|~ AD=A050 768 INSTITUTE FOR DEFENSE ANALYSES ARLINGTON VA PROGRAM ==ETC F/6 15/7 e
IDAHEX: A MANEUVER=ORIENTED MODEL OF CONVENTIONAL LAND WARFARE.==ETC(U) . ’

NOV 76 P OLSEN
UNCLASSIFIED P=1221=VOL=2 _ SBIE~AD-ES00 016

"ADAO050768

g —

IDA PAPER P-1221

IDAHEX

A MANEUVER-ORIENTED MODEL OF
CONVENTIONAL LAND WARFARE

VERSION 1.0

Volume 2: Game Designer’s Manual

Paul Olsen
." —
r“' . ‘ e o
r-i___ 4‘ 53 3 : t % (-:.\
p, | LA G et <}
Ir; : sinta ey

’! ':.)

) 3 19718 | (i

L\\‘ MAR i
| S

November 1976

bpd
1} LR |

oo s G BT &

INSTITUTE FOR DEFENSE ANALYSES
PROGRAM ANALYSIS DIVISION

IDA Log No. HQ 77-

Copy 12 of 106 E‘:P'“

UNCLASSIFIED

ITY CLASSIFICATION OF Tui§ PAGE (When Dere Baiorew)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

P-1221- VA Li-a

r GOVY ACCESSION NO.| 3 RECIPIENT'S CATALOG NUNMBER

@ Subtitle)

IDAHEX: A Maneuver-Oriented Model o

@ Conventional Land Warfare.Versigal.(. Velne
W 2¢ Game Designer's Manual.

P=1221

7. AUTHONR(e,

C/\, Paul/Olsen

"CONTAACY OR GRANT NUMBER)

IDA Independent Research
Program

9 PERFORMING ORGANIZATION NAME AND ADDRESS

Institute for Defense Analyses
Program Analysis Division*
400 Army-Navy Drive, Arlington, VA 22202

10 PROGRAM ELEMENY PROJECY TASK
AREA & WORK UNIT NUNBE RS

/A

V1. CONTROLLING OFFICE NAME AND ADDRESS : ‘

4 MOMITORING AGENCY NAME & ADORESS/ i dillevent lrom Contralling Otlice)

DISTRIBUTION STATEMENTY (u! thie Repor!,

This document is unclassified and suitable for public release.

17 DISTRIBUTION STATEMENT (of the sbatract entered In Block 20, 1! dilloront ivom

Roport)

10 SUPPLEMENTARY NOTES

19 KEY WORDS (Continue on reverse side il necessary and identily by block number)

Airborne Operations, Maneuver -

Land Warfare, Ground Combat, Simulation, Interactive Model, War Game,
Computer-Assisted War Game, Ground Forces, Amphibious Landings,

20, ABSTRACY (Centinue en reverse side Il necessary and idoniily by bloch number)

IDAHEX is an interactive computer model of two-sided conventional

land warfare. It keeps the players informed of the situation and
accepts their instructions to their forces. Units can move by land,
sea, or air. A unit's movement rate is variable, depending upon its
posture, the conditions of its movement, and the adequacy of transport.
Attrition in engagements is assessed by a heterogeneous Lanchester

L™
iy
SECURITY CLASS

0D ':::-” 1473 eoimion oF { noV 88 18 oBsOLETE

z7<¢,"5 it 7

square process. Air support can be played. Supplies consumption

1PICATION OF THIS PAGE (Phen Date Entered)

L- Wy

Bl -

i mirivwes tn)

SECURITY CLASSIFICATION QF THIS PAGE(When Dais Entered)

20. (continued)

e can be assessed, and logistics can be played. The model recognizes
severed lines of retreat and lines of supply and imposes appropriate
consequences. The documentation consists of three volumes: (1) A
Guide for Potential Users; (2) Game Designer's Manual; (3) Player's
Manual.

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

IDA PAPER P-1221

IDAHEX

A MANEUVER-ORIENTED MODEL OF
CONVENTIONAL LAND WARFARE

VERSION 1.0
Volume 2: Game Designer’s Manual

Paul Olsen

November 1976

{ “(h et /
i e i 2P
T OETIS .

! - £14
I b i
s \
I i
‘ i \

4 ~

\ &Y al

t
{

>
o

1DA

INSTITUTE FOR DEFENSE ANALYSES
PROGRAM ANALYSIS DIVISION
400 Army-Navy Drive, Arlington, Virginia 22202

IDA Independent Research Program

e

ey e

T

PREFACE

IDAHEX is a computerized model of conventional land
warfare at the theater level. Its documentation consists of:

Volume 1: A Guide for Potential Users
Volume 2: Game Designer's Manual
Volume 3: Player'’'s Manual

Volume 1 outlines the model's fundamental characteristics.
Volume 2 (this volume) comprehensively describes the model and
its data base. Volume 3 contains enough information for some-
one with a modest knowledge of land warfare to play an IDAHEX
game. It outlines the entire model, identifies information

the game designer should give the players, and describes IDAHEX
as a war game from the players' perspective.

Comments and inquiries are welcomed. They should be directed
to the author (telephone: 703-558-1874).

s 27 S e SITTRL— es—

| Pecedins Fgge Bk

14 11—

p—

RE: Classified references-
10A Paper P-1221
L Document should
{ distribution per Mrs.

remain for unlimited
Doherty, 10A

| CONTENTS
E BRERACE .o 25100 S3buuape e 10 SepEpmat -0 08 D g
; o W UNDERSTANDIEN G THE SN AN AT e e Ll e e 1-1
| {
25 THES R BN N S O R B T A e e e i e 2-1
2 IS ThelAde atto il o o e R T 2-1
N S O 1 e S SRS N R R e e R 2-5
2.2.1 Bagtle Unlt Status < . . 2-6
2.2.2 Battle Unit Resources . . 2-8
2.3 Time . 2-11
3. MANEUVER AL) 2 3-1
3l EventriSequenc it L it s e s e 3-1
g 3.2 BEvenbiSchedini o s s e e e 3-9
5 3.2.1 Transition within Positive Posture 4
; : ClLass . i S B i) '
! 3.2.2 From Hold Posture to Disengagement
Posture . . . o amrc s A3 0
% 3.2.3 From March Posture to Disengagement
E Pagtupe 'Lttt . S S e s = bl 6
g4 3.2.3.1 March Delay for Unstacked
Task Force . . . AU NR el e
3.2.3.2 March Delay for Stacked Task
; HoPce S SR T e e L 3=15
t 3.2.4 From Air Movement Posture to Attack
‘ B e L e e e L e 3= |
} 3.2.4.1 Air Movement Delay for Unstacked f
! Task Force . . . 3=17 |
3.2.4.2 Air Movement Delay for Stacked |
Taslk HOrce « « . e
. 3.2.5 From Disengagement Posture to Movement |
- POBLIIE it g o, BN E . SIHS BRI RTS BMA S Jl9 |
o 3.2.5.1 Disengagement Delay when Enemy ‘
s Can Not Pursue 3=20 |
{ 3.2.5.2 Disengagement Delay when Enemy |
s CantPURSUS " "o v 0 v s v v e e S=20 1
v "‘5—-“‘ B

;’7' Feceding .@4 ?Aam'l |

T S T AT ST I Ty

e €N iy O

3.2.6 From Attack Posture to Hold Posture
at New Location .
3.2.7 To Held Posture at Preeent Location
3.2.8 Transition to or within Nonpositive
Rasbure Glags o e e s s e e 5 n
3.3 Pactlcal iSittuationgs T e e e i e
R e SBURSTAER S e e e e s e s
F B2 L ATEa ek e e et e el e
3.3.3 Disappearance of a Security Force
3.3 Counterattack v o el e e .
3.3.5 Activation of Inactive Task Force .
3.3.6 Virtual Time of Posture Class Entry
3.3.7 Engagement Termination
THE PRIMARY. COMMANDS & . < & & « & &

4,1 Mission Command ;i A e
4,2 Redistributing Resources S T

4,2.1 The Transfer Command »
4y,2.2 The Delivery Command . . .
COMBRIT. U o o slian siv ra faih oe va
5.1 The Attrition Process

5.1.1 Determining the Kill Matrices
5.1.2 Determining Weapons' Values . . .
5.1.3 Finding Actual Losses

5.2 FEBA Movement . . T e BT
5.3 Elimination and Retreat B R i s Y - o
5.4 Mhe " Combat BUNCEACHS o o o 5 crnieis e ot
5.4.1 Resource Availability for Combat
5.4.2 Area of Area of Influence
5.4.3 Battle Unit Effectiveness
5.4.4 Defensive Preparation . . .
5.4.,5 Fraction of Value Lost
5.4.6 FEBA Velocity .
B 1] 2 o L e R L e e

SUPPLIES CONSUMPTION o o o & o & o
COMMUNICATING WITH THE IDAHEX COMPUTER PROGRAM

GAME DESIGN DATA INPUT
9.1 Sequence and Format

L 0 N D T R e e R
G.1.2 PLle 6O , - s & » T
9.2 Sample Data ‘v « v & ¥ v v v % s 5w

vi

QG Y N DD
.
N How D

e

U W o
P R
(S S

giv2ill = Rd e 5
9.2.2 File 60

BTSSR e G e e L e B o o
TNDEX OF VARFABLES .o oo

RERERENGESIEG S S vt o et e

FIGURES

Example of Area of War .
Illustration of Cell Depth .

Area of War and Overlying Network
Status Sequencing

Status Sequencing for Task Force Whose Present
Posture Class > 0 and Desired Posture Class > 0

Area of War with Battle Units

TABLES

Equivalent Descriptions of Posture Class

Examples of Status Changes
Examples of Status Sequences
Influences on Attrition

b o

1. UNDERSTANDING THE MANUAL

IDAHEX is a model of warfare. The model has been
implemented as a computer program, written in FORTRAN. Usually,
no distinction is drawn between the model and the program; this
manual refers to both as "IDAHEX". ‘

As a model, IDAHEX imposes some structure: there are
exactly two sides in the conflict, "Red" and "Blue"; each side's
force consists of individual "battle units"; the postures that
a battle unit can assume are organized into rigidly sequenced
classes; the area on which the Red and Blue forces move and
fight, termed the "“area of war", is approximately rectangular
and is partitioned into regular hexagons; each battle unit's
location is identified with a hexagon. Within this structure
the '"game designer" creates a game. He specifies the compo-
sitions of the Red and Blue forces, the resources held by each
battle unit, the postures battle units can assume, the battle
units' mobility, their resources' effectiveness in combat,
the terrain of the area of war, and the size of the hexagons.
Loosely speaking, the model is a war game whose rules are param-
eterized; the game designer sets the parameters, turning a gen-
eral structure into a specific game. As a tool for designing
war games, IDAHEX is valuable because:

(1) it is systematic, and therefore protects against
design errors and omissions;

(2) it incorporates reasonably sophisticated procedures
for assessing movement, combat, air support, and
supplies consumption, obviating the time-consuming
alternatives of writing ad hoe computer programs and
making the assessments manually;

(3) it contains extensive logic for handling the
consequences of maneuver.

The last point deserves emphasis. If a model plays maneuver at
all--i.e., if battle units can move in more than one dimension--
engagements may start and stop, battle units may be attackead

from multiple directions, attackers may be attacked from the
flank or rear, and enemy units may meet on the march. IDAHEX can
handle these events. Without that capability, the game designer

1-1

e e e

Lo

would have to rely on a control team to make ad hoec judgments
or would have to write a web of rules.

chhis manual describes the IDAHEX model and shows how to use
IDAHEX to design a war game. The Glossary briefly defines all
variables input by the game designer as well as variables and
functions used internally by the IDAHEX computer program. De-
tailed information on almost any variable or function in the
Glossary can be found through the Index. Some variables and
functions~-easily identified because their names appear in
brackets-&do not actually exist in the IDAHEX program but should
be treated just as any other variables and functions by the game
designer. x-They have precise analogs in the program, analogs
that are pedagogically inconvenient because of special coding
to conserve storage. A variable whose name begins with a capital
letter may not correspond to any program variable; it is only a
pedagogical device. If a variable's value is set by inputs from
the game designer--the '"game design data"--the variable's name
is italicized or underlined. In some cases, a variable's value
is set by the game design data but may be altered later by
IDAHEX; the altered variable is identified by the same name
without italics or underlining. Examples:

(1) The array katk is set by the game design data, but
IDAHEX almost immediately redefines it by multiplying
each element by t¢frame. The resulting variable is
named "katk" to distinguish it.

(2) The vector of battle units' locations, buloe, is
initially set by the design data. But units'
locations may change during the game. The vector
variable containing updated unit locations is
named "buloc".

A variable's name is never 1italicized or underlined simply because
its value is derived from game design data: ultimately, every
variable's value is determined by the game design data and the
players' inputs.

it s

The reader may be unaccustomed to variables' names contain-
ing lower-case letters. The IDAHEX documentation uses program
variables' names as they appear in the MULTICS version of the
IDAHEX computer program. In MULTICS FORTRAN and PL/I, the lower-
case letters constitute the primary alphabet, of which the upper-
case letters are an extension. Changing every lower-case letter
in the IDAHEX source program to upper-case produces a logically
equivalent program.

Unless the contrary is affirmed, a variable determining the {

number of elements in a set may be 0. For example, the game
design data fix the value of nss(l), the number of types of Red

1eg

3
.
-~
i

supplies. Such size parameters let the game designer choose
from a spectrum of complexity. At one end he can play several
types of weapons, several types of transport, several types

of supplies, and several types of personnel on each side. At
the other end, he can play just one resource--an abstract
index of strength--on each side.

IDAHEX distinguishes three roles for its user or users:
the game designer, who provides the inputs that specify the
game (the game design data); the Red player, who commands the
Red force; and the Blue player, who commands the Blue force.
If used in an interactive mode, IDAHEX gets the game design
data from one file--ordinarily associated with the card reader,
a tape data set, or a disc data set--and gets the players'
inputs from one or two terminals. For maximum clarity, the
documentation is written as though IDAHEX is used interactively.

The term "unit" means "battle unit" unless the context in
which it is used indicates otherwise. The phrase "a Red type 1
resource", or "a Red resource of type i", means "a unit-quantity
of Red resources of Red resource type i". (Here, "unit" means
"unit of measure", not "battle unit".) Likewise for Blue. An
element of a vector or a (two-dimensional) matrix may be
indicated by use of parenthesized arguments instead of subscripts:

x(1) means Xy

a(i,j) means aij'

The variable a(i,#%) is row i of the matrix a. The variable
a(%,j) is column j of the matrix a. These may also be written
as

ai* and a*j

The symbol "e", when used syntactically, means "in", "belongs
to", or "is a member of". Example: if C is a set, "u € C"
means "u is a member of C". The same symbol with a line through
it ("4") means "not in", "does not belong to", or "is not a
member of". If y and z are scalar variables, y#*z denotes their
product, and y#*%z denotes y raised to the power z.

-

2. THE ELEMENTS OF PLAY

This section explains how IDAHEX structures the area of
war, the resources, and changes in unit postures and locations.

2.1 THE AREA OF WAR

The game board is termed the "area of war'"--the area in
which the forces exist. It is partitioned into congruent,
regular hexagons, as Figure 2.1 illustrates. The hexagons are
termed "cells". A cell's depth is defined as the distance from
one side to the side directly opposite it; this distance equals
the distance from a cell's center to any adjacent cell's center.
(See Figure 2.2.) Tne variable depth 1s fixed by the game design
data. The cells are always arranged in vertical ranks and num-
bered as Figure 2.1 illustrates. The number of cells in the first
(the leftmost) rank, nrankl, is fixed by the design data. (It
is 8 in Figure 2.1.) The next rank always has one less cell.
The number of ranks is jointly determined by nrankl and ncells,
the number of cells in the area of war. A cell may be "inactive'"--
in effect, excluded from the area of war. The bottom cell in
every rank (the highest~numbered cell in every rank) is always
inactive, regardless of the game design data. A cell's successors"
are the cells that are adjacent to it and have larger numbers
than its own. They are ordered as follows: a cell's first suc-
cessor is the cell (if any) below it, its second successor is
the cell to the upper right (if any), and its third successor is
the cell to the lower right (if any). By definition, for
1l <n < neells and 1 < k < 3, [successor](n,k) is the cell number
of the k-th successor of cell n unless cell n is inactive or its
k-th successor is inactive or nonexistent, in which case
[successor](n,k) = -1. For example, if all the cells in Figure
2.1 except the bottom cells (8, 15, 23, 30, 38, U5, 53, 60) are
active,

[successor](12,1) = 13
[successor](12,2) = 19
[successor](12,3) = 20
[successor](7,3) = -1
[successor](46,1) = 47
[successor](46,2) = -1
[successor](46,3) = 54
[successor](30,2) = -1

g=il

Figure 2.1. EXAMPLE OF AREA OF WAR

Figure 2.2. TILLUSTRATION OF CELL DEPTH

e=2

A cell's "environment" is the complex of physical conditions
in the cell that affect combat or vulnerability to air strikes.
Examples: clear, hilly, muddy, urban. The environment is
assumed to be uniform throughout the cell. The environment of
cell i1 is coded in [environment](i) as a positive integer.

The partitioning of the area of war into hexagons induces
a network, formed by putting a node in each cell and creating an
arc between each pair of nodes in adjacent cells. Figure 2.3
illustrates it. Coded characterizations of trafficability are
associated with each arc (and therefore with each pair of adjacent
cells). If cell i and cell j are adjacent, [rtetypel(i,j), a
positive integer, is the type of route between them. One could
be more precise and say that [rtetypel(i,j) characterizes the
route between the node in cell i and the node in cell j, but such
precision is spurious. There is ordinarily no single, geograph-
ically identifiable route between two cells, The datum
[rtetypel(i,j) is a general characterization of trafficability
between the cells, not a characterization of a particular route
of march. Indeed, for a task force in approach march, several
parallel gravel roads would probably allow faster movement than
a single paved road. By definition, [rtetype](i,j) ignores barriers
between cell i and cell j. Another integer, [bartypel(i,j),
characterizes any barriers to movement. Barriers include rivers,
ridges, and, in general, any natural or man-made obstacle that
affects movement or attack. If [bartypel(i,j) < 0, it implies
there are no barriers between cell i and cell j. If positive, it
defines the type of barrier. Instead of listing multiple barriers
between the cells, [bartype](i,j) gives one number that describes
the barrier complex as a whole. IDAHEX assumes that

[rtetypel(i,j)
and [bartypel(i,])

[rtetypel(j,1i)
[bartypel](J,1)

for each pair of adjacent cells, i and j. The format of the
input data leaves the game designer no choice.

The game design data fix the values of the variables
[basic_env], [basic_rtetype], and [basic_bartype], which are
mapped into the actual environment type, actual route type, and
actual barrier type by the game design variables envmap, rtemap,
and barmap. For every 1 < 1 < ncells,

[environment](i) = envmap([basic_env](i)).
For every pair of adjacent cells, i and j,

[rtetypel(i,J) = rtemap([basic_rtetypel(i,j)),

e e S o e i L e b L et s

S

@

(SIALKIARTAIKIN

SESLES
(SEREREXEAIARIAD

Vanlan s cVaetanYaaVa
M<N>M<M>0<.>0<¢>o§>»§>5
SEBEBEBLLLL

barmap ([basic_bartypel(1,j))
[bartypel(i,j) = if [basic_bartypel(i,j) > O,
0 otherwise.

The game designer may want to use very detailed basic environment
types, basic route types, and basic barrier types, not knowing
how much detail will be needed. He may later find that this
detail cannot be supported by the data on movement and attrition,
which depend upon the environment, route, and barrier types. The
maps envmap, rtemap, and barmap can be set to compress a large
number of basic environment types, basic route types, and basic
barrier types into a manageable number of actual types for the
movement and attrition data. The maps can also be used to alter
the actual environment types, route types, and barrier types
during the course of the game--to reflect changes in weather, for
example. Initially,

envmap(i) = 1, rtemap(i) = i, barmap(i) = 1

for every i. At the start of every cycle, including the first,
the game design data can modify the maps, which then remain fixed
unless and until the design data modify them again.! (To modify
the maps is to change one or more elements of the vectors envmap,
rtemap, and barmap.) IDAHEX advises the players of any modifi-
cations.

Although formally part of the area of war, a cell, i, can
be effectively excluded by making its basic environment,
(basic env](i), a nonpositive integer. The cell is then
"inactive". No unit is able to enter. Only one word of
computer storage is used to record information about the cell.
An attempt by the design data to set [basie_rtetype](i,j) or
[basic_bartypel(i,j) for any j is ignored.

2.2 THE FORCES

There are two forces, Red and Blue. Each force consists of
indivisible "battle units", often called simply "units". The
game designer assigns each unit a unique number, by which IDAHEX
identifies it. A unit's number must be a positive integer. The
number assigned to any Red unit must be less than any number
assigned to a Blue unit, but units need not be numbered consec-
utively. Each unit has a "name'"--a character string--and a type.

1A "ecycle" is a subdivision of game time. It is defined in
Section 2.3.

.

The complete set of unit types for a particular game might be:

Red motorized rifle division
Blue tank division

Red tank battalion

Red tank division

Red transport unit

Blue transport unit

Blue infantry division

~N o =W

Each unit type 1s identified by a positive integer. A unit's
type is stored in the vector butype; in terms of the example
above, if unit 45 is a Red tank division, then butype(45) = 4,
Units of the same type must belong to the same side.

2.2.1 Battle Unit Status

A battle unit's "status" is described by its location,
posture, and objective. Each battle unit is located in exactly
one cell. The unit's location can not be fixed more precisely:
the unit is never said to be, for example, 3 km east of the cell's
center. Its location <s the cell. Several units may have the
same location, even if they belong to different sides.

At any moment of the game, each battle unit is in one of 6
"posture classes":

destroyed
inactive

hold
disengagement
movement

< attack

LW OH

A unit in posture class 2 is trying to break contact with
any enemy units it may be fighting, as the first step in changing
location. Its "objective" is the cell toward which it is dis-
engaging. A unit in posture class 3 i1s moving from its location
to another cell, its objective. Ordinarily, a unit in posture
class U4 is trying to enter a new location, which may or may not
contain enemy units, but in some cases it is trying to revert
from posture class 2, 3, or 4 to posture class 1 without changing
location, In the former instance, its objective 1is the cell it
seeks to enter; in the latter; its objective is just its present
location.

Posture class 1 embraces all remaining activities as well
as simple idleness. In particular, a unit in posture class 1 is
not in the process of changing location. It may or may not be
engaged. Its objective is, by convention, its location.

2-6

VTR e

- " e e . - ———
- P —— st -

A unit in posture class -1 or 0 is said to be "inactive".
(Inversely, a unit in a positive posture class is said to be
"active".) An inactive unit does not exist from the perspectives
of other units. It can not move; it can not attack, nor can it
be attacked. A unit in posture class -1 is a special kind of
inactive unit: 1t was de-activated to represent its destruction,
usually as a result of suffering intolerably high losses. A
unit in posture class 0 is ordinarily a reinforcement or a
package of replacements. It may become active (enter a positive
posture class) later in the war. Its location is the cell where
it is expected to enter the area of war if it becomes active, but
while it remains inactive, it has no effect on enemy units passing
through its location.

When a unit, say unit j, enters a new posture class, its
"virtual time of entry", tentry(j), is updated. Normally,
tentry(j) is set to the exact time at which unit j enters the
new posture class, but in special situations it may be set to a
later time. At the start of the game, tentry = tentry. The game
design datum tentry(j) is most simply defined as the time at which
unit j entered the cell where it is located at the start of the
game. For example, if the game starts at time 0, if time is
measured in days, and if unit 45 assumed its starting location
30 days prior to the starting time, then tentry(j) should be
-30.0

Each positive posture class consists of at least one posture
and no more than 10 postures. Posture class -1 consists of just
one posture, numbered -10. The postures in posture class 0 are
numbered 0 through 9, but IDAHEX does not distinguish among the
postures in posture class 0. The postures in posture classes
1 through 4 are numbered as follows:

10-19 hold

20-29 disengagement
30-39 movement
4o~49 attack

Notice that [floor](p/10) is the posture class to which posture
p belongs.! There might, for example, be two different movement
postures, representing surface movement and airborne movement.
There might be several different attack postures, representing
different degrees of willingness to trade casualties for space.
Table 2.1 presents alternative ways of describing a unit's pos-
ture class. The game design datum npost(i) fixes the number of
postures in posture class i (1 < i < 4). There must be one pos-
ture numbered 10, one numbered 20, one numbered 30, and one
numbered 40. These are the standard hold, disengagement, movement,
and attack postures; if IDAHEX knows a unit's posture class but

l1See the Glossary for the definition of the function [floor].

2=7

Table 2.1. EQUIVALENT DESCRIPTIONS OF POSTURE CLASS

posture class 1l; in a hold posture; holding
posture class 2; in a disengagement posture; disengaging

posture class 3; in a movement posture; moving

posture class U4; in an attack posture; attacking

has insufficient information to determine the posture, it assumes
the standard posture in the posture class.

The postures within a posture class need not be numbered
consecutively, but doing so may reduce storage requirements.
Some postures within posture class 3 may represent land or sea
movement whereas others may represent air movement. Numbering
the surface movement postures before the air movement postures
(if any) may reduce storage requirements.

2.2.2 Battle Unit Resources

The types of resources each side has are arranged in a list.
For example, the list of Red resource types might be:

tanks

small arms and APCs
artillery

SAMs and AAA

trucks

ammunition

fuel and other consumables
tank crewmen

other personnel

O O~ OUl Fwnmn -

The Blue list might be:

small arms and APCs
artillery

tanks

trucks

supplies

personnel

O\Ul Flw

There is no correspondence between Red resource types and Blue
resource types: 1in the example, Red type 3 resources are
artillery while Blue type 3 resources are tanks, and Red has

2-8

N LA A s VA e DA s e

' SAMs and AAA while Blue has none. The resource types must be
listed in the following order:

ground-to-ground weapons
ground-to-air weapons
transport 3
supplies

personnel

These five resource categories are combined to form larger
categories:

ground-to-ground weapons
ground-to-air weapons
transport

supplies
personnel }Support

The preceding categories induce sublists in each side's 1list of
resource types. In the example above, the 1list of Red ground-
to-ground weapons 1is:

} weapons

materiel equipment

1. tanks
2. small arms and APCs
3. artillery

The list of Red weapons 1is:

tanks

small arms and APCs
artillery

SAMs and AAA

W

Thus, a Red type 2 ground-to-ground weapon is also a Red type 2
weapon, and is also a Red type 2 resource. The list of Blue
weapons is:

1. small arms and APCs
2. artillery
3. tanks

The 1list of Red personnel is:

1. tank crewmen
2. other personnel

The 1list of Red support resources is:

ammunition

. fuel and other consumables
tank crewmen

other personnel

Zw
. . .

2=9

(R % 1 2T R

e

Thus, Red type 2 personnel are also Red type 4 support resources
and Red type 9 resources. Notice that the category of Blue
ground-to-air weapons is empty. (Hence, the 1list of Blue
weapons is identical to the list of Blue ground-to-ground
weapons.) Any category except ground-to-ground weapons may be
empty. It is permissible for a side to have only one type of
ground-to-ground weapon, which would probably be not a physical
entity but an abstract measure of strength.

A unit's type determines what types of resources it can
possess. The game design data fix nrst(i), the number of differ-
ent types of resources a unit of type i can have, and Zars(#%#,1i),
a list of the types of resources it can have. Continuing the
example above, suppose:

nrst(5)

nNDUIWO 00OV (o)Y

This says that a unit of type 5 can have 6 typec of resources:
Red type 7 resources (fuel and other consumables), Red type 6
resources (ammunition), Red type 8 resources, Red type 9
resources, Red type 5 resources (trucks), and Red type 2
resources (small arms and APCs). The order in which the
resource types appear in Zare(#%,5) affects only the order in
which IDAHEX lists the resources of type 5 units internally.
By keeping the elements of nrst small in value, the game
designer can achieve substantial economies in computer storage
utilization.

The value of Zars(#,5) in the preceding example is reasonable
if a type 5 unit is a Red transport unit (as in the example at -
the start of Section 2.2). Notice that 7ars(*,5) lists some
resources for which a transport unit would have no use, such
as tank crewmen. IDAHEX allows transfers of resources between
units, and therefore resources might be attached to a unit
simply to move them from one place to another. If Zars(#,5)
excluded ftank crewmen, a type 5 unit could not accept them and
therefore could never be used to take tank crewmen to a unit
that needed them.

If 1 is the identification number of some battle unit, the
design datum [resources](i,j) is defined as the quantity of type
J resources in the unit at the start of the game. Of course,
this quantity must be 0 if the unit is prohibited from having
type J resources--i.e., if there is no 1 < k < nrst(butype(i))

2-10

T

' such that zZars(k,butype(i)) = j. At any time during the game
[resources](i,j) is the quantity of type jJ resources in unit i;
it is set equal to [resources](i,j) at the start of the game.

The design datum toe(k,j) is defined as the planned
effective quantity of type j resources in a type k battle unit.
It might be based on the Table of Organization and Equipment
; for a type k unit. IDAHEX compares a unit's actual quantities
t of resources (given by [resources]) with its planned effective
; quantities in allocating supplies and replacements to it,

i estimating its strength, and estimating the size of its area
j of influence. Of course, toe(k,J) should be 0 if a type k unit
i . is prohibited from having type j resources.

i 2.3 TIME

At the start of a game, the current time, t, equals tintit,
which should be a nonnegative number. The game ends when
t = tend or when a player stops it.

