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ABSTRACT

The momentum theory of moderately loaded propellers has been generalized
to account for the effects of shear in the oncoming stream. A condition to
determine the distribution of thrust for optimum efficiency is derived which
generalizes a condition derived by Betz for a propeller in a uniform flow.
This condition leads to a nonlinear integral equation, and a computer program
has been developed for solving it. Results for a propeller of a given radius
in particular wakes at different Reynolds numbers are presented and discussed.
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NOMENCLATURE
: a axial interference or induction factor = u«'/ZU‘,°
a' rotational interference or induction factor = w/2Q
C; thrust loading coefficient = T/3p U2 s
d propeller diameter = 2R
I u,/nd
KQ torque coefficient
Ky thrust coefficient
n number of revolutions per second = Q/2m
p pressure
P power = (Q
§ Q torque
E r radial coordinate
% R radius of propeller
E S area of propeller disc = ™R3
T thrust

sl i
c

axial component of velocity

Us induced axial velocity at actuator disc
;

u, induced axial velocity in the far wake

1] axial velocity in oncoming stream

Up velocity of oncoming stream at r=R

U, ship speed

v radial component of velocity

v 2U-UR

w azimuthal velocity

b3 axial coordinate
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8 Dirac delta function; also symbol for first variation
1l efficiency
A Lagrange multiplier
: 4 p fluid density
| 1] Stokes stream function
g . w induced rotational velocity
é A jump across actuator disc
f Q rotational veloc}ty of propeller
-
H
[
é
:
E vi
&
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INTRODUCT ION

The theory of propeller design is a well-developed art that has pro-
gressed for over a century from axial momentum theory to general momentum
theory to blade element theory to lifting=-line theory to lifting=-surface

theory. It has thus become possible to predict the mean radial pressure

distribution with various degrees of refinement for a given propeller as

well as the harmonic content, and also to determine the mean load distribu=-

tion for optimum efficiency.

Despite the sophisticated mathematical treatments presented by many
authors, all theories thus far developed have been based on the existence
of a velocity potential. Propellers which are placed near the stern of a ?
ship or submarine operate in the wake of the vehicle where the oncoming
stream contains vorticity and this is usually taken into account by para- |
metrically varying the wake velocity over the plane of the propeller and
retaining the assumption of potential flow: This procedure can be justified
only if the vorticity is weak (see Sears.'“p.hz). Thus, the lifting surface
theories presented by Morgan and Wrench,2 Yamazaki,3 and Greenberg,u are all

based on this assumption, and Greenberg goes so far as to say that unless

the assumption is made ''..the problem becomes hopelessly unmanageable.'' This
is very likely fo be so for general unsteady lifting surface theory. However,
it leaves unanswered the question as to the suitability of the assumption

for an actual ship wake whose vorticity may or may not be sufficiently small

to justify the assumption.

In those cases where the vorticity is not weak, a velocity potential
cannot be assumed and the presence of shear in the oncoming stream will af-
fect the flow field. Theories which account for the shear have been considered
by several authors for the flow about wings, the first such paper being that
of Karman and Tsien,s but the parallel development for propellers seems to

have been ignored probably because of the unmanageability of the problem.

s

“Superior numbers in text matter refer to similarly numbered references
listed at the end of this report.
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Nevertheless, it would be useful to have some simple solutions which
do account for shear so that comparisons can be made with the weak shear
approximation thereby allowing an assessment of the weak shear assumption.
Two possible "simple'' theories appear to be possible in which the effect of
shear is included.

The first such is momentum thecry which is basically a one-dimensional
theory and for which the wake profile can be allowed to vary radially in an

arbitrary way.

The second such theory is a steady state lifting=line theory in which
shear is accounted for but the wake profile takes on a special shape for
which the field equation becomes no more complicated than that for potential

flow.

The analysis presented below is confined to the first of these simpli-
fied theories, but it is intended to develop the second in a subsequent re-
port. In Section | the equations for the axial momentum theory are developed.
In Section || the equations for the general momentum theory are developed and
the condition of Betz for the optimum distribution of thrust is generalized
to an arbitrary wake distribution. 1n Section 111 some numerical evaluations
are presented for a measured wake and comparisons made with results obtained

simply by varying the wake parametrically (weak shear approximation).

