
— ________________________

REPRESENTING AND TEACH I NG KNOWLEDGE FOR

TROUBLESHOOTI NG/DEBUGGING

by

Keith 1. Wescourt and Linda Hemphill

TECHNICAL REPOR T NO. 292

February l, 1978 ID D C

PSYCHOLOGY AND EDUCATION SERIES

INSTITUTE FOR MATHEMA TICAL STUDIES IN THE SOCIAL SCIENCES

STANFORD UNIVERSITY

STANFORD, ‘CALIFORNIA

t~~~ ~~~~~~~‘~~~~ I $ppioved for public z.1~~i1S

L D ,ut~O~ U~M~ it.d

_ _

- -~~
— -

REPRESENTING AND TEACHING KNOWLEDGE FOR

TROUBLESHOOI’ING/DEBUGGING

Keith T. Wescourt

Linda Hemphill

Contract No. NOOOll~-77-C-Ol214 , effective November 1, 1976.
Expiration Date : Octobe r 31, 1977 .
Amount of Contract : $96,688.
Principal Investigator, Keith T. Wescourt, (1~l5)

L~97-4117.
Contractor: Institute for Mathematical Studies in

the Social Sciences
Stanford University
Stanford , CA 91~3O5

Sponsored by:
Office of Naval Research
Contract Authority No. NR 15i~_391#
Scientific Officers: Dr. Marshall Farr and

Dr. Henry Haiff

and Ifl }
Advanced Research Project Agency l~ç ~~ 3 19Th

ARPA Order No. 3339
Pi Ograii Code No. 61101E ~~~~~~~~~~~ ‘-~

The views and conclusion s contained in this document are those of the
authors and should not be interpreted as necessarily representing the
official policies , either expressed or implied , of the Ad vanced Research
Projects Agency, the Office of Naval Research , or the U.S . Gove rnment.

Approved for public re lease ; distribution unlimited . Reproduction in
whole or in part is permitted for ~ny purpose of the United States
Gove rnment.

~~1

- .-. rn-~~~-—-. ~~~~~~~~__ -.- .- ..-—-- .—--- -
~~ _________________________

SECU RITY CLASSIF ICAT ION OF THIS PAGE (*?,on Data EnS.r.d)

D~~DñDT nnrl , ~~IJT ATuf ~~J DAI~~~
READ INSTRUCTIONS

~~I ‘.,tW% I ~~‘.#~~.UItI I I’~ I P I ~~~~ BEFORE COMPLETIN G FORM
I REPORT HUM ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2. GOVT ACC ESSION NO. 3. RE~~IPlEt4T’ 5 C AT A L ~ ~~~~~~~~~ ~~~(

~JJ~~1~i~J I 5
4 TITL E (and S 11.) WD~~T S PE V ER~~~

/ ~~~Representing and Teaching Knowledge for)
(~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~

‘

(. ,t Troubleshooting/Debuggin •. PERFORMING ORG. REPORT NUMBER
-

__ Technical_1~~port_No._ 292
7. AUTHOR(S) S. CONTRACT OR GRANT NUMBER(S)

~~~~~~~~~ 7~Iescourt Lind~~~~mph1ll / 
j  3311

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM NT. PROJECT , tASK

Institute for Mathematical Studies in the 6a~~~E’ 
WO~~~~~~J T t ~IJI4SSE*S

Social Sciences , Stanford Unive rsity, 
~~ ~~~~~~~~~~~~~~~~~~~~~Stanford , California 914305 

~~—
‘

~~~~
‘ NB 154-3914 ~~~~~~ ~II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATt

~~~~~~~~~~~ ~-‘?._!1
Personnel & Training Research Programs February l,~ ]9(b
Office of Naval Research ( Code 1458 ) 13. NUMSEROF

Arlington , VA 22217 1142 .i_ .Z /./~~j
IS. MONITORING AGENCY NAME & AODRESS(il differen t tram Controlfln4 Off ice) IS. SECURITY Ci~~~~S. (of this r.po4

Unclassified

IS.. DECLASSIFICATION/ DOW NGRADING
SCHEDULE

14. DISTRIBUTION STATEMENT (of this R.port)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of ti,. .b.teact .ntIp .d ln Block 20. 11 dlfI .rint frost R.potl)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continu e on r.v.r.s .id. if n.c...sty end identi fy by block niatb.r)

problem solving, debugging, troubleshooting, reasoning, instruction, complex
learning, computer programming, artificial intelligence (Al) ,  knowledge
representations, heuris tics

20. ABSTRACT (Continue on r.v.r .. old. it n.c...afy wd identify by block nt bsr)

~As society ’s dependence on technolo~ r increases, the need for competent
technicians who can maintain and repair complex systems increases as well.
Present methods of teachin g troubleshooting/debugging remain primitive and
expensive , relying on students to discover effective and efficient problem-
solving methods by observation and practice in relatively unstructured
environments. The goal of the present project was to identify the types of
knowledge necessary and useful for competent troubleshooting/debugging and

DD , 
~~~~~~~ 

1473 EDITION OF I NOV 65 IS OBSOLETE
S/14 0102 - LF 014.660 1

• SECURITY CLASSI FICATION OF THIS PAGE (~~ ,st, bat. Bnis,ed)
•

~,,

-
--- ‘I ’

SECURITY CLASSIFICATION OF THIS PAGE(*7i.n Data Ent.rad)

to examine how new approaches to formal instruction might influence the attain-
ment of competence by students . In particular , the research focused on the
role of general strategies in t roubleshooting/debugging and how they might be
represented and taught explicitly and directly in order to avoid the cost and
other drawbacks of learning indirectly by observation and practice .

Related work on troubleshooting/debugging was examined and in conjunction
• with a logical analysis contributed to a characterization of troubleshooting/

debugging problems and problem-solving processes that emphasizes their gener-
ality across a number of technical fields and infomnal contexts . The analysis
also suggests that debugging is a fundamental aspect of aamost all learning
and problem solving. One result of the analysis was the formulation of an
infonnation-proces sing model of a general trouble shooting/debugging strategy,
which describes the types of reasoning processes needed , some of the factors
governing selection of alternative processes in solving a problem, and an
explicit control strategy.

Extensive examination of a corpus of data from students learning computer
• programming was undertaken , and some furthe r limited debugging data were col-

].ected from both experienced and inexperienced programmers . These data are
consistent with a hypothesis that expert debuggers do not necessarily have
superior general strategies, but instead that their expertise derives fran
specific and sometimes idiosyncratic knowledge acquired through experience .
Inexperienced programmers lack this knowledge , but in addition some of them
have a defective general strategy as well. In an attempt to obtain a rigorous
characterization of the differences and defects in the debugging strategy of
the programming students, an effort was made to apply a model-oriented data
analysis method reported in the literature. However, the method was unsuc-
cessful for the data available and may have more basic limitations. As a
consequence only Informal conclusions about the defective strategies used by
some inexperienced debuggers could be developed ; (1) they are deficient in
program testing and so fail to find bugs ; (2) they do not collect or use avail.
able data about the effects of a bug to constrain their reasoning; (3) they
have a low threshold for attempting minor and sometimes irrational repairs;
and (4) they do not backtrack well from unsuccessful repair attempts.

A small-scale study was conducted to determine the effects of presenting
a tutorial text , which explicitly describes a few general heuristics designed
to correct these strategy deficits, to novice programmers. The data indicate
a marginal increase in the apparent use of some of the heuristics by the pro-
grammers who studied the text compared to a group who did not. In addition,
comments elicited from the students were generally favorable to presenting
problem-solving strategies explicitly, as they were in the tutorial. However,
the success of the groups in solving debugging test problems did not differ.
There were several methodological limitations and problems encountered in the
study which furthe r confound the results. More general methodological Issues
for studies designed to investigate instruction in troubleshooting/debugging
also became apparent. One of the most important is analysis of complex
problem-solving data: if the causes of differences in ability are to be spec-
ified in detail and if the effects of direct problem-solving instruction are
to be assessed , then it will be necessary to perfect model-based data analysis

• methods.

SEr URITY CLASSIFICATION OF THIS PAGE(’ITh.n Data Ent.,.d

_ _ _ _

‘—
~~~
‘ ~2I h~oc~ A

• 
• 

As society ’s dependence on technology increases, he need for
• competent technicians who_ç~ji maintain and repair complex systems /i —

increases as well. c~2~iient methods of teaching . •

troubleshooting/debugging remain pr imi t ive  and expensive , relying on
students to discover effective and efficient problem—solving methods by
observation and practice in relatively unstructured environments. The
goal of the present project was to identify the types of knowledge
necessary and useful for competent troubleshooting/debugging and to
examine how new approaches to formal instruction might influence the
attainment of competence by students. In particular , the research
focused on the role of general strategies in troubleshooting/debugging
and how they might be represented and taught explicitly and directly in
order to avoid the cost and other drawbacks of learning indirectly by
observation and practice .

Related work on tro~ubleshooting/debuggirtg was examined and in
• conjunction with a logical/analysis contributed to a characterization of

• troubleshooting/debugging/problems and problem—solving processes that
emphasizes their general/ty across a number of technical fields and
informal contexts. The~~nalysis --a.Ls~~suggests that debugging is a
fundamental aspect of almost all learning and problem solving. One
result of the analysis was the formulation of an information—processing
model of a general troubleshooting/debugg ing strategy , which describes
the types of reasoning processes needed , some of the factors governing
selection of alternative processes in solving a problem , and an explicit
control strategy.

Extensive examination of a corpus of data from students learning
computer programming was undertaken, and some further limited debugging
data were collected from both experienced and inexperienced programmers.
These data are consistent with a hypothesis that expert debuggers do not
necessarily have superior general strategies, but instead that their
expertise derives from specific and sometimes idiosyncratic knowledge
acquired through experience, inexperienced programmers lack this
knowledge , but in addition some of them have a defective general
strategy as well. In an attempt to obtain a rigorous characterization
of the differences and defects in the debugging strategy of the
programming students , an effort was made to app ly a model—oriented data
analysis method reported in the literature. However, the method was
unsuccessful for the data available and may have more basic limitations.
As a consequence only informal conclusions about the defective
strategies used by some inexperienced debuggers could be developed: (I)
they are deficient in program testing and so fail to find bugs ; (2) they
do not collec t or use available data about the effects of a bug to
constrain their reasoning ; (3) they have a low threshold for attempting
minor and sometimes irrational repairs; and (4) they do not backtrack
well from unsuccessful repair attempts.

A small—scale study was conducted to determine the effects of
presenting a tutorial text , which explicitly describes a few general

-
/

.4



- • -

~~~~~~~
- • --

~~~~~

—

~~~~~~~~

-.-

~~

heu r i s t ics designed to correct these s t ra tegy de f i c i t s , to novice
programmers . The data indicate a marginal increase in the apparent use
of some of the heuristics by the programmers who studied the text
compared to a group who did not. In addition . comments elicited from
the students were generally favorable to presently problem—solving
strategies explicitly, as they were in the tutorial. However, the
success of the groups in solving debugging test problems did not differ .
There were several methodological limitations and problems encountered
in the study which further confound the results. More general
methodological issues for studies designed to investigate instruction in
troubleshooting/debugging also became apparent. One of the most
important is analysis of complex problem—solving data: if the causes of
differences in ability are to be specified in detail and If the effects
of direct problem—solving instruction are to be assessed , then it will
be necessary to perfect model—based data analysis methods.

- - .

• ~~‘.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~ •—•..-•.--•—



II
•‘-- - —.—.———---—----- . - —.--—.——‘—..—— - .—•---- - — ---•- -,-.-——-. , • — - .—-- - — - — - -

REP~~SE}1TING AND TEACHING KNOWlEDGE FOR

TROUBLESHOOTING/DEBUGGING

by

Keith T. Wescourt and Linda }~mphill

February 1, 1978

Institute for Mathematical Studies in the Social Sciences

Stanford University

Stanford , California - -



~~r~~~~~~ 
- — .- ‘

~~
—,.-

~~
-- ‘.----— --.- -

~~~~~~
.--— - ~~~~~~~~~~~~~~~~~~ -~~~ - --- - --~~-— ——— ---~

-

Acknowledgements

We wish to recognize the participation of Diana Egly, Alex
Strong, Mary Dageforde, Roger Cole, and Marian Beard , all of who
contributed to this research in several roles. We thank Drs . Marshall
Farr and Henry h alf 1, Personnel & Training Research Programs , Office of
Naval Research , and Dr. Harry O Neil, Jr., Program Manager , Cybernetics
Technology Office , Defense Advanced Research Projects Agency, for their
support and encouragement throughout the project.

This research was sponsored by ONR Contract N00014—77—C—0124.
Contract Authority No. NR l~ 4—3 94 .

F
4

~ ~~~~~~~ - -—~~ -~~~~~~

I. introduction

The increasing dependence of our society on technology is a

phenomenon . Complex systems continue to perform new functions and

become more sophisticated . For example , consider their role in modern

commercial aviation . There are of course the modern jet aircraft

incorporating dozens of electrical, electronic , and mechanical systems.

But there are also the networks of radar and communication systems for

controlling air traffic and the computerized scheduling and reservation

systems for coordinating flights and access to them by passenger3 and

cargo . it is difficult to imagine how the demands our society now

places on commercial aviation could be satisfied without these complex

systems. Such systems hay become equally indispensible throughout our

society.

Error or failure is always a threat when relying on a complex

system. The result might merely be inconvenience , as it would if an

airline ’s reservation system lost track of a passenger’s reservation.

Or , it could be disaster , if , for example . an aircraft ’s radar failed in

flight under conditions of poor visibility. Preventive maintenance and

repair of complex systems is therefore an important concern. One

response to the problem have been efforts to develop better types of

technical data for both routine maintenance and repair procedures to

accompany complex systems (Potter & Thomas , 1916). A second , •

comp lementary response . one with which this report is concerned , is to 3

provide better training for the people responsible for testing and

repairing complex systems.

if a system does not operate as it should either during testing

~

-• - ~~~~~~~~~~~~~

-

~~~~~

or during actual use—— if the oil pressure warning light comes on in an

aircraft , if ground radar incorrectly indicates the position of

aircraft , or if the reservation system allows two passengers on the same

flight to be assigned to seat b A—— , then a human technician must he

summoned to solve the problem of locating and correcting the cause of

the failure. This type of problem solving is referred to in different

contexts as troubleshooting or debugging . The objective of “good”

troubleshooting/debugging is to locate and correct the cause of failures

efficiently , without undue cost of materials and time. An electronics

technician does not want to replace several components in a circuit if

he has reason to believe that only one of them is faulted and that he

can identify and replace just that one in a reasonable amount of time.

Similarly, a computer programmer faced with a program that generates

incorrect results wants to make a relatively limited correction, one

that does not entail recoding parts of the program that perform their

function adequately .

Expert troubleshooters , those technicians (or technical

consultants) who make difficult repair problems seem easy and

“impossible” ones only difficult , have always been highly valued and are

often regarded as artists, since their expertise is so poorly

understood . Demand for their services can only grow as complex

technology spreads. However, advancing technologies have introduced

features such as built—in test systems , modular system organization , and

miniaturization that make efficient troubleshooting of routine types of

failures in even the most complex systems possible for technicians with

more limited skill. Unfortunately , many newly trained technicians have

difficulty even with routine problems and become competent only 
after2



• ,
-.--- - 

- .. - - - - , - - -

~~~~~

-

~~~

-...- -—,

~~

.-.--- - - -

~~~

---.-.-. —- --,

~~~~

----..--— -.. .,-— —-- - - - ----

they have had considerable f i e ld  experience. Thus , maintenance costs

are hig h and , in settings where there is a high—rate of personnel

turnover , there tends to be a chronic shortage of competent technicians .

• The research described in this report investigated the bases for

competence and expert ise  in t roubleshooting , as seen in the context of

computer program debugging. The goal was to identif y the types of

t knowledge necessary and useful for  competent debugging and to determine

whethe r new approaches to formal ins truc t ion  might f ac i l i t a te  the

attainment of competent debugging ability by new programmers .

Troubleshooting/debugging as a general a~~~ ct of p roblem soivin&

Situat ions  that  pose a p roblem of locating and correcting the

• cause of a fai lure are not limited to electronics , mechanics , and

computer programming and do not necessarily include complex technology .

In some contexts , the parallels are straightforward enough to have

extended the common usage of the terms “troubleshooting ” and

‘debugging ”. Management consultants are often called troubleshooters.

Usi ng the methods of operations research , t hey locate causes of

ine f f i c iency  in an organizat ion (corporations , agencies , e t c .)  and

suggest corrections to its structure or procedures. The scope of these

repairs is constrained by cost much as are those a technician can make

in order to bring a device up to speci f ica t ions .

Less obvious ly,  the  beh avior  of a teacher tutoring a single

s tudent  sha res f ea tu re s  wi th  tha t  of a t roubleshooter .  In tu to r ing , the

teacher asks questions evaluates the student ’s responses , and provides

explanations in a continuing dialog (Figure 1). The purpose of some of

his quest ions  is to e l ic i t  answers that  iden t i f y spec i f ic  in accurac ies



~ •—-------- — ,-,.—------.--~ --~ •- - - --• ——-- _ ------•- ----—-
----•--- 

--
~
--

~
- 

~ =~ _~~~~~~
-; 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1 T: Do you think it rains much in Oregon?

(Case selection : Oregon is a paradigm case of a first order
causal model of rainfall.
Diagnosis: ask for a prediction about a particular case.)

2 5: No

(S’s predictioi- is wrong)

F 3 T: Why do you think it doesn ’t rain much in Oregon?

(Diagnosis: ask for any factors.)

4 S: I’m not exactly sure — just hypothesizing — it seems to me that
the surrounding states have rather dry climate , but I really don ’t
know anything about the geography of Oregon .

(S’s error is due to a proximity inference ; S has no
knowledge of relevant factors)

5 T: It does in fact rain a lot in Oregon. Can you guess what
causes the rain there?

(Correction: inform student.
Diagnosis: ask for prior factors.)

6 S: Well , let me see — I have a feeling that there is a mountain
range nearby and the ocean i.e. Pacific , I think probably borders
Oregon somewhat?

• (S names 2 factors, but does not mention their relationship
to rainfall.)

7 T: Yes the Pacific borders Oregon how do you think it is involved
in the heavy rainfall there?

(Diagnosis: T selects prior factor; holds other factor;
Rule: ask for intermediate factors.)

8 S: I haven ’t really got any idea — well not quite true; I would
only be guessing . Does the air (moist air) from the ocean somehow get
blown over Oregon and encounter a block of some sort which causes it
to rise and cool?

(S is missing three steps that are in T’s model: 1. why the
air is moist , 2. why it is blown o~ier Oregon , 3. whycooling results in rain)

Figure 1. -Annutate d dialog between a human tutor and student .
From Stevens and Collins , 19~’7.

.— —.— — s_______. -

- -~~~

or omissions in the student ’s knowledge. Once these errors are

detected , the tutor may provide explanations which he believes will

correct them. Alternatively , as in the Socratic tutoring method , he may

ask further questions designed to promp t the student to reason about

other knowledge he has and thereby to correct himself. (See Collins,

1976, for an analysis of Socratic tutoring.) The tutor is thus debugging

the student ’s system of knowledge (Stevens and Collins, 1977).

Troubleshooting/debugging problems also occur informally in a

range of everyday contexts. Most commonly, people are faced with balky

cars or household appliances , and attempt some limited troubleshooting

to avoid the expense and inconvenience of calling a repairman or at

least to enable them to give him a good description of the problem if

forced to call him. People also engage in informal debugging in

developing instructions. For instance, if someone gets lost following

directions you gave them for getting to your house, then you engage in

debugging when you determine which step of your instructions were wrong

or were executed incorrectly . If the instructions are lengthy , then it

can be effort to check them step—by—step from the beginning against a

mental image of a map or of the route you intended. Thus, to be more

efficient , you might consider the location from which your friend called

you when he found himself lost and its proximity to points along the

intended route. The analysis serves to limit the section of your

instructions you need to examine for the error. This type of reasoning

behavior resembles that of a computer programmer , who uses the

characteristics of a- program ’s erroneous output to suggest where he

should start tracing program code. Other informal situations that

require debugging—like problem solving range from developing a new

S

~~~IIIl_ s-• - -— --— ~~~ •, ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~
t - ~~~~~~~~~~~~ p _~iid



-— — - -~~~~~ ~~~ — - -~~~~~ -—

recipe, so that the dish has a appetizing flavor and consistency, to

practicing at the golf driving range in an attempt to eliminate a bad

slice.

Learning to troubleshoot

The current approach to teaching troubleshooting in technical

subjects is much the same as that used to teach problem solving in

mathematical and scientific subjects. Students are first exposed via

lectures and readings to the domain—specific factual content , or

declarative knowledge, required to solve a subset of problems : in

electronics, to the theory and characteristics associated with primitive

circuit components and to the laws for simple circuits; in computer

programming, to the syntax and semantics of constructs in a particular

programming language. At the same time , the students may receive

explicit instruction on how to use specific troubleshooting/debugging

tools (domain—specific procedural knowle4g~ ), such as electronic test

meters or interactive computer ‘break” routines. Then they are given

examples that show the steps and perhaps the reasoning in solving

specific problems. Finally, they attempt to solve problems on their

own, usually with limited monitoring by an instructor. Thus, the

student is not explicitly taught any general strategy for

troubleshooting/debugging , but is expected to learn to troubleshoot by

observation and practice.

In this indirect method of instruction , students must be able to

induce correct and efficient problem—solving strategies from the

examples they see and further refine them by monitoring their own

problem—solving attempts and by feedback from an instructor. It is much

6 

----.— —--~~~~--~~~~~- - • -



- - 
- - - — -- —- - ---—--v-— - - —-~_ - - -—-.--- ——--.—-- • - ---————— ~~~

•-•__ ‘_ -!_._,-__‘ - ‘~~~-~~~r-~~, - •  ~~— —‘- - ‘- —, —~~~ —- — -~~~~~~

like learning to ride a bicycle: you watch someone else and then climb

on and try yourself. When you fall , you try to figure out why, and

perhaps receive advice from a proficient bicyclist , such as “Look at the

horizon , not the front wheel!” .‘igh motivation is required to learn

troubleshooting/debugging in this way , since the frustrations one

encounters are psychological analogies to skinned elbows and knees. The

instructor ’s method of facilitating the process is largely empirical; he

tries to identify the examples and exercises that result in better

student performance on test exercises.

The indirect approach to teaching troubleshooting/debugging does

work satisfactorily for some students: after all, it is the way in which

existing competent troubleshooters acquired their skill. Other students

having “fallen of the bicycle” more times than they can bear (or the

educational system will allow) become drop—outs. In general however ,

the indirect method is less successful for teaching problem solving in

technical, than in other subjects. The factor involved is the cost of

resources required to generate examples and to allow students to work on

exercises. In mathematics or subjects based on mathematics , most

problems can be solved with paper—and—pencil and the only demands are on

the instructor ’s imagination and energy and the student ’s time.

Troubleshooting problems (and also design problems in engineering)

require resources like equipment and space, which are scarce commodities

in most educational settings. Since the cost of these resources varies

directl y with the amount of time used and number of errors made by

students , there is an inherent pressure to limit student experience to a

minima l number of simple , and less than realistic , problems . The

limitations are most critical for students having difficulty , who fa il

7



- —- - -• -----~~---—------—-- -- ‘— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

to have experiences sufficient for learning the required knowledge and

so either drop—out or fail. Even better students , however , may not get

enough experience to become sufficiently competent by the time they

finish formal instruction . Thus, new troubleshooters/debuggers must

typ ically undergo a period of on—the—job training , which is expensive

both because their productivity is low and because it requires the

involvement of experienced technicians .1

A more direct approach to teaching troubleshooting/debugging

One approach to improving formal instruction in

troubleshooting/debugging is to reduce the costs of the indirect method

associated with providing examples to students and with operating and

supervising student problem—solving laboratories (Finch, 1971).

However, there is an apparent paradox in the indirect nethod that could

indicate a need for a substantially different approach to instruction

for some students. The paradox is that the learning by example and

trial—and—error experience required by the indirect method may actually

presuppose the very problem—solving strategies the student is attempting

to learn (recall the analogy of tutoring as “debugging the student”).

In effect , learning by the indirect approach requires the student to

debug his strategy for how to debug .

Since people do learn to debug by observation and practice , no

real paradox exists. Clearly, sophisticated strategies must evolve by

bootstrapping from a primitive learning mechanism , which we is

effective , though less than optimal , for inductive learning in simple

1For scientific professionals , the latter years of graduate
education Involve research experience that serves a similar function for
developing problem—solving skills.

8

-— — — — - — —-—— —— — p —~ - -- • — - -

contexts. Students in technical disciplines bring to the classroom

debugging strategies of varying effectiveness which they have induced by

monitoring their attempts to solve the types of informal everyday

troubleshooting/debugging problems we mentioned earlier. Some of them

may already have effective general strategies and only have to learn how

to apply them in a new problem domain. The indirect method works for

them because their debugging strategies help them to learn efficientl y

from their experiences; they are proficient at debugging their own

knowledge. However, those students with ineffective and inefficient

initial strategies encounter a bootstrapping problem because efficient

learning by induction presupposes some of the same strategies as

debugging. Therefore , another approach to instruction in

troubleshooting/debugging , which would be most advantageous to students

of lower initial ability, is to try to teach more directly and

explicitly the general strategies that students develop when they

understand examples and try to solve problems themselves . Such

instruction could help students to acquire an effective strategy for

troubleshooting/debugging more rapidly and improve their general

capability to learn by the indirect method to troubleshoot in a

particular domain.

The are two aspects to developing an alternative , more direct

approach for teaching troubleshooting/debugging. First , the strategies

that students learn by observing competent problem solvers and by

solving practice problems must be identified and articulated (i.e.,

represented). Second , a suitable pedagogy must be formulated. These

goals are not necessarily independent , since pedagogical decisions can

depend on the way the knowledge is represented and convercplv , choices

9

-—_~~~~~~~~~ •~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~-a,~~~~~~~~~~~~~~~~- • •~~ --


~~~~
‘ ‘  ~~~~~~~~~~~~~ - -— 

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ “~~~~
“““ •• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- ~~~~~~~~~~~~~~~~ --

among alternative representations can depend on features of preferred or

available teaching methods.

In the remaining sections of this report , we will discuss the

ideas of others and ourselves about the nature of the

troubleshooting/debugging process. We will describe our observations of

computer program debugging behavior which bear upon these conceptions

and which also suggest the knowledge deficits that cause some

inexperienced programmers to have difficulty with even simp le debugging

problems. We will conclude by presenting the results of a study

designed to investigate whether such deficits might be corrected by

direct instruction.

10

—- —- •- -• • — • -—-— -
~~~~~~~~~~~~ ~~~— •~~~~~~~~•



— - - -

~ ~~~~~~~~~

— - -— — --=--i
~~i~

- 

II. Understanding the troubleshooting/debuggj~~ process

Difficulties in studying troubleshooting/debugging

One reason that troubleshooting/debugging (and other types of

complex problem solving) are taught indirectly is that it is difficult

to gather the data needed to develop an empirically—based understanding

of the problem—solving process. There are problems of observing a range

of episodes and of the observer not interfering with the

• troubleshooter ’s behavior. Simple problems may be solved in minutes

during a single “sitting”, while complex problems may be solved over

days or even weeks (e.g., the debugging problems faced by system

programmers on large computer systems). Thus, it is much more difficult

to observe the solutions to problems at the more difficult end of the

spectrum. In any episode, there is the problem of observing the

troubleshooter without causing him to depart from his normal procedures.

A general limitation in studying troubleshooting episodes is

• that much of the troubleshooter s time is spent in periods of thinking,

during which there is no overt behavior to observe. Typically, it is

difficult to infer what the problem solver is thinking from the behavior

observed prior and subsequent to these quiet periods. Post hoc reports

(e.g.,”Tell me how you solved that problem”) tend to he edited and

in comp~lete , appearing as idealized accounts  which f r equen t ly  conf l i c t

• with o~,served behavioral data. More general self—reports (“Tell me how

you troubleshoot ”) may also be contradictory and incomplete . There is a

truism ~hat being an expert at doing something does not necessarily

imply b~~ng able to introspec t on how one does it.

LI 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


• - — • —--~~-— -.-—-

Troubleshooting/debugging seems to be an activity for which is not easy

for most experts to describe their reasoning in either particular or

general terms . The fictitious dialog in Figure 2 caricatures this

inability.

There has also been a difficulty in analyzing and organizing the

behavioral data and self—reports that can be obtained . Prior to the

development of information—processing and cybernetics there was no

adequate formalism for describing processes—— i.e., to represent

procedural knowledge—— and thus for interpreting and integrating sets of

observations in order to develop and test hypotheses relating the

knowledge used by troubleshooters solvers and differences in

troubleshooting episodes. While natural language has been used to

represent propositional knowledge from the earliest times , it is a poor

medium for expressing complex procedural knowledge. To convince

yourself of this consider the typical comprehensibility of the assembly

and operating instructions for various devices. Usually , one remains

uncertain of his understanding until the device works (i.e., the

• instructions are understandable only if you already know the process).

One apparent weakness of natural language for describing processes is

its awkwardness and ambiguity for expressing complex conditional

relationships between events. More generally , in natural language much

of the knowledge being transmitted by the sender is implicit and mus t be

inferred by the receiver. The demands for decoding the implicit

knowledge may be more severe for procedural than for propositional

knowledge. (Try to generate a sufficient description of how to drive a

car that you can feel confident will he understood without questions by

someone who has never driven one.) The limitations of natural language

12

_ _ _ _ _ _ _ ___- - • - — 1 — — -r’v

0: “How d i d y o u know the trouble usas
in t h u s w i t c h? ”

“Uccau se it wo rked intermit tently
wh en I jiggled the suitch.

0: “Well—— c o u l d n ’t it jiggle the wire?”

a: “ i’k, .

U: “How do qou ++kr.ow@ a l l t h a t?”

E: “:t t ’s ++obvjous~~~”

CI; “ W e l l t h e n , w h y didn ’t I see it.

Es “You have to hew ? some f a m i l i a r i t y .

0: “Then it’ s +i-notQ o b v i o u s , is it?”

Figure 2. Fictional dialog between an expert t roubleshooter (E) and
an observe r (0) caricaturing the expe rt ’s difficulty in
articulating the source of his expertise. From Zen and
the Art of Motorcycle Maint€nance, p. 135 (Pi rsi~~~I~ T~).

13


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

may be partly responsible for the difficulties that problem—solvers seem

to have introspecting : besides the i r  d i f f i c u l t i e s  in realizing how they

troubleshoot , they may not be able to articulate what they are aware of.

Thus, understanding of the troubleshooting/debugging process has

been hampered both by difficulties in making complete , valid

observations and in systematically interpreting the data that can be

obtained.

Information—processing models

Over the past twenty years researchers in information—processing

psychology concerned with understanding intelligent human behavior and

those in artificial intelligence (Al ) interested in developing

“intelligent” computer systems have developed new formalisms for

representing knowledge . Semantic networks (Quillian, 1969; Woods ,

1975), production systems (Newell, 1975), procedural networks (Brown,

Burton, Hausmann, Goldstein , Huggins, & Miller , 1977; Sacerdoti , 1975).

logical calculi (Nilsson, 1971), and process grammars (Miller &

Goldstein , 1976a ; Woods 1970) are the new “languages” used to represent

the declarative and procedural knowledge underlying intelligent behavior

in a range of tasks. These formalisms have enabled the development of

sufficient (“strong”) computational models for certain well—structured

problem domains, such as logical proof , games , and puzzles. There are

now computer programs that can solve such problems ~.s well or better

than most human problem solvers. Strong computational models have also

been used to simulate human problem—solving behavior , including its

variability and errors , In an analysis—by—synthesis approach to

interpreting behavioral and introspective data (Newell & Simon , 1972).

14 

~~- -- -~~ --  — -- --~~ • — -~~
-- •

~~~
--

~~~~~~~~~
-—- 



Beyond their application in automated problem solvers, the

knowledge representations that have been developed provide a framework

for analyzing observations and for articulating partial models of less

well understood types of problem solving like troubleshooting/debugging.

That is, even if it is not yet possible to write a general program to

troubleshoot faults in circuits or one to debug other programs, it may

be possible represent the top—level organization such a program would

need and some of its more specific data—structures and procedures. Such

“weak” models are a basis for directing attention to aspects of the

process that are not yet understood and their logical relationships to

those that are and for interpreting new data in order to expand our

understanding.

Over the past several years, psychologists and computer

scientists working the the field of Al at MIT have conducted research on

information—processing models of programming and debugging. As a

consequence of their work they have come to adopt a view that debugging

is a fundamental aspect of most , if not all, complex human learning and

problem solving (Goldstein , 1975; Miller & Goldstein , 1976a ; Papert ,

1971; Ruth , 1974; Sussman, 1973). The position is based on their

informal analyses of human programming behavior and on their attempts to

develop “intelligent ” programs for writing programs and for solving

other types of problems. People learning to program and even

experienced programmers designing programs kj~~~~~ li code and attempt to

execute programs that are inadequate. They may be unsure about the

effects of a particular contruct or of the interaction of familiar

constructs in combination. When the program fails , by reasoning from

the way it failed they can modif y It to function correctly. As a simple

15

-~~~



-~

example , a statistical program may Involve printing a table with a

complicated format that depends on the parameters of the data to be

analyzed . The programmer writing the program may have difficulty

calculating the format parameters needed to align the headings and

entries in the table. He may therefore proceed by estimating the format

and then executing the program . The errors he observes enable him to

modify his original estimates to produce a correct format.

This notion of the generality of debugging goes beyond our

earlier comments about the range of situations in which debugging—like

behavior is required ; it says more strongly that problem solvers

consciously create debugging problems for themselves as part of a

general planning strategy . Debugging is seen as a natural complement to

design in the process of planning and implementing a program. Either

because it is more efficient or because human information—processing

capabilities (e.g., in “working memory”) limit the complexity of the

design process , programmers implement programs with an expectation that

they will have to debug them—— i.e., debugging is not necessarily an

afterthought forced on programmers.

There is an alternative view of debugging that it is a

regrettable outcome of poor design and that programmers can and should

strive to eliminate all debugging through rigorous design. This

position is popular among advocates of “structured programming ” (Dahl ,

Dijkstra, & Hoare, 1972). We disagree with this viewpoint. While

rigorous initial top—down program design is certainly desirable , it is

unrealistic to demand and expect flawless design for complex , innovative

programs. Our own informal observations of skillful professional

programmers indicate that despite conscientious efforts at top—down

16



~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~ ~~~ ——~~~
-
~~~ 

design , they  i n e v i t a b ly sta rt implement in g  and t e s t i n g  programs before

the design is complete. It seems that there are too many complex

interrelationships in most programs and that they can be understood and

imp lemented more easily by debugging than by abst ract logical analys is .

