean 1i.e. Pacific, I think probably borders
Oregon somewhat?

(S names 2 factors, but does not mention their relationship
to rainfall.)

7 T: Yes the Pacific borders Oregon how do you think it is involved
in the heavy rainfall there?

(Diagnosis: T selects prior factor; holds other factor;
Rule: ask for intermediate factors.)

8 S: I haven’t really got any idea - well not quite true; I would
only be guessing. Does the air (moist air) from the ocean somehow get
blown over Oregon and encounter a block of some sort which causes it
to rise and cool?

(S is missing three steps that are in T’'s model: 1. why the
air is moist, 2. why it 1is blown over Oregon, 3. why
cooling results in rain)

Figure 1. -Annotated dialog between a human tutor and student.
From Stevens and Collins, 1977.

L

Lot Aol e i

haans o

or omissions in the student’s knowledge. Once these errors are
detected, the tutor may provide explanations which he believes will
correct them. Alternatively, as in the Socratic tutoring method, he may
ask further questions designed to prompt the student to reason about
other knowledge he has and thereby to correct himself. (See Collins,
1976, for an analysis of Socratic tutoring.) The tutor is thus debugging
the student’s system of knowledge (Stevens and Collins, 1977).
Troubleshooting/&ebugging problems also occur informally in a
range of everyday contexts. Most commonly, people are faced with balky
cars or household appliances, and attempt some limited troubleshooting
to avoid the expense and inconvenience of calling a repairman or at
least to enable them to give him a good description of the problem if
forced to call him. People also engage in informal debugging in
developing instructions. For instance, if someone gets lost following
directions you gave them for getting to your house, then you engage in
debugging when you determine which step of your instructions were wrong
or were executed incorrectly. If the instructions are lengthy, then it
can be effort to check them step-by-step from the beginning against a
mental image of a map or of the route you intended. Thus, to be more
efficient, you might consider the location from which your friend called
you when he found himself lost and its proximity to points along the
intended route. The analysis serves to limit the section of your
instructions you need to examine for the error. This type of reasoning
behavior resembles that of a computer programmer, who uses the
characteristics of a program’s erroneous output to suggest where he
should start tracing program code. Other informal situations that

require debugging~-like problem solving range from developing a new

o e S

recipe, so that the dish has a appetizing flavor and consistency, to
practicing at the golf driving range in an attempt to eliminate a bad

slice.

Learning to troubleshoot

The current approach to teaching troubleshooting in technical
subjects is much the same as that used to teach problem solving in
mathematical and scientific subjects. Students are first exposed via
lectures and readings to the domain-specific factual content, or

declarative knowledge, required to solve a subset of problems: in

electronics, to the theory and characteristics associated with primitive
circuit components and to the laws for simple circuits; in computer
programming, to the syntax and semantics of constructs in a particular
programming language. At the same time, the students may receive
explicit instruction on how to use specific troubleshooting/debugging

tools (domain~specific procedural knowledge), such as electronic test

meters or interactive computer ''break' routines. Then they are given
examples that show the steps and perhaps the reasoning in solving
specific problems. Finally, they attempt to solve problems on their
own, usually with limited monitoring by an instructor. Thus, the
student is not explicitly taught any general strategy for
troubleshooting/debugging, but is expected to learn to troubleshoot by
observation and practice.

In this indirect method of instruction, students must be able to

induce correct and efficient problem-solving strategies from the
examples they see and further refine them by monitoring their own

problem-solving attempts and by feedback from an instructor. It is much

like learning to ride a bicycle: you watch someone else and then climb
on and try yourself. When you fall, you try to figure out why, and
perhaps receive advice from a proficient bicyclist, such as "Look at the
horizon, not the front wheel!" .'igh motivation is required to learn
troubleshooting/debugging in this way, since the frustrations one
encounters are psychological analogies to skinned elbows and knees. The
instructor’s method of facilitating the process is largely empirical; he
tries to identify the examples and exercises that result in better
student performance on test exercises.

The indirect approach to teaching troubleshooting/debugging does
work satisfactorily for some students: after all, it is the way in which
existing competent troubleshooters acquired their skill. Other students
having "fallen of the bicycle'" more times than they can bear (or the
educational system will allow) become drop-outs. In general however,
the indirect method is less successful for teaching problem solving in
technical, than in other subjects. The factor involved is the cost of
resources required to generate examples and to allow students to work on
exercises. In mathematics or subjects based on mathematics, most
problems can be solved with paper-and-pencil and the only demands are on
the instructor’s imagination and energy and the student’s time.
Troubleshooting problems (and also design problems in engineering)
require resources like equipment and space, which are scarce commodities
in most educational settings. Since the cost of these resources varies
directly with the amount of time used and number of errors made by
students, there is an inherent pressure to limit student experience to a
minimal number of simple, and less than realistic, problems. The

limitations are most critical for students having difficulty, who fail

to have experiences sufficient for learning the required knowledge and
so either drop-out or fail. Even better students, however, may not get
enough experience to become sufficiently competent by the time they
finish formal instruction. Thus, new troubleshooters/debuggers must
typically undergo a period of on-the-job training, which is expensive
both because their productivity is low and because it requires the

involvement of experienced technicians.1

A more direct approach to teaching troubleshooting/debugging

One approach to improving formal instruction in
troubleshooting/debugging is to reduce the costs of the indirect method
associated with providing examples to students and with operating and
supervising student problem=-solving laboratories (Finch, 1971).
However, there is an apparent paradox in the indirect method that could
indicate a need for a substantially different approach to instruction
for some students. The paradox is that the learning by example and
trial-and-error experience required by the indirect method may actually
presuppose the very problem-solving strategies the student is attempting
to learn (recall the analogy of tutoring as 'debugging the student").
In effect, learning by the indirect approach requires the student to
debug his strategy for how to debug.

Since people do learn to debug by observation and practice, no
real paradox exists. Clearly, sophisticated strategies must evolve by
bootstrapping from a primitive learning mechanism, which we is

effective, though less than optimal, for inductive learning in simple

lFor scientific professionals, the latter years of graduate
education involve research experience that serves a similar function for
developing problem=-solving skills.

contexts. Students in technical disciplines bring to the classroom
debugging strategies of varying effectiveness which they have induced by
monitoring their attempts to solve the types of informal everyday
troubleshooting/debugging problems we mentioned earlier. Some of them
may already have effective general strategies and only have to learn how
to apply them in a new problem domain. The indirect method works for
them because their debugging strategies help them to learn efficiently
from their experiences; they are proficient at debugging their own
knowledge. However, those students with ineffective and inefficient
initial strategies encounter a bootstrapping problem because efficient
learning by induction presupposes some of the same strategies as
debugging. Therefore, another approach to instruction in
troubleshooting/debugging, which would be most advantageous to students
of lower initial ability, is to try to teach more directly and
explicitly the general strategies that students develop when they
understand examples and try to solve problems themselves. Such
instruction could help students to acquire an effective strategy for
troubleshooting/debugging more rapidly and improve their general
capability to learn by the indirect method to troubleshoot in a
particular domain.

The are two aspects to developing an alternative, more direct
approach for teaching troubleshooting/debugging. First, the strategies
that students learn by observing competent problem solvers and by
solving practice problems must be identified and articulated (i.e.,
represented). Second, a suitable pedagogy must be formulated. These
goals are not necessarily independent, since pedagogical decisions can

depend on the way the knowledge is represented and conversely, choices

among alternative representations can depend on features of preferred or
available teaching methods.

In the remaining sections of this report, we will discuss the
ideas of others and ourselves about the nature of the
troubleshooting/debugging process. We will describe our observations of
computer program debugging behavior which bear upon these conceptions
and which also suggest the knowledge deficits that cause some
inexperienced programmers to have difficulty with even simple debugging
problems. We will conclude by presenting the results of a study
designed to investigate whether such deficits might be corrected by

direct instruction.

10

I1I. Understanding the troubleshooting/debugging process

Difficulties in studying troubleshooting/debugging

One reason that troubleshooting/debugging (and other types of
complex problem solving) are taught indirectly is that it is difficult
to gather the data needed to develop an empirically-based understanding
of the problem-solving process. There are problems of observing a range
of episodes and of the observer not interfering with the
troubleshooter’s behavior. Simple problems may be solved in minutes
during a single '"sitting", while complex problems may be solved over
days or even weeks (e.g., the debugging problems faced by system
programmers on large computer systems). Thus, it is much more difficult
to observe the solutions to problems at the more difficult end of the
spectrum. In any episode, there is the problem of observing the
troubleshooter without causing him to depart from his normal procedures.

A general limitation in studying troubleshooting episodes is
that much of the troubleshooter”s time is spent in periods of thinking,
during which there is no overt behavior to observe. Typically, it is
difficult to infer what the problem solver is thinking from the behavior
observed prior and subsequent to these quiet periods. Post hoc reports
(e.g.,"Tell me how you solved that problem'") tend to be edited and
incomAlete, appearing as idealized accounts which frequently conflict
with oLserved behavioral data. More general self-reports ('"Tell me how
you trbubleshoot") may also be contradictory and incomplete. There is a

truism K:at being an expert at doing something does not necessarily

imply be

ng able to introspect on how one does it.

Troubleshooting/debugging seems to be an activity for which is not easy
for most experts to describe their reasoning in either particular or
general terms. The fictitious dialog in Figure 2 caricatures this
inability.

There has also been a difficulty in analyzing and organizing the
behavioral data and self-reports that can be obtained. Prior to the
development of information-processing and cybernetics there was no
adequate formalism for describing processes-- i.e., to represent
procedural knowledge-- and thus for interpreting and integrating sets of
observations in order to develop and test hypotheses relating the
knowledge used by troubleshooters solvers and differences in
troubleshooting episodes. While natural language has been used to
represent propositional knowledge from the earliest times, it is a poor
medium for expressing complex procedural knowledge. To convince
yourself of this consider the typical comprehensibility of the assembly
and operating instructions for various devices. Usually, one remains
uncertain of his understanding until the device works (i.e., the
instructions are understandable only if you already know the process).
One apparent weakness of natural language for describing processes is
its awkwardness and ambiguity for expressing complex conditional
relationships between events. More generally, in natural language much
of the knowledge being transmitted by the sender is implicit and must be
inferred by the receiver. The demands for decoding the implicit
knowledge may be more severe for procedural than for propositional
knowledge. (Try to generate a sufficient description of how to drive a
car that you can feel confident will be understood without questions by

someone who has never driven one.) The limitations of natural language

"How did you know the trouble was
in the switch?"

"Becavuse it worked intermittently
when I jiggled the suitch. "

"Well-- coulan’t 1t jiggle the wira?"
Yo, ™

"How do you ++know® all that?”

"It’s ++cbvious@ "

“Well then. why didn’t I see it. "
"You have to hava some familiarity. "

"Then it’s ++not@ agbvious, is 1t%"

Fictional dialog between an expert troubleshooter (E) and
an observer (0) caricaturing the expert's difficulty in
articulating the source of his expertise. From Zen and
the Art of Motorcyele Maintenance, p. 135 (Pirsig, 197%).

i
i

may be partly responsible for the difficulties that problem-solvers seem
to have introspecting: besides their difficulties in realizing how they
troubleshoot, they may not be able to articulate what they are aware of.
Thus, understanding of the troubleshooting/debugging process has
been hampered both by difficulties in making complete, valid
observations and in systematically interpreting the data that can be

obtained.

Information-processing models

Over the past twenty years researchers in information-processing
psychology concerned with understanding intelligent human behavior and
those in artificial intelligence (AI) interested in developing
"intelligent" computer systems have developed new formalisms for
representing knowledge. Semantic networks (Quillian, 1969; Woods,
1975), production systems (Newell, 1975), procedural networks (Brown,
Burton, Hausmann, Goldstein, Huggins, & Miller, 1977; Sacerdoti, 1975),
logical calculi (Nilsson, 1971), and process grammars (Miller &
Goldstein, 1976a; Woods 1970) are the new 'languages' used to represent
the declarative and procedural knowledge underlying intelligent behavior
in a range of tasks. These formalisms have enabled the development of
sufficient ("strong") computational models for certain well-structured
problem domains, such as logical proof, games, and puzzles. There are
now computer programs that can solve such problems as well or better
than most human problem solvers. Strong computational models have also
been used to simulate human problem-solving behavior, including its
variability and errors, in an analysis-by-synthesis approach to

interpreting behavioral and introspective data (Newell & Simon, 1972).

14

a

Beyond their application in automated problem solvers, the
knowledge representations that have been developed provide a framework
for analyzing observations and for articulating partial models of less
well understood types of problem solving like troubleshooting/debugging.
That is, even if it is not yet possible to write a general program to
troubleshoot faults in circuits or one to debug other programs, it may
be possible represent the top-level organization such a program would
need and some of its more specific data=-structures and procedures. Such
"weak'' models are a basis for directing attention to aspects of the
process that are not yet understood and their logical relationships to
those that are and for interpreting new data in order to expand our
understanding.

Over the past several years, psychologists and computer
scientists working the the field of AI at MIT have conducted research on
information-processing models of programming and debugging. As a
consequence of their work they have come to adopt a view that debugging
is a fundamental aspect of most, if not all, complex human learning and
problem solving (Goldstein, 1975; Miller & Goldstein, 1976a; Papert,
1971; Ruth, 1974; Sussman, 1973). The position is based on their
informal analyses of human programming behavior and on their attempts to
develop "intelligent' programs for writihg programs and for solving
other types of problems. People learning to program and even
experienced programmers designing programs knowingly code and attempt to
execute programs that are inadequate. They may be unsure about the
effects of a particular contruct or of the interaction of familiar
constructs in combination. When the program fails, by reasoning from

the way it failed they can modify it to function correctly. As a simple

15

example, a statistical program may involve printing a table with a
complicated format that depends on the parameters of the data to be
analyzed. The programmer writing the program may have difficulty
calculating the format parameters needed to align the headings and
entries in the table. He may therefore proceed by estimating the format
and then executing the program. The errors he observes enable him to
modify his original estimates to produce a correct format.

This notion of the generality of debugging goes beyond our
earlier comments about the range of situations in which debugging-like
behavior is required; it says more strongly that problem solvers
consciously create debugging problems for themselves as part of a
general planning strategy. Debugging is seen as a natural complement to
design in the process of planning and implementing a program. Either
because it is more efficient or because human information-processing
capabilities (e.g., in "working memory') limit the complexity of the
design process, programmers implement programs with an expectation that
they will have to debug them-- i.e., debugging is not necessarily an
afterthought forced on programmers.

There is an alternative view of debugging that it is a
regrettable outcome of poor design and that programmers can and should
strive to eliminate all debugging through rigorous design. This
position is popular among advocates of ''structured programming' (Dahl,
Dijkstra, & Hoare, 1972). We disagree with this viewpoint. While ;
rigorous initial top-down program design is certainly desirable, it is
unrealistic to demand and expect flawless design for complex, innovative

programs. Our own informal observations of skillful professional

programmers indicate that despite conscientious efforts at top=-down

16

design, they inevitably start implementing and testing programs before

the design is complete. It seems that there are too many complex

interrelationships in most programs and that they can be understood and
implemented more easily by debugging than by abstract logical analysis.
From the programmer’s perspective, there is a strategic tradeoff between
the costs of design and debugging such that it is most efficient to
integrate the two so as to minimize the the maximum complexity at any
point.

From their studies of programming, the researchers at MIT have
generalized the constructive role of debugging in learning and problem
solving using the following logic. A computer program is a

representation of a plan, a sequence of legal operations in an

environment that when executed will accomplish a goal (i.e., solve a

problem). For example, a sorting program is a plan for accomplishing
the goal of arranging a list of values in a desired order from an

arbitrary initial order. However, writing and executing a program is

AL 1 ot T b Yk e T T) PPN

only one way of expressing and following a plan. Plans were developed

and executed by people to solve problems long before computers existed
and have been embodied as mechanical and electro-mechanical systems.
Programs are just a general way of representing plans. That is why
programs can be used to simulate some of the behavior of people and of
mechanical and electronic systems.

Plans then, like programs, may also first be formulated with
some ignorance of whether particular actions will be effective. If
execution of the plan proves it inadequate and if the plan is to be used
again, then the information obtained from the failure can be applied to

modify the plan. However, even if the plan was for a unique problem and

will never be used again, debugging the plan is useful. In designing
new plans, parts of old plans for somewhat related problems may be used
and so a "library" of correct plans can help the problem solver.
Furthermore, one can see that there must be '"plans for planning'--
general strategies for making design and debugging decisions in planning !
solutions to particular problems (e.g., whether to synthesize part of a }
design or borrow it from a design in one’s plan library). Plan failures
provide feedback that can be used to debug not only the faulty plan, but

also the strategy used to design it in the first place.

Sussman (1973) developed many of these ideas about planning and

debugging in the course of formulating a computational model called
HACKER, a program that solves problems in the paradigmatic
"blocks-world" domain. Given a problem of rearranging some of the
blocks on a table, HACKER in its naive starting state designs a solution
of simple actions (pick up, put on). Depending on the problem, its
initial solution may succeed or fail (where failure is defined by action
sequences that are redundant or impossible in the blocks world). In
case of failure, HACKER works to debug the plan (not always
successfully). It also stores information about correct plans and about
bugs that it can use in designing solutions for subsequent problems.2

Mark Miller and Ira Goldstein at MIT (Miller & Goldstein, 1976a)

et Ukl e

have attempted to formalize the relationship between design and

debugging in problem solving using what they call planning grammars,

which are representations of design and debugging strategies. Employing

both context-free grammars and augmented transition networks (ATN)

N W T T N T R TT T

| 2See Sacerdoti (1975) for an alternative view that correct plans
can be implemented in incremental stages of design and execution without
debugging.

J 18

BT ———— i R

(Woods, 1970), they have written systems of rules that describe the
process of creating and executing LOGO graphics programs (Figure 3). 3

They have proposed that planning grammars can serve two functions:

(1) interpreting and comparing the behavior of different programmers and

(2) developing "intelligent'" systems for assisting programmers in
designing and debugging their programs. They have explored the second
use in their SPADE system (Miller & Goldstein, 1976b), which records a

programmer’s planning decisions with respect to a planning grammar. The

record is used to advise the programmer of conflicts and omissions in
the structure of the program and of his options any point in the

planning process (Figure 4).

A general characterization of troubleshooting/debugging problems

Vur examination of research on troubleshooting/debugging has led
us to formulate a characterization of troubleshooting and debugging

general to a range of problem domains.

R —

We define troubleshooting/debugging as a type of problem solving

focused on either an abstract plan or a procedural system. A procedural

system is a physical entity that embodies a plan and can execute it to
accomplish its goal. A characteristic of plans and procedural systems
is that they can be represented as hierarchies of [unctional subparts,
each subpart having a specific role in achievement of the overall goal.
For instance, a plan for building a table includes subplans for
obtaining a design, obtaining materials, assembling the wood and

hardware, and finishing the assembled table. Each of these subplans ’

consists of smaller subplans. The plan for obtaining materials might

include subplans for borrowing a truck, selecting a lumber supplier,

19

=> PLAN + [DEBUG]

Pl: SOLVE
P2: PLAN ~> IDENTIFY | DECOMPOSE | REFORMULATE
P3: IDENTIFY => PRIMITIVE | DEFINED
P4: DEFINED :-> USE-CODE & GET-FILE
PS: DECOMPOSE -> CONJUNCTiON | REPETITION
P6: CONJI..INC‘i’ION => LINEAR | NONLINEAR
P7: LINEAR -> SET | SEQ
P8: SEQ -> tSETUP] + <MAINSTEP + [INTERFACE])' + [CLEMP]
PO: SET -> <STEP>"
'P10: SETUP -> STEP
P11: MAINSTEP => STEP
P12: INTERFACE -> STEP
P13: CLEANUP -> STEP
P14: STEP => ADD | SOLVE
P15: REPETITION -> ROUND | RECURSIO&
P16: ROI:IND ‘-) ITER-PLAN | TAIL-RECUR
P17: ITER-PLAN =) "repeat step" + SEQ
P18: TAIL-RECUR -)> STOP-STEP + SEQ + REC-STEP
'919: REC-STEP =) *recursive prﬁgram call®
P20: STOP-STEP =) "stop program call"
Figure 3. Miller and Goldstein's (1976b) content-free grammars

for planning and debugging programs.

SRR N TP B e g e o vy 20 W, g

(Figure 3 continued)

DEBUG
DIAGNOSE
TRACE
SELF-DOC
ASK
REPAIR
ADD-PAUSE
: ADD-PRINT
ADD-TRACE
EDIT

RUN

ADD
DELETE

CHANGE

- <[DIAGNOSE] + [REPAIR]>"
-> <ASK | TRACE | "error®>"

-> [SELF-poc*] + RUN"

-> ADD-PAUSE | ADD-PRINT | ADD-TRACE

-> ®print definition” | "print value" I'ﬁrint file®| ...
-> CRUN | EDIT | SOLVE>"

-> ADD

=> ADD

-> ADD

-> ADD | DELETE | CHANGE

-> "run statement of code” + "response” + [DEBUG]

-> "add statement of code” + "response®™ + [DEBUG]

-> "delete statement of code® + "response® + [DF.BUG]

-> "change statement of code® + "response® + [DEBUG]

SPADE-0 Scenario (part a)

The preliminary verston of SPADE is little more than a bookkeeper for the
user's subgoals.- It is currently being implemented by assigning an interpretive

procedure to each grammatical primitive.

la. What is the name of your top level procedure?
1b. DWW

2a. Rule for WW is: SOLVE -> PLAN + [DEBUG].

Rule for WW-1 is: PLAN -> IDENTIFY | DECOMPOSE | REFORMULATE.
Vhat now?

2b. >DECOMPOSE

3a. Rule for WW-4 is: LINEAR -> SEQUENTIAL | SET.

Yhat now?

3b. >SEQUENTIAL

4a. Rule for WW-5 is: SEQ -> [SETUP] + <MAIN + [INTERFACE]>* + [CLEANUP]

4b.

Do you wish to include the optional constituent SETUP?
>No :

5a. How many occurrences of <(MAIN + [INTERFACE]> do you want?
5b. >3 ;

6a. Do you wish to include the optionél constituent CLEANUP?
6b. DLATER

LATER is a command understood by SPADE. It means that the user wants to

terminate this path, but that it must be recommenced later.
conjunctive goals, reminding the user of the pending goal list if asked.

records the information required to return to, and eventually complete, the
application of the SEQ rule. It can then go on to other goals.

SPADE keeps track of
Here it

Figure 4. Dialog with programmer's assistant based on the grammar:
shown in Figure 3. From Miller and Goldstein, 1976b.

22

h-ﬁl‘my_ ot i

(Figure 4 continued)

SPADE-0 Scenario (part b)

7a. Your pending goals are POLE, ... and WELL. What NOW?
7b. >POLE

SPADE applies the SOLVE rule recursively.

8a. Rule for POLE is: SOLVE -> PLAN + [DEBUG] .
Rule for POLE-1 is: IDENTIFY | DECOMPOSE | REFORMULATE.
What now? ' :

8b. >IDENTIFY :

9a. Rule for POLE-2 is: IDENTIFY -> PRIMITIVE | DEFINED.
What now?
9b. >PRIMITIVE

10a. Rule for POLE-3 is: PRIMITIVE -> VECTOR } ROTATION | PENSTATE
What now? '
10b. DVECTOR

>FORWARD 100

l1la. POLE completed. Pending goals are: ROOF, WELL, and WW-17 (CLEANUP of
WW). What now?
11b. DWELL

12a. Rule for WELL-1 is: PLAN -> IDENTIFY | DECOMPOSE | REFORMULATE.
What now? i -
12b. >DECOMPOSE

Here we have substituted a grammar which contatns rules for conjunction but not
repetition. This allows us to illustrate the manner in which SPADE avoids
{nterrogating the uscr when no actual deciston is required.

13a. Rule for WELL-4 is: DECOMPOSE -> CONJUNCTION.
(Forced.)
Rule for WELL-5 is: CONJUNCTION -> LINEAR | NONLINEAR
¥What now?

23

selecting a hardware supplier, and scheduling the trip to make the
purchases. As another example, an electronic power supply consists of
subcircuits such as amplifiers, voltage regulators, etc. In turn, each
of subcircuit consists of more basic subcircuits, and so on until the
level of primitive components-- transistors, resistors, diodes, wires,
etc. Similarly, a computer program will typically have subprograms for
input, output, initialization, sorting, etc.

A feature of such functionally defined hierarchies is that the
subparts at each level are independent in that each is a ''black box"
from the viewpoint of the others; it doesn’t matter how each does what
it does, as long as it fulfills its role in attaining the overall goal.
For instance, in assembling the table, the details of the subplan by
which the materials were obtained are irrelevant as long as the
materials are all there when the assembly subplan is executed.
Similarly, structurally different but functionally equivalent voltage
regulator circuits can be interchanged in a power supply and different
sorting algorithms can be interchanged in a program.3

The subparts at each level of the functional hierarchy have a
teleological structure. In the simplest, linear structure, the action
of each subpart depends directly on that of one other subpart and
affects directly one other subpart. Of course, the action of a subpart

can indirectly affect all the subparts subsequent to it in the

3 The relationship between subparts at a level of the hierarchy

can be more complicated than this, since it is possible for them to be
functionally discrete, but still share physical structure. For example,
two subprograms for input and output may share ('call') a
type-conversion subprogram at a lower level. This overlap is incidental
in that shared structure can be replaced by redundant copies, but
important in that a defect in the shared structure may affect the
function of all superordinate parts.

24

teleological structure. More complicated structures have multiple
interfaces and feedback paths between subparts. When a subpart contains
a fault, then its action will be incorrect for at least some of the
possible actions of immediately prior subparts. 1Its faulty actions may
inhibit subsequent subparts from operating and thus terminate the
operation of the entire plan/system or may propagate through them and
distort the actions of the plan/system.