The analysis will generally follow the article by Glauert6 for the
momentum theory of a propeller in a uniform stream. This article synthesizes
the main developments. of the theory which have changed very little since it

was written (but see Reference 7 for a recent development).

This research was sponsored by the David Taylor Naval Ship Research
and Development Center, General Hydromechanics Research Program, under Con-
tract NOOO14-77-C=0297, DL Project 4512/023.
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I. THE AXIAL MOMENTUM THEORY

We consider the Euler equations of motion for an incompressible

frictionless fluid.

At x=0 , there is a propeller to be modelled by an

actuator disc that can sustain a pressure jump Op= p(x=0+)-p(x=0-). The axial

momentum equation in cylindrical coordinates (x,r) for axially symmetric flow

Here u

v
p
p
t

du Qu . 1@ 1 : S
u-é;'*Va:-’-';g,%-FAp(r)&(x) ; bp(r) =0 for r> R .
the axial component of velocity

the radial component of velocity
the pressure
the fluid density

the Dirac delta function

The equation of continuity is

Now assume there exists an oncoming stream U(r) , the so-called nominal

wake, which has been generated by a body somewhat ahead of the actuator disc.

d d i
5 (ru) + 5 (rv) =0

Since U(r)

considering only the zeroth harmonic of the wake and the mean forces on the

propeller.

(1.1)

(1:2)

is taken to be independent of the azimuthal angle, we will be

The perturbation velocity components imparted to the fluid by the

actuator disc are u' and v' . Then, upon setting

u U(l’) o u'(x,r)

v =v'(x,r)

and substituting into Eq.(1.2), we obtain

%; (ru') + %F (rv') =0

On the other hand, upon substituting into Eq.(1.1), we obtain

du' g Sut WU ] 1
bt R et S SR L

(1.3)

(1.4)

(1.5)
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]
where the term g%— v! has been ignored as being of higher order. The
third term on the left-hand side of this equation represents the effect of

the shear of the oncoming stream.

The continuity equation can be satisfied identically by defining a
Stokes stream function such that

rv! = %& ;  ru! = - %% (1.6)

in which case, Eq.(1.5) becomes

du! du'  1dudy 13 _1
bgr+ wige ol eSS SNt | . (1.7)

At this point we will drop the primes on u' and v' ; since we will rarely
be required to refer to the original u and v , this will cause little

confusion.

In order to solve for the velocity components everywhere in the field,
it is, of course, also necessary to consider the radial momentum equation
and solve it simultaneously with the axial momentum equation. However, for
our purposes we will be content to consider the overall momentum of the sys=-
tem and with this view, only Eq.(1.7) will be required. Far upstream (x=-«),
all velocity components vanish and the pressure will be taken to be zero.
Thus, upon integrating Eq.(1.7) with respect to x from x=-®» to x=0- ,
it is found that

2
W(0-) + 5=(0-) + £ S ¥+ L p(0) =0 . (1.8)

On the other hand, if we integrate Eq.(1.7) from x=0+ to x=e , and assume
that any difference in pressure in the wake from its value far upstream is

of higher order,*we obtain
1 du 0+
Wuy - u(0) 2o (02 = (001 + 2P0y, - y(o9] = 2L (1)
Upon forming the quantity %E by adding Eq.(1.8) and Eq.(1.9), it is found

that
2

-A-f-= U ug, +u%+-:_--g—l:wm + ULu(0-) = u(0+) ]
+ HuB(0-) - B (04)] + }%[w(o-) o glonyl . (1.10)

.

*indicated by von Mises [8] to be of third order.

L
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Finally, if we integrate Eq.(1.7) across the disc from x=0- to x=0+ ,

we see that

ULu(0=) = u(0+) J+ %[u3(0-) = u“(o+)]+%-j-g[v(o-)- y(0+)J=0 (1.11)

Subtracting Eq.\1.11) from Eq.(1.10), we obtain for the pressure jump

2
Y 1 du
%‘B= Uuw+--;-'-0-';_"a'FW°° (1.12)

from which the thrust of the disc becomes

~ 2
T = apds = pf | Vug+ 22—+ 18y Jas (1.13)

where dS is the element of area and the integration is to be carried out
over the area of the actuator disc.

This formula is identical to the result for the thrust as obtained from

ordinary momentum theory with the additional term proportional to g% that

accounts for the effect of shear.