Time 1is divided into equal-length intervals called "cycles",
which are subdivided into equal-length "periods", which are
subdivided into equal-length "frames". Cycles, periods, and
frames may all be the same length, but generally frames are
shorter than periods. A "break" occurs at the start of each
cycle, the start of each period, and the end of each frame.
Each break causes execution of a procedure selected according
to the cause of the break: at the start of each cycle, IDAHEX
accepts players' air strike specifications; at the start of
each period, it accepts players' commands; at the end of each
frame, it assesses engagements and supplies consumption.

An "event" is a break or a change in a unit's status. At
t = tinit (the start of the game), IDAHEX ascertains when the
first event will occur. It advances t to that time (possibly
N the same as the current time) and lets the event occur. It
then ascertains when the next event will occur, advances t to
that time, and lets the event occur. It continues to advance t
in jumps until t < tend or a player stops the game after a break.

3. MANEUVER

A "task force" is a collection of one or more battle units
-~"task force elements"--that have the same status and will
continue to have the same status as long as they remain in the
task force. The elements of a task force must all belong to the
same side. Each task force is identified by a positive integer; 3
it is impossible to tell from this number alone the side to 4
which the task force belongs.

3.1 EVENT SEQUENCING

A task force's change of status is always caused and
directed by an "order". Sometimes orders are generated by
IDAHEX; usually they are input by the players. An order has
two components: the desired objective and the desired posture.
Associated with an order may be a "start time", the earliest time
at which the task force should begin executing the order. Exe-
cution of an order is a process that may span time and may involve
a sequence of status changes. The time required to go from one
status to the next may be 0, but the task force still enters each
status in the sequence. Given a task force's current status and
its "active order"--the order it is executing--the logic of
Figure 3.1 determines its next status. (Also see Figure 3.2).

In some cases the task force's next status depends upon
pmapup or pmapdn; specifically, its next posture is pmapup (pp)
or pmapdn(pp), where pp is its present posture. IDAHEX initializes
these variables as follows:

203 10 = pp = 19
LV 30y 20 < pp £ 29

pmapup(PP) =1 §o! 30 < pp < 39
10; 40 < pp < 49

_)-10; 10 2 pp £ 19

pmapdn(pp) =1 56! 50 < pp < U9

The game designer can modify these values, but the modified
values must be such that:

- -

= pmapup (pp)
= pl

= do

= pmapdn (pp)

= pl
= pl
np = pmapup (pp) Yes =
3 ‘ ppc = 4 nl = po
no po ?
No
nl = pl
pPp = present posture dp = desired posture np = next posture
ppc = present posture class dpc = desired posture class nl = next location
pl = present location do = desired objective no = next objective
po = present objective

Figure 3.1. STATUS SEQUENCING
3-2

B e S0 Tl o caiat Lo g

No 2

np

= pmapup(pp)

< Y
do : pl/,*———JEL—* nl = pl
= ,/” no = do
ki
|
]
[}
1 No e
| inp = pp!
] ! '
lommmmm o= - — i —lnl = pl}
1 1
:no = do!

———— o o

np = pmapup (pp)

no = po

present posture
present posture class
present location
present objective

PP
pPPC

o
-
nwonoun

pPo

Figure 3.2.

STATUS SEQUENCING FOR
POSTURE CLASS > O AND

np = pmapdn(pp)
nl = pl
no = pl
ppc = 4 el nl = po
?
No
nl = pl
dp = desired posture np = next posture
dpc = desired posture class nl = next location
do = desired objective no = next objective

3=3

TASK FORCE WHOSE PRESENT
DESIRED POSTURE CLASS > 0

20 < pmapup(pp) < 29 if 10 < pp < 19
30 < pmapup(pp) < 39 1if 20 < pp < 29
40 < pmapup(pp) < 49 if 30 < pp < 39
10 < pmapup(pp) < 19 if 40 < pp < 49
-10 = pmapdn(pp) SRS 0N < pp s al9 1
40 < pmapdn(pp) < 49 if 20 < pp < 49 ‘

The positive posture classes form a cyclic set, and pmapup(pp)

is the posture a task force enters when it transitions to the
next higher posture class: from posture class 1 it goes to 2,
from 2 to 3, from 3 to 4, and from 4 to 1. The variable pmapdn
is not used to take a task force from its present posture to the
next lower posture class--that is generally illegal. Rather, it
tells what posture a disengaging, moving, or attacking task force
enters when it aborts the disengagement, movement, or attack

and attempts to revert to a hold posture at its present location.
Table 3.1 contains examples of status sequencing based on the
area of war depicted in Figure 3.3. To get more specific examples,
let

npost(l) = U, npost(2) = 1, npost(3) = 2, npost(l) = 3,

and set pmapup and pmapdn as follows:

pp pmapup (pp) pmapdn(pp)
10 20 -10
11 20 ~10
12 20 =10
13 20 =10
20 30 u2
30 Lo 42
il 41)
Lo 10 42
41 11 42
42 13 42

The preceding assignments are motivated by the following inter-
pretations of the postures:

10 standard defense

11 halted

12 prepared for transferring resources
to other units (itrfp = 12)

13 hasty, disorganized defense

20 disengaging

30 tactical march

31 administrative march

4o standard attack

41 attack from administrative march

42 hasty, disorganized attack

3-4

9 1 (ny)dndowd| g 9 1t 9 it 9 12
9 1 (th)dndouwd| g 9 0T 9 f 9 12
9 h (€2)updowd| g 9 hT 6 £z 9 12
9 t (1€)updowd| g 9 0T 6 1€ 9 T
9 f (2h)updowd) g 9 1T 6 2h 9 12
9 f (oy)updowd| g 9 0T 6 o 9 Tc
6 T (of)dndowd| 6 6 0T 6 (o} 9 1c
6 h of 9 6 of 6 En 9 12
6 f (1€)dndowd| 9 6 ot 6 e 9 12
6 2 (e1)dndowd| 9 6 1€ 9 2T 9 12
9 T 0T 9 9 0T 9 2T 9 12
91 f (2€)dndouwd| LT 91 0T 9T 43 L1 6t
9T f (2€)dndowd| LT 9T T4 91T 2€ LT 64
€1 2 (ST)dndowd| LT €1 22 LT Gt LT 6t
€T 2 (ot1)dndowd| 1 €1 22 LT 0T 4T 6t
LT T 6T M LT Gt LT LT LT 6 h
€1 2 (2t)dndowd| T €1 0T LT 2T s 6t
€1 T (on)dndoud| €1 €T 0T €1 ot LT 6h
€1 h (o€)dndoud| T €1 0t €1 o€ LT 6t
€1 € (og)dndowd| LT €1 0T €1 02 i1 6t
€T 2 (o1)dndowd|)T €1 0T LT 0T LT 6h
aAL3d3lqo sse|d aunisod uoLzed0|| aAL3d23fqo| aun3ysod| aAL3d3fqo| aun3sod| uoL3ePd0| | Sjusawa|?d
IXxau aanjsod 3xau 1xau paaLsap paJaLsap juasaad juasaad| juasaad 32403
IX3u ysel
(£°¢ @uanbL4 03 4333Y)
SI9NYHI SNLVLS 40 SITdWYX3 °L°€ 3Lqel

3«3

6-28-76-8

LEGEND

Figure 3.3.

/// RED UNIT

AREA OF WAR WITH BATTLE UNITS

Presumably, the ground combat attrition data make a unit less
effective on defense in posture 13 than posture 11, and less
effective in posture 11 than posture 10. Likewise, an attacker
should be less effective in posture 41 than posture 40. Based
on the above values of pmapup and pmapdn and the area of war in
Figure 3.3, Table 3.2 shows the sequence of statuses induced by
various orders. The last example in the table depicts a task
force aborting an attack and reverting to a hold posture at its
present location.

The preceding configuration can be simplified (at the risk !
of oversimplifying): let npost(l) = 2, npost(2) = npost(3) =
npost(4) = 1, and accept the default values of pmapup and pmapdn.
Let Ztrfp = 11. Then a task force in a hold posture in cell 6
whose desired posture is 1l and desired objective is 9 would go
through the following sequence of statuses:

location posture objective
6 20 9
6 30 9
6 4o 9
9 10 2
g 11 9

When the task force achieves posture 11, it will be ready and able
1 to transfer resources to friendly units located in cell 9. If the
movement of supplies and replacements is to be played explicitly,
one hold posture should be set aside as a transfer posture,

; identified by the number Ztrfp. A task force whose

location = 6,
posture = 10,
objective = 9,
and whose ‘
; desired posture = 10, §
desired objective = 6,

would go through the following sequence:

location pos ture objective
' e
6 40 6
6 10 6

Thus, the task force aborts an attack and goes directly into the
standard hold posture at its location; in contrast to the last
example in Table 3.2, there is no "disorganized defense" posture

o= §

9 0T 9

9 &t 9

g ch 9 9 0T 6 ofr 9

9 0t g 9 0T 9 0 9

6 ot 9

6 Ih 9 6 ot 6 1€ 9

6 0T 6

6 R 6

6 Th 9 6 0T 6 1€ 9

6 1€)

6 0€ 9

6 o¢c 9 6 TE 9 T 9

6 0T 6

6 oh 9

6 o€ 9

6 0c 9 6 0T 9 0T 9
dAL323fqo| aunjsod | uoL3ed0|| aAL323[qo | aun3sod | aAL323[qo | aanysod uotLiedo|

sasni1els 40 dsuanbag paJLsap paJLsap quasaud 2u3saud | Juasaud

S3ININDIS SNLVLS 40 SITdWYXI °2°€ alqel

LT N T p———y

3-8

s
i

L9
%
2
]
¥

in which to put it. Because this difficulty can arise whenever
the game designer selects a skeleton configuration of postures,
IDAHEX provides another way of reducing a task force's defensive
capability in this situation: the task force can be credited
with negative defense preparation time.!

In every example of task force movement thus far, the
objective has been a cell adjacent to the task force's location,
but Figures 3.1 and 3.2 do not require that. A task force may
recelve an order stating a desired objective not adjacent to its
location. The task force will be able to execute the order only
if: (1) it is airmobile and (2) the order causes it to enter
an air movement posture.? A unit of type i is airmobile if and
only if mrair(i) > 0. A movement posture pp is an air movement
posture if and only if airmove(pp-29) = .true. Air movement is
discussed in the next subsection.

3.2 EVENT SCHEDULING

Associated with any change of status is a delay time. The
task force undergoing the change stays in its old status a length
of time equal to the delay, and then enters its new status. The
delay is computed by the IDAHEX function wait, which is designed
for easy modification or replacement.

Throughout this subsection, u .,un are the unit numbers

10
of the task force elements. The side to which they belong is

g3y s = 1 if they are Red, s = 2 if they are Blue. The task

force's location is cell pl. Its posture is pp. Its posture

class is ppc. (ppc = [floor](pp/10).) Its objective is cell po.
Its next location is nl, its next posture is np, its next posture
class is npc (npc = [floor](np/10)), and its next objective is no.
The preceding subsection reveals how the task tforce's present
status (location pl, posture pp, objective no) and its active

order determine its next status (location nl, posture np, objective
no). This subsection shows how the delay for the transition

from the present status to the next status is determined. Let

d denote that delay.

lpreparation time's effect on attrition is discussed in Section
5.1.1. The way an aborted movement or attack can lead to
negative preparation time is discussed in Section 3.3.6.

2The constraint is enforced by the event scheduling logic,
described in the next subsection.

3~9

.....

3.2.1 Transition within Positive Posture Class

npc = ppc, ppc > 0, no = po

Let

J
and k

pp - 10x%ppc + 1

np - 1lO0#ppc + 1.

Thus, posture pp is the j-th posture of posture class ppc, and
posture k is the k-th posture. The delay is given by

d = ptran(ppec,Jj,k).

Regardless of the game design data, d = 0 if jJ = k.

3.2.2 From Hold Posture to Disengagement Posture

ppc = 1, npc = 2

In this case, d = 0.

3.2.3 From March Posture to Attack Posture
ppc = 3, npc = 4, no = po, airmove(pp-29) = .false.

The delay, d, in going from a movement posture to an attack
posture with the same objective is the "movement delay". It
corresponds to the time the task force would need to move physi-
cally from its present location to its objective if unimpeded by
the enemy. A "march posture" is any movement posture other than

an "air movement posture". (A task force in a march posture might
be at sea.) If posture i is a movement posture (30 < i < 39), it
is an air movement posture if and only if airmove(i-29) = .true.

(airmove is a logical variable). Storage is utilized more
efficiently if the movement postures are ordered’ (numbered) so
that all the march postures occur before air movement postures--
i.e., if airmove(k) = .true. for some 1 < k < npost(3), then
airmove(m) = .true. for every k < m < npost(3). The movement
delay for a task force in a march posture may be termed the
march delay.

If cell po is nonexistent (po < 1 or po > ncells) or
inactive, then d = +».! 1If cell po is not adjacent to cell pl,
then d = +»: a task force in a march posture cannot jump over
cells. Otherwise, proceed.

'Usually, an infinite delay results from a mistake by the player.
If IDAHEX suspects that is the case, it warns the player of the
side to which the task force belongs, explaining why the delay
is infinite.

3-10

T3 % £ I

Initially, suppose that the task force consists of a single

unit, U .

The first step in finding d is ascertaining whether the task
force has the supplies it needs in order to move; if nes(s) = 0,
this step is skipped. For every 1 < k < nss(s), let ssstock(k)
be the quantity of type k supplies in the unit:

ssstock(k) = [resources](ul,nequip(s)+k).
Let

nrs(s)
ssuse(k) = :E: ssreqm(k,irs,s) # [resources](ul,irs)
irs=1

for every 1 < k < nss(s). If ssuse(k) > ssstock(k) for some
1 <k < nss(s), set d = +o—-the unit cannot move. Otherwise,
proceed to the next step to find d. The preceding test is
crude since ssuse(k)--the amount of type k supplies required
for movement--is independent of [r:tetype](pl,po) and
[bartype](pl,po). Perhaps the best strategy is to make
ssreqm underestimate the supplies needed for a move. One
risks letting the task force change location when it has
insufficient supplies to complete the movement, but if tframe
is suitably small, the risk is minor: each frame, supplies
consumption is assessed, and if a task force in a movement
posture exhausts any type of supplies, its movement delay is
re-evaluated. If the delay is found to be +», the movement is
aborted and the task force tries to revert to a hold posture
in its present location.

Given that the unit has the supplies it needs in order
to move, the next step is to determine how fast it can move.
The unit's basic movement rate from cell pl to cell po is

BMR = mr(butype(ul), pp-29, [rtetype](pl,po)).
Thus, its movement rate depends upon its type, its particular

movement posture, and the type of route between the cells.! The
basic movement rate must be adjusted to reflect a deficit or

170 see why IDAHEX allows the triple dependence, consider an
armored division making an administrative movement along

roads through dense woods. If it were making a tactical move-
ment instead, part of it would have to move off-road. If it
were a straight-leg infantry division instead, it would have
less trouble moving off-road.

3-11

T R e

surplus of transportation. Let TR be the total transport
capacity available to the unit divided by its total demand

for transport. (The latter two quantities are defined below.)
The unit's adjusted movement rate is

AMR = fmr(butype(ul),TR) # BMR.

The degradation (or possibly improvement) factor fmr(unit type,TR)
is computed as follows. If fmr.f0(unit_type) < 0, then

TR /(20 =8TR)y TR < 1
fmr (unit_type, TR) =
1; TR > I -

The preceding formula assumes that th: transport capacity can-
not be stretched (by overloading vehicies and operating them

at reduced speeds, for example); the transporting resources carry
as much as they can, offload it, and return to the point of
origin for another load, making as many trips as necessary.

If, on the other hand, fmr.f0(unit type) > 0, then

fmr (unit_type, TR) =
paf (TR, fmr.f0(unit_type), fmr.f(unit_type, *), fmr.zx).

That is, fmr(unit_type,*) is a piecewise-affine (loosely speak-
ing, piecewise-linear) function whose value at 0 is

fmr. fo(unit_type), whose value at fmr.xz(k) is fmr.f(unit_type, k)
for any k, and whose value at TR is found by interpolation.

Thus far, the unit's movement rate, AMR, has been determined.
By assumption, the distance it has to travel equals depth, which
equals the distance between the centers of any two adjacent cells.
There is yet another factor that may affect the movement delay: a
barrier between cell pl and cell po. The delay imposed by a
barrier depends upon the unit's type, the unit's posture, and
the type of barrier. Let bt = [bartype](pl,po). A barrier
between cells pl and po exists if and only if bt > 0. The
unit's march delay is

depth/AMR + bdelay(butype(ul), pp-29, bt) if bt > 0,
depth/AMR if bt = 0.

In summary, the march delay for a2 one-unit task force is
found as follows:

(1) See if the unit has enough supplies to be able to move.

(2) Reference mr to find the basic rate at which the unit
moves from its location to its objective, an adjacent
cell. 3

3=12

(3) Adjust the basic movement rate according to the ratio
of available transport capacity to the unit's aggregate
demand for transport. :

(4) Divide the estimated distance to be traveled, depth,
by the adjusted movement rate; call the result dl.

(5) If there 1is a barrier between the unit's location and
its objective, reference bdelay to find d2, the time
needed to cross the barrier; d2 = 0 if no barrier exists.

(6) The movement delay is dl1 + d2.

Now drop the assumption that the task force contains only
one unit. Recall that the task force consists of the units
{ui: 1 <1i<n};n=11s allowed. The elements' location is cell
pl, their posture 1is pp, and their objective is cell po. Also,
recall that cell po must be adjacent to cell pl else the march
delay, d, is automatically +=.

Every task force has the attribute "transport mode", a non-
negative integer. It is 0 for a single-element task force. Let the
variable named "mode" equal the transport mode of the task force
in question. The task force is "stacked" if and only if mode > 0.

3.2,3.1 March Delay for Unstacked Task Force

In this subsection, the task force is assumed to be unstacked--
i.e., mode = 0. As before, the movement delay is the sum of two
terms, one proportional to the distance and inversely proportional
to the movement rate, and the other dependent on the type of barrier
encountered. By definition, the task force moves as an integral
whole. Therefore, all along the route, it moves only as fast as
its slowest element. The elements' supplies and transport are
pooled.

The first step is to determine whether the task force has
the supplies it needs in order to move. This step is skipped
if nss(s) = 0. (Recall that the task force belongs to side s.)
Let ssstock(k) be the amount of type k supplies in the task
force for every 1 < k < nss(s). Let

nrs(s)
ssuse(k) = ﬁ:l ssreqm(k,irs,s) * [r'esour'ces](ui,ir's)
= rrs=1

=

for every 1 < k < nss(s). If ssuse(k) > sstock(k) for some
1l <k < nss(s), set d = +o--the task force cannot move. Other-
wise, proceed.

I=13

The next step is to determine how fast the task force can
move. To do that, it 1s necessary to determine how much trans-
port capacity 1is made available to each element. This is done
even if ntrpt(s) = 0 since resources other than transport may
have transport capacity. The aggregate demand for transport 1is

n (s)
ttdemand = trnreq(irs,s) * [resources](ui,irs).
" i=1 irs=1l

The aggregate transport capacity is

n nrs(s)
ttcapacity = :E: trneap (irs,s) *¥ [resources](ui,irs).
1=1 irs=1

Let

ttcapacity/ttdemand; ttdemand > 0
TR = +o; ttdemand = 0, ttcapacity > O
1; ttdemand = ttcapacity = 0

For the purpose of determining adjusted movement rates, each
unit receives an allocation of transport capacity equal to its
demand for transport multiplied by TR. Therefore, transport
capacity and transport demand must be expressed in the same
unit of measure, such as tons. The amount of transport a side
s type i resource requires, trnreq(i,s), should be 0 if it can
move itself. For example, if a type i resource is a tank, it
can not only transport itself, so trnreq(i,s) = 0; it can
transport other resources (a few people, for example), so
trneap(i,s) > 0. Of course, personnel can move themselves, but
if side s is preponderantly mechanized, its units' basic move-
ment rates probably assume the personnel are mounted, and there-
fore their transport requirements should be positive.

Because each task force element enjoys a ratio of transport
capacity to transport demand equal to TR, the adjusted rate of
movement of element i (1 < i < n), denoted AMR(i), is given by

AMR(i) = fmr (b’utype(ui), R *
mr (butype(ui), pp-29, [rtetypel(pl,po)).

The task force's adjusted movement rate is

TFAMR

min {AMR(i); 1 < 1 < n},

If TFAMR = 0, let dl +o, Otherwise let dl = depth / TFAMR.

3-14

. .

i e e e

Let bt = [bartypel(pl,po). If bt = 0, let d2 = 0;
otherwise, let

d2 = max {bdelay(butype(ui), pp-29, bt); 1 < i < n}.
Then d = d1 + d2.

3.2.3.2 March Delay for Stacked Task Force

By assumption, mode > 0. Define the set of "carriers"
in the task force as

c = {u trptcl(butype(ui)) = mode, 1 < 1 < n},

'
i.e., the set of every task force element whose "transport
class" agrees with the task force's transport mode. Define P,
the set of "passengers", as the remaining elements of the task
force. 1In effect, the passengers are loaded onto the carriers.
The task force moves as fast as the carriers can, and the
carriers are able to draw only on their own transport.

The first step is to determine whether the task force has
the supplies it needs in order to move; this step is skipped if
nss(s) = 0. For every 1 < k < mss(s), let ssstock(k) be the
amount of type k supplies held by the task force, not just the
carriers. For every 1 < k < nss(s), let

nrs(s)
ssuse(k) = 2: ssreqm(k,irs,s) # [resources](ui,irs),
u.eC irs=1
1
the amount of type k supplies that the carriers' resources need
in order to move. If ssuse(k) > ssstock(k) for some
1 < k < nss(s), then set d = +o, Otherwise, proceed.

The next step is to verify that the carriers have enough
carrying capacity to accommodate the passengers. Only those
carrier resources whose "load class" agrees with the task force's
transport mode are eligible to help carry passengers. Let

R = {i: loadel(i,s) = mode, 1 < i < nrs(s)}.

Define the total carrying capacity as

cC = Z z ldeap(j,s) # [resources](ui,,j).
i

u,eC jeR

e e o S A S Vet

Define the size of the load as

nrs(s)

LOAD = 2: ldsize(J,s) # [resources](ui,J).
el =
1

If LOAD > CC, set d = +=» -- the task force cannot move. Other-
wise, proceed.

The next step is to determine whether, after allocating
resources to carry the passengers, the carriers have enough
residual transport capacity to meet their own demand. The
fraction of the carriers' type i resources allocated to carry-
ing passengers is assumed to be the same for each i ¢ R; that
fraction is LOAD/CC. The carriers' total capacity available
for transporting their own resources is

ttcapacity = Z Z trneap(J,s)*#[resourcesI(u;,J)
uieC jes

+ :E: :E: (LOAD/CC)*trncap(j,s)*[resources](ui,j),
uieC jeR

where S = {i: 1 ¢ R, 1 < i z nrs(s)}.

Their resources' demand for transport is

nrs(s)
ttdemand = ‘§§ trnreq(J,s) # [resources](ui,j).
Wes =]

Let

TR = {(+=; ttdemand = 0, ttcapacity > O

{ttcapacity/ttdemand; ttdemand > 0
1y ttdemand = ttcapacity = 0

The allocation of transport capacity to each carrier is
assumed to equal its demand times TR. Therefore, the adjusted
movement rate of the carrier uy (ui e C) is given by

AMR(i) = fmr(butype(ui), TR) #
mr(butype(ui), pp-29, [rtetypel(pl,po)).

The task force's movement rate is

TFAMR = min {AMR(1); u; € ¢,

3-16

TEIPUY s

Let

depth / TFAMR if TFAMR > O,
dl =
+o otherwise.

Let bt = [bartype](pl,po). If bt = 0, let d2 = 0;
otherwise, let

d2 = max {bdelay(butype(ui), pp-29, bt); u; € o) 18
Then d = dl1 + d2. The task force moves as fast as the

slowest carrier, in accordance with the concept that the passenger
units as a group are borne by the carrier units as a group.

3.2.4 From Air Movement Posture to Attack Posture
ppc = 3, npc = 4, no = po, airmove(pp-29) = .true.

The air movement delay, d, is determined in basically the
same way as the march delay (Section 3.2.3). Since the task
force is moving above the surface, its movement rate is unaffected
by route types and barrier types. In fact, it may go from one
cell directly to a nonadjacent cell--i.e., cell po need not be
adjacent to cell pl. Nevertheless, cell po must be in the area
of war (1 < po < ncells) and must be active; otherwise, d is
set immediately to +e.

3.2.4.1 Air Movement Delay for Unstacked Task Force

First, determine whether the task force has enough supplies
to be able to move. (Skip this step if nss(s) = 0.) For every
1 < k < nss(s), let ssstock(k) be the amount of type k supplies
in the task force, and let

i nesis)
ssuse (k) = z: Z ssreqm(k,irs,s) = [resources](ui,ir‘s).
i=1 irs=1

If ssuse(k) > ssstock(k) for some 1 < k < nss(s), then set
d = 4o, Otherwise, proceed.!

!Suppose both aircraft and fuel are played explicitly as side s
resources. If side s type k supplies include aviation fuel and
side s type irs resources are aircraft, ssregqm(k,irs,s) might be
the quantity of fuel typically carried by a unit-quantity of
type irs resources. Making it unrealistically small is risky:
the air movement delay might be too short to span a frame
boundary; then the movement would escape supplies consumption
assessment, which would prevent IDAHEX from observing the task
force exhaust essential supplies before the movement were complete.

S3=1F

Next, let

ttdemand = Z Z trnreq(irs,s) # [resour‘ces](ui,irs),

n nrs(s)
=1 dprsg

L}
=2

n_ nrs(s)
ttcapacity = trneap(irs,s) * [resources](u,,irs).
5l
i=1 irs=1 :

)]

Let
ttcapacity/ttdemand; ttdemand > 0
TR = (+»; ttdemand = 0, ttcapacity > 0
1; ttdemand = ttcapacity = O
The task force's adjusted rate of movement (through the air) is

{
AMR = min {fmr(butype(ui),TR) * mrair(butype(ui)); T Y ;

If AMR = 0, then d = +o», Thus, if a task force element cannot |
move 1tself by air, i.e., if ’

mrair(butype(ui))

or fmr(butype(ui),TR)

for some 1 < i < n, then the task force is unable to move. If
AMR > 0, then the movement delay, d, is given by

d = dist(pl,po) / AMR;

dist(pl,po) is the straight-line distance from the center of
cell pl to the center of cell po.

3.2.4.2 Air Movement Delay for Stacked Task Force

Define C, the set of carriers; and P, the set of passengers,
as in Section 3.2.3.2.

First, determine whether the task force has enough supplies
to be .able to move. (Skip this step if nss(s) = 0.) For every
1 < k < nss(s), let ssstock(k) be the amount of type k supplies
held by the task force, not just the carriers, and let

nrs(s)
ssuse(k) = 2: ssreqm(k,irs,s) » [resources](ui,irs).

uiec irs=1

If ssuse(k) > ssstock(k) for some 1 < k < nss(s), then set
d = +o. Otherwise, proceed.

3-18

]
i
y
i
i

TR,

bt o o i coabd oead

Next, determine whether the carriers have enough carrying
capacity to accommodate the passengers. Compute CC and LOAD as
in Section 3.2.3.2. If LOAD > CC, set d = +»o. Otherwise,
proceed.

Find the ratio of the carriers' residual transport capacity
to their own resources' total demand for transport: compute
ttcapacity and ttdemand as in Section 3.2.3.2, and define TR as
thege. The task force's adjusted rate of movement (through the
air) is

AMR = min {fmr(butype(ui),TR) ¥ mrair(butype(ui)); u; € c}.
Then
dist(pl,po) / AMR if AMR > 0,

+oo if AMR = 0.

3.2.5 From Disengagement Posture to Movement Posture
ppc = 2, npc = 3, no = po

The delay, d, in going from a disengagement posture to a
movement posture with the same objective is the "disengagement
delay". It is most simply interpreted as the time required to
break contact with the enemy, but in reality a force being
pursued by the enemy might never break contact completely. A
better interpretation of the disengagement delay is the amount
by which contact with the enemy increases the time needed for
the task force to relocate from cell pl to cell po.

If the task force is not engaged, set d = 0. Otherwise,
proceed.

If cell po is not part of the area of war or is inactive,
or if cell po is not adjacent to cell pl, then set d = +e,
Otherwise, proceed.

If airmove(np-29) = .true., set d = +»: an engaged task
force cannot disengage and transition directly to an air
movement posture. Otherwise, proceed.

Define two situations: (1) there are friendly units in
hold postures in cell pl; (2) there are no friendly units in
hold postures in cell pl. (No such unit could belong to the
task force since its posture would differ from the task force's
posture.)

3.2.5.1 Disengagement Delay When Enemy Can Not Pursue

In Situation (1) the friendly units are assumed to prevent
the enemy from pursuing the task force during its movement to
cell po. Therefore, the disengagement delay is independent of
the movement:

d = max {diseng(butype(ui),l); Bl nks

The maximization is appropriate because the task force can not
have disengaged until every element has.

3.2.5.2 Disengagement Delay When Enemy Can Pursue

In Situation (2) the enemy units with which the task force
is engaged may be able to pursue it during its movement to
the adjacent cell po. The disengagement delay therefore is the
sum of two terms--one equal to the basic delay, dl, given by

dl = max {diseng(butype(ui),l); (o AT o

and the other term, d2, related to the anticipated movement
delay.

Finding d2 parallels Section 3.2.3. Initially, assume that
the task force is not stacked.

Defining the symbols as in Section 3.2.3.1, find ssstock(k)
and ssuse(k) for every 1 < k < nss(s). If ssuse(k) > ssstock(k)
for some 1 < k < nss(s), set d2 = +». Otherwise, proceed.