Troubleshooting/debugging involves reasoning about the actions
of the plan/system and its teleological structure at each level of its
functional hierarchy in order to localize the fault to a minimum number
of subparts (ideally one) at that level. The actions and structure of
the suspect subpart(s) are then used to localize the fault at the next
lower level of the functional hierarchy, and so on until the cost of
repairing a subpart(s) is less than the cost of further l!ocalization.

Expected cost plays several roles in debugging. It not only
determines the level at which repair is attempted, but also serves to
order logically equivalent debugging actions. Cost depends on how the
structure of the plan/system affects measurements of the actions of and
the ability to repair a particular subpart. It also is determined from
the debugger’s idiosyncratic experiences. For example, if a car idles
unevenly, an experienced mechanic may jar the carburetor in case a piece
of dirt is lodged in one of the small internal passages before he has
done any tests on the ignition timing, spark plugs, or engine
compression which might logically determine that the problem is actually
in the carbureéor. His attempted repair in this case is inexpensive
enough to allow testing of a hypothesis developed by induction ('uneven

idle has in past experience been associated with dirt in the

25

B Y N SO M) L R 3 P < AR bk

B e/ S S

e ————

e

carburetor") rather than by deduction (''the observations that have been
made logically determine that the problem must be in the carburetor").
As an illustration of how cost thresholds enter into reasoning
of debugging, consider a simple home troubleshooting problem. Suppose
you wake up during the night and decide to go to the kitchen for a
snack. When you move the switch on your beside lamp to the ''ON"
position, the lamp fails to light. Given that you are motivated to
discover the cause of the failure and, if possible, effect a repair
what would constitute an effective and efficient tack. If there have
been previous problems with the lamp that you have traced to an
intermittent short in its switch, you might operate the switch several
times in an attempt to "unshort'" it temporarily. That is, you might
identify the symptom and immediately recognize a possible cause that
your experience suggests may be more likely than other possible causes
and that has an inexpensive (if temporary) repair. If you had no such
reason for suspecting the switch, then you must reason about the circuit
(procedural system) that contains the lamp. The lamp circuit has a
simple linear teleology consisting of the external power supply to the
house, a fuse or circuit breaker, the wall outlet, the lamp plug and
cord, the lamp switch, the light bulb, and several intervening sections
of wiring. The light bulb will not light (the initial symptom you
observed), if there is a fault in any of the components prior to it.
One aspect of an effective general troubleshooting/debugging
strategy is to make observations that, given the structure of the
system, are logically sufficient to exclude or include subparts from a

location hypothesis, which is simply a description of where the fault

could possibly be located in the system. The actions of any subpart in

o d e oy

o s
B ———

Gl i

a linear teleological structure can serve to refine the hypothesis in
one of two ways. If the actions are normal at point A, then the fault
must be in a subpart subsequent to that point; if the actions are
abnormal at A, then the fault must be in a prior subpart. Thus, if all
subparts can be observed with equal cost and if the debugger has no
special knowledge relating the observations he can make to the
likelihood of possible faults (e.g., the lamp switch has an intermittent
short, bulbs fail 5 times as often as fuses, etc), then an optimal
strategy is to make observations that will repeatedly halve the scope of
the location hypothesis until the fault is isolated to a single subpart;
this minimizes the expected number of observations that are required to
localize to a single subpart. Thus, in our example, because the wall
outlet is near the middle of the lamp circuit, the first observation
would be to see i1f the lamp is plugged in and, if so, whether another
electrical device connected to the same outlet operates correctly.
Suppose that the lamp proves to be plugged in and furthermore
that an electric clock is plugged in at the same wall outlet so that you
can easily (without getting out of bed) observe whether it is still
operating. If it is, then the fault can not be in the house power
supply, the fuse, or any of the connecting wires prior to the wall
outlet. If the clock is not working, then the fault is in one of those
subsystems (barring two independent failures in the lamp and clock).
Let s assume the clock also is not working. Breaks in house wiring are
ordinarily uncommon, and so it is most likely that either the power
supply has failéd or the fuse has blown. Since the fuse box is in the
basement, it is "“costly" to check, relative to looking out your window

to see if the street lights are still working. If those lights are off,

e A i A AT

then the power has failed. If they are on, then you can replace the
fuse.)If that doesn‘t solve the problem, then get your snack, go back
to sleep, and call an electrician in the morning, because the problem is
in the internal wiring of the house.)

This is an efficient way to isolate the fault, though given
slight changes in the situation other solutions might become better.
For instance, if your bed is next to a window, then the easiest
observation to start with (before looking at your clock) might be to
look out at the street lights. Of course, if they are on, then you know
only that the power supply is intact--only one subsystem has been
eliminated compared to the three or four eliminated by checking the
clock whether it is working or not. The strategy for making
observations seems general in itself, but in this episode requires
knowledge of the lamp circuit and is affected by idiosyncratic knowledge

and by parameters of the situation that determine the costs of making

observations and repairs.

Representing a strategy for troubleshooting/debugging

In order to understand more precisely how different types of
knowledge are used in troubleshooting/debugging, we developed an
information-processing model for a general debugging strategy, like the
one illustrated in the above example. The model is general in the sense
that it is intended to describe the overall structure of successful
debugging episodes by different individuals for different problems in a
range of subject domains. Variations in the structure of any episode

are due to characteristics of domains and problems and differences in

the domain-specific knowledge of in&ividuals. The model identifies the

points at which these factors produce variations in problem-solving

behavior. It is a very '"weak'" model in that is far from a sufficient

computational model of troubleshooting/debugging in any domain. 3
However, it is intended to be a logically sufficient description of a
top-level organizational structure for a strong model. Our model draws
upon prior research on debugging mentioned earlier, particularly the
planning grammars of Miller and Goldstein (1976a, b)

The model is a representation of procedural knowledge and we
have chosen to express it here as a type of procedural network (Figure
5). We considered, but dismissed, the possibility of using a production
system formalism to represent the model. The primary factor in this
decision was that production systems hide the control structure of a
procedure by distributing it across the individual productions. A
second factor was that production systems incorporate semantic tests at
every point in the control structure-- they presuppose that all
procedures are invoked conditionally-- while we found that we wanted to
identify both conditional and unconditional calling relationships. The
procedural network overcomes both of these difficulties. First, it
explicitly represents the overall control structure of the model.
Second, by annotating the connections between procedures, conditional
and unconditional flow of control are conveniently distinguished. An
ATN formalism also has a natural way of distinguishing conditional and

unconditional paths of control. but we found it somewhat less heuristic

for communicating the entire top-down structure of the model. We want
to emphasize that the model could have been represented as a production
system, but with less efficiency and comprehensibility.

The notation in Figure 5 requires some explanation. Each node

29

A

DETERMINE- MAKE-BEST - MODIFY—ACTION—
OBSERVATIONS OBSERVATION DESCRIPTION
A e
I 2} _.-T
) aeT
TR T
CHARACTERIZE
. ak ja
START TEST
!
2ia
. B
DEBUG
| 2 ~3~‘~‘~~°~
o,
= MODIFY— ‘
REch"'ZE LOCATION— REPAIR L
ueG HYPOTHESIS
LA R T

Figure 5. Procedural network for the top-level structure of
a general strategy for troubleshooting/debugging.

30

N T

;
%
i

La o et -y L oo

in the procedural network is the name of a procedure defined by its

function. An arrow from one node to another indicates that the
procedure at the tail calls, or passes control down to, the procedure at
the head. If a node has more than one arrow emanating from it, the
calls from it are always made in the order denoted by the integers
labeling the arrows. Solid arrows represent unconditional calls, while
dashed arrows are calls made only if some semantic tests are first
satisfied. Each dashed arrow is labeled with a letter. Table 1
summarizes the semantic tests for each of these labeled dashed arrows in
Figure 5 and lists the global registers and data structures used by the
model.4 In tracing flow of control in the network, the following
convention is in force: when a procedure finishes (when all its
subordinate procedures finish) it passes control back up to the
superordinate procedure that called it; that superordinate procedure
then calls its next subordinate procedure (if any).

Since a general strategy for troubleshooting/debugging is a plan
for solving problems, its representation as a procedural network can be
viewed in the same way as the plans and procedural systems éhe strategy
can be applied to. That is, the levels of the network are levels of the
strategy’s functional hierarchy. The hierarchy is incomplete in that it
does not extend down to the primitive procedures needed to solve
problems in any specific domain. The teleological structure of the
hierarchy is complex (not linear) and is represented in part by the

ordering on arrows emanating down from a node. A second part of the

ASince much of the communication amo.g procedures is by global
structures, the recursive procedure calls in the network in most cases
do not increase the memory demands of the model beyond those that would
be imposed by iterative calls.

31

Table 1

Summary of Global Data Structures and Registers
and of Procedure Invocation Semantics of
the Troubleshooting/Debugging Model
Illustrated in Figure 5.

Data structures and registers

ACTION-DESCRIPTION : 1list of propositions describing the relation between
observed and normal plan/system actions.

LOCATION-HYPOTHESIS: description of parts of plan/system where a fault
may possibly exist.

TR B T A= (T 2 53 . N M e A A Y R

ERROR? : TRUE if no error has been detected or if a repair
had been made and not yet tested; FALSE otherwise.
! DELTA-I ¢ unidimensional value that is a function of the
: changes in the ACTION-DESCRIPTION over time.
I : threshold value to which DELTA-I is compared to
Judge the expected payoff of determining further
observations.
0 : threshold that determines minimum payoff of i
observations made. 8
R : threshold that determines maximum cost of repairs
made.

Procedure invocation semantics

arc label (from Figure 5)

if ERROR? = TRUE

there exists at least one observation with an expected payoff

greater than O.

if MAKE-BEST-OBSERVATION was called.

if ERROR? = FALSE and DELTA-I > I.

if the cost of repairing the parts denoted by the total

LOCATION-HYPOTHESIS is less than R.

if the cost of repairing the part assumed to have been bt
recognized as the location of the fault is less than R. A

oo

® a0

-

3

teleological structure is implicit in the semantic tests for conditional
procedural calls. The tests involve global registers and data
structures that are accessed and modified by procedures throughout the
network. Thus, the invocation of conditional procedures and, in fact,

the actions of both conditional and unconditional procedures depends not

only on the actions of the calling procedure but on any procedures that

have previously modified the registers and data structures. We make
this point to emphasize that while the procedures contained in a general
troubleshooting/debugging strategy may seem obvious, the relationships
between them are not and may therefore cause the greatest difficulty in
understanding and inducing how to apply the strategy by observing it in
action.

We will now proceed to elaborate the model, describing the
calling semantics and function of each procedure and indicating the
different types of knowledge required and how they begome available to
the problem solver.

TEST. Every time a plan is executed or a system is activated,
it is implicitly being tested. For instance, whenever you switch on a
light, you are testing it and the circuit of which it is a part. If the
light fails to go on, then debugging is initiated. More clezarly, a
technician engaged in routine maintenance consciously tests a system to
see if he can gather data which may cause him to reject the hypothesis
that the system is fully operational. Thus, the top-level procedure in
the model is TEST. The model is always started at TEST. At that point,
a register ERRdR? is FALSE, indicating an assumption that there 1s no
error in the system being tested. This is also reflected by the initial
value of a data structure ACTION-DESCRIPTION which is NULL. TEST is

also called by REPAIR.

yy

TEST invokes CHARACTERIZE unconditionally. It subsequently
calls DEBUG only if ERROR? is TRUE upon return from CHARACTERIZE.

CHARACTERIZE. The function of CHARACTERIZE is to collect data
that allow modification of the ACTION-DESCRIPTION. If it adds a clause
to the ACTION-DESCRIPTION that describes a discrepancy between observed
and normal actions, then it sets ERROR? to TRUE if it was previously
FALSE. This corresponds to detecting a bug during testirng.

CHARACTERIZE does its work via three subprocedures,
DETERMINE-OBSERVATIONS, MAKE-BEST-OBSERVATION, and
MODIFY-ACTION-DESCRIPTION. The call to MAKE-BEST-OBSERVATION is
conditional on whether there is a potential observation whose payoff (a
function of its cost and expected information return) exceeds a minimum
threshold, which we will denote O. This means that an observation is
not made if it is too expensive or if it is not expected to alter the
ACTION-DESCRIPTION significantly. The initial value of O is set by TEST
and depends on the expected cost of a subsequent system failure if a bug
is not detected and repaired. CHARACTERIZE also may call itself
conditionally, if ERROR? is FALSE and a register DELTA-I, which reflects
the rate of information change in the ACTION-DESCRIPTION is above a
threshold I. This means that when CHARACTERIZE is called by TEST,
either initially or after a repair, observations will be made as long as
the ACTION-DESCRIPTION changes by the addition of propositions asserting
that observed actions are normal or by the deletion of propositions
asserting discrepancies noted previously between observed and normal
actions. In general, this implies that characterization during testing
continues until there are no more potential observations whose payoff

exceeds 0. Thus, testing does not necessarily continue until the

34

o e g g e 2

debugger is logically certain the system is error-free, but only until

his confidence leads him to believe\that further observations have a

higher cost than failure to detect a possible error would have.

DETERMINE-OBSERVATIONS. The first procedure called by

CHARACTERIZE is DETERMINE-OBSERVATIONS, which identifies a set of
potential observations. The observations are determined with respect to
the current LOCATION-HYPOTHESIS, a data structure describing a
subhierarchy of the plan/system which is initialized to the entire
hierarchy and modified subsequently by the procedure
MODIFY-LOCATION-HYPOTHESIS by deduction involving the
ACTION-DESCRIPTION. The LOCATION-HYPOTHESIS represents the part of the
plan/system to which a detected bug has been logically isolated or
conversely may be viewed as the part of the plan/system which is not
known to be bug-free given any prior observations. Each observation
identified by DETERMINE-OBSERVATIONS has a potential effect on the
ACTION-DESCRIPTION which can further reduce the extent of the
plan/system denoted by the LOCATION-HYPOTHESIS.

Observations may be experimental, involving manipulations of the
plan/systems parameters (if any). For example, they may require an
electronics technician to change the external control settings of a
device or a programmer to alter the data input to a program. In some
domains, like management consulting, no experiments are possible and
observations must be '"naturalistic."

DETERMINE-OBSERVATIONS accesses the detugger’s knowledge of the
plan/system’s fgnctional hierarchy and its teleological structure in
order to identify points where informative observations can be made. In

some contexts (e.g., electronics troubleshooting), there may be external

T

-

T

sources of that information (technical data). Otherwise the hierarchy
must be built up from the lowest level using knowledge about primitive
subparts and the laws that describe their interrelationships. Knowledge
about higher-order subparts derived in this way may be stored in memory
in a "library" which may allow the debugger to recognize that subpart if
it appears in subsequent episodes.

MAKE-BEST-OBSERVATION. MAKE-BEST-OBSERVATION is second

procedure called by CHARACTERIZE. As noted in the discussion of
CHARACTERIZE, its call is conditional on there being at least one
potential observation with an expected payoff exceeding O.
MAKE-BEST-OBSERVATION performs the observation with the highest payoff
as determined from its cost and its potential for affecting the
ACTION-DESCRIPTION. An observation expected to return a large amount of
information may be passed over for a less productive one if the latter’s
cost is much lower.

MAKE-BEST-OBSERVATION accesses the debugger’s knowledge of how
to make observations (e.g., use of measurement equipment) and of their
expected cost. Most knowledge of these costs is probably acquired
through experience and may be stored in the same library as the
knowledge used to recognize higher-order subparts. That library may
also contain the knowledge of likely outcomes of observations used to
estimate the effect of an observation on the ACTION-DESCRIPTION. This
latter knowledge supplements information about the possible outcomes
deduced from knowledge of the functional hierarchy of the plan/system.

MODIFY-ACTION-DESCRIPTION. This procedure modifies the

ACTION-DESCRIPTION according to the observed actions and is called only

if MAKE-BEST-OBSERVATION was called. The modification involves adding a

|

PERR NS SRR S VL

e e

proposition to the description noting either a normal action or a
discrepancy from a normal action. In testing subsequent to a repair, it

may also involve deleting or modifying a proposition already in the

description. Generation of the proposition requires access to knowledge
for deducing the normal actions of subparts and structures of subparts.

DEBUG. DEBUG is the controlling procedure once an error has

been detected. It is called by TEST if CHARACTERIZE has returned with
ERROR? equal to TRUE. It calls the procedures RECOGNIZE-BUG,
MODIFY-LOCATION-HYPOTHESIS, REPAIR, CHARACTERIZE, and itself. The call
to REPAIR is conditional. Further details about DEBUG will be given
following the description of its subprocedures.

RECOGNIZE-BUG. RECOGNIZE-BUG is a powerful procedure in that it

can radically alter the overall strategy of logically localizing a bug

at progressively lower levels of a plan/system’s functional hierarchy.

It accesses the ACTION-DESCRIPTION and matches it against a knowledge
library of bugs and associated ACTION-DESCRIPTIONS encountered in past
episodes with identical or similar plan/systems (idiosyncratic
experiential knowledge). If a sufficient match is obtained to a known
bug and the cost of repairing that bug is is less than a threshold R,
then RECOGNIZE-BUG immediately calls REPAIR. If the cost of the repair
is too high to be attempted at that time (R increases as a function of

the number of times DEBUG has been called), then the old

LOCATION-HYPOTHESIS is saved and a new LOCATION-HYPOTHESIS is set to be
the level of the hierarchy at which the subpart containing the ;
recognized bug is defined. This has the effect of focusing subsequent 1
characterization on a "suspect' subpart. For example, when a mechanic ;

{
first examines a car with an uneven idle, the ACTION-DESCRIPTION is |

37

™ uﬁ_—u. il daa ki > proeren ‘-J’

Rf aciseind o . ke 2 -

B e howdade 2rag o T

"uneven idle" and the initial LOCATION-HYPOTHESIS includes the entire
ignition and fuel systems. If he has knowledge that 'uneven idle'" is
frequently due to dirt in a carburetor passage, and is familiar with the
“trick" of jarring the dirt loose by striking the carburetor on the
outside, then he may immediately try that repair. If he is not familiar
with that inexpensive repair (or if he is and it doesn’t seem to work)
and is not yet ready to disassemble the carburetor or use a chemical
cleaner, then he can set the LOCATION-HYPOTHESIS to be "fuel system" so
that he can make further observations which will indicate whether or not
there is some problem in the carburetor. If the problem is logically
localized to the carburetor, then an appropriate repair will be made
with the savings of not having made unnecessary observations to exclude
the ignition system. However, if one of these observations on the fuel
system should make the LOCATION~HYPOTHESIS logically inconsistent with
the ACTION-DESCRIPTION (as detected by MODIFY-LOCATION-HYPOTHESIS), then
the previous LOCATION-HYPOTHESIS must be restored and modified. Thus,
for example, if further observations prove conclusively that there is no
fault in the carburetor, then the LOCATION-HYPOTHESIS containing the
ignition system and entire fuel system is restored and the
problem-solving process continued from that point.

MODIFY-LOCATION-HYPOTHESIS. This procedure accesses the

ACTION-DESCRIPTION and using knowledge of the plan/system’s teleology
deduces whether any of the subparts in the LOCATION-HYPOTHESIS logically
can be excluded as candidates for containing the bug. This is
illustrated by our earlier example of troubleshooting when your bedside
lamp fails to light. Initially the LOCATION-HYPOTHESIS includes all the

elements of the circuit. When the observation is made that the electric

38

clock is still working, the ACTION-DESCRIPTION becomes "light
inoperable, current available at wall outlet."
MODIFY-LOCATION-HYPOTHESIS deduces from this that the fault cannot be in
the external power supply, the fuse, or the intermediate wiring and
modifies the LOCATION-HYPOTHESIS accordingly.

When the LOCATION-HYPOTHESIS is reduced to a single subpart at a
level of the functional hierarchy, it is reset to contain the subparts
in the level immediately below that subpart. For instance, in
troubleshooting a circuit, if the LOCATION-HYPOTHESIS is reduced to
"voltage regulator", it is reset to the level of the hierarchy
comprising the immediate subparts of the voltage regulator. Thus, the
bug is localized to progressively simpler (and structurally smaller)
parts of the plan/system.

As noted in the discussion of RECOGNIZE-BUG, if
MODIFY-LOCATION-HYPOTHESIS should deduce that the ACTION-DESCRIPTION is
inconsistent with a bug anywhere in the parts of the plan/system denoted
by the LOCATION-HYPOTHESIS, then a prior call to RECOGNIZE-BUG produced
a false recognition and the LOCATION-HYPOTHESIS prior to that call is
restored.

REPAIR. If the cost of repairing (replacing or modifying) the
subpart(s) denoted by the LOCATION-HYPOTHESIS is less than the repair
cost threshold R, then DEBUG calls REPAIR. REPAIR accesses the
debugger’s knowledge how the subpart(s) are designed and implemented to
function as intended. For an electronics technician this may be
something as basic as how a transistor is supposed to be connected and "
for a programmer how to write a format statement. On the other hand, a

programmer may rewrite an entire sorting procedure if he determines that

T T g - POy o g ey

b AL e T)

there is a bug in the existing one and believes it is more efficient to
rewrite than to try to localize the bug further. REPAIR also accesses
knowledge about specialized '"tools'" like soldering irons or computer
file editors needed to accomplish repairs in different domains.

REPAIR sets ERROR? to FALSE and calls TEST. If the repair
corrects the fault then that call to TEST will eventually call STOP,
terminating the problem-solving process. If the repair is incorrect,
the call to TEST will eventually invoke DEBUG again.

Continuing DEBUG. If the cost of calling REPAIR exceeds R, then

DEBUG calls CHARACTERIZE and then itself. Upon the return from
CHARACTERIZE, the ACTION-DESCRIPTION will have been updated if an
observation was made. If one was not, then DEBUG modifies both R and O.
It increases R, so that there is a chance that REPAIR can be called even
though the LOCATION-HYPOTHESIS cannot change because the
DESCRIPTION-HYPOTHESIS is not modified. It decreases 0, so that if
REPAIR still cannot be called there is a chance that an observation will
be made on the next call to CHARACTERIZE. Thus, when the process gets
stymied, it frees itself either by making more expensive repairs than
usual or by making observations that are more expensive or less
informative than usual.

Further comments on the model. The strategy we have outlined

here is a competence rather than a performance model. Deficiencies in
any of the knowledge required may cause it to fail. In particular, the
knowledge of each level of the plan/system’s functional hierarchy and
its teleological structure is crucial for modifying the
ACTION-DESCRIPTION and the LOCATION-HYPOTHESIS. Note that it is not

necessary to know the hierarchy from top-to-bottom but instead only down

40

to the level at which one is willing to pay for a repair. Thus, in
working on a circuit one may understand (from technical data) the
functioning of the voltage regulator with respect to other subcircuits
at that level of analysis, but not understand the internal structure of
the voltage regulator. The available knowledge is sufficient for
localizing a fault to the voltage regulator and this may be adequate if
one is willing to replace that entire subcircuit (knowing that only one
primitive component may have failed).

The only explicit error recovery mechanism in the model is for
false recognitions by RECUGNIZE-BUG that cause an inappropriate jump to
a lower level of the hierarchy. The model backtracks from these errors
by saving and restoring earlier copies of the LOCATION-HYPOTHESIS.
Thus, these errors increase costs, but will not directly lead the

process to complete failure in the way other knowledge deficiencies may.

Explaining the expertise of expert debuggers.

Given that a general strategy and different types of
domain-specific knowledge underlie troubleshooting/debugging behavior in
the ways suggested by our model, we can ask about the contribution each
makes to expert performance. Is the expert an expert because he
d2velops a superior general strategy and adheres'to it religiously? Or,
does his expertise stem more from his extensive knowledge of the problem
domain, including the fundamental declarative knowledge, specialized
procedures for making cbhservations and repairs, and idiosyncratic
libraries of information about important recurring high-level subsystems
and about the bugs frequently associated with observed patterns of

symptoms? The introspections of the expert in the dialog in Figure 2

T, ey

are consistent with the latter explanation. He attributes his easy and
efficient solution of a problem to his "familiarity" with the fact that
an observed symptom is (almost) always associated with a particular
fault, although he cannot articulate how he was able to access that
fact.
In terms of our model for a debugging strategy, the expert in

the dialog achieved a solution by calling his RECOGNIZE-BUG procedure,]
bypassing some of the progressive top-down localization and

characterization which slowly converge on a fault by deductive]

reasoning. He supplemented his deduction with identification.

Localization by identification is also exemplified by the mechanic who
first jars the carburetor to attempt to remedy an uneven idle. These
examples illustrate how by using a library of knowledge acquired through
experience, the expert can choose to focus at a low level of
plan/system’s functional hierarchy without deducing the location of the
bug from observations made at higher levels. However, since the
information in the library may sometimes be applied in inappropriate
contexts (false matches to ACTION-DESCRIPTIONS), the expert must
backtrack and integrate observations made at several levels in the
system much more frequently than required when localization is strictly
top-down and deductive. Failures in backtracking can reduce efficiency
by causing the expert relying on identification to make redundant
observations.

This explanation of debugging expertise seems to be consistent
with data we collected from five programmers with different degrees of

experience.5 They ranged from one with a masters degree in computer

’ When we say ''programmer' we do not necessarily mean an
individual who was trained and works specifically as a programmer. For

42

—— S T ——

= e

e

!!M'”:f.ll.‘liﬁiiiiiiiﬁﬁ==ﬁr s - - > — : e

science and several years of advanced programming experience to a total

novice who had no formal instruction in programming and only a few weeks
of self-instruction. Within this range were students and professionals

with from one to several years of instruction and practical programming

experience.

