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INTRODUCTION

An electromagnetic emitter is defined as a source which emits
electromagnetic waves. The wave as it propagates out from the source
display a variation of both amplitude and phase. The points on the
wave which have the same phase in a given region may be thought of
joined by imaginary lines, known as isophasor lines. These are
analogous to contours on a map, which define a constant elevation. For
a point source emitting electromagnetic waves, the isophasor lines would
then form concentric circles. The objective of this report is to design
electromagnetic emitters whose isophasor lines would not form concentric
circles with the center of the circles being located at the geometric
center of the electromagnetic emitters. This implies that such an array
of electromagnetic emitters would produce over a certain angle in the far
field an electromagnetic wave whose phase center may not coincide with
the geometric center of the electromagnetic emitters. The projected
phase center may even be outside the spatial distribution of the elec-

tromagnetic emitters.

The report is organized in various sections. In section [I the
design of skewed isophasor lines is presented when the electromagnetic
emitters are excited by a band~limited signal. The analysis has been
carried out in the frequency domain. Section II1 presents the anal-
ysis of skewed isophasor lines when the emitters are excited by
arbitrary time. The development for this case has been presented
in the time domain. In both sections II and III the relationship
between the slope of the isophasor lines to the measure of closeness
between the projected phase center and the geometric center of the

spatially distributed electromagnetic emitters has been developed.




In section IV some representative computations are made using an
optimization method due to Rosenbrock. Appendix A describes the salient
features of the optimization procedure. Appendix B provides the computer
program listing along with sample input and output. This program has
been ytilized in obtaining the results of section IV.

There are various applications of this principle of design of
skewed isophasor lines. One such application is to the phenomenon
of angle noise or angle glint. Angle noise causes a change with
time in the apparent location of the target with respect to a refer-
ence point on the target. The apparent angular location may even
fall outside the target. This principle may thus be applied in
providing misinformation to the receiver monitoring the target.
This is because target locating systems can be divided into two major
categories: phase comparison systems and amplitude comparison sys-
tems. The phase comparison technique involves two or more receiving
elements separated in space so that the phase of the received signal
at the two or more points can be compared. The phase comparison
systems then measures the tilt of the phase front since it indicates
the target to be in a direction normal to the line of receiving
elements alignment required to receive the signal in phase at the
receiving structure. Thus a phase comparison system measures the
phase front of the received signal and points to the direction
normal to the isophasor lines of the received signal.

Amplitude comparison systems generally use some type of secondary
receiving elements which focuses the received signal to a spot in the
focal plane. All amplitude comparison systems by some means or other,

locate the target as the pointing angle of the receiving elements which
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center the spot from the received signal in the focal plane. For
example, a conventional amplitude comparison monopulse radar split the
spot in four parts by a multiport feed such that the spot can be centered
by adjusting the receiving elements for equal amplitudes in each port.
The significant characteristic of the amplitude comparison techniques

is that the spot location is determined by the isophasor lines of the
received signal. Centering the spot is accomplished by rotating the
receiving structure such that the receiving elements align with the
received isophasor lines. Consequently, in general any target locating
device is essentially a phase front measuring device. From this
measurement the device tries to project the phase center of the received
isophasor lines.

Another application of the principle of designing skewed isophasor
lines may be found in missile guidance. A missile may be guided by
the skewed isophasor lines and thereby reduce the complexity of the
tracking mechanism.

A third application of this principle is a very interesting one.
Goldman has shown in his book 'Frequency Analysis, Modulation and
Noise', that by the application of the principle of stationary phase
the location of a signal in time could be obtained. Under certain
conditions the transmitted signal may be made to appear originating
from a point in time other than its true location. This apparent
origin of the signal may even be outside the spatial distribution
of the electromagnetic emitters, as the time information may be con-
verted to a range information.

A fourth possible application of this principle may be in Displaced
Phase Center Antenna (DPCA). It may be possible this way to compensate

for the deleterious effects of the airborne radar platform motion.




ANALYSIS OF SKEWED ISOPHASOR LINES IN FREQUENCY DOMAIN

2.1 For CW Waveforms

When the transmitted signal from a set of emitters is CW,
the isophasor lines of such a signal is easy to visualize.
The phase front in this case is the isophasor line of the
set of emitters. The problem then is to select a set of
emitters which would produce skewed isophasor lines in the
far field. The tilt would be such that phase front

measuring device looking at the waveform would project a

phase center which may or may not coincide with the geometric

location of tle set of emitters. In this section a re-~
lationship is also derived relating the tilt of the skewed
isophasor lines to the distance between the geometric
center and the projected phase center of the spatially
distributed emitters.