From the programmer ’s perspective , there is a strategic tradeoff between

the costs of design and debugging such tha t  it is most e f f i c i e n t  to

in tegra te  the two so as to minimize  the the maximu m complexity at any

point .

From their studies of programming, the researchers at MIT have

generalized the constructive role of debugging in learning and problem

solving using the fol lowing logic. A computer program is a

representation of a plan , a sequence of legal operations in an

en vironment that  when executed will accomplish a goa l ( i .e . ,  solve a

problem). For example , a sorting program is a plan for accomp lishing

the goal of arranging a list of values in a desired order from an

arbitrary initial order. However, writing and executing a program is

only one way of expressing and following a plan. Plans were developed

and executed by people to solve problems long before computers existed

and have been embodied as mechanical and electro—mechanical  systems .

Programs a re just  a general way of representing plans. That is wh y

programs can be used to simulate some of the behavior of people and of

mechanical and electronic systems.

Plans then , like p rograms , may also f i rst be formula ted  wi th

some igno rance of whether pa r t i cu la r  act ions wi l l  be e f f e c t i v e . If

execution of the plan proves it inadequate and if the plan is to be used

again , then the information obtained from the failure can be applied to

modi f y t h e  p lan . Howe ver , even if the plan was f o r  a uni que p rob ’em and

17



-
~~

---~~—— .- -- ~~~~~~~~~~~ ~~~.

will never be used again , debugging the plan Is useful. In designing

new plans, parts of old plans for somewhat related problems may be used

and so a “library ” of correct plans can help the problem solver.

Furthermore , one can see that there must be “plans for planning”——
general strategies for making design and debugging decisions in planning

solutions to particular problems (e.g., whether to synthesize part of a

design or borrow it from a design in one ’s plan library). Plan failures

provide feedback that can be used to debug not only the faulty plan , but

also the strategy used to design it in the first place.

Sussman (1973) developed many of these ideas about planning and

debugging in the course of formulating a computational model called

HACKER, a program that solves problems in the paradigmatic

“blocks—world” domain. Given a problem of rearranging some of the

blocks on a table , HAC KER in its naive starting state designs a solution

of simple actions (pick up, put on). Depending on the problem , its

initial solution may succeed or fail (where failure is definnd by action

sequences that are redundant or impossible in the blocks world). In

case of failure, HACKER works to debug the plan (not always

successfully). It also stores information about correct plans and about

bugs that it can use in designing solutions for subsequent problems.2

Mark Miller and Ira Goldstein at MIT (Miller & Goldstein , 1976a)

have attempted to formalize the relationship between design and

debugging in problem solving using what they call planning grammars,

which are representations of design and debugging strategies. Employing

both context—free grammars and augmented transition networks (ATN)

2See Sacerdoti (1975) for an alternative view that correct plans
can be implemented in incremental stages of design and execution without
debugging.

18 

-- -- - —‘~~~~~ --~~~~~~



(Woods, 1970), they (tave written systems of rules that d~ scribe the

process of creating and executing LOGO graphics programs (Figure 3).

They have proposed that p lanning grammars can serve two functions:

(1) interpreting and comparing the behavior of different programmers and

(2) developing “intelligent ” systems for assisting programmers in

designing and debugging their programs . They have explored the second

use in their SPADE system (Miller & Goldstein , 19Thb), which records a

programmer ’s p lanning decisions with respect to a planning grammar. The

record is used to advise the programmer of conflicts and omissions in

the structure of the program and of his options any point in the

planning process (Figure 4).

A general characterization of troubleshooting/debuggin g problems

Our examination of research on troubleshooting/debugging has led

us to formulate a characterization of troubleshooting and debugging

general to a range of problem domains.

We define troubleshooting/debugging as a tyne of problem solving

focused on either an abstract plan or a procedural ~~~- tem . A procedural

system is a physical entity that embodies a plan and can execute it to

accomplish its goal. A characteristic of plans and procedural systems

is that they can be represented as hierarchies of unctional subparts ,

each subpart having a specific role in achievement of the overall goal.

For instance , a plan for building a table includes sub plans for

o b t a i n i n g  a design , obtaining materials , assembling the wood and

hardware , and finishing the assembled table. Each o f these subp lans

consists of smaller subplans. The plan for obtaining materials might

incl ude sub p lans for borrowing a truck, sel ec ting a l umber suppl ier ,

19 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


-
-

~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~

—
~~~~
, —.—-.-—---.- -~~-~~ —~ 

- - 
~~~~~~~— ‘ - ----~~-- -~~~ ‘— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ___

P1: SOLVE —> PLAN + (DEBUG]

P2: PLAN —> IDENTIFY I DECOMPOSE REFORMULATE

P3: IDENTIFY -) PRIMITIVE I DEFINED

P4: DEFINED -> USE-CODE & GET-FILE

PS: DECOMPOSE -) CONJUNCTION I REPETITI ON

P6: CONJUNCTION -> LINEAR I NONLINEAR
P7: LINEAR —> SET I SEQ

PB: SEQ -) (SETUP] + <MAINSTEP + (INTERFACE3)* + (CLEANUP]

P9: SET —) (STEP)*

PlO: SETUP -) STEP

P11: PtAINSTEP -) STEP

P12: INTERFACE -) STEP

P13: CLEANUP —)STEP

P14: STEP -> ADD I SOLVE

P15: REPETITION -) ROUND .1 RECURSION

P16: ROUND -> ITER-PLAN I TAIL-RECUR

P17: h ER-PLAN —) ‘repeat step’ + SEQ

P18: TAIL-RECUR -> STOP-STEP + SEQ + EEC—STEP

P19: EEC-STEP —) ‘recursive program call’

P20: STOP-STEP -) ‘stop program call’

Figure 3. Mifler and Goldstein’s (1976b) content-free grammars
for planning and debugging programs .

20


~~~~~~T
_ _ -

_ _- --~~~-- 7~~T~~ 
-
~ 
—

~~~~~~~~

(Figure 3 continued)

DEBUG -> <(DIAGNOSE] + IREPAIR]>’

DIAGNOSE -> <ASk I TRACE I “error’>’

TRACE -) (SELF-DOC’] + RUN’

SELF-DOC —> ADD-PAUSE I ADD-PRINT I ADD-TRACE
-

AS~ -> ‘print d~finition’ I ‘prin t value’ I’print file’I

REPAIR —> <RUN I EDIT I SOLVE)’

ADD-PAU SE -> ADD

ADD-PRINT -) ADD

ADD-TRA CE -) ADD

EDIT - -> ADD I DELETE I CHANGE
-

RUN -) “run statement of code ” + ‘response’ + (DEBUG]

ADD — > ‘add statement of code’ + ‘response’ + (DEBUG]

DELETE -> ‘delete statement of code’ + ‘response’ + (DEBUG]

CHANGE -) ‘change statement of code’ + ‘response” + (DEBUG]

21

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ____ _ _
_

— - —‘---v— W—~~~—~~~~~~~ ~~~~~~~ —
- —‘UI’

SPADE-O Scenario (part a)

The preliminary ver.sion of SPADE is little more than a bookkeeper for the
user’s subgoals. It is currently being implemented by assigning an interpretive
procedure to each granmratical primitive.

is. What is the name of your top level procedure?
lb.)W

2a. Rule for WW is: SOLVE -> PLAN + (DEBUG].
Rule for W-1 is: PLAN -) IDENTIFY I DECOMPOSE I REFORMULATE.
What now?

Zb. >DECOPIPOSE

3a. Rule for W-4 is: LINEAR -> SEQUENTIAL I SET.
What now?

3b. >SEQUENTIAL

4a. Ru le for W-5 is: SEQ -) (SETUP] + (MAIN + (INTERFACE])’ + (CLEANUP]
Do you wish to include the optional constituen t SETUP?

4b .)No -

5a. How many occurrences of <MAIN + (INTERFACE]) do you want?
5b . >3

6a. Do you wish to include the optional constituen t CLEANUP?
6b. >LATER

LATER is a conmtand understood by SPADE. It means that the user wants to
terminate this path , but that it must be reconrenced later. SPADE keeps track of
conjunctive goals , reminding the user of the pending goal list if asked. Here it
records the information required to return to, and eiientualty complete the
application of the SEQ rule. It can then go on to other goals.

Figure 4. Dialog with programmer ’s assistant based on the grammar-
shown in Figure 3. From Miller and Goldstein , 1976b.

22

-
j

— —_- --—— -_— ,.---- ,.— —-- ——- -
~~

—--
~~— —

~~- — .— ------ —--—_
~---- ‘--.—_______________

- -—

(Figure ~ continued)

SPADE-0 Scenario (part b)

7a. Your pendin g goals are POLE, ... and WELL. What NOW?
7b.)POLE

SPADE applies the SOLVE rule recursively.

Ba. Rule for POLE is: SOLVE -> PLAN + (DEBUG]
-

Ru le for POLE-i- is: IDENTIFY I DECOMPOSE I REFORMULATE.
What now?

Sb . >IDENT IFY -

9a. Rule for POLE-2 is: IDENTIFY -) PRI MITIVE I DEF INED.
What now?

9b.)PRINITIVE

lOa. Rule for POLE-3 is: PRIMITIVE -> VECTOR I ROTATION I PENSTATE
What now?

lOb . >VECTOR

>FORWAR D 100
-

h a . POLE completed. Pending goals are : ROOF. WELL, and WW—17 (CLEANUP of
WW). What now?

lib.)WELL

iZa . Rule for WELL-i is: PLAN -) IDENTIFY I DECOMPOSE I REFORMULATE.
What now? - -

12b . >DECOMPOSE

Here we have substituted a graronar which contains rules for conjunction but not
repetition. This allows us to illustrate the manner in which SPADE avoids
interrogating the user when no actual decision is regutred.

13a. Rule for WELL-4 is: DECOMPOSE -) CONJUNCTION .
(Forced.)
Rule for WELL-5 is: CONJUNCTION -> LINEAR I NONLINEAR
What now?

c3

-~~ ~~~

selecting a hardware supplier , and scheduling the trip to make the

purchases. As another example , an electronic power supp ly consists of

subcircuits such as amplifiers , voltage regulators , etc . In turn , each

of subcircuit consists of more basic subcircuits , and so on until the

level of primitive components—— transistors , resistors , diodes , wires,

etc. Similarly , a computer program will typically have subprograms for

input , output , initialization , sorting , etc.

A feature of such functionally def ined hierarch ies is tha t the

subparts at each level are independent in that each is a “black box”

from the viewpoint of the others ; it doesn t matter how each does what

it does, as long as it fulfills its role in attaining the overall goal.

For instance, in assembling the table, the details of the subplan by

which the materials were obtained are irrelevant as long as the

materials are all there when the assembly subplan is executed .

Similarly, structurally differen t but functionally equivalent voltage

regulator circuits can be interchanged in a power supply and different

sorting algorithms can be interchanged in a program .3

The subparts at each level of the functional hierarch y have a

teleological structure. In the simplest , linear structure , the action

of each subpart depends directly on that of one other subpart and

affects directly one other subpart. Of course , the action of a subpart

can indirectly affect all the subparts subsequent to it in the

The relationship between subparts at a level of the hierarch y
can be more complicated than this , since it is possible for them to be
functionally discrete , but still share physical structure. For example ,
two subprograms for input and output may share (“call’) a
type—conversion subprogram at a lower level. This overlap is incidental
in that shared structure can be replaced by redundant copies , but
important in that a defect in the shared structure may affect the
function of all superordinate parts.

24

---~~~~~~~~~~~~~~~~.--~~~~~~~~~- - . - - -~~~~~-~~~~~~~~

teleological structure. More complicated structures have multiple

interfaces and feedback paths between subparts. When a subpart contains

a fault , then its action will be incorrect for at least some of the

possible actions of immediately prior subparts. Its faulty actions may

inhibit subsequent subparts from operating and thus terminate the

operation of the entire plan/system or may propagate through them and

distort the actions of the plan/system.

Troubleshooting/debugging involves reasoning about the actions

of the plan/system and its teleological structure at each level of its

functional hierarchy in order to localize the fault to a minimum number

of subparts (ideally one) at that level. The actions and structure of

the suspect subpart(s) are then used to localize the fault at the next

lower level of the functional hierarchy, and so on until the cost of

repairing a subpart(s) is less than the cost of further ‘ocalization.

Expected cost plays several roles in debugging. It not only

determines the level at which repair is attempted, but also serves to

order logically equivalent debugging actions. Cost depends on how the

structure of the plan/system affects measurements of the actions of and

the ability to repair a particular subpart. It also is determined from

the debugger s Idiosyncratic experiences. For example , If a car idles

unevenly , an experienced mechanic may jar the carburetor in case a piece

of dirt is lodged in one of the small internal passages before he has

done any tests on the ignition timing, spark plugs , or engine

compression which might logically determine that the problem is actually

in the carburetor. His attempted repair in this case is inexpensive

enough to allow testing of a hypothesis developed by induction (“uneven

Idle has in past experience been associated with dirt in the

25

-- --- —~~~~- - -—- - -~~~~-- — ‘—--

- ~~~~~~~~~~~~~~~~~- - ~~~- - - - ~~~~~~~~~~ —~~~~~~~~- - ~~~~-.- - - - - - - ~~~~ - - -

carburetor”) rather than by deduction (“the observations that have been

made logically determine that the problem must be in the carburetor ’).

As an illustration of how cost thresholds enter into reasoning

of debugging, consider a simple home troubleshooting problem. Suppose

you wake up during the night and decide to go to the kitchen for a

snack. When you move the switch on your beside lamp to the “ON”

position , the lamp fails to light. Given that you are motivated to

discover the cause of the failure and , if possible, effect a repair

what would constitute an effective and efficient tack. If there have

been previous problems with the lamp that you have traced to an

intermittent short in its switch, you might operate the switch several

times in an attempt to “unshort” it temporarily . That is, you might

identify the symptom and immediately recognize a possible cause that

your experience suggests may be more likely than other possible causes

and that has an inexpensive (if temporary) repair . If you had no such

reason for suspecting the switch , then you must reason about the circuit

(procedural system) that contains the lamp. The lamp circuit has a

simple linear teleology consisting of the external power supply to the

house, a fuse or circuit breaker, the wall outlet , the lamp plug and

cord , the lamp switch , the light bulb , and several intervening sections

of wiring. The light bulb will not light (the initial symptom you

observed), if there is a fault in any of the components prior to it.

One aspect of an effective general troubleshooting/debugging

strategy is to make observations that , given the structure of the

system, are logically sufficient to exclude or include subparts from a

location hypothesis, which is simply a description of where the fault

could possibly be located in the system. The actions of any subpart in

26

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ _ - -~~~ _~~



a linear teleological structure can serve to refine the hypothesis in

one of two ways. If the actions are normal at point A , then the fault

must be in a subpart subsequent to that point; if the actions are

abnormal at A, then the fault must be in a prior subpart. Thus, if all

subparts can be observed with equal cost and if the debugger has no

special knowledge relating the observations he can make to the

likelihood of possible faults (e.g., the lamp switch has an Intermittent

short , bulbs fail 5 times as often as fuses, etc), then an optimal

strategy is to make observations that will repeatedly halve the scope of

the location hypothesis until the fault is isolated to a single subpart;

this minimizes the expected number of observations that are required to

localize to a single subpart. Thus, in our exan~ lc, because the wall

outlet is near the middle of the lamp circuit , the first observation

would be to see if the lamp is plugged in and, if so, whether another

electrical device connected to the same outlet operates correctly.

Suppose that the lamp proves to be plugged in and furthermore

that an electric clock is plugged in at the same wall outlet so that you

can easily (without getting out of bed) observe whether it is still

operating. If it is, then the fault can not be in the house power

supply, the fuse, or any of the connecting wires prior to the wall

outlet. If the clock is not working, then the fault is in one of those

subsystems (barring two independent failures in the lamp and clock).

Let s assume the clock also is not working. Breaks in house wiring are

ordinarily uncommon, and 80 it is most likely that either the power

supply has failed or the fuse has blown. Since the fuse box is in the

basement, it is “costly” to check, relative to looking out your window

to see if the Street lights are still working. If those lights are off ,

27

________ - - j



- -—------—-— — --- — ‘— ‘r-~~~~ - — — — -- - . -

then the power has failed. If they are on, then you can replace the

fuse. )If that doesn ’t solve the problem , then get your snack, go back

to sleep , and call an electrician in the morning , because the problem is

in the internal wiring of the house.) -

This is an efficient way to isolate the fault , though given

slight changes in the situation other solutions might become better.

For instance , if your bed is next to a window , then the easiest

observation to start with (before looking at your clock) might be to

look out at the street lights. Of course , if they are on, then you know

only that the power supply is intact——only one subsystem has been

eliminated compared to the three or four eliminated by checking the

clock whether it is working or not. The strategy for making

observations seems general in itself , but in this episode requires

knowledge of the lamp circuit and is affected by idiosyncratic knowledge

and by parameters of the situation that determine the costs of making

observations and repairs.

Representing a strategy for troubleshooting/debugging

In order to understand more precisely how different types of

knowledge are used in troubleshooting/debugging , we developed an

information—processing model for a general debugging strategy, like the

one illustrated in the above example. The model is general in the sense

that it is intended to describe the overall structure of successful

debugging episodes by different individuals for different problems in a

range of subject domains. Variations in the structure of any episode

are due to characteristics of domains and problems and differences in

the domain—specific knowledge of individuals . The model identifies the

28 

——— — — — -



points at which these factors produce variations in problem—solving

behavior. It is a very “weak” model in that is far from a sufficient

computational model of troubleshooting/debugging in any domain.

However, it is intended to be a logically sufficient description of a

top—level organizational structure for a strong model. Our model draws

upon prior research on debugging mentioned earlier , particularly the

planning grammars of Miller and Goldstein (1976a , b)

The model is a representation of procedural knowledge and we

have chosen to express it here as a type of procedural network (Figure

5). We considered , but dismissed, the possibility of using a production

system formalism to represent the model. The primary factor in this

decision was that production systems hide the control structure of a

procedure by distributing it across the individual productions. A

second factor was that production systems incorporate semantic tests at

every point in the control structure—— they presuppose that all

procedures are invoked conditionally—— while we found that we wanted to

identify both conditional and unconditional calling relationships. The

procedural network overcomes both of these difficulties. First, it

explicitly represents the overall control structure of the model.

Second , by annotating the connections between procedures, conditional

and unconditional flow of control are conveniently distinguished. An

ATN formalism also has a natural way of distinguishing conditional and

unconditional paths of control. but we found it somewhat less heuristic

for communicating the entire top—down structure of the model . We want

to emphasize that the model could have been represented as a production

system, but with less efficiency and comprehensibility.

The notation in Figure 5 requires some explanation. Each node

29



~~~— -—-~ -~~
- .~ —__—-. ~~~~~~~~~~~~~~~~~

DETERMINE— MAKE—BEST— MODIFY—ACTION —
OBSERVATIONS OBSERVATION DESCRIPTION

CHAR ACTERIZ E

O
~~~~~~~~~~~~~~~~~~~~~~~~~~~

EST :T
~~

TT
~~~~~~~~~~~~~~~~~~~~~~~~~

ETOP

2 a

DEBUG

~~~~~~~~~~~~~~~~~~~~~~~ 

2~ 

— 

— 
~~~— ....~~

~~~~~w’&’ I~~~~ -. MODIFY—
LOCATION— REPAIR

BUG 

4

Figure 5. Procedural network for the top-le vel structure of
a gene ral strategy for troubleshooting/debugging.

30

- - ~~~~~~~~~~~~~~~~~~~~ - - - -- .- -~~ -



- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~

in the procedural network is the name of a procedure defined by its

function. An arrow from one node to another indicates that the

procedure at the tail calls, or passes control down to, the procedure at

the head. If a node has more than one arrow emanating from it , the

calls from it are always made in the order denoted by the integers

labeling the arrows. Solid arrows represent unconditional calls , while

dashed arrows are calls made only if some semantic tests are first

satisfied. Each dashed arrow is labeled with a letter. Table 1

summarizes the semantic tests for each of these labeled dashed arrows in

Figure 5 and lists t~-ie global registers and data structures used by the

model.4 In tracing flow of control in the network, the following

convention is in force: when a procedure finishes (when all its

subordinate procedures finish) it passes control back up to the

superordinate procedure that called it; that superordinate procedure

then calls its next subordinate procedure (if any).

Since a general strategy for troubleshooting/debugging is a plan

for solving problems , its representation as a procedural network can be

viewed in the same way as the plans and procedural systems the strategy

can be applied to. That is, the levels of the network are levels of the

strategy ’s functional hierarchy. The hierarchy is incomplete in that it

does not extend down to the primitive procedures needed to solve

problems in any specific domain. The teleological structure of the

hierarchy is complex (not linear) and is represented in part by the

ordering on arrows emanating down from a node. A second part of the

4
Since much of the communication amo .g procedures is by global

struc tures , the recursive procedure calls in the network in most cases
do not increase the memory demands of the model beyond those that would
be imposed by iterative calls.

31

—— —-~~~~~-~~~ ~~-~~~~~ -- —..— ~~-~~-— ~~~~~~~~~~ -~~~ ~~~~-- .~~~
—- - -_ _ t_ .~ ~—— .— ~~~~~ —-p—-

Fr --

~~~~~~~~~~

-- -

~~ 

-~~~~r~~~~~~~~~~~~~~~~_  
~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~ - -  ~~~~ -

Table 1

Summary of Global Data Structures and Registers

and of Procedure Invocation Semantics of
the Troubleshooting/Debugging Model

Illustrated in Figure 5. -

Data structures and registers

ACTION-DESCRIPTION : list of propositions describing the relation between
observed and nox~nal plan/system actions.

LOC ATION-HYPOTHESIS : description of parts of plan/system where a fault
may possibly exist.

ERROR? : TRUE if no error has been detected or if a repair
had been made and not yet tested; FALSE otherwise.

DELTA-I : unidiinensional value that is a function of the
changes in the AOTION-DESCRIPTION over time .

I : threshold value to which DELTA-I is compared to
judge the expected payoff of determining further
observations .

0 : threshold that detennine s minimum payoff of
observations made.

R threshold that detennines maximum cost of repairs
made .

Procedure invocation semantics

arc label (from Figure 5)

a: if ERROR? = TRUE
b: there exists at least one observation with an expected payoff

greater than 0.
c: if M -~~ ST-O~~ERVATION was called .
d: if ERROR? = FAlSE and DELTA-I > I.
e: if the cost of repairing the parts denoted by the total

LOCATION-HYPOTHESIS is less than R.
f : if the cost of repairing the part assumed to have been

recognized as the location of the fault is less than R.

32

-
--- — - - -- - ----

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

teleologic~ ’ structure is implicit in the semantic tests for conditional

procedural calls. The tests involve global registers and data

structures that are accessed and modified by procedures throughout the

network. Thus, the invocation of conditional procedures and , in fact,

the actions of both conditional and unconditional procedures depends not

only on the actions of the calling procedure but on any procedures that

have previously modified the registers and data structures. We make

this point to emphasize that while the procedures contained in a general

troubleshooting/debugging strategy may seem obvious, the relationships

between them are not and may therefore cause the greatest difficulty in

understanding and inducing how to apply the strategy by observing it in

action.

We will now proceed to elaborate the model, describing the

calling semantics and function of each procedure and indicating the

different types of knowledge required and how they become available to

the problem solver.

TEST. Every time a plan is executed or a system is activated ,

it is implicitly being tested. For instance, whenever you switch on a

light , you are testing it and the circuit of which it is a part. If the

light fails to go on, then debugging is initiated . More clearly, a

technician engaged in routine maintenance consciously tests a system to

see if he can gather data which may cause him to reject the hypothesis

that the system is fully operational. Thus, the top—level procedure in

the model is TEST. The model is always started at TEST. At that point ,

a register ERROR? is FALSE, indicating an assumption that there is no

error in the system being tested. This is also reflected by the initial

value of a data structure ACTION—DESCRIPTION which is NULL. TEST is

also called by REPAIR.

33 

“--~————~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— -~~~~~~~~~~ 



TEST invokes CHARACTERIZE unconditionally. It subsequently

calls DEBUG only if ERROR? is TRUE upon return from CHARACTERIZE.

CHARACTERIZE. The function of CHARACTERIZE is to collect data

that allow modification of the ACTION—DESCRIPTION. If it adds a clause

to the ACTION—DESCRIPTION that describes a discrepancy between observed

and normal actions, then it sets ERROR? to TRUE if it was previously

FALSE. This corresponds to detecting a bug during testir.g.

CHARACTERIZE does its work via three subprocedures,

DETERMINE-OBSERVATIONS , MAKE—BEST-OBSERVATION, and

MODIFY—ACTION—DESCRIPTION. The call to MA KE—BEST-OBSERVATION is

conditional on whether there is a potentia. observation whose payoff (a

function of its cost and expected information return) exceeds a minimum

threshold , which we will denote 0. This means that an observation is

not made if it is too expensive or if it is not expected to alter the

ACTION—DESCRIPTION significantly. The initial value of 0 is set by TEST

and depends on the expected cost of a subsequent system failure if a bug

is not detected and repaired. CHARACTERIZE also may call itself

conditionally , if ERROR? is FALSE and a register DELTA—I , which reflects

the rate of information change in the ACTION—DESCRiPTION is above a

threshold I. This means that when CHARACTERIZE is called by TEST,

either initially or after a repair , observations will be made as long as

the ACTION—DESCRIPTION changes by the addition of propositions asserting

that observed actions are normal or by the deletion of propositions

asserting discrepancies noted previously between observed and normal

actions. In general, this implies that characterization during testing

continues until there are no more potential observations whose payoff

exceeds 0. Thus, testing does not necessarily continue until the

34 

- - -— - -.- - -~~~~-—-~~~~~~~~~~~~ -- -



- V - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~T.’r” _. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —. ,...,- ~ - - -~~-~~ -

debugger is logically certain the system is error—free , but only until

his confidence leads him to belie \ that further observations have a

higher cost than failure to detect a poèsible error would have.

DETERMINE-OBSERVATIONS. The first procedure called by

CHARACTERIZE is DETERMINE-OBSERVATIONS , which identifies a set of

potential observations. The observations are determined with respect to

the current LOCATION—HYPOTHESIS , a data structure describing a

subhierarchy of the plan/system which is initialized to the entire

hierarchy and modified subsequently by the procedure

tIODIFY—LOCATION—HYPOTHESIS by deduction involving the

ACTION—DESCRIPTION. The LOCATION—HYPOTHESIS represents the part of the

plan/system to which a detected bug has been logically isolated or

conversely may be viewed as the part of the plan/system which is not

known to be bug—free given any prior observations. Each observation

identified by DETERMINE-OBSERVATIONS has a potential effect on the

ACTION—DESCRIPTION which can further reduce the extent of the

plan/system denoted by the LOCATION—HYPOTHESIS.

Observations may be experimental, involving manipulations of the

plan/systems parameters (if any). For example, they may require an

electronics technician to change the external control settings of a

device or a programmer to alter the data input to a program. In some

domains, like management consulting , no experiments are possible and

observations must be “naturalistic.”

DETERMINE—OBSERVATIONS accesses the det ugger s knowledge of the

plan/system ’s functional hierarchy and its teleological structure in

order to identify points where informative observations can be made. In

some contexts (e.g., electronics troubleshooting), there may be external

35

-- --- ~~~~~~ — — ------- - a-— - -~~—----~~ -- .
- -

Fr

sources of that information (technical data). Otherwise the hierarchy

must be built up from the lowest level using knowledge about primitive

subparts and the laws that describe their interrelationships . Knowledge

about higher—order subparts derived in this way may be stored in memory

in a “libra ry ” which may allow the debugger to recognize that subpart if

it appears in subsequent episodes.