We asked these programmers to debug a short BASIC program and to
write a commentary on their reasoning as they worked. They had access
to a BASIC interpreter for running and modifying the bugged program.
They were provided with the program description, listing, and sample
input-output shown in Figure 6. It is a sorting program designed to
interact with a user at a terminal. It accepts numbers one at a time,
acknowledging each by printing 'BON APPETIT'", until the user types a
zero signifying the end of the list. The list sorted in ascending'order
is then printed. The program was written by a member of the research
team and is deliberately obscure so that it would not be completely
trivial to experienced programmers despite its brevity. A more elegant
solution is possible using fewer variables and less complicated
parameters for FOR..NEXT loops. However, the program shown is correct
except for a single character. Line 100 should be X = C - J + I instead
of X=C -J + 1. Note that such an error could be the result of a
simple reading or typing error in entering the program, rather than a
design error. However, it is not the type of error that can be detected
by the parser or runtime system of a programming environment; it is a
logical error that causes the program to produce incorrect results when

it is executed, as can be seen in Figure 6. In fact, the effects of the

our purposes a programmer is anyone who writes programs incident to his
job or (his activities a student).

43

T

T

Daescription:
This program inputs numbers (up to 100 numbers),
sorts each number into ascending crder as it is input,
and prints the ordered inputs when a key value of zero is i1nput

10 DIM N(100)

20 C = 1

30 INPUT N(C)

30 JF N(C) = O THEN 180
50 FOR I = | TO C

&0 IF N(C) = N(I) THEN 140
20 D = 1

?0 FOR J = D TO C

100 X = C - J + |

110 NIX + 1) = N(X)

120 NEXT J

130 N(I) = N(C + 1)

140 NEXT I

150 PRINT "BON APPETIT™
160 € = C + 1

170 €070 30

180 FOR @ = 1 TO C - 1
190 PRINT N(Q)

200 NEXT Q@

210 END

Sample input/output:
#RUN
EXECUTION OF YDUR PRDGRAM

T 3 i
BON APPETIT
3 5

20N APPETIT

1 34
BON APPETIT
: 10
BON APPETIT
: 88
BONM APPETIT
: 0
10
1%
0
77
=13]

EXECUTION COMPLETED AT LIME 210

Figure 6. Debugging problem given to five programmers of varying
experience.

Ly

bug depends on the input and if the user enters a list in perfect
reverse order (e.g., 81, 54, 33, 12), then the program correctly sorts
it. A complete ACTION-DESCRIPTION of the bugged program at its top
level is that if an incoming number belongs at the beginning or the end
of the existing list it is appended correctly, but if it needs to be
inserted between two previous values, it is lost and replaced by a zero.
All of the five programmers who participated were able to debug
the program, although the amount of time they required varied from less
than an hour for the most expert to several days (a few hours each day)
for the novice. Also, they varied in how much of the program code they
modified in order to eliminate the bug. Figures 7a, 7b, and 7c are
segments of the written commentaries generated by the expert, an
intermediate programmer, and the novice, respectively. The concepts the
expert uses to describe the program reflect his specialized knowledge of
sorting algorithms, which he used to identify functional subsegments of
the program. He immediate tried to identify bugs at a low level of
program structure -- in storage allocation and in incrementing counter
variables. Although he examined the sample output at an early point, he
does not articulate an ACTION-DESCRIPTION. The structure of the episode
reflects repeated attempts to use specialized knowledge to predict and
search for likely types of bugs: an emphasis on recognition as opposed
to localization. His repair, not shown in the commentary, was to
rewrite the nested sorting loops in a more straightforward form,
eliminating the unnecessary variables. Thus, he made a judgement that
it would be more efficient to substitute a block of code, than to try to
isolate the bug further and then make a more minimal modification.

Figure 7b is the commentary of a programmer with several years

Read description.
Check DIM statement.
Look at output.
Bon appetit?
C points to next empty word in N.

When input = O, then 180: print N(1) to N(C-1) or stop. Look for C <+ C+l.
Found on 160. '

Sort takes place between 50 and 140. If Nc > all of the Ni's » nothing 1s done.

Get to 80 if N <N,.
c i

The J loop (90-120) is supposed to move all of the entries between N1+l and l!’c
up one.

It does some sort of inversion. I think this is unnecessary, and also the variables
D and X. I am going to try it out on the terminal.

Attached is the program I typed in, before I tried to run it. (Note that it
differs from my scribbled notes. I didn't look at the notes while I was typing
it in.) E
I tried sorting the numbers

9) l"’ 6) 1, 7’ 13
and it worked.

Figure 7a. Debugging commentary on sorting program by a formally
trained, highly experienced progremmer,

Think about what it should do. Visualize number coming in and finding its
way to the top of list.

Note that O is in the wrong place and 34 is missing ~- in fact, O is in the
34 place.

34 is the 3rd input (check first to see if it's first or last -- no).
Now go to program.

Since 0 was wrong, check the branch to 130 . Don't see anything wierd there --
output loop looks (K.

Look at sort loop (50-140 I guess), which skips if current (new input) is geq.

Inner loop looks complicated, in fact, bizarre. Have to puzzle it through -~
purpose is to shove everybody down to insert new guy. I knew that because it's
a loop (should have known it anyway).

100 puzzling -~ next one in the list. Push it one lower down. Looks bad -~
N(x+1) « N(x) will lose the previous value of N(x+l). (hypothesis) Test with
given inputs by tracing values of everything. Not working -- I'm not getting
anything pushed anywhere except out of sight -- the 125 is moving higher instead
of the 77. Try again.

Note: D is unnecessary since it doesn't change inside the J loop -- I wouldn't
be destroyed if 90 said for J = I to C. Think about that: is this strategy
reasonabtle -- yes, I have a place where the current input is lower than this
element, so I have to change everybody from here on up. So J = I to C is fine.

But I immediately get N(3) < 15 which is dumb. (Think about whether BIP thinks
X = C-J+1 gives 2 or if O, then array error would have occurred, so must be 2.)

Seems that N(2) = 77 N(3) = 15 which is backwards. Keep going. C changes
to 3 but that should have zapped the 15 in N(3). No -- missed 130 which stuffs
15 back into 1!! Seems that I get. 2, N(2) compares. NO: OK because N(C) is
no longer the current input.

Looks like I just lost the 77 but that's impossible, so have to try again
with 3% input.

Stymie.

Wait. Strategy makes sense -~ put new one up high, move the others up one at
a time. N(L) gets the 34, so N(3) is available for 77 to move to. Value of
X should be 2 to make that move. X < C-J+1 is 3.

NO. The first time was wrong. Back up to 90 again with I = 2 (i.e., comparing

34 with 77).

Figure Tb. Excerpt from debugging commentary on sorting program
by a programmer of intermediate experience.

k7

B & Lo ae g ont L

T b ase AALIA ¢) L

No, wait a second, I guess it's 0.K. for it to print 0; it should
just print it first. Maybe that's where the problem is. Even
though I still haven't figured out how the program is supposed

to work, I'll check out the parts that deal with switching from
the ordering procedure itself to printing the final output, and
see what I can find.

Of course! Zero is going to be the last value entered, so
it will have the highest numbered subscript and get printed last.
That's certainly one of the problems with this program, although
it may not be the only one. I'll have to figure out how the
whole thing is supposed to work. But I have a hunch that if
line 40 ("IF N(C)=0 THEN 180")gets moved down between lines 160
and 170 (the end of the main subscript-reassigning loop) then
the program will work the way it should. This move should assign
0 the lowest subscript before telling the machine to print out,
assuming the rest of the program was written correctly. Let me
check that out...

160 C=C+1 % ~-so that's how the subscript
gets incremented

(Break--overnight)

I just realized that although 0 was initially assigned the
highest subscript (I think), it was not printed last when the
numbers were printed out in subscript order (lines 180 to 200).
This means that the subscripts of some of the other numbers
(namely 77 and 88) were higher than the subscript for 0 by the
time the printing was done. I'm going to try to run through
the program mentally, feeding in the numbers used in the run
shown here, to see what this program is doing.

when you get to INPUT 34,

N(1l)=15 N(2)=77.
N(1l) no longer has a valuesIN(2)=15 N(3)=77434 is lost here
N(2) no longer has a value?N(3)=15 N(4)=77

Although I still don't grasp it completely, the strategy
of this program seems to be to reorder the subscripts of the
input numbers by comparing each new number one at a time with
each of the numbers which have already been typed in and:

--If the new number N(C) is less than the number it is being
compared to, N(I), this increment the subscript of each of the
numbers that are greater than or equal to N(I) and give the new
number the old subscript of N(I).

--If the new number N(C) is greater than the old number N(I) to
which it is being compared, leave the subscripts alone and
compare N(C) with the next old number.

Figure 7c. Excerpt from debugging commentary on sorting program
by a noviece programmer,

L8

of practical experience, but little formal instruction. There is more
evidence of a general debugging strategy and less use of specific
knowledge about sorting than in the commentary in Figure 7a. Before
looking at the structure of the program, the programmer tries to
describe the bug’s symptoms in the program output-- to develop an

initial, top-level ACTION-DESCRIPTION. The observation '"that 0 is in

the wrong place" (she incorrectly assumes that the 0 in the output is
the O the used typed to end his input) leads her to locate and
characterize the segment of the program designed to stop the input cycle

when a 0 is typed by the user (she sets her LOCATION-HYPOTHESIS to that

]

!

3

;

1

:

1

3

1

1

segment). When she (mentally) tests that segment and observes no i

evidence of a bug, she focuses on the nested loops that sort the array %

(resets the LOCATION-HYPOTHESIS to the top-level). Her reasoning in 5

z

using the zero in the output represents a call from DEBUG to i

RECOGNIZE-BUG in which an incorrect ACTION-DESCRIPTION was matched to 2

information in a library of bugs and their manifestations.

The programmer’s experience allows her to judge that some of the

code in the sorting loop is '"bizarre", and thus a likely location of the
bug. She characterizes that code by mentally tracing execution and

observing how an actual (as opposed to abstract) set of numbers are

moved within the array. She has some difficulty in generating an

ACTION-DESCRIPTION from her observations and therefore tries to apply

some knowledge she does have about sorting when she decides that line
110, N(X + 1) = N(X), looks suspicious (another call to RECOGNIZE-BUG).
In some sortinglalgorithms, such a transfer of values might lose the
contents of an array location, but in this case the line is correct.

(One of the other intermediate programmers also suspected this line).

R

S

Thus, she has to backtrack from this attempted identification of the

error and resumes her characterization of a segment of the nested loops.
Eventually, she did identify and repair the bug. Like the expert, she
tried to use specific experiential knowledge to shortcut a top-down
analysis via identification, but did not have the knowledge needed to
succeed on that basis. (She might have solved the problem more quickly,
but unlike the more expert programmer, chose to localize the bug within
the sorting loops rather than rewrite them completely.)

Figure 7c is one of six pages of commentary generated by the
novice programmer (who later displayed better than average programming
skills for his degree of experience). He worked on the program in four
separate sessions and eventually did debug it. His commentary reveals
how his unfamiliarity with the fundamentals of the BASIC programming
language and of program organization made it an effort for him to
perceive the program at a high level. He begins by spending
considerable effort characterizing the code line-by-line with no good
idea of what he is looking for, since he fails to generate an j
ACTION-DESCRIPTION beforehand. In fact, he did not report looking at
the input-output data before the second session. Prior to his
successful solution he attempted several "irrational" minor repairs
based on his misunderstanding of single lines of code and their function
in the program. Like the most expert programmer. he searched for bugs
by examining the code, but unlike the expert he had no basis for making
rational predictions for what the bug might be.

In general, these data are consistent with the view that the
expert debugger is an expert-- that he solves problems with minimal

expense-- because he has a great deal of experiential knowledge that

50

allows him frequently to follow cost-saving alternative pathways within
a general debugging strategy, as represented in our model by the
procedure RECOGNIZE-BUG. It is not seem necessary to postulate that he
has a general strategy superior to that of somewhat less skilled
debuggers in order to explain his expertise. Instead, he simply seems
better able to exploit the benefits of an identification substrategy

which even novices try to use.

Weaknesses in the debugging of inexperienced programmers

The commentary in Figure 7c shows that an inexperienced
programmer can have considerable difficulty with a debugging problem
because of the effort required to understand how the program is supposed
to accomplish its intended function. Of course, programmers most often
encounter their debugging problems in programs which they themselves
designed and implemented, and thus can understand. However as we noted
earlier, programmers sometimes knowingly implement and run programs that
are incorrect, finding it more efficient to develop correct code by
debugging, than to derive the correct code initially by logical
analysis. In these cases, problems in debugging can arise because of
difficulties in knowing how to design code for repairs, rather than in
locating the bug. Sometimes, presumed understanding of some code can
actually impede programmers’ debugging of their own programs. If they
write code they are certain is correct and manage to insert a bug in it,
then (1) that code is the last place they will look for the bug, despite
observations that might indicate that it is a likely location. and (2)
when they do look at the code, they may miss the bug, because they see

what they intended the code to do and not what it actually does. Thus,

51

. :
M i i

a programmer debugging his.own program may lose some objectivity, while
one debugging another’s program may have fundamental problems
understanding how the program is supposed to work. There are some
programmers in real contexts who are faced with the problems of
debugging programs written by someone else: for example, consultants and
members of teams working together on a large project. They lose the
advantage a designer’s knowledge of his program, but by the same token
are less prone to "blindness.'" They may face situations where they have
difficulties debugging a program because they don’t have the knowledge
needed to understand it, rather than because they have inadequate
debugging strategies. In other troubleshooting/debugging domains., like
electronics and mechanics, technicians routinely face problems with
devices unfamiliar to them. In these situations, they must turn to
technical data for the devices or be able to synthesize the device’s
structure from the bottom up, if they are to effect a repair.

We have proposed that expert debuggers have general, top-down
debugging strategies, but that their expertise is defined by their
mental libraries of domain- and problem-specific knowledge gained
through their experiences. Inexperienced programmers obviously lack
comprehensive libraries. But is this the sole source of their
difficulties, or are their general debugging strategies also deficient
so that they do not make the most effective use of the specific
knowledge they do have. This is an important question from the
viewpoint of instruction, since it would be more feasible to try to
teach a well-defined general strategy, than a large, ill-defined corpus
of specific knowledge. The commentary of the novice programmer

debugging on the sorting program does seem to reflect a strategy less

P

gt N S ok AL e 5 B85 b s 2o

efficient than those we found in the commentaries of more experienced
programmers who also had difficulties with the problem. However, the
knowledge required just to understand that program was so far beyond the
experience of the novice that it could have been the case that he had a
good strategy available but had trouble executing it.

In an attempt to determine whether inexperienced programmers
have difficulties debugging because they lack an effective general
debugging strategy, we examined programming data collected from students
learning to program. The data originated from three groups who had
participated in the BASIC Instructional Program (BIP) 1975, a CAI system
for teaching introductory BASIC programming to people with no prior
computer experience. In all there were data from 100 college students,
who wrote on the order of 40 short BASIC programs each during 10-15
hours of terminal time in BIP. The original use of the data had been in
evaluating BIP’s effectiveness for teaching programming and in examining
the way students used some of BIP’s subsystems for writing and debugging
their programs.

The data are quite comprehensive records of students’
interactions at the terminal, which we will callighronologies here. The
information contained in the chronologies for the three different groups
varies somewhat, since analyses of the earlier versions had suggested
improvements in format and content. For instance, the first and second
groups of chronologies do not directly indicate the order in which lines
of code were entered by student; the code was recorded on the chronology
when the studenf listed or ran his program and it was possible to
determine small changes in the code by comparing successive listings.

In the third group of chronologies, each time the student typed a line

53

of code it was written to the chronology and, in addition, when he
listed and ran the program, the order in which the lines had been
entered was stored with the listing. Since we found this information to
be useful, our analyses focused primarily on the third group of
chronologies.

Figure 8 is an excerpt from a chronology. In general,
chronologies record the sequence of BIP commands and lines of program

code typed by students when they worked on their programs. The commands

include:

LIST - lists the student’s program

RUN - executes the program

DEMO - executes a model solution stored for the task the
student is working

HINT - prints a hint stored for the task

TRACE - executes the student’s program and prints for each
line the values of any variables that changed

FLOW - executes the program one line at a time, showing

how variables change, and using the CRT to indicate
the flow of control graphically
MORE - executes the program and the model solution on
test values and compares their output in order to
judge whether the student’s program is correct
Lines of code entered are denoted by the keyword LINE, or SYNTAX ERROR
if the student typed an incorrect line that could be detected by the
parser. Each entry in a chionology includes the time at which the
command was typed by the student. It does not always include the exact
response of BIP to that command. For example, while LIST does put the
program listing on the chronology, HINT only puts the hint number, not
the text of the hint.

The chronology data constitute an indirect window onto students’

reasoning as they designed and debugged their programs. For example, if

a student ran a DEMO after partially coding his program, it might be

Mt ki s i ORISR Y

- g 3

TUun
$/9/77 10:16: 51
same program
output: TYPE IN TWO ODD NUMBERS, THE LOWER ONE FIRST.
input: 1
input: S
output: THERE ARE 7 NUMBERS BETWEEN THEM.
completed at line 42

flow
S/92/77 10:17:17
output: TYPE IN TWO ODD NUMBERS, THE LOWER ONE FIRST.
input: 21
input: 23
output: THERE ARE 25 NUMBERS BETWEEN THEM.
aborted at line 42
list
5/9/77 10:19:09
same program
line
5/9/77 10:19:42
41 PRINT "THERE ARE ";C; " NUMBERS BETWEEN THEM"
demo
9/9/77 10:19:47
order program listing
30 0L €C=0
19 10 PRINT “TYPE IN TWO ODD NUMBERS, THE LOWER ONE FIRST. "
2 15 INPUT L, H
3 20 IF L=H OR L>H THEN 100
7 26 IF L/2-0.5<>INT(L/2) THEN 150
20 27 IF H/2-0. 5<>INT(H/2) THEN 155
9 30 FOR I=L TO H STEP 2
10 35 C= C+1 A
11 40 NEXT I
31 41 PRINT "THERE ARE ";C;'" NUMBERS BETWEEN THEM"
27 42 STOP
j 29 100 IF L>H THEN 110
+ 13 101 PRINT “YOU TYPED IN THE SAME NUMBER TWICE, TRY AGAIN
WITH "
14 102 PRINT "“DIFFERENT NUMBERS. " !
3 18 103 ¢0TO 15
16 110 PRINT "YOU SHOULD TYPE THE LOWER NUMBER FIRST, TRY
AGAIN. v
17 111 GOTO 15
25 150 PRINT "THE LOWER NUMBER WAS NOT ODD., TRY AGAIN. " i
23 151 G0OTO 15 #
24 155 PRINT "THE HIGHER NUMBER WAS NOT ODD, TRY AGAIN. "
26 156 GOTO 15 e
28 999 END
.ﬁ.
input: 21
input: 23

Figure 8. Excerpt from a BIP chronology. The student was debugging
a program at this point.

25

T p—— A A D s A L SRR OS aAlh RIai oitse scascoo

(Figure 8 continued)

line
$/9/77 10:21:03
41 PRINT "THERE ARE ";C:; " NUMBERS BETWEEN ";L ;*“ AND ";H

TUun
S5/9/77 10:21:08
order program listing

1 01 C=0

2 i0 PRINT "TYPE IN TWO ODD NUMBERS. THE LOWER ONE FIRST. "

3 15 INPUT L. H

4 20 IF L=H OR L>H THEN 100

S 26 IF L/2-0. 5S<HINT(L/2) THEN 150

1) 27 IF H/2-0. 5<>INT(H/2) THEN 1595

7 30 FOR I=L TO H STEP 2

a8 35 C= C+1

Q 40 NEXT I

23 41 PRINT "THERE ARE "iCi " NUMBERS BETWEEN “;L ;" AND "; H

11 42 STOP

12 100 IF L>H THEN 110

13 101 PRINT "YOU TYPED IN THE SAME NUMBER TWICE. TRY AGAIN

WITH »

14 102 PRINT "DIFFERENT NUMBERS. "

15 103 €0TO 15

16 110 PRINT "YOU SHOULD TYPE THE LOWER NUMBER FIRST, TRY
AGAIN. "

17 111 60OTO 15

18 150 PRINT “THE LOWER NUMBER WAS NOT 0ODD, TRY AGAIN. ™

19 151 GOTO 1S

20 155 PRINT "THE HIGHER NUMBER WAS NOT ODD, TRY AGAIN. "

21 156 GOTO 15

a2 999 END

#*

output: TYPE IN TWO ODD NUMBERS, THE LOWER ONE FIRST.

input: 21

input: 23

vutput: THERE ARE 2 NUMBERS BETWEEN 21 AND 23
completed at line 42

lisi
5/9/77 10:21:32
same program

Line
S9/9/777 10:21:45
01 C:i:=2

56

that he has become confused about the problem or alternatively that he
is designing and implementing the program in sections and is ready to
examine the requirements of a new section. Looking past the DEMO in the
chronology, if the student changes code he had already entered, we would
opt for the first interpretation; if he entered some new code, we would
choose the second. Tracing through a chronology and trying to
reconstruct what the student’s strategy was resembles the task of an
archaeologist working to infer the values and motivations of a society
from physical artifacts.6

Our initial examination of the chronologies was directed at
identifying debugging episodes involving logical bugs. These are bugs
that let the program execute but cause it to produce incorrect output
(e.g., GOTO an incorrect line number), as opposed to those that are
syntactic or context-free and are detected by BIP’s parser or runtime
system (e.g., GOTO a non-existent line number). Further, we looked for
episodes where it seemed that the student considered the program to be
completed at the time he detected the bug, as opposed to episodes where
the debugging seemed to be integrated into design-- i.e.. where the
student was trying to discover how some unfamiliar programming construct
worked. These distinctions had to be inferred by looking at how the
program was coded and by how readily the student seemed to change the
program. One sure clue that a student thought a program was complete
was his calling BIP°s solution checker with the MORE command. Since BIP
requires that a student RUN his program before MORE will be executed,
typing MORE implies the student had RUN his program and thought it was

correct.

. It has the same potential pitfall that the researcher’s own
world view restricts the interpretations he might see.

57

B a2t

Blhalde - acac = o

oo

Most of BIP’s programming tasks involve interactive programs
that process input from a '"user.'" In programs where flow of control was
conditional on user input, we found many episodes where the student ran
his program with inputs that did not cause a bug to manifest itself and
then typed MORE. In most cases, the inputs used by the solution checker
did detect the bug, although sometimes the solution checker incorrectly
accepted a student program with a bug in it. Thus. it became evident
early in our examination of the chronologies that many students did not
recognize the need to test programs across conditions that would
exercise the different branches of conditional control structures.

Our original plan was to analyze the debugging episodes we found
by parsing them with context-free debugging grammar similar to that
found in Miller and Goldstein’s (1976b) (Figure 3) planning/debugging
grammar for LOGO programming. One feature of the context-free grammar
rules is that a particular higher-order node (left-hand side of rule)
may be expanded in terms of alternative lower-order nodes (right-hand
side). One of our goals after parsing the episodes was to examine
alternative expansions of a higher-order node to determine what
semantics of the context determined the choice among alternatives. Thus
if there were a rule

repair := replace-code | modify-code
(the "|" is read as "or") we would be looking for features of a context
that predicted when a bug was repaired by replacing old code and when it
was repaired by some minimal editing of existing code. By determining
the semantics, a more powerful ATN grammar then could be developed for
describing the episodes. Once the general grammar describing the

debugging strategies was formulated, our plan was to characterize the

differences between students in terms of alternative subsets of the
general grammar they employed and, in particular, to see if the poorer
debuggers were those with degenerate versions of the debugging grammar.

The effort to derive a grammar encountered problems immediately.
At the lowest level, where we were trying to identify rules mapping onto
the chronology keywords (RUN, LIST, DEMO, LINE, etc) and the timing
information, we found an unexpected degree of variability both within
and between students. For instance, by examining several episodes we
might derive

test-repair := RUN + <long latency> |

RUN + <long latency> + test-repair

(the '"+" is read as "and then'") as a general rule of the grammar.
However, in some other episodes we would then observe students changing
a line of code, listing the program, and then changing that line again
without ever having RUN the program to test the first repair. We soon
realized that because the programs were on the average short (a maximum
of about 30 lines) that student might have been testing the programs by
looking at a listing and mentally tracing its execution rather than
running it. We could have added this alternative to the rule for
test-repair, except that LIST + <long-latency> occurred in other rules
as well. In fact, LIST following a repair was a common 'cliche" in
students” behavior: evidently each time they changed some code, many
students listed the program and looked at it briefly, simply to verify
that BIP had inserted the code as they intended. Although, the time
spent for such.a visual check is less on the average than that spent
mentally executing a program, the observed times overlapped enough to

make use of the time data to distinguish these cases unreliable. In

59

TR O

other contexts, LIST often did not occur when it was expected; we
hypothesize that for shorter programs, an earlier listing could still
have been on the CRT after a few intervening events. Thus, LIST was not
a reliable indicator of when the student had been examining the program,
and when it did occur even examination of the surrounding context was
insufficient to determine the type of thinking the student was engaged
in. It soon became clear that even the lowest level rules in the
debugging grammar would be complicated by alternative and optional
patterns of keywords, and that the same patterns would be included in
several rules. In most episodes, the only way to piece together what a
student s strategy had been was to integrate semar;ic clues from
throughout the episode, and even that involved making sometimes tenuous
inferences. We found therefore that it does not seem possible to derive
reasonable debugging grammars, of the type proposed by Miller and
Goldstein, for describing a range of episodes in the BIP student
chronologies.

Even though we were unsuccessful at describing the debugging
strategies of different BIP students in terms of a unifying
information-processing model, the episodes we examined were very
informative with respect to identifying weaknesses in the debugging of
these inexperienced programmers. As we mentioned, there were frequent
failures to test programs thoroughly when they were first run. This
failure generalized to testing after repairs as well. Although there
were ambiguous cases, in most instances the subsequent context made it
clear that RUNs we judged we should have found, were not being replaced
by mental execution of the program. As a result of inadequate testing,

students failed to detect bugs in their programs. Not surprisingly, we

60

e L A i A v e 0 5kl B 2 5

also observed that even when students did detect bugs by running their 1
program, they did not rerun the program with varying inputs, which by 4
exercising different parts of the program’s control structure would
produce output useful for localizing the part of the program containing
the bug (i.e., they did not CHARACTERIZE).