Consider a set of emitters situated on the x - axis
as shown in Fig. 1. Each emitter is excited with a complex
signal amplitude Sn(having both magnitude and phase) and
they are separated from each other by a distance d. The
electric far field pattern due to 2N + 1 emitters could

be obtained as

N
-
E = 5 Sn exp ( —12%—39——— sin 0) (2.1)
n=-N

where A is the wavelength of transmission. Let the complex
excitation amplitudes Sn of the emitters have real parts an

and imaginary parts as bn . Then




Figure 1. Emitter configuration
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N
E o & [{an + 4 bn} {cos (2")\nd gin 6) + § sin (—21)7"E sin e)}]

n=-N

o (232)

By taking the summation now for only positive values of n
in eq. (2.2) leads to

N
% = I [{a + jb } {cos (zﬁigg-sin 8) + j sin (ZIXEQ §in 8)}
n n .

n=1

¥ {a_n + jb_n} {cos (gﬂxgé sin 6) -j 8in (ZWAnd sin 9)}]

+ 1) + jq)
(2.3)

Let the complex far field E has a magnitude |E| and an angle

Y. Then
|E| eIV - g {(a +a_ ) cos (504 gyne) + (b _ b)) |
st n -n’ € Ay -n n
N
8in (Eﬂigﬂ sin 8)} +a0 4+ bo +;El{(an -a_n) sin (ZEXEQ sin 6)}
21 nd
o (bn +b_n) cos ( X sin 6 )}
. (2.4)

Hence from eq. (2.4)
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N
b0 + I [(a -a_) sin (2“)‘“d sin 6) + (b +b ) cos(zn nd sin 9)]
A n n
tan Y =
5 21 nd 27 nd
ao rnfl [(an +a_n) cos (T_ sin 0) + (b__n -bn) sin (—— 5y sin 9)]
. (2.5)
The phase front in a particular direction 6 has a tilt
ay
d8. By carrying out the derivative operation with respect
to 0 in eq. (2.5) and after some algebric manipulatioms,
the tilt is obtained as follows:
o _ 2nd Numerator
de : ° Denominator (2.6)
where,
- 27 nd
Numerator = n§1 n{ (an —a_n) cos ( ;) sin 60) —(bn +b-n_)
2m nd » 2m nd
sin (—— sin 8)} ao+ b {(a +a_ ) cos ( sin 6)
n=1
27 nd S
-(b“ _b-n) sin ( 7 sin )}l +] £ nf (an +a_n)
n=1
N
27 nd 2T nd &
sin (—;‘—— sin 0) + (bn -b-n) cos (—— Y sin 9)} L {(an a_n)
n=1
ein (__nd_ sin 0) + (b +b_ ) cos (2")‘“d sin 6)} + bo
v K2 T)
and,
N 2n nd
Denominator = [80 +z k(a +a_ ) cos ( sin 0)
n=1

N
- @ -b_) sin (2104 g44 0)) ] 2 [ b +I {(a -a_)
.1
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21 nd . ,27 nd 2
sin ( 5 sin 0) + (bn +b_n) cos (—5— sin 0)}
aes K2<DY
For the particular case,
Nel, ag =0, by =0,8,=1,8 ;=8 b, «0,b =0
eq. (2.6) reduces to
2
dp _2nd d5d% 1 -a ... (2.9)
dé A 2 4m d
1 +a" + 2a ( Y sin 0)

Incidentally (2.9) is the same result as obtained by Meade {1]
and Dean Howard [2].

Next, given the tilt %% of the isophasor limes, what
is the separation distance between the geometric center of
the spatially distributed emitters and the projected phase
center from the phase measuring device. A typical set up
is shown in Fig. 2 where the part of a skewed isophasor
line PQ is shown to have come from a spatially distributed
emitters of length A. The isophasor line is being observed
at a distance R which is in the far field of the emitters.
Two receiving elements P and Q are properly aligned along
the 1sbphasor line so that their measured phase difference
is8 zero. So the projected phase center would be along TS
which is perpendicular to PQ and is tilted at an angle B
to OT. The object is to find the length L. Now the path
difference between OP and OQ is RQ(-%;-dw). Here dy 1is the
phase difference in the electric field between the points

P and Q along the isophasor line. Also PR = R d6.