Find TR as in Section 3.2.3.1. Posture np is a movement
posture; for the purpose of determining d2, it is assumed to be

the posture in which the task force will move to cell po. Define

the adjusted movement rate of task force element 1 as

AMR(i) = fmr (butype(ui), TR) #
my (butype(ui), np-29, [rtetypel(pl,po)).

(Cell po is adjacent to cell pl, or this point could not be
reached.) If AMR(i) = 0 for any i, set d2 = +». Otherwise,
proceed. Let

wl = max {diseng(butype(ui),2) % (depth/AMR(1)); 1 < 1 < n}.

Let bt = [bartype](pl,po). If bt = 0, let w2 = 0; otherwise,
let

w2 = max {diseng(butype(ui),2) * bdelay(butype(ui),np—29,bt);
L aw ik <ok

Let d2 = wl + w2.

The disengagement delay is computed as d = dl1 + d2. The
computation of wl and w2 is consistent with the assumption that
the task force moves as an integral whole throughout its journey;
if w2 were smaller, one or more units must lag behind the rest
at a barrier; if wl were smaller, one or more units must lag
behind along the route. The factor diseng(i,2) allows for
differences in the abilities of different types of units to
disengage.

Now assume that the task force is stacked. Define C, the
set of carriers, as in Section 3.2.3.2. The basic delay is the

same as before:

dl = max {diseng(butype(ui),l); 1 21 2 - ft.

Added to it is a delay, d2, related to the anticipated time needed
for movement to cell po; d2 depends only on the carriers' agility,
not the passengers'.

Determine LOAD and CC as in Section 3.2.3.2. If LOAD > CC
set d2 = +»., Otherwise, proceed.

Find TR as in Section 3.2.3.2. Define the adjusted move-
ment rate of task force element i as

AMR(1i) = fmr (butype(ui), TR) %
mr (butype(ui), np-29, [rtetypel(pl,po)).

If AMR(i) = 0 for any i such that u
wise, proceed. Let

; € C, set d2 = +». Other-

wl = max {diseng(butype(u;),2) » (depth/AMR(1)); uy € Gl

Let bt = [bartype]l(pl,po). If bt = 0, let w2 = 0. Otherwise
let

w2 = max {diseng(butype(ui),E) *
bdelay(butypc(ui), np-29, bt); u; € Ciks

Let d2 = wl + w2.

The disengagement delay is computed as d = dl + d2.

3=21

3.2.6 From Attack Posture to Hold Posture at New Location
ppc = 4, npc = 1, no ¥ pl

The "attack delay" is 0 if cell po contains no enemy units
in hold postures. Otherwise, the delay is indefinite: it
depends upon the course of combat.

3.2.7 To Hold Posture at Present Location

npc = 1 % ppc, no = pl

If pp < 0, set d = +o». (A destroyed unit cannot come back
to life.) Otherwise, proceed.

At this point, exactly three cases are possible: (1)
0 <pp<9; (2) pp > 20, po ¥ pl, and no = pl; (3) 40 < pp < 49
and po = pl. (See Section 3.1, especially Figure 3.1.) Case (1)
occurs when units in posture class 0 are activated. Case (2)
occurs when the task force is in a disengagement, movement, or
attack posture and seeks to revert to a hold posture in cell pl;
its next posture is an attack posture and its next objective is
cell pl. And then Case (3) applies. 1In every case, d = 0.

3.2.8 Transition to or within Nonpositive Posture Class
np < 10

The delay is 0. Since there is normally no reason for a
unit to enter posture class 0 from another posture class, a
warning is issued to the game designer if that happens. The
warning message is placed in the game designer's output file,
file 51.

3.3 TACTICAL SITUATIONS

Because the forces can maneuver and the processes of maneu-
ver span time, situations requiring special logic may arise. In
many cases they require tactical decisions, in contrast to the
player's operational decisions, and therefore should be handled
by IDAHEX. 1In almost every case they must be handled by IDAHEX
or absurd results might ensue. Handling these tactical situa-
tions with precision is not critical--indeed that would be
inconsistent with the model's level of resolution.

Section 3.1 shows how events are determined, and Section
3.2 shows how they are scheduled. The events are arranged
implicitly 1In a queue in order of scheduled occurrence; the
event scheduled to occur next is at the front of the queue. A
change of status by a task force in the attack posture class

3-22

I N b

comes after a change of status by a task force in another posture
class if both events are scheduled for the same time. When an
event comes to the front of the queue, t is advanced to the time a
at which it is scheduled to occur, and the event 1is passed to

the subprogram xeq for execution. Instead of executing the event,
xeq may alter the queue--adding events to it, or changing the
times at which events are scheduled to occur and changing the
order of events in the queue.

Some terms are needed. To "occupy" a cell is to change
location of the cell. A side's "security force" in a cell
consists of every friendly unit that is located in the cell and
is in a hoid posture. A unit or task force whose posture is
disengagement, movement, or attack, and whose objective is cell
Js 1s equivalently said to be in a disengagement, movement, or
attack posture oriented toward cell j, or to be disengaging,
moving, or attacking toward cell j.

The variable eps = tframe / 100.

3.3.1 Pursuit

Suppose a Blue task force in cell 1 enters a movement
posture oriented toward cell j, an adjacent cell. Suppose that
later a Red task force occupies cell i and subsequently enters
a movement posture oriented toward cell j. If the Red task ;
force is more mobile, its movement delay may be less than the {
Blue task force's delay--so much less that its movement delay i
ends before the Blue task force's. But because xeq implements
the following rule, the Red task force cannot occupy cell j !
before the Blue task force. i1

Let task force m and task force n belong to opposite sides.
Suppose the location, posture class, and objective of task force
m coincide with the location, posture class, and objective of
task force n. Also suppose that the next location, next posture
class, and next objective of task force m coincide with the next
location, next posture class, and next objective of task force n
and the task forces' next posture class differs from their
present posture class. Let ul,...,uj be the identification i

numbers of the units in task force m, and let vl,...,vk be the ﬁ
identification numbers of the units in task force n. If

min {tentry(ui); 1'¢ 1.2 J) > min {tentry(vi); 1 21 % ki,

then task force m may enter its next status no sooner than eps/4
after task force n.

3-23

3.3.2 Attack

An important variable in many tactical situations is
[owner]; [owner](i) = 1 if cell 1 is owned by Red and 2 if the
cell is owned by Blue. The game design data set [owner], and
then IDAHEX sets [owner] = [owner]. Thus, the design data
declare the ownership of each active cell at the start of the
game. This subsection shows, among other things, how [owner]
gets changed.

Suppose task force m, belonging to side sa (sa = 1 or
sa = 2), is in an attack posture. Let sd = 3 - sa; side sd is
its enemy. Suppose the task force's location is cell pl, its
objective is cell po, its next posture is np, and its next
objective 1is no; no = pl is permitted. Assume posture np is a
hold posture. Assume the task force's attack delay (possibly
0) is complete, the task force has reached the front of the
queue, and the subprogram xeq has been called to execute the
task force's transition to its next status, a hold posture in
cell po. The rest of this subsection charts the actions taken
by xeq in this case. The verb "return" means "return from xeq
to the calling program".

Step 1. If task force m is already engaged, go to Step 6.
Search for side sd task forces whose location is cell po, whose
posture class is 2, 3, or 4, and whose objective is cell pl. If
none exist, go to Step 2. Do the following for each such task
force: make its desired objective po; make its desired posture

pmapup (post) if it 1s attacking,
pmapup (pmapup (post)) if it is moving,
pmapup (pmapup (pmapup(post))) if it 1s disengaging,

where post is its posture; schedule its next change of status for
time t, and place it ahead of task force m in the queue. Return.
Thils procedure leads eventually to an engagement in which task
force m is attacking side sd units holding in cell po; it obviates
an entirely separate combat procedure for meeting engagements.

Step 2. If an engagement already exists at cell po, go to
Step 4. If [owner](po) = sa, go to Step 3. Search for enemy
task forces in movement or attack postures oriented toward cell
po whose next change of status is scheduled to occur no later
than t + eps. If none exist, go to Step 3. Reschedule the next
change of status of each of these task forces to time t and place
it ahead of task force m in the queue. Return. This step
resolves virtual ties in times at which hostile units arrive at
a cell in favor of the cell's current owner.

3-24

Step 3. Search for active side sd units located in cell |
po. If none exist, let task force m change status (let it |
occupy cell po), let [owner](po) = sa, and return. If cell po '
contains a side sd unit 1n a hold posture other than posture
itrfp, go to Step 4. Let S be the set of every side sd unit
whose location is po and whose posture is Ztrfp. Two cases are
possible. Case 1l: S 1is nonempty. In this case, constitute
every member of S that does not belong to a task force as a task
force, give it the order "desired objective = po, desired pos-
ture = 10", and position it in the queue according to the time
of its next change of status. Let T be the set of every task
force whose elements are members of S. For each task force in

. T, if there is a start time associated with the task force's

] active order, and it exceeds t, reset it to t and therefore
reschedule the task force's next change of status. Now for each
task force in T, if the task force's active order specifies a
hold posture in cell po and the next change of status is sched-
uled to occur no later than t + eps, reschedule it to occur at

) t and move the task force ahead of task force m in the queue.
Return. Case 2: S is empty. In this case, let T be the set
of every side sd task force located in cell po whose objective
is owned by side sa and whose objective contains one or more
active side sa units. For each task force in T, determine
whether the task force could execute the first change of status
implied by the order "desired objective = po, desired posture =
10" no later than t + eps; if so, make that its active order,
schedule its next change of status for time t, and place it
ahead of task force m in the queue. If one or more task forces
have received new orders in this way, return.

Step 4. If cell po contains no side sd security force, go

to Step 5. If [owner](pl) = sd, change the active order of task
force m to "desired objective = pl, desired posture = -10",
schedule its next change of status for time t (keep task force
m at the front of the queue), and return. (The units in task
force m are destroyed because they are attacking at the same

' time the enemy owns their base. It is inappropriate to let their
location be cell pl, and they have not been able to occupy cell
po; therefore they must be removed from the area of war. Step
3 alters orders and re-sequences the queue to avert such catas-
trophes whenever possible.) If there is no engagement in prog-
ress at cell po, set one up between task force m and the side

. sd units in hold and disengagement postures in cell po. Other-
wise, join task force m to the existing engagement. Reschedule
the next change of status of task force m to occur at time t +ew.
Return.

3=e5

B R SR

Step 5. Reaching this point implies there is no side sd
security force in cell po, but one or more active units from
side sd are located there. Let S be the set of every side sd
unit whose location 1is cell po and whose posture is a movement
posture. For each unit u € S, if tentry(u) > t - delta, change
the unit's posture to pmapup(pmapup(pmapup(post))), where post
is its present posture. (Side sd units that started moving
from cell po within the interval delta of the arrival of task
force m must revert to disengagement postures.) Take each side
sd unit located in cell po and disengaging, and join it in an
engagement with task force m. Take each side sd unit located
in cell po that is attacking in some engagement, constitute it
as a task force if not already an element of one, give the task
force the active order "desired objective = po, desired posture
= -10", and place the task force at the front of the queue. Let
task force m enter its next status. (Let it occupy cell po.)
Return.

Step 6. This point is reached if and only if task force m
is already engaged. For that to happen, xeq must have been
called once before to execute the task force's transition from
an attack posture oriented toward cell po to a hold posture in
cell po, and Step 4 must have joined the task force in an engage-
ment. When that happened, xeq did not let the task force enter
its next status; in fact, it rescheduled the change of status
to occur after the end of the game. Subsequently, the change
of status was rescheduled as Section 3.3.3 explains, and task
force m again reached the front of the queue, inducing the
current invocation of xeq. Proceed as follows. Take each side
sd unit located in cell po that 1s in an attack posture and
engaged, constitute it as a task force if 1t does not already
belong to one, give the task force to which it belongs the active
order "desired objective = po, desired posture = -10", and place
the task force at the front of the queue. Let task force m
enter its next status. (Let it occupy cell po.) Return.

3.3.3 Disappearance of a Security Force

Suppose cell pl is owned by side s (s = 1 or s = 2) and
contains one or more units from side s in hold postures, and
suppose one or more units from side 3-s are attacking toward
cell pl. Suppose a task force consisting of the entire side s
security force in cell pl now enters posture class -1, 0, or 2.
Then the delay of every side s task force located in cell pl
and disengaging is re-evaluated, possibly causing rescheduling
of the task force's next change of status. This is necessary
because a delay computed when a friendly security force existed
might no longer be appropriate; in particular, a disengagement
delay might have to be extended now that the enemy can pursue.
Next, the active order of every side 3~s task force attacking

3-26

i “"“‘_“"‘_—'—_—-‘1 - .

toward cell pl is inspected. If the order implies that the

task force's next change of status 1s something other than just

a transition to another attack posture oriented toward cell pl,
the change of status is rescheduled to t and moved to the front
of the queue (giving the task force the opportunity to occupy
cell pl). Otherwise, the order is discarded, so that the next
order, if any, in the task force's mission becomes the active
order, and the test is repeated.! The process continues until
either the test 1s passed or no orders remain in the task force's
mission. i

3.3.4 Counterattack

IDAHEX structures every engagement in such a way that units
from one side are attacking and units from the other side are
defending. A defender is in a hold posture or a disengagement
posture. It 1is possible that all defenders in the engagement
are holding, or all disengaging, or some holding and some dis-
engaging. The defenders are all located in the same cell, the
cell under attack, while the attackers may be located in dif-
ferent cells. An attacker is in an attack posture unless its
location is the same as the defenders'. In a counterattack,

a task force consisting of one or more defenders disengages, §
moves, and attacks toward the location of one or more of the 1
attackers. Suppose the defenders' location is cell 1. Suppose 3
task force m consists of one or more of the defenders in hold
postures, and xeq has been called to execute its transition to

a disengagement posture oriented toward cell j, the location of
one or more of the attackers. Let A be the set of the attackers
located in cell j. If task force m is not stronger than A,

the task force's active order i1s changed to "desired objective

= i, desired posture = 10", its next change of status is sched-
uled for time t, and it is placed at the front of the queue.

If task force m is stronger than A, A's attack is abortead:

each unit in A that does not belong to a task force 1is consti-
tuted as one; each task force contained in A is given the active
order "desired objective = j, desired posture = 10", its next
change of status i1s schdeuled for time t, and it is placed

ahead of task force m in the queue; xeq returns without execut-
ing the transition of task force m to its next status. The

I criterion for deciding whether task force m is stronger than A
is as follows. Let Upsee sl be the task force's elements,

identified by unit numbers. Let s = 1 if the task force 1s Red
and s= 2 if it is Blue. The attack strength of task force m
is given by

Pt a0 i sy

IMissions are explained in Section 4. Basically, a mission is
a sequence of orders for a task force.

S=EV

T ———pe e T

v gy —— e e

n nrs(s)
fo = 2: rsvala(irs,s) * [resources](uk,irs).
k=1 irs=1

The number rsvala(irs,s) is the standard value of a side s
type irs resource on attack; 1ts computation is explained in
Section 5.3. Basically, rsvala(irs,s) measures the contrib-
ution of a single type irs resource belonging to a standard
side s force attacking a standard enemy force in a standard
engagement. The defense strength of task force m is given by

n nrs(s)
g0 = Z: 2: rsvald(irs,s) % [resources](uk,irs).
k=1 irs=1l

The number rsvald(irs,s) is the standard value of a side s

type irs resource on defense. Let ViseeesVy, be the units in

the set A, identified by their numbers. Let s” = 3 - s. The
attack strength of A is given by

r
f1 =). rsvala(irs,s”) # [resources](vk,irs).
k=1
The defense strength of A is given by
r
gl = 3 rsvald(irs,s”) = [resources](v,,irs).
k=1
Task force m is considered stronger than A if and only if

gl g0

3.3.5 Activation of Inactive Task Force

Suppose xeq has been called to execute the transition of a
task force whose elements are in a nonpositive posture class to

a positive posture class. If the task force's next location
(the cell where it will become active) is owned by the enemy,
or if one or more active enemy units are located there, xeq

does not execute the change of status and, instead, reschedules

it for t = +» and warns the player of the side to which the
task force belongs.

3-28

i

-
.
4
§
!

3.3.6 Virtual Time of Posture Class Entry

When a task force transitions from its present status to
its next status, tentry may be reset for each of its elements.
Let ppc be the task force's present posture class, po its
present objective, and pl is present location. Let npc be
its next posture class and no is next objective. Let units
{ui; 1l <1 < n} be its elements.

If npc = ppc, tentry is not changed. Henceforth, assume
npc # ppc.

If npc = 2 or npc = 3, IDAHEX sets
tentry(ui) =t

for every 1 < 1 < n. That i1s, the virtual time at which the units
enter the next posture class equals the actual time.

If npc = 1, or if npc = 4 and no # pl, IDAHEX sets

tentry(ui) = max {t, tentry(ui)}

for every 1 < 1 < n.

In the remaining case, npc = 4 and no = pl; the task force
is aborting a disengagement, movement, or attack and trying to
revert to a hold posture in cell pl. If there is no enemy task
force whose objective is pl, whose location is not po, and whose
posture class is 2, 3, or 4, then

tentry(ui) < max {t, tentry(ui)}

for every 1 < 1 < n. Otherwise, tentry is determined as follows.
If ppe = 2, then

tentry(ui) « max {ty tentry(ui)}

for every 1 < 1 < n. If ppec = 3, then

tentry(ui) + max {t + (t-tentry(ui)), t}

for every 1 < i1 < n; that is, the virtual time of entry is set
ahead of the current time by the length of time the unit has been
moving. Finally, if ppc = 4, tentry(ui) is, for every 1 < 1 < n,
set equal to t plus the movement delay that would be computed for
the (entire) task force were it moving from cell po to cell pl in
posture 30.

3=29

Thus, if a task force aborts a movement or attack and an
enemy unit directly threatens to seize its location from the
flank or rear, tentry for its elements is set ahead in time to
indicate just how far out of position it is. Because of the
way tentry is set for transitions into posture class 1, this
penalty is retained when the task force subsequently reverts
to holding its present location. The combat procedure uses
t - tentry(j) as a measure of the length of time unit j has had
to prepare a defense; if unit j has aborted a movement or attack
and reverted to holding its location, its preparation time may
be negative.

The combat procedure may also reset tentry.! 1If, during
one frame of a given engagement, the FEBA (measured by the
variable feba) advances, then for each defending unit, say unit
i, tentry(i) 1s reset to t0 + tframe, where t0 is the value of
tentry(i) at the start of the frame. Thus, the defenders' level
of preparation cannot increase while the attackers are making
progress.

3.3.7 Engagement Termination

Suppose engaged task force m goes from a disengagement pos-
ture to a movement posture, or enters a nonpositive posture class
(its units are destroyed or de-activated), or breaks off an
attack and tries to revert to a hold posture in its own location.
Then xeq deletes the task force's elements from their engagement.
If no units from their side remain in the engagement, then the
engagement terminates. In this event, xeq may re-schedule the
times at which enemy units that were engaged enter new statuses.
Suppose task force n, an enemy of task force m, was participating
in the terminated engagement. The time at which it 1is scheduled
to enter its next status is reset to min {t0, tl1}, where t0 is
the time at which it is presently scheduled to enter its next
status, and t1 is the time at which the task force (which is now
not engaged) would enter its next status 1f it were just beginning
its transition to its next status. The result is that disengaging
task forces can immediately enter movement postures.

!Understanding this paragraph precisely requires some knowledge
of Section 5 ("Combat").

=3V

—

THE PRIMARY COMMANDS

At the start of each period, the Red player and the Blue

player input commands to IDAHEX. A command is an instruction

| to battle units or a request for information. IDAHEX prevents

| ' a player from issuing instructions to enemy units or obtaining

| the enemy player's instructions to his units. The commands are

i fully described in the Player's Manual. This section discusses

F only the three most important commands, which are all instructions
to battle units.

4.1 MISSION COMMAND

Recall from Section 3.1 that a task force's change of
status is always caused and directed by an order. A mission
is a sequence of orders. Every task force has a mission, and
every mission is assigned to exactly one task force (but two
| task forces may have identical missions). The same positive
integer that identifies the task force identifies its mission.

' A mission's orders are stored in a pop-up stack, and are
L executed in sequence, from the top to the bottom. The order
at the top of the stack is termed the "active order". If there

is a start time associated with it, execution does not begin
until the current time equals or exceeds the start time. When
execution of the order is completed, it is removed from the
stack, and the next order, if any, pops to the top.

A mission is created or modified by the mission command.
If the player is modifying an existing mission, he identifies
it by number and then lists the new orders in the sequence
in which they are to be executed. The new orders completely
replace the old orders. If the player is creating a new
mission, he lists the orders, the elements of the task force
(identified by their unit numbers), and finally, if there is
more than one element, he selects the task force's transport
mode. Creation of the mission also creates the task force.
When the mission ends, because it is accomplished or canceled,
the task force ceases to exist as an organizational entity,
and the number assigned to it and its mission becomes available
for identifying a new task force and mission.

The following two examples are based on the area of war in
Figure 3.3 and the posture configuration assumed by Table 3.2,
namely:

npost(l) = 4, npost(2) = 1, npost(3) = 2, npost(h) =3

pp pmapup (pp) pmapdn (pp)

10 20 -10
Al 20 -10
12 20 -10
13 20 -10
20 30 42
30 4o 42
31 41 42
4o 10 42
41 11 42
42 13 42

Example 1. Assume units U4 and 9 are both in the same hold
posture in cell 17. In the following communications with IDAHEX,
the Red player constitutes units 4 and 9 as a task force and
assigns it a mission. Every line that IDAHEX writes on a player's
terminal is preceded by a question mark to distinguish it.

(IDAHEX does not actually write the question mark.) The player's
replies are enclosed in quotation marks.

? Enter command.
"mission"

? Enter orders.
n16’ 31’ 0"
G it el
L2 O 26 S
nmn

? List task force.
"}4 9"

5

? Enter transport mode.

"Oll

Each of the three lines after the prompting phrase "Enter
orders." states an order: the first number is the desired
objective, the second the desired posture, and the third is the
order's start time. The mission implies the following sequence
of statuses for the task force consisting of units 4 and 9:

o e Skl

s F ol TP e .

%

location posture objective

% 20 16
17 30 16
17 31 16
1T 41 16
16 Lt 16
16 20 12 :
16 30 12 i
16 Lo 12 :
12 10 12 é

Example 2. Assume the posture class of unit 21 is 0. 1In
the following communications with IDAHEX, the Blue player
ereates a mission for the task force consisting of unit 21:

? Enter command.
Ymilssten!
? Enter orders. ¢
WG 0 a2 s (o
"9, 12’ OH
nmn
? List task force.
"21"

The mission implies the following sequence of statuses for unit
20

location posture objective
6 10 6
6 12 6
6 20 9
6 30 9
6 4o 9
9 10 9
9 12 9

The example illustrates one way of accomplishing re-supply and
replacement: 1if new resources should enter the area of war

in cell i at time tr, the game design data should incorporate
them into a battle unit whose initial location is i and
initial posture class is 0, and then when t > tr the player
whose side should receive the resources can issue a mission
command to activate the unit. An inactive unit first assumes
posture 10 when it is activated. (See Figure 3.1.)

o

Example 3. Assume the posture class of unit 21 is 0. In
the following communications with IDAHEX, the Blue player acti-
vates unit 21 in cell 8 instead of its present location, cell 6:

? Enter command.
"mission"

? Enter orders.
n8’ 0, 0"
Ry, 16, o
"n

? List task force.

% "21"

The mission implies the following sequence of statuses for unit
21

location posture objective
8 0 8
8 10 8

Thus, a player can activate one of his units in a cell
different from its initial location; to do so, he must first
change its location while it remains in posture class 0. This
capability is necessary since the locatiocn where a package of
supplies and replacements should become available might depend
on the course of the game:. in the first place, IDAHEX prohibits
activation of a uait in a cell owned by the enemy or containing
enemy units; and it may be convenient to design the game so
that supplies and replacements originate in corps, army, or front
depots, which relocate to keep up with the combat forces, rather
than fixed, theater depots. A player could use the capability to
change inactive units' locations in order to cheat, activating
units wherever (and whenever) he pleased. Therefore, IDAHEX
places an advisory message in the game designer's output file,
file 51, whenever an inactive unit changes location.

In every example the mission's last order declares a hold
posture as the desired posture. That is not essential because
the player can always extend (modify) a mission some time after
creating it. But he should avoid letting a task force complete
its mission in a posture class other than -1, 0, or 1: to save
time IDAHEX occasionally assumes that every disengaging, moving,
or attacking unit belongs to a task force.

-y

aank dicis

i 4.2 REDISTRIBUTING RESOURCES

One set of active units, called the "givers'", can transfer
resources to another set of active units, called the "takers",
subject to these restrictions: the givers and the takers must
all belong to the same side, the givers and the takers must all

' have the same location, and the givers must be in the transfer
posture, posture <trfp. A taker may be in any of the postures
10 through 49, including posture Ztrfp, and a unit may be both
a giver and a taker. If unit j 1s a taker, it can accept any
quantity of type irs resources, even if toe(butype(j),irs) = 0,
provided irs = Zars(i, butype(j)) for some 1 < 1 < nrst(butype(i)).

4.2.1 The Transfer Command

The transfer command causes an immediate, instantaneous
transfer of resources from the givers to the takers. The command
includes a list of the givers, a list of the takers, and the
amount of each type of resource to be transferred from the set of
givers to the set of takers. As an essential part of the command,
the player declares the transfer location--the givers' and takers'
location. If the player declines to furnish a list of givers, the
list consists by default of every friendly unit whose location is
the transfer location and whose posture is the transfer posture.
If he fails to furnish a list of takers, the list consists by
default of every active, friendly unit whose location is the
transfc- location and whose posture is not Z¢rfp. If, despite
the defaults, there are no givers or no takers, no transfer is
made, and the player is warned. The player may also decline to
declare the transfer amounts of one or more types of resources.

Let G be the set of givers, identified by their unit numbers,
and T the set of takers, identified by their unit numbers. Let
s = 1 if the units are Red and s = 2 if they are Blue. If G = T,
then regardless of what transfer amounts the player specifies, all
' resources are pooled, and apportioned among the units. Assume
G =T. Let 1 < irs < nrs(s). Define

T = (k ¢ T: <ars(]j,butype(k)) = irs for
some 1 < J < nrst(butype(k))}.

T” 1s the set of takers that can have type irs resources.

45

<
[
£
e
.
g

Let
T = {k ¢ T*: toelbutypelk),irs) > 0}.

If T-* is nonempty, the resources of type irs are redistributed
so that after redistribution

[resources](k,irs) / toe(butype(k),irs)

is the same for every k ¢ T”” and [resources](k,irs) = 0 for

every k ¢ T - T"“.! Alternatively, if T““ is empty, the resources
are redistributed so that [resources](k,irs) is the same for every
k ¢ T (and 0 for every k e T - T”).

Henceforth, assume G ¥ T. If, for any i, the player does not
declare the amount of type 1 resources to be transferred, it is
determined as

min {demand, supply},

where
demand = max {toe(butype(k),i) - [resources](k,i), 0}
keT
and
supply = P max {[resources](k,i) - toe(butype(k),i), 0}.
=,

That is, each taker demands the amount by which its stock falls
short of its planned effective stock, and each giver demands the
amount by which its stock exceeds its planned effective stock.
If the player does declare the amount of type 1 resources to be
transferred, it is reset if necessary so that it does not exceed

2: [resources](k,i),
keG

the amount available. Let amt(irs) be the amount of type irs
resources to be transferred.

The first step in accomplishing the transfer i1s allocating
the resources among the takers. Let 1 < irs < nrs(s). Define
T” and T"” as before. For any k € T, let q(k) be the quantity
of type irs resources to be transferred to unit k, which must
now be determined. If T” is empty, q(k) is set to 0 for every

I -~ P~~ is the set of every k such that k ¢ T but k ¢ T*".

4-6

k, and amt(irs) is reset to 0. Hence, assume T is nonempty.
Case 1: T°7 is nonempty. Then the quantity amt(irs) is dis-
tributed among the battle units of T”°” so as to equalize as much
as possible their ratios of actual stock to planned effective
stock. To be precise, q(k) is set to O for every k e T - T°7,
and q(k) is chosen for every k € T°” to

2
_ [resources](k,irs) + gq(k)
i e ggg,lé toe(butype(k),irs)

1]
e
O
.
D
o
o
o
(e}
Q
~~
~
N—
u

amt (irs)
q(k) > 0 for every k.

Alternatively, assume Case 2: T”” is empty. Then the quantity

amt (irs) is distributed among the battle units of T” so as to {
equalize their stocks as much as possible. To be precise, q(k) i
is set to 0 for every k ¢ T = T”, and q(k) is chosen for every ;
k e T2 to

minimize 2: (Lresources](k,irs) # q(k))2

Kell &
subject to Z q(k) = amt(irs)
keT”*
q(k) > 0 for every k.

In both cases, after q is determined the transfer occurs:
[resources](k,irs) is increased by the quantity q(k) for each
k e T

To complete the transfer, the givers must be assessed for
the resources that have already been distributed to the takers.
Let 1 < irs < nrs(s). For any k € G, let q(k) be the quantity
of type irs resources to be taken from unit k, which must now be
determined. Define

G” = {k e G: toe(butype(k),irs) = 0}.
Let

Q = Z [resources](k,irs).
keG~

For every k ¢ G*, q(k) is set equal to
min {amt(irs)/Q,1} % [resources](k,irs).
If Q > amt(irs), aq(k) 1s set to 0 for every k e G - G~.