One of the most striking failures to test and characterize that
we found in the chronologies involved the program shown in Figure 9. It
is one student’s attempted solution to BIP’s task CALCULATOR, which

specifies an interactive program for (l) getting two numbers from the

user, (2) getting a numerical code corresponding to one of the four

el i o

primary arithmetic operations (+, -, *, /), and (3) printing to the
terminal the result of applying the specified operation to the two
numhers. The student’s program has a fundamental flow-of-control
bug(s), which results in execution '"falling through' the code for
computing and printing the results (lines 80 to 150). Thus, for
example, if the user typed a "l1" to specify addition, the program

: branches correctly to line 120 to do the addition, but incorrectly
continues on to do subtraction, multiplication, and division.

Similarly, for subtraction, the multiplication and division are computed
as well. Only for division, the final branch in the control structure.
does the calculator compute and print only what it is supposed to. To
correct the program, three lines, 125, 135, and 145, all of which should
be STOP or GOTO 199, must be inserted. The student who wrote the
program failed to debug it; in fact, he failed to detect the bug at all,
although he called the solution checker and had it reject the program
six separate times!

The major cause of the student’s difficulty was that every time

61

10
20
20
40
20
50
70

20

100
110
120
130
140
150
199

PRINT "THIS IS A CALCULATOR"

PRINT “TYPE 1 TO ADD, 2 TO SUBTRACT, 3 TO MULTIPLY, AND 4 TO DIVIDE"

INPUT C
PRINT "“NOW CHOOSE A NUMBER"

INPUT X
PRINT "“NOW CHOOSE ANOTHER NUMBER"
INPUT Y

IF C = 1 THEN 120

IF C = 2 THEN 130

IF C = 3 THEN 14Q

IF C = 4 THEN 150

PRINT “"THE SUM IS “; X + Y
PRINT "THE DIFFERENCE IS "; X - VY
PRINT "THE PRODUCT IS "i X # Y
PRINT "THE QUODOTIENT IS "; X / Y
END

Figure 9. A student's solution to BIP's task CALCULATOR. The program
has a recurring flow=-of-control bug, which the student
failed to detect because of inadequate testing.

62

he typed RUN to test his program, he specified "4' as the operation
code. Not once did he test it with another operator. Since, "4" for
division is the only case in which the program works correctly. he never
saw the bug manifest itself in the output. In between running the
program and calling the solution checker, we found that he used LIST and
spent long periods before his next RUN. Assuming that he looked at the
listing during these periods and because three similar lines were
missing, we can conclude that he did not understand how to design
conditional control structures and had not simply made a careless error.
However, if he had RUN the program just once with a code other than "4",
the erroneous output could have served to help him understand the defect
in his desigp.

We found many other examples of inadequate testing and
characterization. In fact, there was evidence that even when they ran
the program and it produced incorrect output, some students did not
realize that there was a bug in the program. In these cases, the
students called the solution checker immediately following their RUN of
the program, suggesting either that they had not analyzed the output or
that they did not understand what the program they wrote was supposed to
do.7 Based on independent observations we made, we believe that in many
cases the students did not analyze the output. A member of the research
team spent about 20 hours observing (and assisting) course consultants
and students discussing problems for the introductory ALGOL programming
class at Stanford. These students probably have a higher aptitude for

programming on the average than the BIP students and work on programming

! The solution checker at that time did not attempt to tell the
student what it had found wrong, so that it was not called as way to
obtain information.

63

3 N o e N

T

tasks more complex than those in the BIP curriculum. They usually came
to the consultants when they had trouble debugging their programs. In a
large number of cases, students had not looked at their output, other
than to note that the program did not work. Instead, they described
their debugging as going through the program line-by-line looking for a
mistake, even though they had not thought about what was wrong. For
errors trapped by the ALGOL runtime system (e.g., illegal memory
reference) their debugging was even more irrational, since they did not
attend to system diagnostics which could have identified the type of
statement containing their error or, in some cases, the actual line
containing it. Thus, the general debugging strategy of the ALGOL
students we observed was deficient in testing and characterization in
much the same way as that inferred from the chronologies of the BIP
students.

Another type of poor debugging strategy we observed in the
chronologies involved students making a series of several minor,
sometimes completely non-functional, modifications to their programs in
a very short period of time. Most often, this behavior was seen in the
same episodes where there was no attempt to characterize the bug by
running the program with varying inputs. A related failure was that
attempted repairs that did not correct a bug were not undone at once and
evidently were forgotten. As a result, "almost correct' programs
sometimes were rendered less correct during debugging as the student
compounded the original bug with others resulting from the ineffective
repairs.

In order to substantiate some of the inferences we had drawn

from the chronologies, we collected written debugging commentaries from

64

VRS T O D Ty PO PO

inexperienced programmers working on staged debugging problems. The
procedure was similar to that under which the commentaries were obtained
from programmers debugging the sorting program. Four students who had
completed 10 hours in the BIP course about one-half year earlier
participated in the study. Each worked to debug a series of programs
within the BIP programming environment. The programs themselves were
selected from the chronologies and involved different types of bugs:
computation, assignment, flow-of-control. This meant that the students
were debugging programs written by other inexperienced programmers as
solutions to problems they had themselves attempted in BIP.

The students were instructed to maintain a written record of
their thoughts as they tried to debug the programs. In particular, they
were told that whenever they decided to take an action=-- LIST or RUN the
program, or make a repair-- they should record their reasoning. BIP
chronologies were saved for the debugging sessions and in addition the
sessions were conducted on hardcopy terminals, instead of CRTs, so that
exact typescripts of the interactions could be obtained. For each
debugging problem, the students were given a listing of the program and
a description of what is was supposed to do, but were given no sample
input-output data. A copy of the program was preloaded into their
program space in BIP, so that they themselves did not have to type it in
in order to run or manipulate it. They had at most an hour to work on
each problem.

In describing the results of this study, two general
observations must first be noted. The subjects had not done any

programming since the time they finished BIP and their behavior and the

commentaries indicate they had forgotten features of the BASIC language

R T A i i e

r : , .---!-lIIl!-!llI!!!lllI!!!l'lllH!!lllllIll-!Illlllllllll!llllllllll

and of how to use BIP. Therefore, much of their effort, especially on

the first few problems, was spent using the BIP manual and trying to

relearn fundamentals. Second, the subjects had trouble maintaining an
ongoing commentary. They would work on the problem for a while and @
afterward write, rather than write as they were thinking. The observer
provided constant prompts to remind them to write and they were

encouraged to write and not to concern themselves with working quickly.
Nonetheless, the commentaries are fragmentary records at best and are

more retrospective accounts of what the subjects were thinking than they

B el e aheal e o S

are real-time records.

The commentaries substantiate and elaborate our observations on
the inadequate debugging strategies we saw in the earlier chronologies.
Again, the most salient deficits were in testing and characterization,
in obtaining and using information from a bugged program’s input-output
relationships. From the commentaries we could determine that when
students listed and examined a program, they were not substituting
mental execution for an actual computer run, but were scanning
individual lines of code for errors. Now, since the subjects were
debugging programs written by someone else, it is not necessarily a bad

strategy to list and examine the bugged program in a global way in order

to determine its overall organization. However, there were several
cases in which subjects reported looking at lines of code for errors,
when they had not yet run the program and seen how the error manifested

itself, as illustrated by the following excerpt:

3 I°ve done this program before, so I feel confident
that I°11 be able to find the bug. After one reading
I°ve no idea what the problem is. I just looked at
the two input statements, they look OK. I just looked
at the 50 statement. Nothing looks wrong there. 1711
run the program to see if there’s a problem.

66

I just read the output on miles per gallon. Thought:

I1°ve got it! The machine divides before it subtracts.

I°11 try putting in parentheses around E~B to see 1if

it will subtract first.

This subject recognized the program and thought he could find the bug
just by looking at it. He examines the program listing line-by-line
without success. Then he runs the program, sees the nature of the
error, and is immediately able to locate the bug.

The commentaries indicate the mechanism for the quick and
apparently unmotivated repairs we had seen students make in the
chronologies. Consider the following excerpt:

This equals business in 160 to 230 is confusing

stuff. Seems to me they’re double assigning

things. H and L are being given two values.

I think maybe 160 and 170 can be deleted.

Try and see.

The subject, without having run the program, examined the code and saw
something that looked '"confusing.'" Consequently, without any sound
reason for doing so, she deletes two lines. This compounded the bug in
the problem, so that when she tested the program (for the first time)
after the repair and it worked incorrectly, she had to go back and undo
the repair and run the program again in order to see the manifestation
of the original bug.

One of the subjects did seem to have an effective top-down
strategy with elements similar to that of our troubleshooting/debugging
model. However, even he had difficulty because his CHARACTERIZE
procedure was not well developed. Figure 1l0a is a complete commentary
from this subject for the bugged program shown in Figure 10b. He reads

the program first, but only to identify its structure. He then runs the

program, but happens to choose inputs for which the program works

(%)

This program looks scary because it's so long. I'm going to try to analyze
this program in groups that were delineated in the abstract. That is: (1) check
to see if input is correct; (2) count the odd numbers; (3) print the odd numbers.
Statement 30 I don't understand. I'll look it up when I'm done reading. As T
read down, I see a lot of symbols I don't understand. ‘I‘hat's very discouraging.
I'l1l run and see what happens. (1)

The program worked very nicely. I asked Roger what's happening. He said
to try more possibilities, so I'll try more disparate numbers. (2)

I found 2 problem. When I input some numbers it doesn't work. I'll try
to see if there's a certain spread that is the line between working and not
working. (3) I'll try distances of 2, 4, etc.

I found that any distance past 2, i.e., juxtaposed odd numbers, doesn't work.
I'11l trace and hope I find something. I have very little idea of what I'm looking
for. I just know some loop goes wrong because the machine said that's probably
the problem.

Trace sent it into an infinite loop. I'll look at the numbers for a while

. and see if I can figure anything out of that. Well, P stayed the same, n kept

changing. I'll look at the program to see what they mean. I Jjust noticed that
at 190 and 200, Y and X are inverted compared to lines 160 and 170. I'1l try
changing them back and see what happens when I run. (5)

That didn't work so I'll change them back and go into the manual looking
up symbols: < > INT.

Couldn't solve by 1315.

Figure 10a. Debugging commentary of an inexperienced programmer
attempting to debug the program shown in Figure 10Ob.

The usar inputs two unequal odd numbers (the program checks to make sure
that this is the case and asks the user to try again if 2 mistake has
bean made). Odd numbers between his two numbers, inclusive, are counted.
For example, there are 3 odd numbers between 5 and ? —— they are

3, 7, and 9. Finally the number of odd numbers between the user’s twa
numbers is printed

01/01/77 00: 00: 01
27
10 PRINT "TYPE AN ODD NUMBER"
20 INPUT X
30 IF X/2 <> INT(X/2) THEN &0
40 PRINT "THAT IS NOT AN ODD NUMBER. TRY AGAIN. "
50 GOTO 20
50 PRINT "TYPE ANOTHER ODD NUMBER"
70 INPUT Y
80 IF Ys/2 <> INT(Y/2) THEN 110
70 PRINT "THAT IS NOT AN ODD NUMBER. TRY AGAIN. "
100 GOTO 70 :
110 IF X <> Y THEN 150 .
120 PRINT “YOUR TWO NUMBERS ARE EQUAL. TRY AGAIN, THIS TIME"
130 PRINT "USING TWO ODD NUMBERS WHICH ARE NOT EQUAL. "
140 &0TO 20
150 IF X < Y THEN 190

160 A = X

170 L = Y

180 60TO 210

190 H = Y

200 L = X%

210 N = 1

220 P = L + 2
230 N =N+ 1

240 IF P = H THEN 240

250 60TO 220

260 PRINT "THERE ARE "; N; " ODD NUMBERS BETWEEN "; Li: " AND "; H
799 END

Figure 10b. Bugged solution to BIP's task ODDCOUNT, used to study
debugging by inexperienced programmers. The bug is in
Line 220 which should be P = P + 2. 1In addition, Line
210 must be P = L and Line 215 must be N = 1.

69

s g

correctly and becomes '"stuck." Only a prompt from the observer induces
him to try other inputs and thereby detect the bug. He arrives at a
correct ACTION-DESCRIPTION that the program works correctly only if the
pair of numbers are consecutive. He does not debug the program within
the time allowed, but this can be attributed his forgetting some of the
BASIC language constructs needed to understand the function of parts of
the program.

The effective strategy of the same subject can be seen in the
following excerpt in which he was debugging the program shown in
Figure 9. Note his careful initial characterization and testing
following repairs, and how he resists jumping to conclusions until he
has examined the program’s output.

I just read SID (the program). I just thought the

problem may be there’s a problem with end or stop

statements. I°1l1 run the program to have a look at

it. My suspicion seemed correct. The calculator

outputs all functions, so I've got to find a way to

limit the calculator to its assigned function. I°11

look in the glossary to find the right word. I

couldn’t find anything so I°11 try GO TO statements

after each function. They’ll say: GO TO...end. I

Just typed a 125 GO TO 199 statement. I°1ll now run

the addition and see if it stops. It worked. I was

pretty confident it would. Now, I°11l add these expressions

to the other functions. I made a mistake in typing,

so I1°11 look up the CTL button for offing a line.

found it, I°11 CTL X. Now, I°11 run again, checking

all the functions. It worked. I want to try TRACE

now, just to make sure I understand it.

Our observations of debugging by inexperienced programmers
support the hypothesis that some of them have difficulties not only
because they are not well-versed in programming fundamentals and lack
libraries of specific experiential knowledge, but because they have

inadequate general debugging strategies. In particular, the are

deficient in running a program to obtain information that can be used to

deduce logically where a bug is located. In addition, they make repairs

without good reasons and lose track of repairs they have attempted,

thereby confounding their problem.

e

Ty

III. Teaching Troubleshooting/Debugging

Improving instruction in complex problem=-solving

In the introduction, we described the indirect meghod by which
troubleshooting/debugging and other types of complex problem-solving are
currently taught. We mentioned two problems with this method. First,
in domains where problem solving requires specialized facilities, such
as electronic troubleshooting, costs limit the range and number of
examples and exercises students may experience during formal
instruction. Thus, students of average or above average aptitude may
not have experience sufficient for them to acquire problem-solving
competence. Second, students with lower aptitudes may have fundamental
difficulties learning by the indirect method even when a relatively
broad range of experiences can be provided.

One solution to the first problem, and perhaps the second, is to
elaborate on the indirect approach in ways that can increase student
exposure to problem-solving experiences and add structure to these
experiences by providing more and better feedback to him. A landmark
example of this type of solution is the SOPHIE system developed over a
period of several years by Brown, Burton, and their colleagues (Brown &
Burton, 1975; Brown, Rubenstein, and Burton, 1976), which provides
instruction in electronic troubleshooting. Through the use of computer
simulation and other AI techniques, SOPHIE creates an enriched
environment in which students may acquire both a general troubleshooting

strategy and domain-specific knowledge for understanding interactions

between parts of circuits. SOPHIE does have its limitations-- most

notably, that all its exercises and monitoring capabilities are limited

to a single circuit-- but these are overshadowed by the advances it
represents in teaching by the indirect method.

SOPHIE. The basic SOPHIE system is an interactive
computer-based troubleshooting laboratory built around a simulation of a
non-trivial power supply circuit. All student activities require only
the simulated circuit and no real circuits or test equipment. In
various operating modes, components in the simulated circuit can be
faulted as specified by a human instructor, by the student, or randomly
by SOPHIE itself. The student makes measurements on the faulted circuit
simply by requesting them; they are determined by the simulation.
Similarly, he specifies repairs by requesting SOPHIE to replace a
component. These interactions are facilitated by SOPHIE’s limited, but
very habitable, natural language front-end, which relieves the student
of learning a special language for communicating with the system.

In a basic operational mode, SOPHIE allows an individual student
to troubleshoot an unknown fault or investigate the effects of a fault
he himself has specified, much as he might in a normal circuit
laboratory. However, it eliminates many of the peripheral problems
involved in setting up and using real circuits and test equipment.
Beyond this, SOPHIE constantly performs two powerful monitoring
functions as the student works with the faulted circuit. First, before
performing a measurement requested by the student, it determines whether
the requested value is redundant~- i.e., whether it can be deduced
logically fromvthe measurements that have already been made-- and, if
so, refuses to make the measurement. In this way, SOPHIE alerts the

student that he has some misunderstanding of the structure and teleology

of the circuit. Second, when the student asks that a part be replaced,

SOPHIE determines whether that part being faulted is consistent with the
measurements that have been made. This is accomplished by faulting that
component in a copy of the simulated circuit, making the measurements
the student had made, and comparing them with the values obtained from
the version of the circuit the student is working with. If the
specified repair is inconsistent, the student is told so. Again, this
alerts the student to problems in his reasoning and understanding of the
circuit.

In a second, more recently developed operating mode, SOPHIE
provides the student with '"real-time" examples of expert troubleshooting
involving the power supply circuit. SOPHIE’s "articulate expert' is
programmed as blocks of human-authored text that are accessed
dynamically in examples involving different faults. Each episode begins
by the student selecting a fault he would like the Expert to find. The
faults are specified with respect to their location within the circuit’s
top-level functional organization. A '"demon', another entity within
SOPHIE, inserts the fault in the circuit. The Expert proceeds with a
commentary on isolating the fault which exemplifies an optimal top-down
strategy similar to that in the troubleshooting/debugging model we
described in the previous section of this report (Figure 11).

Rather than directly make measurements on the circuit at each
step in the localization process, the Expert asks the student to tell
him the qualitative value of the measure he wants to make (e.g., Is the
voltage at point A high, low, or normal?). Thus, the student must
understand the effects of the fault he chooses (a device for motivating

the student to understand the circuit). The students answer is checked

74

™

How does the OUTPUT VOLTAGE compare with a working
circuit?

DICK: LOW

EXPERT:

Every functional block has a failure mode which
could cause the output to be 1low under these
conditions, so I need some more information.

Is the OUTPUT VOLTAGE essentially zero?

DICK: YES

EXPERT:

AH GOOD! That is important information for me
because I don't suspect the Vref now. If the Vref

were dead, that is, had no output whatsoever, then

the output voltage would still be around one and
one half volts. It would have this magnitude
because the voltage limiter cannot even begin to

function until its input voltage rises above the
Junction voltage drop of 1its input transistor.
And, of course, if Vref had any voltage output
greater than zero, the output voltage would be
still greater. Having eliminated the Vref, I now
wonder about the CL, VL, DARL, CCS and OPF. Any
one of these could cause the output voltage to be
zero so I am going to narrow the search.
How does the YOLTAGE AT N1 compare with a working
circuit?

F ig ire 11,

Excerpt of an interaction with SOPHIE's

The Expert knows of
faults in every block
which cause low output,
the only symptom so far.

The Expert asks for a more
refined, although still
qualitative prediction
about the output.

An tnstance of teleolo-
gical knowledge at a
block level: failures

in Vref cannot make the
output essenttally zero.
This is a somewhat
surprising fact which the
student may want to verify
experimentally in the
SOPHIE lab.

Although this test is
aimed primarily at only
oriz block, tt is nonethe-
less desirable because

- the rest of the blocks

cannot funetion unless
this block is working.

"articulate expert."

From Brown, Rubenstein, and Burton, 1976.

75

by the demon, who "invisibly" runs the simulated circuit to get the
actual quantitative value. If the student’s answer is wrong the demon
interrupts and tells the student and the Expert. The Expert follows a
strategy of choosing measurements that enable him to reduce
progressively the part of the circuit’s functional organization that
remains to be considered. After obtaining each qualitative measure from
the student, he explains how it enabled him to deduce that the fault
could not be in certain subcircuits. The Expert never describes this
localization strategy in general terms; instead, the student is left to
induce the general principles from the specific examples of reasoning.

Brown, Rubenstein, and Burton (1976) report a study in which
they evaluated the reactions of a small group of second-year electronics
students from a technical school to the SOPHIE system. Each subject
interacted with SOPHIE in several modes, including the two we have
described here.8 In questionnaires and interviews, the students in
general indicated that SOPHIE was superior to their normal experiences
in a circuit laboratory. They believed that the individual
troubleshooting activity did teach them knowledge that would be useful
in troubleshooting other types of circuits. Their criticism was that
wher. they were told about their attempted redundant measurements or
illogical repairs, they could not always understand why they were wrong
and could obtain no further help from SOPHIE.

The interaction with the Expert was also rated favorably, but

not as highly as the other conditions and with more variability among

s Other conditions included a competitive troubleshooting game
between two-person teams, and an exercise in which the student had to
specify a fault which when inserted in the circuit would cause another
target component to fail as well.

76

students. Students who liked this condition reported that they believed
that by observing the Expert they had learned a general problem-solving
strategy of top-down decomposition and testing that they could apply in
a range of problem-solving contexts. The students who rated the
condition poorly tended to be those of lower aptitude who had trouble in
individual debugging and in answering the Expert’s questions. They said
they found the expert too glib and were frustrated by not being able to
question him. They had trouble just following his commentary on a
specific problem, let alone being able to induce the underlying general
strategy.

The results can in general be taken to indicate that the
capabilities of the SOPHIE system can improve learning of both
domain-specific knowledge and general strategies within the indirect
method of leaning by example and exercise. However, these benefits
accrue primarily for students of normal or higher than normal aptitude,
and are diminished or lost on those of lower aptitude.

The Why system. The Why system (Collins, 1976; Stevens &
Collins, 1977) is another CAI system that may be viewed as an enriched
context for teaching problem-solving by the indirect method. The stated
purpose of the system is to teach domain-specific declarative knowledge
about geography by engaging the student in a natural language dialog
with a simulated Socratic tutor (Figure 12). However, as we noted in
the introduction, tutoring can readily be viewed as debugging of the
student’s knowledge system. A tutor’s behavior therefore exemplifies
the application of a debugging strategy, which the student may induce

and subsequently use to debug himself. An interesting feature of Why is

that, unlike SOPHIE’s articulate expert the Why tutor generates his

DO YOU THINK ‘THE AMAZON JUNGLE HAS HEAVY RAINFALL OR LITTLE RAINFALL?
(kule 1: Ask for a prediction about a particular case)

HEAVY RAINFALL

wHY DOES THE AMAZON JUNGLE HAVE HEAVY RAINFALL? (Rule 2: Ask for
prior causes)

BECAUSE IT 'S NEAR THE ATLANTIC

YES, THE AMAZON JUNGLE IS NEAR THE EQUATORIAL ATLANTIC. HOW DOES
THAT AFFECT THE RAINFALL IN THE AMAZON JUNGLE? (Rule 3: Ask for
intermediate causes)
THE WATER IN CURRENT IS WARM

(section omitted)

wHAT HAPPENS AFTER THE MOISTURE FILLED AIR REACHES THE LAND? (Rule
4: Ask for subsequent causes)

] DON’T KNOw

DO YOU THINK THE ANDES MOUNTAIN RANGE HAS ANY EFFECT ON THE RAINFALL
IN THE AMAZON JUNGLE? (Rule 5: Suggest a factor and ask if it is a
cause)

YES

HOW? (Rule 3: Ask for intermediate causes)

THE PREVAILING WIND HITS THE ANDES AND THE AIR COOLS

fdOw DOES THE FACT THAT PKREVAILING WIND HITS THE ANDES, LEAD TO AIR
COOLING? (Rule 3 again)

(section omitted)

DO YOU THINK ‘THAT ANY PLACE WITH MOUNTAINS HAS HEAVY RAINFALL? (Rule
6: Form a general rule for an insufficient cause)

YES
SOUTHERN CALIFORNIA HAS MOUNTAINS. WHY DOESN'T SOUTHERN CALIFORNIA

HAVE HEAVY RAINFALL? (Rule 7: Pick a counter-example for an
insutficient cause, and Rule 2: Ask for prior causes)

Figure 12. Annotated excerpt of a dialog with the Why system. From
Stevens and Collins, 1977.

78

questions and comments dynamically using an explicitly represented
process model of a general tutoring strategy (i.e., one that is
independent of the content of the subject being taught). The model is
expressed as a production system of about two dozen rules (Figure 13),
which were derived by analyzing dialogs between students and human
tutors. While this model underlies the tutor’s behavior, it is not
articulated directly to the student and is actually communicated more
indirectly than the strategy underlying SOPHIE’S expert’s 'canned"
explanations.

More direct methods for teaching strategies. A second approach

to teaching complex problem-solving, which might help those students who
have the most difficultly learning by the indirect approach, is to
provide explicit descriptions of the procedures for solving problems
that can serve as prescriptions for the student. As noted in the
introduction, an impediment to this approach previously has been the
lack of a suitable language for conceiving and talking about problems
and problem-solving processes. The development in AI and
information-processing psychology of formalisms for representing
knowledge has caused researchers concerned with learning and instruction
to reexamine the need and potential for more direct and explicit

instruction in problem~-solving.

Why do we not attempt to teach some basic
cognitive skills such as how to organize one’s
knowledge, how to learn, how to solve problems, how
to correct errors in understanding: these strike us
as basic components which ought to be taught along
with the content matter.

Norman, Gentner, and Stevens, 1976, p. 194.

T T~

RULE 2: Ask for any factors

If 1) a student asserts that a case has a particular
value on the dependent variable,
then 2) ask the student why.
EXAMPLE:
If a student says they grow rice in China, ask why.
REASON FOR USE:
This determines what causal factors or chains the

student knows about.

RULE 3: Ask for intermediate factors

If 1) the student gives as an explanation a factor that
is not an immediate cause in the causal chain,
then 2) ask for the intermediate steps.
EXAMPLE: g
If the student mentions monsoons in China, as a reason i
; for rice growing, ask "why do monsoons make it possible g
to grow rice in China?" %
REASON FOR USE:
i This insures that the student understands the steps ?
in the causal chain, for example that rice needs

to be flooded.