A m
Jos L R mY_ ) gy
Hence tan 8 = Gr = ¥ PR "R 46 - 2R a6

<o (2.10)
12
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Pigure 2.

Spatial error due to skewed isophasor lines
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2.2

A dy
Hence L >r 6 a2 A1)

So from (2.6)

A_dy Numerator

L= 27 dO 4 cos 0 Denominator

i L _ cos 6 Numerator »s0(2.12)
A M Denominator

Where A = Total spatial width of the emitter distribution
and M = (Total number of emitters -1)

Therefore it is possible to make the ratio % change
with the complex voltage excitations of the spatially
distributed emitters and their interelement spacing d .

For some problems it is desirable to make % arbitrarily large

by proper choice of d , an and bn' In section IV some

examples would be presented to illustrate these points.

For Wideband Waveforms:

For wideband waveforms, it is very difficult if not
impossible to define isophasor lines. But it is still
possible to define a projected phase center for a spatial
distribution of emitters transmitting wideband waveforms.

In order to obtain such a definition for a projected phase
center it is necessary to define the model for the receiving
elements of a wideband waveform. For this problem, the
phase sensing device is assumed of the form shown in Fig. 3.
Here two signals x

1

the two phase sensing devices A and B at a certain instance

(:1,91) and x, (:1,62) are arriving at

t. On one channel the Hilbert Transform of the signal is

14
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xl(t,el) HILBERT il(t,el)
yy g TRANSFORM
MULTIPLIER INTEGRATOR
3 xz(t,Oz)
4 B

Figure 3. Receiver mechanism for a wideband waveform
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performed and this is represented by x, of the original

1

signal x, and then the two signals are multiplied and

1
integrated to yield the output I. I is then related to
the measure of closeness of the projected phase center to
the geometrical center of the set of emitters. For I = 0,
the projected phase center would coincide with the geometrical
center of the spatially distributed emitters and for any other
values of I #0, the two centers would be far apart. The
distance between the two centers could be obtained by taking
known waveforms and calibrating I to the error distance.

For the special case of a signal originating from a
(t

single source x 61) and X, (t, 92) would be the same.

1
For a real signal, the signal and its Hilbert Transform

are always orthogonal and hence I would be zero.

Mathematically,

©
I-fx (t);(t) dt = 0 ceal(2.13)
-
always holds if x (t) is real. So for a single source
transmitting any arbitrary wideband waveforms, this device
would make no error at all in prediction of the phase center
of the spatially distributed emitters. However, for a general
case of multiple sources, the situation would be different.
This is dealt with in the next section but in the time

domain.

16




ITI. SKEWED ISOPHASOR DESIGN FOR ARBITRARY TIME SIGNALS

For this case a set of emitters are chosen similar to
the diagram of Fig. 1. Instead of exciting each emitter by
a single frequency as in the previous case of 2.1, each

emitter is now excited by currents of the form

im (x,t) = Am (x) £ (t) Sete(3.1)

where Am (x) is the spatial distribution of the current on
emitter m and f (t) is the time dependence of the current.

For an array of point sources one can write

N
i (x,t) = f (t) I Am (x) &(x-md) e 2}
m=-N

where Am (md) represents the strength of the discrete

emitter at x = md. Now the far field at a distance R can

be expressed as

E(e,t)-m z Am'a}? f(t--é+c—sin 0)
m=-N
u N
A0 R, md
ol o b B e e (3.3)

where ¢ 1s the velocity of light and-uo is the permittivity
of free space. This is essentially equation (20) of Tseng
and Cheng [3] .

The model of the receiver is assumed to be same as

4 before. This is illustrated in Fig. 2. So for this case

17




3

2
u N

= . 9 _R, md x

I = T Amﬂ,{p (t._c+c sinel)}
m=-N !