At this point we may obtain a relationship between the stream function
and axial perturbation velocity at the disc and in the wake to the order of
linear theory. Now in linear theory, the pressure must descend to --%A p

just in front of the disc and rise to + lAp just behind the disc, so that

2
the quantity p(0+)+(p=) must vanish. Thus, upon taking the difference
between Eq.(1.8) and Eq.(1.9), and ignoring the quadratic terms in u® , we
obtain
1 du, =l' + 1.4 ]
YUs * 7T dr 21 * 15 17 {42450
where
_ u(0+) + u(0-)
u = =
[¢] 2
(1.15)
v = 1(0%) + ¥(0)
o Z

Upon eliminating uy and u, in favor of Wo and wm by virtue of the
definition (1.6), it is easy to show that Eq.(1.14) becomes

L ldWm 1

o ] g
dU " U 2\l TV e ’ =

This is a differential equation for vo when §_ is given, and its general

5
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solution is

v =

A ¥, + KU (1.17)

N —

where K is a constant of integration. However, for a propeller with no
boss, the axis r=0 must be a streamline and hence both *o and wu vanish
there; whence K=0 . Thus to first order the perturbation stream function in
the plane of the propeller is half the stream function in the ultimate wake,
and hence the perturbation velocities are in the same ratio. This relation=

ship is, of course, the same as had previously been deduced for a propeller
in a uniform stream.

Now reconsider Eq.(1.11) and let

Ou
oy

u(0=) = u(0+)
¥(0-) - y(0+) .

Upon ignoring the quadratic terms and utilizing the definition (1.6), it
is easy to show that this becomes

- U %U (oY) + ay =0 : (1.18)

This is a differential equation for the jump in the stream function across

the disc. |Its general solution is
oy = KU . (1.19)

where K, is a constant of integration. For a propeller with no boss, Ay must
vanish at r=0, while for a propeller with a boss, A}y must vanish at the radius
of the boss. In either case, K, must vanish, and hence we have proven that to
first order there is no jump in the stream function across the actuator disc,
that is, no mass flow is created at the disc, and as a consequence of the
definition (1.6), the axial perturbation velocity is also continuous across

the disc, a result that is the same as that for a propeller in a uniform flow.

Finally, we may cast Eq.(1.13) for the thrust into another form by con=
sidering that dS=2Trdr and integrating the shear term by parts. Then, by
virtue of the definition (1.6), the thrust becomes

2
: u
T, =0 [ (vu, +==)ds ; (1.20)

where




V=2u-u (1.21)

and UR is the velocity of the wake at the outer radius R of the propeller
disc. Equation (1.20) is identical in form to the expression for the thrust
without shear except that the oncoming stream velocity is replaced by V ,

a quantity that will become negative whenever U(r)< Ug/2 .

It is necessary to point out that the expression (1.20) is the thrust
developed on the propeller because it is operating in a wake of velocity
U(r). In other words, it is the thrust that develops on a propeller tested
behind a screen wake in a water tunnel test facilfty (neglecting wall ef-
fects). It is not the thrust that develops on a propeller mounted behind a
ship or submarine with this wake because the induced velocity and pressure
fields created by the propeller will increase the resistance on the body over
and above that which would be present if the propeller were absent. Thus,
when it is mounted on the ship or submarine, the propeller must not only
overcome the body resistance but also the additional resistance induced on
the body by the propeller. Hence, Eq.(1.20) represents only the apparent
thrust of the propeller and for this reason it is called T, . Determination
of the induced resistance on the body is an important element in analyzing
the propeller ship combination, but it is not the problem that concerns us

here.

We now consider the power required to produce the thrust Ta which
will be called P, . It is clear that the power at any annulus will be equal
to the element of thrust times the velocity (U+uy) at which it is being trans-

ported summed over all annular elements. In other words

e [ (u+ug)dT . (1.22)

Since to first order o - %-uw , then upon substituting for the thrust

density from Eq.(1.12), there is obtained

2
d

- o [{ue S T ]d 1.2
ARIAUE L e ab e+ AN L ot
Finally, the apparent efficiency is given by the ratio of the useful

work to the power absorbed:
U“Ta

(1.24)

T\a s Pa
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where U_ is the velocity of the propeller body combination (which unfortunately
is not known for the present model since it depends on the connection between
the body wake and the speed of advance). The appaient efficiency can, paradox~
ically, be greater than unity since we have not debited the propeller with the
induced resistance on the body.