RULE 4: Ask for prior factors

If 1) the student gives as an explanation a
factor on causal chain where there are
also prior factors,

then 2) ask the student for the prior factors.
Figure 13. ©Several of the production rules used in the Why system

as a computational model of a tutoring strategy. From
Stevens and Collins, 1977. :

80

.+..as information-processing analyses succeed
in identifying the processes underlying problem
solution, these processes=-- at least some of them--
can be directly taught, and that individuals will
then be able to apply them to solving relatively
large classes of problems. ... ways can be found
to make individuals more conscious of the role of
environmental cues in problem solving and to teach
strategies of feature scanning and analysis.

Resnick, 1976, pp. 79-80.

Papert (1971) at MIT has played a prominent role in articulating
the position that by teaching general problem-solving strategies more
directly, students can become better learners. His argument is that
learning to do things is facilitated by giving the learner a procedural
representation of his task and having him debug his attempted execution
of that procedure. Papert feel that this methodology applies to tasks
as diverse as computational mathematics and juggling. Much of his work
has involved teaching computational mathematics (primarily geometry) to
children by teaching them to write programs in the LOGO language. The
students learn the mathematics by discovery (i.e., inductively), but
they are taught strategies for design and debugging explicitly. The
strategies, however, are not presented in toto. Instead, the method
adopted is to present them in parts as separate heuristics in reaction
to events that transpire as the student designs and debugs his programs.

In this context, a heuristic may be defined as a rule-of=thumb,
a piece of a larger procedure that enables a correct or more efficient
solution under a set of conditions. The effectiveness of using a
heuristic depends both on being able to identify the contexts where it

applies or is more effective than other heuristics and on access to

other knowledge needed to execute it. Heuristics may embody either

general or domain-specific procedural knowledge. The following are both
heuristics for troubleshooting; however, the first is limited to a very
specific context, while the second is part of the general strategy we
presented in the previous section of the report.

If the car is idling unevenly, the first

thing to do is to strike the body of the

carburetor with several crisp (but

non-damaging) blows.

If you have decided to make an observation

of the system’s behavior, choose the

observation that has the potential to

eliminate the greatest part of the system

as a possible fault location whether the

observation proves to be normal or abnormal.

In Papert’s research studies, the student’s problem solving is
continually monitored by an instructor. When the student has difficulty
or uses less than optimal strategies for designing and debugging his
programs, the instructor interrupts and describes an applicable
heuristic to him. The heuristics are explicit, but couched in informal
speech. For example, if a program intended to draw some figure fails
because the student s design does not take into account an interaction
between two procedures, he might be told "look carefully at the position
and orientation of the pen between the procedures that draw the parts of
the figure that are incorrect." There are several comments to be made
about this method. Clearly, it is not a cost-effective approach to
large~scale instruction; however, Papert has been concerned with gaining
initial acceptance for its principles with the idea that implementation
problems can be resolved subsequently. Second, although the students
learn an explicit formalism (LOGO) for representing procedural

knowledge, the heuristics themselves are expressed in natural language.

Finally, the interrelations among the individual heuristics within an

82

e bt Sl M v 40 e A G030 Lt s LD e bR K 0 11 e O A o 5

encompassing design and debugging strategy are not explicitly described

to the student.
Carr and Goldstein (1977) at MIT have described a computer-based
system called WUSOR-I1 that refines Papert’s method of reactive teaching
of heuristics and exemplifies how it can be made more cost-effective by
automating the monitoring of the student. WUSOR-II is built around a
game called Wumpus, a version of Theseus and the Minotaur, which |
requires a fundamental deductive problem-solving strategy for optimal |
play. The player is placed somewhere in a maze of caves, told the names
of the neighboring caves, and warned if certain dangers are present in
those caves, although the exact location of the danger is not specified.
He then selects a cave to move to. His goal is to find and slay the
Wumpus by shooting an arrow into the cave where it is lurking before it
slays him. The reasoning involved is fairly simple; for example, if a
cave has a warning and all but one of its neighbors are known to be
safe, then the danger is in the remaining neighbor. Note that this type

of reasoning resembles that required in troubleshooting/debugging to

localize a fault given a set of observations. The optimal strategy for
selecting a move is to determine the safest neighbor as deduced from the
history of warnings.

WUSOR=11 incorporates an expert monitoring procedure. Because
the problem is well=structured, it was possible to implement a
computational model for playing the optimal strategy. The monitor uses
this model to evaluate the student’s move. WUSOR-11 incorporates a
sophisticated pedagogical strategy to determine when it is appropriate

for the monitor to interrupt play and describe a heuristic that

I ——

generates a better move than the student had just selected. One of the

83

principles is to interrupt only when the student has consistently failed
to make moves that could be improved on by a particular heuristic; that
is, do not interrupt if the student fails to use a heuristic once when
it is appropriate, when you have seen him use appropriately before.
Another principle is based on a representation of the interrelationships
among the heuristics which Carr and Goldstein call a syllabus: A
heuristic is not mentioned unless the heuristics prior to it (e.g., use
of double evidence depends on use of single evidence) in the syllabus
are inferred to be learned from the moves the student has made. The
teaching method itself (Figure 14) consists of articulating the faulty
logic of the student’s move, the detailed logic for generating a better
move, and finally a general description of the heuristic used to
generate that move.

WUSUR-II is a noteworthy elaboration on Papert’s method for
explicitly presenting problem-solving heuristics. However, its
capabilities are highly dependent on the simplicity of the problem
domain in which the heuristics are taught. The heuristics themselves
are part of a general, deductive problem-solving strategy that is
applicable in many problem domains, including troubleshooting/debugging.
An unanswered question is whether students who learn general heuristics
in such a "toy" domain can in fact transfer them to a '"real-world"
domain and incorporate them in more comprehensive strategies. A factor
that might affect their success is whether they have interrelated the
heuristics they have had described to them separately across different
problem=-solving episodes into an overall strategy.

The alternative to teaching heuristics reactively one-by-one is

to introduce them to the student according to a prior plan so that they

Ira, it isn't necessary to take such large risks with pits.

Cave 4 must be next to a pit because we felt a draft there. Hence. one of

caves 15, 2 and 14 contains a pit, bdut we have safely visited cave 15. This

means that one of caves 2 and 14 contains a pit.

Likewise cave 15 must be next to a pit because we felt a draft there.

Hence, one of caves 0, 4 and 14 contains a pit, but we have safely visited

cave 4. This means that one of caves 0 and 14 contains a pit.

This is multiple evidence of a pit in cave 14 which'makes, it probaoble that
cave 14 contains a pit. It is less likely that cave 0 contains @ pit. Hence,
Ira, ve might want to explo)'e cave 0 instead.

Figure 14. Dialog with the WUSOR-II system illustrating an attempt

to teach the user a heuristic for applying multiple
evidence in deduction. From Carr and Goldstein, 1977.

g e Ay e P AT O N Y o TR STy F YO R

B e S o 8 O S 3 i N 50 b, S i) B T 1 S T AN TS N 0

are available to him whenever he is ready to use them. George Polya’s
book, "How to Solve It" (1957) is most often cited as the first attempt
to teach a problem-solving strategy directly by a text. A mathematician
and teacher, he had observed basic similarities in the methods used by
expert problem solvers to solve mathematical proof problems. If these
methods could be described, he concluded, they could be taught to
students, thereby saving the students the years it would take them to
discover the methods on their own. Indeed, he felt some students never
discovered these principles simply by working on exercises by
themselves. Figure 15 summarizes the four stages of Polya’s strategy
and the heuristics applicable at each stage. Polya‘’s work though it is
now recognized as a precursor to information-processing analyses of
problem solving, has never had an impact on practical instruction in
mathematics (Schoenfeld, 1977a). The difficulty seems to be that people
reading the text may understand the strategy and heuristics, but, when
faced with a particular problem, have difficulty determining the
particular heuristic that '"unlocks' that problem; that is, while Polya’s
descriptions are perhaps accurate, the way in which they are presented
in his book does not enable most readers to adopt them as prescriptions.
Wayne Wickelgren, an information-processing psychologist, has
authored a more recent book, "How to Solve Problems" (1974), which is
similar to Polya’s, but incorporates information-processing formalisms
for describing problem structures and problem-solving processes and a
presentation intended to teach the reader how to recognize when
particular strategies and heuristics are applicable. Wickelgren also
does not restrict himself to mathematics problems. but addresses a more

general taxonomy of problem types. The problem-solving methods he

86

ol L e Vot D

v b AN N 3 D s L6 R A A GO 305 S 5 5 i A i 15 058

Firse.

You bave to understand
the problem.

Second.

Find the connection between
the data and the unknown.
You may be obliged

to consider auxiliary problems
if an immediate connection
annot be found.

You should obtain eventually
a plan of the solution.

Third.
Carry out your plan.,

Fourth.
Zzamine the solution obtained.

UNDERSTANDING THE PROBLEM

§VAat is the unknown? What are the data? What is the condition?
Is it posiible to satisly the condition? Is the conditinn sufficient to
determine the unknowa? Or is it insufficient? Or zedundant? Or
contradictory?

Draw a figure. Introduce suitable notation.

Scparate the various parts of the condition. Can you write them down?

DEVISING A PLAN

Have you seen it before? Or have you scen the same problem in a
slighdy different forra?

Do you know a related problem? Do you know a theorem that could
be useful? ;

Look at the unknown! And try to think of a familiar problem having
the same or a similar unknown.

Elere is a problem related to yours and solved before. Could you use it?
Could you use its result? Could you use its method? Should you intro-
duce some auxiliary element in order to make its use possible?
Could you restate the problem? Could you restate it still differently?
Go back to definitions.

It you cannot solve the proposed problem try to solve first some related
problem. Could you imagine a more accessible related problerm? A
more general problem? A more special problem? An analogous problem?
Could you solve a part of the problem? Kecp only a part of the condi-
tion, drop the other part; how far is the unknown then determined,
Bow can it vary? Could you derive something useful from the data?
Could you think of other data appropriate to determine the unknown?
Could you change the unknown or the data, or ‘both it necesary, so
that the new unknown and the new data are nearer to each other?

Did you use all the data? Did you use the whole condition? Have you
taken into account all essential notions involved in the problem?

CARRYING OUT THE PLAN

Carrying out your plan of the solution, check eack step. Can you sce
clearly that the step is correct? Can you prove that it is correct?

LOOKING BACK

Can you check the result? Can you check the argument?
Can you derive the result diffcrently? Can you sce it at a glance?
Can you usc the result, or the method, for some othee problem?

Figure 15. Polya's

heuristics for problem solving. From Pclya, 1957.

87

considers include drawing inferences, classificatory trial and error,
using an evaluation function to choose an action (hill climbing),
defining subgoals, deriving a contradiction, working backwards from the
goal, and recognizing the relations between problems. His approach is
to describe in eeneval terms, using formal representations when these
exist, a problem type and ths applicable problem-solving method and then
give a series of examples which illustrate that method. The examples
are most often puzzles or mathematical problems that require a minimal
background. The solution to each example is presented in steps and the
reader is instructed to attempt the solution according to the method he
has just studied before he reads each step. The text for each step
describes a heuristic to be applied at that point, allowing the reader
to assess the heuristic he used or to continue on if he is stuck.

Wickelgren presents as comprehensive catalogue of problem types
and methods as one could hope for given the present understanding of
problem solving. Two comments about the learnability of this
information can be made. First, it is exemplified lcreelv with toy
problems, a feature necessitated by the fact that the bo~x is intended
for a general audience and not as a text for student entering a specific
discipline. Second, although each method is described very thoroughly,
they are not explicitly interrelated. Thus, it still could be difficult
to determine which method applies when a problem is presented outside
the context of a chapter describing an applicable method.

Alan Schoenfeld, a mathematics instructor, has described in an
unpublished report (1977a) a method for teaching problem=solving
heuristics for mathematical proof that builds upon the work of Polya and

Wickelgren and that he has evaluated in a real instructional setting.

88

He states that for a student to use a heuristic he must not only
understand the procedure it specifies, but also understand the subject
in which he is to use it and recognize the situations in which it can be
used. The innovation in Schoenfeld’s method is the explicit

articulation of what he calls a managerial strategy, a prescriptive

model of the relationships between individual heuristics. The
managerial strategy is taught to the student as a device for monitoring |
his progress through the solution to a problem and thereby focusing his ?
attention on the subset of the heuristics he knows that may be relevant
at each point. Figures 16 and 17 are the heuristics and managerial
strategy Schoenfeld used in a small course he taught. His tentative
conclusion based on an informal study of the solutions generated by
students on examination problems was that the students did develop a
better ability to select appropriate proof methods relative to students
in standard courses of mathematics instruction.

Schoenfeld, in a second unpublished report 1977b. describes
another small, but more formal study evaluating his method for teaching
heuristics, this time for calculus problems involving indefinite
integration. Fewer heuristics and a more limited managerial strategy
are involved for this domain. Schoenfeld developed a brief text
describing these and illustrating their application. The text was given
to half of a calculus class four days prior to an examination. The
examination involved nine problems, seven of which could be solved by
the methods covered in Schoenfeld’s text. The students who received the
text outscored those who did not on six of the seven problems. while the
two groups did not differ on the other two problems. Furthermore, the

students were asked to record the time they spent studying for the

89

-

a)

b)
c)

a)
b)

a)
b)
c)
d)

a)
b)
c)

ANALYSIS

1) DRAW A DIAGRAM if at all possible.
2) EXAMINE SPECIAL CASES:

Choose special values to exemplify the problem and gét a
“feel" for it.

Examine 1imiting cases to explore the range of possibilities.

Set any integer parameters equal to 1, 2, 3,..., in sequence,
and look for an inductive pattern.

3) TRY TO SIMPLIFY THE PROBLEM by

exploiting symmetry, or
"Without Loss of Generality" arguments (including scaling)

EXPLORATION

1) CONSIDER ESSENTIALLY EQUIVALENT PROBLEMS:

Replacing conditions by equivalent ones.
Re-combining the elements of the problem in different ways.
Introduce auxiliary elements. '
Re-formulate the problem by
{) change of perspective or notation
1) _considering argumert by contradiction or conirapositivg

{i1) assuming you have a solution, and determining its
. properties

2) CONSIDER SLIGHTLY MODIFIED PROBLEMS:

Choose subgoals (obtain partial fulfillment of the conditions)
Relax a condition and then try to re-impose it. '

Decompose the domain of the problem and work on it case by
case, .

Figure 16. Schoenfeld's heuristics for colving mathematical

proof problems. From Schoenfeld, 1977a.

90

(Figure 16 continued)

EXPLORATION (continued)

3) CONSIDER BROADLY MODIFIED PROBLEMS:
a) Construct an analogous problem with fewer variables.
b) Hold all but one variable fixed to determine that variable's
impact.
c) Try to exploit any related problem which have similar
i) form

i1) "givens"

i11) conclusions.
Remember: when dealing with easier related problems, you should
try to exploit both the RESULT and the METHOD OF SOLUTION on the

given problem.

VERIFYING YOUR SOLUTION

1) DOES YOUR SOLUTION PASS THESE SPECIFIC TESTS:
a) Does it use all the pertinent data?
b) Does 1t conform to reasonable estimates or nredictions?

c) Doeslit withstand tests of symmetry, dimension analysis, or
scaling?

2) DOES IT PASS THESE GENERAL TESTS?
a) Can it be obtained differently?
b) Can it be substantfated by special cases?
c) Can 1t be reduced to known fesults?

d) Can it be used to generate something you know?

91

ScHeMATIC OUTLINE OF THE ‘PROBLEM-SOLVING STRATEGY

Given Problem

o .
T T P P e TPy s

ANALYSIS |3 < <
Understanding the Statement More Accessible
Simplifying The Problem Related Problem
Reformulating the Problem or

: New Information

Useful Formulation;
Access to Principles
- and Mechanisms

Minor
_ Difficulties
DESIGN j ot = % <+ e EXPLORATION }
Structuring the Argument Major Essentially Equivalent
Hierarchical Decomposition: Difficulties Problems
global to specific -S1ightly Hodiffed
: Problems
Broadly Modified
Problems

Schematic Solution

IMPLEMENTATION

Step-by-Step Execution
Local Verification

Tentative Solution

VERIFICATION

Specific Tests
General Tests

Verified Solution

Figure 17. Schematic representation of Schoenfeld's managerial
strategy for mathematical problem solving. From
Schoenfeld, 1977a.

9la

T

examination and those who studied with the text spent less time on the
average.

Schoenfeld’s results, though based on a limited sample, do
suggest that heuristics can be taught directly to advantage, provided
they are taught in the context of the domain in which they will be used
subsequently and they are explicitly interrelated within a larger
strategy that predicates when each is applicable. In the next section,
we present a study that investigated whether a direct presentation of

heuristics can be used to teach inexperienced programmers how to debug.

92

sy

IV. Directly teaching debugging heuristics: an experimental study

Rationale

In examining chronologies of debugging behavior we found that
the difficulties of inexperienced programmers are due as much to their
lack of a rational general strategy as tc their unfamiliarity with the
declarative and procedural knowledge needed to understand programs and
to operate in a specific programming environment. In this section, we
discuss an experiment we conducted, in which we attempted to teach
directly to inexperienced programmers a few heuristics that are part of
a useful (though possibly conservative) debugging strategy. The
experiment was intended more to be an exploration of methodology, than a
definitive test of whether it is worthwhile to teach representations of
procedural knowledge directly. At the outset, limitations on our access
to subjects over an extended period precluded any attempt to teach a
complete debugging strategy, or even to teach part of a strategy
thoroughly in a natural instructional situation. Instead, a brief
tutorial text was developed to present a few relevant heuristics and
subjects studied it only briefly in an experimental setting prior to
attempting a few test problems. Thus, we knew that whatever the results
of the instructional treatment, the adequacy of the pedagogy used to
communicate the heuristics could be questioned. Nonetheless, for a
first attempt to teach debugging heuristics it was not unreasonable to
test a minimal instructional method. Possibly, the results would
indicate that mere identification of general debugging heuristics is

sufficient to modify the behavior of inexperienced programmers (e.g, if

93

sl

they already 'knew" the heuristics, but needed an external cue to make

them more readily accessible when needed). In this case, the costs of
developing more substantial, but unnecessary, instructional methodology
could be avoided.9

The overall plan of the experiment was to compare the behavior
of two groups of inexperienced programmers on debugging problems, one of
the groups studying and referring to the tutorial and the other
receiving only some unassisted practice in debugging. Data analysis was
to be exploratory, with a goal of identifying measures that could
indicate the role of the debugging heuristics in subjects’ problem

solving.

Debugging tutorial

The debugging tutorial we created presents eight ''guidelines"
that are part of a general debugging strategy. Following the guidelines
will not always lead to the most efficient debugging but for an
inexperienced programmer without much specific debugging knowledge they
will tend to reduce false starts and to help determine a course of
action when he is '"stuck.'" The guidelines can be seen as elements of
three encompassing heuristics for (l) testing a program sufficiently to

detect errors, (2) generating a thorough characterization of an error’s

9Schoenfeld‘s results on teaching heuristics for mathematical
proof problems (described in the previous section) became available only
after the experiment described here was underway. In any case, there is
a basic difference between heuristics for proof and integration problems
and those for debugging. In the proof problems, a single applicable
heuristic must be selected; the subject s main problem is recognizing
the features of a problem that make a specific heuristic applicable. In
debugging, the use of several heuristics must be coordinated at several
points in every problem; the main problem in debugging is remembering to
use all of the heuristics. Of course, in both cases the heuristics must
be used appropriately.

94

manifestation, and (3) backtracking from unsuccessful repairs. A
summary of the guidelines from the tutorial is shown in Figure 18. The
number next to each guideline indicates which of the three heuristics it
is part of. The heuristics were decomposed into separate guidelines to
facilitate their comprehension. The guidelines are shown in Figure 18
in the order in which the tutorial introduces them. This order reflects
that in which the guidelines are applicable during each iteration (or
recursion) of the general debugging strategy that was described in
Section II.

The eight guidelines were formulated to correct the most
frequently observed shortcomings we had previously identified in the
debugging behavior of inexperienced programmers. All of these
guidelines, except perhaps for those concerned with backtracking, have
straightforward mappings onto other troubleshooting situations, like
electronic and mechanical maintenance and repair. For example, varying
a program’s inputs is analogous to varying the inputs and external
controls of electronic and mechanical devices.

The tutorial (Appendix A) is a rather minimal piece of pedagogy-
In a linear narrative mode, it introduces each guideline, giving a
rationale for its use and a specific debugging scenario that illustrates
its successful application. The examples are intended to demonstrate
when it is appropriate to apply the guidelines: having problem-solving
heuristics available is of little use if one does not know the
circumstances under which they should be applied. The example programs
were taken with slight modification from the programming chronologies we
had examined earlier. The narrative for the examples was developed in

part from the written commentaries we had collected from the

(1)

(1)

(1)

(32

TESTING THE PROGRAM

TEST THE PROGRAM WITH alL POSSIBLE TYPES OF INPUT FOR WHICH
IT IS DESIGNED.

TEST THE PROCGRAM WITH THE EXTREME VALUES THAT THE
INPUT CAN HAVE.

CHARACTERIZING THE ERROR

CHARACTERIZE THE WAY THE ERROR(S) SHOWS UP IN TERMS OF THE
INPUT AND OUTPUT.

EVEN IF A PROGRAM IS SHORT AND EASY TO TRACE BY HAND, YOU
SHOULD FIRST RUN THE PROGRAM. (ERROR MESSAGES, AS WELL AS

A CHARACTERIZATION OF THE ERROR IN TERMS OF INPUT AND OQUTPUT,
CAN BE VERY HELPFUL IN FINDING AN ERROR)

SOMETIMES A PROGRAM GIVES THE CORRECT OUTPUT FOR SOME INPUTS
BUT NOT FOR OTHERS. WHEN THIS HAPPENS YOU SHOULD EXAMINE THE
DIFFERENCE(S) BETWEEN THE INPUTS FOR WHICH THE PROGRAM WORKS
AND THE ONES FOR WHICH IT FAILS.

AFTER A CHANGE, RETEST THE PROGRAM USING ALL POSSIBLE TYPES
OF INPUT FOR WHICH THE PROGRAM WAS DESIGNED.

IF YOU MAKE A CHANGE TO A PROGRAM, AND IT STILL GIVES THE
SAME ERRONEOUS OUTPUT, RESTORE THE PROGRAM TO ITS STATE

BEFORE THE CHANGE. YOU HAVEN’‘T FOUND THE ERROR{S) IN THE
PROGRAM, AND YOU MAY HAVE INTRODUCED A NEW ERROR.

IF YOU MAXE A CHANGE TO & PROGRAM, AND THE OUTPUT IS STILL
WRONG: IF THE CHANGE CORRECTS ONE PART OF THE PROGRAM (e. g..,
one part of the output), THEN LLEAVE THE CHANGE IN THE PROGRAM.

Figure 18. List of the debugging guidelines presented in the debugging
tutorial. Numbers in parentheses indicate grouping of
guidelines into three encompassing heuristics for testing,
characterizing, and backtracking.

inexperienced programmers who had tried to debug them. The commentaries

contained instances of both productive and non-productive reasoning
useful for illustrating how the guidelines could help during debugging.
By using examples with errors and problem-solving introspections
actually produced by inexperienced programmers, we hoped to create a
text consistent with the experience of subjects we would employ. Other
than indentation and emphasis, the tutorial makes no use of text
engineering techniques like hierarchical outlining or systematic review
which might improve comprehension. In fact, the tutorial assumes a high
level of literacy and motivation. These were characteristics we
expected of the undergraduates who would participate as subjects and we
chose to make the text consistent with their aptitudes. We did create a
brief openbook test (Appendix B) to accompany the tutorial so that these
subjects could monitor their comprehension and determine their own

review strategy.

Procedure

Subjects. The subjects were twelve paid volunteers from a group
of 28 students who completed fifteen hours of curriculum in the BIP
course in the weeks prior to the experiment. Thus, at the time of the
experiment, each subject had written several dozen short programs within
BIP, but had no other programming and debugging experience. The
subjects were recruited approximately halfway through their
participation in BIP.

Prior to beginning BIP, each subject had been pretested with the

Computer Programmer Aptitude Battery (Palormo, 1964). On the basis of

their scores, the twelve subjects were divided into two ''matched'" groups

T

T——

v

of six subjects each. This was done in an attempt to control for

pre-existing differences that might interact with the experimental
10

instructional treatment.

Experimental environment. All experimental sessions were

conducted in the same setting in which subjects had worked with BIP.
All experimental test exercises were conducted using BIP"s programming
facilities (of course, those facilities specific to the BIP curriculum--
.8+, HINT-- were inoperative for the test exercises). Two CRT
terminals were available, allowing either one or two subjects (always
from the same experimental condition) to be scheduled for experimental
sessions.

An experimenter was available throughnut the sessions to help
with procedural problems (e.g., loading exercises into the subject’s

program space in BIP and recovering from system crashes) and to list

hardcopy of test programs for subjects upon their request.

Method. Each subject participated in three sessions. Session 1
was the (different) treatment/testing session for the experimental
(TUTORIAL) and control (NO-TUTORIAL) groups. Sessions 2 and 3 were test
sessions identical for both groups.

Session 1 for the TUTORIAL subjects began with a text ?
introducing the general logic of troubleshooting/debugging (Appendix C).

The subject was then given the tutorial text presenting the eight

- Scores reflecting ability after BIP would have been
preferable, but could not be used because time constraints required that
each subject begin the experiment as soon as he completed his 15 hours
in BIP. Thus, assignment to treatment groups had to be made while
subjects were still in BIP. Subjects did take a programming posttest
after completing BIP and before participating in the experiment.
Subsequent analysis (see Results below) indicate that the two groups of
subjects differed markedly with respect to the posttest scores.