*y

u N

-0 R, kd

AﬂR Ak {F(t - = 7 sin 62)} dt ... (3.4)

where é{,{°} denotes the Hilbert transform. The limits
of integration correspond to the times when the integrator
starts integrating (Tl) and when the integrator stops
integrating (TZ)'

For simplicity it is assumed that ¢(t) = sin wt,
so that

}{_{F ()} = w cos (wt + 90°) = -w sin wt sas(3e )

Hence,
Ty
M N N
0 .2 2
I= JP (— L z (-w 7)) A
4mR SR T m Ak
T1
sin (wt - %-+ mg sin 6 ) cos (wt - R + Eﬂ sin 0 ) dt
or
Z - N N
w- 0 2
I= (— z X A
“7 Y%mr n=-N k=N A An
i
i
18 f i
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P

T

%4

J

f sin{ 2(wt-3-)+g(m sin 6, + k sin 6,) dt
e c 1 2

Tl
TZ, -
+ frsin{ (—i-(m sin 6, - k sin 6)}:dt ek (13%6)
J i c 1 20
g 3
1

Since the purpose of the integrator in Fig. 2 is a

smoothing operation, the average value of the first

{ntegral would be zero as the time average of a '"sin"
function 1is zero.

Let 92 = 0

and 61 = 0 4+ AD LoD

where AB represent the azimuth angle subtended by the
receiver at the origin. Then
msinel-ksin92=

A

{Wm cos A® - k)2 + (m sin Ae)z‘sinile + tan i, E—i%:—i——g_—k. ’

-

i Gle

So the error I can be expressed as

2 N N

u

W m0 2
QLR o ¢ 7 S z A X

2 C4mR an ko=l Ak m
TZ 2 S
{ - T
J’ sin ‘\ﬁ:cos A® - k)~ + (m sin AS) VR
s

-1' m sin A6
sin {6 + tan -‘m‘_‘k)}dt ves (39}
19
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I=-1/2 G—= ) z A T, =T
4R el A'k m 2 1

d 2 -
sin - V(m cos AB ~ K)" + (m sin A8)2 sin {8 + tan ltﬁ-:—:-%_—k)

..+ (3.10)

It is interesting to note that since I is an odd function

of 6,
2n 2T ;
f I () d6 = A j sin[zsin(9+v;)} de
0 0
2 27
= A j sin [z sin (8 + lﬂ)] dé + sin[z sin (8 + ¢) | do
0 t A
L m
= A f [sin z sin (8 + W)] d6 - f ain[z sin (8 + w)] de
0 0
=0

ees(3.11)
This implies that the total error integrated around the
set of emitters is always zero.
Now the error between the projected phase center
and the geometrical center of the spatial distribution

of apertures would be given by (2.11).

5

So the objective now is to find the relationship between

D g SO

I and y. Let

20




X (tl,Bl) = gin wt

and X, (:1,62) = sgin (wt + V)

then from a derivation similar to that presented in this

section it can be shown that

T,
L
I= f cos wt sin (wt + Y) dt = 5 sin ¢
3 (31D
Hence
R T R
2m  dé m (T, -T, & - 41% d6
2 1
wbe G819

So it is possible to make L larger than the half of the
spatial distribution of the emitters by proper choice
of the amplitude coefficient of the emitters.

Some examples are presented in the next section to

illustrate it.
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IV. EXAMPLES

The mathematical formulations presented in the previous sections is
utilized to obtain some representative numerical values for various
electromagnetic emitter configuration.

Figure 4 represents the skewed isophasor lines of a 3 element array.
The spacing between the elements is 1.5\ so that the total width of the
aperture is 3.00. The objective then is to obtain the largest slope for
the isophasor lines within an angle window of 10 degrees (between 175
and 185 degrees). The variables in this problem are the complex excita-
tions of the elements. The phase reference for this diagram is referred
to the geometric center of the array. The optimized phase of the far
field is shown by the solid line in Figure 4. The dashed line represent
the gain for the 3 element array. The gain is defined as the logarithimic
ratio of the far field between the present 3 element array and an
omnidirectional element fed with the same power as the 3 element array.
It is interesting to note that within the angle window the electric
field intensity remains relatively constant,