MAKE—BEST-OBSERVATION. MAKE—BEST—OBSERVATION is second

procedure called by CHARACTERIZE. As noted in the discussion of

CHARACTERIZ E, its call is conditional on there being at least one

potential observation with an expected payoff exceeding 0.

MAKE—BEST—OBSERVATION performs the observation with the highest payoff

as determined from its cost and its potential for affecting the

ACTION—DESCRIPTION. An observation expected to return a large amount of

information may be passed over for a less productive one if the latter ’s

cost is much lower.

MAKE—BEST-OBSERVATION accesses the debugger’s knowledge of how

to make observations (e.g., use of measurement equipment) and of their

expected cost. Most knowledge of these costs is probably acquired

through experience and may be stored in the same library as the

knowledge used to recognize higher—order subparts. That library may

also contain the knowledge of likely outcomes of observations used to

estimate the effect of an observation on the ACTION—DESCRIPTION . This

latter knowledge supplements information about the possible outcomes

deduced from knowledge of the functional hierarchy of the plan/system.

MODIFY—ACTION—DESCRIPTION. This procedure modifies the

ACTION—DESCRIPTION according to the observed actions and is called only

if MAKE—BEST-OBSERVATION was called . The modification involves adding a

36

IIII_ — - - - -
~~~~~~~ -- —  - - 44



. - • -
~~~~~~~~~~~~~~~~~~~~~

~~~~~~

----—--- • - --— -.— T : ~~~i~. i~~u U i ~ TWi’iT~~p

proposition to the description noting either a normal action or a

discrepancy from a normal action. In testing subsequent to a repair , it

may also involve deleting or modifying a proposition already in the

description. Generation of the proposition requires access to knowledge

for deducing the normal actions of subparts and structures of subparts.

DEBUG. DEBUG is the controll ing procedure once an error has

been detected. It is called by TEST if CHARACTERIZE has returned with

ERROR? equal to TRUE. It calls the procedures RECOGNIZE—BUG ,

MODIFY—LOCATION—HYPOTHESIS, REPAIR , CHARACTERIZE , and itself. The call

to REPAIR is conditional. Further details about DEBUG will be given

following the description of its subprocedures.

RECOGNIZE—BUG. RECOGNIZE—BUG is a powerful procedure in that it

can radically alter the overall strategy of logically localizing a bug

at progressively lower levels of a plan/system’s functional hierarchy.

It accesses the ACTION—DESCRIPTION and matches it against a knowledge

library of bugs and associated ACTION—DESCRIPTIONS encountered in past

episodes with identical or similar plan/systems (idiosyncratic

experiential knowledge). If a sufficient match is obtained to a known

bug and the cost of repairing that bug is is less than a threshold R,

then RECOGNIZE—BUG immediately calls REPAIR. If the cost of the repair

is too high to be attempted at that time (R increases as a function of

the number of times DEBUG has been called), then the old

LOCATION—HYPOTHESIS is saved and a new LOCATION—HYPOTHESIS is set to be

the level of the hierarchy at which the subpart containing the

recognized bug is defined . This has the effect of focusing subsequent

characterization on a “suspect ’ subpart. For example , when a mechanic

first examines a car with an uneven idle, the ACTION—DESCRIPTION is

37

~~~
—- - - - — -~~~~~~~~~~ - -~~~~~~~~ ~~~~~~~~~

—
~~~~~~

—- --- —-- -~~~~~~~~~~~~~~~~~~~~~~~~
- - -- .-—-.~~- -



- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— ___ -
~~~~~~~~~~~~~~~~~~~

“uneven idle” and the initial LOCATION—HYPOTHESIS includes the entire

ignition and fuel systems. If he has knowledge that “uneven idle” is

frequently due to dirt in a carburetor passage, and is familiar with the

‘trick” of jarring the dirt loose by striking the carburetor on the

outside, then he may immediately try that repair. If he is not familiar

with that inexpensive repair (or if he is and it doesn ’t seem to work)

and is not yet ready to disassemble the carburetor or use a chemical

cleaner , then he can set the LOCATION—HYPOTHESIS to be “fuel system” so

that he can make further observations which will indicate whether or not

there is some problem in the carburetor. If the problem is logically

localized to the carburetor , then an appropriate repair will be made

with the savings of not having made unnecessary observations to exclude

the ignition system. However, if one of these observations on the fuel

system should make the LOCATION—HYPOTHESIS logically inconsistent with

the ACTION—DESCRIPTiON (as detected by MODIFY—LOCATION—HYPOTHESIS), then

the previous LOCATION—HYPOTHESIS must be restored and modified . Thus,

for example , if further observations prove conclusively that there is no

fault in the carburetor , then the LOCATION—HYPOTHESIS containing the

ignition system and entire fuel system is restored and the

problem—solving process continued from that point.

MODIFY—LOCATION—HYPOTHESIS. This procedure accesses the

ACTION—DESCRIPTION and using knowledge of the plan/system ’s teleology

deduces whether any of the subparts in the LOCATION—HYPOTHESIS logically

can be excluded as candidates for containing the bug. This is

illustrated by our earlier example of troubleshooting when your bedside

lamp fails to light. Initially the LOCATION—HYPOTHESIS includes all the

elements of the circuit. When the observation is made that the electric

38



~

clock is still working, the ACTION—DESCRIPTION becomes “light

inoperable , current available at wall outlet.”

MODIFY—LOCATION—HYPOTHESIS deduces from this that the fault cannot be in

the external power supply, the fuse, or the intermediate wiring and

modifies the LOCATION—HYPOTHESIS according ly.

When the LOCATION—HYPOTHESIS is reduced to a single subpart at a

level of the functional hierarchy, it is reset to contain the subparts

in the level immediately below that subpart. For instance, in

troubleshooting a circuit , if the LOCATION—HYPOTHESIS is reduced to

“voltage regulator”, it is reset to the level of the hierarchy

comprising the immediate subparts of the voltage regulator. Thus, the

bug is localized to progressively simpler (and structurally smaller)

parts of the plan/system.

As noted in the discussion of RECOGNIZE—BUG , if

MODIFY—LOCATION—IIYPOTHESIS should deduce that the ACTION—DESCRIPTION is

inconsistent with a bug anywhere in the parts of the plan/system denoted

by the LOCATION—HYPOTHESIS, then a prior call to RECOGNIZE—BUG produced

a false recognition and the LOCATION—HYPOTHESIS prior to that call is

restored .

REPAIR. If the cost of repairing (replacing or modifying) the

subpart(s) denoted by the LOCATION—HYPOTHESIS is less than the repair

cost threshold R, then DEBUG calls REPAIR. REPAIR accesses the

debugger ’s knowledge how the subpart(s) are designed and implemented to

function as intended . For an electronics technician this may be

something as basic as how a transistor is supposed to be connected and

for a programmer how to write a format statement. On the other hand , a

programmer may rewrite an entire sorting procedure if he determines that

39 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - —~~~---- -,~~~~~ - - - - 44


- - --r w
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

there is a bug in the existing one and believes it is more efficient to

rewrite than to try to localize the bug further. REPAIR also accesses

knowledge about specialized “tools” like soldering irons or computer

file editors needed to accomplish repairs in different domains.

REPAIR sets ERROR? to FALSE and calls TEST. If the repair

corrects the fault then that call to TEST will eventually call STOP,

terminating the problem—solving process. If the repair is incorrect ,

the call to TEST will eventually invoke DEBUG again .

Continuing DEBUG. If the cost of calling REPAIR exceeds R, then

DEBUG calls CHARACTERIZE and then itself. Upon the return from

CHARACTERIZE, the ACTION—DESCRIPTION will have been updated if an

observation was made. If one was not , then DEBUG modifies both R and 0.

It increases R, so that there is a chance that REPAIR can be called even

though the LOCATION—HYPOTHESIS cannot change because the

DESCRIPTION—HYPOTHESIS is not modified . it decreases 0, so that if

REPAIR still cannot be called there is a chance that an observation will

be made on the next call to CHARACTERIZE. Thus, when the process gets

stymied , it frees itself either by making more expensive repairs than

usual or by making observations that are more expensive or less

informative than usual.

Further comments on the model. The strategy we have outlined

here is a competence rather than a performance model. Deficiencies in

any of the knowledge required may cause it to fail. In particular , the

knowledge of each level of the plan/system ’s functional hierarchy and

its teleological structure is crucial for modif ying the

ACTION—DESCRIPTION and the LOCATION—HYPOTHESIS. Note that it is not

necessary to know the hierarchy from top—to—bottom but instead only down

40



~
-

~
-

~
——- -- - - - -

~
- —  ‘ —.- — —- — - ~~~~

- --- -—--——- 

~~~~~~~~~~~~

to the level at which one is willing to pay for a repair. Thus, in

working on a circuit one may understand (from technical data) the

functioning of the voltage regulator with respect to other subcircuits

at that level of analysis, but not understand the internal structure of

the voltage regulator. The available knowledge is sufficient for

localizing a fault to the voltage regulator and this may be adequate if

one is willing to replace that entire subcircuit (knowing that only one

primitive component may have failed).

The only explicit error recovery mechanism in the model is for

false recognitions by RECOGNIZE—BUG that cause an inappropriate jump to

a lower level of the hierarchy. The model backtracks from these errors

by saving and restoring earlier copies of the LOCATION—HYPOTHESIS.

Thus, these errors increase costs, but will not directly lead the

process to complete failure in the way other knowledge deficiencies may.

Explaining the expertise of expert debuggers.

Given that a general strategy and different types of

domain—specific knowledge underlie troubleshooting/debugging behavior in

the ways suggested by our model , we can ask about the contribution each

makes to expert performance. Is the expert an expert because he

d2velops a superior general strategy and adheres to it religiously? Or ,

does his expertise stem more from his extensive knowledge of the problem

domain , including the fundamental declarative knowledge, specialized

procedures for making observations and repairs, and idiosyncratic

libraries of information about important recurring high—level subsystems

and about the bugs frequently associated with observed patterns of

symptoms ? The introspections of the expert in the dialog in Figure 2

41

r - ~~~——~~
-
~~~~~~~~~~~~~~~~ :~~~~? ‘ - - ------- ‘-‘- -.-—-— _ -_—---_-‘-~~

_ —— - -~~--~—--- -~~-— -~ - - —

are consistent with the latter explanation. He attributes his easy and

efficient solution of a problem to his “familiarity ” with the fact that

an observed symptom is (almost) always associated with a particular

fault, although he cannot articulate how he was able to access that

fact.

In terms of our model for a debugging strategy, the expert in

the dialog achieved a solution by calling his RECOGNIZE—BUG procedure,

bypassing some of the progressive top—down localization and

characterization which slowly converge on a fault by deductive

reasoning. He supplemented his deduction with identification.

Localization by identification is also exemplified by the mechanic who

first jars the carburetor to attempt to remedy an uneven idle. These

examples illustrate how by using a library of knowledge acquired through

experience, the expert can choose to focus at a low level of

plan/system’s functional hierarchy without deducing the location of the

bug from observations made at higher levels. However, since the

information in the library may sometimes be applied in inappropriate

contexts (false matches to ACTION—DESCRIPTIONS), the expert must

backtrack and integrate observations made at several levels in the

system much more frequently than required when localization is strictly

top—down and deductive. Failures in backtracking can reduce efficiency

by causing the expert relying on identification to make redundant

observations.

This explanation of debugging expertise seems to be consistent

with data we collected from five programmers with different degrees of

experience.5 They ranged from one with a masters degree in computer

When we say “programmer” we do not necessarily mean an
individual who was trained and works specifically as a programmer . For



-- - -  
- 

—
~~~~~

-—
~ i~~~~~~~~~~~~

—
~~~~~~~~~

•’ - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

science and several years of advanced programming experience to a total

novice who had no formal instruction in programming and only a few veeks

of self—instruction . Within this range were students and professionals

with from one to several years of instruction and practical programming

experience.

We asked these programmers to debug a short BASIC program and to

write a commentary on their reasoning as they worked. They had access

to a BASIC interpreter for running and modifying the bugged program.

They were provided with the program description , listing , and sample

input—output shown in Figure 6. It is a sorting program designed to

interact with a user at a terminal. It accepts numbers one at a time ,

acknowledging each by printing “BON APPETIT” , until the user types a

zero signifying the end of the list. The list sorted in ascending order

is then printed. The program was written by a member of the research

team and is deliberately obscure so that it would not be completely

trivial to experienced programmers despite its brevity. A more elegant

solution is possible using fewer variables and less complicated

parameters for FOR. .NEXT loops. However, the program shown is correct

except for a single character. Line 100 should be X C — J + I instead

of X = C — J + . Note that such an error could be the result of a

simple reading or typing error in entering the program , rather than a

design error. However, it is not the type of error that can be detected

by the parser or runtime system of a programming environment; it is a

logical error that causes the program to produce incorrect results when

it is executed, as can be seen in Figure 6. In fact, the effects of the

our purposes a programmer is anyone who writes programs inc ident to his
job or (his activities a student),

43

-—- -~~~~~~~~ _~~~~~~~~~

- ~~ ~~~
,,

~~~~~~~~~ 
_ - - - —-----

D.’ ~;c rip t ~
T h t c  progr am inputs numbers (up to 100 numbers).

sorts each number into ascending order as it i s  input s
and prints the ordered inputs when a keg value of zero is tnput.

it) DIII N (100)
20 C = I
3~) INPUT N (C)
40 YF N (C) 0 THEN 180
50 FOR I = I TO C
60 IF N C  :>= N (I) THEN 140
8 O D ~~= I
90 FOR U D TO C
100 X = C — U -F 1-

110 N (X 4 1) = N (X)
170 NEXT U
130 N (I) N (C + 1)
140 NEX I I
150 PRINT “DON APPETIT”
1 6 0 C - C + 1
170 COTO 30
1RO F O R G - X T O C — 1
190 P R I N T  N (G)
200 NEXT Q
210 END

Sample input/output:
*RUN
EXECUTION CF YOUR PROORA1I

/7
liON APPETIT

15
DON APPETIT

34
DON APPETI r

10
DON APPETIT

88
DON APPETIT

:0

IC)
1 5
0
77
88

E X ECUT I ON COMPLETED AT LIME 210

Figure 6. Debugging problem given to five progra~~~rs of varying
experience.



J~~~~~~~~~~ IT 1TT~~~~ T*I

bug depends on the input and if the user enters a list in perfect

reverse order (e.g., 81, 54, 33, 12), then the program correctly sorts

it. A complete ACTION—DESCRIPTION of the bugged program at its top

level is that if an incoming number belongs at the beginning or the end

of the existing list it is appended correctly , but if it needs to be

inserted between two previous values, it is lost and replaced by a zero.

All of the five programmers who participated were able to debug

the program , although the amoun t of time they required varied from less

than an hour for the most expert to several days (a few hours each day)

for the novice. Also , they varied in how much of the program code they

modified in order to eliminate the bug. Figures 7a, 7b, and 7c are

segments of the written commentaries generated by the expert , an

intermediate programmer, and the novice, respectively . The concepts the

expert uses to describe the program reflect his specialized knowledge of

sorting algorithms, which he used to identify functional subsegments of

the program. He immediate tried to identify bugs at a low level of

program structure —— in storage allocation and in incrementing counter

variables. Although he examined the sample output at an early point, he

does not articulate an ACTION—DESCRIPTION. The structure of the episode

reflects repeated attempts to use specialized knowledge to predict and

search for likely types of bugs: an emphasis on recognition as opposed

to localization. His repair , not shown in the commentary , was to

rewrite the nested sorting loops in a more straightforward form ,

eliminating the unnecessary variables. Thus , he made a judgement that

it would be more efficient to substitute a block of code, than to try to

isolate the bug further and then make a more minima l modification.

Figure 7b is the commentary of a programmer with several years

45

- - - - _ _



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~

Read description.

Check DIM statement.

Look at output.

Bon appetit?

C points to next empty word in N.

When input = 0, then 180: print N(1) to N(C-l) or stop. Look for C ~~- 0+1.
Found on 160.

Sort takes place between 50 and]A0. If N~ ? all of the Ni’s, nothing is done.

Get to 80 If N <N1.

The 3 loop (90-120) Is supposed to move a].]. of the entries between ~~~~ and
up one.

It does some sort of Inversion. I think this is unnecessary, and also the variables
D and X. I am going to try it out on the terminal.

Attached is the program I typed In, before I tried to run It. (Note that it
diff ers from my scribbled notes . I didn ’t look at the notes while I was typing
It In.)

-

I tried sorting the numbers
-

9, 6, 1, 7, 13

and it worked.

Figure 7a. Debugging commentary on sorting program by a fo rmally
trained, highly experienced programmer.

----- ~~~~~~~~~~ .~~~~~~ - —~~--~~~~~~~~~~~ - - —-- - — -—-- - ---— -- - - -~~ ~~~~~~~ ~~~~~~~~~~~~~~ —~~~~~~~~ --~~ - - ---~ ~~~---~~~~~-~~ -- ~
_
~

_~4

_ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

Think about what It should ~1o. Visualize number coming In and finding its
way to the top of list.

Note that 0 is In the wrong place and 31i~ is missing -— in fact; 0 is ~~ the
~ place.
314 is the 3rd Input (check first to see if’ It’s first or last —— no).

Now go to program.

Since 0 was wrong, check the branch to 130 . Don ’t see anything wierd there —-
output loop looks QC.

Look at sort loop (5O_l1~o I guess), -which skips if current (new input) is geq.

Inner loop looks complicated, in fact, bizarre. Rave to puzzle it through --
purpose is to shove everybody down to insert new guy. I knew that because it’s
a loop (should have known it anyway) .

100 puzzling -- next one in the list. Push It one lower down. Looks bad --
N(x+].) ..- N (x) will lose the previous value of’ N(x+1). (hypothesis) Test with
given Inputs by tracing values of everything. Not working -- I’m not getting
anything pushed anywhere except out of sight -- the 15 is moving higher instead
of the 77. Try again.

Note: D is unnecessary since It doesn’t change Inside the 3 loop -- I wouldn’t
be destrcxyed if 90 said for J = I to C. Think about that :, is this strategy
reasonable -- yes, I have a place where the current Input is lower than this
element , so I have to change everybody from here on up. So 3 I to C is fine.

~it I Immediately get N(3) ~~
- 15 which is dumb . (Think about whether BIP thinks

X
-
= C-J+l gIves 2 or if 0, then array error would have occurred, so must be 2.)

Seems that N(2) = 77 N(3) = 15 whIch is backwards. Keep going. C changes
to 3 but that should have zapped the 15 in N(3) . No -- missed 130 which stuffs
15 back Into 1!! Seems that I get 2, N(2) compares. NO: Q(because N(C) is
no longer the current input.

Looks like I just lost the 77 but that ’s impossible, so have to try again
with 31~ input.

Stymie.

Wait. Strategy makes sense -- put new one up high, move the others up one at
a time. N(14) gets the 314, so N(3) is available for 77 to move to. Value of
X should be 2 to make that move . X ~~

—
C-J+1 is 3.

NO. The first t ime was wrong. Back up to 90 again with I = 2 (i.e., comparing
31
~
with 77).

Figure 7b. Excerpt from debugging commentary on sorting program
by a programmer of intermediate experience.

147

~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ - -

No, wait a second , I guess it’s O.K. for it to print o it should
just print it first. Maybe that’s where the problem is. Even
though I still haven ’t f i gured out how the program is supposed
to work , I’l]. check out the parts that deal with switching from
the ordering procedure itself to printing the final output, and
see what I can find.

Of course s Zero is going to be the last value entered , so
it will have the highest numbered subscript and get printed last.
That’s certainly one of the problems with this program, although
it may not be the only one. I’ll have to figure out how the
whole thing is supposed to work. But I have a hunch that if
line 40 (“IF N(C)=0 THEN 180”)gets moved down between lines 160
and 170 (the end of the main subscript-reassigning loop) then
the program will work the way it should. This move should assign
0 the lowest subscript before t~l1ing the machine to print out,
assuming the rest of the program was written correctly . Let me
check that out...

160 C~C+1 - --so that’s how the subscript
gets incremented

(Break--overnight)

I just realized that although 0 was initially assigned the
highest subscript (I think), it was not printed last when the
numbers were printed out in subscript order (lines 180 to 200).
This means that the subscripts of some of the other numbers
(namely 77 and 88) were higher than the subscript for 0 by the
time the printing was done. I’m going to try to run through
the program mentally , feeding in the numbers used in the run
shown here, to see what this program is doing.

when you get to INPUT 34,
N(1)~~l5 N(2)=77.

N(1) no longer has a value-*$(2)=15 N(3)=774-34 is lost here
N(2) no longer has a valuesN(3)=15 - N (4) 77

Although I still don ’t grasp it completely , the strategy
of this program seems to be to reorder the subscripts of the
input numbers by comparing each new number one at a time with
each of the numbers which have already been typed in and: -

--If the new number N(C) is less than the number it is being
compared to, N(I), this increment the subscript of each of the
numbers that are greater than or equal to N(I) and give the new
number the old subscript of N(I).

--If the new number N(C) is greater than the old number N(I) to
which it is being compared , leave the subscri pts alone and
compare N(C) with the next old number.

Figure 7c. Excerpt fran debugging commentary on sorting program
by a novice programmer.

148

—- -— -~~~~~-~~~~~—-~~ -- —-

___________ -

- -

~~~ I

of practical experience , but little formal instruction. There is more

evidence of a general debugging strategy and less use of specific

knowledge about sorting than in the commentary in Figure 7a. Before

looking at the structure of the program , the programmer tries to

describe the bug ’s symptoms in the program output—— to develop an

initial, top—level ACTION—DESCRIPTION . The observation “that 0 is in

the wrong place” (she incorrectly assumes that the 0 in the output is

the 0 the used typed to end his input) leads her to locate and

characterize the segment of the program designed to stop the input cycle

when a 0 is typed by the user (she sets her LOCATION—HYPOTHESIS to that

segment). When she (mentally) tests that segment and observes no

evidence of a bug, she focuses on the nested loops that sort the array

(resets the LOCATION—HYPOTHESIS to the top—level). Her reasoning in

using the zero in the output represents a call from DEBUG to

RECOGNIZE—BUG in which an Incorrect ACTION—DESCRIPTION was matched to

information in a library of bugs and their manifestations.

The programmer ’s experience allows her to judge that some of the

code in the sorting ioop is “bizarre”, and thus a likely location of the

bug. She characterizes that code by mentally tracing execution and

observing how an actual (as opposed to abstract) set of numbers are

moved within the array. She has some difficulty in generating an

ACTION—DESCRIPTION from her observations and therefore tries to apply

some knowledge she does have about sorting when she decides that line

110, N(X + 1) — N(X), looks susp icious (another call to RECOGNIZE—BUG) .

In some sorting algorithms , such a transfer of values might lose the

contents of an array location , but in this case the line is correct.

(One of the other intermediate programmers also suspected this line).

49

~~~~~~~ ~~ -—~~~ - -- ~~~— -- 
-

-~~ - -~~~~~~~~~~~ —~~~~ --— - -- ~~~~~~~ - ———~~~~~— -— - - -

Thus , she has to backtrack from this attempted identification of the

error and resumes her characterization of a segment of the nested loops.

Eventually , she did identify and repair the bug. Like the expert , she

tried to use specific experiential knowledge to shortcut a top—down

analysis via identification , but did not have the knowledge needed to

succeed on that basis. (She might have solved the problem more quickly ,

but unlike the more expert programmer . chose to localize the bug within

the sorting loops rather than rewrite them completely.)

Figure 7c is one of six pages of commentary generated by the

novice programmer (who later displayed better than average programming

skills for his degree of experience). He worked on the program in four

separate sessions and eventually did debug it. His commentary reveals

how his unfamiliarity with the fundamentals of the BASIC programming

language and of program organization made it an effort for him to

perceive the program at a high level. He begins by spending

considerable effort characterizing the code line—by—line with no good

idea of what he is looking for, since he fails to generate an

ACTION—DESCRIPTION beforehand . In fact , he did not report looking at

the input—output data before the second session. Prior to his

successful solution he attempted several “irrational” minor repairs

based on his misunderstanding of single lines of code and their function

in the program. Like the most expert programmer. he searched for bugs

by examining the code, but unlike the expert he had no basis for making

rational predictions for what the bug might be.

In general, these data are consistent with the view that the

expert debugger is an expert—— that he solves problems with minimal

expense—— because he has a great deal of experiential knowledge that

50

— --- - -——--- —.- -- --———-—-——.-------— .—“- ----- —— -- -- - —- ~~~~~~- —— p a~~~~~~~ ~~~sk — S -

- ~~ _______

allows him f requently to follow cost—saving al ternative pathways within

a general debugging strategy , as represented in our model by the

procedure RECOGN IZE—BUG. It is not seem necessary to postulate that he

has a general strategy superior to that of somewhat less skilled

debuggers in order to explain his expertise. Instead , he simply seems

better able to exploit the benefits of an identification substrategy

which even novices try to use.

Weaknesses in the debugging of inexperienced programmers

The commentary in Figure 7c shows that an inexperienced

programmer can have considerable difficulty with a debugging problem

because of the effort required to understand how the program is supposed

to accomplish its intended function. Of course, programmers most often

encounter their debugging problems in programs which they themselves

designed and imp lemented , and thus can understand. However as we noted

earlier , programmers sometimes knowingly implement and run programs that

are incorrect, finding it more efficient to develop correct code by

• debugging, than to derive the correct code initially by logical

analysis. In these cases, problems in debugging can arise because of

diff icul t ies in knowing how to design code for repairs , rather than in

locating the bug. Sometimes, presumed understanding of some code can

actually impede programmers ’ debugging of their own programs. If they

write code they are certain is correct and manage to insert a bug in it,

then (1) that code is the last place they will look for the bug, despite

observations that might indicate that it is a likely location and (2)

when they do look at the code , they may miss the bug, because they see

what they intended the code to do and not what it actually does. Thus,

51

a programme r debugging his.own program may lose some objectivity, while

one debugging another ’s program may have fundamental problems

understanding how the program is supposed to work - There are some

programmers in real contexts who are faced with the problems of

debugging programs written by someone else: for examp le , consultants and

members of teams working together on a large project. They lose the

advantage a designer ’s knowledge of his program , but by the same token

are less prone to “blindness .” They may face situations where they have

d i f f i culties debugging a program becaus e they don’t have the knowledge

needed to understand it , rather than because they have inadequate

debugging strategies. In other troubleshooting/debugging domains, like

electronics and mechanics, technicians routinely face problems with

devices unfamiliar to them. In these situations , they must turn to

technical data for the devices or be able to synthesize the device’s

st ructure from the bottom up, if th ey are to e f f ec t a repair.

We have proposed that expert debuggers have general , top—down

debugging strategies , but that their expertise is defined by their

mental lib rar ies of domain— and problem—specific knowledge gained

through their experiences. Inexperienced programmers obviously lack

comprehensive libraries. But is this the sole source of their

difficulties , or are their general debugging strategies also deficient

so that they do not make the most effective use of the specific

knowledge they do have. This is an important question from the

viewpoint of instruction, since it would be more feasible to t ry to

teach a well—defined general strategy , than a large, ill—defined corpus

of specific knowledge. The commentary of the novice programmer

debugging on the sort ing program does seem to reflect a strategy less

52

efficient than those we found in the commentaries of more experienced

programmers who also had difficulties with the problem. However, the

knowledge required just to understand that program was so far beyond the

experience of the novice that it could have been the case that he had a

good strategy available but had trouble executing it.

In an attempt to determine whether inexperienced programmers

have difficulties debugging because they lack an effective general

debugging strategy , we examined programming data collected from students

learning to program. The data originated from three groups who had

participated in the BASIC Instructional Program (BIP) 1975, a CAl system

for teaching introductory BASIC programming to people with no prior

computer experience. In all there were data from 100 college students,

who wrote on the order of 40 short BASIC programs each during 10—15

hours of terminal time in BIP. The original use of the data had been in

evaluating BIP’s effectiveness for teaching programming and in examining

the way students used some of BIP’s subsystems for writing and debugging

th eir programs .

The data are quite comprehensive records of students ’

interactions at the terminal, which we will call chronologies here. The

information contained in the chronologies for the three different groups

varies somewhat , since analyses of the earlier versions had suggested

improvements in format and content. For instance, the first and second

groups of chronologies do not directly indicate the order in which lines

of code were entered by student; the code was recorded on the chronology

when the student listed or ran his program and it was possible to

determine small changes in the code by comparing successive listings.

In the third group of chronologies , each time the student typed a line

53

~~—.~~~-~~~~- - —-— ---~~~~~~~~~~

~
-

~
-- - -

~ —- ~~~ -

of code it was written to the chronology and , in addition , when he

listed and ran the program , the order in which the lines had been

entered was stored with the listing. Since we found this information to

be useful, our analyses focused primarily on the third group of

chronologies.

Figure 8 is an excerpt from a chronology. In general,

chronologies record the sequence of BIP commands and lines of program

code typed by students when they worked on their programs. The commands

include:

LIST — lists the student ’s program
RUN — executes the program
DEMO — executes a model solution stored for the task the

student is working
HINT — prints a hint stored for the task
TRACE — executes the student’s program and prints for each

line the values of any variables that changed
FLOW — executes the program one line at a time, showing

how variables change, and using the CRT to indicate
the flow of control graphically

MORE — executes the program and the model solution on
test values and compares their output in order to
judge whether the student’s program is correct

Lines of code entered are denoted by the keyword LINE, or SYNTAX ERROR

if the student typed an incorrect line that could be detected by the

parser. Each entry in a ch~-onology includes the time at which the

command was typed by the student. It does not always include the exact

response of BIP to that command. For example, while LIST does put the

program listing on the chronology , HINT only puts the hint number, not

the text of the hint.

The chronology data constitute an indirect window onto students’

reasoning as they designed and debugged their programs. For example, if

a student ran a DEMO after partially coding his program, it might be

54

~~~~- - —-~~~~~~~~~ -- — —-~~~~~~~~~~~ -~~~-~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ —-- - - _ _-—



¶
r u ~i

5/9/77 10: 16: 51
same p r o g r a m
output: TYPE IN TWO ODD NUMBERS. THE LOWER ONE FIRST.
i n p u t :  1
i n p u t :  5
o u t p u t :  THERE ARE 7 NUMBERS BETWEEN THEM.
co mp l e t e d  at line 42

f ) e ’w
5/9/77 10: 17: 17

output: TYPE IN TWO ODD NUMBERS, THE LOWER ONE FIRST.
input: 21
i n p u t :  23
output:  THERE ARE 25 NUMBERS BETWEEN THEM. -

abor ted at l ine 42

list
5/9/77 10: 19: 09
same p r o g r a m

l i nu
5/9/77 10: 19:42
41 PRINT “THERE ARE “ ;C~- ” NUMBERS BETWEEN THEM”

d emo
5/9/77 10: 19: 47
order program l ist ing
30 01 C-=0
19 10 PRINT “TYPE IN TWO ODD NUMBERS, THE LOWER ONE FIRST. ”
2 15 INPUT L,H
3 20 IF L=H OR L>H THEN 100
7 26 IF L/2—0. 5<>INT(L/2) THEN 150
20 27 IF H/2—0. 5<>INT(H/ 2) THEN 155
9 30 FOR I =L TO H STEP 2
10 3 5 C C +l 

-

11 4O NEXT I
31 41 PRINT “THERE ARE “;C; ” NUMBERS BETWEEN THEM~27 42 STOP
29 100 IF L>H THEN 110
13 101 PRINT “YOU TYPED IN THE SAME NUMBER TWICE , TRY AGAIN

WITH
14 102 PRINT “DIFFERENT NUMBERS. “
18 103 COTO 15
16 110 PRINT “YOU SHOULD TYPE THE LOWER NUMBER FIRST, TRY

AGAIN. ”
17 Iii 0010 15
25 150 PRINT “THE LOWER NUMBER WAS NOT ODD, TRY AGAIN.