We will now determine the condition to be satisfied for the propeller of
maximum efficiency. Thus, for a given thrust, we wish to minimize the power
used to generate it. In other words, we wish to set the first variation of

Pa+)\Uq.Ta equal to zero, where \ is a Lagrange multiplier. In Eq.(1.23), we set

’ -
TR I TIF Ty WL T PP T WL T

=
Then,
8P, + AU_8T, =
R du r
2mp j{uzsu; 2Uu_Bu_ + % u? bu, - 27” -d—l:- Jnncuc(e )dr,
o o
’ u_ r
o) | duU :
-(u + i_)'F S { ry 8u, (r, ) dr, 1
’ !
+ AU (Véu  + uﬂbuw)}rdr =0 . (1.26)

Consider the term

-2mp | (U 4 —) <Y gr J‘ rnéu,(n)dn

Upon interchanging the order of integration, this becomes

R

-2n [ réu_dr j‘ (U(r,) + = g:’ dry
o

Thus the variation 6u_, may now be factored out of all the terms in Eq.
(1.26), and upon applying the fundamental lemma of the calculus of varia=

tions and letting

o ZaU” (1.27)

where a is the axial interference factor, we find the condition for

optimum efficiency:




b o
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2 ; du/U_ r/R

3(Y Y P LAl
i(uﬁ) g “a(ua) AN - o = £ R 3

U..2 1 du/u 4 U
1/ R ® U R

B 1 . d - P8 S =0 . ;

i(ua) Ega s TR A+ A L TSl Za] (1.28)

In contrast to the case of parametric dependence on U , the axial inter=
ference factor, when shear is included, depends on conditions at all radial
stations across the actuator disc because of the presence of the integral
terms. One way to solve this integral equation for a is by iteration. The
first step is to specify a value of A . Then ignore the terms involving

d(u/u )
ETF7§§- . The resulting quadratic can be solved exactly at each radial sta-

tion. The resulting values of a(r/R) can then be used in the two integral
terms and the quadratic solved again. This procedure is repeated to con=-

vergence.

It will be noted that it is necessary to specify the Lagrange multi=
plier A , a quantity that is not, of course, known. The apparent thrust,
on the other hand, is presumed given. Thus, once a(r) has been found for
a given A , the apparent thrust may be calculated from £q.(1.20), the
appareﬁt power from Eq.(1.23), and the apparent efficiency from Eq.(1.24).
Hence, by varying A over a range of values, a plot can be prepared of

Ta vs. N_. for optimum apparent efficiency of a propeller of radius R in

a
a given wake. Note that these curves will change if the propeller radius
changes so that there may exist an optimum propeller radius especially for

wakes that are not monotonic.

The distribution of the axial interference factor as obtained by this
method is not likely to be realistic since rotational velocities are not
accounted for, but the curves of ideal apparent efficiency vs. thrust and
power will be very close to the curves when rotation is accounted for since
it is well=known from ordinary momentum theory that rotation affects these

curves only slightly.

The equations for thrust and power may be put into coefficient form

by defining a thrust and torque coeffigients

e LA M ol g o AT il L AL
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T
= a
KT on2d*
(1.29)
K =—-Pa—
Q Qpnadti
Here ;
n is the number of revolutions per second = (/2m
d is the diameter = 2R
We define JA=UQ/"d , then Eq.(1.20) becomes in coefficient form
1 u,. -
1 e (_-_R i
it j'[ T i ok (1.30)
(o] Q -]
A
Equation (1.23) becomes
K 1 : du/u r
o N R, i 'z JEat
i *a){.a(u 4 TW 3( JR9IR
JA 0 ® @
(1.31)
and the apparent efficiency becomes
K./J,2)
1 ( T “A
VoG (1.32)

1 /90

Finally it should be noted that the design problem of finding u, » when
the load distribution Ap(r) is given, can be solved by casting Eq.(1.12)

into the form

UB

4p_ . I |
0 Uua + > -

[N
= jc

r
I ry ugdry : (1.33)
o

which follows from the definition (1.6). This integral equation for Ug
can be solved by iteration in the following way: Ignore the shear term
and solve the resulting quadratic for u, at each r . The integral can

then be evaluated and the quadratic solved again including it. This
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procedure is repeated to convergence. Equation (1.33) can also be
expressed in non-dimensionless form:

S gl bopns o Ailel £ S
dr/R 8{anu“+n° “S% L E " (1.34)
where
o AR (1.3
dr/R 1 3 +35)
7 Pla

is the thrust loading coefficient per unit radius.