Figure 5 represents the optimized 2 element array having the same
aperture length of 3.0\ as in Figure 4. This represents the optimized
case of Meade [1] and Howard [2]. It is clear from this diagram that
the slope of the phase of the E-field is no longer linear over the angle
window as it was for the 3 element case. The gain for the 3 element
case was higher outside the angle window. An important feature is that

the linear portion of the slope of the phase is situated near a minimum

field intensity. Figure 6 presents the slopes (2L) for the 2 and 3 element

A
cases.
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Figure 4: Skewed isophasors of a 3 element array
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Skewed isophasors of a 2 element array having
the same aperture length as of Figure 4.
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Figure 6: Slope of the far field phase for a 2
and a 3 element array
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Figures 7 and 8 represent the same cases as presented in Figures
4-6 except now the aperture length is restricted to 0.6)\ instead of
3 ). Figure 7 represents both the phase of the far field and the
gain of the 3 element array. This correspond to point A on Figure 10.
Figure 8 represent the corresponding quantities for the 2 element
array. For Figures 7 and 8 there is very little difference both in
the phase of the far field and the gain. Hence the criterion (max-
imize the slope of the far field by proper choice of excitations) is
not a valid one for closely spaced elements. This is true because
for closely spaced elements the array becomes very sensitive to
excitations. Henre a more meaningful criterion would be the maximiza-
tion of the slope of the far field with respect to the excitations
for a fixed source norm. This implies that the optimization would be
carried out for a fixed power input. This is a very interesting area
which would be investigated in future work.

Figures 9, 10 and 11 present results obtained for various windows
and minimum interelement spacing. The plots are the ratio of the
projected phase center by half the length of the aperture against the
number of elements in the array. The maximum slope for the curves over
a given window has been obtained by varying the excitations and inter-
element spacings. Care has been taken in the optimization procedure to
make sure that the interelement spacings do not go below a certain
value. For Figure 9, the minimum interelement spacing is 0.5)\. It
is interesting to note that a large ratio 2 could be achieved for the

A

same number of elements over a smaller window.
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Figure 8: Skewed isophasors of a 2 element array having the
same aperture length as of Figure 7
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Figure 9: 2L/A for various elements having 0.5 ) as
an interelement spacing
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Figures 10 and 11 display the same characteristics as observed in
Figure 9 but this time the interelement spacings are greater than or
equal to 0.3X and 0.2\ respectively.

For the optimized parameters, it is seen from Figures 9-11 that
%E is always greater than 1.5\. This implies that for the given
windows and up to seven number of elements it is always possible to
choose excitations which would produce skewed isophasor lines in the
far field. These isophasor lines would project a phase center which
is at least 0.5 times the aperture length outside the physical aperture.

The slopes of the isophasor lines in the far field becomes much
larger as the elements come closer together. This is seen by comparing
the curves of Figure 11 which correspond to a d > 0.1\ to those of
Figure 9 and Figure 10 which correspond to a d 2 0.3X and d 2 0.5
respectively. Hence there is a strong indication that it may be possible
to achieve larger slopes of the isophasor lines from a continuous spatial
distribution of electromagnetic emitters rather than a discrete one.

But as outlined before this criterion shall be used along with an addit-

ional constraint on the source norm for the arrays. This could be an

worthwhile area to look into in future work.
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CONCLUSION

The possibility of obtaining skewed isophasor lines from two emit-
ters has been illustrated by Meade [1] and Howard [2]. From their
results it is seen that large slopes of the isophasor lines could only
be achieved over a narrow window. The theory developed in this report
could be applied to obtain skewed isophasor lines over large angle
windows. Also of importance is the fact that sometimes the power density
is considerably greater than that indicated by Meade [1] and Howard [2].

The theory presented in this report can also be applied to time
waveforms where the apparent time of arrival of the waveform can be
changed with appropriate phasing of the electromagnetic emitters.
Another important application is in the guidance of a missile by the
skewed isophasor lines. It may also be applied in the case of Dis-
placed Phase Center Antenna (DPCA) to counteract the linear motion of
the airborne radar. However the technique presented here can find

applications to many other electronic systems.
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APPENDIX. A - ROSENBROCK'S OPTIMIZATION METHOD

The function - minimization algorithm due to Rosenbrock (9] is well
known but is included here for completeness.

The Rosenbrock search technique uses M mutually orthogonal directions
during each search cycle to find a relative minimum. This strategy differs
from a steepest descent technique which uses successive orthogonal directionms,
but these successive directions do not necessarily form a mutually orthogonal set.
The M mutually orthogonal directions are the basis for the success of this
technique. Moreover, unlike the other optimum search procedures this
method does not require any derivatives of the functions to be minimized.