— 23 151 GOTO 15
24 155 PRINT “THE HIGHER NUMBER WAS NOT ODD. TRY AGAIN.
26 156 0010 15
28 999 END

input: 21
input: 23

Figure 8. Excerpt from a ~~P chronolo~~r. The student was debugging
a program at this point.

55

IL
- —- ——- ——— -~~~ — — - — •_s —-S—-— --— ~~~~ --~~~~~~~ — -- —— --•-  -

- -~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



P..,. 
~~~~~~~~~~~ 

— -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~

— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

‘-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.

- --_.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -

(Figure 8 continued)

line
5/9/77 10:21:03
41 PRINT “THERE ARE “ ;C,- ” NUMBERS BETWEEN “;L ;“ AND “.H

5/9/77 10: 21 :08
order progr am list in g
1 O1 C=O
2 10 PRINT “TYPE IN TWO ODD NUMBERS, THE LOWER ONE FIRST. ”
3 15 INPUT L.H
4 20 IF L=H OR L>H THEN 100
5 26 IF L/2—0. 5<>INT (L/2) THEN 150
6 27 IF H/2—0. 5<>INT (H/2)  THEN iss - -

7 30 FOR I~ L TO H STEP 2
S 35 C=~~C+1 

—

9 4O NEXT I
23 41 PRINT “THERE ARE “; C; ” NUMBERS BETWEEN “ ; L ,“ AND “ ; H
11 42 STOP
12 100 IF L>H THEN 110
13 101 PRINT “YOU TYPED IN THE SAME NUMBER TWICE. TRY AGAIN

WITH “

14 102 PRINT “DIFFERENT NUMBERS.
15 103 0010 15
16 110 PRINT “YOU SHOULD TYPE THE LOWER NUMBER FIRST, TRY

AGAIN. ”
17 111 0010 15
18 150 PRINT “THE LOWER NUMBER WAS NOT ODD, TRY AGAIN. ”
19 151 OOTO 15
20 155 PRINT “THE HIGHER NUMBER WAS NOT ODD. TRY AGAIN.
21 156 GOTO 15
22 999 END
*
o ut p u t :  TYPE IN TWO ODD NUMBERS. THE LOWER ONE FIRST.
input: 21
input: 23
output: THERE ARE 2 NUMBERS BETWEEN 21 AND 23
c o m p l e t e d  a t  line 42

5/9/77 10: 21:32
same p r o g r a m

1’ u t .

5/9/77 10:21:45
01 C~—2

56

- --- —— ~~~~~~ - - -~~~~~~~~~~~ . . - — -— --- - - -~~~~~~~~~~
-- -

~~~~~~~ 
-- -—

~ -
~~~~~~~~~~~~~~

_
~~~~~~~~~~~

--_
~~~~~~~~~~~ 

-
~~~~~~ 

-
~~~~~~~~~~

that he has become confused about the problem or alternatively that he

is designing and implementing the program in sections and is ready to

examine the requirements of a new section. Looking past the DEMO In the

chronology , if the student changes code he had already entered , we would

opt for the first interpretation ; if he entered some new code, we would

choose the second, Tracing through a chronology and trying to

reconstruct what the student’s strategy was resembles the task of an

archaeologist working to infer the values and motivations of a society

6from physical artifacts.

Our initial examination of the chronologies was directed at

identifying debugging episodes involving logical bugs. These are bugs

that let the program execute but cause it to produce Incorrect output

(e.g., GOTO an incorrect line number), as opposed to those that are

syntactic or context—free and are detected by BIP’s parser or runtime

system (e.g., GOTO a non—existent line number). Further, we looked for

episodes where it seemed that the student considered the program to be

completed at the time he detected the bug, as opposed to episodes where

the debugging seemed to be integrated into design—— i.e.. where the

student was trying to discover how some unfamiliar programming construct

worked. These distinctions had to be inferred by looking at how the

program was coded and by how readily the student seemed to change the 
- 

-
~

program . One sure clue that a student thought a program was complete

was his calling BIP’s solution checker with the MORE command . Since BIP

requires that a student RUN his program before MORE will be executed ,

typing MORE implies the student had RUN his program and thought it was

correct.

6 It has the sane potential pitfall that the researcher ’s own
world view restricts the interpretations he might see.

57 

~~~~~~~~~~~~~~~~~~~~~~ _ - _ ~~~~~~~~~~~~—~ 



~~~~~- -~~~~~~~~~~~~~~ -—- -~~ 

Most of BIP’s programming tasks involve interactive programs

that process input from a “user.” In programs where flow of control was

conditional on user input , we found many episodes where the student ran

his program with inputs that did not cause a bug to manifest itself and

then typed MORE. In most cases, the inputs used by the solution checker

did detect the bug, although sometimes the solution checker incorrectly

accepted a student program with a bug in it. Thus . it became evident

early in our examination of the chronologies that many students did not

recognize the need to test programs across conditions that would

exercise the different branches of conditional control structures. -:

Our original plan was to analyze the debugging episodes we found

by parsing them with context—free debugging grammar similar to that

found in Miller and Goldstein’s (1976b) (Figure 3) planning/debugging

grammar for LOGO programming. One feature of the context—free grammar

rules is that a particular higher—order node (left—hand side of rule)

may be expanded in terms of alternative lower—order nodes (right—hand

side). One of our goals after parsing the episodes was to examine

alternative expansions of a higher—order node to determine what

semantics of the context determined the choice among alternatives. Thus

if there were a rule

repair :— replace—code I modify—code

(the “I” is read as “or”) we would be looking for features of a context

that predicted when a bug was repaired by replacing old code and when it

was repaired by some minimal editing of existing code. By determining

the semantics, a more powerful ATN grammar then could be developed for

describing the episodes. Once the general grammar describing the

debugging strategies was formulated , our plan was to characterize the

58



differences between students in terms of alternatIve subsets of the

general grammar they employed and , in particular , to see if the poorer

debuggers were those with degenerate versions of the debugging grammar.

The effort to derive a grammar encountered problems immediately.

At the lowest level, where we were trying to identify rules mapping onto

the chronology keywords (RUN, LI ST , DEMO , LINE, etc) and the timing

information , we found an unexpected degree of variability both within

and between students. For instance, by examining several episodes we

might derive

test— repair :— RUN + <long latency> I
RUN + <long latency> + test—repair

(the “+“ is read as “and then”) as a general rule of the grammar.

However, in some other episodes we would then observe students changing

a line of code, listing the program , and then changing that line again

without ever having RUN the program to test the first repair. We soon

realized that because the programs were on the average short (a maximum

of about 30 lines) that student might have been testing the programs by

looking at a listing and mentally tracing its execution rather than

running it. We could have added this alternative to the rule for

test—repair , except that LIST + <long—latency> occurred in other rules

as well. In fact, LIST following a repair was a common “cliche” in

students’ behavior: evidently each time they changed some code, many

students listed the program and looked at it briefly, simply to verify

that BIP had inserted the code as they Intended . Although , the time

spent for such a visual check is less on the average than that spent

mentally executing a program , the observed times overlapped enough to

make use of the time data to distinguish these cases unreliable. In

59



- — — v’..,. - ‘ . W~~~~ - --,.~.. ~~~~~~~~~~ 
.... --.r-- -. ,, ,_. _~~~~

_ . 
~~~~~~~~~~~~~~~~~ ._ .-. ,—r- -,v’ .-,- _’._.,, _‘.,. ,. _‘._ .,_ _,.. _ .

~~

other contexts , LIST often did not occur when it was expected ; we

hypothesize that for shorter programs , an earlier listing could still

have been on the CRT after a few intervening events. Thus, LIST was not

a reliable indicator of when the student had been examining the program ,

and when it did occur even examination of the surrounding context was

insufficient to determine the type of thinking the student was engaged

in. It soon became clear that even the lowest level rules in the

debugging gr amma r would be complicated by alternative and optional

patterns of keywords , and that the same patterns would be included in

several rules . In most episodes , the only way to piece together what a

student’s strategy had been was to integrate sem~~tic clues from

throughout the episode, and even that involved making sometimes tenuous

inferences. We found therefore that it does not seem possible to derive

reasonable debugging grammars, of the type proposed by Miller and

Goldstein, for describing a range of episodes in the BIP student

chronologies.

Even though we were unsuccessful at describing the debugging

strategies of different BIP students in terms of a unifying

information—processing model, the episodes we examined were very

info rmative with respect to identif ying weaknesses in the debugging of

these inexperienced programmers. As we mentioned , there were frequent

failures to test programs thoroughly when they were first run. This

failure generalized to testing after repairs as well. Although there

were ambiguous cases, in most instances the subsequent context made it

clear that RUNs we judged we should have found , were not being replaced

by mental execution of the program. As a result of inadequate testing ,

students failed to detect bugs in their programs. Not surprisingly, we

60

~

-,

.
—- - --.

~~~~~~~~~
‘.-

~
--- -

~~~~~~~~~~~~~~~
--

~~
-- -.-

~~~~~~~~~~
—-

~~~~~ - - — - - —.  

also observed that even when students did detect bugs by running their

program , they did not rerun the program with varying inputs , which by

exercising different parts of the program ’s control structure would

produce output useful for localizing the part of the program containing

the bug (i.e., they did not CHARACTERIZE).

One of the most striking failures to test and characterize that

we found in the chronologies involved the program shown in Figure 9. It

is one student ’s attempted solution to BIP’s task CALCULATOR, which

specifies an interactive program for (1) getting two numbers from the

user, (2) getting a numerical code corresponding to one of the four

primary arithmetic operations (+, — , *, /) , and (3) printing to the

terminel the result of applying the specified operation to the two

numt’ers. The student ’s program has a fundamental flow—of—control

bug(s), which results in execution “falling through” the code for

computing and printing the results (lines 80 to 150). Thus, for

example , if the user typed a “1” to specify addition , the program

b ranches correctly to line 120 to do the addition , but inco rrectly

continues on to do subtraction , multi plication , and division.

S~milar ’y, for subtraction, the multiplication and division are computed

as well. Only fo r division , the f ina l branch in the control structures

does the calculator compute and pr in t only what it is supposed to. To

co rrect the program , th ree lines , 125 , 135, and 145 , all of which shou ld

be STOP or GOTO 199 , must be inserted. The student who wrote the

p rogram failed to debug i t ; in fac t , he fa i led to detect the bug at all ,

although he called the solution checker and had it reject the program

six separate times!

The major cause of the student ’s d i f f i c u l t y was that eve ry time

61

~~~~ _- .~~~~ -~~ -~~~~~~~ --_-~~ -- — — -  .~~~~~ _ - 
~~~~~~~~~~~~~~~~~~~~ --—---


- -
_. -

~ - -—,--- .~,.
-- ----,--,--._~ ,— --.- --.,—---- . - - - —--. .-~~.,,. r u • ~~~~~~~~~~~~~

--, - —

a— ..~~~~~~~~

10 PRINT “THIS IS A CALCULATOR ”
20 PRINT “TYPE 1 TO ADD, 2 TO SUBTRACT . 3 TO MULTIPLY. AND 4 TO DIVIDE”
30 INPUT C
40 PRINT “NOW CHOOSE A NUMBER ”
50 INPUT X
60 PRINT “NOW CHOOSE ANOTHER NU~’l0ER”
70 INPUT V
80 IF C = 1 THEN 120
90 I F C = 2 T H E N 130
100 IF C = 3 THEN 140
110 IF C = 4 THEN 150
120 PRINT “THE SUM IS “, X + V
130 PRINT “THE DIFFERENCE IS “ ; X — V
140 PRINT “THE PRODUCT IS “ ; X * y
150 PRINT “THE GUOT lENT IS “ ; X / V
199 END

Figure 9. A student ’s solution to BIP’s task CALCULATOR. The program
has a recurring flow-of-control bug, which the student
failed to detect because of inadequate testing.

62

~~~~~~~~~~~ ~~~~~~
. - — -  - - - -~~~~-~~~~--- ~~~ - ----- - ~~—--



~ - 
‘ : -

~
--

~
---- - ---

~
-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— -- - ---- - - - - - - --

he typ ed RUN to test his program , he specified “4” as the operation

code. Not on ce did he test it with another operator. Since, “4” for

division is the only case in which the program works correctly . he never

saw the bug manifest itself in the output. In between running the

program and calling the solution checker, we found that he used LIST and

spent long periods before his next RUN. Assuming that he looked at the

listing during these periods and because three similar lines were

missing, we can conclude that he did not understand how to design

conditional control structures and had not simply made a careless error.

However, if he had RUN the program just once with a code other than “4”,

the erroneous output could have served to help him understand the defect

— in his desigp .

We foun d many other examples of inadequate testing and

characterization . In fact , there was evidence that even when they ran

the program and it produced incorrect output , some students did not

realize that there was a bug in the program . In these cases , the

students called the solution checker immediately following their RUN of

the program, suggesting either that they had not analyzed the output or

that they did not understand what the program they wrote was supposed to

do. 7 Based on independent observations we made , we believe that in many

cases the students did not analyze the output. A member of the research

team spent about 20 hours observing (and assisting) course consultants

and students discussing problems for the introductory ALGOL programming

class at Stanford. These students probably have a higher aptitude for

programming on the average than the BIP students and work on programming

The solution checker at that time did not attempt to tell the
student what it had found wrong , so tha t it was not called as way to
obtain information .

63

—- —- — — -—— -— ----- - --- -.- —---—- -_ .- _ _. ____~~~~~~~~~ _.Il~~~.__ ~~~~~~~~~~~~~~~~~~ —~~~~-~ -~~- ---- —— - —_---~~~ --- -- - - _ -_ _ -. -~~~

- ‘~~~~~‘~~~
“‘

~~~
‘. 

~~~~~~~~~~~~~~~~~~~~~ -~~~ -~~~~ ---- --
~

--
~~——- -~- -— —-- ---—-—-— — ~~~~~~~~~~ ~--- -~ - - . —_- ---- --. - — _‘-..~~~

.- ‘-- — — -—-

tasks more complex than those in the BIP curriculum . They usually came

to the consultants when they had trouble debugging their programs. In a

large number of cases, students had not looked at their output , other

than to note that the program did not work. Instead , they described

their debugging as going through the program line—by—line looking for a

mistake , even though they had not thought about what was wrong . For

err ors t rapped by the ALGOL runtime system (e.g., illegal memory

reference) their debugging was even more irrational , since they did not

attend to system diagnostics which could have identified the type of

statement containing their error or, in some cases, the actual line

containing it. Thus, the general debugging strategy of the ALGOL

students we observed was deficient in testing and characterization in

much the same way as that inferred from the chronologies of the BIP

students.

Another type of poor debugging strategy we observed in the

chronologies involved students making a series of several minor ,

sometimes completely non—functional , modifications to their programs in

a very short period of time. Most often , this behavior was seen In the

same episodes where there was no attemp t to characterize the bug by

running the program with varying inputs. A related failure was that

attempted repairs that did not correct a bug were not undone at once and

evidently were forgotten. As a result , “almost correct” programs

sometimes were rendered less correct during debugging as the student

compounded the original bug with others resulting from the ineffective

repairs.

In order to substantiate some of the inferences we had drawn

from the chronologies, we collected written debugging commentaries from

64

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -



- _—~~~- _- 
~~~

—- =—--- ,--__----
~
-. --,-._‘—---—-.---;_

~~~~~~~~~~~~~~~
,-— ~x~ -_-2~r: ’--~--- - ———---~~~~~_ _ _ _ _ _ _ _

inexperienced programmers working on staged debugging problems. The

procedure was similar to that under which the commentaries were obtained

from programmers debugging the sorting program. Four students who had

completed 10 hours in the RIP course about one—half year earlier

participated in the study. Each worked to debug a series of programs

within the RIP programming environment. The programs themselves were

selected from the chronologies and involved different types of bugs:

computation , assignment, flow—of—control . This meant that the students

were debugging programs written by other inexperienced programmers as

solutions to problems they had themselves attempted in BIP.

The students were instructed to maintain a written record of

their thoughts as they tried to debug the programs. In particular , they

were told that whenever they decided to take an action—— LIST or RUN the

p rogram , or make a repair—— they should record their reasoning. BIP

chronologies were saved for the debugging sessions and in addition the

sessions were conducted on hardcopy terminals, instead of CRTs, so that

exact typescripta of the interactions could be obtained . For each

debugging problem, the students were given a listing of the program and

a description of what is was supposed to do, but were given no sample

input—output data. A copy of the program was preloaded into their

program space in BIP, so that they themselves did not have to type it in

in order to run or manipulate it. They had at most an hour to work on

each problem.

In describing the results of this study, two general

observations must first be noted. The subjects had not done any

programming since the time they finished BIP and their behavior and the

commentaries indicate they had forgotten features of the BASIC language

65

________________________________________ -4



— -~~~~- - - - - - -~~~~~~~~~~~~~~---~~~-

and of how to use BIP. Therefore , much of their effort , especially on

the first few problems , was spent using the BIP manual and trying to

relearn fundamentals .  Second , the subjects had trouble maintaining an

ongoing commentary . They would work on the problem for a while and .
~~~

afterward write , rather than write as they were thinking . The observer

provided constant prompts to remind them to write and they were

encouraged to write and not to concern themselves with working quickly.

Nonetheless , the commentaries are fragmentary records at best and are

more retrospective accounts of what the subjects were thinking than they

are real—time records.

The commentaries substantiate and elaborate our observations on

the inadequate debugging strategies we saw in the earlier chronologies.

Again, the most salient deficits were in testing and characterization ,

in obtaining and using information from a bugged program ’s input—output

relationships. From the commentaries we could determine that when

students listed and examined a program , they were not substituting

mental execution for an actual computer run, but were scanning

individual lines of code for errors. Now, since the subjects were

debugging programs written by someone else, it is not necessarily a bad

strategy to list and examine the bugged program in a global way in order

to determine its overall organization. However, there were several

cases in which subjects reported looking at lines of code for errors ,

when they had not yet run the program and seen how the error manifested

itself, as illustrated by the following excerpt :

I’ve done this pr og r am befo r e , so I feel confident
that I’ll be able to f ind the bug. Af t e r one reading
I’ve no idea what the problem is. I just looked at
the two input statements , they look OK. I just looked
at the 50 statement. Nothing looks wrong there. I’ll
run the program to see if there ’s a problem.

66

-- —-

r -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~

- -

~~~

-- - -- ---

~~

I just  read the output  on miles per gallon . Thought :
I’ve got it! The machine divides before it subtracts.
I’ll t ry pu t t i ng  in parentheses around E—B to see if
it will subtract first.

This subject recognized the program and thought he could find the bug

just by looking at it. He examines the program listing line—by—line

without success. Then he runs the program , sees the nature of the

error , and is immediately able to locate the bug.

The commentaries indicate the mechanism for the quick and

apparently unmotivated repairs we had seen students make in the

ch ronologies. Consider the following excerpt:

This equals business in 160 to 230 is confusing
stuff. Seems to me they ’re double assigning
things . H and L are being given two values.
I think maybe 160 and 170 can be deleted .
Try and see.

The subject, without having run the program , examined the code and saw

something that looked “confusing.” Consequently, without any sound

reason for doing so, she deletes two lines. This compounded the bug in

the problem , so that when she tested the program (for the first time)

after the repair and it worked incorrectly , she had to go back and undo

the repair and run the program again in order to see the manifestation

of the original bug.

One of the subjects did seem to have an effective top—down

strategy with elements similar to that of our troubleshooting/debugging

model. However , even he had difficulty because his CHARACTERIZE

procedure was not well developed . Figure lOa is a complete commentary

from this subject for the bugged program shown in Figure lOb. He reads

the program f i r s t , but only to identify its structure. He then runs the

program , but happens to choose inputs for which the program works

67

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - - - -



- - - -

S1F

This program looks scary because it’s so long. I’m going to try to ana],yze
this program in groups that were delineated in the abstract. That Is: (1) check
to see if input is correct ; (2) count the odd numbers ; (3) print the odd numbers.
Statement 30 I don ’t understand. I’ll look it up when I’m done reading. As I
read down, I see a lot of symbols I don ’t understand. That ’s very discouraging.
I’ll run and see what happens. (1)

The program worked very nicel,y. I asked Roger what ’s happening. He said
to try more possibilities, so I’ll try more disparate numbers. (2)

I found a problem. When I input some numbers It doesn ’t work. I’ll try
to see if there’s a certain spread that is the line between working and not
working. (3) I’ll try distances of 2, 1~, etc.

I found that any distance past 2, i.e., juxtaposed odd numbers, doesn’t -work.
I’].]. trace and hope I find something. I have very little idea of what I’m looking

‘ / for. I just know some loop goes wrong because the machine said that’s probably
the problem.

Trace sent it into an infinite loop. I’ll look at the numbers for a while
arid see If I can figure anything out of that. Well, P stayed the same, n kept
changing. I’ll look at the program to see what they mean. I just noticed that
at 190 and 200, Y and X are inverted compared to lines 3.60 and L70. I’ll. try
changing them back and see what happens when I run. (5)

That didn’t work so I’ll change them back arid go into the manual looking
up symbols: <>INT.

Couldn’t solve by 1315.

Figure lOa. Debugging commentary of an inexperienced programmer
attempting to debug the program shown In Figure lOb .

68

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~-— - _ - - - -



-~~~— . —

Tt ~~ user inputs two unequal odd numbers  (the  pro g ram checks to make sure
th a t  t h i s  is the  case and asks  the user  to t ry again if a mistake has
be~ n made) .  Odd numbers between his two number s1 inclusi v e, are counted.
For e x a m p l e .  there  are 3 odd numbers  be tween 5 and 9 —— they are
5~ 7~ and 9. Finally t h e  number of odd numbers between the user ’s two
numbers is pr inted.

01/01/ 77 00: 00: 01
27

10 PRINT “TYPE AN ODD NUMBER”
20 INPUT X
30 IF X/ 2 <> INT(X/2) THEN 60
40 PRINT “THAT IS NOT AN ODD NUMBER. TRY AGAIN. ”
50 GOTO 20
60 PRINT “TY PE ANOTHER ODD NUMBER”
70 INPUT V
80 IF Y/2 <> INTCV/2) THEN 110
90 PRINT “THAT IS NOT AN ODD NUMBER. TRY AGAIN. ”
100 0010 70 -

110 I F X Q Y T H E N  150
120 PRINT ‘ YOUR TWO NUMBERS ARE EQUAL. TRY AGAIN, THIS TIME”
130 PRINT “USING TWO ODD NUMBERS WHICH ARE NOT EQUAL. ”
140 0010 20
150 IF X < V THEN 190
160 H = X
170 L V
1.90 GOTO 210
t9 O H = Y
200 L = X
2 1 0 N = 1
220 P - = L ÷ 2
230 N = N + I
240 IF P = H THEN 240
250 0010 220
260 PRINT “THERE ARE “ ; N, “ ODD NUMBERS BETWEEN “ ; L~ “ AND “ ; H
999 END

Figure lOb. B.igged solution to BIP’s task ODDCOUNT, used to study
debugging by Inexperienced programmers. The bug is in
LIne 220 which should be P = P + 2. In addition, LIne
210 must be P = I, and Line 215 must be 1’~ = 1.

69



— -~~ S.- ~ na~ ~~~~~ 
-

~~~~~~~~~ —

correctly and becomes ‘stuck.” Only a promp t from the observer induces

him to try other inputs and thereby detect the bug. He arrives at a

correct ACTION—DESCRIPTION that the program works correctly only if the

pair of numbers are consecutive. He does not debug the program within

the time allowed , but this can be attributed his forgetting some of the

BASIC language constructs needed to understand the function of parts of

the program.

The effective strategy of the same subject can be seen in the

V following excerpt in which he was debugging the program shown in

igure 9. Note his careful initial characterization and testing

following repairs, and how he resists jumping to conclusions until he

has examined the program ’s output.

I just read SID (the program). I just thought the
problem may be there’s a problem with end or stop
statements. I’ll run the program to have a look at
it. My suspicion seemed correct. The calculator
outputs all functions, so I’ve got to find a way to
limit the calculator to its assigned function. I’ll
look in the glossary to find the right word . I
couldn ’t find anything so I’ll try GO TO statements
after each function. They ’ll say: GO TO.. .end. I
Just typed a 125 GO TO 199 statement. I’ll now run

V
the addition and see if it stops. It worked. I was
pretty confident it would . Now , I’ll add these expressions
to the other functions. I made a mistake in typing,
80 I’ll look up the CTL button for offing a line.
found it , I’ll CTL X. Now, I’ll run again , checking
all the functions. It worked. I want to try TRACE
now, just to make sure I understand it.

Our observations of debugging by inexperienced programmers

support the hypothesis that some of them have difficulties not only

because they are not well—versed in programming fundamentals and lack

libraries of specific experiential knowledge , but because they have

inadequate general debugging strategies. In particular , the are

deficient in running a program to obtain information that can be used to

‘70

--
_ _

—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~~~ 

-. 
V ~~~~~~~~ -r~~~~~~~r-

deduce logically where a bug is located . In addition, they make repairs

without good reasons and lose track of repairs they have attempted ,

thereby confounding their problem.

I 71

j V

V -— - - --—~~~~~~~~~~~ - V~~~~ V ~~~~
- -

~~~~~~~~~~~~ V _


- , ~~~ ~~

III. Teaching Troubleshooting/Debugging

Improving instruction in complex p~~j lem—aolving

In the introduction , we described the indirect method by which

troubleshooting/debugging and other types of complex problem—solving are

cu r ren t ly taught . We mentioned two problems with th is method . First ,

in domains where problem solving requires specialized facilities , such

as electronic troubleshooting , costs limit the range and number of

examples and exercises students may experience during formal
V

instruction. Thus , students of average or above average aptitude may

not have experience sufficient for them to acquire problem—solving

competence. Second , students with lower aptitudes may have fundamental

difficulties learning by the indirect method even when a relatively

broad range of experiences can be provided.

One solution to the first problem , and perhaps the second , is to

elaborate on the indirect approach in ways that can increase student

exposure to problem—solving experiences and add structure to these

experiences by providing more and better feedback to him. A landmark

V example of this type of solution is the SOPHIE system developed over a

period of several years by Brown, Burton , and their colleagues (Brown &

Burton, 1975; Brown , Rubenstein , and Burton, 1976), which provides

instruction in electronic troubleshooting . Through the use of computer

simulation and other At techniques , SOPHIE creates an enriched

environment in which students may acquire both a general troubleshooting

strategy and domain—specific knowledge for understanding interactions

betwe en parts of circuits . SOPHIE does have i ts l imi t a t ions—— most

72

V V

~

V V V

- -
V

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -— 

notably , that all its exercises and monitoring capabilities are limited

to a single c i rcu i t—— but these are overshadowed by the advances it

represents in teaching by the indirect method.

SOPHIE. The basic SOPHIE system is an interactive

computer—based troubleshooting laboratory built around a simulation of a

non—trivial power supply circuit. All student activities require only

the simulated circuit and no real circuits or test equipment. In

various operating modes , components in the simulated circuit can be

faulted as specified by a human instructor , by the student , or randomly

by SOPHIE itself. The student makes measurements on the faulted circuit

simply by requesting them ; they are determined by the simulation.

Similarly, he specifies repairs by requesting SOPHIE to replace a

component. These interactions are facilitated by SOPHiE’s limited , but

very habitable, natural language front—end , which relieves the student

of learning a special language for communicating with the system.

In a basic operational mode, SOPHIE allows an individual student

to troubleshoot an unknown fault or investigate the effects of a fault

he himself has specified , much as he might in a normal circuit

laboratory. However, it eliminates many of the peripheral problems

involved in setting up and using real circuits and test equipment.

Beyond this , SOPHIE constantly performs two powerful monitoring

func tio n8 as the student works with the faul ted c ircui t . First , before

performing a measurement requested by the student , it determines whether

the requested value is redundant—— i.e., whether it can be deduced

logically from the measurements that have already been made—— and , if

so, refuses to make the measurement. In this way, SOPHIE alerts the

student that he has some misunderstanding of the structure and teleology

73

of the circuit. Second , when the student asks that a part be replaced ,

SOPHIE determines whether that part being faulted is consistent with the

measurements that have been made. This is accomplished by faulting that

compo nent in a copy of the simulated circui t , making the measurements

V the student had made, and comparing them with the values obtained from

the version of the circuit the student is working with. If the

specified repair is inconsistent , the student is told so. Again , this

alerts the student to problems in his reasoning and understanding of the

circuit.

In a second , more recently developed operating mode, SOPHIE

provides the student with “real—time” examples of expert troubleshooting

involving the power supply circuit. SOPHIE’s “articulate expert” is

p rogrammed as blocks of human—authored text that are accessed

dynamically in examples involving different faults. Each episode begins

by the student selecting a fault he would like the Expert to find. The

faults are specified with respect to their location within the circuit ’s

top—level functional organization. A “demon ” , anothe r ent i ty within

SOPH IE , inserts the fau l t in the c i rcui t . The Expert proceeds with a

commentary on isolating the fau l t which exemplifies an optimal top—down

strategy similar to that in the troubleshooting/debugging model we

described in the previous section of this report (Figure 11).

Rather than directly make measurements on the circuit at each

step in the localization process, the Expert asks the student to tell

him the qualitative value of the measure he wants to make (e.g., Is the

voltage at point A high , low, or normal?) . Thus , the student must

understand the effects of the fault he chooses (a device for motivating

the student to understand the circuit). The students answer is checked

74

___ —-~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - ‘- ~~~~~ - V- — _
~ V

r_ VV V, V V . VVVV. _ ~~~ - ~V ~~~~~~~~~~~~~~~~~~~~~~~~~~~ VV ~_~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ -

How does the OUTPUT VOLTAGE compare with a working
circuit?

DICK: LOW

EXPERT:
E — ~ry functional block has a failure mode which The Expert knows of
c~,l d cause the output to be low under these faults in every block
conditions , so I need some more information. which cause low output,

the only synrptom so far .
Is the OUTPUT VOLTAGE essentially zero?

The Expert ask8 for a nvre
DICK: YES - refined, although still

qualitative prediction
EXPERT: about the Output.
AH GOODI That is Important information for me
because I don ’t suspect the Vref’ now. If the Vref
were dead , that is, had no output whatsoever , then ~~~ ~~~~~~~~ of tel.eol,o-
the output voltage would still be around one and gical knowledge at a
one half volts. It would have this magnitude block level: failures
because the voltage limiter cannot even begin to in Vref cannot ranks the —

function until its input voltage rises above the output eesentt.ally zero.
junction voltage drop of Its input transistor. This is a somewhat
And , of course , If Vref had any voltage output 5U2 ’pr isif lg fact which the
greater than zero , the output vol tage would be student may want to verify
still greater. Having eliminated the Vref . i ~~~

experimentally in the
V

wonder about the CL , VL , DARL , CCS and OFF. Any SOPHI E lab.

one of these could cause the ou tpu t vol tage to be
zero so I am going to narrow the search.

How does the VOLTAGE AT NI com pare with a working Although this test is
circuit? aimed pri marily at only

o~~ block, it is none the—
less desirable because

V the rest of the blocks
canno t function unless
this block is working.

F -. - ‘ - J. Excerpt of an interaction with SOPHIE ’s “articulate expert .”
Brown, Rubenstein , and ~ irt on, 1976.

V - - V

by the demon, who “invisibly ” runs the simulated circuit to get the

V
actual quantitative value . If the student ’s answer is wrong the demon

in terrupts and tells the student and the Expert. The Expert follows a

V strategy of choosing measurements that enable him to reduce

progressively the part of the circuit ’s functional organization that

remains to be considered . After obtaining each qualitative measure from

the student , he exp lains how it en abled him to deduce that the fault

could not be in certain subcircuits. The Expert never describes this

localization strategy in general terms ; instead , the student is left to

induce the general princip les f rom the specific examples of reasoning .

V
Brown, Rubenstein , and Burton (1976) report a study in which

V

they evaluated the reactions of a small group of second—year electronics

students from a technical school to the SOPHIE system. Each subject

interacted with SOPHIE in several modes, including the two we have

described here.8 In questionnaires and interviews , the students in

general indicated that SOPHIE was superior to their normal experiences

in a circuit laboratory. They believed that the individual

t roubleshooting activity did teach them knowledge that would be useful

in troubleshooting other types of circuits. Their criticism was that

wher~ they were told about their attempted redundant measurements or

illogical repairs, they could not always understand why they were wrong

and could obtain no further help from SOPHIE.

The interaction with the Expert was also rated favorably , but

not as highly as the othe r conditions and with more var iabi l i ty among

8 Other conditions included a competitive troubleshooting game
bet ween two—person teams , and an exercise in which the student had to
specify a faul t which when inserted in the circuit would cause another
target component to fail as well.

76

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-- -- 

~~~T T ~~~~~~~Te T’TTTT~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~

students. Students who liked this condition reported that they believed

that by observing the Expert they had learned a general problem—solving

strategy of top—down decomposition and testing that they could apply in

a range of problem—solving contexts. The students who rated the

V condition poo rly tended to be those of lower aptitude who had trouble in

V 
individua l debugging and in answering the Expert ’s questions. They said

they found the expert too glib and were frustrated by not being able to

question him. They had trouble just following his commentary on a

specific problem , let alone being able to induce the underlying general

strategy.