R
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11, THE GENERAL MOMENTUM THEORY

In the axial momentum theory as presented in Section |, all rotational
motions have been ignored. In the general momentum theory we consider them,

and hence we consider the radial momentum equation, viz.,

dv. W dv 1 d
[v e o] Sl T . (2.1)

Here w is the azimuthal component of velocity. Now it is known from the
constancy of angular momentum that ahead of the propeller there is no rota=-
tion, while behind it the propeller imparts a rotational velocity w to
the fluid. Since v and u are continuous across the propeller disc, we
obtain for the jump in pressure

;":_f. ! (2.2)

ala
Ss

1
P

In a coordinate system rotating with the propeller blades, the flow will be

steady. Hence, let

w==0r +w'
2 (2.3)
b vaie
Equation (2.2) then becomes

3
= aw - (2.4)

ala
E

i1
[
Now let w'=wr , and integrate with respect to r . Then, if w is a

slowly varying function of r*, it is easy to show that approximately

op = pu r’(a-3) (2.5)

where the primes have been dropped as superfluous. This relationship is
the same as that developed for a propeller in a uniform stream. Following
Glavert, we now let

w=2a'Q (2.6)

% » " " ’ .
This approximation is also Igherent in the momentum theory in a uniform flow
as pointed out by von Mises,

although Glauert is tacit on the matter.

12
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where a' is the rotational interference factor. Then,

op = 2p0%r? a'(1-a") (2.7)
and this expression for the jump in pressure across the actuator disc must

be the same as that developed from the axial momentum theory as given in

Eq.(1.12). Thus, upon substituting Eq.(1.27), we find the following relation-

ship between the rotational and axial interference factors:

d(u/u) r
1
U: [%; a+ a® - -F-—.dr_m—i' a rldr1]= Qaraa'(] =a') . (2.8)

This relationship differs from the corresponding relation for uniform flow
in two respects: The terms U/Um in the first term on the left=hand side
accounts for the parametric variation in the velocity across the wake,

: d(u/u
while the term proportional to _ﬁaélfl accounts for the shear.

The torque may be obtained by considering the mass flow multiplied by

T

the moment of the rotational velocity, thus

Q, = pf (Utuwrds . (2.9)

Upon substituting relationships already established or defined, there is

obtained

R U
] Q, = tmea [ (U+—arridr . (2.10)
(o]

The apparent efficiency is the ratio of apparent work to the power

required to generate it, i.e.,

3 ‘ T]a=w ¥ (2.'])

We will now determine the condition to be satisfied for the propeller
of maximum efficiency, i.e., we will minimize the power for a given thrust.

Thus we set the first variation of (1Q5+XUmTa equal to zero where, again,

A is a Lagrange multiplier. For this purpose we use the form (1.20) for
the apparent thrust. Then

2 R R 1 R
Q8Q,+AU 6T, = LmpQ ‘{£ KU+ i—jrsba'dr4~§ £ rsa'Gu“dr}
R
+ 2MAU_p £ (V+u_bu_rdr=0 . (2.12)

13
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We set u“=2Uma , as before; then by virtue of Eq.(2.8), we can establish

the following relationship between §a' and 6a

U, [(-—+ 2a )éa - __c_l_(_L_J/-U_)_ 6ar1dr1:|=f)2 r(1-2a') 6a’ (2.13)
o

Upon substituting into Eq.(2.12), we obtain

. r
J Qe o2 (e 20)oe - 15 () [ aoror)

R R
+ QQUQJ‘ r3a'sadr + )\Uj I (V+2u_a)sardr =0 . (2.14)
) )

Upon interchanging the order of integration in the second term, we find

(U+U a) (u+u a)
! e
TT-zat Vs ( I Za) r “l=2a' e dr, \U } dry
+ Qaumraa' + AU‘f (v + 2U=a)}6ardr =0 . (2.15)

Then, upon invoking the fundamental lemma of the calculus of varia=-

tions, it is found that the condition for maximum apparent efficiency is

(ld:+ a)\-ﬁ:+ Za) j‘ K-ﬂ: + a) %Fz%:)