The basic elements of the Rosenbrock algorithm are as follows:

a) Step Size: The step size in a given direction is chosen by speci-
fying an arbitrary magnitude h and then, if a step h decreases the value of
the function (for a minimization problem), h is multiplied by a constant

¢ta>l). 1If the value of the function increases, h is multiplied by a con-
stant - B(0< B<1l). h should be on the order of one percent of the average
magnitude of the variables. To determine the values of o and B, a series
of trials using various values of a and B should be made for a given class
of functions for which the function to be minimized belongs.

b) Direction: The Rosenbrock algorithm uses M mutually orthogonal directions
dl’ d2, o dM at each stage rather than choosing a single direction in
which to progress. Therefore, a search is made in each orthogonal direction
before the next step is chosen (at least, one trial has been successful -

a value less than or equal to the old value - and one has failed in each
direction).

There are three cases to consider:
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i) The first trial is a success.

ii) The first trial is a failure and the second trial is a success.
iii) The first trial is a failure and the second trial is a failure.

For a start, let [DOJ = (U] (identity matrix) where dg, dg, i dg
are individual directions in which steps are to be taken. The search technique
progresses as follows (for one variable xl):

1) A step is taken in the direction d0 from an initial point x0

xl = h (xoo dg).

2y I f (xl) <f (xo), the step is successful and the step size is
multiplied by & again and again until a failure is recorded. After this
failure, the result of the last succcessful trial and the number of success-
ful trials 1is stored.

3) If £ (xl) >f (xo) on the first trial, a failure results and the
sign of the step size h is changed and the search continues as in (2).

4) If f (xl) >f (xo) and f (x2)> f (xo), the second and further trials
are determined by multiplying h by minus Buntil a success is recorded.

After a search has been made for each variable in all directions dg, a new
[DIJ is determined. Let 8y be the algebric sum of all the successful steps
h, in the direction dg . Then the first element di of [DI] is chosen as the

i

vector sum of all the vectors I gido The other elements of [Dl] are

i.
i
determined using the Gram-Schmidt orthogonalization procedure. Let
- 0 0 0
Al gldf+ g2d2+ ....+3MdM
- 0 0
Az gzd2+ ....+gMdM

Ay - By

where A, is the vector joining the initial and final points obtained by the

1

sum of vectors dg, and Az is the sum of the successes achieved in the directions
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other than the first and so on. Then from the Gram-Schmidt orthogonalization

procedure

B, = A2 - (A2 . dl) d1 where T is the transpose

d

M Bl

So for the second iteration the searches are made in M orthogonal directions

of [Dl] . The process is continued until a convergence criterion is satisfied.

The computer program listing for this procedure is listed below.

1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190

SUBROUTINE ROTATE(XsNsVFsUsHsVVINFIRST)
dimerisior d(39)y:(30)yuu(30y30)ya3(30y30)y0(30)run(305s30)yns(40)
bbh=0.5

a8a=3.0

if(nfirst-1) 15y15,17

15 do 24 i=1yn

d(i)=0.,0

do 25 J=1wn

29 ulisy)=0,0

24 uliri)=1.0

vww=vf(x)

17 do 1 Jd=1wn

ne(J)=0
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1200 1=1

1210 e=h

1220 vvt=vv

1230 2 do 3 i=1lwn

1240 3 b(id)=m(id)teXu(dri)
1250 dv=vf(b)~-vv

1260 vv=vvtdy

1270 g0 to (495926927 )y1
1280 4 1=3

1290 if(dv) 28,28,29
1300 29 1=2

1310 vv=vv—dy

1320 e=~h
1330 g0 to 2
1340 5 1=3

1350 if(dv) 28y28935
1360 35 1=4

1370 41 if(ns(J)+20) 44,4447
1380 47 e=-~bbXe

1390 ns(d)=ns(d)—1

1400 g0 to 2

1410 28 e=aaXe

1420 ns(d)=ns(J)+1

1430 g0 to 2

1440 26 if(dv) 28,28,42
1450 42 e=e/as

1460 vv=vv-~dv

1470 €0 to 44

1480 27 dv=vvt-vv

1490 if(dv)41+,41,44

1500 44 do 45 i=1lyn

1510 45 x(i)=x(i)teXul(isi)
1520 1 d(i)=e

1530 do 9 m=1vn

1540 ¢=0.0

1550 do 6 i=1lwn

1560 zz=0.0

1570 do 7 J=mwn

1580 7 zz=zz2+d(Jdd)Xul.jyi)
1590 if (m—-1) 32,32,8
1600 8 mm=m-1

1610 do 11 Jd=1lrmm

1620 z=0.