The results can in general be taken to indicate that the

capabilities of the SOPHIE system can improve learning of both

domain—specific knowledge and general strategies within the indirect

method of leaning by example and exercise. However , these benefits

accrue primarily fo r  students of normal or highe r than normal aptitude ,

and are diminished or lost on those of lower aptitude.

The ~~~ system. The Why system (Collins , 1976; Stevens &
V 

Collins, 1977) is another CAL system th at may be viewed as an enriched

context  for  teaching problem—solving by the indirect method . The stated

purpose of the system is to teach domain—specific declarative knowledge

about geography by engaging the student in a natural language dialog

with a simulat ed Socratic tutor  (Fi gu re 12). However , as we noted in

the introduction , tutoring can readily be viewed as debugging of the

studen t ’s knowledge system. A tutor ’s behavior therefore exemplifies

the application of a debugging strategy, which the student may induce

and subsequently use to debug himself. An interesting feature of Why is

that , unlike SOPHIE ’ s a r t i cu la te  expert  the Why tu tor  generates his

77

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


!pr ~
— — -~ -- ~~~~ VV~

V __V
~
__ V

-$-Vr--—--- ----- a,na ’r r

DO YOU TUINK ‘IHE AMAZON JUNGLE HAS HEAVY RAINFALL OR LITTLE RAINFALL?
(Rule 1: Ask for a prediction about a particular case)

~4~ AVY RAINFALL

WH~ DOES THE AMAZON JUNGLE HAVE HEAVY RAINFALL? (Rule 2: Ask for
prior causes)

V
BCCAUSE IT’s NEAR THE ATIJANTIC

YES , THE AMAZON JUNGLE IS NEAR THE EQUATORIAL ATLANTIC. BOW DOES
THAT AFFECT THE RAINFALL IN THE AMAZON JUNGLE? (Rule 3: Ask for
intermediate causes)

-

THE WATER IN CURRENT IS WARM

(section omitted)
V

HAPPENS AFTER THE t~~ISTURE FILLED AIR REACHES THE LAND? (Rule
4: Ask for subsequent causes)

1 DON ’T KNOW

DO YOU THINK THE ANDES MOUNTA iN RANGE HAS ANY EFFECT ON THE RAINFALL
iN THE AMAZON JUNGLE? (Rule 5: Suggest a factor and ask if it is a
cause)

*YES *

HOw? (Rule 3: Ask for intermediate causes)

.rHE PREVAILING WIND HITS THE ANDES AND THE AIR COOLS

n OW DOES THE FACT THAT PkEVAILING WIND HITS ThE ANDES , LEAD TO AIR
COOLING? (Rule 3 again)

(section omitted)

DO YOU THINK THAT ANY PLACE WITH MOUNTAINS HAS HEAVY RAINFALL? (Rule
6: torrn a general rule for an insufficient cause)

SOUTHERN CALIFORNIA HAS MOUNTAINS. WHY DOESN T SOUTHERN CALIFORNIA
HAVE HEAVY RAINFALL? (Rule 7: Pick a counter—example for an
insufficient cause , and Rule 2: Ask for prior causes)

Figure 12. Annotated excerpt of a dialog with the Why system. Frcdn
Stevens and Collins , 1977.

78

—-- --.-——

~
~•1~~

questions and comments dynamically using an explicitl y represented

process model of a general tutoring strategy (i.e., one that is

independent of the content of the subject being t augh t) . The model is

exp ressed as a p roduction system of about two dozen rules (Figure 13),

which were derived by analyzing dialogs between students and human

tutors . While this model underlies the tutor ’s behav ior , it is not

ar t iculated direct ly to the student and is actual ly communicated more

indirectly than the strategy underlying SOPHIE’S expert ’s “canned”

explanations.

More direct methods for teaching strategies. A second approach

to teaching complex problem—solving , which might help those students who

have the most difficultly learning by the indirect approach , is to

provide explicit descriptions of the procedures for solving problems

that can serve as prescriptions for the student. As noted in the

introduction , an impediment to this approach previously has been the

lack of a suitable language for conceiving and talking about problems

and problem—solving processes. The development in AL and

information—processing psychology of formalisms for representing

knowledge has caused researchers concerned with learning and instruction

to reexamine the need and potential for more direct and explicit

inst ruct ion in problem—solving.

Why do we not attempt to teach some basic
cog nitive skills such as how to organize one ’s
knowledge , how to learn , how to solve problems , how
to co rrect errors in unders tanding: these s tr ike us
as basic components which ought to be taught along
with the content matter.

Norman , Gentner , and Stevens , 1976, p. 194.

79

- ~~~~~~~~~~ ~V V- V -VVVV ~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ V~~ J~ V ~~~~~~~~~~~~~~~~

- - V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~

RULE 2: Ask for ~~~ factors

If 1) a studen t asserts that a case has a particular

value on the dependent variable ,

then 2) ask the student why .

EXAMPLE :

If a student says they grow rice in China , ask why.

REASON FOR USE:

This determines what causal factors or chains the

student knows about .

RULE 3: A~J~ for intermediate factors

If 1) the student gives as an explanation a factor that

is not an immediate cause in the causal chain ,
V

then 2) ask for the interm ediate steps.

EXAMPLE:

If the student mentions monsoons in China , as a reason

for rice growing , ask “Why do monsoons make it possible

to grow rice In China?”

REASON FOR USE:

This insures that the student understands the steps

in the causal chain , f o r example that rice needs

to be flooded.

RULE 1~: Ask for prior factors

If 1) the student gives as an explanation a

factor on causal chain where there are

also prior factors ,

then 2) ask the student for the prior factors .

Figure 13. Several of the production rales used in the Why system
as a conputational model of a tutoring strate~~r. From
Stevens and Collins, 1977.

80

V

~

V

~

VV V V -V ~~~~~~~~~~~~~~ VV ~~ ~~ ~~~ V

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _—

.as information—processing analyses succeed
in iden t i fy ing the processes under ly ing problem
solution , these p rocesses—— at least some of them——
can be directly taught , and that individuals wil l
then be able to appl y them to solving relatively
large classes of problems ways can be found
to make ind ivid uals more conscious of the role of
environmental cues in problem solving and to teach
strategies of feature scanning and analysis.

Resnick , 1976 , pp. 79—80.

Papert (1971) at MIT has played a prominent role in articulating

the position that by teaching general problem—solving strategies more

directly, students can become better learners . His argument is that

learning to do things is facilitated by giving the learner a procedural

representation of his task and having him debug his attempted execution

of that procedure. Papert feel that this methodology applies to tasks

as diverse as computational mathematics and luggling . Much of his work

has involved teaching computational mathematics (primarily geometry) to

children by teaching them to wr i t e programs In the LOGO language . The

students learn the mathematics by discovery (i.e., inductively), but

they are taught strategies for design and debugging explicitly. The

strategies , howeve r, are not presented in toto. Instead , the method

adopted is to present them in pa r t s as separate h e u r i s t i c s In react ion

to events that transp ire as the student designs and debugs his programs .

In this context , a heuristic may be defined as a rule—of—thu mb ,

a piece of a larger procedure that enables a correct or more efficient

solution under a set of conditions . The effectiveness of using a

heuristic depends both on being able to identif y the contexts where it

applies o r is more e f f e c t i v e than other heur i s t i c s and on access to

other knowledge needed to execute it. Heuristics may embody either

81

~~~~~~~~~ ~~
- V --- V ~~~~~~~~~~~~~~~~~~~~~~



- - -  ~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~~_ V V  - ~~~~~~~~~ j ~~~~~~V V

general or doma i n — s p e c i f i c  procedura l knowled ge . The f o l l o w i n g  ar e both

heu rist ics f o r  t r oub le shoo t ing ; however , the  f i rst  l ’~ l im i t ed  to a ve ry

specific context , while the second is part of the general strategy we

presented in the previous section of the report.

If the car is idling unevenl y, the first
thing to do is to strike the body of the
carburetor with several crisp (but
non—damaging ) blows .

If you have decided to make an observat i i -
of th e system ’~ behavior , ch oose t h e
observation th - i t has the potent ial tt
eliminate the greatest part of the system
as a possible fault location whether the
observation proves to be normal or ab n o r m a l .

In Pape rt ’s research s t u d i e s , the student ’&, problem solving i~

con t i nua l ly  mon ito red  by an i n s t r u c t o r .  Wh en the s t u d e n t  has  - l l t t l e a l t v

~r uses less than  op t ima l st r a t e g i e s  f o r  d e s i g n i n g  an d d eb u g g i n g  hi s

program s, the in st ruu tor interrupts and de~ cr t h u- s  III a p p l i c a b l e

heuris tic to him. Ihi- . heuristics are ex p li I t , n it couch ed in into rma l

speech. For example , it a progra m Intended to i t - ic some figure f a i l s

because the stud e nt s design does not Lake I n t O  a -oun t - in I n r .V r 4  n o n

between two procedures , he might be told “look care full y it the p~~. i t i . n

and orientation 1 t oe- pen between the procedur es that draw the part s ut

the figure that are int u rrect. ” There ar e several c-ommcnts t o  he made

about this method . tV l e a r l y ,  it is not a - u ’s t—e tf e ct i ve approach to

lar*e—.cale instruct ion; however , Papert has been concerned with itatni ne

i niti a l acceptance for i ts  princi p les with the idea that implementation

problems can be res olved subsequently. Second , although the students

learn an explici t formalism (LOGO) for representing procedural

knowledge , the heuristics themselves are expressed in natural language .

Finally, the Interrelations among the individua l heuristics within an

82



r 
~~~~~~~~~ V

encompassing design and debugging strategy are not explicitly described

to the student.

Carr and Goldstein (1977) at MIT have described a computer—based

system called WUSOX—Il that refines Papert ’s method of reactive teaching

of heuristics arid exemplifies how it can be made more cos t—effective by

iu t o u w tt ng the monitoring of the student. WLJSOR— II is built around a

game called Wumpus , a version of Theseus and the Minotaur , which

req uires a f undamental deductive problem—solving strategy for optima l

p~~~I v . rhe playe r is placed somewhere in a maze of caves , told the name s

t the neighboring caves, and warned If certain dangers are present in

those ccv.., althou gh the exact l o c a t i o n of the danger is not speci f ied .

H~ t h e n s e l e c t s .i cave to move r’ . His goal i s t o find and slay the

~~ rnp i~ by -~n - - t i n g an i r r u w l i l t the (-ave where It is l u r k i n g before I t

s lav ’. h i m . the reasoning invo l ved is fairl y simple; for example , if a

cave - - i s a warn ing and a l t bu ’ une 1 its neighbors ire known to be

.a te , t hen the danger is In t h e remaining neighbor. Note that this type

i reasoning resembles that required In t roublesh oot ing/debugging to

- .lti e a f au lt given a set of observations. The npt im ai strategy for

‘.e’lec ting a move is to deter mine the safest neighbor -is deduced fro. the

h is t ry of warnings.

WU SOR—Il 1 i r por at e s an expert monitoring procedure. Becaus e

the proLlem is well—structured , it was possible to Impl ement a

computationa l model for playing the optimal strate gy . The monitor uses

this model to evaluate the student ’s move . WUSOR—fl. incorporates a

sophisticated peda gogical strategy to determine when it is appropriate

for the monitor to interrupt play and describe a heuristic that

genera tes a better move than the student had just selected. One of the

83

~~ _

-

V — ~~ - — - —-— — ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ - - _ -_ ~~_


~~~~~~~~~~~~~~ ~~~~~~~~~~ . _ , _ ~~ ,, ..

princip les is to interrup t only when the student has consistently failed

to make moves that could be improved on by a particular heuristic ; that

is, do not interrupt if the student fails to use a heuristic once when

it is appropriate , when you have seen him use appropriately before.

Another principle is based on a representation of the interrelationships

among the heuris t ics  which Ca rr and Goldstein call a syllabus: A

heu r is t ic  is not mentioned unless the heuris tics  prior to it (e.g., use

of double evidence depends on use of single evidence) in the sy llabus

a re infer red  to be learned from the moves the student has made . The

teaching method i tself (Fi gu re 14) consists of ar t iculat ing the fau l ty

logic of the student ’s move , the det ailed logic fo r generati ng a be t ter

move , and finally a general description of the heuristic used to

generate that move.

WUSOR—Il is a noteworthy elaboration on Papert ’s method for

explici t ly present ing problem—solving heuristics. h owever, its

capabilities are highly dependent on the simplicity of the problem

domain in which the heuristics are taught. The heuristics themselves

a re par t of a general , deduc tive problem—solving strategy that is

-ipp licable in many problem domains , including troubleshooting/debugging.

An unanswered question is whether students who learn general heuristics

in such a “toy ” domain can in fact transfer them to a “real—world”

domain and incorporate them in more comprehensive strategies. A factor

that might affect their success is whether they have interrelated the

heur istics they have had described to them separately across different

problem—solving episodes into an overall strategy.

The alterna tive to teaching heuristics reactively one—by—one is

to introduce them to the student according to a pr ior  plan so that  they

84

~ 

—- - --



V 

~~~~~~~~~~~~~~~~~~~~~~~~ V V  TT. V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~V V V V ~~~~~~~~~~~~~~ 

Ira, it isn’t necessary to take such large risks with pits.

Cove 4 must be next to a pit because we felt a draft there. Hence, one of

caves 15, 2 and 14 contains a pit, but we haue safely visited cove 15. This

means that one of caves 2 and 14 contains a pit.

Likewise cave 15 must be next to a pi t because we’ felt a draft there.

Hence, one of caves 0, 4 and 14 contains a pit, but we have safely visited

cave 4. This means that one of caves 0 and 14 contains a pit.

This is multiple evidence of a pit in caue 14 which makes, it probable that

cave 14 contains a pit. It is lass Likely that cave 0 contains a pit. Hence,

Ira, we might want to explore cave 0 instead.

Figure lIi . Dialog with the WIJSOR-II system illustrating an attempt
to teach the user a heuristic for applying multiple
eviden ce in deduction . From Carr and Goldstein , 1977.

85

- -~~~~~~~- -- - - - -- -~~~-~~ —- -—~~~~~-~~~~~~ ~~~~~~~~~~ -‘ — VV V~ ~~ ~~— ~~~~~- - -~~~~~~~

-

~~~~~~~~~~~~~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~ V ~~~~~~~~~~~~~~~~ -. _•~V~ ~~~~~~~~~~~~ - - - - ,

are available to him whenever he is ready to use them. George Polya ’s

book , “How to Solve It” (1957) is most o f ten cited as the f i r s t a t t empt

to teach a problem—solving strategy directly by a text. A mathematician

and teacher , he had observed basic similarities in the methods used by

exper t problem solvers to solve mathematical proof p roblems . If these

method s could be described , he concluded , they could be t aught to

students , the r eby savi ng the s tudents the years it would take them to

discov er the methods on their own. Indeed , r~e f e l t some students never

di scover ed these principles simply by working on exercises by

themselves. Figure 15 summarizes the four stages of Polya’s strategy

and the heuristics applicable at each stage . Polya’s work though it is

now recognized as a precursor to information—processing analyses of

problem solving , has never had an impact on practical instruction in

mathematics (Schoenfeld , 1977a) . The d i f f i c u l t y seems to be that people

reading the text may understand the strategy and heuristics , but , when

faced with a par t icular problem , have difficulty determining the

particular heuristic that “unlocks” that problem; that is, while Polya’s

descriptions are perhaps accurate , the way in which they are presented

in his book does not enable most readers to adopt them as prescriptions.

Wayne Wickeigren , an information—processing psychologist , has

autho red a more recent book , “How to Solve Problems ” (1974), whi ch is

similar to Polya s, but incorporates information—processing formalisms

for describing problem structures and problem—solving processes and a

prese ntat ion intended to teach the reader how to recognize when

pa r t icu lar s t rategies and heurist ics are applicable. Wickeigren also

does not restrict himself to mathematics problems. but addresses a more

general taxonomy of problem types . The problem—solving methods he

8b

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -~~~~~~~~

UNDERSTANDING THE PROBLE~f

What is the unknown? What are the data? What is the condiSio~?
Is ft possible to sa ti sf y the cond ition? Is the conditi.,n sufficient to

You have to underst and determine the unknown? Or is it insufficient? Or tedunthot? Or
she problem. contradtctory?

Draw a figure. Introduce suitable notat ion.
Separate the various parts of the condition. Can you write them down?

DEVISING A PLM~
Second. Rave you seen ft before? Or have you seem the same problem in a

s2ightly different form?
Find the connection between Do yo u know a related problem? Do you know a theorem that couldthe data and the unknown. be useful ; V

You may be obls~ed
to consider auxiliary problems Look at the unknown! And try to think of a faindiar problem havin g

liamlmznediate connection the same or a suxislar unknown.
cannot be tound ~ Elere is a problem related to yours and solved before. Could you use it?

You should obtain eventually Could you use its result? Cou!d you use its method? Should you intro-
a plan of the solution. duce some auxiliary element in order to make its use possible?

Could you restate the problem? Could you restate it still dUleren dy?
Go back to debniuon.s,

If you cannot solve the proposed problem try to solve first some related
problem. Could you irn a ;ine a more accessible related problem? A
more genera l problem? A more special problem? An analogous problem?
Could you solve a part of the problem ? Keep onl y a part of the condi-
tion, drop the other part: how far is the unknown thcn determined.
bow can it vary? Could you derive something useful from the dat a?
Could you think of other data appropr iate to determine the unknown?
Could you change the unknown or the data , or both if necessary, so
that the new unknown and the new data are nearer to each other?
Did you use all the data? Did you use the whole condition? Have you
taken into account all essential notions involved in the problem?

CARR YING OUT THE PLAN
I1)~~. Carrying out your p lan of the solution, check each step. Can you see

CasT7 out your plan. clearly that the step is correct? Can you prove that ft is cor rect)

LOOKING BACK

~~~~~~ 
Cam you cl~eclt the result? Can you check the argument?

V
. . . Cm you derive the result dilicrent l y? can you tee it at a glance?tzam,n. the solution obtained. -

Can you usc the re sult , or the method , for sonic other pr ohli-m?

Figure 15. Polya ’s heuri::tics for i roblem solving. From Pclya, 1957.

87

I

-“ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
V

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~ ~~~~

considers include drawing inferences , classificatory trial and error ,

usi ng an evalua t ion f u n c t i o n to choose an action (hill climbing),

defining subgoals , deriving a contradiction , working backwards from the

goal , and recognizing the relations between problems. His approach is

to describe in Q enP: al terms , using formal representations when these

V
exist , a problem type and th o app l i cab le problem—solving method and then

give a series of examples which illustrate that method . The examples

a re most o f t en puzzles or mathematical problems that require a minimal

background . The solution to each example is presented in steps and the

reader is instructed to attempt the solution according to the method he
V

has just studied before he reads each step. The text for each step

describes a heuristic to be applied at that point, allowing the reader

to assess the heu ristic he used or to continue on if he is stuck.

Wickeigren presents as comprehensive catalogue of problem types

and methods as one could hope for given the present understanding of

probl~m solving. Two comments about the learnability of this

information can be made. First , it is exemplified l~~ oø1 v with toy

V problems , a feature necessitated by the fact that the bo’~ is intended

for a general audience and not as a text for student entering a specific

discipline. Second , although each method is described very thoroughly,

they are not explicitly interrelated. Thus , it still cou ld be di f f i c u l t

to determine which method applies when a problem is presented outside

the context of a chapter describing an applicable method .

Alan Schoenfeld , a mathematics instructor , has described in an

unpublished report (!977a) a method for teaching problem—solving

heuristics for mathematical proof that builds upon the work of Polya and

Wickelgren and that he has evaluated in a real instructional setting .

$8

He states that for a student to use a heuristic he must not only

understand the procediir~ Lt specifies , but also understand the subject

in which he is to use it and recognize the situations in which it can be

used. The innovation in Schoenfeld ’s method is the explicit

articulation of what he calls a managerial strategy, a prescriptive

model of the relationships between individual heuristics. The

managerial strategy is taught to the student as a device for monitoring

his progress through the solution to a problem and thereby focusing his

attention on the subset of the heuristics he knows that may be relevant

at each point. Figures 16 and 17 are the heuristics and managerial

strategy Schoenfeld used in a small course he taught. His tentative

conclusion based on an informal study of the solutions generated by

students on examination problems was that the students did develop a

better ability to select appropriate ptoof methods relative to students

in standard courses of mathematics instruction.

Schoenfeld , in a second unpublished report 1977b. describes

another small, but more formal study evaluating his method for teaching

heuristics, this time for calculus problems involving indefinite

integration. Fewer heuristics and a more limited managerial strategy

are involved for this domain. Schoenfeld developed i brLe F t~ ’ct

describing these and illustrating their application. The text was given

to half of a calculus class four days prior to an examination. The

examination involved nine problems , seven of which could be solved by

the methods covered in Schoenfeld’s text. The students who received the

text outscored those who did not on six of the seven problems. while the

two groups did not differ on the other two problems. Furthermore , the

students were asked to record ihe time they spent studying for the

89

~~~~~~~~ ————— __________



ANALYSIS

1) DRAW A DIAGRAM if at all possible.

2) EXAMINE SPECIAL CASES:
a) Choose special values to exemplify the problem and get a

“feel~ for it.

b) Examine limiting cases to explore the range of possibilities.

c) Set any integer parameters equal to 1. 2, 3,..., in sequence,
and look for an inductive pattern.

3) TRY TO SIMPLIFY THE PROBLEM by
a) exploiting syeinetry, or

b) “Without Loss of Generality” arguments (Including scaling)

EXPLORATI ON

1) CONSIDER ESSENTIALLY EQUIVALENT PROBLEMS:

a) Replacing conditions by equivalent ones.

b) Re—combining the elements of the problem in different ways.

c) Introduce auxiliary elements.

d) Re-formulate the problem by

1) change âf perspective or notation

II) considering argument by contradiction or contrapositive

lii) assuming you have a solution, and determining Its
properties

2) CONSIDER SLIGHTLY MODIFIED PROBLEMS:

a) Choose subgoals (obtain partial fulfillment of the conditions)

b) Relax a condition and then try to re—impose it.

c) Decompose the domain of the problem and work on it case by
case.

Figux~ 16. Schoenfe ld ’s heuristics for . colving mathematical
proof problems . From Schoenfe ld , 1917a.

90



( Figure 16 continued )

EXPLORATION (continued)

3) CONSIDER BROADLY MODIFIED PROBLEMS:

a) Construct an analogous problem with fewer variables.

b) Hold all but one variable fixed to determine that variable’s
impact.

c) Try to exploit any related problem which have similar

1) form

Ii) “givens~
iii) conclusions.

Remember: when dealing with easier related problems, you should

try to exploit both the RESULT and the METHOD OF SOLUTION on the

given problem.

VERIFYING YOUR SOLUTION

1) DOES YOUR SOLUTION PASS THESE SPECIFIC TESTS:

a) Does it use all the pertinent data?

b) Does It conform to reasonable estimates or ~wedictions?

c) Does it withstand tests of syninetry, dimension analysts, or
scaling?

2) DOES IT PASS THESE GENERAL TESTS?

a) Can It be obtained differently?
b) Can It be substantiated by special cases?

c) Can it be reduced to known results?

d) Can it be used to generate something you know?

91



r

SCHEMATIC OUTLINE OF THE PROBLEM-SOLVING STRATEGY

Given Problem

ANALYSIS

Understanding the Statement More Accessible
Simplifying The Problem Related Problem
Reformulating the Problem or

New Inforu~tIon

Useful Formulation;
Access to Principles

and Mechanisms
Minor

Difficulties ________________ —

DESIGN ) EXPLORATION

Structuring the Argument Major Essentially Equivalent
Hierarchical Decomposition: Difficulties Problems
global to specific -Slightly Modified

Problems
Broadly Modified
Problems

Schematic Solution

IMPLEMENTATION

Step-by-Step Execution
Local Verificat ion

Tentative Solution~~~~

VERIFICATION
[i~ecif Ic TestsGeneral Tests

Verified Solution

Figure 17. ~3chematic representation of Schoenfeld ’s manage rial
ct rategy for mathematical problem solving. From
Schoe n fe ld , 1977a.

91a

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ —-— ,
~~~~~~~. -~~~~ -



• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T~~1US

examination and those who studied with the text spent less time on the

average.

Schoenfeld s results, though based on a limited sample, do

suggest that heuristics can be taught directly to ativantage, provided

they are taught in the context of the domain in which they will be used

• subsequently and they are explicitly interrelated within a larger

~Lcab~gy that predicates when each is applicable. In the next section,

we present a study that investigated whether a direct presentation of

heuristics can be used to teach inexperienced programmers how to debug.

92

—--

~

- —-— -•- •—------~-•~~~~~~ ~~ ~~~

-- --‘ -- — ‘- --—-
~~~

---
~~ 

—
~~~~~~~~~~~~~~~~~~~~~~~

-
~~~~~~

-
~~~~~~~

-
~

- - - •— —-—. - —‘ —- -
~
--- --- • • --- —

IV. Directly teaching debugging heuristics: an experimental study

Rationale

In examining chronologies of debugging behavior we found that

the difficulties of inexperienced programmers are due as much to their

lack of a rational general strategy as to their unfamiliarity with the

declarative and procedural knowledge needed to understand programs and

to operate in a specific programming environment. In this section , we

discuss an experiment we conducted , in which we attempted to teach

directly to inexperienced programmers a few heuristics that are part of

a useful (though possibly conservative) debugging strategy. The

experiment was intended more to be an exploration of methodology , than a

definitive test of whether it is worthwhile to teach representations of

procedural knowledge directly. At the outset, limitations on our access

to subjects over an extended period precluded any attempt to teach a

complete debugging strategy , or even to teach part of a strategy

thoroughly in a natural instructional situation . Instead , a brief

tutorial text was developed to present a few relevant heuristics and

subjects studied it only briefly in an experimental setting prior to

attempting a few test problems. Thus, we knew that whatever the results

of the instructional treatment , the adequacy of the pedagogy used to

communicate the heuristics could be questioned . Nonetheless , for a

first attempt to teach debugging heuristics it was not unreasonable to

test a minimal instructional method. Possibly, the results would

indicate that mere identification of general debugging heuristics is

sufficient to modify the behavior of inexperienced programmers (e.g, if

93

•
~~
-—••

~~~~~~
•
~~~~~~~-~~~ _ _ _ _ _


they already “knew” the heuristics , but needed an external cue to make

them more readily accessible when needed). In this case, the coats of

developing more substantial , but unnecessary , instructional methodology

9could be avoided.

The overall plan of the experiment was to compare the behavior

of two groups of inexperienced programmers on debugging problems, one of

the groups studying and referring to the tutorial and the other

receiving only some unassisted practice in debugging. Data analysis was

to be exploratory , with a goal of identifying measures that could

indicate the role of the debugging heuristics in subjects’ problem

solving.

Debugging tutorial

The debugging tutorial we created presents eight “guidelines”

that are part of a general debugging strategy. Following the guidelines

will not always lead to the most efficient debugging but for an

inexperienced programmer without much specific debugging knowledge they

will tend to reduce false starts and to help determine a course of

action when he is “stuck.” The guidelines can be seen as elements of

three encompassing heuristics for (1) testing a program sufficiently to

detect errors , (2) generating a thorough characterization of an error’s

9Schoenfeld’s results on teaching heuristics for mathematical
proof problems (described in the previous section) became available only
after the experiment described here was underway. In any case, there is
a basic difference between heuristics for proof and integration problems
and those for debugging. In the proof problems , a single applicable
heuristic must be selected ; the subject ’s main problem is recognizing
the features of a problem that make a specific heuristic app licable . In
debugging, the use of several heuristics must be coordinated at several
points In every problem; the main problem in debugging is remembering to
use all of the heuristics. Of course , in both cases the heuristics must
be used appropriately.

~

-~~~~~
-- —~~~~~ .• • .— •- -•~~

_____________ - -

manifestation , and (3) backtracking from unsuccessful repairs. A

summary of the guidelines from the tutorial is shown In Figure 18. The

number next to each guideline Indicates which of the three heuristics it

is part of. The heuristics were decomposed into separate guidelines to

F facilitate their comprehension. The guidelines are shown in Figure 18

in the order in which the tutorial introduces them. This order reflects

that in which the guidelines are applicable during each iteration (or

recursion) of the general debugging strategy that was described in

Section II.

The eight guidelines were formulated to correct the most

frequently observed shortcomings we had previously identified in the

debugging behavior of inexperienced programmers. All of these

guidelines, except perhaps for those concerned with backtracking, have

straightforward mappings onto other troubleshooting situations, like

electronic and mechanical maintenance and repair. For example, varying

a program ’s inputs is analogous to varying the inputs and external

controls of electronic and mechanical devices.

The tutorial (Appendix A) is a rather minimal piece of pedagogy.

In a linear narrative mode, it introduces each guideline, giving a

rationale for its use and a specific debugging scenario that illustrates

its successful application. The examples are intended to demonstrate

when it is appropriate to apply the guidelines: having problem-solving

heuristics available is of little use if one does not know the

circumstances under which they should be applied. The example programs

were taken with slight modification from the programming chronologies we

had examined earlier. The narrative for the examples was developed in

part from the written commentaries we had collected from the

95

-.
~~~~~~~~~~~~~~~~~~~ 

—
~~

- - —  
~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ • _
. 1 ~~~~~

.._.__
~, - -

TESTING THE PROGRAM

1) TE:ST THE PROGRAM WITH ALL POSSIBLE TYPES OF INPUT FOR WHICH
Ii IS DESIGNED.