Otherwise,

y-7 P

q(k) is chosen for every k € G - C” to equalize as much as
possible the units' ratios of actual stocks to planned effective
stocks: q(k) is chosen for every k ¢ G - G” to

2
[resources](k,irs) - q(k))
RIS 2k kgng‘< toe (butype (k) ,irs) =4

subject to 2: q(k) = amt(irs)
keG-G~

q(k) > 0 for every k.
After q is determined the transfer occurs:
[resources](k,irs) <« [resources](k,irs) - q(k)

for every k e G.

4.2.2 The Delivery Command

The delivery command allows the player to arrange a
transfer of resources that will occur automatically, at the
earliest possible moment. The command does this by creating
a "delivery order" (not to be confused with the "orders" in
a mission). A delivery order has four components: (1) the
delivery task force; (2) the delivery destination; (3) the
delivery size; (4) the intended recipients of the delivery.
The delivery task force, identified by number, is the set of
battle units intended to transfer resources to another set of
units. The delivery destination is the cell where the delivery
will occur. The delivery size is a number between 0 and 1,
inclusive, that indicates how much should be transferred. The
intended recipients must all belong to the player's side. The
list of intended recipients may be empty. Once created, a
delivery order continues to exist until the player cancels it
or it 1is executed. Two or more delivery orders may name the
same delivery task force, but if the delivery destinations are
the same as well, confusion may result.

Suppose task force m has just entered posture Ztrfp in
cell dd. IDAHEX must decide whether the transfer of resources
will be governed by a transfer command that the player will
issue later or by a delivery order. IDAHEX infers that the
player intends to issue a transfer command, and therefore makes
no delivery of resources at this time, if either of the follow-
ing conditions holds:

4-8

~mmEpYw

(1) with this change of status, the task force
has accomplished its mission;

(2) with this change of status, the task force
has completed execution of its active order,
and its new active order has a start time
that exceeds the current time.

If neither condition holds, IDAHEX searches for a delivery
order--one whose delivery task force is m and delivery destina-
tion 28 dd. If none is found, a delivery order is generated,
with the delivery task force = m, delivery cell = dd, delivery
size = 1.0, and intended recipients = the empty set; a generated
delivery order is treated as any other delivery order.

Execution of the delivery order is a procedure very similar
to the one initiated by a transfer command. Let G be the set of
elements of task force m, identified by their unit numbers. G
is the set of "givers". Let lambda be the delivery size, and
let R be the set of intended recipients, identified by their
unit numbers. If R is nonempty, let T be the set of every k € R
such that unit k is active and located in cell dd; if R is empty,
let T be the set of every active, friendly unit located in cell
dd whose posture is not <trfp. T 1is the set of "takers". If T
is empty, of course, no transfer occurs.

If G = T, then the resources are redistributed exactly as
described for that case in Section 4.2.1.

Assume G * T. The amount of type i resources to be trans-
ferred is determined as

min {demand, supply}l,
where

demand = 2: max {toe(butype(k),i) - [resources](k,i), 0}
keT

and

supply = lambda % :E; max {[resources](k,i)
e - toe(butype(k),i), O}.

Since the delivery size, lambda, may not exceed 1, a giver can
only give away resources to the extent they exceed its planned
effective stock. The first step in accomplishing the delivery
is allocating the resources among the takers. The procedure is
exactly the same as described in the previous subsection. The
second step 1s assessing the givers for the resources that have
been distributed to the takers. The procedure is exactly the
same as described in the previous subsection.

4-9

5. COMBAT

As Section 3.3.2 explains, an engagement arises when units
from one side attempt to occupy a cell containing enemy units in

hold or disengagement postures. An engagement is not precipitated

merely by a task force's entering an attack posture oriented
toward a cell containing enemy units in hold or disengagement
postures. The engagement arises when the task force attempts to
change status from the attack posture oriented toward the enenmy-
owned cell to a hold posture in the enemy-owned cell.! The cell
is termed the "engagement location". The force that precipitates
the engagement, by attempting to occupy an enemy-owned cell, con-
stitutes the engagement "attackers". Other friendly units may
join the engagement later, possibly attacking from different
locations; they, too, become "attackers". The enemy units whose
location is the attacker's objective and whose postures are hold
or disengagement constitute the engagement "defenders". Thus, at
the outset of the engagement, one side is the attacker and the
other side 1is the defender. These roles remain fixed throughout
the engagement: even if the attackers succeed in occupying the
engagement location, so that they are in hold postures and no

longer attack postures, they are still the "attackers". An engage-

ment cnds when all its attackers have left or all its defenders
have left. If an attacker's location is not the engagement loca-
tion, it leaves its engagement when its objective becomes a cell
other than the engagement location. If an attacker's location is
the engagement location, it leaves its engagement when it enters
a posture class other than 1 or 2. A defender leaves its engage-

ment when it enters a posture class other than 1 or 2. Therefore,

an attacker or defender leaves its engagement if it is destroyed
(posture class -1).

Usually, a defender leaves its engagement by entering a
movement posture.? While it is moving, the enemy cannot engage

it. That 1is one reason for the disengagement delay, and especially

for making one term of the delay proportional to the anticipated
movement delay. (See Section 3.2.5.2.) Loosely speaking, if the

!Sometimes, as Section 3.3.2 explains, the attempt by a task
force in a attack posture to occupy its objective causes enemy
units located there to divert to hold postures. After they have
done so, it re-attempts occupation, precipitating, an engagement.

21t is impossible for a unit to enter a movement posture oriented
toward its own location.

5=1

ST———

R n— , -

tactical situation implies that the unit 1s vulnerable to pursuit
by engagement attackers, its disengagement delay (hence, the
interval during which it is engaged) 1s extended to account for
the combat that i1ts rearguard would have in reality with pursuing
enemy units.

Each engagement has a stylized FEBA that measures the
attackers' progress. In any given engagement, the variable feba
expresses the FEBA position as a fraction of depth. At the start
of the engagement, feba = 0. At that point, all the attackers are
in attack postures oriented toward the engagement location. If the
attackers are sufficiently strong relative to the defenders, the
FEBA advances--feba increases, to a maximum of 1. One might
imagine that when feba is increasing the attackers are beating back
the defenders; a more general, and more contemporary, interpretation
is that the attackers are penetrating the defenders' formation. The
game design datum febad is the criterion for deciding when the
attackers have penetrated sufficiently to be allowed to occupy the
engagement location. As soon as feba > febad, ownership of the
engagement location passes to the attackers' side, the attackers
are allowed to enter the cell, and the defenders are forced to
disengage and move out or be destroyed.

An engagement's FEBA is independent of other engagements'
FEBAs and the general disposition of forces in the area of war.
It may be interpreted as a measure of the attackers' penetration
of the engagement location. But essentially it is just an
abstraction used to determine how long the engagement lasts before
the attackers defeat the defenders.

At the end of each frame, the results of every engagement
during the frame are evaluated. If an engagement starts during
a frame, the attackers cannot possibly occupy the engagement location
until the end of the frame, when the engagement's feba is updated.
Therefore, tframe should be short enough to avoid delaying attackers
excessively.

5.1 THE ATTRITION PROCESS

Attrition is essentially a Lanchester square process. The
game design datum katk(i,j,k) is the quantity of enemy type J
materiel destroyed in one unit of time by a single side k type 1
ground-to-ground weapon belonging to an attacker, under the
assumption that the side k weapon allocates all its fire to enemy
type J materiel. The quantity destroyed in one frame is

katk(i,j,k) = tframe % katk(i,j,k).

The datum kdef(i,j,k) is the quantity of enemy type j materiel
destroyed in one unit of time by a single side k type i1 ground-

H=e

.
§

to-ground weapon belonging to a defender, under the assumption
that the side k weapon allocates all its fire to enemy type]
materiel. The quantity destroyed in one frame is

kdef(i,j,k) = tframe % kdef(i,J,k).

Let cell loc be the engagement location of a given
engagement. Let units {atk(i); 1 < i < natkl be the attackers
and units {def(i); 1 < i < ndef} the defenders. Let sideA =1
if the attackers are Red and sideA = 2 if they are Blue; let
sideD = 3 - sideA. For each 1 < 1 < nrs(sideA), let

n
rsatk(i) = frinv(i,atk(k)) * [resources](atk(k),i),
=1

the attackers' total quantity of type i resources that can become
actively involved in combat or combat support. The function frinv
is explicated in Section 5.4. Briefly, frinv(i,j) is the fraction
of type i resources held by unit j that are available for combat,
if the unit's type i1 resources are equipment, or that are avail-
able and needed for combat support if its type 1 resources are
support resources. For each 1 < i1 < nrs(sideD), let

n
rsdef(i) = :ii frinv(i,def(k)) % [resources](def(k),i),

the defenders' total quantity of type i resources that can
become actively involved in combat or combat support. The current
time, t; must coincide with the end of a frame. This subsection's
goal is to derive the attrition suffered by each attacker and each
defender during the frame just ended.

5.1.1 Determining the Kill Matrices

Select an attacker-defender pair: for some 1 < 1 < natk
and some 1 < j < ndef, let

unitA = atk(i), unitD = def(j).

Of course, unitA is a positive integer identifying a battle unit.
The phrase "battle unit unitA" is abbreviated below as simply
"unitA". The phrase "battle unit unitD" is abbreviated as simply
Yunitb”.

If one of unitA's type i ground-to-ground weapons
(1 < 1 < nggwep(sideA)) allocates all its fire to unitD's type J

materiel (1 < j < nmat(sideD)), the basic quantity of enemy type
j materiel it destroys in the frame is katk(i,j,sideA). But a

=3

weapon normally does not allocate all its fire to a single type of
enemy materiel. This is not just a matter of doctrine. 1In reality,
there might be several different types of materiel at which a
weapon would fire; what it actually fired at would depend upon -
what targets it detected, and that would depend upon the compo-
sition and deployment of the enemy force. Two variables are

used to adjust katk(i,j,sideA) for the allocation of fire--
stdtgt(#,sideD) and aggatk(i,%,sideA). The game design datum
stdtgt(j,sideD) is, for 1 < j < nmat(sideD), the quantity of

type J materiel in a standard side sideD combat force. The

design datum aggatk(i,j,sideA) is the fraction of fire of a type

i weapon from side sideA that is allocated to enemy type j

materiel if the enemy materiel belongs to a standard enemy force.
Let n = nmat(sideD). The fraction of fire of unitA's type 1
ground-to-ground weapons that is allocated to unitD's type J
materiel is

alpha(i,j) =

aggatk(i,j,sideA) # (frinv(J,unitD) # [resources](unitD,j)),
stdtgt(j,sideD) % DEN

where

=

DEN = Z aggatk(i,k,sideA) % (rsdef(k) / stdtgt(k,sideD)).

The divisor DEN is just a normalizer, to ensure that the fractions
of fire allocated to the various types of enemy materiel sum to
1.! Thus, if type J materiel is overrepresented compared with

the standard force, more fire is allocated to it; if no type J
materiel is present, no fire is allocated to it.

The basic quantity of unitD's type j materiel that a single
unitA type i weapon destroys in the frame is

katk(i,j,sideA) x alpha(i,j).

This quantity must be adjusted for the specific conditions of

the engagement. Each adjustment affects either the lethality

potential of unitA's type i weapons or the vulnerability of

unitD's type J materiel to all enemy fire. In the former case,

the adjustment takes the form of a factor applied to the row
katk(i,#,sideA); in the latter, it takes the form of a factor ;
applied to the column katk(#,j,sideA). The adjusted quantity

!Because of this normalization, it 1s not necessary that

Zaggatk(i,J ,sideA) = 1.
J

5-U

TR T T TV T e LT

of unitD's type J materiel that a unitA type i weapon destroys
in the frame is

K(i,j,unitA,unitD) = katk(i,j,sideA) # alpha(i,j)
PA % PD
* EA % ED
* B
* PREP
The sequel defines the factors.

Let postA be unitA's posture if unitA is in an attack
posture; let postA = 40 if not. Let

PA = [fckar](i,sideA,postA),

which equals fekar(i,sideA,poff(postA)) by definition. The
factor PA adjusts the lethality of unitA's type i weapons
according to unitA's attack posture. Let postD be unitD's
posture. Let

PD = [fckac](j,sideD,postD),

which equals fekaec(Jj,sideD,poff(postD)) by definition. The
factor PD adjusts the vulnerability of unitD's type j materiel
according to unitD's defense posture.

Let e be the environment in the engagement location:
e = [environment](loc). Let

EA = fckare(i,sideA,e).

The factor EA adjusts the lethality of unitA's type i weapons
according to the environment in which the combat occurs. Let

ED = fekace(Jj,sideD,e).

The factor ED adjusts the vulnerability of unitD's type j materiel.
The combat is tacitly assumed to occur in the engagement location;
hence, the environment in unitA's location is irrelevant. This
does not imply that the attacker benefits or suffers from terrain
equally as the defender. The variables feckare and fcekace provide
factors that are applied only to katk(#,%*,sideA), the attacker's
kill matrix; other variables, namely fekdre and fekdce, provide
factors that are applied to kdef(#%,%,sideD), the defender's kill
matrix.

Let bt be the type of barrier between unitA's location and
unitb's location: 1f cell locA 1s unitA's loceatlion, bt =
[bartype](locA,loc). If bt = 0, let B = 1. (If there is no
barrier, no adjustment is needed.) If bt > 0 and

I o

feba < febab(bt) / depth,

let B = barier(i,sideA,bt); otherwise, let B = 1. Thus, even
if a barrier exists, its effects cease when the attackers have .
progressed sufficiently. i

The area of the "area of influence" of unit def(k)
(1 < k < ndef) is zrarea(def(k)).! The total area of the defenders'
combined area of influence is computed as

ndef]
defarea = zrarea(def(k)). 4

k=
The engagement variable front indicates the length of the defenders' »
line of contact with the attackers. Like FEBA, it 1s an abstraction, :
a way of measuring how far the defenders are stretched. If one ;

or more attackers are located in cell loc, then front = +», If not,
the value of front depends on the number of directions from which
the attack is coming. If the attackers are all located in the

same cell, front equals the length of any side of a square equal

in area to cell loc (a hexagon). If the attackers are located :
in k different cells, where k > 1, then front equals k times the §
length of any side of cell loc. The depth of the defense,

defdepth, is given by

defdepth = min {defarea/front, depthl.

The defenders' prepared positions, if any, are assumed to extend
only to the depth defdepth. The factor PREP has two purposes: to
reduce the vulnerability of a defender holding prepared positions,
and to increase the vulnerability of a defender whose defense is
hasty or disorganized. If unitD is not in a hold posture, let
PREP = 1. Alternatively, assume that it is. The virtual length
of time it has had to prepare its defense is t - tentry(unitD),
which may be negative. (See Section 3.3.6.) Let

pf = prep (j, side D, t - tentry(unitD)).

(The function prep is explicated in Section 5.4.) If pf < 1,
unitD's preparation time is sufficient to reduce the vulnerability
of its type J materiel provided it still holds prepared positions.
Hence, let

IThe funetion zrarea is explicated in Section 5.4.

5-~6

pf if pf < 1 and feba < defdepth/depth,

PREP =
1 if pf < 1 and feba > defdepth/depth-

A

On the other hand, pf > 1 indicates a hasty, disorganized defense,
a condition unlikely to improve just because the attackers
’ progress. Hence, let

PRER = pf Afipfa=aie

That completes derivation of K(i,j,unitA,unitD), the "potential"
quantity of unitD's type j materiel (1 < j < nmat(sideD)) destroyed
in the frame by a unitA vype i ground-to-ground weapon
(1 < 1 < nggwep(sideA)). Similarly, the potential quantity of
unitA's type j materiel (1 < j < nmat(sideA)) destroyed in the
frame by a unitD type i weapon (1 < i1 < nggwep(sideD)) is

-

K(i,j,unitD,unitA) = kdef(i,j,sideD) * alpha”(i,Jj)

¢ ¥ PD” % PA”
¥ ED” % EA”.
E The factors' definitions are analogous to those given above.
L Let m = nmat(sideA). The allocation factor

alpha(i,j) =

é aggdef(i,j,sideD) % (frinv(Jj,unitA) # [resources](unitA,j)),
‘ stdtgt(j,sideA) % DEN

where

M=

DEN = aggdef(i,k,sideD) % (rsatk(k) / stdtgt(k,sideh)).

k=1

Let postD be unitD's posture. Let

? PD” = [fckdr](i,sideD,postD),
which equals fekdr(i,sideD,poff(postD)) by definition. Let postA
be unitA's posture if unitA is in an attack posture; let postA =
40 if not. Let

PA’ = [fckdc](j,sideA,postA),

which equals fekde(j,sideA,poff(postA)) by definition. Let
e = [environment](loc). Let

ED”

fekdre(i,sideD,e),

177: fekdee(j,sideA,e).

Pt |

That completes deri ation of the two potential kill
matrices for the attacker-defender pair unitA-unitD,
K(#,%,unitA,unitD) and K(#,#%,unitD,unitA). Potential kill
matrices are derived for each attacker-defender pair.!

For any battle unit ibu and resource type irs, define
ERS(ibu,irs) = freff(ibu) % frinv(irs,ibu) * [resources](ibu,irs).

It is the effective quantity of the unit's type irs resources that
can become actively involved in combat or combat support. The
function freff is explicated in Section 5.4. Briefly, it adjusts
a battle unit's effectiveness according to the density of friendly
forces in its location. Let IGA = nggwep(sideA). Battle unit
unitD's potential loss of type j materiel (1 < j < nmat(sideD))

in the frame due to all enemy ground fire is, by definition,

ploss(unitD,j) =

tk
;ﬁ; ;&i K(i,j,atk(k),unitD) # ERS(atk(k),i).

Let IGD = nggwep(sideD). Battle unit unitA's potential loss of
type j materiel (1 < j < nmat(sideA)) in the frame due to all
enemy ground fire is, by definition,

ploss(unitA,j) =

ndef IGD
;E; K(i,j,def(k),unitA) % ERS(def(k),1).
=] =

Associated with potential losses of materiel are potential losses
of personnel. (Notice that no fire is allocated directly to
personnel.) Let nm = nmat(sideD). Unit unitD's potential loss

of type p personnel (1 < p < npers(sideD)) due to all enemy ground
fire i3, by definitiony

ploss(unitD,nm+p) =

m tk IG
(K(i,J,atk(k),unitD) * ERS(atk(k),i))
=1 k=1 {=1

¥ dpersr(p,i,J)

170 conserve storage, the IDAHEX computer program uses none of
these matrices. Of course, it gets the same results.

5-8

e

T A o

if sideD = 1 and

ploss(unitD,nm+p) =

tk
;?; ;f; i?ﬁ(K(i,J,atk(k),unitD) * ERS(atk(k),i))
= = 1=

% dpersb(p,i,J)

if sideD = 2. Let nm = nmat(sideA). Unit unitA's potential loss
of type p personnel (1 < p < npers(sideA)) due to all enemy ground
fire is

ploss(unitA,nm+p)

nm ef IGD

(K(1i,j,def(k),unithA) ERS(def(k),i))

=] k=1 =1
% dpersr(p,i,J)

if sideA = 1 and

ploss(unitA,nm+p) =

nm ndef IGD

(K(i,j,def(k),unitA) * ERS(def(k),i))
j=1 k=1 1i=1
. % dpersb(p,i,J)

if sideA = 2.

A unit's potential losses might exceed what it has. To
determine actual losses, a sequence of adjustments are made.
The first step is determining the values for the resources in
the engagement. The values are returned by the subprogram app,
whose arguments include a single kill matrix for all the attackers
and a single kill matrix for all the defenders. This subsection
concludes by explaining the derivation of these average kill
matrices. The next subsection explains app.

Let 1 <1 < IGA and 1 < J £ IGD. Let 1 € k € natk. The
total potential destruction of enemy type J weapons attributed
to all the type i weapons of attacker k equals

ndef
K(i,j,atk(k),def(2)) # ERS(atk(k),i).

=1

The formula commits no double-counting because the array K takes
into account the allocation of type i1 weapons' fire to the various
types of materiel in the various enemy units. The total potential

=9

destruction of enemy type J weapons attributed to all the
attackers' type 1 weapons equals

nat

Therefore, the average potential destruction of enemy type j
weapons attributed to a type i weapon that is effectively,
actively involved in combat is

k ndef
: 2: K(i,j,atk(k),def(2)) # ERS(atk(k),1i).
=1

natk ndef
2: K(i,j,atk(k),def (L)) # ERS(atk(k),1)
A(1,]) = k=1 =1]

natk
2: ERS(atk(k),1i)
k=1

The matrix A is an average kill matrix for the attackers as a
whole. The defenders' average kill matrix, D, is defined
analogously: for 1 < i < IGD and 1 < j < IGA,

ndef natk
K(i,j,def(k),atk(2)) # ERS(def(k),1)

=1 =1
D(1,§) = ndef g

ERS(def(k),1i)

k=

The matrices A and D are passed to the subprogram app for
use in the antipotential potential method. In that context, a
theoretically rigorous approach would create A and D not by
averaging (as above) but by using artificial weapon types.
Unless

E(Ll,] ,atk(k”*)def(a))

K(i,j,atk(k”),def(L))
and

K(j,i,def(8),atk(k*"))

K(J,1i,def(2),atk(k”))

for every 1 < J < IGD and 1 < & < ndef, it would re-classify
type i weapons belonging to attacker k” and type i weapons
belonging to attacker k”“ as two different types of weapons.
And unless

K(i,j,def(k”),atk(2)) = K(i,J,def(k""),atk(®))

and |

i 5-10

TR ¢
Y

K(j,1,atk(e),def(k”)) = K(J,i,atk(s),def(k"“))

for every 1 < J < IGA and 1 < & < natk, it would re-classify

type i weapons belonging to defender k” and type 1 weapons
belonging to defender k°’ as two different types of weapons.
Corresponding to an increase in the number of different types

of weapons the attackers and defenders had would be an increase
in the number of rows and columns of A and D. The matrices might
grow so large that they required too much main storage and led

to excessive execution times for app.

5.1.2 Determining Weapons' Values

The antipotential potential method finds consistent values
(antipotential potentials) for weapons based on the rates at
which they destroy enemy weapons. It was discovered indepen-
dently by Spudich [6] (also see [7]), by Dare and James [3],
and by Thrall and Howes [5]. Their work was synthesized by
Anderson [2]. The IDAHEX subprogram app determines the value of
each type of weapon in a given engagement. The present version
of app computes these values from the kill matrices A and D,
derived in Section 5.1.1, by Holter's version of the anti-
potential potential method [4].

Recall that A(i,j) is the (average) rate at which a type i
ground-to-ground weapon belonging to the attackers kills the
defenders' type J ground-to-ground weapons, and D(i,j) is the
(average) rate at which a type i ground-to-ground weapon belong-
ing to the defenders kills the attackers' type j ground-to-ground
weapons. Let

m = nggwep(sideA), n = nggwep(sideD).

The matrix A is m x n, and D is n x m. Let wa be the m-vector
whose i-th component is the amount of type 1 weapons held by the
attackers, and let wd be the n-vector whose j-th component is
the amount of type j weapons held by the defenders. Let va be
an m-vector and vd an n-vector. The component va(i) (1 < i < m)
is the value of a type 1 weapon belonging to the attackers, and
vd(j) (1 < j < n) is the value of a type j weapon belonging to
the defenders; the values are derived below.

Some notation is needed. Suppose v and w are real s-vectors,
and M is a real r x s matrix. Then

S

(v, W) = ; v(i) * w(i),
=1

and M ¥ v is the r-vector whose i-th component equals

5=11

S

jz_; M(1,9) % v(J).

(Unless noted otherwise, all vectors are column vectors.) The
transpose of M is denoted "Mt": Mb(1,3) = M(J,1) for every
I'<'d < r and'l = J 2 8.

The antipotential potential method defines va and vd so that,
for some scalar alpha,

n
(1) alpha % va(i) = 2: A(1i,J) % vd(J) for every 1

<1<m
J=1
and, for some scalar delta,
(2) delta x vd(i) = :E: D(i,j) # va(j) for every 1 < 1 < n

J=1

Thus, each weapon's value is proportional to the rate at which
it destroys enemy value. By equation (2),

m
vd(J) = (1/delta) & 2, D(j,k) % va(k).
k=1

Substitute for vd in equation (1), to conclude

(3) (alpha % delta) # va(i)

- E Z A(L,3) # D(§,k) * va(k)

m
2: AD(i,k) # va(k),
k=1

where AD is the matrix product of A and D. Let
lambda = alpha % delta.

Equation (3) says that va is an eigenvector of the matrix AD and
lambda is an eigenvalue. According to the Frobenius Theorem,

if AD is nonnegative and irreducible, then equation (3) has a
solution in which lambda > 0 and va > 0, and such a solution is
unique up to multiplication of va by a positive scalar. Of
course, AD is nonnegative. The matrix AD is "irreducible"

if and only if it is not "ra2ducible". By definition, AD is

9=l2

.-

reducible if and only if re-ordering 1its rows and columns
can put it in the form

where M1 and M2 are square matrices and all the elements in the
upper right-hand block are zero. Permuting the rows and columns
of AD is equivalent to permuting the rows of A and the columns of
D before calculating the product matrix. It follows that the non-
negative matrix AD is reducible if and only if there are subsets
Al and A2 of the set {i: 1 < i1 < m} such that: the number of
elements in A2 exceeds 0 and equals m minus the number of elements
in Al; and if A(i,]) > 0 for some 1 € Al and 1 < J < n, then
D(j,k) = 0 for every k € A2. The condition holds if, for example,
the attackers' weapons of a certain type are invulnerable to the
defenders' fire.! Thrall argues that the weapon values obtained
by the antipotential potential method are meaningful even if AD

is reducible [5].2

Several ways of scaling va and resolving lambda into the
factors alpha and delta have been proposed. Each of the
following sets of assumptions uniquely determines va (determines
how it should be scaled) and alpha and delta:

m n
G20 2: va(d) = 1, ;E; vd(i) = 1 (Dare and James)
i=1 =
m - n
(11) delta =), va(i), alpha = D vd(i)
i=1 i=1

(Thrall and Howes)
(ii1) delta = (va,wa), alpha = {vd,wd>

(Spudich in
TATAWS III)

IPhe matrix AD is reducible if D(#,j) = 0 for some j, which is
necessarily true (because of the allocation of fire) if the
attackers have no type j weapons. IDAHEX circumvents this
problem by working, in effect, with an irreducible submatrix
of AD.

2Hi{s argument posits that the antipotential potential method
finds the weapon values by an iterative procedure starting
with all-positive values. Such is the app procedure.

9=13

|
M—.—__.._a . T —

(iv) alpha = delta, va(kw) = 1 (Holter).

In (iv) kw is an integer in the interval [1,m]. The requirement
va(kw) = 1 merely fixes the scaling of va; choice of kw does not
affect the relative proportions of the elements of va and vd.! :
The present version of app implements (iv). i

For arguments in favor of scaling assumption (iv) and against g
the three alternatives, see [4]. The primary consideration in :
selecting a scaling assumption 1s the reasonableness of the
resulting force ratio:

_ Sva, wa)

e,

It should indicate which side is dominant. The attackers are
said to dominate if the force ratio rises as combat continues.
That happens if and only if the defenders' rate of value loss is
bigger in proportion to their total value than the attackers'--
i.e., the quantity

FR2 = vd, At*wa> / (va, Dt*wd) 1
{vd, wd) —Gfa, wa)
exceeds 1. But %

(Axvd, wa) = <va, wa)

v (D¥va, wd) {vd, wd)

_ alpha * (Kva, wa))2 - :
delta % (vd, wdd) ° I

The first of the two preceding equalities reveals that the value
of FR2 is independent of how va and vd are scaled. Under scaling |
assumption (iv), the force ratio, FR, equals the square root of

FR2 (and therefore exceeds 1 if and only if FR2 exceeds 1). Under
assumptions (i) and (ii), it is possible that FR > 1 while FR2 < 1,

1Some antipotential potentials may be 0. Of course, if va(kw) = O
no rescaling can make va(kw) = 1. IDAHEX's subprogram app chooses
kw to avoid this contradiction if possible. The contradiction is
avoidable unless the only nonnegative solution of equations
(1) and (2) iIs alpha = delta = 0, va = 0, vd = 0.

5-14 :

and vice versa. Under assumption (iii), FR > 1 if and only if
FR2 > 1, but regardless of the force ratio the attackers 1lose
value at the same rate as the defenders:

(va, Dt # wad> = (D#va, wd)
delta % {vd, wd)
(va, wa) #% alpha

(A%vd, wa)

wd, AYswad.
Hence, assumption (iv) appears to be the most suitable.
The subprogram app actually determines the value of every

resource, not just ground-to-ground weapons. Let mm = nrs(sideA)
and nn = nrs(sideD). Let

vali); 1 23 < m
vala(i) =

0 s m< 1< mm

vd(d); i i te n
vald(i) =

0 TN <iduc nn

Since the resources other than ground-to-ground weapons cannot
destroy enemy resources, giving them zero value 1is completely
consistent with the antipotential potential method. Indeed, one
might expand A and D to include all resource types, so A would

have mm rows and nn columns and D would have nn rows and mm columns.
Of course, A(i,j) would be 0 unless i < m, and D(i,j) would be 0
unless 1 < n. The vectors vala and vald defined above would

satisfy equations (1) and (2) using the expanded A and D:

n
alpha # vala(i) = A(i,j) # vald(y)
=1

nn

+ D A(1,3) % vald(§)
J=n+l

for every 1 < 1 < mm, and

m

delta * vald(i) = f"_; D(1,]) * vald(j)

mm
#20BCE Y w vekal)
J=m+1

for every 1 < 1 < nn.