98

guidelines to study for one-half hour. After study, the open-book quiz
was given and the subject reviewed the text as necessary to complete the
quiz. The subject then moved to the terminal to work a debugging
problem. He was given (in his program space) a program and a written
description of its intended function. He was told that their was
something wrong with the program and that his task was to change it so
that it worked according to the description. The instructions
emphasized that the necessary changes were minor and that he was not to
write his own program to satisfy the description. A time limit of
one-half hour was imposed for this debugging exercise.

The test program was an atypical solution to a task in the BIP
curriculum called CHANGER. All of the subjec< had worked on this task,
but had used algorithms different from the one in the exercise. CHANGER
is supposed to ask the user for a purchase price less than one dollar
and print the amount of change and the list of coins needed-to make that
amount of change most efficiently. The bug in the test exercise
manifested itself as an incorrect list of coins whenever two dimes were
required as part of the answer (Appendix D).

Session 1 for the NO-TUTORIAL subjects began with a brief
description of their task. The subject then was given one-half hour to
work at the terminal on the first of two debugging exercises. Again,
the exercise involved a malfunctioning program, a description of its
intended function, and instructions to seek a minimal repair. The
program was one of those used as an example in the tutorial to
illustrate the use of the guidelines for debugging. It was chosen as an
exercise for the NO-TUTORIAL group in order to minimize differences in

knowledge about specific programs and bugs. The second debugging

AP - E T e Y

B ot Nl Sl Al il o . o 2 aseiie

ol b it § e Sl o

exercise, given during the second one-half hour of Session 1, was the
CHANGER program given to the TUTORIAL subjects in the second half of
their first session.

Testing in Sessions 2 and 3 was identical for both groups,
except that subjects in the TUTORIAL group could refer to the tutorial
text as they pleased. The exercise given in Session 2 was to write a
program DRILL (Appendix E). DRILL, a program to provide
drill-and-practice in addition and subtraction, was longer and had a
more extensive control structure than any program that the subjects were
required to write in BIP. The necessary control structure was such that
the guidelines for program testing given in the tutorial could
reasonahly be expected to facilitate its successful implementation. Two
hours were allowed to write the program. If a subject completed the
program within one and one-half hours, the experimenter tested it and
informed the subject simply whether it did or did not satisfy the
specifications. If it did not, the subject was allowed the remaining
time to complete (or debug) his program. This was done to provoke
debugging in cases where a subject had not been able to detect a bug in
his own program.

The exercise given in Session 3 was to debug (under instructions
identical to those for the debugging exercises of Session l) a program
ARITH-CALC which had been written and ''bugged'" by one of the research
team (Appendix E). ARITH-CALC was designed to evaluate in strict
left-to-right order strings representing numeric expressions input by a
user. (BIP’s dialect of BASIC has no automatic type-conversion
mechanism.) Again, the program was longer and more complicated than

those required by the BIP curriculum or used in the tutorial and

PO R Ly S, Be ST ey, s

Session l. In particular, the algorithm almost certainly was unfamiliar
to all the subjects and difficult for them to trace mentally, although
no specialized background knowledge is required to gain an understanding
of it. ARITH-CALC and its bug were generated so that the tutorial
guidelines for characterizing an error in terms of input-output
relationships would be relevant for efficient solution of the exercise.
The bug does not manifest itself for every input and the discrepancy in
the output value varies as a function of the arithmetic operations and
their order in the input string. Subjects were given one and one-half
hours to complete the exercise.

In all sessions, data on each subject’s programming and
debugging behavior was collected automatically (and invisibly to
subjects) by BIP’'s chronology facility. In addition, subjects in the
experimental group were given a written questionnaire at the conclusion
of Session 3 designed to elicit their reactions to the tutorial and the

experiment (Appendix G).

Results

Our efforts at earlier stages of the research to derive
debugging grammars to describe BIP chronology data had been
unsuccessful. Therefore, we did not have available any comprehensive
mechanism for analyzing the chronologies collected in the experiment in
order to describe differences between subjects’ strategies. The type of
analysis we conducted was thus much more limited than we desired. The

present experiment was concerned specifically with (1) whether the

behavior of subjects in the TUTORIAL group would reflect their attempted

use of the guidelines given in the tutorial text and, (2) if so, the

extent to which the guidelines were in fact acquired from the text
rather than inferred from prior experience (as determined by comparison
with the NO-TUTORIAL group). The chronologies were analyzed to assign
values to five relevant ''measures' for each exercise.
(a) adequacy of solution
(b) detection of bugs via program execution
(as opposed to mental analysis of the code)
(c) characterization of bugs via extended program execution
revealing input-output relationships
(d) extended testing of attempted program repairs
(e) backtracking from unsuccessful repairs
The measures represent the success of the attempted solution and the
extent and success with which the heuristics encompassing the guidelines
were applied.
Each measure was assigned a value "+" meaning ''done

successfully" or meaning either ''mot successful' for a or "not
attempted" for b-e. Measures b-e could also be scored as "0" meaning
"attempted, but with unsuccessful results.'" For instance, a "0" value
would be assigned to measure b if a subject ran the program several
times with different inputs, but failed to find inputs that caused the
bug to manifest itself. In addition, some measures could be scored '"NA"
meaning 'not applicable'"; for example, if the subject never attempted
repairs, no score could be assigned to measures d and e on that
exercise.

Determination of scores for measures b-e from the chronologies
proved to be a rather complex judgement process. There are no singular
events in the chronology for an exercise that determine unambiguously

the values of these four measures. For example, whether or not a

subject actually characterized an error in terms of the input=-output

b S e L R o e

ol -

relationships obtained by his execution of a program can be determined
only by examining his subsequent repairs and the other events leading up
to them. In a sense, the scorer had to try to simulate the reasoning
underlying the subject’s actions and see if it was consistent with a
hypothesis that the error had been characterized in terms of
input-output relationships. A further complication is that an attempted
solution may involve more than one debugging cycle, or episode. In
these cases, scores for the measures were determined by judgement of the
predominant behavior across the episodes.

In order to reduce potential bias in this subjective scoring
process, chronologies (which contain repeated information identifying
subjects) were scored primarily by a member of the research team not
familiar with the assignment of subjects to groups. However, no data
was on the intra- and inter-judge reliability of scoring for the results
to be presented.

Results will be presented here for the debugging exercises
CHANGER and ARITH-CALC attempted by both groups in the second half of
Session 1l and in Session 3 respectively. Behavior in the programming
exercise DRILL given in Session 2 proved impossible to score with any
degree of confidence because of the great variability with which
subjects approached it. Some subjects, in fact, never implemented
enough of the program to execute it and examine any output. Others
produced executable pieces of a solution program, but showed widely
varying debugging behavior in different episodes within the exercise.
Given these difficulties and the fact that there were no differences in
the number of correct (or almost correct solutions)=-- measure a--
between the TUTORIAL and NO-TUTORIAL groups, it seemed pointless to

score the chronologies for DRILL with respect to measures b-e.

103

b A G S el At s o A0 e S50 A0S A B S s et it

Tables 2a and 2b present the five scores on CHANGER and

ARITH-CALC and also the BIP pretest and posttest scores for each subject §

in the TUTORIAL and NO-TUTORIAL groups. Most striking is the poor

performance of subjects in both groups as indicated in column a. Three |

members of the TUTORIAL group and two members of the NO-TUTORIAL group
§ solved neither of the problems. In each group, exactly five exercises

were completed successfully. Thus, the instructional treatment for the

TUTORIAL group does not seem to have improved their debugging ability as

measured on two test exercises specifically formulated to be sensitive

to that instruction. Unfortunately, however, even if there was an

-

effect of the treatment, it may have been obliterated by a difference

between the ability of the groups at the time they began the experiment.

Recall that the groups were matched using the BIP pretest scores. i
Inspection of the posttest scores, available to us only after some
subjects had begun the experiment, shows that a large difference in
programming abilisy existed for the two groups. By chance, the subjects

assigned to the NO-TUTORIAL group had become much better programmers on

only effect may have been to cancel the initial difference between the

|
|
|
4
i
the average.11 Thus, if the tutorial did improve debugging ability, the |
|
i
12 |
experimental and control groups.

|

The small sample size precludes a meaningful statistical
evaluation of the difference; however, in our experience, such a large
difference in posttest scores does have practical significance and
correlates with subjective impressions of programming sophistication.

e An attempt was made to obtain 'difference' scores for each
subject in order to see if the TUTORIAL group showed a larger
improvement in debugging ability relative to their ability before
studying the tutorial. BIP chronologies for the final few BIP tasks
worked by each subject were examined. However, the variability in these
chronologies resembles that found in the transcripts for the
experimental DRILL exercise. Thus, it was not possible to score the
pre-experimental debugging episodes with any confidence and thereby to
obtain the desired difference scores.

104

o e Ccencia s ab o

Table 2a

BIP Test Scores and Debugging Measures
for TUTORTAL Group

Debugging Measures*

BIP BIP
Subject pretest posttest Task a b c d e
316 116 153 Changer - + + NA 4
Arith-Calc - - = =
317 129 195 Changer + + NA
Arith-Calc + + + +
322 131 231 Changer + + +
Arith-Calc + +
324 102 111 Changer - (o} O NA NA
Arith-Calc - + 0 0 +
333 79 89 Changer - + O NA NA
Arith-Calc - 0 0o +
340 B 181 Changer + + + NA
Arith-Calc - NA 0
¥Key: Measure definitions

OO0 oP

Measure scores

solved problem
detection of bugs via program execution
characterization of bugs via extended program execution

extended testing of attempted repairs
backtracking from unsuccessful repairs

+

0

NA

successful
not successful (a) or not attempted (b-e)

attempted, unsuccessfully (b-e)
not applicable in solution context

105

Table 2b

BIP Test Scores and Debugging Measures
for NO-TUTORIAL Group

BIP BIP Debugging Measures*
Subject pretest posttest a b (< d e
311 113 111 Changer - - - - 0

Arith-Calc - + 0 0 0

319 9% 225 Changer e R e
Arith-Calc - + - 0 +

326 130 237 Changer + + + + NA
Aot AeOade: < oo iogain) g ol gt &

332 115 186 Changer + + - + NA
Arith-Calc - + 0 + +

337 104 234 Changer - - - 0 0
Arith-Calc + + + + +

. 339 2D 2h2 Changer + + - + NA
i L e - TR B Al S

*¥Key: Measure definitions

solved problem

detection of bugs via program execution
characterization of bugs via extended program execution
extended testing of attempted repairs

backtracking from unsuccessful repairs

(LTI ¢ I o i 1}

Measure scores

+ successful
- not successful (a) or not attempted (b-e)
0 attempted, unsuccessfully (b-e)

NA not applicable in solution context

106

The completion times for the correct solutions to the CHANGER
and ARITH-CALC exercises were also examined to evaluate the hypothesis
that the TUTORIAL group would debug more rapidly than the NO-TUTORIAL
group. The observed mean completion time, however, was shorter for the
NO-TUTORIAL group, primarily because of Subject 339. As indicated by
his posttest score in Table 1, this subject was the most proficient
programmer at the time of the experiment. (He was also unusually
motivated, being one of the few students in BIP who had generated his
own programming exercises to supplement BIP’ s curriculum.) He correctly
debugged both CHANGER and ARITH-CALC in short order, characterizing,
locating, and repairing the errors apparently by analysis of the program
code with little attention to the data provided by program execution.
Thus, the debugging exercises, which were difficult for the majority of
subjects, seem to have been too easy to tax the ability of Subject 339.
Consequently, the data do not indicate that the TUTORIAL graup debugged
more rapidly.

Returning to the measures in Table 1 for apparent use of the
heuristics given in the tutorial, there is marginal evidence that even
if the the TUTORIAL group did not solve more problems (or solve them
more rapidly) than the NO-TUTORIAL group, they did attempt to apply the
guidelines for testing and debugging. The columns labeled b-e
correspond to the measures described earlier. Column b indicates
whether program execution was attempted and successfully caused error
manifestation before the subject engaged in other debugging activities.
For TUTORIAL subjects, such detection was successful in every case,
except one where the program was executed several times, but the inputs
used did not cause error manifestation. While NO-TUTORIAL subjects also

did so frequently, in 3 of the 12 cases they did not.

107

Column ¢ indicates characterization of errors by program
execution sufficient to elaborate a description of the malfunction.
TUTORIAL subjects attempted to do so in 1l of 12 cases, although in 4 of
those cases the attempts were judged to be inadequate; the corresponding
results for the NO-TUTORIAL group are 6 of 12, with 2 inadequate
attempts.

Columns d and e are the measures of repair testing and
backtracking from unsuccessful repairs. Both groups show equivalent
evidence for such behaviors.

Examining measures b-e just for the exercises that were
completed successfully (measure a), it is interesting to note that for
the TUTORIAL group all of the guidelines were applied in each of the
five cases. For the NO-TUTORIAL group, in 3 of the 5 correct solutions,
the behavior prescribed by one or more of the guidelines was not
observed. On the whole, it seems that the subjects who studied the
tutorial did try use the guidelines. However, the data from the
NO-TUTORIAL group does suggest that a majority of student programmers
with the experience level of our subjects have already induced most of
the guidelines (or similar heuristics). The differences between the
groups are small and allow no strong conclusions. The tutorial text may
simply have served to amplify and organize parts of a strategy already
known to the subjects who studied it.

The written comments obtained from the TUTORIAL subjects at the
conclusion of Session 3 provide some help in determining the effects of
the text on their behavior. Figure 19 lists the more informative
remarks that subjects made to items 4-7 shown in Appendix G. The

comments about the tutorial are positive for the most part. With the

108

Do you have any suggestions (criticisms), in general, regarding the manner
of presentation of the guidelines?

324-- Should have been more time to study them.

Would it have been better if the guidelines had been given to you before
you finished the BIP course?

316-- Perhaps better in the long run. Actually ended up doing the things in
the guidelines as time went on. Of course, having them given to you
right away is less time consuming since you don't have to grope around
trying to decide what to do next.

317-- It may have helped, but none of the programs in the course were that
complicated that it was necessary, and most if it was fairly obvious.

322-- Didn't really need it in BIP itself except for complex programs.

324k-- Yes, I could have studied them at my leisure and really learned them
well.

333== Doesn't make that much difference-- for BIP we didn't have so much
as to debug programs. It was pretty much follow the examples.

340=- Not necessarily, these guidelines are pretty basic things to do and
self-discovery is probably as useful.

Do you think it would be useful to have BIP introduce this material as part
of the course?

316-- Yes.

317-- Yes, it's good to know.

322-- Yes, before presentation of complex problems.
324aa Yes.

333== Yes, it does help a bit and might relieve the frustration of not having
a program work and not knowing how to go about finding what was wrong.

340=-- Perhaps.

Other comments.

322-=- The last 3 sessions made debugging seem a much more orderly process, i.e.,
more manageable.

Figure 19. Replies of subjects in the TUTORIAL group to questions
in the post-experimental interview (Appendix G).

109

exception of Subject 340, subjects thought that the guidelines were
valuable knowledge, although they were not in agreement about how useful
they could be for completing tasks in the BIP curriculum. Several of
the subjects recognized that the guidelines are knowledge that they had
or would have acquired indirectly through experience, but thought that
the idea of teaching such knowledge explicitly could be more efficient.
The debriefing data does point to the inadequacy of minimal
instruction, such as our tutorial, for insuring that heuristics will be
learned and used by students who need them. The ratings given by
subjects on items 1 and 2 of the debriefing questionnaire suggest that
(1) they did not find the tutorial especially useful for the test
exercises they worked in the experiment (five "3"°s and one '"2'"), and
(2) they thought they were following the guidelines most, but not all,
of the time (four '"3""s and two "2"°s). It is very interesting to note
that the two "2°"s on item 2 came from Subjects 324 and 333, who had the
lowest posttest scores in the TUTORIAL group (Table 2a). This again
suggests that the students who had the most to gain from the guidelines
could not or would not use them consistently. These two subjects were
the only ones who reported referring back to the tutorial while they
worked, and 324 was the subject who remarked that he did not have enough
time to learn the guidelines. The other TUTORIAL subjects seemed to
know the guidelines, but failed either to use all of them as regularly

as they might have or to use them appropriately for the test exercises.

Discussion and Conclusions.

The results of the experiment serve to illuminate methodological

issues more than to answer the question of whether it is worthwhile to

110

teach debugging heuristics directly. Both the chronology data and
subject’s comments hint that TUTORIAL subjects recognized the value of
the guidelines and tried to use them, but provided no evidence that they
became better at debugging programs. The comments are most encouraging,
but should be weighed cautiously, since the conditions of the experiment
may well have prompted the subjects to tell us what they thought we
wanted to hear.

As noted earlier, we were aware of some methodological problems
at the outset of the experiment, and our subsequent experience has
highlighted these and some other problems that must be solved before a
substantial evaluation of teaching troubleshooting/debugging strategies
directly can be conducted.

One problem is developing a pedagogy for teaching heuristics--
for teaching procedural rather than declarative knowledge. Although we
could rationalize a first attempt involving minimal instruction, we
anticipated that the limited study of the tutorial, isolated from other
instruction in programming, would be insufficient for precisely those
students who most needed to improve their debugging-- the students who
had as yet not induced a viable strategy on their own. It is to be
expected that meaningful learning of complex knowledge requires
considerable time relative to the learning that takes place in
laboratory studies of learning. Our situation of having limited access
to student’s time is, of course, the rule rather than the exception in a
basic research setting. There is a '"Catch-22" of sorts in effect: it is
difficult to persuade and possibly unethical to compel tuition=-paying
students to participate in an unvalidated, innovative instructional
program, but one cannot provide the needed validation without testing a
sufficiently large and representative first group of students.

111

e AN A b i K e e

It is usually possible (as we did) to gain the cooperation of a
small group of volunteers who tend to be either students having
difficulty and seeking any means to improve themselves or students who
are unusually bright and motivated. These individuals are not
representative of the student population. Furthermore, small groups of
volunteers do not allow for statistical tests of hypotheses which are
needed to validate an instructional treatment.

In some cases, it is possible to gain access to a large student
population; for example, if the researcher or sympathetic colleagues
teach a course into which the new material can be integrated. However,
there are ethical issues that surround the compulsory participation of
tuition-paying students in experimental courses that are extensions of
sponsored research programs rather than products of an instructor’s
initiative. If the effectiveness of the instruction is very tentative,
then students should not be compelled to participate. If the
effectiveness is highly probable (and the experiment being conducted
only to collect supporting data), then how can a control group that
receives less than the best instruction for their time and tuition be
justified?

A second methodological problem we encountered is to determine
test exercises that will be sensitive to differences that might result
from the instructional treatments. The solutions to debugging exercises
like those we used require general knowledge of a programming language
(e.g., BASIC) and of a supporting computer system (e.g., BIP). In
addition, idiosyncratic knowledge acquired from prior debugging may be
applicable to a solution. Therefore, test exercises intended to

indicate the role of general debugging heuristics can neither be too

112

elementary nor too advanced. If they are too elementary (and hence
familiar), idiosyncratic knowledge may enable an immediate solution
solely by recognition. If the exercises are too advanced, then the
student subject’s limited competence with the language and programming
system may prevent him from using heuristics successfully.

Another related problem is when, relative to instruction in a
programming language, to introduce instruction on general debugging
heuristics and test for its effects. If the instruction on heuristics
and testing are too early, then students will not understand how to
apply the heuristics and test exercises will be too difficult for
heuristics to have an effect. If the instruction and testing are
delayed too long, then there will be significant differences between
students’ knowledge of the heuristics induced from their prior
experience. In addition, test exercises difficult enough to require use
of the heuristics (and not merely pertinent idiosyncratic experiential
knowledge) will be so complex that analysis of subjects’ behavior will
be made more troublesome. The appropriate time to introduce the
heuristic instruction is when the students have a minimally sufficient
background that allows them to understand and use the heuristics, but
not to have realized them spontaneously. Discovering the features that
identify that point in time is the problem of course.

In our experiment, presentation of the tutorial and testing of
it effects were prcbably too late for the few general heuristics we
wanted students to learn. The behavior of the NO-TUTORIAL group and the
comments of the TUTORIAL group indicate that many of the subjects had
already inferred some of the heuristics included in the tutorial from

their fifteen hours of programming experience in BIP. For students

T S PR o T g T O WP R)

g
|
&

learning BASIC in BIP, presentation of the tutorial (or other
instruction on debugging) probably should commence from 7 to 10 hours
into the course. At that point, most students have worked with all the
major constructs of BASIC and are familiar with the facilities of the
BIP system, but have worked on only a few programs complex enough for a
general strategy to be useful.

A most fundamental problem for studies of the effects of
teaching general debugging heuristics remains the analysis of
problem-solving data. In attempting to evaluate the role and effects of
general heuristics in debugging, one is in fact trying to characterize
not just the result of the problem-solving process, but the process
itself. In analyzing the chronologies for the test exercises in the
experiment, we found that simple tabulations of behaviors such as
listing or running a program are not reliable indicators of the strategy
being applied by the subject. Only by examining the structure and
content of actions comprising larger episodes were we able to judge
whether particular heuristics were applied and their contribution to
ultimate solutions. The role of content, or semantics, in the scoring
process virtually precludes automated chronology analysis.

In our experiment, the collection of 'thinking aloud'" protocols
from subjects as they worked test exercises might have provided data
that would have increased the reliability with which chronologies were
scored. However, this would have increased the already substantial cost
of data analysis. For experiments with sample sizes great enough to
allow statistical evaluation of measures abstracted from chronologies,
the cost of collecting and examining thinking=-aloud protocols would seem

prohibitive. Furthermore, for a large-scale study integrated into a

114

real-life instructional system, the collection of thinking-aloud

protocols would destroy the advantage of inobtrusiveness obtained by the
"invisible'" recording of programming chronologies.

Further small-scale studies like that described here could
provide a relatively informal and subjective evaluation of materials and
methods for teaching debugging knowledge in an explicit manner. The
main problems remaining to be solved are how to determine sensitive test
materials and how to analyze complex problem-solving data
comprehensively and reliably. Although we were unsuccessful in our
efforts, one goal that should be pursued is the development of process
models for describing debugging behavior in specific domains. Such
models could be employed to represent changes in an individual’s
behavior as the result of instruction, and to contrast the behavior of
individuals in different instructional treatments.

As for a large-scale, formal statistical evaluation of whether
teaching debugging directly is worthwhile, there are additional
problems. Since the constraints of academic research make it difficult
to gain access to a large, representative student sample, instructional
developments should probably be evaluated outside the research
environment. Once an informally validatsd method for teaching debugging
is available, it should be integrated into a real instructional program.
Because of the methodological and ethical difficulties of conducting
multi-group studies in an actual educational setting, evaluation of
student performance would best be made relative to previous groups of
students. Even if these problems can be overcome, the data analysis
problem remains. It is unlikely that intensive methods suitable to

small-scale studies (e.g., process models) will be feasible for large

experiments. This will limit the analyses in large studies to gross
measures of learning, such as total scores on in-class examinations.
Our judgement for the present is that the state-of-the-art is still
remote from a definitive large-scale evaluation of how direct
instruction in debugging, or other complex problem-solving, will affect

the abilities of students.

116

References

Barr, A., Beard, M., & Atkinson, R.C. The computer as a tutorial
laboratory: The Stanford BIP Project. International Journal of
Man-Machine Studies, 1976, 8, 567-596.

Brown, J.S. & Burton, R.R. Multiple representations of knowledge for
tutorial reasoning. In D.G. Bobrow and A. Collins (Eds.),
Representation and understanding: Studies in cognitive science.
New York: Academic Press, 1975.

Brown, J.S., Burton, R.R., Hausmann, C., Goldstein, I., Huggins, B., &
Miller, M. Aspects of a theory for automated student modelling.
BBN Report No. 3549, Bolt Beranek and Newman, Inc., Cambridge,
Mass., May, 1977.

Brown, J.S., Rubenstein, R., & Burton, R.R. Reactive learning
environment for computer assisted electronics instruction. BBN
Report No. 3314, Bolt Beranek and Newman, Inc., Cambridge, Mass.,
October, 1976.

Carr, B., & Goldstein, I.P. Overlays: A theory of modelling for
computer aided instruction. MIT AI Memo 406, Massachusetts
Institute of Technology, Artificial Intelligence Laboratory,
Cambridge, Mass., February, 1977.

Collins, A.M. Processes in acquiring knowledge. In R.C. Anderson, R.J.
Spiro, & W.E. Montague (Eds.), Schooling and the acquisition of
knowledge. Hillsdale, N.J.: Lawrence Erlbaum Associates, 1977.

Dahl, 0.J., Dijkstra, E.W., & Hoare, C.A.R. (Eds.), Structured
programming. New York: Academic Press, 1972.

Finch, C.R. Troubleshooting instruction in vocational-technical
education via dynamic simulation. Research Report, Dept. of
Vocational Education, The Pennsylvania State University, August,
1971.

Goldstein, I. Summary of MYCROFT: A system for understanding simple
picture programs. Artificial Intelligence, 1975. 6, 249-288.

Miller, M.L., & Goldstein, I.P. Overview of a linguistic theory of
design. AI Memo 383, Massachusetts Institute of Technology,
Artificial Intelligence Laboratory, Cambridge, Mass., December,
1976a.

Miller, M.L., & Goldstein, I.P. SPADE: A grammar based editor for
planning and debugging programs. AI Memo 386, Massachusetts
Institute of Technology, Artificial Intelligence Laboratory,
Cambridge, Mass., December, 1976b.

Newell, A. Production systems: Models of control structures. In W.G.

117

T T TN

Chase (Ed.), Visual Information Processing. New York: Academic
Press, 1975.

Newell, A. & Simon, H.A. Human problem solving. Englewood Cliffs,
N.J.: Prentice-Hall, 1972.

Nilsson, N. Problem solving methods in artificial intelligence. New
York: McGraw-Hill, 1971.