CL) TEST THE PROGRAM WITH THE EXTREME VALUES THAT THE
INPUI CAN HAVE.

CHARACTERIZING THE ERROR

(2) CHARAC TERIZE THE WAY THE ERROR (S) SHOWS UP IN TERMS OF THE
INPUT AND OUTPUT.

(2) EVEN IF A PROGRAM IS SHORT AND EASY TO TRACE BY HAND, YOU
SHOULD FIRST RUN THE PROGRAM . (ERROR MESSAGES . AS WELL AS
A CHARACTERIZATION OF THE ERROR IN TERMS OF INPUT AND OUTPUT,
CAN BE VERY HELPFUL IN FINDING AN ERROR

(2) SOMETIMES A PROGRAM GIVES THE CORRECT OUTPUT FOR SOME INPUTS
cur NOT FOR OTHERS. WHEN THIS HAPPENS YOU SHOULD EXAMINE THE
DIFFERENCE (S) BETWEEN THE INPUTS FOR WHICH THE PROGRAM WORKS
AND THE ONES FOR WHICH IT FAILS.

(1) AFTER A CHANGE, RETESI THE PROGRAM USING ALL POSSIBLE TYPES
OF INPUT FOR WHICH THE PROGRAM WAS DESIGNED.

(3) IF YOU MARE A CHANGE TO A PROGRAM, AND ii STILL GIVES THE
SAME ERRONEOUS OUTPUT, RESTORE THE PROGRAM TO ITS STATE
BEFORE THE CHANCE. YOU HAVEN’T FOUND THE ERROR (S) IN THE
PROGRAM . AND YOU MAY HAVE INTRODUCED A NEW ERROR.

(3) IF YOU MARE A CHANGE TO A PROGRAM, AND THE OUTPUT IS STILL
WRONG : IF THE CHANGE CORRECTS ONE PART OF THE PROGRAM Ce . g.~
one part of the output). THEN LEAVE THE CHANGE IN THE PROGRAM.

Figure 18. List nf the debugging guidelines presented in the debugging
tutorial. Numbers in parentheses indicate grouping of
guidelines into three encompassing heuristics for testing,
characterizing, and backtracking.

96

.a. S. .~~ . -~~~~~~~

inexperienced programmers who had tried to debug them. The commentaries

contained instances of both productive and non—productive reasoning

useful for illustrating how the guidelines could help during debugging .

By using examples with errors and problem—solving introspections

actually produced by inexperienced programmers , we hoped to create a

text consistent with the experience of subjects we would employ. Other

than indentation and emphasis, the tutorial makes no use of text

engineering techniques like hierarchical outlining or systematic review

which might improve comprehension. In fact, the tutorial assumes a high

level of literacy and motivation. These were characteristics we

expected of the undergraduates who would participate as subjects and we

chose to make the text consistent with their aptitudes. We did create a

brief openbook test (Appendix B) to accompany the tutorial so that these

subjects could monitor their comprehension and determine their own

review strategy .

Procedure

Subjects. The subjects were twelve paid volunteers from a group

of 28 students who completed fifteen hours of curriculum in the RIP

course in the weeks prior to the experiment. Thus, at the time of the

experiment , each subject had written several dozen short programs within

BIP, but had no other programming and debugging experience. The

subjects were recruited approximately halfway through their

participation in BIP.

Prior to beginning BIP, each subject had been pretested with the

Computer Programme r Aptitude Battery (Palormo , 1964). On the bas~s of

their scores, the twelve subjects were divided into two “matched” groups

97

_ _

r~ ~~~~~~~~~~~~~~

- .

of six subjects each. This ~ias done in an attempt to control for

pre—existing differences that might Interact with the experimental

instructional treatment.~ °

Experimental environmen t. All experimental sessions were

conducted in the same setting in which subjects had worked with BIP.

All experimental test exercises were conducted using BIP’s programming

facilities (of course, those facilities specific to the BIP curriculum——

e.g., HINT—— were inoperative for the test exercises). Two CRT

terminals were available, allowing either one or two subjects (always

from the same experimental condition) to be scheduled for experimental

sessions.

An experimenter was available throughnut the sessions to help

with procedural problems (e.g., loading exercises into the subject ’s

program space in BIP and recovering from system crashes) and to list

hardcopy of test programs for subjects upon their request.

Method. Each subject participated in three sessions. Session 1

was the (different) treatment/testing session for the experimental

(TUTORIAL) and control (NO—TUTORIAL) groups. Sessions 2 and 3 were test

sessions identical for both groups.

Session 1 for the TUTORIAL subjects began with a text

introducing the general logic of troubleshooting/debugging (Appendix C).

The subject was then given the tutorial text presenting the eight

10
Scores reflecting ability after BIP would have been

preferable , but could not be used because time constraints required that
each subject begin the experiment as soon as he completed his 15 hours
in RIP. Thus, assignment to treatmen t groups had to be made while
subjects were still in BIP. Subjects did take a programming posttest
after completing RIP and before participating in the experiment.
Subsequent analysis (see Results below) indicate that the two groups of
subjects differed markedly with respect to the posttest scores.

98

. -.-

~

--

~

- -- .. .--~~ ~~

- - - -

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ‘~~~
- :- -.:: -:~

-- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.
~~-- -~~~- -- -------- —

guidelines to study for one—half hour. After study, the open—book quiz

was given and the subject reviewed the text as necessary to complete the

quiz. The subject then moved to the terminal to work a debugging

problem. He was given (in his program space) a program and a written

description of its intended function. He was told that their was

something wrong with the program and that his task was to change it so

that it worked according to the descr ipt ion. The ins t ruc t ions

emphasized that the necessary changes were minor and that he was not to

write his own program to satisfy the description. A time limit of

one—half hour was imposed for this debugging exercise.

The test program was an atypical solution to a task in the RIP

curriculum called CHANGER. All of the subje~~’ had worked on this task,

but had used algorithms different from the one in the exercise. CHANGER

is supposed to ask the user for a purchase price less than one dollar

and print the amount of change and the list of coins needed to make that

amount of change most efficiently . The bug in the test exercise

manifested itself as an incorrect list of coins whenever two dimes were

required as part of the answer (Appendix D).

Session I fo r the NO—TUTORIAL subjects began with a brief

description of their task. The subject then was given one—half hour to

work at the terminal on the first of two debugging exercises. Again,

the exercise involved a malfunctioning program , a description of its

intended function , and instructions to seek a minimal repair. The

program was one of those used as an example in the tutorial to

illustrate the use of the guidelines for debugging. It was chosen as an

exercise for the NO—TUTORIAL group in order to minimize differences in

knowledge about specific programs and bugs. The second debugging

99

_ _

exe rcise , gi ven during the second one—half hour of Ses8ion 1, was the

CHANGER program given to the TUTORIAL subjects in the second half of

their first session.

Testing in Sessions 2 and 3 was identical for both groups,

except that subjects in the TUTORIAL group could refer to the tutorial

text as they pleased . The exercise given in Session 2 was to write a

prog ram DRILL (Appendix E) . DRILL , a program to provide

drill—and—practice in addition and subtraction , was longer and had a

more extensive control structure than any program that the subjects were

required to write in BIP. The necessary control structure was such that

the guidelines for program testing given in the tutorial could

reason&’ly be expected to facilitate its successful implementation. Two

hours were allowed to write the program. If a subject completed the

program within one and one—half hours, the experimenter tested it and

informed the subject simply whether it did or did not satisfy the

specifications. If it did not, the subject was allowed the remaining

time to complete (or debug) his program. This was done to provoke

debugging in cases where a subject had not been able to detect a bug in

his own program.

The exercise given in Session 3 was to debug (under instructions

identical to those for the debugging exercises of Session 1) a program

ARITH—CALC which had been written and ‘bugged” by one of the research

team (Appendix
~~~
). ARITH—CALC was designed to evaluate in strict

left—to—right order strings representing numeric expressions input by a

user. (BIP’s dialect of BASIC has no automatic type—conversion

mechanism.) Again , the program was longer and more complicated than

those required by the BIP curriculum or used in the tutorial and

100

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -
~~ 

- - - -



!‘
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~~~~L~~

-________  

-- ---

Session 1. In par t icu lar , the algorithm almost certainly was unfamiliar

to all the subjects and difficult for them to trace mentally, although

no specialized back ground knowledge is required to gain an understanding

of it. ARITH—CALC and its bug were generated so that the -tutorial

guide lines for  characterizing an error In terms of input— output

relationships would be relevant for efficient solution of the exercise.

The bug does not manifest itself for every input and the discrepancy in

the output value varies as a function of the arithmetic operations and

their order in the input string . Subjects were given one and one—half

hours to complete the exercise.

In all Ses8iofls , data on each subject ’s p rogramming and

debugging behavior was collected automatically (and invisibly to

subjects) by RIP ’s ch ronology fac i l i ty .  In addition , subjects in the

experimental group were given a written questionnaire at the conclusion

of Session 3 designed to elicit their reactions to the tutorial and the

experiment (Appendix C).

Results

Our efforts at earlier stages of the research to derive

debugging grammars to describe RIP chronology data had been

unsuccessful. Therefore, we did not have available any comprehensive

mechanism for analyzing the chronologies collected in the experiment in

order to describe differences between subjects’ strategies. The type of

analysis we conducted was thus much more limited than we desired. The

present experiment was concerned specifically with ( I )  whether the

behavior of subjects in the TUTORIAL group would reflect their attempted

use of the guidelines given in the tutorial text and , (2) if so, the

101 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


~ _
-

~~

--- -

~~~~~~~~~~~
-- ---

extent to which the guilelines were in fact acquired from the text

rather than inferred from prior experience (as determined by comparison

with the NO—TUTORIAL group). The chronologies wcre analyzed to assign

values to five relevant “measures ” fo r each exercise.

(a) adequacy of solution
(b ) detection of bugs via program execution

(as oppos ed to mental analysis of the code)
(c) ch aracterization of bugs via extended program execution

revealing input—output  relationships
(d) extended testing of attempted program repairs
(e) backt racking from unsuccessful repairs

The measures represent the success of the attempted solution and the

extent and success with which the heuristics encompassing the guidelines

were applied.

Each measure was assigned a value “+“ meaning “done

successfully” or “—“ meaning either “not successful” for a or “not

attempted” for b—e. Measures b—e could also be scored as “0” meaning

‘ attempted , but with unsuccessful results.” For instance, a “0” value

would be assigned to measure b if a subject ran the program several

times with different inputs, but failed to find inputs that caused the

bug to manifest itself. In addition , some measures could be scored “NA”

meaning “not applicable ’; for example, if the subject never attempted

repairs, no score could be assigned to measures d and e on that

exercise.

Determination of scores for measures b—e from the chronologies

proved to be a rather complex judgement process. There are no singular

events in the chronology for an exercise that determine unambiguously

the values of these four measures. For example, whether or not a

subject actually characterized an error in terms of the input—output

102 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ - - - -~~~-—


—~ -~ —-- - - -
~~~

_
~~~~~~~~~~~~ ;

_

~~~~~~~~~~~~~~~~~

--—

~~~~

-- --
--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

relationships obtained by his execution of a program can be determined

only by examining his subsequent repairs and the other events leading up

to them. In a sense , the scorer had to try to simulate the reasoning

under )ying the subject ’s actions and see if it was consistent with  a

hypothesis that  the error had been characterized in terms of

Input—outp ut relationships. A fur ther  complication Is that an attempted

solution may involve more than one debugging cycle , or episode. In

these cases , scores for  the measures were determined by jud gement of the

p redominan t behavior across the episodes .

In order to reduce potential bias in this subjective scoring

process , chronologies (which contain repeated information identifying

subjects) were scored primarily by a member of the research team not

familiar with the assignment of subjects to groups . However , no data

was on the intra— and inter—judge reliability of scoring for the results

to be presented.

Results will be presented here for  the debugging exercises

CHANGER and ARITH—CALC attempted by both groups in the second half of

Session 1 and in Session 3 respectively. Behavior in the programming

exercise DRILL given in Session 2 proved impossible to score with any

degree of confidence because of the great variabi l i ty with which

subjects app roached i t .  Some subjects , in fact , never implemented

enough of the program to execute it and examine any output . Others

produced executable pieces of a solution program , but showed widely

varying debugging behavior in different episodes within the exercise.

Gi ven these d i f f icu l t i es  and the fact  that there were no differences in

the number of correct (or almost correct solutions ) —— measure a——

between the TUTORIAL and NO—TUTORIAL groups , it seemed pointless to

score the chronolog ies for DRILL wi th  respect to measures b—e .

1 0s 

-- -~~~~~~~~~~ — ~~~~~~~~~~~~ -



_ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .----- -~ -~~ 
-

Tables 2a and 2b present the five scores on CHANGER and

ARITH—CALC and also the BIP p retest and posttest scores for  each subject

in the TUTORIAL and NO—TUTORIAL groups. Most s t r iking is the poor

pe rformance of subjects in both groups as indicated in column a. Three

members of the TUTORIAL group and two members of the NO—TUTORIAL group

solved neither of the problems . In each group , exactly five exercises

were completed successfully . Thus , the instructional  treatment for the

TUTORIAL g roup does not seem to have improved their debugging abili ty as

measu red on two test exercises specifically formulated to be sensitive

to that instruction. Unfortunately , however, even if there was an

effect of the treatment , it may have been obliterated by a difference

between the ability of the groups at the time they began the experiment.

Recall that the groups were matched using the RIP pretest scores.

Inspection of the posttest scores, available to us only after some

subjects had begun the experiment, shows that a large difference in

programming ability existed for the two groups. By chance, the subjects

assigned to the NO—TUTORIAL group had become much better programmers on

the average.” Th us, if the tutorial did improve debugging ability, the

only effect may have been to cancel the initial difference between the

experimental and control groups.’2

The small sample size precludes a meaningful statistical
evaluation of the difference ; however , in our experience , such a large
difference in posttest scores does have practical significance and
correlates with subjective Impressions of programming sophistication.

12 
An attempt was made to obtain “difference” scores for each

subject in order to see if the TUTORIAL group showed a larger
improvement in debugging abi l i ty  relative to their  abi l i ty  before
studying the tu tor ia l .  BIP chronologies for the final few BIP tasks
wo rked by each subject were examined . However , the variability in these
ch ronolog ies resembles that  found in the t ranscripts  for the
expe r imental  DRILL exercise. Thus , it was not possible to score the
pre—experimental debugging episodes with any confidence and thereby to
obtain the desired difference scores.

104

— --—-- - - —-— —-— .-
~~~~~

----- —.----- -—~~----- --— --
~~

— —-—-— -. - - -~--
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



______ - -j - .:~~~~~~~~~~ _ - --- -- -— - • - — - - —- ---— -—- .~~. 
- - --.~~

-‘ ~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~ 

Table 2a

BIP Test Scores and Debugging Measures
for TUTORtP.L Group

BIP Debugging Measures*

Subject pretest poattest Task a b c d e

316 116 153 Changer - + + NA +

.Arith-Calc - + - - -
317 129 195 Changer + + + + NA

Arith-Caic + + + + +

322 131 231 Changer + + + + +

.Arith-Calc + + + + +

321~ 1(~~ lU Changer - 0 0 NA NA

Arith-Caic - + 0 0 +

333 79 89 Changer - + 0 NA NA
Arith-Caic - + 0 0 +

3140 98 181 Changer + + + + NA

Arith-Caic - + + NA 0

*Key : Measure definitions

a solved problem
b detection of bugs via program execution
c characterization of bugs via extended program execution
d extended testing of attempted repairs
e backtracking fran wisuocesaful repairs

Measure scores

+ successful
- not successful (a) or not attempted (b-c )
o attempted , unsuccessfully (b-e )

NA not applicable in solution context

105

-~~~~~ ~~~~-~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ -~~~~-- .—-



Table 2b

BIP Test Scores and Debugging Measures

for NO-TUTORIAL Group

BIP BIP Debugging Measuxes*

Subject pretest posttest a b c d e

311 113 111 Changer - - - — 0

Arith-Calc - + 0 0 0

319 96 225 Changer - + + - -
Arith-Caic - + - 0 +

326 130 237 Changer + + + + NA

Arith-Calc - + + + +

332 115 186 Changer + + - + NA
Arith-Caic - + 0 + +

337 1014 2311. Changer - - - 0 0

.Arith-Calc + + + + +

339 111 2142 Changer + + - + NA
Arith-Caic + - - + +

*Key : Measure definitions

a solved problem
b detection of bugs v-ia program execution
c characterization of bugs via extended program execution
d extended testing of attempted repairs
e backtracking fran unsuccessful repairs

Measure scores

+ successful
- not successful (a)  or not at tempted ( b-e )
o attempted, unsuccessfully (b-e )

NA not applicable in solution context

106 

—-— - _ — - -~~~~~~~~~~~~ .— ~~~~~~~~~~~~~~~~~~~ -,- ~~~~~~~~~~~~~~~~~~~~~~~~~~



~ - - -~ 
~~~~~~~~ -- -  -~~~~ - -~~~~~ -~~~ -~~~~ -~~~~~~~~~ -~~~~- - ~~~-~~~~~~~~~-

The completion times for the correct solutions to the CHANGER

and ARITH—CALC exercises were also examined to evaluate the hypothesis

that the TUTORIAL group would debug more rapidly than the NO—TUTORIAL

group . The observed mean completion time , however, was shorter for the

NO—TUTORIAL group , primarily because of Subject 339. As indicated by

his posttest score in Table 1, this subject was the most proficient

programmer at the time of the experiment. (He was also unusually

motivated , being one of the few students in RIP who had generated his

own programming exercises to supplement BIP’s curriculum.) He correctly

debugged both CHANGER and ARITH—CALC in short order , characterizing ,

locating , and repairing the errors apparently by analysis of the program

code with little attention to the data provided by program execution.

Thus, the debugging exercises, which were difficult for the majority of

subjects, seem to have been too easy to tax the ability of Subject 339.

Consequently, the data do not indicate that the TUTORIAL group debugged

more rapidly.

Returning to the measures in Table 1 for apparent use of the

heuristics given in the tutorial , there Is marginal evidence that even

if the the TUTORIAL group did not solve more problems (or solve them

more rapidly) than the NO—TUTORIAL group , they did attempt to apply the

guidelines for testing and debugging. The columns labeled b—e

correspond to the measures described earlier. Column b indicates

whether program execution was attempted and successfully caused error

manifestation before the subject engaged in other debugging activities.

For TUTORIAL subjects, such detection was successful in every case,

except one where the program was executed several times , but the inputs

used did not cause error manifestation. While NO—TUTORIAL subjects also

did so frequently, in 3 of the 12 cases they did not.

107

-—-—- - - . -— - -~~~~~~~~ -~~~~~-~~~-~~~~~~- —-- --—--—-~~ ~~~
-- - - _ - ~~“—~~-~~- -~~

~
~~~~~~~~~~~ 

—
~~~

- -- - - --.-- -

~

Column c indicates characterization of errors by program

execution sufficient to elaborate a description of the malfunction .

TUTORIAL subjects attempted to do so in 11 of 12 cases, although in 4 of

those cases the attempts were judged to be inadequate; the corresponding

results for the NO—TUTORIAL group are 6 of 12, with 2 inadequate

attempts.

Columns d and e are the measures of repair testing and

backtracking from unsuccessful repairs. Both groups show equivalent

evidence for such behaviors.

Examining measures b—e just for the exercises that were

completed successfully (measure a), it is interesting to note that for

the TUTORIAL group all of the guidelines were applied in each of the

five cases. For the NO—TUTORIAL group , in 3 of the 5 correct solutions,

the behavior prescribed by one or more of the guidelines was not

observed . On the whole, it seems that the subjects who studied the

tutorial did try use the guidelines. However, the data from the

NO—TUTORIAL group does suggest that a majority of student programmers

with the experience level of our subjects have already induced most of

the guidelines (or similar heuristics). The differences between the

groups are small and allow no strong conclusions. The tutorial text may

simply have served to amplify and organize parts of a strategy alread y

known to the subjects who studied it.

The written comments obtained from the TUTORIAL subjects at the

conclusion of Session 3 provide some help in determining the effects of

the text on their behavior. Figure 19 lists the more informative

remarks that subjects made to items 4—7 shown in Appendix G. The

comments about the t utorial are posit ive for the most par t . Wi th the

108

-~~~-

_
i

—

~

- -_ — ~~
— --V - -—---

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - —------,- -; - _

Do you have any suggestions (criticisms), in gene ral , regarding the manne r
of presentation of the guidelines?

3214-- Should have been more time to study them .

Would it have been better if the guidelines had been given to you before
you finished the BIP course?

316-- Perhaps better in the long run. Actually ended up doing the things in
the guidelines as time went on. Of course , having them given to you
right away Is less time consuming since you don ’t have to grope around
t rying to decide what to do next.

317-- It may have helped, but none of the programs in the course were that
complicated that it was necessary, and most if it was fairly obvious .

322-- Didn ’t really need it in RIP itself except for ccznplex programs .

3214-- Yes, I could have studied them at my leisure and really learned them
well.

333-- Doesn ’t make that much difference-- for RIP we didn ’t have so much
as to debug programs . It was pretty much follow the examples.

3140—- Not ne cessarily , these guidelines are pretty basic things to do and
self-discovery is probably as useful.

Do you think it would be useful to have RIP introduce this material as part
of the course?

316-- Yes.

317-- Yes , it’s good to know.

322-- Yes , before presentation of complex problems.

3214—— Yes.

333-— Yes , it does hej p a bit and might relieve the frustration of not having
a program work and not knowing how to go about finding what was wrong.

340-- Perhaps.

Other canments.

322-- The last 3 sessions made debugging seem a much more orderly process, i.e.,
more manageable .

Figure 19. Replies of subjects in the TUTORI AL group to questions
in the post-experimental interview ( Appendix G).

109 



exception of Subject 340, subjects thought that the guidelines were

valuable knowledge, although they were not in agreement about how useful

they could be for completing tasks in the RIP curriculum . Several of

the subjects recognized that the guidelines are knowledge that they had

or would have acquired indirectly through experience , but thought that

the idea of teaching such knowledge explicitly could be more efficient .

The debriefing data does point to the Inadequacy of minimal

instruction , such as our tutorial , for insuring that heuristics will be

learned and used by students who need them. The ratings given by

subjects on items 1 and 2 of the debriefing questionnaire suggest that

(1) they did not find the tutorial especially useful for the test

exercises they worked in the experiment (five ‘3”s and one “2”), and

(2) they thought they were following the guidelines most , but not all,

of the time (four “3”’s and two “2”s). It is very interesting to note

that the two 2’”s on item 2 came from Subjects 324 and 333, who had the

lowest poattest scores in the TUTORIAL group (Table 2a). This again

suggests that the students who had the most to gain from the guidelines

could not or would not use them consistently . These two subjects were

the only ones who reported referring back to the tutorial while they

worked , and 324 was the subject who remarked that he did not have enough

time to learn the guidelines. The other TUTORIAL subjects seemed to

know the guidelines, but failed either to use all of them as regularly

as they might have or to use them appropriately for the test exercises.

Discussion and Conclusions.

The results of the experiment serve to illuminate methodological

issues more than to answer the question of whether it is worthwhile to

110 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


teach debugging heuristics directly . Both the chronology data and

subject ’s comments hint that TUTORIAL subjects recognized the value of

the guidelines and tried to use them , but provided no evidence that they

became better at debugging programs. The comments are most encouraging ,

but should be weighed cautiously, since the conditions of the experiment

may well have prompted the subjects to tell us what they thought we

wanted to hear.

As noted earlier , we were aware of some methodological problems

at the outset of the experiment , and our subsequent experience has

highlighted these and some other problems that must be solved before a

substantial evaluation of teaching troubleshooting/debugging strategies

directly can be conducted .

One problem is developing a pedagogy for teaching heuristics——

for teaching procedural rather than declarative knowledge. Although we

could rationalize a first attempt involving minimal instruction , we

anticipated that the limited study of the tutorial , isolated from other

instruction in programming, would be insufficient for precisely those

students who most needed to improve their debugging—— the students who

had as yet not induced a viable strategy on their own. It is to be

expected that meaning fu l learning of complex knowledge requires

considerable time relative to the learning that takes place in

laboratory studies of learning. Our situation of having limited access

to student ’s time is, of course, the rule rather than the exception in a

basic research setting. There is a “Catch—22” of sorts in effect: it is

difficult to persuade and possibly unethical to compel tuition—paving

students to participate In an unvalidated , innovative instructional

program, but one cannot provide the needed validation without testing a

sufficiently large and representative first group of students.

111

,....~ -
~~~~

-- —--
~~~

,--, -
~~~~~~

-
~~~~

- — - .
~~~~

-.
~~

_ - - --
~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - - -
~~

- ---— —- --.-.--
~
- -

It is usually possible (as we did) to gaIn the cooperation of a

small group of volunteers who tend to be either students having

difficulty and seeking any means to improve themselves or students who

are unusually bright and motivated. These Individuals are not

representative of the student population. Furthermore, small groups of

volunteers do not allow for statistical tests of hypotheses which are

needed to validate an instructional treatment.

In some cases, it is possible to gain access to a large student

population; for example, if the researcher or sympathetic colleagues

teach a course into which the new material can be integrated . However,

there are ethical issues that surround the compulsory participation of

tuition—paying students in experimental courses that are extensions of

sponsored research programs rather than products of an instructor ’s

initiative . If the effectiveness of the instruction is very tentative ,

then students should not be compelled to participate. If the

effectiveness is highly probable (and the experiment being conducted

only to collect supporting data), then how can a control group that

receives less than the best instruction for their time and tuition be

justified?

A second methodological problem we encountered is to determine

test exercises that will be sensitive to differences that might result

from the instructional treatments. The solutions to debugging exercises

like those we used require general knowledge of a programming language

(e.g., BASIC) and of a supporting computer system (e.g., RIP). In

addition , idiosyncratic knowledge acquired from prior debugging may be

applicable to a solution. Therefore , test exercises intended to

indicate the role of general debugging heuristics can neither be too

112

-

~

—— ~~~~~~~~~
---- .—

~~~~~~~~~~~~~~



_ _ _ _ _ _  :~~~~~~~~: ~~~~~~~~~~~~~~~~~~~~

elementary nor too advanced. If they are too elementary (and hence

familiar), idiosyncratic knowledge may enable an immediate solution

solely by recognition. If the exercises are too advanced , then the

student subject’s limited competence with the language and programming

system may prevent him from using heuristics successfully .

Another related problem is when , relative to instruction in a

p rogr amming language , to int roduce instruction on general debugging

heuristics and test for its effects. If the instruction on heuristics

and testing are too early , then students will not understand how to

apply the heuristics and test exercises will be too difficult for

heuristics to have an effect. If the instruction and testing are

delayed too long, then there will be significant differences between

students’ knowledge of the heuristics induced from their prior

experience. In addition , test exercises difficult enough to require use

of the heuristics (and not merely pertinent idiosyncratic experiential

knowledge) will be so complex that analysis of subjects’ behavior will

be made more troublesome. The appropriate time to introduce the

heuristic instruction is when the students have a minimally sufficient

background that allows them to understand and use the heuristics , but

not to have realized them spontaneously . Discovering the features that

identify that point in time is the problem of course.

In our experiment , presentation of the tutorial and testing of

it effects were prebably too late for the few general heuristics we

wanted students to learn. The behavior of the NO—TUTORIAL group and the

comments of the TUTORIAL group indicate that many of the subjects had

already inferred some of the heuristics included in the tutorial from

their fifteen hours of programming experience in BIP. For students

113

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - .--- -~~~—~~~~~~~~ - ~~~~-- --~~~~~ ---

- ~==-~~--——--- - -- -----

~~~~~~ 

-
~

---1

learning BASIC in BIP, presentation of the tutorial (or other

instruction on debugging) probably should commence from 7 to 10 hours

into the course. At that point , most students have worked with all the

major constructs of BASIC and are familiar with the facilities of the

RIP system , but have worked on only a few programs complex enough for a

general strategy to be useful.

A most fundamental problem for studies of the effects of

teaching general debugging heuristics remains the analysis of

problem—solving data. In attempting to evaluate the role and effects of

general heuristics in debugging , one is in fact trying to characterize

not just the result of the problem—solving process, but the process

itself. In analyzing the chronologies for the test exercises in the

experiment , we found that simple tabulations of behaviors such as

listing or running a program are not reliable indicators of the strategy

being applied by the subject. Only by examining the structure and

content of actions comprising larger episodes were we able to judge

whether particular heuristics were applied and their contribution to

ultimate solutions. The role of content, or sementics , in the scoring

process virtually precludes automated chronology analysis.

In our experiment , the collection of “thinking aloud” protocols

from subjects as they worked test exercises might have provided data

that would have increased the reliability with which chronologies were

scored . However, this would have increased the already substantial cost

of data analysis. For experiments with samole sizes great enough to

allow statIstical evaluation of measures abstracted from chronologies ,

the cost of collecting and examining thinking—aloud protocols would seem

prohibitive . Furthermore , for a large—scale study integrated into a

114 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


-

~~~

real—life instructional system , the collection of thinking—aloud

protocols would destroy the advantage of inobtrusiveness obtained by the

“invisible” recording of programming chronologies.

Further small—scale studies like that described here could

provide a relatively informal and subjective evaluation of materials and

methods fo r teaching debugging knowledge in an explicit manner. The

main p roblems remaining to be solved are how to determine sensitive test

materials and how to analyze complex problem—solving data

comprehensively and reliably. Although we were unsuccessful in our

- - efforts, one goal that should be pursued is the development of process

models for describing debugging behavior in specific domains. Such

models could be employed to represent changes in an individual’s

behavior as the result of instruction , and to contrast the behavior of

indi~~duals in different instructional treatments.