: : dr,
1-2a S 1-2a
2 u
+ “P; at & % L;! S AP S (2.16)
U, R

This equation is a generalization to shear flow of the condition for
maximum efficiency obtained by Betz over fifty years ago. It can be seen
that it reduces to Betz'condition in the case of uniform flow. For by

setting U=y =U =constant, it becomes

(1+a) (1+2a)  Q°¢?
i
=23 U

-]

a' + A(1+2a)= 0

which, upon dividing by (1+2a), is identical to Betz'condition as quoted by

14




R=2003

Glauert6 if we set A==C . As in the case of axial momentum, the presence
of the integrél terms means that the optimum distribution of the inter=-

ference factors depends not only on local conditions but also on conditions
elsewhere on the actuator disc, and this dependence is caused by the effect

of shear.

In order to determine the axial and radial interference factors for
maximum apparent efficiency, it is necessary to solve Eqs.(2.16) and (2.8)
simultaneously. These constitute a pair of simultaneous nonlinear integral
equations. The pair can be converted into a two=-point boundary value
problem by using the definition (1.6) in (2.8) and differentiating (2.16)
with respect to r . One condition to be satisfied may be obtained by
setting r=R in Eq.(2.16) and another by setting r=0 in Eq.(2.8). Tech=
niques for solving two=point boundary value problems are readily available
(see, e.g., Roberts and Shlpman ) and they can be applied to yield the
solution. It would appear to be simpler, however, to obtain solutions di=
rectly from the integral equations themselves. Since the shearing term is

likely to be small, the following scheme has been employed:

First, assume a value for A (it can be seen from the limit of uniform
velocity that A is negative). Next, solve the pair of equations as simul-
taneous algebraic equations at each value of r/R ignoring the shear terms.

Use the values of a and a' thus obtained to determine the shear terms

b HE it Al he oo aiba e a0 Sl A i fel 2 8 £

and solve the equations again including the shear terms. Repeat this pro-
cedure until the results converge. A computer program has been prepared
based on this iterative procedure.

The thrust coefficient is to be calculated using Eq.(1.30), while the

torque coefficient is found from Eq.(2.10) which, in coefficient form, becomes

i (Q: + a) a' (— d — : (2.17)

The apparent efficiency is then given by Eq.(1.32), repeated here in
: slightly different form:

(2.18)

15
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I11. RESULTS OF A SAMPLE COMPUTATION

A computer program for determining the optimum distribution of the

axial and rotational interference factors has been prepared and applied to

; a particular measured wake determined from model tests.® The ratio of stream
E velocity to forward speed in the wake is presented in Table | and a listing
of the program in Fortran |V is given in the Appendix.

TABLE 1

MODEL WAKE VELOCITY DISTRIBUTION

e s | I—

0. .225

.05 .22

.10 .261

15 .273

.20 .307

| .25 .333

' .30 .359
.35 .382 ,
.bo 413 |

.5 .4k

.50 473

.55 .508

60 541

.65 .577

.70 .610

.75 640

; .80 .671

g .85 .696

.90 .720

.95 743

1.00 .768

*supplied by the sponsoring agency.
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Self-powered model tests had been carried out and it was found that this
wake was appropriate for the advance ratio JA=.891 and that the thrust
coefficient KT==0.|7. In solving the pair of equations (2.8) and (2.16),
it is not possible to specify KT, but instead the Lagrange multiplier A
must be specified; consequently, a value of A was assumed and the result=
ing value of 'KT computed. Then ) was adjusted using a manual search
procedure until KT became equal to 0.17. It is, of course, possible to
automate this search procedure but for the limited number of computations

carried out here, this would have been unnecessarily elaborate.

The pair of equations (2.8) and (2.16) were solved a second time with
the shear terms omitted and 2U~UR replaced by U . This corresponds to
considering U as a function of r only parametrically, and thus in this
case all effects of shear are suppressed. A comparison of the results both
including and excluding the effects of shear are shown in Figures 1, 2, and
3. The distribution of thrust loading was calculated using Eq.(1.34).