1630 do 12 k=1lsn

1640 v=0.

1650 do 13 l=msn

1660 13 v=v+d(1l)Xul(lsk)
1670 12 z=z4+vikunl.sk)
1680 almyd)=z

1690 11 continue

BEST AVAILABLE COPY

38




1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840

do 14 J=1symm

14 zz=zz~a(med)Xun(iri)

32 b(i)=z=z

6 c=ctzzXz=z
c=1./sart(c)

do 10 i=1lrsn

10 un(msi)=ckb(i)
? continue

do 18 i=1lsn
b(i)=0.0

do 19 Jd=1lr»n

19 ulisd)=un(ird)
18 continue
return

end
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APPENDIX B - COMPUTER PROGRAM DESCRIPTION

The user-oriented computer program consists of a main program which
supplies all the necessary data required for the execution of the computer
program and subprograms. The first subprogram FUN in this case, defines
the function to be minimized and the second subprogram ROTATE is the
optimization method due to Rosenbrock. The latter is described in
Appendix A.

The main program supplies all the input data. The input data con-
sist of the following statements. Statement number 40 provides the value
for N (as shown in Fig. 1) through MNE.

Statement numbers 90-120 provide the initial guess for the excita-
tions of the electromagnetic emitters in the first N8 elements of the
array Y. The elements of Y(I) are defined in the following manner:

a, = 0.5 [y +v(2)
b, = 0.5 [Y(3) +Y(®)]
a_, = 0.5 [v( +yvW)]

b, = 0.5 [¥(3 - Y]

and so on. The statement number 130 provides the initial guess for the
inter-emitter spacing for the array through Y(N9).

Statement number 150 defines the value of %L through the constant
SLOPE.

Statement numbers 170-180 define the angle window over which the
desired slope is to be achieved. MP provides the start of the angle

window in degrees and MQ is the last angle of the window, taken at steps
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of MR degrees. It is not necessary to have the window symmetrically

placed around the z-axis of Fig. 1.

Statement number 250 specifies the maximum number of iterations to
be made by the optimization method to yield the final result.

Statements 390, 400 and 480 provide the excitations for the array
elements and 490 prints the value for the interelement spacing and the
value of the function through VFVAL at the end of each iteration.

580 prints the slope, the magnitude and phase for the far field
within the specified window. This is done at the end of the final ite-
ration.

Statement 650 defines the constraint imposed on the inter-element
spacing. For this problem interelement spacing cannot be less than or
equal to 0.6).

The program as presented represents a 3 element array for MNE=1.
So for a 2-element array the necessary modifications of the program are
as follows. The statements 450-490, 870-880 should be deleted. State~
ment 80 should read N9 = N7. Statement 641 should be introduced to read
N9 = N7. 1In statement 650, the contraint should be changed to half the
interelement spacing desired. For example, if the problem be such that
the interelement spacing for a 2 element array be restricted to be greater
than or equal to 0.5 )\ then Y(N9) 2 0.25

The computer program listing is presented below.
10 EXTERNAL FUN

20 COMMON /AJ/MPyMQsMR»MS»SLOPEsMNEyN7NBsN?»CC
30 DIMENSION Y(30),AXES(30y30)

40 MNE=3
50 N6=4%XMNE
E 60 N7=Né+1
§ 70 NB8=N7+1
: 80 N9=N8+1
R BEST AVAILABLE COPY
: 100 Y(2)=0.01 g
3
%
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110
120
130
140
150
160
170
180
190
200
210

")")o

230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
S00
10
520
530
540
550
560
570
580
590
600
610

DO 11 I=3,N8

11 Y(I)=0.

Y(N?)=0,7

H=0.,01

SLOFE=16
FF=180,/3,14159263

MP=177

MQA=183

MR=1

MS=0

J=1

NQ=N9

FRINT 189sMNEsMFsMQySLOFEy Y (N?)
189 FORMAT("0 "»319»2F10.5)
0O 2 II=1,10

CALL ROTATE (YsNQsFUNyAXESsHsVFVALsJ)
NN=1

CC=0

DO 23 NL=1sMNE
Al=0,5KCY(NN)+Y(NN+1))
B1=0.,5%(Y(NN+2)+Y(NN+3))
A2=0.SX(Y(NN+1)-Y(NN))
B2=0. 5K (Y (NN+2)~Y(NN+3))
C1=SQRT(A1XA1+BR1XER1)
C2=SQRT(A2XA2+RB2XER2)
D1=FFXATAN2(B1yAl)
D2=FFXATAN2(B2yA2)
CC=CCH+CIxCL1+C2XC2