As for a large—scale , formal statistical evaluation of whether

teaching debugging directly is worthwhile, there are additional

problems. Since the constraints of academic research make it difficult

• to gain access to a large, representative student sample, instructional

developments should probably be evaluated outside the research

environment. Once an informally validatri m~thod for teaching debugging

is available, it should be Integrated into a real instructional program.

Because of the methodological and ethical difficulties of conducting

multi—group studies in an actual educational setting, evaluation of

student performance would best be made relative to previous groups of

students. Even if these problems can be overcome , the data analysis

problem remains. It is unlikely that intensive methods suitable to

small—scale studies (e.g., process models) will be feasible for large

115 

—a-- -



.- U -•-- -—--——--••—-— — __ — -,---- .. ,
__ _ _

~~
_____ _— -., 

~—•—‘ ~-—--~~~~-. — — -•_ —-- —~--•~-— ~•- — ________

experiments. This will limit the analyses in large studies to gross

measures of learning, such as total scores on in—class examinations.

I Our judgement for the present is that the state—of—the—art is still

remote from a definitive large—scale evaluation of how direct

instruction in debugg ing , or other complex problem—solving, will af f e c t

the abi lities of students.

116

~~~~~~~~~~~~~
_ -

~~~~~~
-

~~~~~~~
--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _



— --•-—.-. -• - - --- —~~ ----•~---~~ 

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

References

Barr , A., Beard , M., & Atkinson, R.C. The computer as a tutorial
laboratory : The Stanford BIP Project. International Journal of
Man—Machine Studies, 1976, 8, 567—596. -

Brown, J.S. 6 Burton , R.R. Multiple representations of knowledge for
tutorial reasoning. In D.C. Bobrow and A. Collins (Eds.),
Representation and understanding: Studies in cognitive science.
New York: Academic Press, 1975.

Brown, J.S., Burton , R.R., Hausmann, C., Goldstein , I., Huggins , B., &
Miller , M. Aspects of a theory for automated student modelling.
RBN Report No. 3549, Bolt Reranek and Newman , Inc., Cambridge ,
Mass., May , 1977.

Brown , J.S., Rubenstein , R., & Burton , R.R. Reactive learning
environment for computer assisted electronics instruction. BRN
Report No. 3314, Bolt Beranek and Newman, Inc., Cambridge , Mass.,
October , 1976.

Carr, B., & Goldstein, I.P. Overlays: A theory of modelling for
computer aided instruction. MIT Al Memo 406, Massachusetts
Institute of Technology , Artificial Intelligence Laboratory,
Cambridge, Mass., February , 1977.

Collins, A.M. Processes in acquiring knowledge. In R.C. Anderson , R.J.
Spiro , 6 W.E. Montague (Eds.), Schooling and the acquisition of
knowledge. Hillsdale, N.J.: Lawrence Eribaum Associates, 1977.

Dah i, O.J., Dijkstra, E.W., & Hoare, C.A.R. (Eds.), Structured
programming . New York: Academic Press, 1972.

Finch, C.R. Troubleshooting instruction in vocational—technical
education via dynamic simulation. Research Report , Dept. of
Vocational Education , The Pennsylvania State University, August,
1971.

Goldstei n , I. Summa ry of MYCROFT: A system for understanding simple
picture programs . Art i f ic ia l Intelligence, 1975. 6 , 249—288.

Miller , M.L., 6 Goldstei n , I.P. Overview of a linguistic theory of
design. Al Memo 383, Massachusetts Institute of Technology ,
Artificial Intelligence Laboratory , Cambridge, Mass., December ,
1976a .

Miller , M.L., & Goldstein , I.P. SPADE: A grammar based editor for
planning and debugging p~pgrams. At Memo 386, Massachusetts
Institute of Technology, Artificial Intelligence Laboratory ,
Cambridge , Mass., December , 1976b .

Newell, A. Production systems: Models of control structures. In W.G.

117

--

~~~~~~:i~~~~~::~-:::: :== = ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. _ _

~~~~~~~~~~~~~~~~~~~~ —- - -—• - • - .—-—.--— :—

• Chase (E d .) , Yisual Information Processing. New York: Academic
Press, 1975.

Newell, A. 6 Simon , H.A. Huma n problem solvi~~ . Englewood Cliffs ,
N.J.: Prentice—flail, 1972.

Nilsson, N. Problem solving methods in artificial intelligence. New
York: McGraw—Hill , 1971.

Norman , D.A., Gentner , DR., and Stevens , A.L. Comments on learning
schemata and memory representation . In D. Klahr (Ed.), Cognition
and instruction: Tenth annual Carnegie Symposium on c~gnition.
Hillsdale, N.J.: Eribaum Associates, 1976.

Palormo , J.M. Computer programmer aptitude battery . Chicago: SR.A, 1964.

Papert, S.A. Teaching children thinking. Al Memo 247, Massachusetts
— Institute of Technology, Artificial Intelligence Laboratory ,

Cambridge, Mass., 1971.

Pirsig, R.M. Zen and the art of motorcycle maintenance. New York,
Bantam Books, 1974.

Polya , G. How to solve it. Garden City , N.Y.: Doubleday , 1957.
(Originally published in 1945.)

Potter , N.R., 6 Thomas, D.L. Evaluation of three types of technical
data for troub1eshootIng~ Results and project summary. Report
AFHRL—TR—76—74(I), Air Force Human Resources Laboratory , Brooks Air
Force Base, Texas, September , 1976.

Quillian , M.R. The teachable language comprehender: A simulation
program and a theory of language. Communications of the
Association for Computing Machinerl, 1969, 12, 459—476.

Resnick , L.B. Task analysis in instructional design: Some cases from
mathematics. In D. Klahr (Ed.), Cognition and instruction: Tenth
annual Carnegie Symposium on cognition. Hilisdale, N.J.: Eribaum
Associates, 1976.

Ruth , G. Analysis of algorithm implementations. MAC TR—130,
Massachusetts Institute of Technology , Cambridge, Mass., May, 1974.

Schoenfeld , A.H. can heuristics be taught? Unpublished report, Group
in Science and Mathematics Education , UnIversity of California ,
Berkeley, Calif., 1977a.

Schoenfeld , A.H. Presenting, a strategy for indefinite integration.
Unpublished report , Group in Science and Mathematics Education ,
University of California , Berkeley , Calif. , 1977a.

Sacerdoti . E.D. A structure for plans and behavior. Technical Note
109, Artificial Intelli gence Center , Stanford Research Institute ,
Menlo Park, Calif., August , 1975.

118

- -

~

- - - -

~

----- • •~~~~- -~~~~~~—~~~~~~~
_

—

Stevens , Ad.., 6 Collins , A.M. The g~~j s t ructure of a Socratic tutor .
BBN Report No. 3518, Bolt Beranek and Newman , Inc . , Camb r idge ,
Mass., March , 1977.

Sussman , G.J . A computational model of skill acquisit ion. At —T R— 297 ,
Massachusetts Ins t i tu te of Technology , Ar t i f ic ia l Intelligence
Labo ratory , Cambridge , Mass., August , 1973.

Wi ckelg ren , W.A . How to solve problems: Elements of a theory of problems
and p~pblem solvIng. San Francisco: Freeman, 1974.

Woods, W.A. Transition network grammars for natural language analysis.
Comnvnicatjons of the Association for Co~puting Machinery, 1970,31, 591—606.

Woods, ~J.A. What ’s in a link: Foundations for semantic networks. In
D,G. Bobrow and A. Collins (Eds.) R~p~esentation and understanding:Studies in cognitive science. New York: Academic Press , 1975.

119

-- ~~

Appendix A. Tutorial Debugging Text

TESTING THE PROGRAM

After you have written a program, you need to test it to make sure
there are no errors , or “bugs”, in it. Many programs are designed
to be run more than once. For example , some programs are wri t ten
to compute payrolls and must be run at the end of every pay period ;
other programs are written to tabulate students ’ grades and are run
at the end of each grading period .

Since the conditions under which a program is run will not be
• EXACTLY the same each time the program is run, it is important

to realize that just because a program works correctly for one
set of conditions , you cannot assume that it will work correctly
under all other conditions.

For example, in some programs different kinds of input cause different
parts of the program to be executed ; thus to check a program you need
to run it using all possible types of input for which the program was
designed. You must test every possible pathway through the program .

TEST THE PROGRAM WITH ALL POSSIBLE TYPES OF INPUT FOR WHICH
IT IS DESIGNED.

The following program demonstrates how different inputs cause different
parts of the program to be executed.

10 X = INT(RND * 1001)
20 PRINT “I AM THINKING OF A NUMBER BETWEEN 0 AND 1000.”
30 L = 0
4 0 1 1 = 0
50 PRINT “WHAT DO YOU THINK MY NUMBER IS? “

60 INPUT C
70 IF C = X THEN 230
80 IF G > X THEN 160
9O I F L = I T H E N 140
100 PRINT “TOO LOW ; GUESS AGAIN”
110 L = 1
120 H = 0
130 GOTO 60
140 PRINT “IT’S STILL TOO LOW. GUESS AGAIN”

150 GOTO 60
160 IF H = 1 THEN 210
170 PRINT “TOO HIGH; GUESS AGAIN”
180 H = 1
190 L = 0
200 GOTO 60
210 PRINT YOU’RE STILL TOO HIGH SO GUESS AGAIN”
220 GOTO 60
230 PRINT “RIGHT! MY NUMBER IS “ ;X
240 END

120

— ----•--—-- —~.-——-- —~~-— ~~~—.--~~~~~-. .~~~-‘-—-- - ••.—_.. --..-~-._ ____

This program generates a random integer (X) between 0 and 1000.
The user then tries to guess the number (line 60, INPUT C). If
the user guesses the number correctly (line 70), then line 230
is executed , and the program prints “RIGHT... ’. Otherwise , if
the user guesses a number that is too high , then line 160 is
executed. If the preceding guess was also too high (which is the
case if H = 1), then line 210 Is executed , “YOU’RE STILL TOO HIGH
SO GUESS AGAIN” is printed , and line 220 causes a jump back to line 60.
If the preceding guess was not too high (if H is not 1), then line 170
is executed and “TOO HIGH; GUESS AGAIN” is printed. AND SO ON.

Checking the “GUESS MY NUMBER program requires that every possible
class of input be tested , i.e., an input (guess) that is lower than
the number generated (X), another consecutive input tha t is still
lower than X, an input that is higher than X, another consecutive
input that is still higher than X, and an input that is equal to X.

TEST THE PROGRAM WITH THE EXTREME VALUES THAT THE INPUT
CAN HAVE.

Init ial ly, it is a good idea to test a program with the extreme
values that the input can have . It is usually not hard to think
of the extreme types of input which your program must handle , and
this test may reveal errors in your program. In the “GUESS MY NUMBER”
program , the two extreme input values (guesses) are 0” and ‘1000”.

If , during the testing of your program with different inputs, the
• output is ever wrong , then there is something wrong in your program .

You must then try to characterize what is wrong .

CHARACTERIZING THE ERROR

CHARACTERIZE THE WAY THE ERROR(S) SHOWS UP IN TERM S
• OF THE INPUT AND OUTPUT.

Before you try to determine which part of the program is working
incorrectly (unless it ’s immediately obvious), you should describe
what is wrong wi th the ou tput . For example , in the last p rogram ,
if you input a guess of 0 and the program prints ‘TOO HIGH” , your
desc ription would include the fact that the output is backwards for
a too—low guess. If , in addition , the program said “TOO LOW” in
response to an input of 1000, then you could characterize the erroneous
behavior as being wrong fo r both too—low and too—high guesses.
Describing the “symptom ” carefully is very helpful in leading you to
locate its cause (the bug in the program); the process Is similar to a
doctor asking questions about the exact location and nature of your pain
before s/he begins to choose the appropriate treatment.

121

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~ - - •-•• ~• - - -~
- - - - - - _


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Since the output is the result of following the steps of the program.
if you can characterize how the output varies from what it should be,
given a particular input , then that may indicate which part of the
program isn’t doing what it was intended to do. In order to
characterize the error(s) in a program, you should test It with
different types of input in order to see how different kinds of input
affec t the output. For example, perhaps the output is correct or
closer to the correct answer for certain inputs than it is for other
inputs. If so, then it is important to ask how the inputs that give
correct or “more correct ” answers differ from the inputs that give
‘less correct” answers. If these two inputs require different parts
of the program to be run , then that could guide you to the part of the
program that is not working as it was intended .

SOMETIMES A PROGRA}1 GIVES THE CORRECT OUTPUT FOR SOME INPUTS
BUT NOT FOR OTHERS. WHEN THIS HAPPENS YOU SHOULD EXAMINE THE
DIFFERENCE(S) BETWEEN THE INPUTS FOR WHICH THE PROGRAM WORKS
AND THE ONES FOR WHICH IT FAILS.

The following program was written to give change to a customer
when the item being bought costs less than a dollar. The change can
be in half dollars, quarters , dimes, nickels, and pennies. The program
Is designed to print the amount of change in cents and then give the
fewest possible coins in change.

10 PRINT ‘TYPE THE PRICE OF YOUR ITEM. IT SHOULD BE < $1.00’,
20 INPUT X
30 LET C = 100 — X
40 PRINT “YOUR CHANGE FROM ~1 IS “ ; C ; “CENTS”
50 LET H = 0
60 LET Q 0
70 LET D — 0
80 LET N = 0
90 IF C< 50 THEN 120
1 0 0 1 1= 1 1+ 1
110 C= C—SO
120 IF C< 25 THE N 140

• 130 Q=Q+1
140 IF C<lO THEN 180
150 D = D+1
160 C — C—b
170 GOTO 140
180 IF C < 5 THEN 210

• 1 9 0N— N + 1
200 C = C—5
210 PRiNT HERE IS YOUR CHANGE”
220 PRINT H ;“ HALF DOLLARS”
230 PRINT Q ;“ QUARTERS”
240 PRINT D ; “ DIMES”
250 PRINT N ;“ NICKELS”
260 PRINT C ;“ PENNIES ”
270 END

122

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


.~ - — -~ —~ ~~~~~~~~~ —-

The programmer might decide that a good first test for this program
would be the case in which one of each coin should be returned to the
customer (1 half dollar , 1 quarter , 1 dime , 1 nickel, and I penny, for
a total of 91 cents). So price of the item (the input number) must be
9 cents .
Input : 9
Output : YOUR CHANGE FROM $1 IS 91 CENTS -

HERE IS YOUR CHANCE
I HALF DOLLARS
I QUARTERS
4 DIMES
0 NICKELS
I PENNIES

It is immediately apparent that the wrong number of dimes and nickels
has been returned . This might lead the programmer to test the program
with an input which should return a dime and a nickel.

Input: 85
Output : YOUR CHANGE FROM $1 IS 15 CENTS

HERE IS YOUR CHANGE
0 HALF DOLLARS
O QUARTERS
1 DINES
1 NICKELS
0 PENNIES

The output is correct , so the problem certainly isn’t with the dimes
and nickels alone. Before the progrdm is run again , the first test,
the one with the incorrect output , should be re—examined . Evidence
about the nature of the error might have been overlooked because of
the obviously wrong number of nickels and dimes in the output. The
programmer might add up the coins to see how much change in cents was
actually returned in the first test and find the total to be 116 cents
rather than 91 cents. The difference between these two sums is 25 cents,
and this might suggest to the programmer that the error is related to - •

th e extra 25 cents. At this point the program should be examined for
an error related to the 25 cents ’ calculations. While reading through
that part of the program , the programmer should notice that another line
is needed between 130 and 140 to subtract 25 from the total cents left
at that point, or C. The absence of that line caused an extra 25 cents
in the output (since when a quarter was given in change, 25 cents was
not subtracted from the total cents still owed the customer). After
this change , the testing of the program should be continued .

AFTER A CHANGE , RETEST THE PROGRAM USING ALL POSSIBLE
TYPES OF INPUT FOR WHICH THE PROGRAM WAS DESIGNED.

123

•——
~

--—
— - -
::

--- —‘-
~~~

- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— - •
~1

After you ’ve characterized the wrong output , located the section
of code that you believe is responsible for the erroneous output ,
and changed that code to correct the error, the program must be
tested once again for all possible types of input. You must retest
your program thoroughly for several reasons: for example, you may
have corrected the program so that it works for only one or two
additional types of input ; or the program may not work for some
inputs that were handled correctly before your change, i.e., your
change interacts with a portion of the program that was executing
correctly before the change and now makes it give erroneous output.
The program must be retested with all types of input , even those
that were handled correctly before the change.

The following program, which demonstrates the importance of retesting
after a change, asks the user to type in two numbers and tells him/her
how many numbers lie between the two numbers (inclusive). For example,
there are 3 numbers between 5 and 7, i.e., 5, 6, and 7.

10 PRINT “TYPE TWO NUMBERS, AND I WILL TELL YOU HOW MANY”
20 PRINT “NUMBERS ARE 3ETWEEN YOUR TWO NUMBERS (INCLUSIVE).”
30 INPUT X,Y
40 IF X < Y THEN 80
50 H = X
6 0 L = Y
70 GOTO 110
80 11= Y
9 0 L — X
100 P = L
l I O N — I
b 2 O P — L + 1
1 3 0 N = N + 1
140 IF P < H THEN 120
150 PRINT “THERE ARE “ ; N; NUMBERS BETWEEN “; L; “ AND “ ; H
199 END

The user types two numbers , which are assigned to the variables
X and Y. The variables H and L are used to hold the high and
low numbers , respectively. So, if X is higher than Y, its
value is assigned to H and the value of Y is assigned to L; if
Y is higher than X, the H and L assignments are made in the
opposite direction. The variable P is used to count from the low
number up to the high number , 4nd N is used to keep track of how
many numbers are encountered along the way. Thus, if the user
types 5 and 6 as the X and Y input , L becomes 5, H becomes 6, P
counts from 5 to 6, and N ends up with 2.

When the program is run , it gives the correct output only when the
two numbers are adjacent to each other , e.g., “5” and “6”, or
“6” and “5”. The output is THERE ARE 2 NUMBERS BETWEEN 5 AND 6”.
Any pair of non—adjacen t numbers causes an error message to be printed ,
which says that the program might be in an infinite loop. The
programmer characterizes the error as occurring when any two
non—adjacent numbers are given as input.

124

_ _ _ _ _ _ _ _ _ ~~~~~~~•~~~~~~• -~~_--~~ •~~~~~~~~

In the program above , where only adjacent numbers X and Y (both X < Y
and X > Y) give the correct output , the programmer might go through
the following reasoning process while looking for the error:
—AHA, P doesn ’t get set to L when X > Y, so line 70 shouLd branch to
line 100.
(The programmer changes line 70 to GOTO 100, and runs the program
for X < Y and X Y. S/He gets the same results as before , i.e.,
the program gives the correct output for adjacent pairs of numbers ,
othe rwise it seems the program is in an i n f i n i t e loop.)
—Well, same error , perhaps line 100 is superfluous , since line 120
assigns a value to P. so I’ll delete line 100, undo the previous change
so that line 70 is GOTO 110, and run the program again.
(The result ~f testing the program is the same as before: it works for
adjacent number pairs , but every other pair gives infinite loop message.)
—AHA , line 120 should be P — P + 1, otherwise P is always reset to
equal L, the lowest number , plus 1, and P can never reach H unless
H is L+l! I’ll change line 120 and run the program again.
(The program gives the error message “Line 120 VARIABLE WITHOUT A KNOWN
VALUE——P” for both X < Y and X > Y.)
—Hmin. That’s the first time I’ve gotten that message. Why does P
suddenly not have a value? I know! P was L+1, and I changed it to
P—P+I ; so the line that I deleted , which set P equal to L, is necessary.
I’ll put line 100, P = L, back into the program and run it.
(S/He tries several pairs of input , e.g., 5 and 6, 5 and 8, 4 and 9;
and they all work. Unfortunately , cases in which X > Y aren’t tested.)
—Success! It finally works.

The program was fixed for one type of input, that is, for cases in
which X Is less than Y; but two other types of input were not tested ,
X greater than Y and X equal to Y. If examples of these two types
of input had been tested , the error message “Line 120 VARIABLE WITHOUT
A KNOWN VALUE——P ” would have told the programmer that P still wasn’t
being assigned. Further examination of the program would have shown
her/him that line 70 should , Indeed , branch to line 100, so that P gets
an initial value when X > Y and X = Y. Thus all types of input for
which a program is designed must be retested after a change is made.

Sometimes you make a change to the program, and the output is still
wrong. You have to make the choice between leaving the change in the
program or returning the program to its state before the change.

Take the program, for example, which tells the user how many numbers
are between two input values.

125

~

•
~~~ 

- • 



i~~~. _jiJi~~~ _ 
- 

•• • - - • ~~

10 PRINT “TYPE TWO NUMBERS , AND I WILL TELL YOU HOW MANY”
20 PRINT ‘ NUMBERS ARE BETWEEN YOUR TWO NUMBERS ( INCLUSIVE) . ”
30 INPUT X , Y
40 IF X < Y  THEN 80
SO H — X
60 L — Y
70 GOTO 110
80 H — Y
90 L = X
100 P = L
110 N = 1
120 P = P + 1
130 N = N + I
140 IF P < H THEN 120
150 PRINT “THERE ARE “ ; N;  ‘ NUMBERS BETWEEN “ ; L; “ AND “ ; H
199 END

Suppose that  a beginning prog rammer is told that  this program has
an error and is asked to find and correct it. S/he might not have
these guidelines for  f inding an error .  Since the program is short ,
s/he might  decide to examine the code before  running the program.
A f t e r doing this , the  pe r son mi ght say “This equals business in lines
50 thro ugh 90 is confusing . Seems to me they ’re double assigning
things . H and L are being given two values.. .  I think maybe 50 and 60
can be deleted. I ’ll t ry  i t . ’
Af te r  delet ing lines 50 and 60 , the p rogram is run . For inputs
whe re X ( the  f i r s t  input ) Is less than Y (the second input), the
co rrect  answer is given , and for  all other inputs , the error message
‘Line 120 VARIABLE WITHOUT A KNOWN VALUE——P ” is pr in ted .

Since the prog ram has not been corrected by the change , and even more
erro rs may have been introduced into the program , the  change should
be undo ne and lines 50 and 60 restored to the program.

The reason given for  delet ing lines 50 and 60. i .e. , tha t  H and L
are each bei ng given two values , is t rue of cou r se , but the pe rson did
not examine the p rogram ca re fu l ly  enough , because s/he did not notice
tha t  the values given to H and L in lines 50 and 60 a re used in
one pathway th rough the program , and the values give n in lines 80
and 90 are used in a d i f f e r e n t  pa thway th roug h the p rogram . Going
through the step—by—step execution of a program (exactly as the
computer would) is a very valuable way to find errors . However ,
a f t e r  a supe r f i c i a l  examinat ion of a p rogram , delet i ng a line
is probab ly a bad idea. The pe rson wr i t ing  a pro gram usual ly  has a
reason f o r  p u t t i n g  in each l ine , and before you delete a l ine , you
should understand the intended purpose of that line .

The p rogrammer should have run this  progrdm before examining the code.
The e r ro r  message would have given h e r / h i m  the In fo rmat ion  that  P
was not  be ing  def ined when ei ther  K > Y or X = Y. This  i n f o r m a t i o n
po in t s  out which pathway through the program contains the error.

126

~



~ ~~~~~—~~ ,- -——----——- - -- ~. ~~~- -~~- - - . -— — - . - .  -. - - - -~

THUS , EVEN IF A PROGRAM IS SHORT AND EASY TO TRACE BY HAND .
YOU SHOULD FIRST RUN THE PROGRAM. (ERROR MESSAGES. AS WELL
AS A CHARACTERIZATION OF THE ERROR IN TERM S OF INPUT AND
OUTPUT, CAN BE VERY HELPFUL IN FINDING AN ERROR.)

THEN
IF YOU MAKE A CHANGE TO A PROGRAM , AND IT STILL GIVES THE
SAM E ERRONEOUS OUTPUT. RESTORE THE PROGRAM TO ITS STATE
BEFORE THE CHANGE. YOU HAVEN’T FOUND THE ERROR ( S)  IN THE
PROGRAM, AND YOU MAY HAVE INTRODUCED A NEW ERROR.

Sometimes, when you make a change to correct a program , the output
will still be wrong after the change , but you should leave the change
in the program. (Obviously, if you see any typographical errors that
you made while typing in the program , you should correct those.)

IF YOU MA KE A CHANGE TO A PROGRAM , AND THE OUTPUT IS STILL
WRONG: IF THE CHANGE CORRECTS ONE PART OF THE PROGRAM (e.g. ,
one part of the output), THEN LEAVE THE CHANGE IN THE PROGRAM .

It may be the case that there is more than one error in the program ,
and you have found one but not all of the errors. Take the following
program as an example.

10 PRINT “THIS PROGRAM TALLIES THE VOTES OF 5 PEOPLE. ”
20 PRINT “TO VOTE YES, TYPE 1; TO VOTE NO, TYPE 0.”
3 0 Y = O
40 N — 0
50 FOR I = 1 TO 5
60 PRINT “VOTE NUMBER “;I
70 INPUT V
80 IF V = I THEN 100
90 N = N + 1
100 1 — Y + 1
110 NEXT I
120 IF Y <> N THEN 150
130 PRINT “TIE VOTE”
140 GOTO 190
150 IF Y < N THEN 180
160 PRINT “THE NO VOTE WINS”
170 GOTO 190
180 PRINT “THE YES VOTE WINS”
190 END

This program tallies the YES and NC votes of 5 people , then
prints whether the ‘YES s or NO’s win. The user 1”~uts the 5
votes. He types I for a YES vote and 0 for a NO vote.

127

——-..~~~——- - .. m ~~ - - ~~~~~~~~~~~~~~~~~~ ~--——- . -



_ _ _ _

The program is run . When all the votes are either YES or NO then
“TIE VOTE” is printed. When the number of YES votes input is greater
than the number of NO votes, “THE NO VOTE WINS” is printed . When the
number of NO votes is greater than the number of YES votes, “THE NO
VOTE WINS” is printed. This program does the wrong thing for three
of the four different kinds of input !

Since the program gives the correct output when the number of NO votes
exceeds the number of YES votes. i.e., “THE NO VOTE WINS” (except in
the extreme case where all the votes are NO); the programmer might
check to see why line 180, “THE YES VOTE WINS” , is not printed when
it should be. S/He looks at line 180 and the line, itself , looks all
right. S/He looks through the program to find tne line that goes to
line 180, which is line 150. S/He sees an error! In line 150 if 1,
which tallies the YES votes , is LESS THAN N , which tallies the NO votes,
then line 180 is executed , which prints “THE YES VOTE WINS” . Line 150
should say “if Y is GREATER THAN N then execute line 180”. This change
Is made to the program , and it is run.

After the correction , when the YES vote is greater than the NO vote,
“THE YES VOTE WINS” is printed ; but when the NO vote is greater than
the YES vote , “THE YES VOTE WINS” is printed. It seems like the same
wrong output as before the change, only switched around ! (As before,
when all 5 votes are either YES or NO, a “TIE VOTE” is printed.)

The programmer must decide whether to leave the change or not , i.e.,
150 IF Y > N THEN 180; 180 PRINT ‘THE YES VOTE WINS” . Since Y tallies
the YES votes, and N counts the NO votes, if Y > N, then “THE YES VOTE
WINS” SHOULD be printed. The programmer decides to leave the change
and look for errors in other parts of the program.
In line 150 (which now says “IF Y > N...’), if N is greater thai. 1,
then line 160 is executed , which prints “THE NO VOTE WINS” , so that
part of the program is correct.

This program illustrates the importance of testing the program with
the extreme values that the input can have , in this case, 5 YES votes
or 5 NO votes. Whenever the input is all YES votes or all NO votes.
“TIE VOTE” is printed (line 130). The programmer looks for the line
that must precede the execution of line 130. If line 130 was executed .
then Y and N must have been equal in line 120. With an odd number of
votes , this isn ’t possible . Because Y and N are both initialized to 0
(lines 30 and 40), something must be wrong with the counting procedure.
The programmer examines the FOR loop, where the Votes are counted. S/He
notices that if the vote is NO , both N and Y are incremented ! So, there
should be a line 9S which says “GOTO 110”. The change is made. The
differen t possible types of input are retested . Success.

128



SUMMARY OF GUIDELINES

TESTING THE PROGRAM

TEST THE PROGRAM WITH ALL POSSIBLE TYPE S OF INPUT FOR WHICH
IT IS DESIGNED. -

TEST THE PROGRAM WITH THE EXTREME VALUES THAT THE
INPUT CAN HAVE.

CHARACTERIZING THE ERROR

CHARACTERIZE THE WAY THE ERROR(S) SHOWS UP IN TERM S OF THE
INPUT AND OUTPUT.

EVEN IF A PROGRAM IS SHORT AND EASY TO TRACE BY HAND, YOU
SHOULD FIRST RUN THE PROGRAM. (ERROR MESSAGES, AS WELL AS
A CHARACTERIZATION OF THE ERROR IN TERMS OF INPUT AND OUTPUT ,
CAN BE VERY HELPFUL IN FINDING AN ERROR.)

SOMETIMES A PROGRAM GIVES THE CORRECT OUTPUT FOR SOME INPUTS
BUT NOT FOR OTHERS. WHEN THIS HAPPENS YOU SHOULD EXAMINE THE
DIFFERENCE(S) BETWEEN THE INPUTS FOR WHICH THE PROGRAM WORKS
AND THE ONES FOR WHICH IT FAILS.

AFTER A CHANGE, RETEST THE PROGRAM USING ALL POSSIBLE TYPE S
OF INPUT FOR WHICH THE PROGRAM WAS DESIGNED .

IF YOU MAKE A CHANGE TO A PROGRAM, AND IT STILL GIVES TH E
SAME ERRONEOUS OUTPUT, RESTORE THE PROGRAM TO ITS STATE
BEFORE THE CHANGE. YOU HAVEN’T FOUND THE ERROR(S) IN THE
PROGRAM, AND YOU MAY HAVE INTRODUCED A NEW ERROR.

IF YOU MAKE A CHANGE TO A PROGRAM, AND THE OUTPUT IS STILL
WRONG: IF THE CHANGE CORRECTS ONE PART OF THE PROGRAM (e.g.,
one part of the ou tpu t ) ,  THEN LEAVE THE CHANGE IN THE PROGRAM.

129

L .. ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ _



-
~~~~~~

Appe ndix B. Study ~~~~ to Accompany Tutorial ~~~~

OPEN BOOK QUIZ

NAME:

1) After writing a program why should you test it with all the
different types of input that it was designed to handle?

2) Testing a program gives the following results:

Input: 0 (number of days)
Expected Output : 0 dollars and 0 cents
Output : 0 dollars and 0 cents
Input : 1 (number of days)
Expected Output : 0 dollars and I cent
Output : 0 dollars and 2 cents

Input: 3 (number of days)
Expected Output: 0 dollars and 7 cents
Output : 0 dollars and 14 cents

Input : 10 (number of days)
Expected Output : 10 dollars and 23 cents
Output: 20 dollars and 46 cents

Characterize the error in this program.