5.1.3 Finding Actual Losses

Section 5.1.1 derives the potential losses of materiel
suffered by each battle unit in the given engagement. Section
5.1.2 derives the values of the resources in the engagement.

Those subsections' notation remains in force. Recall that
ERS(ibu,i) is the effective quantity of type 1 resources belonging
to battle unit ibu that can become actively involved in combat

or combat support. Let

natk i
ersatk(i) = D, ERS(atk(k),1)
k=1 i

for every 1 < i <mm (mm = nrs(sidedA)), and
f
ersdef(i) = ERS(def(k),1)
k=

for every 1 < 1 < nn (nn = nrs(sideD)). The attackers' total
value, fgrd, is defined by

mm

fgrd = ersatk(i) % vala(i).
i=1

The defenders' total value, ggrd, is defined by

nn ;
ggrd = ; ersdef(i) # vald(i).
=1

The engagement's ground force ratio is

FRGRD = fgrd / ggrd.

R A

The calculation of the family of kill matrices
K(%,%,atk(k),def(2)); the average kill matrices, A and D; and
the potential losses, ploss; considered several influences,
listed in Table 5.1. But the values assigned to the relevant
variables by the game design data may not adequately represent
all these influences, necessitating adjustments to ploss. 1In
addition, ploss must be scaled according to the intensity of
combat. Finally, no unit should be assessed losses in excess A
of what it has. i

The first step in the adjustment process is determining

a representative posture for the engagement attackers and one
for the defenders. The value of attacker k is, by definition,

?ﬁ; ERS(atk(k),1i) # vala(i).

Let postA be that posture such that the total value of the i
attackers in it is greatest; as before, an attacker's posture y
is taken to be 40 1f not an attack posture. Let postD be that
posture such that the total value of the defenders in it is
greatest.

The next step compares the attackers' value loss implied by
ploss with the value loss prescribed by the engagement's force
ratio.! The attackers' potential loss of value is

tk
delval = 3?; g ploss(atk(k),i) % vala(i).
k= =

Let temp = frdval(FRGRD,postA). (The function frdval is
explicated in Section 5.4.) If temp < 0, thie step is skipped.
Thus, by appropriately defining the game design data used by
frdval, the game designer can selectively avert this step. If
temp > 0, let

scalar = temp / (delval/ fgrd),
and redefine ploss: for every 1 < k < natk and 1 < irs < nrs(sideA)

ploss(atk(k),irs) «—scalar % ploss(atk(k),irs).

IThis step is basically the same as one 1n IDAGAM's attrition
procedure [1]. Indeed, the basic structure of IDAHEX's
attrition procedure--a scaled Lanchester square process--
originated with IDAGAM.

5-17

Table 5.1. INFLUENCES ON ATTRITION

Influence How Represented
attack vs. defense katk vs. kdef
posture fekar, fckaec, fekdr, fekde
environment fekare, feckace, fekdre, feckdce
barriers barier
defensive preparation prep

That is, the attackers' potential losses are scaled so that the
attackers' total potential loss of value agrees with what is
predicted from the force ratio.

Next, the same operation occurs for the defenders. Let

ndef nn
delval = Z Z ploss(def(k),i) # vald(i).
=1 =1

Let temp = frdval(FRGRD,postD). If temp < 0, this step is skipped.
Otherwise, let

scalar = temp / (delval/ggrd),

and redefine ploss: for every 1 < k < ndef and 1 < irs < nrs(sideD),

ploss(def(k),irs)«— scalar % ploss(def(k),irs).

The final step is scaling ploss according to the intensity
of combat, which depends upon the tactical overlap of the attack-
ing force and the defending force. The tactical overlap is
defined as the depth of the attackers' penetration of the defend-
ers' cell (feba % depth) plus the effective range of the attackers'

fire, which depends upon the combat environment. To be precise,
the tactical overlap is defined as

TO = min {feba % depth + td([environment](loc)), defdepth}.
(Recall that cell loc is the engagement location, and defdepth,
defined in Section 5.1.1, is the depth of the defense.) The
intensity of combat is indicated by

TI = TO / defdepth,

5-18

B

a number between 0 and 1. If the attackers and defenders are
colocated, then feba = 1, and TI = 1. The potential losses are
scaled by TI:

ploss(atk(k),irs)«—TI % ploss(atk(k),irs),
for every 1 < k < natk and 1 < irs < nrs(sideA), and

ploss(def(k),irs) «—TI # ploss(def(k),irs)
for every 1 < k < ndef and 1 < irs < nrs(sideD).

The losses can now be assessed. Usually, a unit can only
lose resources that are actively involved in combat. If
FRGRD > .0001, then for every 1 < k < natk, [resources](atk(k),irs)

is reduced by the quantity

min {ploss(atk(k),irs),
frinv(irs,atk(k)) % [resources](atk(k),irs)}

for every 1 < irs < nrs(sideA). But if FRGRD < .0001, the

attackers lose everything: for every 1 < k < natk
[resources](atk(k),irs)«—o0

for every 1 < irs < nrs(sideA). That eliminates the possibility
of dummy attacks, in which the attackers have no ground-to-ground
weapons available for combat and suffer no losses. If

FRGRD < 10,000, then for every 1 < k < ndef, [resources](def(k),irs)

is reduced by the quantity

min {ploss(def(k),irs),
frinv(irs,def(k)) % [resources](def(k),irs)}

for every 1 < irs < nrs(sideD). If FRGRD > 10,000, then for
every 1 < k < ndef

[resources](def(k),irs) «—0
for every 1 < irs < nrs(sideD).

The preceding assessment procedure may err in the case of
personnel, assuming that dpersr and dpersb give actual personnel
losses associated with actual materiel losses, rather than potential
materiel losses. Inconsistency occurs when and only when the
potential loss of some type of materiel (given by ploss) exceeds
the actual (assessed) loss (which cannot happen if the initial
quantity is 0, for then the potential loss is 0). The inconsistency
is one facet of a larger phenomenon. If the potential loss of
some type of materiel exceeds the actual loss, the force to which

o=19

i

it belongs loses a smaller fraction of its value than it should,

assuming frdval determines that fraction. These inconsistencies

are probably small in magnitude and are always fleeting: 1if the

potential loss of some type of materiel exceeds the actual loss,

then, barring other changes, in the next frame none of it will be
available for the engagement and the potential loss of it will be
0.

5.2 FEBA MOVEMENT

Recall that each engagement has its own FEBA, measured by
the variable feba, whose primary purpose is to determine when
the attackers are allowed to occupy the engagement location.
This subsection explains how any given engagement's feba is up-
dated at the end of a frame to reflect the combat during the
frame. The notation of Section 5.1 remains in force.

The change in feba from the start of the frame to the end
of the frame depends on the attackers' posture, the defenders'
posture, and a force ratio that includes the contribution of
close air support (CAS). Air support is assessed at the start
of every cycle, as Section 6 explains. (A cycle consists of one
or more frames.) The losses of ground-to-ground weapons inflicted
by CAS are recorded for use by the combat procedure. For every
1 < J < nggwep(sideD), let CASATK(j) be the amount of the
defenders' type j weapons destroyed by air strikes made (by side
sideA) in close support of the attackers; of course, if the
attackers received no CAS in the cycle, CASATK(j) = 0. For every
1 < J < nggwep(sideA), let CASDEF(j) be the amount of the attack-
ers' type i1 weapons destroyed by air strikes made (by side sideD)
in close support of the defenders. These losses were determined
at the start of the current cycle, and are assumed to be spread
uniformly over the cycle. Therefore, to find CAS's effect on the
engagement in the frame now ending, CASATK and CASDEF must be
divided by nframe, defined as the number of frames in a cycle.

To find a force ratio that reflects both the ground forces
and the air forces in the engagement, it is necessary to assign
a value to CAS's contribution in a way consistent with the way
the ground values are determined. The antipotential potential
method facilitates this. Recall that the attackers' ground
value is

m

fgrd = 2%-ersatk(i) * vala(i),
i=
where m = nggwep (sideA) (vala(i) = 0 if 1 > m). For every
A si1sm

5=20

"

BRI 5 56 A 1

n

vala(i) = (1/alpha) # 32 A(i,3) * vald(J),
=1

where n = nggwep(sideD). Therefore,

n m
fgrd (1/alpha) # }E; (;E; A(i,J) = ersatk(i)) ¥ vald(J).

The sum in parentheses is side sideD's total potential loss of
type J materiel in the frame. The air value of side sideA in
the engagement, fair, is computed the same way

n
fair = (1/alpha) # 2: (CASATK(j)/ nframe) % vald(j).
J=L

Analogously, the air value of side sideD in the engagement is
defined as

m
gair = (1/delta) = E (CASDEF(j) / nframe) % vala(j).

J=1
The combined ground-air force ratio is

fgrd + fair

S ggrd + gair

Let postA be the attackers' representative posture and postD
the defenders' representative posture; postA and postD are
defined in Section 5.1.3. The function value

vfeba (FRGA, postA, postD, sideA)
is the velocity of an engagement's FEBA when the combined ground-
air force ratio is FRGA, the attackers' representative posture
is postA, the defenders' representative posture is postD, and
the attackers belong to side sideA. (The function vfeba is
explicated in Section 5.4.) Let
temp = vfeba(FRGA,postA,postD,sideA) % tframe.

This number may be negative. If febaO is the value of feba at
the start of the frame, then at the end of the frame

feba = min {max {febaO + temp/depth, 0}, 1}.

5-21

e e —— v

X A, W) S e~

5.3 ELIMINATION AND RETREAT

After the losses in one frame of an engagement are assessed,
each of its attackers and defenders is examined to see if it is
so weak it should be eliminated. The evaluation 1s based on the
resources' "standard values": for s = 1 or s = 2 and
1 <1i< nrs(s), rsvald(i,s) is the "standard value of a side s
type 1 resource on defense". It is found by putting the resource
on defense in a nominal engagement. Let sl = 1 and s2 = 2. For
every 1 < i < nggwep(sl) and 1 < J < nggwep(s2), let

DSTD(1,j) = kdef(i,j,sl)
C nm
¥ aggdef(1i,j,sl) / Y aggdef(i,k,sl)
k=1

where nm = nmat(s2). For every 1 < i < nggwep(s2) and
1 < j < nggwep(sl), let

ASTD(i,j) = katk(i,j,s2)

nm
* aggatk(i,j,s2) / 2. aggatk(i,k,s2) ,
k=1

where nm = nmat(sl). The subprogram app is called with the kill
matrices ASTD and DSTD as arguments; it returns the values of
the side sl resources (on defense), which define rsvald(#,sl).
The values of the side s2 resources (on attack) define
rsvala(%,s2)--"the standard values of side s2 resources on
attack"--which are used to resolve mutual attacks (Section
3.3.4). To compute rsvald(#,s2)--the Blue resources' standard
values on defense--the process is repeated with sl = 2 and

82 = 1L

Let unit 3ibu be an attacker or defender in the engagement.

Let s = 1 if it belongs to Red and s = 2 if it belongs to Blue.
Let n = nrs(s). Let

n
> toe(butype(ibu),i) * rsvald(i,s),
i=1

sv =
n

cv = Y [resources](ibu,i) * rsvald(i,s).
i=1

cv < vanish(butype(ibu)) * sv - 10_5,

D=Eg

3
i
1

then unit ibu 1s eliminated: 1t is assigned the mission whose
only order declares -10 as the desired posture.

If, at the end of a frame, feba > febad in a given engagement,
the defenders are declared defeated, and the combat procedure
calls the tactical subprogram haven to ascertain whether the
defenders have a line of retreat. To be admissible as a direction
of retreat, a cell must be active and adjacent to the engagement
location, and it must satisfy the following conditions: (i) it
contains none of the attackers in the engagement; (ii) if it
contains an active unit belonging to the attackers' side, then it
must also contain an active unit belonging to the defenders' side
and be owned by the defenders' side. If the game design variable
haven.zoe has the value .true., a direction of retreat can also be
blocked by the presence of attackers in cells flanking it. To be
precise, suppose cell i satisfies all the preceding conditions for
admissibility as a direction of retreat. If haven.zoe = .true., in
order to be an admissible direction of retreat, cell i must
satisfy the additional condition: (iii) if cell j is adjacent
to both cell i and the engagement location and it contains one
of the attackers, then cell i must contain an active unit from
the defenders' side and must be owned by the defenders' side.

If the defenders have no admissible direction of retreat,
they are eliminated. If they have an admissible direction of
retreat, haven selects the most desirable one. Each admissible
direction of retreat is scored as follows:

(1) Initially, let its score be 0.

(2) If it is exactly two cells away from a cell containing
one of the attackers, let its score be -1.

(3) If it is adjacent to a cell (other than the engagement
location) containing one of the attackers, let its
score be =2.

(4) If it is owned by the attackers' side, decrease its 3
sScore by 5.

(5) If it is owned by the defenders' side and contains an
activg unit from their side, increase its score
by 1.9,

(6)y Let s = 1 1f the defenders are Red and s = 2 if they
are Blue. Let k = pthome(s). If the cell is the
k-th rim cell of the engagement location increase :
L6S Secore by <UL, 4

The "rim cells" of a given cell are the cells adjacent to it.
They are ordered by number, from lowest to highest. For example,

5=23

Sl i

in Figure 3.3 (page 3-6), the first rim cell of cell 6 is cell
2, the second i1s cell 3, the third is cell 5, the fourth is cell
7, the fifth is cell 9, and the sixth is cell 10; the fourth rim
cell of cell 1 is cell 2, the sixth is cell 5, and the other rim
cells of cell 1 do not exist; the fifth rim cell of cell 14 1is
cell 17.

Let cell r be the admissible direction of retreat with the
highest score; ties are broken by minimizing r. Each defender
that is not already disengaging is forced to disengage imme-
diately toward cell r: 1t 1s assigned the active order

desired objective = r,
desired posture = pmapup (pmapup (pmapup (pmapup(p)))),
where p is its current posture (a hold posture). Once all the
defenders are disengaging, the attackers are allowed to occupy
the engagement location, as Section 3.3.3 explains.

5.4 THE COMBAT FUNCTIONS

This subsection explains the functions frinv, zrarea, freff,
prep, frdval, and vfeba, which the subprogram combat invokes.
They are piecewise-affine (loosely speaking, piecewise-linear)
functions mapping the real line into the real line. Such a
function is specified by listing points in its domain--x(1),
x(2),...,x(n)--and its value at each of these points--y(1),
¥(2) 5.0 s¥(n). By regquirement, x(1) < x(2) €...< x(n). The
function pafgen evaluates a piecewise-affine function. Let w
be a real number. If w < x(1), then

pafgen(w,y,x) = y(1).
If w > x(n), then

pafgen(w,y,x) = y(n).
Suppose x(1) < w < x(n). Let
11 = max {8: (1) < w, 1 < < n},
12 = min {4: (1) > w, 1 € 1 < n}.
Then
pafgen(w,y,x) =

y(11) + ey EI - v (y(12) - y(i1)),

(The IDAHEX function pafgen actually has an additional argument--
n, the number of components of the vector x or y.)

5-24

A similar function, paf, is used to evaluate a piecewise-
affine function whose domain 1is the nonnegative reals. Such a
function is specified by listing its value at 0, which is denoted
y0; listing points in its domain--x(1),...,x(n); and listing 1its
values at these points--y(1l),...,y(n). By requirement,

0 < x(1) <...< x(n). Let w be a real number. Define the vector
ylong, with n+l components, as follows:

ylong(1l) yo,

ylong(i+l) y(1) for 1 < 1 < n.

Define the vector xlong, with n+l components, as follows:

xlong(l) = x0,
xlong(itl) = x(1) for 1 < 1 < n.
Then
paf(w,y0,y,x) = pafgen(w,ylong,xlong).

(The IDAHEX function paf actually has an additional argument--
n, the number of components of the vector x.)

5.4.1 Resource Availability for Combat - frinv

The function frinv, as called by the combat procedure, has
two essential arguments: a unit number, ibu; and a resource
type, irsarg. If the unit's resources of type irsarg are equip-
ment (weapons or transport), frinv returns the fraction of them
that are available for combat; equipment is available for combat
if and only if its requirements for support and protection are
met. If the type irsarg resources are support resources
(supplies or personnel); frinv returns the fraction of them that
are available and needed. The neutral term "fractional involve-
ment® designates the number returned in either case. 1In the
process of determining the fractional involvement of type irsarg
resources, frinv determines the fractional involvement of every
type of resources in unit ibu. Let s = 1 if unit ibu is Red
and s = 2 if it is Blue. Let fi(irs) be the fractional involve-
ment of type irs resources in unit ibu for every 1 < irs < nrs(s).
The sequel explains how it is determined.

A unit loaded on other units cannot participate in combat:
if unit ibu 1is a passenger in a stacked task force--i.e., if the
task force's transport mode is positive and trptel(butype(ibu))
equals it--then fi(i) = 0.

Henceforth, assume unit ibu is not a passenger. Given that
frinv has been called by the combat procedure, unit ibu must be

o=E€5

R A e s e e A P SO SN 0

B T T — Y

o m———ce

engaged. Other units from its side may be participating in the
same engagement; frinv assumes that all such units with the same
location as unit ibu perform as an integral whole, sharing their
support and using their weapons in concert. Let L be the set

of every unit that is from the same side, participating in the
same engagement, and located in the same cell as unit ibu. Delete
from L every unit that 1s a passenger in a stacked task force.

For 1 < irs < nrs(s), define amount(irs) as the total quantity

of type irs resources held by the force L:

amount (irs) = 2: [resourcesj(i,1irs).
ieL

Let

nsp = nss(s) + npers(s),

the number of types of side s support resources. Suppose

nsp = 0. Then fi is determined solely by considerations of
equipment protection. The game design variable pg organizes
equipment into protection groups, numbered 1, 2,...; pg(i,s) is
the protection group to which type i equipment of side s belongs.
At least one type of the side's ground-to-ground weapons should
belong to protection group 1. Any equipment in protection group
1 can protect itself and equipment in higher protection groups.
Equipment in a protection group higher than 1 cannot protect it-
self, but can protect equipment in protection groups higher than
its own. The quantity of type 1 equipment that a unit-quantity
of type j equipment can protect, provided pg(j) < pg(i), is
prot(i,j,s) by definition. Equipment other than ground-to-
ground weapons, although it may conceivably belong to protection
group 1 and be able to protect itself, is assumed to be unable
to protect other equipment--i.e., prot(i,j,s) is assumed to be

0 if j > nggwep(s). In the present case, where support 1s
ignored, fi(i) = 1 for every i such that pg(i,s) = 1. The
fractional involvement of equipment in higher protection groups,
if any, is determined inductively. Suppose that for some

k < max {pg(i,s); 1 < 1 < nequip(s)}.
fi(i) has been determined for every i in the set
I={1: pg{i,8) £k, 1% 1 ¢ nequiplsli.

For each j such that pg(j,s) = k + 1, let

QP(§) = 2 prot(J,1,s) » £1(1) ¥ amount(1),

the quantity of type J equipment that can be protected. Set

5-26

Ba

o

b

T

_min {QP(Jj), amount(j)}
' amount (J)

£1C3)

That completes the induction step. If possible k is incremented
by 1 and the step is repeated.

Typically, small arms belong to protection group 1, tanks
to group 2, artillery to group 3, and ground-to-air weapons and
transport to group 4. Notice that protecting one type of equip-
ment does not reduce a weapon's ability to protect other types
of equipment. One might think of the equipment in protection
group 1 as being deployed near the front of the formation, the
equipment in protection group 2 deployed behind it, and so on,
with the equipment in each protection group acting as a screen
for the equipment deployed behind it.

Henceforth, assume that nsp > 0. To determine fi(i) for
every 1 < i < nrs(s), frinv implicitly allocates support to the
various types of resources. The allocation is reasonable, but
not optimal: it does not maximize the force L's value in combat.
It should not; the allocation is partly prescriptive. It is
designed to field a balanced combat force--one in line with
stdtgt(#,s), with no unprotected equipment.

Let
neq = nequip(s).
For every 1 < k < nsp let
suppt (k) = amount(neq+k),
the total quantity of type k support held by the units in L.
If personnel are played--i.e., if npers(s) > O--the quantities
of personnel available to support materiel must be reduced by

overhead requirements:

suppt (k) «— suppt (k) - 2: ppoh(k,butype(i))
ieL

for every 1 < k < npers(s). (ppoh(k,j) is defined as the over-

head of type k personnel in a type j battle unit--a quantity

that is independent of the unit's actual size.) |
Let

0 TR

1,
10

2%

nrs(l) if s

aiag

e

The game design datum spdd(k,i0+irs) is the demand of a unit-
quantity of side s type irs resources (1 < irs < nrs(s)) for
type k support (1 < k < nsp).! The IDAHEX computer program
assumes that supplies' demand for supplies is 0 and personnel's
demand for personnel is 0. The total demand of the force's
resources of type irs for support of type k is computed as

dd(k) = amount(irs) % spdd(k,i0+irs).

Let ss(k) be the quantity of type k support allocated to the
force's type irs resources. For every 1 < k < nsp, let

sigma(k) = paf (ss(k)/dd(k), frinv.fo(k,i0+irs),
frinv. f(k,10+irs,*), frinv.x(s,%))

if dd(k) > 0, and let sigma(k) = 1 if not. The fractional
involvement of the force's type irs resources, fi(irs), is
given by

fi(irs) = min {sigma(k); 1 < k < nsp}.
Thus, allocation of support to each type of resources determines

their fractional involvement. To be sure that no more of any
type of support is allocated than is available, the vector alloc

is used to keep track of the allocation; alloc(k), for 1 < k < nsp,

is the total quantity of type k support allocated. Initially,
altoe = Q.

First, personnel are allocated to supplies. For each
1 < kpp < npers(s), the total demand for type kpp personnel by
the force's supplies is

nss(s)
Q = suppt (kss) # spdd(nss(s)+kpp, 10+neq+kss);
kss=1

the demand of type kss supplies alone is
dd = suppt(kss) # spdd(nss(s)+kpp, i0+neq+kss)

(1 < kss < nss(s)); the allocation of type kpp personnel to type
kss supplies is chosen as

min {dd, dd % (suppt(kpp) / Q)},

lEquipment 's requirement for support normally should include the
personnel needed to operate it in combat and, in addition, per-
sonnel needed to keep it operational (by maintenance and repair,
for example). With respect to the latter, the game designer must
avoid counting personnel requirements twice--once in resources'
requirements (spdd) and once in overhead (ppoh).

5-28

and alloc(nss(s)+kpp) is increased by this quantity. As
explained above, the allocation determines fi(kss). Only that
fraction of type kss supplies are available for allocation;
redefine suppt(kss) for every 1 < kss < nss(s):

suppt (kss) «— fi(kss) # suppt(kss).

Next, supplies are allocated to personnel, but fi(irs) is
set to 1 for each nmat(s) < irs < nrs(s) whether or not the
allocation satisfies personnel's demand. Record the allocation
of supplies:

alloc(kss) «—alloc(kss) +

npers(s)
amount (nmat(s)+kpp) % spdd(kss,iO0+nmat(s)+kpp).

kpp=1
(If nss(s) = 0 or npers(s) = 0, both preceding steps are vacuous.)
Next, support is allocated to equipment. Let
I = {leq: stdtgt(leqg,s) » 0, 1 < leq < neg}.

If 1 < neq but 1 ¢ I, fi(1i) is set to 0 and never changed. If

i ¢ I and amount(i) = 0, fi(i) is set to 1 and never changed.
Initially, fi(i) = O for every other 1 € I. It is increased in
small increments by increasing the support allocated to each type
of equipment in the set I. Let rgain be a small positive number--
.01, for example. At the start of any given iteration of the
algorithm, let

Q(J) = £i(j) # amount(J)

for every j. (fi may have been redefined in prior iterations.)
The iteration consists of performing the following sequence of
operations for each i € I for which amount(i) > 0.

Step 1: If pg(i,s) = 1, let gp = +» and go to Step 2.

Let P be the set of every 7 ¢ I such that pg(j,s) < pg(i,s).
Let

qp = Z prot(i,j,s) * q(J),
JeP :

the quantity of type i1 equipment that can be protected by
the equipment presently available for combat.

Step 2: Let
qr = rgain % stdtgt(i,s),

5-29

A A e A B N SR T 1 it e T4l i i . T T

the amount by which q(i) would have to increase in order
to increase

alx) f jatdtagtld, a)

by the amount rgain. Let
gadd = min {qgp, qr}.

For every 1 < ksp < nsp, let REQ(ksp) be the amount of
additional type ksp support that must be allocated to
type i equipment to increase q(i) by the amount gadd--
i.e., to increase fi(i) by the amount

gadd / amount(i).
If

alloc(ksp) + REQ(ksp) < suppt(ksp)

for every 1 < ksp < nsp, then allocate the support and
update fi and q(i):

alloc(ksp)«—alloc(ksp) + REQ(ksp) for every 1 < ksp < nsp,
fi(i)«—fi(1i) + gadd / amount(i),
q(i) «—fi(1) % amount(1).

If not, fi(i) cannot be increased.

Thus, the algorithm tends to field a balanced combat
force--i.e., it strives to equalize

fi(i) % amount (i)
stdtgt(i,s)

over every 1 € I and never commits unprotected equipment to
combat.

Support not actually needed by resources for combat--i.e.,
; unallocated support--should not be actively involved in combat
(and subject to enemy fire). The final step reduces the
fractional involvement of support that is in surplus: for
every neq < irs < nrs(s) such that amount(irs) > 0, fi(irs) is
redefined as

min {fi(irs), alloc(irs-neq) / amount(irs)}.
The preceding explains the derivation of frinv(irsarg,ibu)

in the case where unit ibu is engaged; that case always applies
when frinv is called by the combat procedure. The derivation

5-30

£
i
3

L

actually involves finding the fractional involvement of resources
in a set of units, L, that share their support and use their
weapons in concert. Sometimes, for a player's information, it

is useful to find the fractional involvement for a specified
force L, rather than a force inferred by frinv from the argument
ibu. The IDAHEX entry point frinv actually has two additional
arguments: a vector, list; and an integer, nlist. If ibu < O,
frinv constructs the set L from the vector list, whose first nlist
elements must be the identification numbers of friendly battle
units; frinv then proceeds as above to find the fractional
involvement of resources in the force L.

e o e L usna

5.4.2 Area of Area of Influence - zrarea

P P ———

The function value zrarea(ibu) is the area of the area of
influence of battle unit ibu. It is 0 if the unit is inactive.
Assume unit ibu is active. Let s = 1 if it is Red and s = 2 if
it is Blue. Its current value, measured in terms of the standard
resource values, is

nrs(s)
cv = rsvald(irs,s) # [resources](ibu,irs).
irs=1

Its value at toe strength would be

nrs(s)
rsvald(irs,s) #% toe(butype(ibu),irs).

SV
irs=1

The size of its area of influence is assumed to be proportional
to the size at toe strength. The latter depends upon the unit's
type and posture class. Let pc be the unit's posture class:

zrarea(ibu) = (cv/sv) * aisize(butype(ibu),pc).

5.4.3 Battle Unit Effectiveness - freff

A battle unit's effectiveness may depend upon the density
of friendly forces in 1ts location. If the density is too low,
the friendly force is vulnerable to infiltration and turning
maneuvers. If the density is too high, the friendly force is
more vulnerable to area fire, and congestion of the trafficable
areas reduces che maneuver battalions' tactical mobility. In
many models the degradation of effectiveness due to high density
is implemented indirectly by a rule limiting the number of units
located in the same cell. Since units may vary greatly in size,
especially late in the game, IDAHEX uses a more flexible method.

5=31

B e o A R 1 AT it i el LA AT S 5 S T e =

Suppose the location of unit ibu, an active battle unit,
is cell i. Let F be the set of every active, friendly unit
located in cell i, identified by number. The total area of
their areas of invluence 1is

A = ; zrarea(j).
je

The friendly force density is A divided by the cell area; let

d equal this quotient. Let s = 1 if the units in F are Red and
s = 2 if they are Blue. The fractional effectiveness of unit
ibu, or any unit in F, 1s

freff(ibu) = paf (d, freff.fo(s), freff.f(s,*%), freff.z(s,*)).
Normally, this is a number in the interval [0,1]. It can exceed
1 only if freff.fo(s) > 1 or freff.f(s,j) > 1 for some J.

5.4.4 Defensive Preparation - prep

The vulnerability of materiel varies with the time its
battle unit has had to prepare a defense. Suppose s = 1 or
s = 2, and suppose 1 < 1 < nmat(s). The function value
prep(i,s,h) is the factor the combat procedure applies to type
i materiel belonging to a side s unit whose defense preparation
time equals h.

prep(i,s,h) = pafgen (h, prep.f(i,s,%), prep.x(s,#*)).
Because of peculiarities in the way preparation time is
calculated, h may be negative. The game designer should allow
for this possibility by choosing

prep.ax(s,l) € 0.

5.4.5 Fraction of Value Lost - frdval

This function finds the fraction of value that a side in
combat loses given the side's posture and the engagement's
ground force ratio. Let post be the side's posture and FR the
force ratio. Let k = poff(post). Let

temp = paf (FR, frdval.fOatk(k),
frdval. fatk(k,*), frdval.xz)

if post > U0 (the side is the attacker in the engagement), and

.-

temp = paf (FR, frdval.fodef(k),
frdval. fdef(k,*), frdval.zx)

if post < 40 (the side is the defender). The number temp gives
the fraction of value lost in one unit of time, but the combat
procedure needs to know the fraction lost in one frame. There-
fore,

1 - (1 - temp)**tframe; temp > O
frdval (FR, post) =
temp; temp < 0.

The combat procedure, which calls frdval, interprets
frdval(FR,post) < 0 as a signal that no prediction of the
side's losses should be made from the force ratio and therefore
that the side's losses should not be scaled according to it.