It can be seen from Figure | that the distribution of the rotational
interference factor is strongly dependent on shear only for the inboard
sections which do not carry a significant portion of the load. 0On the other
hand, from Figure 2 the optimum distribution of the axial interference factor
is strongly dependent on shear for the outboard sections and suggests that
a wake-fitted propeller designed without accounting for shear is pitched at
the wrong angle to obtain maximum efficiency. |Indeed, the optimum load dis-
tribution as presented in Figure 3 shows that the tips should be more heavily

loaded when shear is accounted for than when it is not.

The measured model wake given in Table 1 was processed* to determine
the wake on the full=scale vehicle and the full-scale wake data are presented
in Table 2. It was assumed that the advance ratio and thrust coefficient are
the same at full=scale as for the model tests and plots of the rotational in=
terference factor, the axial interference factor and the optimum load distri=
bution for these conditions are presented in Figures 4, 5 and 6, respectively,
both with and without shear. The relative effects of shear are seen to be

similar to the results for the model wake.

“by the sponsoring agency.
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r/R

0.
.05
.10
.15
.20
.25
.30
.35
.bo
.us
.50
.55
.60
.65
.70
.75
.80
.85
.90
.95

1.00

TABLE 2

FULL=SCALE WAKE VELOCITY DISTRIBUTION

U/U“

.270
.291
314
.328
.369
.394
.b20
L2
473
.500
.533
.567
.600
.636
.669
.700
731
.756
779
799
.820

It is also interesting to compare the optimum distributions for the

model wake with the optimum distributions at full=scale including shear in

both cases. These comparisons are shown in Figures 7, 8, 9. From Figure 7

we see that the rotational interference factors are virtually the same

between model'and full=scale at all radii.

From Figure 8 we see that the

axial interference factor has a small but significant difference at all

radii and this suggests that even when shear is accounted for, the design

of a full-scale wake-adapted propeller must be pitched differently from its




R-2003

model prototype in order to optimize its perfomance. This is borne out in
Figure 9 where a comparison of the optimum load distribution for model and
full=scale indicates that the tips should be more heavily loaded at the ex=

pense of inboard stations in full=scale in comparison with model scale.

Since the momentum theory does not allow the load to drop to zero at
the tips as it must, these conclusions may require some modification. Never=
theless, momentum theory in combination with blade element theory has served
as a fairly reliable design tool in the past and the conclusions drawn here
are very likely to be qualitatively correct. It is planned, as mentioned in
the Introduction, to examine a more sophisticated theory for a special family

of wake profiles in which the tip effect including shear is accounted for.

Finally it should be remarked that the optimum apparent efficiency at
full=scale is smaller than at model scale and that the effect of including
shear is to reduce the optimum efficiency from that which would be obtained

if shear were negiected.
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APPENDIX

Given below is a list of computer symbols and corresponding mathematical
symbols for the program used to solve Eqs.(2.8) and (2.16) simultaneously:

COMPUTER SYMBOL

AJ

MATHEMATICAL SYMBOL

initial value of J

A
PNI initial value of A
NAAJ number of values of JA
NNP number of values of A |
DAJ increment of JA %
DPN increment of A
UR(1) values of U/U_ given in Table 1 or Table 2 5
URT value of U/U_ at r/R = | |
H increment of r/R j
URP (1) d(u/u_)/d(r/R)
X1 a
X2 a' 3

NOTES ON THE PROGRAM

QTFE IBM 360-SSP integration subroutine
using trapezoid rule :
DET3 IBM 360-SSP numerical differentiation i

SUBROUTINE PGI

BOT
TOP

subroutine using central differences

subroutine to solve Eqs.(2.8) and (2.16)
simultaneously at given value of r/R for
given values of BOT and TOP

integral term in (2.8)
integral term in (2.16)




105
191
4
100
! 950
‘
t:
E
3
? 30
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LISTING OF COMPUTER PROGRAM

«TY PGRF
DIMENSION UR(21),URP(21),X1(21),Xx2(21),TOP(21),B0T(21)

DIMENSION FT(21),FB(21)
DIMENSTON FKJ(21),FKQ(21)

DIMENSION CTF(21)

DOUBLE PRECISION SHIP
COMMON URT,PI,PNsPJ4L2
DATA X1sX2/482%A ./
DATA P1/3.1415926/
CALL IFILE(21,°'@DOD1*)
ACCEPT 1055SHIP
FORMAT (AR)
ACCEPT 100,AJ
ACCEPT 10M,PN1
ACCEPT 1015NAAJ,NNP
ACCEPT 100,DA.]
ACCEPT 100,DPN
FORMAT(21)