Norman, D.A., Gentner, D.R., and Stevens, A.L. Comments on learning
schemata and memory representation. In D. Klahr (Ed.), Cognition
and instruction: Tenth annual Carnegie Symposium on cognition.
Hillsdale, N.J.: Erlbaum Associates, 1976.

Palormo, J.M. Computer programmer aptitude battery. Chicago: SRA, 1964.

Papert, S.A. Teaching children thinking. AI Memo 247, Massachusetts
Institute of Technology, Artificial Intelligence Laboratory,
Cambridge, Mass., 1971.

Pirsig, R.M. Zen and the art of motorcycle maintenance. New York,

Bantam Books, 1974.

Polya, G. How to solve it. Garden City, N.Y.: Doubleday, 1957.
(Originally published in 1945.)

Potter, N.R., & Thomas, D.L. Evaluation of three types of technical
data for troubleshooting: Results and project summary. Report
AFHRL-TR=-76-74(1), Air Force Human Resources Laboratory, Brooks Air
Force Base, Texas, September, 1976.

Quillian, M.R. The teachable language comprehender: A simulation
program and a theory of language. Communications of the
Association for Computing Machinery, 1969, 12, 459-476.

Resnick, L.B. Task analysis in instructional design: Some cases from
mathematics. In D. Klahr (Ed.), Cognition and instruction: Tenth
annual Carnegie Symposium on cognition. Hillsdale, N.J.: Erlbaum
Associates, 1976.

Ruth, G. Analysis of algorithm implementations. MAC TR-130,
Massachusetts Institute of Technology, Cambridge, Mass., May, 1974.

Schoenfeld, A.H. Can heuristics be taught? Unpublished report, Group
in Science and Mathematics Education, University of California,
Berkeley, Calif., 1977a.

Schoenfeld, A.H. Presenting a strategy for indefinite integration.
Unpublished report, Group in Science and Mathematics Education,
University of California, Berkeley, Calif., 1977a.

Sacerdoti, E.D. A structure for plans and behavior. Technical Note
109, Artificial Intelligence Center, Stanford Research Institute,
Menlo Park, Calif., August, 1975.

118

Stevens, A.L., & Collins, A.M. The goal structure of a Socratic tutor.

BBN Report No. 3518, Bolt Beranek and Newman, Inc., Cambridge, ¢
Mass., March, 1977. i

Sussman, G.J. A computational model of skill acquisition. AI-TR-297,
Massachusetts Institute of Technology, Artificial Intelligence
Laboratory, Cambridge, Mass., August, 1973.

Wickelgren, W.A. How to solve problems: Elements of a theory of problems 1
-and problem solving. San Francisco: Freeman, 1974. '

Woods, W.A. Transition network grammars for natural language analysis.

Communications of the Association for Computing Machinery, 1870,
31, 591-606.

Woods, W.A. What’s in a link: Foundations for semantic networks. In

D.G. Bobrow and A. Collins (Eds.) Representation and understanding:
Studies in cognitive science. New York: Academic Press, 1975.

i

- A ¥t e A S i VAL At Al b s 90 N

Appendix A. Tutorial Debugging Text

TESTING THE PROGRAM

After you have written a program, you need to test it to make sure
there are no errors, or "bugs', in it. Many programs are designed
to be run more than once. For example, some programs are written
to compute payrolls and must be run at the end of every pay period;
other programs are written to tabulate students’ grades and are run
at the end of each grading period.

Since the conditions under which a program is run will not be
EXACTLY the same each time the program is run, it is important
to realize that just because a program works correctly for one
set of conditions, you cannot assume that it will work correctly
under all other conditions.

For example, in some programs different kinds of input cause different
parts of the program to be executed; thus to check a program you need
to run it using all possible types of input for which the program was
designed. You must test every possible pathway through the program.

TEST THE PROGRAM WITH ALL POSSIBLE TYPES OF INPUT FOR WHICH
IT IS DESIGNED.

The following program demonstrates how different inputs cause différent

parts of the program to be executed.

10 X = INT(RND * 1001)

20 PRINT "I AM THINKING OF A NUMBER BETWEEN O AND 1000."
30L =0

40 H =0

50 PRINT "WHAT DO YOU THINK MY NUMBER IS? "
60 INPUT G

70 IF G = X THEN 230

80 IF G > X THEN 160

90 IF L = 1 THEN 140

100 PRINT "TOO LOW; GUESS AGAIN"

110 L =1

120H = 0

130 GOTO 60

140 PRINT "IT°S STILL TOO LOW. GUESS AGAIN"
150 GOTO 60

160 IF H = 1 THEN 210

170 PRINT "TOO HIGH; GUESS AGAIN"

180 H =1

190 L = 0

200 GOTO 60

210 PRINT "YOU'RE STILL TOO HIGH SO GUESS AGAIN"
220 GOTO 60

230 PRINT "RIGHT! MY NUMBER IS ";X

240 END

This program generates a random integer (X) between 0 and 1000.

The user then tries to guess the number (line 60, INPUT G). If

the user guesses the number correctly (line 70), then line 230

is executed, and the program prints "RIGHT...'". Otherwise, if

the user guesses a number that is too high, then line 160 is

executed. If the preceding guess was also too high (which is the

case if H = 1), then line 210 is executed, "YOU'RE STILL TOO HIGH

SO GUESS AGAIN" is printed, and line 220 causes a jump back to line 60.
If the preceding guess was not too high (if H is not 1), then line 170
is executed and "TOO HIGH; GUESS AGAIN" is printed. AND SO ON.

Checking the "GUESS MY NUMBER' program requires that every possible
class of input be tested, i.e., an input (guess) that is lower than
the number generated (X), another consecutive input that is still
lower than X, an input that is higher than X, another consecutive
input that is still higher than X, and an input that is equal to X.

TEST THE PROGRAM WITH THE EXTREME VALUES THAT THE INPUT
CAN HAVE.

Initially, it is a good idea to test a program with the extreme
values that the input can have. It is usually not hard to think

of the extreme types of input which your program must handle, and

this test may reveal errors in your program. In the '"GUESS MY NUMBER"
program, the two extreme input values (guesses) are "0" and ''1000".

If , during the testing of your program with different inputs, the
output is ever wrong, then there is something wrong in your program.
You must then try to characterize what is wrong.

CHARACTERIZING THE ERROR

CHARACTERIZE THE WAY THE ERROR(S) SHOWS UP IN TERMS
OF THE INPUT AND OUTPUT. (

Before you try to determine which part of the program is working
incorrectly (unless it°s immediately obvious). you should describe

what is wrong with the output. For example, in the last program,

if you input a guess of 0 and the program prints "TOO HIGH", your
description would include the fact that the output is backwards for

a too-low guess. If, in addition, the program said "TOO LOW" in
response to an input of 1000, then you could characterize the erroneous
behavior as being wrong for both too-low and too-high guesses.
Describing the "symptom'" carefully is very helpful in leading you to
locate its cause (the bug in the program); the process is similar to a
doctor asking questions about the exact location and nature of your pain
before s/he begins to choose the appropriate treatment.

121

J

Since the output is the result of following the steps of the program,
if you can characterize how the output varies from what it should be,
given a particular input, then that may indicate which part of the
program isn’t doing what it was intended to do. 1In order to
characterize the error(s) in a program, you should test it with
different types of input in order to see how different kinds of input
affect the output. For example, perhaps the output is correct or
closer to the correct answer for certain inputs than it is for other
inputs. If so, then it is important to ask how the inputs that give
correct or "more correct' answers differ from the inputs that give
"less correct" answers. If these two inputs require different parts
of the program to be run, then that could guide you to the part of the
program that is not working as it was intended.

SOMETIMES A PROGRAM GIVES THE CORRECT OUTPUT FOR SOME INPUTS
BUT NOT FOR OTHERS. WHEN THIS HAPPENS YOU SHOULD EXAMINE THE
DIFFERENCE(S) BETWEEN THE INPUTS FOR WHICH THE PROGRAM WORKS
AND THE ONES FOR WHICH IT FAILS.

The following program was written to give change to a customer

when the item being bought costs less than a dollar. The change can

be in half dollars, quarters, dimes, nickels, and pennies. The program
is designed to print the amount of change in cents and then give the
fewest possible coins in change.

10 PRINT "TYPE THE PRICE OF YOUR ITEM. IT SHOULD BE < $1.00"
20 INPUT X

30 LET C = 100 - X

40 PRINT "YOUR CHANGE FROM $1 IS " ; C 3 "CENTS"

50 LET H
60 LET Q
70 LET D
80 LET N =
90 IF C< 50 THEN 120

100 H = H+l

110 C= C-50

120 IF C< 25 THEN 140

130 Q=Q+1

140 IF C<10 THEN 180

150 D = D+l

160 C = C-10

170 GOTO 140

180 IF C < 5 THEN 210

190 N = N+l

200 C = C=5

210 PRINT "HERE IS YOUR CHANGE"
220 PRINT H ;' HALF DOLLARS"
230 PRINT Q ;" QUARTERS" 3
240 PRINT D ;" DIMES"

250 PRINT N ;" NICKELS"

260 PRINT C ;" PENNIES"

270 END

nu
oo oo

r’r

The programmer might decide that a good first test for this program
would be the case in which one of each coin should be returned to the
customer (l half dollar, 1 quarter, 1 dime, l nickel, and l penny, for
a total of 91 cents). So price of the item (the input number) must be
9 cents.
Input: 9
Output: YOUR CHANGE FROM $1 IS 91 CENTS

HERE IS YOUR CHANGE

1 HALF DOLLARS

1 QUARTERS

4 DIMES

0 NICKELS

1 PENNIES

It is immediately apparent that the wrong number of dimes and nickels
has been returned. This might lead the programmer to test the program
with an input which should return a dime and a nickel.

Input: 85
Output: YOUR CHANGE FROM $1 IS 15 CENTS
HERE IS YOUR CHANGE
0 HALF DOLLARS
0 QUARTERS
1 DIMES
1 NICKELS
0 PENNIES

The output is correct, so the problem certainly isn‘t with the dimes
and nickels alone. Before the program is run again. the first test,

the one with the incorrect output, should be re-examined. Evidence
about the nature of the error might have been overlooked because of

the obviously wrong number of nickels and dimes in the output. The
programmer might add up the coins to see how much change in cents was
actually returned in the first test and find the total to be 116 cents
rather than 91 cents. The difference between these two sums is 25 cents,
and this might suggest to the programmer that the error is related to
the extra 25 cents. At this point the program should be examined for
an error related to the “25 cents’ calculations. While reading through
that part of the program, the programmer should notice that another line
is needed between 130 and 140 to subtract 25 from the total cents left
at that point, or C. The absence of that line caused an extra 25 cents
in the output (since when a quarter was given in change, 25 cents was
not subtracted from the total cents still owed the customer). After
this change, the testing of the program should be continued.

AFTER A CHANGE, RETEST THE PROGRAM USING ALL POSSIBLE
TYPES OF INPUT FOR WHICH THE PROGRAM WAS DESIGNED.

123

|

After you‘ve characterized the wrong output, located the section
of code that you believe is responsible for the erroneous output,
and changed that code to correct the error, the program must be
tested once again for all possible types of input. You must retest
your program thoroughly for several reasons: for example, you may
have corrected the program so that it works for only one or two
additional types of input; or the program may not work for some
inputs that were handled correctly before your change, i.e., your
change interacts with a portion of the program that was executing
correctly before the change and now makes it give erroneous output.
The program must be retested with all types of input, even those
that were handled correctly before the change.

The following program, which demonstrates the importance of retesting
after a change, asks the user to type in two numbers and tells him/her
how many numbers lie between the two numbers (inclusive). For example,
there are 3 numbers between 5 and 7, i.e., 5, 6, and 7.

10 PRINT "TYPE TWO NUMBERS, AND I WILL TELL YOU HOW MANY"

20 PRINT "NUMBERS ARE BETWEEN YOUR TWO NUMBERS (INCLUSIVE)."
30 INPUT X,Y

40 IF X < Y THEN 80

50H =X

60L =Y

70 GOTO 110

80 H =Y

90 L =X

100
110
120 + 1

130 + 1

140 IF P < H THEN 120

150 PRINT “THERE ARE "; N; ' NUMBERS BETWEEN "; L; " AND "; H
199 END

Z mwZrc

Z -

The user types two numbers, which are assigned to the variables

X and Y. The variables H and L are used to hold the high and

low numbers, respectively. So, if X is higher than Y, its

value is assigned to H and the value of Y is assigned to L; if

Y is higher than X, the H and L assignments are made in the
opposite direction. The variable P is used to count from the low
number up to the high number, and N is used to keep track of how
many numbers are encountered along the way. Thus, if the user
types 5 and 6 as the X and Y input, L becomes 5, H becomes 6, P
counts from 5 to 6, and N ends up with 2.

When the program is run, it gives the correct output only when the

two numbers are adjacent to each other, e.g., "5" and "6'", or

"6" and "5". The output is THERE ARE 2 NUMBERS BETWEEN 5 AND 6'".

Any pair of non-adjacent numbers causes an error message to be printed,
which says that the program might be in an infinite loop. The
programmer characterizes the error as occurring when any two

non-ad jacent numbers are given as input.

124

In the program above, where only adjacent numbers X and Y (both X < Y
and X > Y) give the correct output, the programmer might go through

the following reasoning process while looking for the error:

-AHA, P doesn’t get set to L when X > Y, so line 70 should branch to
line 100.

(The programmer changes line 70 to GOTO 100, and runs the program

for X < Y and X > Y. S/He gets the same results as before, i.e.,

the program gives the correct output for adjacent pairs of numbers,
otherwise it seems the program is in an infinite loop.)

-Well, same error, perhaps line 100 is superfluous, since line 120
assigns a value to P, so I°11 delete line 100, undo the previous change
so that line 70 is GOTO 110, and run the program again.

(The result of testing the program is the same as before: it works for
adjacent number pairs, but every other pair gives infinite loop message.)
-AHA, line 120 should be P = P + 1, otherwise P is always reset to
equal L, the lowest number, plus 1, and P can never reach H unless

H is L+1! I°11 change line 120 and run the program again.

(The program gives the error message '"Line 120 VARIABLE WITHOUT A KNOWN
VALUE=--P" for both X < Y and X > Y.)

-Hmm. That’s the first time I°ve gotten that message. Why does P
suddenly not have a value? I know! P was L+l, and I changed it to
P=P+l; so the line that I deleted, which set P equal to L, is necessary.
I°11 put line 100, P = L, back into the program and run it.

(S/He tries several pairs of input, e.g., 5 and 6, 5 and 8, 4 and 9;
and they all work. Unfortunately, cases in which X > Y aren’t tested.)
-Success! It finally works.

The program was fixed for one type of input, that is, for cases in
which X is less than Y; but two other types of input were not tested,

X greater than Y and X equal to Y. If examples of these two types

of input had been tested, the error message '"Line 120 VARIABLE WITHOUT
A KNOWN VALUE--P'" would have told the programmer that P still wasn't
being assigned. Further examination of the program would have shown
her/him that line 70 should, indeed, branch to line 100, so that P gets
an initial value when X > Y and X = Y. Thus all types of input for
which a program is designed must be retested after a change is made.

Sometimes you make a change to the program, and the output is still
wrong. You have to make the choice between leaving the change in the
program or returning the program to its state before the change.

Take the program, for example, which tells the user how many numbers
are between two input values.

125

10 PRINT "TYPE TWO NUMBERS, AND I WILL TELL YOU HOW MANY'"

20 PRINT "NUMBERS ARE BETWEEN YOUR TWO NUMBERS (INCLUSIVE)."
30 INPUT X,Y

40 IF X < Y THEN 80

50 H = X

60 L =Y

70 GOTO 110

80H=Y

90 L = X

100
110
120
130 N =
140 IF P < H THEN 120

150 PRINT "THERE ARE '"; N; " NUMBERS BETWEEN ''; L; " AND '"; H
199 END

T =

Z T -

+
+ 1

Suppose that a beginning programmer is told that this program has

an error and is asked to find and correct it. S/he might not have
these guidelines for finding an error. Since the program is short,
s/he might decide to examine the code before running the program.
After doing this, the person might say 'This equals business in lines
50 through 90 is confusing. Seems to me they’re double assigning
things. H and L are being given two values... I think maybe 50 and 60
can be deleted. I°11 try it."

After deleting lines 50 and 60, the program is run. For inputs

where X (the first input) is less than Y (the second input), the
correct answer is given, and for all other inputs, the error message
“"Line 120 VARIABLE WITHOUT A KNOWN VALUE--P" is printed.

Since the program has not been corrected by the change, and even more
errors may have been introduced into the program, the change should
be undone and lines 50 and 60 restored to the program.

The reason given for deleting lines 50 and 60, i.e., that H and L

are each being given two values, is true of course, but the person did
not examine the program carefully enough, because s/he did not notice
that the values given to H and L in lines 50 and 60 are used in

one pathway through the program, and the values given in lines 80

and 90 are used in a different pathway through the program. Going
through the step-by-step execution of a program (exactly as the
computer would) is a very valuable way to find errors. However,
after a superficial examination of a program, deleting a line

is probably a bad idea. The person writing a program usually has a
reason for putting in each line, and before you delete a line, you
should understand the intended purpose of that line.

The programmer should have run this program before examining the code.
The error message would have given her/him the information that P

was not being defined when either X > Y or X = Y. This information
points out which pathway through the program contains the error.

126

THUS, EVEN IF A PROGRAM IS SHORT AND EASY TO TRACE BY HAND,
YOU SHOULD FIRST RUN THE PROGRAM. (ERROR MESSAGES, AS WELL
AS A CHARACTERIZATION OF THE ERROR IN TERMS OF INPUT AND
OUTPUT, CAN BE VERY HELPFUL IN FINDING AN ERROR.)

THEN
IF YOU MAKE A CHANGE TO A PROGRAM, AND IT STILL GIVES THE
SAME ERRONEOUS OUTPUT, RESTORE THE PROGRAM TO ITS STATE
BEFORE THE CHANGE. YOU HAVEN'T FOUND THE ERROR(S) IN THE
PROGRAM, AND YOU MAY HAVE INTRODUCED A NEW ERROR.

Sometimes, when you make a change to correct a program, the output
will still be wrong after the change, but you should leave the change
in the program. (Obviously, if you see any typographical errors that
you made while typing in the program, you should correct those.)

IF YOU MAKE A CHANGE TO A PROGRAM, AND THE OUTPUT IS STILL
WRONG: IF THE CHANGE CORRECTS ONE PART OF THE PROGRAM (e.g.,
one part of the output), THEN LEAVE THE CHANGE IN THE PROGRAM.

It may be the case that there is more than one error in the program,
and you have found one but not all of the errors. Take the following
program as an example.

10 PRINT "THIS PROGRAM TALLIES THE VOTES OF 5 PEOPLE."
20 PRINT "TO VOTE YES, TYPE 1l; TO VOTE NO, TYPE 0."
30Y=0

40N =0

50 FOR I =1 TO 5

60 PRINT "VOTE NUMBER ";I

70 INPUT V

80 IF V = 1 THEN 100

90 N =N + 1

100Y =Y + 1

110 NEXT I

120 IF Y <> N THEN 150

130 PRINT "TIE VOTE"

140 GOTO 190

150 IF Y < N THEN 180

160 PRINT "THE NO VOTE WINS"

170 GOTO 190
180 PRINT "THE YES VOTE WINS"
190 END

This program tallies the YES and NC votes of 5 people, then
prints whether the °YES's or “NO°s win. The user inguts the 5
votes. He types 1l for a YES vote and O for a NO vote.

The program is run. When all the votes are either YES or NO then
"TIE VOTE" is printed. When the number of YES votes input is greater
than the number of NO votes, "THE NO VOTE WINS" is printed. When the
number of NO votes is greater than the number of YES votes, "THE NO
VOTE WINS" is printed. This program does the wrong thing for three
of the four different kinds of input!

Since the program gives the correct output when the number of NO votes
exceeds the number of YES votes. i.e., "THE NO VOTE WINS" (except in
the extreme case where all the votes are NO); the programmer might
check to see why line 180, "THE YES VOTE WINS', is not printed when

it should be. S/He looks at line 180 and the line, itself, looks all
right. S/He looks through the program to find the line that goes to
line 180, which is line 150. S/He sees an error! In line 150 if Y,
which tallies the YES votes, is LESS THAN N, which tallies the NO votes,
then line 180 is executed, which prints "THE YES VOTE WINS'. Line 150
should say "if Y is GREATER THAN N then execute line 180". This change
is made to the program, and it is run.

After the correction, when the YES vote is greater than the NO vote,

"THE YES VOTE WINS" is printed; but when the NO vote is greater than

the YES vote, "THE YES VOTE WINS" is printed. It seems like the same
wrong output as before the change, only switched around! (As before,
when all 5 votes are either YES or NO, a "TIE VOTE" is printed.)

The programmer must decide whether to leave the change or not, i.e.,
150 IF Y > N THEN 180; 180 PRINT "THE YES VOTE WINS". Since Y tallies
the YES votes, and N counts the NO votes, if Y > N, then "THE YES VOTE
WINS" SHOULD be printed. The programmer decides to leave the change
and look for errors in other parts of the program.

In line 150 (which now says "IF Y > N..."), if N is greater than Y,
then line 160 is executed, which prints '"THE NO VOTE WINS'", so that
part of the program is correct.

This program illustrates the importance of testing the program with

the extreme values that the input can have, in this case, 5 YES votes
or 5 NO votes. Whenever the input is all YES votes or all NO votes.
“"TIE VOTE" is printed (line 130). The programmer looks for the line
that must precede the execution of line 130. If line 130 was executed.
then Y and N must have been equal in line 120. With an odd number of
votes, this isn’t possible. Because Y and N are both initialized to 0
(lines 30 and 40), something must be wrong with the counting procedure.
The programmer examines the FOR loop, where the votes are counted. S/He
notices that if the vote is NO, both N and Y are incremented! So, there
should be a line 95 which says "GOTO 110". The change is made. The
different possible types of input are retested. Success.

128

SUMMARY OF GUIDELINES

TESTING THE PROGRAM

TEST THE PROGRAM WITH ALL POSSIBLE TYPES OF INPUT FOR WHICH
IT IS DESIGNED. ;

TEST THE PROGRAM WITH THE EXTREME VALUES THAT THE
INPUT CAN HAVE.

CHARACTERIZING THE ERROR

CHARACTERIZE THE WAY THE ERROR(S) SHOWS UP IN TERMS OF THE
INPUT AND OUTPUT.

EVEN IF A PROGRAM IS SHORT AND EASY TO TRACE BY HAND, YOU
SHOULD FIRST RUN THE PROGRAM. (ERROR MESSAGES, AS WELL AS

A CHARACTERIZATION OF THE ERROR IN TERMS OF INPUT AND OUTPUT,
CAN BE VERY HELPFUL IN FINDING AN ERROR.)

SOMETIMES A PROGRAM GIVES THE CORRECT OUTPUT FOR SOME INPUTS
BUT NOT FOR OTHERS. WHEN THIS HAPPENS YOU SHOULD EXAMINE THE
DIFFERENCE(S) BETWEEN THE INPUTS FOR WHICH THE PROGRAM WORKS
AND THE ONES FOR WHICH IT FAILS.

AFTER A CHANGE, RETEST THE PROGRAM USING ALL POSSIBLE TYPES
OF INPUT FOR WHICH THE PROGRAM WAS DESIGNED.

IF YOU MAKE A CHANGE TO A PROGRAM, AND IT STILL GIVES THE
SAME ERRONEOUS OUTPUT, RESTORE THE PROGRAM TO ITS STATE
BEFORE THE CHANGE. YOU HAVEN'T FOUND THE ERROR(S) IN THE
PROGRAM, AND YOU MAY HAVE INTRODUCED A NEW ERROR.

IF YOU MAKE A CHANGE TO A PROGRAM, AND THE OUTPUT IS STILL
WRONG: IF THE CHANGE CORRECTS ONE PART OF THE PROGRAM (e.g.,
one part of the output), THEN LEAVE THE CHANGE IN THE PROGRAM.

129

Appendix B. Study Quiz to Accompany Tutorial Text

OPEN BOOK QUIZ

NAME:

1) After writing a program why should you test it with all the
different types of input that it was designed to handle?

2) Testing a program gives the following results:

Input: O (number of days)

Expected Output: O dollars and O cents
Output: O dollars and O cents

Input: 1 (number of days)

Expected Output: O dollars and 1 cent
Output: O dollars and 2 cents

Input: 3 (number of days)
Expected Output: O dollars and 7 cents
Output: O dollars and 14 cents

Input: 10 (number of days)
Expected Output: 10 dollars and 23 cents
Output: 20 dollars and 46 cents |

Characterize the error in this program.

3) 1If a program gives the correct output for some inputs but not
for others, you should (a, b, or c)

(a) Scratch it and start over.

(b) Hope that a user will only use inputs for which the program |
gives the correct output. |

(c) Examine the difference(s) between the inputs for which the program |
works and the ones for which it fails.

Why?

130

TE—

4) After making a change to a program why should you RETEST the
program with all types of input for which it was designed?

5) If you make a change to a program in order to correct it, and it
still gives the SAME erroneous output, you should (a or b)

(a) Leave the change in the program.

(b) Restore the program to its state before the change.

Why ?

6) If you are told that a program has an error in it, and you are
asked to find and correct that error, what is the first thing you
should do after reading the program description? (a, b, or c)

(a) Go through the step-by-step execution of the program by hand

(as the computer would) in order to find the error.

(b) Run the program with the different types of input for which it

was designed in order to characterize the error.

(c) Read over the program, delete any suspicious looking lines, and

run the program.

131

Appendix C. Introduction to the Tutorial Text

INTRODUCTION

This is an attempt to give you information that will help you to
find the errors in a computer program more easily. This information
will be presented in the form of rules which apply to certain
situations, rules-of-thumb that have been formulated from the
experience of programmers who have spent many hours in searching

for errors, or 'bugs', in computer programs.