5.4.6 FEBA Velocity - vfeba

The function value vfeba (FR, pa, pd, sa) is the velocity
of the FEBA (measured by depth % feba) in an engagement in
which the force ratio is FR, the attackers are from side sa,
the attackers are in posture pa, and the defenders are in
posture pd. Let

poff(pa) 5 Lsa =
2.

ka =

poff(pa) + vfeba.npa; sa

The offset vfeba.npa is defined by the entry point vfebalO. If

the number of attack postures is large (i.e., if npost(4) is close
to 10), it may be necessary to increase vfeba.npa and the dimen-
sions of certain variables declared by vfebaO. In that event,
IDAHEX will advise the game designer with a message in file 51
(which is described in Section 8). Let kd = poff(pd). Then

vfeba (FR, pa, pd, sa) =
paf (FR, vfeba.f0(ka,kd), vfeba.f(ka,kd,%), vfeba.fr).

This number may be negative.

In defining vfeba.f0 and vfeba.f the game designer should
keep in mind that the attackers have already been charged with
the time needed to go from their locations to the engagement
location, and if they occupy the engagement location and then
leave, they will be charged with the time needed to go from the
engagement location to their new locations; the movement delay
takes care of unopposed movement. The feba velocity is used
to determine an additional delay caused by opposition. Conse-

=33

o il

quently, if the force ratio is very high, the feba velocity
should be very high; it should not be limited by the unopposed

movement rate.

=

5=34

———

.

= e e e e o

6. AIR SUPPORT

At the start of every cycle (including t = tinit), each
player may enter air strikes. IDAHEX contains no air warfare
model and therefore has no way of ascertaining what air assets
a side can allocate against enemy ground forces. It assumes
that any air strike a player enters is within his side's capa-
bility. In practice, the game designer adopts either of two
solutions: he gives each player a list of the air assets
available in each cycle for use against enemy ground forces,
or he runs an air warfare model concurrently with IDAHEX. The
first solution is suitable when the course of the air war is
easy to predict--usually because one side clearly dominates.

Suppose the side s player (s = 1 or s = 2) is inputting
an air strike. His first line of input tells IDAHEX the "target
cell" and the "strike role". The target cell is the cell toward
which the strike is directed. The strike role is either close
air support (CAS) or air interdiction of battle units. If the
strike role is interdiction, the player's next input line
defines the four-component vector asprty, which is a 1list of
the four positive posture classes in order of priority. The
next input line sets ascomp; ascomp(i) is the number of type i
aircraft participating in the strike (1 < i < nactyp(s)).

Suppose the air strike role is CAS. If there is no engage-
ment whose location is the target cell, the player is warned
and no strike occurs. If such an engagement exists, let V be
the set of every enemy unit in the engagement, identified by
unit number. If the enemy units are the defenders in the
engagement, and if at least one of them is in a hold posture,
then delete from V every unit in a disengagement posture.

|
3
|
|
!
3
:
:
:
1
]
;

On the other hand, suppose the strike role is interdiction.

Let k be the smallest integer such that asprty(k) equals the
posture class of some active enemy unit located in the target
cell. Thus, asprty(k) is the highest priority posture class
that appears among enemy units in the target cell. Let pc =
asprty(k). Define V as the set of every active enemy unit,
identified by unit number, whose location is the target cell
and posture class is pc. These units are the targets of

6-1

AD=A050 768

INSTITUTE FOR DEFENSE ANALYSES ARLINGTON VA PROGRAM ==ETC F/6 15/7
IDAHEX: A MANEUVER-ORIENTED MODEL OF CONVENTIONAL LAND WARFARE.==ETC(U)

NOV 76 P OLSEN
P=1221-VOL=-2

SBIE~AD-ES00 016

NL

END
FiI:IA‘:EI D
4 =78
DoC

the strike. Behind this definition of V is an implicit assump-
tion that the strike aircraft can only distinguish enemy units
from each other by location (cell) and posture class.

Let
nw = nagwep(s).

For every 1 < iw < nw, the amount of type iw air-to-ground
weapons in the strike is

n
agwep(iw) = 2: agload(i,iw,s) % ascomp(i)
i=1

where n = nactyp(s). Let v =3 - s. (Side v is the enemy of
side s.) For 1 < j < nmat(v), the amount of type j materiel
in the target battle units 1is

grdrs(j) = 2: [resources](i,j).
ieV

Let env be the environment type of the target cell: if the
target cell is cell i,

env = [environment](i).

Choose an air-to-ground weapon type, iw; i < iw < nw. For every
1 < J < nmat(v), define

5 aagatk(iw,j,s) if the strike role is CAS
and side s is the engagement
attacker,

aagde f(iw,j,s) 4if the strike role is CAS
and side s is the engagement
aag(j) = defender,

aagred(iw,j,pc) if the strike role is
interdiction and s = 1

aagblu(iw,j,pc) if the strike role is
" interdiction and s = 2

(Recall that pc is the posture class of the target battle
units, assuming the strike role is interdiction.) For
1 <J < nmat(j), the fraction of fire of type iw weapons

6=2

allocated to the target units' type j materiel is computed as

¥ aag(j) % (grdrs(j) / stdtgt(j,v))
alpha(J) = %:aag%ii * Egrdrs%iS b atdtgtzi,vii i

This method of allocating fire is analogous to the method used
in ground combat.

Choose ibu € V and 1 < J < nmat(v). The goal is to determine
the potential destruction of type j materiel in unit ibu by the
type iw weapons in the strike, denoted K(iw,j,ibu). In parallel
with the ground combat attrition procedure, this quantity is
found by taking a basic kill rate and applying factors that each
adjust either the shooting weapon's lethality or the target
materiel's vulnerability. The basic kill rate depends upon the
game design datum kag(iw,j,s) and the allocation of fire. The
adjustment factors depend upon the posture class of unit ibu--
denoted by pc--and the target cell environment. By definition,

K(iw,J,ibu) = kag(iw,j,s) # feagrp(iw,s,pc) % feagep(Jj,v,pc)
feagre(lw,s,env) % feagece(Jj,v,env)
* Q,

where Q is the amount of fire from type iw weapons allocated to
type j materiel in unit ibu:

Q = (alpha(j) # ([resources](ibu,j) / grdrs(j))) ¥ agwep(iw).
The total potential loss of type j materiel by all the

target units is
nw

12; K(iw,j,1)
€ iw=1

If the strike role is CAS and j < nggwep(v), this quantity is
recorded in the array casfx for later use by the combat procedure.

Choose ibu € V and 1 < jJ < nmat(v). The actual loss of type
j materiel by unit ibu is computed as follows. Initially, set
1 iw = 1. Let

L = min {K(iw,j,ibu), [resources](ibu,j)},
and reduce the unit's stocks of type j materiel by that quantity:

[resources](ibu,j) «— [resources](ibu,j) - L.

=3

' This loss of type j materiel implies a loss of personnel. If
: unit ibu is Red, then for each 1 < k < npers(l), the number of
type k personnel in the unit is reduced by the quantity

L min {dgpred(k,iw,j) * L, [resources](ibu,nmat(1)+k)}.

If unit ibu is Blue, then for each 1 < k < npers(2), the number
of type k personnel in the unit is reduced by the quantity

min {dgpblu(k,iw,j) * L, [resources](ibu,nmat(2)+k)}.

If iw < nw, iw is incremented by 1 and the process (starting
with the definition of L) is repeated. The preceding is an
efficient way of computing the attrition, but leads to an
unfortunate anomaly: the way the air-to-ground weapons are
ordered can affect personnel losses. The anomaly arises only
when the battle unit has some type j materiel but so little
that

nw
K(iw,J,ibu) > [resources](ibu,j)

iw=1

(before [resources](ibu,j) is reduced). Losses of materiel
are never affected by the ordering of air-to-ground weapons.

WA

——

T A A RIS WSR—

7. SUPPLIES CONSUMPTION

Every unit's consumption of supplies is assessed at the
end of each frame, immediately after all engagements are
evaluated and the resulting attrition is assessed. An inactive
unit (one in posture class -1 or Q) consumes no supplies; there-
fore, the rest of this section applies only to active units.

Let s = 1 or s = 2. If nss(s) = 0--side s supplies are
not played--then nothing is done. Otherwise, consumption of
supplies by side s battle units in a given frame is determined
as follows:

Let unit ibu be a side s battle unit. Let 1 < k < nss(s).
Denote the unit's demand for type k supplies by D(ibu,k).
Suppose the unit is not engaged or it 1s a passenger in a stacked
task force. In the latter &ase, let pc = 1; otherwise let pc
be its posture class. If s = 1, D(ibu,k) is defined by

nrs(1)

D(ibu,k) = tframe % ssvner(k,irs,pc) % [resources](ibu,irs).
irs=1

I g =
nrs(2)

D(ibu,k) = tframe % ssvneb(k,irs,pc) % [resources](ibu,irs).
irs=1

Thus, every resource demands supplies according to its unit's
posture class, and the unit's demand is the sum of its resources'
demands. Alternatively, suppose unit ibu is engaged and is not
a passenger in a stacked task force. Let pp be its posture, and
let

pp - 19; pp > U0
pp - 93 pp < H40.
Let

index = mapps(s,p).

7-1

For every 1 < irs < nrs(s), let
lambda(irs) = frinv(irs,ibu),

the fraction of the unit's resources of type irs that are actively
involved in combat. Then

nrs(s)
D(ibu,k) = tframe # ssvact(k,irs,index)
irs=1

(lambda(irs) # [resources](ibu,irs))

nrs(s)
+ % tframe ¥ ssvres(k,irs,index)
irs=1l

(1 - lambda(irs)) * [resources](ibu,irs).

Because the rate of supplies consumption might depend strongly on
the attack or defense posture, the game design variables ssvact
and ssvres can distinguish different attack or defense postures.
The variable mapps, which induces the third subscript of sswvact
and ssvres, can be used to consolidate attack postures (40-49)

or defense postures (10-29), thereby reducing the storage require-
ments of sswvact and ssvres.

The preceding defines any battle unit's demands for
supplies. Again choose a side s battle unit, unit ibu. Suppose
it does not belong to a task force. Let 1 < k < nss(s). The
unit's present stock of type k supplies, stk, is given by

stk = [resources](ibu,nequip(s)+k).
The quantity of type k supplies it consumes is computed as
C = min {D(ibu,k), stk}

(it cannot consume more than it has), and therefore its stock
of type k supplies at the end of the frame is redefined as
follows:

g [resources](ibu,nequip(s)+k) «——stk - C.

: Alternatively, suppose unit ibu is an element of a task
force (possibly the only element). Let TF be the set of every
unit in the task force, identified by unit number. Choose

1l ¢« k < nss(s). The goal is to determine how much of the type

k supplies held by unit ibu are consumed in the frame. The task
force's total demand for type k supplies is

7-2

e

Sl i

dd = 2 D(1,k).
1eTF

Its total stock of type k supplies is

stk = :E: [resources](i,nequip(s)+k).
ie TF

The amount of type k supplies consumed by the task force is
computed as

C = min {dd, stk}-

Each element of the task force is assessed the same fraction of
its stock of type k supplies:

[resources](i,nequip(s)+k)

§£§€i—9 # [resources](i,nequip(s)+k)
for every 1 ¢ TF and, 1n particular, for i1 = ibu. Thus,
the elements of a task force share their supplies.

After assessing supplies consumption by a task force in
a movement posture, IDAHEX ascertains whether the task force has
exhausted its supplies of any type (assuming nss(s) > 0). If
so, the task force might lack supplies it needs in order to move
and should not be allowed to change location. IDAHEX finds what
its movement delay would be if it were just starting its move-
ment, in its present posture. If that delay equals or exceeds
10%¥%¥9, the task force's mission is changed to a single order
specifying 10 as the desired posture and its present location
as the desired objective--which causes the task force to abort
its movement and attempt to revert to a hold posture in its
present location.

=3

8. COMMUNICATING WITH THE IDAHEX COMPUTER PROGRAM

IDAHEX uses the following files:

filel0 - Red player input

filell - Red player output

file20 - Blue player input

file2l - Blue player output

file50 - game design (input) data
file51 - game designer's output file
file60 - game design (input) data

The program references a file by using its number--10, 11, 20,
21, 50, 51, or 60--as the data set reference number in a FORTRAN
formatted read or write statement or by using its name (filelO,
filell, etc.) as the file name in a PL/I get or put statement.

File 50 contains all the game design data except t'ie values
of envmap, rtemap, and barmap. File 60 contains the data that
define envmap, rtemap, and barmap in each cycle. The format and
sequence of the data in file 50 and file 60 are explained in
Section 9. File 51 contains IDAHEX's interpretation of the data
in file 50, and warning or error messages if IDAHEX questions
the correctness of the data. An error message indicates that
IDAHEX was unable to interpret the input data. It may continue
processing the game design data, but it will terminate execution
before the players can enter air strike specifications or commands.
A warning draws the game designer's attention to a possible error
in the design data; execution continues. If execution is allowed
to proceed and a game is played, file 51 also contains a history
of the game.

The game design datum nprint indicates the number of distinct
data sets that are being used. If nprint = 1, IDAHEX expects
files 50, 10, and 20 to be associated with the same data set
(usually card reader input) and all the output files to be
associated with the same data set (usually high speed printer
output). If nprint = 2, IDAHEX expects file 50 to be associated
with a different data set than files 10 and 20, which it expects to
be associated with the same data set, and it expects file 51 to
be associated with a different data set than files 11 and 21,
which it expects to be associated with the same data set. 1If
nprint = 3, IDAHEX expects every file to be associated with a

8-1

different data set. No matter what the value of nprint, file
60 must be associated with a distinct data set for which the
rewind operation is permitted. Normally, nprint = 1 means that
IDAHEX is being used in a batch processing mode; nprint = 2
means it is being used interactively with one terminal, which
the players share; and nprint = 3 means it is being used with
two terminals, one for the Red player and one for the Blue
player.

By using the save command (see Volume 3, Section 4), a
player can save the game situation in an unformatted, rewindable
file that he designates by number. At least one file should be
set aside for this purpose. It 1is wise to set aside more than
one because, if not, every save will necessarily overwrite the
previous one.

The file associlations must be in effect when IDAHEX is
invoked. The following MULTICS commands illustrate how the
file associations are established when IDAHEX is to be played
from exactly one terminal (mprint = 1).

io attach filel0 syn_ user_input

io attach filell syn_ user_output

io attach file20 syn_ user_input

io attach file2l syn_ user_output

1o attach file50 vfile_ Sinai_dd

io attach file60 vfile_ Sinai terrain_maps
io attach file90 vfile_ Sinai_dd_unformatted
io attach file91l vfile_ Sinai_game.l

io attach file92 vfile_ Sinai_game.?2

io attach file93 vfile_ Sinai game.3
set_cc filebl -on

set_ce filell —on

set _cc file2l -on

line length 115

The files 90, 91, 92, and 93 identified above are intended as
places to save the game situation. The first character of every
line output to files 11, 21, and 51 is a carriage control char-
acter; hence, the files' carriage control attribute is set to "on".

The IDAHEX main program is named cgcm. Invoking it invokes
IDAHEX.

The game design variable Ziprint governs the output's level
of detail. If <print > 1, file 51 will contain a complete
description of every significant change in a battle unit's
status. If Zprint > 5, the players will be informed of every
significant change in a unit's status. If Zprint > 7, file 51
will contain a complete description of every change in a unit's

8-2

i o e
1
TR A

-

status. File 51 will always contain a detailed description

of every engagement. If <print > 15, the players will receive
the same description. If Zprint < 15, they will not be informed
of an engagement's average kill matrices (denoted A and D in
Sections 5.1.1 and 5.1.2). If iprint < 9, they will not be
informed of the values of the attackers' and defenders'

weapons (Section 5.1.2). If iprint < 5, they will not be
informed of the losses in the engagement. A value of 9 is

generally best.

8-3

s R T

9. GAME DESIGN DATA INPUT

The game design data are read from files 50 and 60 in a
sequence of groups. Section 9.1 describes the groups of data
in the order in which they are read. The description of a group
consists of: (1) a line listing the variables whose values the
group fixes and, on the right-hand-side, the name of the IDAHEX
entry point that reads the group; and (2) FORTRAN statements
indicating how the group is read and therefore the correct order
of the data within the group. The FORTRAN statements do not
correspond exactly to IDAHEX source code, and although generally
written according to MULTICS FORTRAN language conventions, are
not necessarily valid source code for any compiler; their sole
purpose is to explain how the contents of files 50 and 60 fix
the values of the game design variables. Contrary to FORTRAN
convention, the FORTRAN code in this section assumes that the
statements in a do loop are not executed even once if the lower
bound specified in the do statement exceeds the upper bound.

Section 9.2 contains a complete example of files 50 and 60
as a sequence of lines representing card images. The lines are
grouped to correspond to the data groups of Section 9.1. The
first line of each group ends with the code number used for the
group in Section 9.1 (the number at the start of the line naming
the game design variables and the entry point).

9.1 SEQUENCE AND FORMAT

Game design variables' names are not italicized in this
section. The only variables mentioned that are not game design
variables are do loop indices and the following: nnsyl (fixed by
cgem); vtemp, wtemp, i, j, k, side, itemp, name, jtemp, temp, old,
kap (defined in cmbt0), kdp (defined in cmbtO), nequip, nmat, nrs.

In accordance with the rest of the manual, some variables'
names contain two components--for example, frinv.f, frinv.x,
freff.f. Such a variable is referenced in only one subprogram;
it takes the first component of its name from the subprogram's
name. In the actual IDAHEX source program, the variable's name
is simply the second component of the two-component name used to
identify it in this manual.

B ——

B

e S N

The following format statements are cited by many read

statements in this subsection:
2 format (8110)
3 format (8f10.0)
%.7.7 Eile 50
1. iperint, nprint
read(50,2) iprint, nprint

2. tinit, tend, tframe, tcycle, tpd, delta
read(50,3) tinit, tend, tframe, tcycle, tpd, delta

3. ncells, nrankl
read(50,2) rcells, nrankl

4. ename0

1 read(50,4) i, (name(k), k = 1, nnsyl)
4 format (i5,5x,6a8)

if (1.1e.0) go to 6

do 5 k = 1, nmsyl

ename0(i,k) = name(k)

5 continue

go to 1
6 continue

5. nenv

read(50,2) nenv

6. ename

do 5 1 =1, nenv)
read(50,4) (ename(i,j), j = 1, nnsyl)
4 format (6a8)
5 continue

cgem

timeO

net0

net0

net0

net0

-
2
8
4
v

7. [basic_env]

1 read(50,2) i, itemp
if (i.1le.0) go to 5
[basic_env](i) = itemp
go to 1

5 continue

8. rname0

1 read(50,4) i, (name(k), k = 1, nnsyl)
4 format (i5,5x,6a8)

if (i.le.0) go to 6

do 5 k = 1, nnsyl

rname0(i,k) = name(k)

5 continue

go to 1
6 continue

9. bnamel

1 read(50,4) i, (name(k), k = 1, nnsyl)
4 format(i5,5x,6a8)

if (i.1e.0) go to 6

do 5 k =1, nnsyl

bname0(i,k) = name(k)

5 continue

go to 1
6 continue

10. nrtety

read(50,2) nrtety

11. rname

do 5 1 = 1, nrtety

read(50,4) (rname(i,j), j = 1, nnsyl)
4 format (6a8)
5 continue

O
|
w

net0

net0

net0

net0

net0

SO N AT B 2 S Mo Ay i o oAt Aty At i

12. nbarty net0

read(50,2) nbarty

13. bname net0

do 5 i =1, nbarty

read(50,4) (bname(i,j), j = 1, nnsyl)
4 format (6a8)
5 continue

14. [basic_rtetypel, [basic_bartype] net0

1 read(50,2) 1, (vtemp(k), k = 1,3),
(wtemp(k), k = 1,3)
SRl 0 ge to D
do 4 k =1,3
j = [successor](i,k)
if (j.le.0) go to 4
[basic_rtetype](i,J)
[basic_bartype](i,J)
4 continue
go to 1
5 continue

vtemp(k)
wtemp (k)

15. depth net0

read(50,3) depth

16. iblul, nsyl, nutype bu0

read(50,2) iblul, nsyl, nutype

17. npost bu0

read(50,2) (npost(i), i = 1,4)

18. itrfp bu0
read(50,2) itrfp

19. nggwep, ngawep, ntrpt, nss, npers bu0

dotsal =g
5 read(50,2) nggwep(1), ngawep(1i),
ntrpt(i), nss(i), npers(i)

9-14

i

b
i
g
;
:
|
&
i
£
{
:
§

A ATy B et e e

20. rsname bu0

do 5k=1,2
do 51 =1, nrs(k)
read(50,4) (rsname(i,j,k) Jj = 1,2)

il format (a5,1x,a5)
] 5 continue
21. flag bu0

read(50,2) (flag(i), i = 1, nutype)

22. nrst, iars bu0

do 5 1 =1, nutype
5 read(50,2) nrst(i), (iars(j,i), J = 1, nrst(i))

23. toe bu0

do 51 =1, nutype
5 read(50,3) (toe(i,j), j = 1, nrs(flag(i)))

24, aisize bu0d

do 5 i =1, nutype
5 read(50,3) (aisize(i,j), Jj = 1,4)

25. buname, butype, buloc, bupost, tentry, [resources] bu0

1 read(50,4) i, (vtemp(j), j = 1, nsyl)
4 format (i5,5x,7a8)
if (i.1e.0) go to 10
do5 J =1, nsyl
buname(i,j) = vtemp(j)
5 continue
read(50,6) butype(i), buloc(i), bupost(i), tentry(i)
6 format (3i10,f10.0)
read(50,3) ([resources](i,j), j = 1, nrs(flag(butype(i))))
go to 1
10 continue

26. [owner] bu0

read(50,2) border, side
do 51 =1, border
(owner](1) = side

P AP ST

5 continue
side = 3 - side
do 6 i = border + 1, ncells
[owner](i) = side
6 cont inue
7 read(50,2) 1, itemp
if (i.le.0) go to 8
[owner](i) = itemp

go to 7
8 continue
27. pmapup, pmapdn wait0
do 51 =10, 19
pmapup(i) = 20
5 pmapdn(i) = -10
do 6 1= 20, 29
pmapup(i) = 30
6 pmapdn(i) = 40
do71=30, 39
pmapup(i) = 40
7 pmapdn(i) = 40
do 8 i = 40, 49
pmapup(i) = 10
8 pmapdn(i) = 40

10 read(50,2) i, itemp, jtemp
if (i.1le.0) go to 11
pmapup(i) = itemp
pmapdn(i) = jtemp
go to 10

11 continue

28. ptran wait0
do51=1, 4

do5j =1, npost(i)
5 read(50,3) (ptran(i,J,k), k = 9, npost(1))

29. diseng wait0

do 51=1, nutype t‘
e read(50,3) (diseng(isj); = 1s2) }

30. airmove waitO

14
read(50,4) (airmove(i), i = 1, npost(3)) 5
4 format (8£10) ;

i

31. mrair wait0
read(50,3) (mrair(i), i = 1, nutype)
| 9-6

32. bdelay, mr wait0

do 5 1 =1, nutype
do 5 J =1, npost(3)
read(50,3) (bdelay(i,j,k), k = 1, nbarty)
read(50,3) (mr(i,j,k), k = 1, nrtety)

5 continue
33. trmreq, trncap, ssregm waito
dol0k=1, 2
read(50,3) (trmreq(i), i = 1, nrs(k))
read(50,3) (trncap(i), 1 = 1, nrs(k))

do 8 j = 1, nrs(k)
8 read(50,3) (ssreqm(i,j,k), i = 1, nss(k))
10 continue
34. trptcl waitQ

read(50,2) (trptel(i), 1 = 1, nutype)
35. loadcl wait0
do 5 J =1, 2
5 read(50,2) (loadecl(i,j), 1 = 1, nrs(j))

36. nle, ldsize, ldcap wait0

do 10 k = 1,2
read(50,2) nlc(k)
do 8 1 = 1,nrs(k)
8 read(50,3) (1ldsize(i,j,k), J = 1, nlc(k))
read(50,3) (ldcap(i,k), 1 = 1, nrs(k))
10 continue

37« fhr .10, fnef, FmMPreX fmro
do 51 =1, nutype

5 read(50,3) fmr.f0(1), (fmr.f(
read(50,3) temp, (fmr.x(j), J =

38. sswner ssuse0

do 51 =1, nss(l)
- do5J =1, nrs(l)
i 5 read(50,3) (ssvner(i,j,k), k = 1,3)

g=7

39. ssvncb

do 51=1, nss(2)
do5J =1, nrs(2)

5 read(50,3) (ssvneb(i,j,k), k = 1,3)

40. mapps, ssvact, ssvres

do 10 side = 1,2

1 read(50,2) i, k
if (i.1e.0) go to 10
mapps (side,[kpost](1)) = k
read(50,4) old

it format (£10)
if (o0ld) go to 1
do 6 1 = 1, nss(side)
read(50,3) (ssvact(i,j,k), J
read(50,3) (ssvres(i,j,k), J

6 continue
go to 1

10 continue

41. poff

k=0
do 5 1i =10, 9 + npost(l)
k=k+1
poff(i) = k
5 continue
do 6 1 = 20, 19 + npost(2)
k=k+1
poff(i) = k
6 continue
do 7 i = 40, 39 + npost(4)
k=k+1
poff(i) = k
7 continue
do 8 1 = 10 + npost(1), 19
8 poff(i) = poff(10)
do 9 i = 20 + npost(2), 29
9 poff(i) = poff(20)
do 10 1 = 40 + npost(4), 49
10 poff(i) = poff(40)
11 read(50,2) i, k
if (i.1e.0) go to 12

ssuse0
ssuse0
1, nrs(side))
1, nrs(side))
cmbtO

if (1.1e.29) poff(i) = max(k,poff(10))
1f (1.ge.lU0) poff(i) = max(k,poff(L0))
go to 11
12 continue
9-8

i e, Y

. stdtgt

43.

bs5.

46,

b47.

48.

do 53 =1, 2
5 read(50,3) (stdtgt(i,j), 1 =1, nrs(j))

aggatk

doS5k=1,2
do 51 = 1, nggwep(k)

5 read(50,3) (aggatk(i,J,k), J 1, nmat (3-k))

. aggdef

do5k=1, 2
do 5 i = 1, nggwep(k)

5 read(50,3) (aggdef(isjsk), J 1’ nmat(B‘k))

katk

do5k=1, 2
do 5 = 1, nggwep(k)
5 read(50,3) (katk(i,j,k), Jj = 1, nmat(3-k))

kdef’

do5k=1,
de Hile=

2,
= 1, nggwep(k)
5 read(50,

3) (kdef(i,J,k), J

1, nmat(3-k))

fckar

kap = 0
de 5 i
a kap = max(poff(i), kap)
dob6j=1, 2
do 6 1 = 1, nggwep(j)
6 read(50’3) (kaar(iyjsk)9 k= iy kap)

4o, 49

fckdr

kdp = 0
do 5 1
5 kdp = max(poff(i), kdp)
dob6j=1,2
do 6 1 = 1, nggwep(J)
6 read(50,3) (fckdr(i,j,k), k = 1, kdp)

=9

10, 29

cmbt0

cmbtO

cmbt0

cmbtO

cmbt 0

cmbt 0

cmbt0

R Attt S f < . «

49.

50.

51.

Ha.

53.

54.

55.

o NN AR B W o AN

fckac
del Hii=ri]ic D

do 51-= l’ nmat(J)
5 read(50,3) (fckac(i,j,k), k =

fekde
dor b J = 152

do 51 =1, nmat(J)

5 read(50,3) (kadC(i,J,k), k

fckare

do5j=1, 2

do 51 =1, nggwep(j)
5 read(50,3) (fckare(i,j,k), k =

fckdre

do53=1,2

do 51 =1, nggwep(J)

5 read(50,3) (fckdre(i,j,k), k

fckace

ae:h J = A2

do51=1, nmat(J)

5 read(50,3) (fckace(i,j,k), k

fckdee

do535=1,2

do51i=1, nmt(j)

5 read(50,3) (fckdee(i,j,k), k

barier

o5 =1; 2

do 51 =1, nggwep(j)

5 read(50,3) (barier(i,j,k), k

9~10

1, kdp)

1, kap)

|
=
-

nenv)

nenv)

I
—
-

= 1, nenv)

= 1, nenv)

= 1, nbarty)

cmbtO

cmbt0

cmbtO

cmbtO

cmbt0

cmbt0

cmbtO

o T e ——

' 56. dpersr cmbt0

do 51 =1, npers(l)
do 5 J = 1, nggwep(2)

5 read(50,3) (dpersr(i,j,k), k = 1, nmat(1))

57. dpersb cmbt0

do 5 i =1, npers(2)

: do 5 Jj =1, nggwep(l)

£ 5 read(50,3) (dpersb(i,j,k), k = 1, nmat(2))

58. td cmbtO
read(50,3) (td(i), i = 1, nenv)

e 59. febab cmbtO

read(50,3) (febab(i), i = 1, nbarty)

60. febad cmbt0

read(50,3) febad

61. vanish cmbt0

read(50,3) (vanish(i), i = 1, nutype)

62. frdval.fOatk, frdval.fatk frdavo

do 5 i = 40, 39+npost(4)
5 read(50,3) frdval.fOatk(poff(i)),
(frdval.fatk(poff(i),j)s J = 1,7)

63. frdval.fOdef, frdval.fdef fravo

do 5 i = 10, 9+npost(1)
5 read(50,3) frdval.fOdef(poff(i)),
(frdval.fdef(poff(i),j), J = 1,7)
do 6 1 = 20, 19+npost(2)
6 read(50,3) frdval.f0def(poff(i)),
(frdaval.fdef(poff(i),j)s Jj = 1,7)

g 9-11

67.