READ(21,189) (UR(I)51=1,21)
URT=UR(21)

FORMAT(F)

=.AS
CALL DET3(H,UR>URPs215 IER)
JFCTER.NE.D) CALL EXIT
TYPE 950,SHIP
FORMAT( *1*,5Xs "OPTIMUM LOADING WITH SHEAR - ‘AB//1X»
¢ JA'RX LA 'SX KT *'8X 'KQ *BX'CT*7XETA")
DO 991 NAJ=15NAAJ
PJ4=P1/A]
PJ42=PJ4*PJ4
PN=PNI1
DO 990 NP=1,NN\P

X1(21)=.5

X2(21)=0.

DO 92 LAAP=1,10
DO 3@ K=1,21
FT(K)=CURCK)I+X] (K) IXURP(K)/(] « =2 *X2(K))
K=K

FB(K)=X1(K)%(XK=1e)%*:.05

CONT INUE

e S e s e
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89

81

200

95

995
999

991.
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CALL QTFE(H,FT»TOP»21)

CALL OTFE(H,FB»ROT»21)

DO 49 1=1,21

TOP( 1)=TOP(21)-TOP(I)

Y1=X1(21)

Y2=x2(21)

DO SA J=1,21

1=22-.)

XI1=1

RI=H*(XI=1¢)

CALL PGI(Y1,Y25URCI),URP (1), TOP(])»BOT(] )>R1)
X1¢1)=Y1

xX2(1)=Y2

CONTINUE

CONTINUE

DO 892 I=1,21

XI=T1

R=(XI=1¢)%*H

FK.ICTI=C (2 *URCT I=URTI+X1 (1))*X1 (] )*R
FKQCT)=CURCTI+X1 (1))%X2 (] I*R*R*R

IF (R.EQ.8.) GOTO 8l

CTF(1)=8*R*x(URCT I%X] (1)+X1 (1)%X] (1))-8+%URP(I)*BOT(I) ‘
&TO 89 |
CTF(I)=0A.

CONT INUE
FORMAT(2XsF 425 4E1604)
CALL OSF(HsFK.J»TOP»21)
CALL QSF (HsFKQ,BOT»21)
CT=8.*TOP(21)
F.J=PI*AJ*AJ*TOP(21)
FQ=«S*PI*PT*A BOT(21)
EH=+ S*AJ*F J/FQ/P]
IF(NP.GT.1) GOTO 95
TYPE 9925AJsPNsFJsFQsCTsER
GOTO 999
TYPE 9725sPNsFJsFQsCT>EH
FORMAT(2Xs 6F1A.4)
FORMATC(12X»5F104)
PN=PN-DPN ]
A J=AJ+*DAJ
END

23
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SUBROUTINE PGl (X1, X2,URs URP» TOP,BOT,R1)
COMMON URTsPJsPNsPJA2
D0 104 1=1,572
F1=C(UR+X] )% (LR+2+%X] )=TOP*(] ¢ =2+ %X2)
F1=F1+PJL*RT*RI*)X2* (] e =2.%)2)
F1=F1+PN*(] ¢ =2 %X2)% (2 *UR=-URT+20 %X1 )
IF(RI.EQ.A«) GOTO 30

F2=UR*X1 +X1%*X] -=URP*BOT/R]
GOTO 49
F2=UR*X] +X1*X1
CONT INUE

=F2-P.JR*RI*RT*X2%(] « - X2)

FSQ=F1%F1+F2%F2
IF(FSQ.LT«1E-12) RETURN
F1X1=3e%UR+4e%X] 42 %PN*k (] e =2 %X2)
F1X2=2.*TOP+P. J{2*RT*R]* (] e =4e *X2)
F1X2=F1 X2-2 ¢ *PN* (2 ¢ *UR=-URT+2+%*X1 )
F2X1=Ur+2.%X]1
F2)X2==PJL*RI*RI*(] « =2+ %X2)

XJ=F1 X1 %F2)2~F 1 X2+F2X1
X1=X1+(F2%*F 1 X2-F1*F2X2)/X.)
X2=x2+ (F1%F2X1-F2+F1 X1 )/XJ
CONT INUE
RETURN
END

24
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