Once you know there is an error in your program, the goal is to find

it with a minimal amount of time and effort. Since it is very

hard to formalize ALL the knowledge about finding bugs that an
experienced programmer would have, the rules presented here will be
general rules that provide the best way to go about finding the error(s)
in a computer program most of the time. They provide a general framework,
and as you gain experience, you will be able to add exceptions to these
rules. If you follow these rules, the process of finding the error may
seem to take longer than it could; however, it is much more likely that
you will find the error or ALL of the errors in the program, and that
can save quite a bit of time in the long run. As you gain experience
the process of finding the error may go faster.

These rules lead to the desired result (which is finding the error with
a minimal amount of time and effort) most of the time. Everyone
employs this type of rule when trying to solve problems. When there

is more than one possible course of action to reach a goal, a person
may weigh the positive and negative effects of each action under
consideration before s/he makes a decision. For example, suppose you
are in a strange city, you need to get from where you are to a hotel in
another part of the city, and a map of the city is all the information
you have to help you plan your route. In that situation (going from
one place to another in a strange city), a general rule-of-thumb you
might have is to stay on main streets. If you have this rule, it is
because of knowledge you have gained (e.g., from your own experience,
or from talking to friends, etc.), for example this knowledge could be:
(1) street signs are more visible on main streets

(2) 1if you get lost, it is easier to ask directions on a main street
(3) main streets are safer, if that section of town is unknown to you
(4) a backstreet route may make crossing intersections more difficult.
Even if your general rule is to stay on main streets in a strange city,
you may choose not to follow the rule in certain instances. Perhaps
the most important consideration is getting to place X as quickly as
possible, and you choose a backstreet route because it is shorter and
will allow you to miss the rush hour traffic on the main streets. The
circumstances under which you make a decision will vary (e.g., finding
the "best' route, where 'best'" means one that fulfills certain
requirements such as ''requires least amount of time'), and general rules
will not always give the best solution to a particular problem. If you
are a beginning programmer who is trying to find the errors in your
program, since you have no programming experience upon which to
formulate general rules for finding the error, being given these general

132

o

rules should save you both time and effort. After you have more
programming experience, you will be able to add exceptions to these
rules.

133

Appendix D. Test exercise CHANGER

This program was written to give change to a customer when the item
being bought costs less than a dollar. The change can be in half
dollars, quarters, dimes, nickels, and pennies. The program should
print both the amount of change in cents and then the FEWEST possible
coins in change.

5/31/77 11:12:06
19
10 PRINT "TYPE THE PRICE OF YOUR ITEM. IT SHOULD BE < $1"
20 PRINT " (THE PRICE SHOULD BE IN CENTS, E.G., 25, 49.) "
30 INPUT X
40 LET C = 100 - X
50 PRINT "YOUR CHANGE FROM §1 IS " 3 C ; " CENTS."
60 DATA 50, "HALF-DOLLARS'", 25, "QUARTERS", 10, '"DIMES"
70 DATA 5, "NICKELS'", 1, "PENNIES"
80 PRINT "HERE IS YOUR CHANGE"
90 N = 0
100 READ A
110 READ D$§
120 IF A = 1 THEN 180
130 IF C < A THEN 160
140 N =N + 1
I150C =C - A
160 PRINT N; " ";D$
170 GOTO 90
180 PRINT C; " "; D$
199 END

T R Ty I T D, S

Appendix E. Test Exercise DRILL

TASK DRILL

We want you to write a BASIC program that presents simple
arithmetic problems -- your own computer-assisted instruction program. The
required program will be longer and more complex than those you have
previously completed in BIP, but you probably worked with all the BASIC
statements you will need. You will have at most 1 and 1/2 hours to work on
the task during a single sitting at the terminal. Do your best to complete
a program that satisfies the specifications given below (use the DEMO to
see a fancy model program in operation), but you will be paid even if you
can’t do so in the allotted time. (Given the time constraint, one possible
approach is to design your program and then implement it in successive
stages, adding more advanced features at each stage; however, you are free
to tackle the problem in any manner you prefer.)

After 1 and 1/2 hours (or sooner, if you are confident your program
worked correctly), we will examine your program and try it out. If your
program isn’t satisfactory, you will have at most another 1/2 hour to fix

it.

To begin work, signon to BIP and type the command TASK DRILL. BIP
will not print the text of the problem as it does normally: instead refer
to the specifications given below in these instructions. During your work
you can use any BIP commands except the following: MODEL, MORE, REP, DEMO
TRACE. Use RUN to try out your program as many times as you like. Since
you can’t use MORE, you will have to be the judge of whether your program
satisfies the specifications before you are ready to have us look at it.

You may use the BIP manual. Run the DEMO as often as you like, but do not

135

faad ol

ask for the MODEL; if you use the MODEL command, we cannot pay you for your

work. REP does not work for this task, but FLOW does. There is paper for
you to do any scratch work you want to: please number any sheets you use
and turn them in at the end of the session. Since the program you will
write will be too long to LIST on the terminal screen at one time, we have
set-up the teletypes in the room to provide hardcopy of your program (you
may use the LIST command, but the output will go off the top of the
screen-- use the "HOLD® key on the terminal to stop-and-start the output).
To obtain hardcopy, SAVE your program in BIP as a file and then, at the
teletype, type (as requested) your student number and name of the file you
SAVE'd. You may list your program on the teletype as many times as you

like, and write on the listings, but we want you to turn in the listings at

the end of the session.

136

Program specifications for TASK DRILL:

1) The user selects whether he wants to do addition or
subtraction problems.

: 2) The user selects whether he wants problems that

3 involve l-digit integers (1=9) or 2-digit integers (10-99,
not 1-99). The integers used in each problem are randomly
generated.

3) The user specifies how many problems he will work,
with a minimum of 1 and a maximum of 10 problems.

4) Subtraction problems must always have an answer '
3 that is equal to or greater than 0O (no negative answers). %

5) The answer to each problem is checked and
appropriate feedback is printed. Feedback on incorrect
answers includes the correct answer.

6) When the user finishes the number of problems he
specified, the program prints his score as number and
percent correct.

7) Assume that the user of the program is naive and
may type invalid responses to any question asked by the
program. The program should not "blow up'" in these cases.
In general, it should also provide clear questions and
print output suitable for naive users. Try to write a
program you would want to show off to another programmer.
It does not have to have all the fancy features of the DEMO
program, but should satisfy the requirements listed here.

TR N T

137

e

Appendix F. Test Exercise ARITH-CALC

PROGRAM ARITH-CALC

This program is supposed to act as a calculator for simple
arithmetic expressions (e.g., 9*8, 43/5+11, 10°2*777) which have no
parentheses to organize them. It is intended to perform the operations in
an expression in a left to right order; for example, 10+2*6 first adds 10
and 2 to get 12 and then multiplies 12 by 6 to get 72. Note that this is
different from the way BASIC evaluates such expressions (BIP manual II.12).
The program is intended to handle only "well-formed" input from the user
and is expected to behave unpredictably if the input contains bad
characters. The following are examples of expressions for which the

program is and is not expected to work.

SHOULD WORK FOR NOT EXPECTED TO WORK FOR
4%5 4+ 5 (no spaces allowed)
334/667723+8%*3 4+(5*3) (no parentheses)
8/0 (gives error message) 4.5+13 (no decimals)

4A7+13 (illegal character)

The program is complex. The main difficulty is that the expression
input by the user is a string, and strings in BASIC (and parts of strings)
cannot be multiplied, added, etc. The string must therefore be analyzed to
find the strings of digits it contains (i.e., the numbers in the
expression) and then these strings of digits must be "translated" into
numeric values that can be manipulated with arithmetic operations. Part of
this work is done by a subroutine in the program. BIP didn’t give you any
work with subroutines (BIP Manual I1.22), and we don't expect you to
understand the one in this program. The way in which it is used is

explained by the REM statements in the program. The error(s) in this

138

f

e

e & ¢

program is(are) not in the subroutine or in the first lines of the program

— —— — ——————— " — — g e e S e o

which set up an array of values used by the subroutine. The error(s)

is(are) in the part of the program delimited by the REM statements
containing stars (asterisks). The program can be fixed with only minor
modifications (extensive re-writing is unnecessary).

To get the program into your program space, say GET ARITH-CALC
after you signon to BIP. You may RUN, LIST, and TRACE the program as you
please, but do not use FLOW. Make any changes you wish; if, at any point,
you want to get the original program back, then just say GET ARITH-CALC

again. 1

139

Appendix G. Post-experimental Questionnaire for TUTORIAL group

QUESTIONNAIRE
NAME:
BIP NO.:

(1) Do you feel like the material you read during the first session
was useful to you in the subsequent tasks? (Circle the appropriate

number.)
Not Useful Extremely
4 At All Useful]
1 2 3 4 5

(2) As you were testing and debugging programs during the sessions,
i did you follow the guidelines presented in the material?
: (Circle the appropriate number.)

Never Always

- . 4

1 2 3 4

Did you find it difficult to remember the guidelines?
(Yes or No)

If so, did you refer back to the lesson? 1

1 (3) Was any part of the lesson difficult to understand, or unclear,
etc.?

If so, which part(s)?

140

(4) Do you have any suggestions (criticisms), in general, regarding
the manner of presentation of the guidelines?

Would it have been better if the guidelines had been given
to you before you finished the BIP course? Please explain
your answer.

Do you think it would be useful to have BIP introduce this
material as part of the course?

Would you like to make any further comments on the three
sessions you just completed or on the BIP course itself?

DISTRIBUTION LIST

Nag

=

Dr. Jack Adams

Office of Naval Research
Branch Office

223 01d Marylebone Road
London, NW, ENGLAND

Dr. Jack R. Borsting

Provost & Academic Dean

U.S. Naval Postgraduate School
Monterey, CA 93940

Dr. John F. Brock
Navy Personnel R & D Center
San Diego, CA 92152

Dr. Maurice Callahan

NODAC (Code 2)

Department of the Navy
Washington Navy Yard (Anacostia)
Bldg. 2

Washington, DC 2037k

Department of the Navy
CHNAVMAT (NMAT O34D)
Washington, DC 20350

Chief of Naval Education and Training
Support (Code OlA)
Pensacola, FL 32509

Cdr John Ferguson, MSC, USN

Naval Medical R&D Command (Code Lk)
National Naval Medical Center
Bethesda, MD 2001k

Dr. John Ford
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Eugene E. Gloye
ONR Branch Office

1030 East Green Street
Pasadena, CA 91101

Capt. D. M. Gragg, MC, USN

Head, Educational Programs
Development Department

Naval Health Sciences Education
and Training Command

Bethesda, MD 20014

Mr. George N. Graine
Naval Sea Systems Cammand
SEA 047C112

Washington, DC 20362

Dr. Norman J. Kerr

Chief of Naval Technical Training
Naval Air Station Memphis (75)
Millington, TN 38054

Capt. H. J. Connery
Navy Medical R&D Command
NNMC

Bethesda, MD 2001k

Dr. Charles E., Davis
ONR Branch Office
536 S. Clark Street
Chicago, IL 60605

Dr. Marshall J. Farr, Director
Personnel & Training Research Programs
Office of Naval Research (Code 458)
Arlington, VA 22217

Dr. Pat Federico
Navy Personnel R&D Center
San Diego, CA 92152

Dr. William L. Maloy

Principal Civilian Advisor for
Education and Training

Naval Training Command, Code OOA

Pensacola, FL 32508

12

Dr. Sylvia R. Mayer (MCIT)
HQ Electronic Systems Div.,
Hanscom AFB

Bedford, MA 01731

Dr. James McBride

Code 301

Navy Personnel R&D Center
San Diego, CA 92152

Dr. James McGrath
Navy Personnel R&D Center (Code 306)
San Diego, CA 92152

Dr. William Montague
Navy Personnel R&D Center
San Diego, CA 92152

Commanding Officer
U.S. Naval Amphibious School
Coronado, CA 92155

Dr. Leonard Kroeker
Navy Personnel R&D Center
San Diego, CA 92152

Chairman, ILeadership & Law Dept.
Div. of Professional Development
U.S. Naval Academy

Annapolis, MD 21402

Dr. James lester
ONR Branch Office
495 Summer Street
Boston, MA 02210

John Olsen

Chief of Naval Education & Training
Support

Pensacola, FL 32509

Office of Naval Research
Code 200
Arlington, VA 22217

Manager, Program in Manpower R&D
Office of Naval Research (Code 450)
Arlington, VA 22217

Scientific Director

Office of Naval Research
Scientific Liaison Group/Tokyo
American Embassy

APO San Francisco, CA 96503

Scientific Advisor to the Chief
of Naval Personnel

Naval Bureau of Personnel

Rm. 4410, Arlington Annex

Washington, DC 20370

Dr. Richard A. Pollak
Academic Computing Center
U.S. Naval Academy
Annapolis, MD 21402

Commanding Officer

Attn: Library

Naval Health Research Center
San Diego, CA 92152

Cdr. Paul Nelson

Naval Medical R&D Command (Code 44)
National Naval Medical Center
Bethesda, MD 20014

Library
Navy Personnel R&D Center
San Diego, CA 92152

Commanding Officer
Naval Research Laboratory (Code 2627)
Washington, DC 20390

Cdr. Charles J. Theisen, Jr., MSC, USN
Head, Human Factors Engineering Div.
Naval Air Development Center
Warminster, PA 18974

W. Gary Thomson
Naval Ocean Systems Center (Code 7132)
San Diego, CA 92152 '

Dr. Worth Scanland

Chief of Naval Education & Training
Code N=5

NAS, Pensacola, FL 32508

1l A. A. Sjoholm

Tech. Support, Code 201
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Alfred F. Smode

Training Analysis & Evaluation Group

(TAEG)
Department of the Navy
Orlando, FL 32813

Ay

HQ USAREUE & Tth Army
ODCSOPS

USAREUE Director of GED
APO New York 09403

Dr. James Baker

U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Ralph Dusek

U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Dr. Frank J., Harris

U.S. Ammy Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Col. Frank Hart, Director
Training Development Institute
ATTNG-TDI

Ft. Eustis, VA 23604

Dr. Milton S. Katz
Individual Training & Skill
Evaluation Technical Area
U.S. Ammy Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Director, Training Development
Attn: Dr. Sherrill

UeS. Army Administration Center
Ft. Benjamin Harrison, IN 46218

1

Dr. J. E. Uhlaner
Chief Psychologist
Army Research Institute
6933 Hector Road
Mclean, VA 22101

Dr. Joseph Ward

U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Air Force

Air Force Human Resources Lab.
AFHRI/PED
Brooks AFB, TX 78235

Air University Library
AUL/LSE 76/L43
Maxwell AFB, AL 36112

Dr. T. E. Cotterman
AFHRIL/ASR
Wright Patterson AFB, OH 45433

Dr. G. A. Eckstrand
AFHRL/ AS
Wright-Patterson AFB, OH 45433

Dr. Alfred R. Fregly
AFOSR/NL, Bldg. 410
Bolling AFB, DC 20332

Cdr. Mercer

CNET Liaison Officer
AFHRL/Flying Training Div.
Williams AFB, AZ 85224

Dr. Donald E. Meyer
U.S. Air Force
ATC/XPTD

Randolph AFB, TX 78148

Dr. Ross L. Morgan

AFHRL/ASR
Wright-Patterson AFB, OH L5433

Research Branch
AFMPC/DPMYP
Randolph AFB, TX 78148

1

Dr. Marty Rockway
AFHRL/TT
Lowry AFB, CO 80230

Maj. Brian K. Waters

Chief, Instructional Technical Branch
AFHRL

Lowry AFB, CO 80230

Marine Cosgs

)8

Director, Office of Manpower
Utilization

HQ. Marine Corps (MPU)

BCB, Bldg. 2009

Quantico, VA 22134

Dr. A. L. Slafkosky
Scientific Advisor
HQ, U.S. Marine Corps
Washington, DC 20380

Coast Guard

1l

Mr. Joseph J. Cowan, Chief
Psychological Research (G-P-1/62)
U.S. Coast Guard HQ

Washington, DC 20590

Other DOD

12

1

Defense Documentation Center
Attn: TC

Cameron Station, Bldg. 5
Alexandria, VA 2231k

Military Assistant for Human Resources

Office of Director of Defense Research
and Engineering

The Pentagon, Room 3D129

Washington, DC 20301

Dr. Harold F. O'Neil, Jr.
Advanced Research Projects Agency
Cybernetics Technology, Rm. 625
1400 Wilson Blvd.

Arlington, VA 22209

1 Director, Research & Data
OSD/MRAXL
The Pentagon, Rm. 3B919
Washington, DC 20301

1l Dr. Robert Young
Advanced Research Projects Agency
1400 Wilson Blvd.
Arlington, VA 22209

Other Government

1l Mr. James M, Ferstl

Bureau of Training
U.S. Civil Service Commission
Washington, DC 20415

1 Dr. William Gorham, Director
Personnel R&D Center
U.S. Civil Service Commission
1900 E Street, NW
Washington, DC 20415

1 Wwilliam J. McLaurin
Internal Revenue Service, Rm. 301
2221 Jefferson Davis Highway
Arlington, VA 22202

1l Dr. Andrew R, Molnar
Science Education R&D
National Science Foundation
Washington, DC 20550

1l Dr. H. Wallace Sinaiko, Director
Manpower Research & Advisory Service
Smithsonian Institution
801 N, Pitt Street
Alexandria, VA 2231k

1l Dr, Thomas G. Sticht
Basic Skills Program
National Institute of Education
1200 19th Street, NW
Washington, DC 20208

1l Dr, Joseph L. Young, Director
Memory & Cognitive Processes
National Science Foundation
Washington, DC 20550

S N it ¥ RN 8 i AN

Miscellaneous

1

Prof. Earl A, Alluisi

Dept. of Psychology (Code 287)
01d Dominion University
Norfolk, VA 23508

Dr. John R. Anderson
Dept. of Psychology
Yale University

New Haven, CT 06520

Dr. Michael Atwood

Science Applications Institute
40 Denver Tech. Center West
7935 E. Prentice Avenue
Englewood, CO 80110

Dr. R. A. Avner

Computer-Based Educational Research Lab.
University of Illinois

Urbana, IL 61801

Ms. Carole A. Bagley

Minnesota Educational Camputing
Consortium

2520 Broadway Drive

St. Paul, MN 55113

Mr. Samuel Ball
Educational Testing Service
Princeton, NJ 08540

Dr. Gerald V., Barrett
Dept. of Psychology
University of Akron
Akron, OH LL325

Dr. Nicholas A, Bond
Dept. of Psychology
Sacramento State College
600 Jay Street
Sacramento, CA 95819

Dr. John Brackett
SofTech

460 Totten Pond Road
Waltham, MA 02154

Dr. Robert K. Branson
IA Tully Building
Florida State University
Tallahassee, FL 32306

Dr., John Seeley Brown

Bolt Beranek & Newman, Inc,
50 Moulton Street
Cambridge, MA 02138

Dr. Victor Bunderson

Institute for Computer Uses in
Education/355 EDLC

Brigham Young University

Provo, UT 8L4601

Dr. John Carroll
Psychometric Lab.
University of North Carolina
Davie Hall 013A

Chapel Hill, NC 27514

Dr. Kenneth E, Clark
College of Arts & Sciences
University of Rochester
River Campus Station
Rochester, NY 14627

Dr. Norman Cliff

Dept. of Psychology

University of Southern California
University Park

Los Angeles, CA 90007

Dr. Allan M. Collins
Bolt Beranek & Newman
50 Moulton Street
Cambridge, MA 02138

Dr. John J. Collins
Essex Corporation
201 N, Fairfax Street
Alexandria, VA 22314

Dr. Meredith Crawford
5605 Montgomery Street
Chevy Chase, MD 20015

Dr. Donald Dansereau

Dept. of Psychology

Texas Christian University
Fort Worth, TX 76129

Dr. Ruth Day

Center for Advanced Study in Behavioral
Sciences

202 Junipero Serra Blvd.

Stanford, CA 94305

ERIC Facility - Acquisitions

4833 Rugby Avenue
Bethesda, MD 2001%

Dr. A. J. Eschenbrenner

Dept. E422, Bldg. 101

McDonnell Douglas Astronautics, Co.
P.O, Box 516

St. Louis, MO 63166

Major I. N. Evonic

Canadian Forces Personnel Applied
Research

1107 Avenue Road

Toronto, Ontario, Canada

Dr. Victor Fields
Dept. of Psychology
Montgomery College
Rockville, MD 20850

Dr. Edwin Fleishman

Advanced Research Resources Organ.
8555 Sixteenth Street

Silver Spring, MD 20910

Dr. John R. Frederiksen
Bolt Beranek & Newman
50 Moulton Street
Cambridge, MA 02139

Dr. Frederick C. Frick

MIT Lincoln Laboratory, Rm. D=-268
P.0O, Box 73

Lexington, MA 02173

Dr. Vernon S. Gerlach
College of Education

146 Payne, Bldg. B
Arizona State University
Tempe, AZ 85281

Dr. Robert Glaser

Dept. of Psychology
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

Dr. James G. Greeno
LRDC

University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

e nsaieob ks AE Sl e e

Dr. Barbara Hayes-Roth
The Rand Corporation
1700 Main Street

Santa Monica, CA 90406

Library

HumRRO/Western Division
27857 Berwick Drive
Carmel, CA 93921

Dr. Earl Hunt

Depte. of Psychology
University of Washington
Seattle, WA 98105

Dr. Lawrence B. Johnson

Lawrence Johnson & Associates, Inc.
2001 S Street, NW - Suite 502
Washington, DC 20009

Dr. Wilson A. Judd
McDonnell-Douglas Astronautics Co.
Lowry AFB

Denver, CO 80230

Dr. Arnold F. Kanarick
Honeywell, Inc.

2600 Ridgeway Pkwy.
Minneapolis, MN 55413

Dr. Roger A. Kaufman
203 Dodd Hall

Florida State University
Tallahassee, FL 32306

Dr. Steven W. Keele
Department of Psychology
University of Oregon
Eugene, OR 97403 {

kAo

ICol. Coe R. J. LaFleur
Personnel Applied Research
National Defense HQs.

101 Colonel By Drive
Ottawa, Canada K1A (K2

Dr. Robert R. Mackie

Human Factors Research, Inc.
6780 Cortona Drive

Santa Barbara Research Park
Goleta, CA 93017

Dr, William C. Mann
USC-Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90291

Dr, Richard B. Millward
Department of Psychology
Hunter Laboratory

Brown University
Providence, RI 82912

Dr. Donald A. Norman

Department of Psychology C=-009
University of California, San Diego
La Jolla, CA 92093

Dr. Melvin R. Novick
Iowa Testing Programs
University of Iowa

Towa City, IA 52242

Mr. A. J. Pesch, President
Eclectech Associates, Inc.
P.0O., Box 178

N. Stonington, CT 06359

Mr. Luigi Petrullo
2431 N. Edgewood Street
Arlington, VA 22207

Dr, Kenneth A. Polcyn

PRC Information Sciences Co.
Communication Satellite Applications
7600 01d Springhouse Road

McLlean, VA 22101

Dr. Peter Polson
Department of Psychology
University of Colorado
Boulder, CO 80302

Dr., Diane M. Ramsey-Klee

R-K Research & System Design
3947 Ridgemont Drive

Malibu, CA 90265

Dr. Mark D. Reckase
Educational Psychology Dept.
University of Missouri

12 Hill Hall

Columbia, MO 65201

Dr. Joseph W. Rigney

Behavioral Technology Labs.
University of Southern California
3717 South Hope Street

Los Angeles, CA 90007

Dr. Andrew M, Rose

American Institutes for Research
1055 Thomas Jefferson St., NW
Washington, DC 20007

Dr. leonard L. Rosenbaum, Chairman
Department of Psychology
Montgamery College

Rockville, MD 20850

Prof, Fumiko Samejima
Department of Psychology
University of Tennessee
Knoxville, TN 37916

Dr. Walter Schneider
Department of Psychology
University of Illinois
Champaign, IL 61820

Dr. Robert J. Seidel
HumRRO-Instructional Technology Group
300 N. Washington St.
Alexandria, VA 22314

Dr. Richard Snow

School of Education
Stanford University
Stanford, CA 94305

Dr. Robert Sternberg
Department of Psychology
Yale University

Box 11A, Yale Station
New Haven, CT 06520

: 1l Dr. Albert Stevens 1l Dr, Claire E. Weinstein '
i Bolt Beranek & Newman, Inc. Educational Psychology Dept. 4
50 Moulton Street University of Texas o
Cambridge, MA 02138 Austin, TX 78712 |
1 Mr, William Stobie 1l Dr. David J. Weiss
McDonnell-Douglas Astronautics Co, N660 Elliott Hall
P.0O. Box 30204 University of Minnesota
Chico, CA 95926 75 E. River Road

l Minneapolis, MN 55455
4 1 Dr. Persis Sturgis

Department of Psychology 1 Dr. Susan E. Whitely
California State University Department of Psychology
Chico, CA 95926 University of Kansas

Lawrence, KA 66044
1l Mr. D. J. Sullivan
c/o Canyon Research Group, Inc.
741 Lakefield Road
Westlake Village, CA 91361

1 Dr. Patrick Suppes
Department of Philosophy
Stanford University
Stanford, CA 94305

1 Dr, Kikumi Tatsuoka
Camputer Based Education Research Lab.
University of Illinois
Urbana, IL 61801

1 Dr. Perry Thorndyke
The Rand Corporation
1700 Main Street
Santa Monica, CA 90406

-

Dr, Walt W. Tornow

Control Data Corporation
Corporate Personnel Research
Pa 0. Box 0 - HQ}“060
Minneapolis, MN 55LL0O

1l Dr. Benton J. Underwood
Department of Psychology
Northwestern University
Evanston, IL 60201

1 Dr. Thomas Wallsten

| Psychometric Laboratory

| Davie Hall 013A

‘ University of North Carolina
Chapel Hill, NC 27514