FRINT 108yNLsA1,B1,C1,D1
FRINT 108s~NLsA2sRB2,C2,D2
108 FORMATC(® "»1I5y4F15.95)
NN=NN+4

23 CONTINUE

NL=0
C1=SORT(Y(N7)XY(N7)+Y(NB)XY(NS8))
D1=FFXATAN2(Y(NB) »Y(N7))
CC=8QRT(CCH+C1x%xC1)

FRINT 108yNLsY(N7)sY(N8)»C1l,D1
FRINT 100yY(N9)»VFVAL
IF(VFVAL.EQ.0.) GO TO S

100 FORMAT(* "+4F15.7)
J=J+l

2 CONTINUE

S MS=1

MF =MF -3

MQ=MQ+3

MR=1

ZZ=FUN(Y)

é6 CONTINUE

STOP

i BEST AVAILABLE COPY
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F’ 620 FUNCTION  FUNCY)
630 DIMENSTON Y(30)
640 COMMON /AJ/MF » MQy MR » MS » SLOFE y MNE » N7 » N8y N9 » CC
650 IF(Y(N9).LE.0.4) GO TO 4
| 660 10 12 I=1,N9
670 12 TF(ARS(Y(I)).6T.10.060 TO 4
680 FUN=0.
690 D0 1 T=MF,MQsMK
700 FI=0,0174533%FLOAT (1)
710 FHI=6.283186XSTNCFI) XY (N9)
720 UF=0.0
730 DIN=0.0
740 NN=1
750 U1=0.
760 U3=0.
770 DO 2 N=1yMNE
780 THT=NXFHI
790 CT=COS(THT)
800 ST=SINCTHT)
810 UF=UF+Y (NN)XKSTHY (NN+2)XCT
820 DIN=DN+Y (NN+1)KCT~Y (NN4+3)KST
830 U1=U1+NKC(Y (NN)KCT~Y (NN+2)XST)
840 UZ=U3+NK (Y (NN+1)XST+Y (NN+3)XCT)
850 NN=NN+4
860 2 CONTINUE
870 UF=UF+Y(N8)
880 DN=DIN+Y(N7)
890 SF=COS(FT)X(U1LKDNFUSKUE) / CUFKUE+DNKDN)
900 SF=SF/FLOAT (MNE)
910 IF (MS.EQ.1) GO TO 11
920 SF=AES(SF)
930 IF(SF.LT.SLOFE) FUN=FUN+SLOPE-SF
940 GO TO 1
950 11  AAG=SART (UFKUF+TINKIN)
960 AAG=AAG/CC
970 AAG=20 . XALOG10 (AAG)
980 SR=ATAN2(UF »DIN)
990 SI=180./3,14159263KSK
1000 FRINT 101,1yAAGsST »SF
1010 101 FORMAT(® *»I5¢3F15,3)
1020 1 CONTINUE
1030 RETURN
1040 4 FUN=100.,
1050 RETURN
' 1060 END

e 7

Rt AVALABLE COPY
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APPENDIX C - COMPLEX EXCITATIONS OF THE OPTIMIZED ARRAY

The complex excitations of the electromagnetic emitters that yield a
prescribed slope of the phase of the far-field pattern are presented in
this section.

The complex excitations required to yield the far-field pattern
presented in Figure 4 are as follows:

a, = 0.087 [12.20°

a_ = 0.03 4.96°

a, = 0.093 -171.34°

Similarly for the field pattern for the 2 element array presented in
Figure 5, the excitations are as follows:

a, = 0.165 [8.37°

(o]
a_; = 0.062 [|-171.63

For Figure 7, the excitations are:

PR O L2.52°
a, = 0.069 (177.91°

a, = 0.014 [164.35°

The corresponding excitations for Figure 8 are:

& = 04 lo.29°

a_ = 0.095 [178.92°

Finally the complex excitations required for a 7 element array to

yield point B in Figure 9 are as follows:




Lo St

.096

.082

.043

.045

.017

.004

.032

6.95

|-175.34°
|-164.99°

|-84.82°
{2.48°
[124.42°

a5