3) If a program gives the correct output for some inputs but not
for others, you should (a, b , or c)

(a) Scratch it and start over.
(b) Hope that a user will only use inputs for which the program

gives the correc t output .
(c) Examine the difference(s) between the inputs for which the program

— works and the ones for which it fails.

Why ?

130

______________________________ -
- ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - - - ——-——

4) After making a change to a program why should you RETEST the
program with all types of input for which it was designed?

5) If you make a change to a program in order to correct it , and it
still gives the SAME erroneous output , you should .(a or b)

(a) Leave the change in the program.
(b) Restore the program to its state before the change.

Why ?

6) If you are told that a program has an error in it, and you are
asked to find and correct that error, what is the first thing you
should do after reading the program description? (a, b, or c)

(a) Go through the step—by—step execution of the program by hand
(as the computer would) in order to find the error.

(b) Run the program with the different types of input for which it
was designed in order to characterize the error.

(c) Read over the program, delete any suspicious looking lines, and
run the program.

131

_ ~~~~~~~~~~~~~~~~~

Appendix C. Introduct ion to the Tutorial Text

INTRODUCT ION

This is an attemp t to give you information that will help you to
find the errors in a computer program more easily. This information
will be presented in the form of rules which apply to certain
situations , rules—of—thumb that have been formulated from the
expe r ience of programmers who have spent many hours in searching
for errors , or “bugs”, in computer programs.

Once you know there is an error in your program , the goal is to find
it with a minimal amount of time and effort. Since it is very
hard to formalize ALL the knowledge about finding bugs that an
experienced programmer would have, the rules presented here will be
general rules that provide the best way to go about finding the error(s)
in a computer program most of the time. They provide a general framework,
and as you gain experience, you will be able to add exceptions to these
rules. If you follow these rules, the process of finding the error may
seem to take longer than it could ; however , it is much more likely that
you will find the error or ALL of the errors in the program , and that
can save quite a bit of time in the long run. As you gain experience
the process of finding the error may go faster.

These rules lead to the desired result (which is finding the error with
a minimal amount of time and effort) most of the time. Everyone
employs this type of rule when trying to solve problems. When there
is more than one possible course of action to reach a goal, a person
may weigh the positive and negative effects of each action under
consideration before s/he makes a decision. For example, suppose you
are in a strange city , you need to get from where you are to a hotel in
another part of the city, and a map of the city is all the information
you have to help you plan your route. In that situation (going from
one place to another in a strange city), a general rule—of—thumb you
might have is to stay on main streets. If you have this rule , it is
because of knowledge you have gained (e.g., from your own experience,
or from talking to friends, etc.), for example this knowledge could be:
(1) street signs are more visible on main streets
(2) if you get lost, it is easier to ask directions on a main Street
(3) main streets are safer , if that section of town is unknown to you
(4) a backstreet route may make crossing intersections more difficult.
Even if your general rule is to stay on main streets in a strange city,
you may choose not to follow the rule in certain instances. Perhaps
the most important consideration is getting to place X as quickly as
possible , and you choose a backstreet route because it is shorter and
will allow you to miss the rush hour traffic on the main streets. The
circumstances under which you make a decision will vary (e.g., finding
the “best” route , where “best” means one that fulfills certain
requirements such as “requires least amount of time ”), and general rules
will not always give the best solution to a particular problem. If you
are a beginning programmer who is trying to find the errors in your
program , since you have no programming experience upon which to
formulate general rules for finding the error , being given these general

132

—

~

- -~~

-~~~~~ -~~-- -‘-—-,- .~~~~~
-
~~~~ 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-.
~ --- — -.- ----- -.-- 

~‘1~~

rules should save you both time and e f fo r t . Af te r  you have more -

- programming experience , you will be able to add exceptions to these . -

rules.

133 

— --— — — ___ —



_ _ _ _ _  ___  _ _ _ _

Appendix D. Test exercise CHANGER

This program was written to give change to a customer when the item
being bought costs less than a dollar . The change can be in half
dollars, quarters , dimes, nickels, and pennies. The program should
print both the amount of change in cents and then the FEWEST possible
coins in change.

5/31/77 11:12:06
19

10 PRINT “TYPE THE PRICE OF YOUR ITEM. IT SHOULD BE < $1”
20 PRINT “ (THE PR iCE SHOULD BE IN CENTS , E.G., 25, 49.)
30 INPUT X
40 LET C = 100 — X
50 PRINT “YOUR CHANGE FROM $1 IS “ ; C ; “ CENTS
60 DATA 50, “HALF—DOLLARS”, 25, “QUARTER S”, 10, “DIMES”
70 DATA 5, “NICKELS” , 1, “PENNIES”
80 PRINT “HERE IS YOUR CHANGE”
90 N = 0
100 READ A
110 READ D$
120 IF A = I THEN 180
130 IF C < A THE N 160
140 N — N + 1
150 C — C — A
160 PRINT N; “
170 GOTO 90
180 PRINT C; “ “ ; D$
199 END

134



_______ —~--‘~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Appendix E. Test Exercise DRILL

TASK DRILL

We want you to write a BASIC program that presents simple

arithmetic problems —— your own computer—assisted instruction program. The

required program will be longer and more complex than those you have

previously completed in BIP, but you probably worked with all the BASIC

statements you will need. You will have at most 1 and 1/2 hours to work on

the task during a single sitting at the terminal. Do your best to complete

a program that satisfies the specifications given below (use the DEMO to

see a fancy model program in operation), but you will be paid even if you

can’t do so in the allotted time. (Given the time constraint, one possible

approach is to design your program and then implement it in successive

stages, adding more advanced features at each stage; however, you are free

to tackle the problem in any manner you prefer.)

After 1 and 1/2 hours (or sooner, if you are confident your program

worked correctly), we will examine your program and try it out. if your

isn’t satisfactory, you will have at most another 1/2 hour to fix

To begin work, signon to BIP and type the command TASK DRILL. BIP

will not print the text of the problem as it does normally : instead refer

to the specifications given below in these instructions. During your work

you can use any BIP commands except the following: MODEL, MORE , REP, DEMO

TRACE. Use RUN to try out your program as many times as you like. Since

you can’t use MORE, you will have to be the judge of whether your program

satisfies the specifications before you are ready to have us look at it.

You may use the BIP manual. Run the DEMO as often as you like, but do 
~~~

135 -

- -
~~~~~~

--
~~

-
~~~~~~~~~~

—-- ---
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~

-
~~~~~~~~~

--—-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

________________________ -

ask for the MODEL ; if ~~~ use the MODEL command~ we cannot p~~ ~~~ ~~~
ypur

work. REP does not work for this task, but FLOW does. There is paper for

you to do any scratch work you want to: please number any sheets you use

and turn them in at the end of the session. Since the program you will

write will be too long to LIST on the terminal screen at one time, we have

set—up the teletypes in the room to provide hardcopy of your program (you

may use the LIST command , but the output will go off the top of the

screen—— use the ‘HOLD’ key on the terminal to stop—and—start the output).

To obtain hardcopy , SAVE your program in BIP as a file and then, at the

teletype, type (as requested) your student number and name of the file you

SAVE’d. You may list your program on the teletype as many times as you

like, and write on the listings, but we want you to turn in the listings at

the end of the session.

136

- -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --——--- —-~~~~ ~~~~~- -

-~

~ -~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -
_ _

~~~~~~~~~~~ :_
__ -- ---

Program specifications for TASK DRILL:

1) The user selects whether he wants to do addition or
subtraction problems.

2) The user selects whether he wants problems that
involve 1—digit integers (1—9) or 2—digit integers (10—99,
not 1—99). The integers used in each problem are randomly
generated.

3) The user specifies how many problems he will work,
with a minimum of 1 and a maximum of 10 problems.

4) Subtraction problems must always have an answer
that is equal to or greater than 0 (no negative answers).

5) The answer to each problem is checked and
appropriate feedback is printed . Feedback on incorrect
answers includes the correct answer.

6) When the user finishes the number of problems he
specified , the program prints his score as number and
percent correct.

7) Assume that the user of the program is naive and
may type invalid responses to any question asked by the
program. ~~~ program should not “blow up” in these cases.
In general, it should also provide clear questions and
print output suitable for naive users. Try to write a
program you would want to show off to another programmer.
It does not have to have all the fancy features of the DEMO
program , but should satisfy the requirements listed here.

137 

~~~~~—~~~~~~~~--..~~~~~~~~ -- ~~~ - - ~~~~~~~~--—- -~~~~~~~~,


r _ _ _ _ _ _ _ _ _ _ _ _ _

Appendix F. Test Exercise ARITH—CALC

PROGRAM ARITH-CALC

This program is supposed to act as a calculator for simple

arithmetic expressions (e.g., 9*8, 43/5+1 1, 1O~2*777) which have no

parentheses to organize them. It is intended to perform the operations in

an expression in a left to right order ; for example, 10+2*6 first adds 10

and 2 to get 12 and then multiplies 12 by 6 to get 72. Note that this is

different from the way BASIC evaluates such expressions (BIP manual 11.12).

The program is intended to handle only “well—formed” input from the user

and is expected to behave unpredictably if the input contains bad

characters. The following are examples of expressions for which the

program is and is not expected to work.

SHOULD WORK FOR NOT EXPECTED TO WORK FOR
4*5 4 + 5 (no spaces allowed) H
334/66r23+8*3 4+(5*3) (no parentheses)
8/0 (gives error message) 4.5+13 (no decimals)

4A7+13 (illegal character)

The program is complex . The main difficulty is that the expression

input by the user is a string, and strings in BASIC (and parts of strings)

cannot be multiplied , added , etc. The string must therefore be analyzed to

find the strings of digits it contains (i.e., the numbers in the

expression) and then these strings of digits must be “translated” into

numeric values that can be manipulated with arithmetic operations. Part of

this work is done by a subroutine in the program. BIP didn ’t give you any

work with subroutines (BIP Manual 11.22), and we don’t expect you to

understand the one in this program. The way in which it is used is

explained by the REM statements in the program. The error(sJ. in this

138

- ---~~~-=--~~

~~~J~~~~~~ IiJ~~~~
- -

program is(are) not in the subroutine or in the first lines of the program

which set ~~ an array of values used ~~ the subroutine. The error(s)

is(are) in the part of the program delimited by the REM statements

containing stars (asterisks). The program can be fixed with only minor

modifications (extensive re—writing is unnecessary).

To get the program into your program space, say GET ARITH—CALC

after you signon to BIP. You may RUN , LIST , and TRACE the program as you

please, but do not use FLOW. Make any changes you wish ; if , at any point ,

you want to get the original program back, then just say GET ARITII—CALC

again.

139 

—-~~~-~~~-- -~~~~~~~~ .~~--~~~~~- -~ - -~ 



-.,-----
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~ - — -—

~~
- .-

~-——-~~- —-~~

Appendix G. Post—experimental Questionnaire for TUTORIAL group

QUEST IONNAIRE

NAME:

BIP NO.:

(1) Do you feel like the material you read during the first session
was useful to you in the subsequent tasks? (Circle the appropriate
number.)

Not Useful Extremely
At All Useful

1 2 3 4 5

(2) As you were testing and debugging programs during the sessions,
did you follow the guidelines presented in the material?
(Circle the appropriate number.)

Never Always

1 2 3 4

Did you find it difficult to remember the guidelines?
(Yes or No)

If so, did you refer back to the lesson?

(3) Was any part of the lesson difficult to understand , or unclear,
etc.?

If so, which part(s)?

140

-~~~~ - -— — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-
~~~~~~~

-—
~~~~~

—--
~~~

-
~~~
-‘--:: - - -- -

~~
-
~~~~~

-
~~~~

,.--—----
~

-- --- —- - -

(4) Do you have any suggestions (criticisms), in general, regarding
the manner of presentation of the guidelines?

(5) Would it have been better if the guidelines had been given
to you before you finished the SIP course? Please explain
your answer.

(6) Do you think it would be useful to have RIP introduce this
material as part of the course?

(7) Would you like to make any further comments on the three
sessions you just completed 9 r on the BIP course itself?

141

~

- — — - --— — - - .- ~~~~-- -- -- ---~~ --- ——~ .--~~~~~ - — --~ -~~~- -~~- - -~~~~~-—~~~~~~~~~~~~~~~~~—

~

DISTRIBUTION LIST

4 Dr. Jack Adams 1 Capt. D. M. Gragg, MC, USN
Office of Naval Research Head, Educational Programs
Branch Office Devmlopment Department
223 Old Marylebone Road Naval Health Sciences Education
London , NW, ENGLAND and Training Command

Bethesda, ND 20014
1. Dr. Jack R. Borsting

Provost & Academic Dean]. Mr. George N. Graine
U.S. Naval Postgraduate School Naval Sea Systems Command
Monterey, CA 93911.0 SEA 047CU2

Washington, DC 20362
1 Dr. John F. Brock

Navy Personnel S & I) Center 1 Dr. Norman J. Kerr
San Diego, CA 92152 Chief of Naval Technical Training

Naval Air Station Memphis (75)
1 Dr. Maurice Callahan Miflington, TN 38054

NODAC (Code 2)
Department of the Navy 1 Capt. H. J. Connery
Washington Navy Yard (Anacostia) Navy Medical F&D Command
Bldg. 2 NNMC
Washington, DC 203711. Bethesda, MD 200111.

1 Department of the Navy 1 Dr. Charles S. Davis
CI~IAVMAT (NMAT 0311.D) ONR Branch Office
Washing-ton , DC 20350 536 S. Clark Street

Chicago, IL 60605
1 Chief of Naval Education and Training

Support (Code CiA) 4 Dr. Marshall J. Farr , Director
Pensacola, FL 32509 Personnel & Training Research Programs

Office of Naval Research (Code 1458)
1 Cdr John Ferguson, MSC, USN Arlington, VA 22217

Naval Medical R&D Command (Code 144)
National Naval Medical Center 1 Dr. Pat Federico
Bethesda, MD 200114 Navy Personnel R&D Center

San Diego, CA 92152
1 Dr. John Ford

Wavy Personnel R&D Center 1 Dr. William L. Malay
San Diego, CA 92152 Principal Civilian Advisor for

Education and Training
1 Dr. Eugene E. Gloye Naval Training Command , Code OOA

ONR Branch Office Pensacola, FL 32508
1030 East Green Street
Pasadena, CA 91101

1

~~~~-~~~~~~~~-- -- -~~ —-----~~ -- -~~~~~~~~—— 



- - ~~~~~~~~~~~~~~~~~~~ ~~~~ ‘ ~~~~~~~ — —-  .~~~— - —~—-- - —— ~~-— - ~~ ~~ -~ - -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— - — -- ---

~~--
~
--  --—-

~
—— --—- - - -—---

~
-— -

~~~ -—

3. Dr. Sylvia R. Mayer (MCIT) 3. Scientific Director
HQ Electronic Systems Div. Office of Naval Research
Hanscc*a !~FB Scientific Liaison Group/Tokyo
Bedford , MA 01731 American Embassy

APO San Francisco, CA 96503
1 Dr. James McBride

Code 301 1 Scientific Advisor to the Chief
Navy Personnel R&D Center of Naval Personnel
San Diego, CA 92152 Naval Bureau of Personnel

1~n. 4410, Arlington Annex
2 Dr. James McGrath Washington , DC 20370

Navy Personnel R&D Center (Code 306)
San Diego, CA 92152 1 Dr. Richard A. P0118k

Academic Computing Center
1 Dr. William Montague U.S. Naval Acadennj

Navy Personnel R&D Center Annapolis, MD 21402
San Diego, CA 92152

1 Commanding Officer
1 Commanding Officer Attn: Library

U.S. Naval Amphibious School Naval Health Research Center
Coronado, CA 92155 San Diego, CA 92152

1 Dr. Leonard Kroeker 1 Cdr. Paul Nelson
Navy Personnel R&D Center Naval Medical R&D Command (Code 44)
San Diego, CA 92152 National Naval Medical Center

Bethesda , N]) 20014
1 Chairman, Leadership & Law Dept.

Div. of Professional Development 3. Library
U .S. Naval Academy Navy Personnel R&D Center
Annapolis, MD 21402 San Diego, CA 92152

1 Dr. James Lester 6 Connuanding Officer
— ONR Branch Office Naval Research Laboratory (Code 2627)

1495 Summer Street Washington, DC 20390
Boston , MA 02210

• 1 Cdr. Charles J. Theisen , Jr. , MSC, USN
1 John Olsen Head, Human Factors Engineering Div.

Chief of Naval Education & Training Naval Air Development Center
Support Wanninster, PA 18974

Pensacola , FL 32509
1 W. Gary Thomson

1 Office of Naval Research Naval Ocean Systems Center (Code 7132)
Code 200 San Diego, CA 92152
Arlington, VA 22217

1 Dr. Worth Scanland
12 Manager, Program in Manpower R&D Chief of Naval Education & Training

Office of Naval Research (Code 450) Code N-5
Arlington, VA 22217 NAS, Pensacola, FL 32508

2

~~~~~- ~~~~ -



• 1 A. A. Sjohoim 1 Dr. J. S. Uh3.aner
Tech. Support, Code 201 Chief Psychologist
Navy Personnel R&D Center Axiny Research Institute

• San Diego, CA 92152 6933 Hector Road
McLean, VA 22101

1 Dr. Alfred F. Smode
Training Analysis & Evaluation Group 1 Dr. Joseph Ward
(TAEG) U.S. Anny Research Institute
Department of the Navy 5001 Eisenhower Avenue
Orlando, FL 32813 Alexandria, VA 22333

Air Force

1 HQ USA~~UE & 7th Army 1 Air Force Human Resources Lab.
ODCSOPS AFH1~/PE])USAREUE Director of GED Brooks AFB, TX 78235
APO New York 091403

1 Air University Library
1 Dr. James Baker AUI/LSE 76/11-43

U.S. Army Research Institute Maxwell AFB, AL 36112
5001 Eisenhower Avenue
Alexandria, VA 22333 1 Dr. T. E. Cottennan

AFHRI/ASR
1 Dr. Ralph Dusek Wright Patterson AFB, OH 45433

U.S. Army Research Institute
5001 Eisenhower Avenue 1 Dr. G. A. Eckstrand
Alexandria, VA 22333 AFHRI/AS

Wright-Patterson AFB, OH 45433
1 Dr. Frank J. Harris

U.S. Army Research Institute 1 Dr. Alfred R. Fxeg].y
5001 Eisenhower Avenue AFOSWNL, Bldg. 1410
Alexandria, VA 22333 Bolling AFB, DC 20332

1 Co1. Frank Hart , Director 3. Cdr. Mercer
Training Development Institute CNET Liaison Officer

• AT2NG-PDI AFH~~/F1ying Training Div.
Ft • Eustis, VA 236014 Williams AFB, AZ 85224

1 Dr. Milton S. Katz 1 Dr. Donald E. Meyer
Individual Training & Skill U.S. Air Force
Evaluation Technical Area A~~/XPTD
U.S. Army Research Institute Randolph AFB, TX 78148
5001 Eisenhower Avenue
Alexandria, VA 22333 1 Dr. Ross L. Morgan

AFH~~./ASR
1 Director, Training Development Wright-Patterson AFB, OH 45433

Attn: Dr. Sherrill
U.S. Army Administration Center 3. Research Branch
Ft. Benjamin Harrison, IN 46218 AFMPC/DWYP

Randolph AFB, TX 781148

3 

- - - - - - - .  - •_-----——--~~~~~~— ~~~~~~~ -—~~~~~~~~~~~~~~~ - -- -~~~-~~~•~~~~~~~~~ - - --



~~~~~~~~~~~~~ - - -~~~~~~~~~ --— 

1 Dr. Marty Rockway 1 Director, Research & Data
AF}ffUJTT CGD,’~4RA&L
Lowry AFB, CO 80230 The Pentagon, fti. 3B919

Washington, DC 20301
1 Maj. Brian K. Waters

Chief , Instructional Technical Branch 1 Dr. Robert Young
Advanced Research Projects Agency

Lowry AFB, Co 80230 1400 Wilson Blvd.
• Arlington, VA 22209

Marine Corps
Other Government

1 Director, Office of Manpower
Utilization 11 Mr. James M. Ferstl

HQ. Marine Corps (~~u) Bureau of Training
BCB, Bldg. 2009 U.S. Civil Service Ccaunission
Quantico, VA 22134 Washington, DC 201415

1 Dr. A. L. Slafkosky 1 Dr. William Gorham, Director
Scientific Advisor Personnel R&D Center
HQ, U.S. Marine Corps U.S. Civil Service Commission
Washington , DC 20380 1900 E Street, NW

Washington, DC 201415
Coast Guard

1 William J. McLaurin
1 Mr. Joseph J. Cowan, Chief Internal Revenue Service, Bin. 301

Psychological Research (G-P-a/62) 2221 Jefferson Davis Highway
U.S. Coast Guard HQ Arlington, VA 22202
Washington, DC 20590

1 Dr. Andrew S. Mo~2narOther DOD Science Education R&D
National Science Foundation

12 Defense Documentation Center Washington , DC 20550
Attn: TC
Cameron Station, Bldg. 5 1 Dr. H. Wallace Sinaiko , Director

• Alexandria, VA 22314 Manpower Research & Advisory Service
Smithsonian Institution

1 Military Assistant for Human Resources 80]. N. Pitt Street
Office of Director of Defense Research Alexandria, VA 223l~4
and Engineering

The Pentagon, Room 3D129 1 Dr. Thomas G. Sticht
Washington, DC 20301 Ba.sic Skills Program

National Institute of Education
1 Dr. Harold F. O’Neil , Jr. 1200 19th Street, NW

Advanced Research Projects Agency Washington, DC 20208
Cybernetics Technology, Bin. 625
111-00 Wilson Blvd. 1 Dr. Joseph L. Young, Director
Arlington, VA 22209 Memory & Cognitive Processes

National Science Foundation
Washington, DC 20550

14

Miscellaneous

1 Prof. Earl A. Alluisi 1 Dr. Robert K. Branson
Dept. of Psychology (Code 287) IA Tully Building
Old Dominion University Florida State University
Norfolk, VA 23508 Tallahassee, FL 32306

1 Dr. John R. Anderson 1 Dr. John Seeley Brown
Dept. of Psychology Bolt Beranek & Newman, Inc.
Yale University 50 Moulton Street
New Haven, CT 06520 Cambridge, MA 02138

1 Dr. Michael Atwood 1 Dr. Victor Bunderson
Science Applications Institute Institute for Computer Uses in
40 Denver Tech. Center West Educatios/355 ~)LC
7935 E. Prentice Avenue Brigham Young University
Englewood, CO 80110 Provo, UT 84601

1 Dr. R. A. Avner 1 Dr. John Carroll
Computer-Based Educational Research Lab. Psychometric Lab.
University of Illinois University of North Carolina
Urbana, IL 61801 Davie Hall 013A

Chapel Hill, NC 27514
1 Ms • Carols A. Bagley

Minnesota Educational Computing 1 Dr. Kenneth E. Clark
Consortium College of Arts & Science s

• 2520 Broadway Drive University of Rochester
St. Paul, MN 55113 River Campus Station

Rochester, NY 14627
1 Mr. Samuel Ba.U.

Educational Testing Service 1 Dr. Norman Cliff
Princeton, NJ 08540 Dept. of Psychology

University of Southern California
1 Dr. Gerald V. Barrett University Park

Dept. of Psychology Los Angeles, CA 90007
University of Akron
Akron, OH 1414325 1 Dr. Allan M. Collins

Bolt Beranek & Newman
1 Dr. Nicholas A. Bond 50 Moulton Street

• Dept. of Psychology Cambridge , MA 02138
Sacramento State College
600 Jay Street 1 Dr. John J. Collins
Sacramento, CA 95819 Essex Corporation

201 N. Fairfax Street
I. Dr. John Brackett Alexandria, VA 223111

SofTech
460 Totten Pond Road 1 Dr. Meredith Crawford
Waltham, MA 02154 5605 Montgomery Street

Chevy Chase, 1W 20015

5

—~~ -~~~~~ - - - - - --- --~~~—•— -~~~~~~~- -~~

- - - ~~~~~~~~~~~~~~~~~~~~~~~~~ - • — :-~T~~=:__ L .~~~~~~~~~~~~~-’-
-—-

~
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1 Dr. Donald Dazisereau 1 Dr. Robert Glaser
Dept. of Psychology Dept. of Psychology
Texas Christian University University of Pittsburgh
Fort Worth, TX 76129 3939 O’Hara Street

Pittsburgh, PA 15213
1 Dr. Ruth Day

Cente r for Advanced Study in Behavioral 1 Dr. James G. Greeno
Sciences LRDC

202 Junipero Serra Blvd. University of Pittsburgh
Stanford , CA 914305 3939 OtHar a Street

Pittsburgh, PA 15213
1 ERIC F~ciUty - Acquisitions

14833 Rugby Avenue 1 Dr. Barbara Hayes-Roth
Bethesda, 1W 20014 The Rand Corporation

1700 Main Street
1 Dr. A. J. Eschenbrenrier Santa Monica, CA 9011.06

Dept. E422, Bldg. 101
McDonnell Douglas Astronautics, Co. 1 Library
P.O. Box 516 Ih.imBRO/Western Division
St. Louis, MO 63166 27857 Berwick Drive

Carnal, CA 93921
1 Major I. N. Evonic

Canadian Forces Personnel Applied 1 Dr. Earl Runt
Research Dept. of Psychology

1.107 Avenue Road University of Washington
Toronto, Ontario , Canada Seattle, WA 98105

1 Dr. Victor Fields 1 Dr. Lawrence B. Johnson
Dept. of Psychology Lawrence Johnson & Associates, Inc.
Montgomery College 2001 S Street , NW - Suite 502

• Rockville, MD 20850 Washington, DC 20009

1 Dr. Edwin Fleishman 1 Dr. Wilson A. Judd
Advanced Research Re sources Organ. McDonnell-Douglas Astronautics Co.

• 8555 Sixteenth Street Lowry AFB
Silver Spring, MD 20910 Denver , CO 80230

1 Dr. John R. Frederiksen 1 Dr. Arnold F. Kanarick
Bolt Beranek & Newman Honeywell, Inc.
50 Moulton Street 2600 Ridgeway Pkwy.
Cambridge, MA 02139 Minneapolis , MN 55413

1 Dr. Frederick C. Frick 1 Dr. Roger A. Kauf~nan
MIT Lincoln Laboratory, Bin. D-268 203 Dodd Hall
P.O. Box 73 Florida State University
Lexington, MA 02173 Tallahassee, FL 32306

1 Dr. Vernon S. Gerlach 1 Dr. Steven W. Kee].e
College of Education Department of Psychology
3.46 Payne, Bldg. B University of Oregon
Arizona State University Eugene, OR 97403
Tempe , AZ 85281

6

~ 

~~~~~~~~ -~~~~~~~~~~~~ • - - •~~~~~~-- - • - - - - -~~~~~~~~~ • 
-
~~~~~~~



~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~

1 LCo1. C. R. J. LaFleur 1 Dr. Diane M. Ramaey-K1.ee
Personnel Applied Research R-K Research & System Design
National Defense HQs. 39147 Ridgemont Drive
102. Colonel By Drive Malibu, CA 90265
Ottawa, Canada K1A (1(2

1 Dr. Mart D. Reckase
1 Dr. Robert R. Mackie Educational Psychology Dept .

Human Factors Research, Inc. University of 1’tssouri
6780 Cortona Drive 22 I~~ll Hall
Santa Barbara Research Part Columbia, MO 65201
Goleta, CA 93017

1 Dr. Joseph V. Rigney
3. Dr. William C. Mann Behavioral Technology Labs.

USC-Information Sciences Institute University of Southern California
14676 Admiralty Way 3717 South Hope Street
Marina del Rey, CA 90291 Los Angeles, CA 90007

1 Dr. Richard B. Mil.1.ward 1 Dr. Andrew M. Rose
Department of Psychology American Institutes for Research
Hunter Laboratory 1055 Thomas Jefferson St., NW
Brown University Washington, DC 20007
Providence, RI 82912

1 Dr. Leonard L. Roaenbauni, Chairman
1 Dr. Donald A. Norman Department of Psychology

Department of Psychology C-009 Montgomery College
University of California, San Diego Rockville, MD 20850
La Jolla, CA 92093

1 Prof. Fumiko Swnej ima
1 Dr. Melvin R. Novick Department of Psychology

Iowa Testing Programs University of Tennessee
University of Iowa Knoxville, TN 37916
Iowa City , IA 52242

1 Dr. Walter Schneider
1 Mr. A. J. Peach, President Department of Psychology

Eclectech Associates, Inc. University of Illinois
P.O. Box 178 Champaign , IL 61820
N, Stonington, CT 06359

1 Dr. Robert J. Seidel
1 Mr. Luigi Petrallo HumRRO-Instnrctional Technology Group

21431 N. Edgewood Street 300 N. Washington St.
Arlington, VA 22207 Alexandria, VA 22314

1 Dr. Kenneth A. Polcyn 1 Dr. Richard Snow
PRC Information Sciences Co. School of Education
Conununication Satellite Applications Stanford University
7600 Old Springhouse Road Stanford, CA 914305
McLean, VA 22101 -

1 Dr. Robert Sternberg
1 Dr. Peter Poison Department of Psychology

Department of Psychology Yale University
University of Colorado Box UA, Yale Station
Boulder, CO 80302 New Haven, CT 06520

7

—- - -_ - - -“— - -

~

-•-

~

-- - ~~• -~~~~~~- - • - --— - - - -

•

- A

r
_

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -•

1 Dr. Albert Stevens 1 Dr. Claire E. WeinsteinBolt Beranek & Newman, Inc. Educational Psychology Dept.50 Moulton Street University of TexasCambridge , MA 02138 Austin, TX 78712

1 Mr. William Stobie 1 Dr. David J. Weiss
McDonnell-Douglas Astronautics Co. N660 Elliott Hall
P.O. Box 3(204 University of Minnesota
Chico, CA 95926 75 E. River Road

Minneapolis, MN 554552. Dr. Persis Sturgis
Department of Psychology 1 Dr. Susan E. Whitely
California State University Department of PsychologyChico, CA 95926 University of Kansas

Lawrence, KA 6601411.1 Mr. D. J. Sullivan
d o  Canyon Research Group, Inc.
741 Lake field Road
Westlake Village, CA 9136].

1 Dr. Patrick Suppes
Department of PhilosopI~rStanford University
Stanford, CA 914305

1 Dr. Kikumi Tatsuoka
Computer Based Education Research Lab.
University of Illinois
Urbana, IL 6180].

3. Dr. Perry Thorndyke
The Rand Corporation
1700 Main Street
Santa Monica, CA 901406

1 Dr. Walt W. Tornow
Control Data Corporation
Corporate Personnel Research
P.O. Box 0 - HQNO6O
Minneapolis, MN 5511.40

1 Dr. Benton J. Underwood
Department of Psychology
Northwestern University
Evanston, IL 60201

2. Dr. Thomas Walisten
Psychometric Laboratory
Davie Hall 013A —

University of North Carolina —

Chapel lul l, NC 27514

8

-

~ 

_ 
---- —-_--— — --•~ —-• _ ----