68.

69.

64.

65.

66.

frdval.x frdavo
read(50,3) (frdval.x(i), i = 1,7)
4 format (10x, 7f10.0)
vfeba.f0, vfeba.f vfebal

vfeba.npa = 6
1 read(50,2) i, j
if (i.1e.0) go to 5
read(50,3) vfeba.f0(poff(i), poff(J)),
(vfeba.f(poff(i),poff(j),k), k = 1,7)
go to 1l
5 read(50,2) i, J
if (i.le.0) go to 6
read(50,3) vfeba.f0(vfeba.npa+poff(i), poff(j)),
(vfeba.f(vfeba.npatpoff(i), poff(j),k), k = 1,7)
go to 5
6 continue

vfeba. fr vfebal
read(50,4) (vfeba.fr(i), i = 1,7)
4 format (10x, 7f£10.0)

ppoh frinv0
do 5 j = 1, nutype

5 read(50,3) (ppoh(i,j), 1 = 1, npers(flag(j)))

spdd frinv0
do5j =1, nrs(1)

5 read(50,3) (spdd(i,j), i = 1, nsp(i))

frinv.f0, frinv.f frinvo

do 53 =1, nmat(l)
do 5 1i=1, nsp(l)
5 read(50,3) frinv.f0(i,j)
(frinv.f(i,j,k), k = 1,6)

Y

o o

i

70.

71.

72.

13.

Th.

75.

76.

frinv.x(1,#*)

read(50,4) (frinv.x(1,1), 1 = 1,6)
4 format (10x, 7f10.0)

spdd

do5j =1, nrs(2)

9

read(50,3) (spdd(i,nrs(1)+j), 1 = 1, nsp(2))

frinv.f0, frinv.f

do5J =1, nmat(2)

5

do 51 =1, nsp(2)
read(50,3) (frinv.f0(i,nrs(1)+j)
(frinv.f(i,nrs(1)+3,k5, k = 1,6))

frinv.x(2,%*)

read(50,4) (frinv.x(2,1), 1 = 1,6)
4 format (10x, 7f10.0)

pg(*,1), prot(%,*,1)

read(50,3) (pg(i,1), 1 = 1, nequip(1l))
do 51 =1, nequip(l)

5

read(50,3) (prot(i,j,1), Jj = 1, nggwep(1l))

pg(*’2), pPOt(*,*,2)

read(r0,3) (pg(i,2), 1 = 1, nequip(2))
do 5 1 =1, nequip(2)

9

read(50,3) (prot(i,J,2), j = 1, nggwep(2))

freff.f0, freff.f, freff.x

do51=1, 2

ul =

read(50,3) freff.fo(i), (freff.f(1,3), J = 1,7)
read(50,4) (freff.x(i,j), J = 1,7)

format (10x, 7£10.0)

continue

9-13

frinv0

frinv0

frinv0

frinv0

frinv0

frinv0o

freffo0

77. prep.f, prep.X prep0

do6j=1,2
do 51=1, nmat(J)
5 read(50,3) (prep.f(i,i,k), k = 1,7)
continue
read(50,3) (prep.x(j,k), k = 1,7)
6 continue

78. nactyp, nagwep airo

do51=1,2
5 read(50,2) nactyp(i), nagwep(i)

79. kag air0

doS5 k=1, 2
do 5 i = 1, nagwep(k)
5 r'ead(50,3) (kag(i,J ,k), j = 1, nma-t(3‘k))

80. fecagrp air0
do 5.1 =0 2

do 5 1 = 1, nagwep(J)
5 Pead(50:3) (fcagr'p(i,,j,k), k = 1:“)

T T e

81. fcagep air0

dobj=1,2
do51i=1, nmt(j)
5 read(50,3) (feagep(i,j,k), k = 1,4)

82. fcagre air0

;' do 5) = Ly 2
do 51 = 1, nagwep(J)
5 read(50,3) (fcagre(i,j,k), k = 1, nenv)

83. fcagce air0
a0 53 =1L, 2

do51i=1, nmt(j)
5 read(50,3) (fcagee(i,j,k), k = 1, nenv)

9-14

' 84. dgpred air0

do 5 k=1, nmat(1)
do 51 =1, npers(l)
5 r‘ead(50,3) (dgpred(igjxk)’ J

1, nagwep(2))

85. dgpblu airo0

do 5 k = 1, nmat(2)
do 51 = 1, npers(2)
5 read(50,3) (dgpblu(i,j,k), J

[}

1, nagwep(1))

86. agload air0

do5k=1,2
do 5 i = 1, nactyp(k)
5 read(50,3) (agload(i,j,k), J

1, nagwep(k))

87. aagatk(#,%,1) air0
do 5 i =1, nagwep(l)
5 read(50,3) (aagatk(i,j,1), j = 1, nmat(2))
88. aagdef(¥,%,1) air0
do 51i =1, nagwep(l)
5 read(50,3) (aagdef(i,jsl), =i nmat(2))
89. aagatk(*,%,2) air0
do 5 i = 1, nagwep(2)
5 read(50,3) (aagatk(i,j,2), j = 1, nmat(1))
90. aagdef(*,%,2) air0
do 5 1 = 1, nagwep(2)
> read(50,3) (aagdef(i’j’2)) = als nmat(l))
91. aagred air0
do 5 1 = 1, nagwep(1)

do 5 j =1, nmat(2)
5 Pead(50,3) (aagr'ed(injsk), k=1,3)

9=15

92. aagblu air0

i

i do 5 1 = 1, nagwep(2)

| do5J=1, mmat (1)

k 5 r‘ead(50,3) (%@1\1(1’3 ’k)s k= 133)
l

i

|

93. haven.zoc, haven .pthome havenO

read(50,4) haven.zoc,
(haven.pthome(1), 1 = 1,2)

4 format (£10, 2110)

: 9.1.2 File 60

The following data are read at the start of a cycle.
94. envmap cgem

E
f 1 read(60,2,end=5) i, J
- if (i.le.0) go to 5
] envmap(i) = J
go to 1
5 continue

95. rtemap waitl

; 1 read(60,2,end=5) i, J
: if (i.1e.0) go to 5
rtemap(i) = J
go to 1
5 continue

96. barmap waitl

1 read(60,2,end=5) i, J
if (1.1le.0) go to 5
barmap(i) = J
go to 1

5 continue

-

9-16

B T ——

Before the start of a game, IDAHEX sets

envmap(i) = 1 for every 1
rtemap(i) = 1 for every i
barmap(i) = i for every 1,

before any data redefining them are read. At the start of each
cycle, including the first, it reads file 60 for redefinitions
of envmap, rtemap, and barmap as described above.

9.2 SAMPLE DATA
This subsection illustrates a complete set of game design

data. Each line, except for identification codes at the end,
represents an 80-column card image.

g.2:1 Kile. 50

BEST AVAILABLE COPY

100 2 ny

0 1000, ,25 A 1,0 A np
118§ 12 ng

oben desert ne

hilly or mountainous

clear, flat or qently rall{ng

urban
-9

] 15
clear Ak
open desert
rough
urban

& -

ry

-
,-D OPNOCNE N -

-t e o o - -
o@®~NOWVE N

NNV NN Y
CNEN ~O

w v
- O 0P

-
w v

WL
Od®N &

[0 I B N I
OBDNE We— D
=NV = DW=V VN U NN e =YV =D E DN VU= W DW= === D

[V RV RV RV NV
EwWN—- D

9-18

|
{
{
1

bR SRV g =

~N -

e
113
11¢

-9

-9

BEST AVAILABLE COPY

R)N'-\)M‘UNI\)N(UGJM'UGAN'VNJM'V“J? -

[P ER eI VI VI VI VI VR R St AVt

—_—— e wuNY Vi

1aose sand, no roaas LL)
excellent trafficanility

poor roads

$¢rm sanmc, N0 FCANS

rAyoh

mauntainous

Suez Cana! (\L]
{mpassahle

9=19

CCO0COOCCCOCOCTCCCC = o ccc cccCcoccC cCcCccoccCcCc—wrzQCCCcccc

NAMIA—~PrLanNInNAALNLSMII - S I -~ ANNAIAAY AT IAANI IN

ccccccocouc cccoeccuecC G i - Cc c c CCECMNCCCCCCC o = L Cc i CvcCcc

AN AN NN AN e O M TN noee MINANINA I IN D A N3 an

CmeCZTC 2C i CcrhneccCccucecccecocccacccocca L= < C (=N S S = CcCccC€C e ccCccC

BEST AVAILABLE COPY

>

-

-

-

~ .n.v NAMIPONTEAYNIMEL LN - == L sl o] J € Ll SRS B cVl N QPANA N - -

o [

[] T ©

v © 0

- S

- “

- o

[o C

+ [4

-~ - ”
o < ® =T UZ‘9230.\;6’.Qh.“—-;k."lQO‘Q"Qﬂ‘Z‘aloﬂio\.“-\.QAl?-\.hsﬁﬂl‘?}“‘ﬁﬂl
T .+~+0VOTC < ¢ — et et S AUNNANANM MM MMAMA I IIIIIVENNNNNOLLEOCOCODES

€cscCce c C C

vooe > LA

- L ® < e

- ¢ £ > ®

oLt ®0OC ~ T

VO« O3 ®a

%= O~ 00O JE

©oQw~ ¢ € -

*—.-A-,. + .I :

smal
anti{=

SA~S

fuell

small

anti

trans

bR
72
73
)
75
76
77
78
79
an
A3
LY
as
Ak
AR
(L)
Qp
91
94
95
96
97
QR
99
tan
104
102
103
108
106
10?7
10R
109
119
111
112
113
38
-9
15,0
159

1"
n

arms
tamk
tanks
arty
R AAA
tent
ammo
other
ners
arvs
tank
tanks
arty
eport

= -

NV E B e

F T TS &

R N

rPFrrw

P

Ratia VI VIRV D LRV RS L

—_

72O D I2DDO D2DIO

2292929290

- -

> 23222 >2232> 29

DD D DS O

N

BEST AVAILABLE COPY

eV ANNVNE ST EENVNV

TN TFTUN -

[ORV RV AN SRV N

9-21

D23 D D229 DD D322 2I2DIDIDIOIDDIDIDIIDODIOD

ex2rrrr RNV eEEN VANV NNESD SN

Vi v

S 33290522922 O

2T IDD2DOD

>

D222 232D

1S
16
17
18
19

en

BEST AVAILABLE COPY

ammQ
fue'® other
oers
: ! ! ! 1 2 2 2 2
9 1 2 3 u (3 6 r 22
A 9
9 1 2 3 0] (3 6 7
L] 9
6 1] [7 q 9 T[ARS
A 7 1 2 S [} 7 L} 9
: R 1 2 3 4 [7 A
9
A 1 2 3 u 5 6 7
A
A | 2 3 u s 6 7
A
s ! 2 3 4 5 6 7
]
185 35 32 1? 6 255, 70 165, 23
2550 10E
£ ’ Ll o ? 155, 50 75,
12140 TOE
12 n a 45 n 275, An 75'
1280 3
£ 10 1 o 0 25 172 3n 3s
520 TNE
5 g) e o 500 n 20
659 TnE
185 50 75 25 1100, 330 a0, s9an
130 35 127 S 1170, unn 320 5600
19 a 0 n 500 10 35 750
3n 15 1A 15 24
3a 15 1o 15
15 7,5 12 7,8
7 7 5 7
2 ? 2 ?
44 2n 10 20
as 25 12 2n
2 2 1,9 2
2 TTH MAT OTE|E 25
1 26 10 «if
o » e 12 o 255, R R
2550
4 112TH »OT KIFLE
1 26 1c -5
170 3A 32 12 7 24S, Ao 165,
2545
3 10TH TAMK QFG
2 27 10 n
36 3 L L (y 3 jun, " M,
1210
S §TH MNT RIFLE
(] 26 10 n
175 3n 32 12 6,5 255, 8s 160
2550
7 102NN “NY KIFLE
1 27 10 0
170 38 32 12 6 255, an 160,
254n
8 WTW wNT BTELF
1
|
|
E
|
9-22 ;

i
:
;
:
——

15

20

21

22

a2

?5

37

39

S0

51

52

53

150

153

1 27 16
165 37 32
2550
140TH »NT RIFLF
1 2 10
160 38 32
2540
15TH ¥OT RTFLE
1 29 §e
160 31 30
2538
AKTH ARTY WFR
3 sS ()
“ b} n
1248
REN ARYY REG
3 S& ic
12 Ly g
1250
22ND MY RIFLF
1 5% 10
155 1k 3n
2554
AhPMD TAMR RED
2 Sk 16
25 4 on
1208
PhD TANK RFC
2 28 A
3¢ 3.5 a5
1210
REN AAw RFG
“ 29 10
11 n n
s2n
RED AAw RER
u L3 10
10 o il
520
NER YQALSHDORT (nlT
b r24 10
7 n Y
64s
REN TYEALSFNRT (a17
- o9 10
5.5 n 0
680
RED YRAASPARY 117
5 LY tu
5 ¢)
hS0
REND TRASSPORY 1pp 1Y
o 30 10
5 a (
651
3RN MECH TnF ARE
[} 99 10
215 &N 95
RLUE “FCwW TYF ANE
) 39 19

e2n
20

-2

{to9,

6

25

2u

259,

255,

eso,

260,

P2hS,

198,

150,

155,

170,

165,

490,

qls.

sn0,

500,

330

S0,

7"

L1

76

75

76

75

5S

In

3n

S0000

380,

159,

165,

160,

75,

75,

75

70,

2s

2s

100,

aannn,

en

20

5900

PR —

REST AVAILABLE COPY

218 6«9 95
154 . S4TH RLUE *FCH INF
[39 10
215 5N 95
156 2ND ARMNREN RNF
y 106 0
150 3s 12%
154 E2FEXTEL SFRMNRFP
7 110 0
148 31 124
159 BLUE ARMORER 4NE,
? 99 10
1Se 35 127
160 PEATHIS MFAD
? 112 0
150 35 127
170 RLUE TRANSPNRT LNIT
A Q9 1N
10, n, 2s,
17 RLUF TRAASPORT UMTY
A 99 10
10 0 0
172 ALUE TRAMSPI'RT IINTT
A 106 10
10 0 n
176 RLIE MFCH IYF RArE
A a7 16
1A0 50 9n
174 ALUF TRAMSPOWT 1iMIT
8 65 10
1 () A
-9
15
'R] 1
44 1
('3} 1
[T 1
Ss§ 1
Sé 1
-9
.q
) 16667
JNU1K6T7 2
0
0
]
.10 .5
+05 W4
o 20 o6
ole o b
$ 05 ol
o 09 uh
006 35
o 0U Jun
1
) (\ 0
25 100
250 220 {uB
30 100
280 250 1465

1R

=30

>

15
2n

=]

75

a0

1080,

1075,

1170,

150

1170,

1168,

500,

uso0

498

1000,

9-24

Sno

an

4

334

330

aeo

3an

41000,

150,

300

380,

80,

360

350,

360,

360,

54noo,

350,

2s

380,

3n

5550

580¢C

5850

5S40

5560

5600

150,

750

748

S700

720

26

27
28

29

30
3
32

4 *
L BEST AVAILABLE COPY |
]
£
30 100 3
330 300 1A8 75 39 3 :
Y 100 4 3
3o 280 185 78 44 10
: 015 100 S
430 400 238 75 43 10
: 1,0 100
. 330 3nn 198 95 55 15 '
1,0 190 7 3
350 320 210 100 S7 13
2 160
u8o LT 2hR s 55 25
a ,001 0 0 0 L} | 1 33
L0R75
.96 0, .55 0 0 1 0 n
.00t
0 0001
0 , 0001
o L0004
¢ 0001
o ,0001
0 0001
n L0001
0 L0001
[[l %
0 L001 0) no 1,0 1 ,0880 ‘
A3 n = 0 1 0 n ,001 !
0 L0000
n LR 1
0 ,00001
o L0000
0 JN0001
0 ,n0001
0 L0000
0 0
0 n a n ! n 0 1 3
0 I) n (] 1 0 0o 35
1
n bl 0 0]] n 0
1 36
999999999
.05
9999999460
999999999
999999990
999009999
1,
1 v,
; .03
0 n n 0 e 1,2 0 n
n .
4 ;
] 999999999
06
999999999
999999999
999999999
1o
1,
,015
&
i
f 9-25 ,
: »
+

ST S 1 i, g b R e i

i o o

»

ccccoc
e e o v o
P e el

occocCcc
> ® ®» o @
- o e

neoccoccoccocco
® a e o o o
- et et o

ceCccccc
® s o o @
-— e v ew

REST AVAILABLE COPY

cccccc
o s o & »
- e -

CcoccccocC eCcCccCccCCC
-

< o <
- ” =3
< < < L=} <
ccCcc < © < o <
. o e
- -
=4
ccc < < < <
e s o
-
cCco < < < <
e s o
-
T < v < < <
. s o ~ < < (=]
- o < -
n =1 < ~N
ccoccc ccccacc ScffccceccocYcacccceaec Q2¢cecccecec < < < < <
> = e - ~m
-— - < < C4d
c - = ~
- < "
T "
ccccrCcccCcececcrCccacecaoccceccCcceccCcceccaeccceccacarc - c < < n <
w N
N~ < n
e e o - ~N
<
-
CfcccccCceCcaCcccocCc—wCCCCCECOCCCCCCCC C*s CcAC—CCCC—"CC
< - < o ~ - - ~
. - « © < < <
-— . - . .
<
.

R s e T i

9-26

- m—

Seihiiad

020
0
JLe0
2n
0t
,001
.030
020
a0
W02
.00
n

L0240

.
>
-

~ - —
DT DD . IDODODO ADDDOD DA, DDDIDOATD

&

]
o
=1

512
10650
185
»RBS
JbAS
50
600
7RS
270

o

>F 222D D>

~ 2 329 >

=

» oD

DD

[

22290 209D 20 0 5

D39S >

193

95
,N0Y
25

0159
004
700

BEST AVAILABLE COPY

299592 2252902 = e - e

(= = - I

as
ANO,

,020
+030

4,055
L0010
L0601

9-27

L= - - e 2D 2D SO DD

= e - BN

[= - ==] 22 2320 D000

D2 D20 >

360

380,
,001
W01

025
001
J001

,001
,001

4\
42

43

074 050 e
R VR R N
aee o EE 3% ,500 L0014 ‘100 011 ,001
At 28 «010 ,N0Y N0 ‘oyn « 005 2005
1270 nsn ‘sno n01 L001 "80 *001 "
bk K '150 «N70 <050 'oaé ,001
it s '050 330 L0580 'ozs 2,025
270 L03n * 750 o020 L0019 t0un S
050 N2 > aS 2001 2001 'ozn L e |
L 400 050 250 012 L001 Y e 2
s 250 250 L300 001 05 01 01 |
1100 tase * 200 010 . 250 3 s Rt |
.550 Y *3an JORD 104 e e A |
¢ .
-igg 300 2100 .22: e ienn .222
- ,200 005] N 350 :
L250 T100 "u00 i i 250 liag
570 ‘30n ‘500 (300 .250 RLL 78 i
.220 “350 310 V590 ~a00 "R00 e e
1250 T200 1150 Ao e £Ans liso liso
o a2se 138 1250 230 -130 450 L450
R 250 .ssn '300 *200 .lﬂn 100 4s
ot AShs "on . 550 500 0250 100
L2560 t35n 1005 e e .30 tH
280 250 ; L020 050 N -
i 500 x a0s
-700 060'\ '75() .700 700 .900 o'os .us |
et o 50 100 20 29 500 400 z
2 1 sate e .09 tasn 150 |
‘.c . [] no ,“56 :naﬁ
1.0
g a7
1.0
oo
1.0
o
o0 1.0
1,0 1,0 '3;
1,0 1.0 50 S
un 1.6 .20
1,0 1.0 155
1,0 1.0 ‘15
1,0 1.0 a8
1,0 1.0 20
1.0 1.h 1,20
1,0 1,0 1.15
1,0 1,0 1,05 . |
1.0) 1.05 |
1.0 1.0 1,00 |
1,0 1.9 1.05
1.0 1,0 1,02 |
1.0 1.0 102
1.0 1.9 T
1.0 1.0 1o14 |
1,0 1,0 .00 ”
1,0 1.0 1,05 L
1,0 1,0 1onp |
1o 10 1,00 ;
L]
Lo 1.0 1,00
1,0
i s0
1
| 9~28
/ 1

e

® @ s e s s s e s o pa sa e
DO Oe @ @ @ @ ®» 0 o @ 0o 0 o

D D2V DIDIDDODODDIDOD

—— e

-
-

oo
= -

DDIIDODIDO D IIDDITODIODDIDDODIIDODIDD

@ @ P s et e s s e e S e s e e e e e e B e bt e b b b e e et b e e
2w >0 D

Wi® © ® © ¢ © © 2 ®» ¢ ® * ® 0 ° ° @ ® ° 8 e e e s 8 8 e e

e A Y 20 TS TR O T

REST AVAILABLE COPY

1,00 «BS A0 51
1,10 1,08 1,20
.85 .50 065
.90 .70 .50
.36 .90 .80
1.25 1,65 1,18
W87 .55 .60
.95 .65 Lus 52
1,00 .95 L
1,30 1,50 1,80
.90 W70 .15
.95 .80 .85
1,00 195 .90
1,35 1,50 1,75
19% .65 .7"
.97 .85 AR5
1,0f 50 2f S3
.95 W70 Lun
.9 A5 1,00
1,00 290 , 9%
1,00 .95 .90
t,n0 RS ,90
1,00 .85 .95
1,00 .90 ,90
t 00 .49 o9
1.00 .69 .3°
1,00 .84 .99
1,10 - L .94
1,0 .Gﬂ 'FQ
1,00 A4 W94
1,00 LA9 .89
1,08 1415 1,10 S4
1,05 1,10 1,00
1429 1,45 1,70
1,00 1,08 1,05
1,00 1,00 1,00
1,09 1,07 1,08
l.f\ﬁ 'QQ 1.0!!
1,00 .97 1,00
1,15 1,04 14509
1,04 1,09 .99
1,24 1,45 1,69
1.01 1,00 1,04
1,0R 1,06 1,07
1,05 095 1,03
1,06 96 1,03
sS
9-29
A SrveOTI—— =

——————

T ———

o2

DIDIIDII2DID

R R]

w e

REST AVAILABLE COPY

-0 ~NDB>SNE
® e v e 0 ® e e
N2> DADDDODN

> DPe D
> =

~ O © Ve
HOG2ANDDD

e e 8 ® —o @ —o

Il'hl\

Aabl

9-30

>

ol

323299

- s - s - = - -
E.

2 2290 D

DX DD

- s o - st o & s e
>

* @ © 2 o o » o o

57

LY
56
L8
A1
]
63

hu
n"

CY
w7

Y3

n?

BEST AVAILABLE COPY

0 25 55 JAD 1,0 1,0 1,0
. a30 70 .90 1,0 140 1,0 26
[25 W58 AN 1,0 1,0 1,0 34
0 25 50 .75 1,0 1,0 1,0
n .25 150 .75 ’.0 1,0 ‘.0 F13
- L \50 W75 1,0 1,0 1.0 38
En08 160 1,00 1eh 1,0 1.0 140
0 25 S50 e 15 1,0 1,0 1,0 26
: s&% 039 75 1,0 1,0 1,0 36
1,00 1,00 1,00 t,nn 1,0 1.0 1oa
1,00 1,00 1,00 1,00 1,0 1o 150 -
n W US <85 W95 1,0 1,0 1,0 37
Lalt ol 1,00 1,9 1,0 1.9 1,0
1,00 1.00 1,00 1,00 1,0 16) 28
0 50 W90 .99 1,0 1,0 o6 14
: a5 50 75 1.0 1,0 1,0 70
o138 .25 8,6 5
o34 r)
1,2% , 60 N u
3,30 0 9
f n 1,00
9 n .l
() [.1
e n o
n o 30 L .70 1,00 1,0 1,0 72
G 49 35 R0 1,00 1,0 1,0
n .25 50 75 1,00 yon i
; st U o) 1,00 1,7 149
0 JRN .90 .95 1,00 1,0 1oe
i Lo 059 1490 1,00 1.6 1,0
; e yio W20 1,00 120 1an
n «3n S «AS 1,00 1,0 yon
0 25 w30] 1,00 140 1.0
n 30 W55 JAN 1,00 Yoo e
. $3¢ i . 00 1,00 140 1,0
(¢ » 35 ‘bﬁ .A‘. 1,00 1,0 1,0
1,00 1400 1500 1,00 1,60 10 1oa
A " S0 W75 1,00 1.0 i
* £ = »75 1,00 1,0 1,0
1. 1o 1, ' 1,00 1,0 1,0
1. 1, T, 1l e 1,060 1.0 1on
’ £ w3 .95 1,00 1,0 140
e 1. 1, te 1,00 1,0 10
1, 1, 1y Uy 5 1. 1.
0 «50 i 1,09 1,00 1.9 1.0
1 "y 32 wes 1,0 1,0 140 73
; ? g Y " T4
1,00
1,00
1,40
Fa40 1,00 1,00
1430 1.0 2,90 1,006
7,00 2 N0 106,00 15,00
1 ? 3 3 n .
1,0
1.0
140 10
1,0 1,0 1,0
5.0 2,0 10,0 15,0
1,0¢ 1,0 oL oA .35 20 +10 N 7s
9=31

Skt i R ke B A bl R st ARSI i 5 5 e B

[N 1,0 149 2,0 2,5 3,0 3,5
1,00 1.0 .85 -1 .35 20 W10 0
¢ 1,0 1,25 1,9 2,0 2,5 3,0 3,5
3,00 1,7 1,20 1,00 95 .85 50 7
3,00 1,75 1,20 1,00 .90 .85 .50
3,00 1,75 1,20 1,00 ,95 .85 .50
3,00 1.7% 1,20 1,00 .95 .85 1)
3,00 1.75 1,20 1,00 .95 .88 W50
3,20 1,80 1,25 1,00 .95 RS 50
3,2¢ 1 A0 1,25 1,00 ,90 .85 1)
3,20 1,80 1,25 1,00 .90 .85 .50
1, =5 e 1,0 2,0 10, €0,
2.80 1,70 1,15 1,00 L90 AN .50
2.80 1,70 1,15 1,00 .90 .Y 1
2.R0 1,70 1,15 1,00 ,95 80 250
2,80 1,70 1,15 1,00 .90 JA0 .50
2,90 1,75 1,20 1,00 ,90 LR0 »50
2,90 1,75% 1,29 1,00 .90 A0 W50
2,90 1,75 1,20 1,00 .90 A0 .50
-1, -,5 0 1 e 10 6n
1 1 7R
3 3
L004 N2 .00 W N3N L1150 2100 SN 77
«85 65 B0 L84 JRU 90 N1 O
o 30 20 20 o3 W35 W45 130 .n2s
.02 W20 002 .03 W03 NS L1290 L1600
1,00 1,10 1.25 1,18 an
1,00 1,10 1,00 i
1,00 1,00 sPrio 1,00
1,00 1,10 1,25 1,15
1,00 1,10 1,30 1,20 LY
1,00 1,10 1519 1,10
1,00 1,00 1,10 1,00
1,00 1,00 1,00 1,00
1,00 1,00 1,00 1,00
1,00 1,00 1,00 1,00
1,00 1,00 1,00 1,00
1,00 1,00 1,00 {00
1,00 1,05 1,25 1,19
1,00 1,08 1,10 1,00
1,00 1,00 1e15 1,00
1,00 1500 1,00 1,00
1,00 1,00 1,00 1,00
1,00 1,00 1,00 1,00
1,00 1,00 1,00 1,00
1,00 1,00 A0 S0 82
1,00 L .75 .Sﬁ
1,00 1,00 A5 SC
1,00 1,00 RS .50
1,00 1,00 .75 80 A3
1,00 1,00 S0 .20
tene 1,00 f5:00 .85
1,00 1,00 1,90 oPS
1,00 1,00 90 Ol
1,00 1,00 90 .15 i
1,00 1,00 W60 o 30 d
1,00 1,00 65 Juo]
1,00 1,00 .70 .55
1,00 1,00 W45 oS
1,00 1,00 1,00 .90 3

9=32

E
!
i
z
i
l
F

-
Fe e = DL L =0 o =SV
® DOe ®» e e 0 D De a e o

N~ s UDDOO == DN OUN

-
o
=1

. ®
-
n o

®« o ® 0 o o
e N
o >>rDOE

o o
P
o>

® o o
D
PR NV RV

e« ® e o ® oo
——d D . DY -
DN~ DN DN

e o
L=
NN

- -
-3
7, et

@« ® e e ® e @ ® e e s o
NNV NVO O DI ND
ONOWN Der va TUI DO

10

.
-
>

-
-
- o

1,00

BEST AVAILABLE COPY

=33

as

8¢

87
LL]
a9

90

9

92

3

9.2.2 File 60

-9
-9
-9

-9
-9

ENVIHAP
ENVMAP
RTEMPA
RYEMAP
RARMAP
ENVMAP

RTEMAP
QARMAP

 —————— s

10. GLOSSARY

This section contains an alphabetical glossary of
variables and functions mentioned in this volume. For each
variable such that array dimensions or consistency of the
game design data implies a finite upper or lower bound on
the variable's value, that bound is given; "UB" and "LB" are
abbreviations of "upper bound” and "lower bound".

10-1

i
‘K‘.
¥
o
-
-
NS
1

Name

aagatk(i,j,k)

aagblu(i,j,k)

aagdef(i,j,k)

aagred(i,j,k)

aggatk(i,j,k)

aggdef(i,j,k)

agload(i,j,k)

atrmove (1)

Description

fraction of fire of side k air-to-
ground weapon of type i allocated
to enemy materiel of type j when
enemy materiel belongs to engaged
battle unit in attack posture

LB =0

fraction of fire of Blue air-to-
ground weapons of type i allocated
to enemy materiel of type j when
enemy materiel belongs to unengaged
battle unit in posture class k

LB = 0

fraction of fire of side k air-to-
ground weapons of type i allocated
to enemy materiel of type j when
enemy materiel belongs to engaged
battle unit in hold or disengagement
posture

LB = 0

fraction of fire of Red air-to-
ground weapons of type i allocated
to enemy materiel of type j when
enemy materiel belongs to unengaged
battle unit in posture class k

LB =0

fraction of fire of side k ground-
to-ground weapons of type i allo-
cated to encmy materiel of type j
if side k is engagement attacker

fraction of fire of side k ground-
to-ground weapons of type i allo-
cated to enemy materiel of type j
if side k is engagement defender

notional load of side k air-to-
ground weapons of type j on side
k aircraft of type i

LB = 0

true if i-th movement posture

implies air movement; false if
not

10-2

real

real

real

real

real

real

real

logical

Name Description Type

atetze(1i]) area of area of responsibility real
of a unit of type i in posture
class j 1f its resources coincide
with toe(i,x)
LB =0

barier(i,j,k) factor applied to katk(i,x,j) if real
weapon 1 belongs to battle unit
attacking across barrier of type k
and engagement feba < febab(k)/depth
LB =0

barmap (1) barrier type if basic barrier integer
type is 1
LB = 0, UB = nbarty

[bartype](i,j) type of barrier between cell i integer
and cell j (0 signifies no bar-
rier); undefined unless cells
are adjacent
LB = 0, UB = nbarty

[(basic_bartypel](i,j) basic type of barrier between integer
' cell i and cell j (0 signifies
no barrier); undefined unless
cells are adjacent
LB = 1, UB = nbarraw

[basic_env] (i) basic environment in cell i integer
UB = nenvraw
[basic_rtetypel(i,j) basic type of route between integer

cell i and cell j; undefined
unless cells are adjacent
LB = 1, UB = nrteraw

bdelay(i,j,k) barrier delay for a unit of real
type i in j-th movement posture
crossing a barrier of type k

LB =0
bname (i, %) description of barrier type i character
bname0 (i,) description of basic barrier character
type 1
buloc (i) location of unit i integer
buloe(i) location of unit i (a cell integer
number) at t = tintit

LB = 1, UB = ncells

buname (i,) name of unit i character

10-3

8

3

H

£

N
»

i

Name
bupost (i)

bupost (i)

butype (i)

delta

depth

dgpblu(i,j, k)

dgpred(i,j,k)

diseng (i, 1)

diseng (i, 2)

dpersb(i,j,k)

Description

posture of unit 1

posture of unit i at t = tintt
LB = 0, UB = 19

type of unit i
LB = 1, UB = nutype

length of time a unit must be

in movement posture before
arrival of enemy unit at its
location (point of origin)

to avoid reversion to disengage-
ment posture

LB =0

distance from center of any cell
to center of adjacent cell
LB > O

loss of Blue personnel of type i
associated with destruction of
unit-quantity of Blue materiel
of type k by Red air-~to-ground
weapons of type j

LB =0

loss of Red personnel of type i
associated with destruction of

a unit-quantity of Red materiel
of type k by Blue air-to-ground
weapons of type j

LB =0

minimum time required for a type
i unit to disengage
LB = 0

factor applied to movement delay
to determine additional dis-
engagement delay imposed on type
i unit disengaging without a
rearguard

LB = 0

loss of Blue personnel of type i

associated with destruction of a
unit-quantity of Blue materiel

10-4

integer

integer

integer

real

real

real

real

real

real

real

e P o bl ks

{

T

Name

dpersr(i,j, k)

ename (i, %)

enamel0 (i, x)

[environment](1)

envmap (1)

feagece(i,j, k)

feagep(i,j,k)

feagre(i,j,k)

feagrp(i,j,k)

fekae(i,j, k)

(fekac](i,j,k)

Description Type

of type k by Red ground~to-
ground weapons on type j
LB =0

loss of Red personnel of type 1 real
associated with destruction of

a unit-quantity of Red materiel

of type k by Blue ground-to-

ground weapons of type j

LB =0

description of environment type i character

description of basic environ- character
ment type i

type of environment in cell i integer
LB = 1, UB = nenv

environment type if basic environ- integer
ment type is i
LB =1, UB = nenv

factor applied to kag(x,i,3-3) real
if target battle unit is in

environment k

LB =0

factor applied to kag(x,i,3-3) real
if target battle unit is in

posture class k

LB =0

factor applied to kag(i,*,j) real
if target battle unit is in

environment k

LB =0

factor applied to kag(i,*,j) real
if target battle unit is in

posture class k

LB =0

factor applied to katk(x,i,3-j) real
if materiel belongs to battle

unit in posture p (10 < p < ?29);

k = poff(p)

LB =0

factor applied to katk(x,1i,3-j) real
if materiel belongs to battle

unit in posture k; it equals
fekae(i,j,poff(k))

LB = 0

10~

i

Name

fekace(i,j, k)

fekar(i,j,k)

[feckax1(1,]) k)

fekare(i, j,k)

fekde(1,3,k)

[fckde](di,§,k)

fckdce(i’j’k)

fekdr(i,j,k)

[fckdr](i,j,k)

Description

factor applied to
if environment in
cell is type k

LB =0

factor applied to
if weapon belongs
unit in posture p
k = poff(p)

LB =0

factor applied to
if weapon belongs
unit in posture k;
fekar(i,j,poff(k))
LB =0

factor applied to
if environment in
cell is type k

LB =0

factor applied to

katk(x,1,3-3)
engagement

katk(i,*,j)
to battle
(40 < p < 49);

katk(i,%,3)
to battle
it equals

katk (i,%,3)
engagement

kdef(%x,1,3-j)

if materiel belongs to battle

unit in posture p

k = poffip)
LB =0

factor applied to

(10 < p < 29);

kdef(%,1,3-3)

if materiel belongs to battle

unit in posture k;
fekde(i,j,poff(k))
LB =0

factor applied to
if environment in
cell is type k

LB =0

factor applied to
if weapon belongs
unit in posture p
k = poff(p)

LB =0

factor applied to
if weapon belongs
unit in posture k;
fekdr(i,j,poff(k))
LB =0

10-6

it equals

kdef (x,1i,3-3)
engagement

kdef (i,%*,3)
to battle
(10 < p £ 29);

kdef (i, *x,j)
to battle
it equals

real

real

real

real

real

real

real

real

real

| Name Description Type j
; fekdre(i,j,k) factor applied to kdef(i,x,j) real E

. if environment in engagement :
cell is type k '
T LB =0

febab (1) depth of attacker penetration real
of defender's cell at which :
effect of type i barrier ceases]
LB = 0, UB = depth

febad degree of attacker penetration real
of defender's cell at which
defenders must disengage and
retreat to another cell
LB =0, UB < 1

T

B G it oo

flag (i) side to which unit of type i integer
belongs

[floor](a) largest integer < a integer

fmr. £(1i,3) factor applied to movement rate real

of type i unit when its ratio
of transport capacity to
transport demand is fmr.xz(j)
LB =0

fmr. f0(1) factor applied to movement rate real
of type i unit when its ratio
of transport capacity to
transport demand is 0

LB =0

fmr.x(j) ordinate corresponding to real
fmr.f(i,j) for any i
LB =0

frdval. fatk(i,j) fraction of value lost by attacker real

in 1 unit of time when attacker-to-
defender force ratio is frdval.x(j)
and attacker is in posture p;

1 = poff(p)

LB =0, UB =1

frdval. fdef(i,]) fraction of value lost by defender real
in 1 unit of time when attacker-
to-defender force ratio is
frdval.x(j) and defender is in
posture p; i = poff(p)
LB = 0, UB = 1

10-7

hL--—n--n---u-n--h-ﬂ-.m-ﬂn-u-nﬁ-.ﬂﬂ-nﬁhuﬂnrW e = T

Name

frdval. fOoatk(i)

frdval. fodef (1)

frdval.x (1)

freff. féi,)

freff.fo(i)

freff.x(i,3)

frinv.f(i,j,k)

Description

fraction of value lost by attacker
in 1 unit of time when attacker-
to-defender force ratio is 0 and
attacker is in posture p;

i = poff(p)

LB =0, UB =1

fraction of value lost by
defender in 1 unit of time when
attacker-to-defender force ratio
is 0 and defender is in posture
p; 1 = poff(p)

LB =0

ordinate corresponding to
frdval.fatk(j,1i) and
frdval. fdef(j,1i) for any j
LB = 0

fractional effectiveness in combat
of one or more side i battle units
located in same cell if total area
of their areas of responsibility
divided by area of cell equals
freff.x(i,3)

LB = 0

fractional effectiveness in combat
of one or more side i battle units
located in same cell if total area
of their zone of responsibility is O
LB = 0

ordinate corresponding to

freff.f(i,3)
LB = 0

fraction of type r resources avail-
able for combat in side s battle
unit if available quantity of

type i support resources divided

by demand for type i support
resources equals frinv.x(s,k);

i r if s =1, j = nrs(l)+r if

s 2
LB =0

10-8

real

real

real

real

real

real

real

of J

L e

X oy

i

T -‘.m;uj

 ———— T

s ——— L

e A A

Name

frinv.f0(i,3)

frinv.x(i,]3)

haven.pthome (i)

haven.zoe

tars(i,j)

iblul

iprint

itrfp

kag (i, j,k)

kap

Description

fraction of type r resources
available for combat in side s
battle unit if available
quantity of type i support
resources divided by demand for
type i support resources equals

0; j =r if s = 1, j = nrs(l)+r
if s = 2
LB =0

ordinate corresponding to
frinv.f(k,£,j) for any (k,2)
associated with side i

LB = 0

preferred direction of retreat
for side i
LB =1, UB = 6

truth value of "attacker's zone
of control extends into adjacent
cells"

absolute index of i~th resource
on list of resources in a unit
of type j

LB = 0, UB = nrs(flag(j))

index number of lowest-numbered
Blue unit
LB = 2, UB = nbumax

level of detail in terminal
output
LB =0

index of transfer posture
(10 < 1 £ 19)
LB = 10, UB = 10 + npost(l)

amount of enemy materiel of type
j destroyed by a single side k
air~to-ground weapon of type i
if all of the air-to-ground
weapon's fire is allocated to
enemy materiel of type j

LB = 0

max [poff(i); 40 < i < 49]
10-9

real

real

integer

logical

integer

integer

integer

integer

real

integer

T T LT, e

Name

katk(i,j, k)

katk(i,j,k)

kdef(i,j,k)

kdef (i, j, k)
kdp

[kpost](p)

ldeap(i,j)

ldsize(i,j, k)

loadel(i,])

mapps (i,3)

Description

amount of enemy materiel of
type j destroyed in 1 unit
of time by a single side k
ground-to-ground weapon of
type i if the weapon allo-
cates all its fire to enemy
materiel of type j; side k
is the attacker in the
engagement

LB =0

tframe *x katk(i,j,k)

amount of enemy materiel of
type i destroyed in 1 unit
of time by a single side k
ground-—-to-ground weapon of
type i if the weapon allo-
cates all its fire to enemy
materiel of type j; side k
is the defender in the
engagement

LB =0

tframe *x kdef(i,j,k)
max [poff(i); 10 < i < 29]

p -9 if p < 40, p - 19
if p > 40

load capacity of resource
of type i belonging to side j
LB =0

load size of a single side k
resource of type i relative
to load class j

LB = 0

load class of a resource of
type i belonging to side j
LB = 0, UB = nlcmax

pointer used to reference data
on supplies consumption in
engaged side i battle unit in
posture p, where j = [kpost](p)

1010

real

real

real

real
integer

integer

real

real

integer

integer

!
i
21
1
i

Name

mr(i,j,k)

mrair (i)

nactyp (i)

nagwep (i)

nbarty

ncells

nenv

nequip

ngawep (1)

nggwep (i)

nie(i)

Description

(see ssvact and ssvres)
LB = 1, UB = ssuse.npsmax

movement rate of a unit of
type 1 in j-th movement
posture along a route type k
LB = 0

air movement rate of unit of
type i
LB = 0

number of side i aircraft types
LB = 0, UB = nacmax

number of sides i air-to-ground
weapon types
LB = 0, UB = nagwmx

number of types of barriers
(between cells)
LB = 0, UB = nbarmx

number of cells (largest
identification number of
any cell) in area of war
LB = 1, UB = ncelmx

number of types of cell
environments
LB = 1, UB = nenvmx

number of types of side i
equipment (nwep(i) + ntrpt(i))
LB = 1

number of types of side i
ground-to-air weapons
LB =0

number of types of side i
ground-to-ground weapons
LB = 1, UB = nggwmx

highest load class of side

i resources
LB = 0, UB = nlcmax

10-11

real

real

integer

integer

integer

integer

integer

integer

integer

integer

integer

Name

nmarchp

nmat (i)

nnsyl

npers (i)

npost (i)

nprint

nrankl

nrs (i)

nrst (i)

nrtety

nsp (i)

nes (i)

Description

max {k: airmove(k) = false.}
LB = 1, UB = npost(3)

number of types of side i
material (nwep(i) + ntrpt(i)
+ nss(i))

LB =1, UB = nmatmx

number of computer double-words
occupied by name or any environ-
ment, route, or barrier type

number of types of side i
personnel
LB = 0

number of postures in posture
class 1
LB =1, UB = 10

number of output devices
(printer & terminals) to
be used

LB = 1, UB = 3

number of cells in first row
of area of war
LB = 2, UB = ncells

number of types of side i
resources
LB = 1, UB = nrsmax

number of types of resources
that a unit of type i may have
LB = 1, UB = nrs(flag(i))

number of types of routes
(between cells)
LB = 1, UB = natmax

number of types of side i
support resources (nss(i) +
npers(i))

number of types of side i
supplies
LB = 0, UB = nssmax

10-12

integer:

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

Name

nsyl

ntrpt(1i)

nutype

nwep (1)

[owner] (i)

[owner] (i)

pg(i,3)

pmapdn (i)

pmapup (i)

poff(i)

ppoh(i,j)

prep'f(iajsk)

prep.x(1i,j)

Description

number of computer double-
words occupied by name of any
unit

LB = 1, UB = 2

number of types of side 1
transport vehicles
LB = 0, UB = ntrnmx

number of types of units
LB = 1, UB = nutymx

number of types of side i
weapons (nggwep(i) + ngawep(i))
LB = 1, UB = nwepmx

1 if Red owns cell i, 2 if Blue
side that owns cell i at t = tinit

protection group to which side
j resources of type i belong
LB =1

first posture a unit enters
when it transitions from posture
i to a lower posture class

first posture a unit enters
when it transitions from posture
i to a higher posture class

offset pointer used to reference
ground combat data for a unit in
posture i (see frdval. fatk,
frdval. fdef, vfeba.f

number of overhead type i
personnel in type j battle unit
LB =0

factor applied to katk(*,i,3-j)
if defending unit, a member of
side j, is credited with defense

integer

integer

integer

integer

integer

integer

integer

integer

integer

integer

real

real

preparation time equal to prep.x(j,k)

LB = 0

ordinate corresponding to
prep.f(k,i,j) for any k

10-13

real

!

Name

prot(i,j,k)

ptran(i,j, k)

[resources](i,j)

[resources](i,j)

rname (i, %)
rname0 (i, %)

rsname(i, x,3)

rsvala(i,j)

rsvald(i,j!

rtemap (1)

[rtetypel(i,j)

spdd(i,3])

gsreqm(i, j,k)

o s

Description Type
amount of side k resources of type real

i that a side k ground-to-ground
weapon of type j can protect
LB = 0

time required to transition from real
j-th posture in posture class 1i to
k-th posture in posture class i

quantity of resources of type j real
in unit i (classification of

resources by type depends on

unit's side)

quantity of resources of type j real
in unit 1 at t = tinit
LB = 0

description of route type i character

description of basic route type i character
character

description of side j resource
type i

standard value of side j type i real
resource on attack

standard value of side j type i
resource on defense

route type if basic route type integer
3 4
LB = 1, UB = nrtety

type of route between cell i integer
and cell j; undefined unless

cells are adjacent

LB = 1, UB = nrtety

demand for type i support real
resources by a unit quantity

of type r resources; j = r 1if

resources belong to Red battle

unit; j = nrs(l)+r if resources

belong to Blue battle unit

LB = 0

quantity of side k supplies of type real
i required by a side k resource
of type j in order to move
LB =0
10-14

R——

Name Description Type
. ssvact(i,j,k) quantity of type i supplies real

consumed in one unit of time by

a type j resource actively
involved in ground combat;
supplies and resource belong

to a battle unit from side s in
posture p; k = mapps(s,[kpost](p))
LB = 0

ssvneb (i, j, k) amount of type i supplies real
consumed in one unit of time
by a type j resource in a Blue
battle unit in posture class k;

1 £ k<3
LB = 0
ssvner(i,j,k) amount of type i supplies real

consumed in one unit of time

by a type j resource in a Red
battle unit in posture class

k; 1 < k <3

LB =0

ssvres(i,j,k) consumption of type i supplies real
in one unit of time by a type j
resource not actively involved
in combat but in an engaged
battle unit; battle unit belongs
to side s and is in posture p;
k = mappse(s,[kpost](p))

LB =0

stdtgt(i,]) quantity of resource i in a real
standard side j ground force
LB =0

[successor](i,j) j-th successor of cell i integer
(lig 3 & 3)

t current game time (t = tinit real

at start of game)

teycle length of cycle real
LB = tpd
td (i) depth of defender's tactical real

zone when environment in
engagement cell is type i
LB =0

10-15

e o o

SR W PRS- |

Name

tend

tentry(i)

tentry (i)

tframe

tintt

toe(i,j)

tpd

trneap (i, j)

trnreq (i, j)

trptel (i)

vanish(i)

Description

time at which game ends
LB = tintit

time at which unit i entered
location and posture class
it is in at start of game

virtual time at which unit 1
entered its present posture
class

length of frame
LB = 0, UB = tpd

time at start of game
LB =0

planned effective quantity
of type j resources in a
unit of type i

LB =0

length of period
LB = tframe, UB = tcycle

transport capacity of each
side j resource of type i
LB =0

transport requirement of
each side j resource of
type i
LB = 0

transport class of a unit
of type i
LB =0

fraction of standard value
at which battle unit of
type i vanishes

LB =0, UB =1

1u-16

real

real

real

real

real

real

real

real

real

integer

real

Name Description Type i 4
vfeba.f0(1i,3) signed distance of FEBA movement real

in 1 unit of time if attacker-to-
defender force ratio is O,
attacker is in posture p”, and
defender is in posture p~”;

3 = poff(p”"); 1 = poff(p”) 1f
attacker is Red; i = vfeba.npa

+ poff(p”) if attacker is Blue

vfeba.f(i,j,k) signed distance of FEBA movement real
in 1 unit of time if attacker~to-
defender force ratio is vfeba.fr(i),
attacker is in posture p~, defender
is in posture p°“; 3§ = poff(p°”“);

= poff(p”) if attacker is Red;

= vfeba.npa + poff(p”) if

ttacker is Blue

B =20

i
i
a
L

vfeba.npa maximum number of attack postures integer
subprogram vfeba can accommodate
given current array dimensions

vfeba. fr(1i) ordinate corresponding to real |

vfeba.f(j,k,i) for any (j,k)
LB =0

1017

R R P

4
’ 11. INDEX OF VARIABLES
aagatk 6-2,8-15,10-2 ename 9-2,10-5
aagblu 6-2,9-16,10-2 enamel 9-2,10-5
aagdef 6-2,9-15,10-2 [environment] 2-3,5-5,5-7,
aagred 6-2,9-15,10-2 5-18,6-2,10-5
aggatk 5-4,5-22,9-9,9-15, 10-2 envmap 2-3,2-5,8-1,9-16,9-17,
aggdef 5-7,9-9, 10 2 10-5
agload 6-~2,9-15,10-2 feagece 6-3,9-14,10~5
atrmove 3-9,3-10,3-17,3-19, feagep 6-3,9-14,10-5
9-6,10-2 feagre 6-3,9-14,10-5
aisize 5-31,9-5,10-3 feagrp 6-3,9-14,10-5
barier 5-6,5-18,9-10,10-3 fekae 5-18,9-10,10 5
barmap 2-3,2-5,8-1,9-16,9-17, [fckac] 5-5,10-5
10-3 fekace 5-5,5-18,9-10,10-6
[bartype] 2-3,2-5,3-11,3-17, fekar 5-5,5-18,9-9,10-6
3-20,5-5,10-3 [fckar] 5-5,10-6 :
[basice_bartype] 2-3,2-5,9-4, fekare 5-5,5-7,5-18,9-10,10-6
10-3 fekde 5-7,5-18,9-10,10-6
[basic_env} 2-3,2-5,9-3,10-3 [fckde] 5-7,10-6
(basic_rtetype] 2-3,2-5,9-4, fekdece 5-5,5-7,5-18,9~10,10-6
10-3 fekdr 5-7,5-18,9-9,10-6
bdelay 3-12,3-12,3-15,3-17, [fckdr] 5-7,10-6
3-20,3-21,9-7,10-3 fekdre 5-5,5-7,5-18,9~10,10-7
bname 9-4,10-3 febab 5-6,9-11,10-7
bname0 9-3,10-3 febad 5-2,5-23,9-11,10-7
buloc 1-2,9-5,10-3 flag 9-5,9-12,10-7
buloe 1-2,10-3 fmr.f 3-12,9-7,10-7
buname 9-5,10-3 fmr.f0 3-12,9-7,10-7
bupost 9-5,10-4 fmr.x 3-12,9-7,10-7 4
bupost 10-4 frdval. fatk 5-32,9-11,10-~7 -
butype 2-6,2-10,2-11,3~11-- frdval. fdef 5-33,9-11,10-7
3-21,4-1--4-9,5-22, frdval. f0atk 5-32,9- 11 10-8
5-25,5-27,5-31,9-5, frdval. fodef 5-33,9-11,10-8
E 10-4 frdval.x 5-32,5-33,9—12,10-8
‘ delta 3-26,9-2,10-4 freff.f 5-32,9-13,10-8
depth 2-1,3-12--3-14,5~2,5-6, freff.f0 5-32,9-13,10-8
5-7,5-18,5-21,9-4,10-4 freff.x 5-33,9-13,10-8
dgpblu 6-4,9-15,10-4 frinv.f 5-28,9-12,9-13,10-8
dgpred 6-4,9-15,10-4 frinv.f0 5-28,9-12,9-13,10-9
diseng 3-20,3-21,9-6,10-4 frinv.x 5-28,9-13,10-9
dpersb 5-9,5-19,9-11,10-4 haven.pthome 9-16,10-9
dpersr 5-8,5-9,5-19, 9 L1, haven.zoe 5-23,9-16,10-9
10~5 iars 2-10,4-5,9-5,10-9 L
1i=1
!
!
o~

iblul 9-4,10-9 [owner] 3-24,10-13
iprint 8-2,8-3,9-2,10-9 pg 5-26,5-29,9-13,10-12
itrfp 3-4,3-7,3-25,4-5,4-8, pmapdn 3-1--3-5,3-7,3-24,3-26,
4-9,9-4,10-9 4-2,5-24,9-5,10-13
kag 6-3,9~14,10-9 pmapup 3-1-~3-5,3-7,3-24,3-26,
kap 9-9,10-9 4-2,5-24,9-5,10-13
katk 1-2,5-1,9-9,10-10 poff 5-5,5-7,5~33,9-8,9-11,
katk 1-2,5-2--5-5,5-18,5-23, 9~12,10-13
10-10 ppoh 5-27,5-28,9-12,10-13
kdef 5-2,5-3,5-5,9-9,10-10 prep.f 9-14,10-13
kdef 5-2,5-3,5-7,10-10 prep.x 5-32,9-14,10-13
kdp 9-9,10-10 prot 5-26,5-29,9-13,10-14 3
[kpost] 9-8,10-10 ptran 3-10,9-6,10-14 :
ldeap 3-15,9-7,10-10 [resources] 2-11,3-11,3-14-~"
ldsize 3-16,9-7,10-10 3-18,3-26,4-6--4-8,
loadel 3-15,9-7,10-10 5-35-4,5-7,5-8,
mapps 7-1,7-2,9-8,10-10 5-19,5-22,5-25,
mr 3-11,3-12,3-14--3-16,3-20, 6-2--6-4,7~-1--7-3,
3-21,9-7,10-11 10~-14
mrair 3-9.3-18.3-19,9-6,10-11 [resources] 2-10-2-11,9-5,10-14
nactyp 6-1,6-2,9-14,10-11 rname 9-3,10-14
nagwep 6-2,9-14,10- 11 rname0 9-3,10-14
nbarty 9-4,10-11 rsname 9-5,10-14
neelle 2-1,2-3,3-10,3-17,9-2, rsvala 3-28,5-22,10-14
10-11 rsvald 3-28,5-22,10-14
nenv 9-2,10-11 rtemap 2-3,2-5,5-15,8-1,9-16,
nequip 5-26,5-27,7-2,7-3,9-13, 9-17,10-14
10-11 {rtetype]l 2-3,3-11,3-14,3-16,
ngawep 9-4,10-11 3-21,10~14
nggwep 5-3,5-7,5-8,5-11,5-20, spdd 5-28,9-12,9-13,10-14
5-22,5-26,6-3,10-11 sereqm 3-11,3-13,3-15,3-17,
nle 9-7,10-11 3-18,9-7,10-14
nmarchp 10-12 ssvact 7-2,9-8,10-~15
nmat 5-8,5-32,10-11 ssvneb 7-1,9-8,10-15
nnsyl 9-2,9-3,10-12 ssvner 7-1,9-7,10-15
npers 5-%,5-9,5-26,5-27,5-29, ssvres 7-2,9-8,10-15
6 -4,9-4,10-12 stdtgt 5-4,5-7,5-29--5-31,6-3,
npost -7,3-4,3-7,3-10,4-2, 9-9,10-15
-33,9 4,10-12 [successor] 2-1,9-4,10-15
nprint 8-1,8-2,9-2,10-12 t 2-11,10-15
nrankl 2-1,9-2,10-12 teyele 9-2,10-15
nrst 2-10,4-5,9-5,10-12 td 5-18,9-11,10-15
nrtety 9-3,10-12 tend 2-11,9-2,10-16
nsp 10-12 tentry 2-7,10-16
nes 1-2,2-11,3-12,3-15,3-18, tentry 2-7,10-16
3~-20,5-28, 5-29,7-1--7,3, tframe 1-2,3-11,3-23,3-20,5-2,
9~4,10-12 5-3,5-21,7-1,7-2,9-2,
nsyl 9~4,10-13 10-16
ntrpt 3-14,9-4,10-13 tintt 2-11,6-1,9-2,10-16
nutype 9-4,10-13 toe 2-11,4-5,4-9,5-22,5-31,
[owner] 3-24--~3-26,9-5,10-13 9-5,10-16
11-2

tpd 9-2,10-16

trneap 3-14,3-16,3-18,9-7,10-16
trnreq 3-14,3-16,3-18,9-7,10-16
trptel 3-15,5-25,9-7,10-16
vanish 5-22,9-11,10-16

vfeba.f0 5-33,9-12,10-17
vfeba.f 5-33,9-12,10-17
vfeba.npa 5-33,9-12,10-17
vfeba.fr 5-33,9-12,10-17

i e

11-3

rre—

o

»
TS g

(1]

(21

(31

C4]

(51

[6]

(71

12. REFERENCES

Anderson, Lowell Bruce, et al. IDA Ground-Air Model I
(IDAGAM I). Vol. I, R-199, Arlington, VA: Institute for
De fense Analyses, October 1974.

Anderson Lowell Bruce. A Method for Determining Linear
Weighting Values for Irdividual Weapone Systems, WP-4,
Improved Methodologies for General Purpose Forces Planning
(New Methods Study), Arlington, VA: Institute for Defense
Anlyses, Revised April 1973.

Dare, D.P., ard B.A.P. James. The Derivation of Some Para-
meters for a Corps/ Division Model from a Battle Group

Model, Defence Operational Analysis Establishment Memorandum,~
7120, U.K.: Ministry of Defence, July 1971, CONFIDENTIAL.

Holter, William H., et al. Appendix D: NATO Combat Capa-
bilities Analysis II (COMCAP II) (U), GRC Report OAD-CR-8, -~
McLean, VA: General Research Corporation, August 1973,

SECRET (Appendix D is UNCLASSIFIED).

Howes, David R., and Robert M. Thrall. "A Theory of Ideal
Linear Weights for Heterogeneous Combat Forces," Naval
Research Logistics Quarterly, Vol. 20, No. 4, December
1973. (Or see Robert M. Thrall and Associates, Chapter 2C,
Final Report to US Army Strategy and Tactics Analysis Group
(RMT-200-R4-33), May 1972.)

Spudich, John. The Relative Kill Productivity Ezchange
Ratio Teehnique, Combined Arms Research Office, Booz-Allen
Applied Research, Inc., n.d.

US Army, Combat Developments Command, Headquarters, TAB E,
Appendix II to Annex L, Tank, Antitank and Assault Weapons
Requirements Study (U), Phase III (TATAWS III), December
1968, SECRET-NOFORN (Tab E, Appendix II to Annex L is
UNCLASSIFIED).

12-1

e i et S il s i ki e ket R

