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L. Mendelsohn and V. H. Smith

51 THE IMPULSE APPROXIMATION

Following the historically significant papers of DuMond,!*? almost all Compton
profile experiments have been analysed in the so-called ‘impulse approximation’. It
is only in this approximation that a simple relationship exists between the Compton
profile J(q) and the electron momentum density (EMD) of the bound state of the
atom, molecule, or solid being probed. Recent review articles®* have derived the
impulse approximation from the Waller Hartree theory® or from the time dependent
operator formalism results first obtained by Eisenberger and Platzman® (see chapter 2).
The authors of previous review articles seem to feel that ‘while corrections to the
impulse approximation can now be made, they tend to be small” and that a
‘laborious calculation of the final state wave function is unlikely to be necessary
except for deeply bound core electrons, or for very accurate experimental data’?
It is the purpose of this first section to present a more straightforward derivation
of the impulse approximation and to comment in more detail on the accuracy of this
approximation.

5.1.1 Derivation of the impulse approximation
In the non-relativistic Schrodinger equation, the perturbation on an electron due to
the presence of a magnetic field with vector potential 4 can be written

2

- P R Y (5.1)
mocC 2moc®

where p is the electron momentum, e is the electron charge, mq is the electron rest

~mass, and c is the speed of light. In a scattering process, the photon must suffer

annihilation and then creation. By expanding 4 in creation and annihilation
operators, it is clear that the scattering process is of order 42 Thus, for a first order
perturbation calculation the p. A term contributes nothing. It is only in second order
that this term can contribute to order A2. However, if one assumes that the incident
photon energy lies significantly above the ionization edge, the energy denominators
in the second order perturbation theory expressions will make such p. A contributions
quite small. Some estimates of p. A contributions have been made for the hydrogenic
problem.”® One usually considers only the A% term in first-order perturbation
theory in the calculation of Compton scattering. The scattering process can be
compared with the absorptive photo-electric effect where only the destruction of a
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AToms 103

photon is required and only the p. A term is considered in lowest order perturbation
theory (first order in A).

Using Fermi's golden rule for calculating the transition probability and cross-
section along the lines of Schuwinger” leads to the cross-section cited by Eisenberger
and Platzman® for a single electron in an independent electron model

d’e dr;) sz
dQ de dQ /o, 5
where @, and @, are the incident and scattered photon energies respectively,

® = w; — w,, E, and E, are the initial and final electron energies respectively,
k = k, — k; is the scattering vector so that

k* = ki + k3 — 2kk; cos ¢ (5.3)

Wale™ e |y >|2(Es - Ey — o) (52)

where k; = wi/hc and ¢ is the scattering angle. ¥, and ¥, are the wave functions
for the electron in its initial bound state and its final continuum state respectively.
The Thomson cross-section for unpolarized incident radiation is given by

dQ
Eisenberger and Platzman® include a factor (w»/wy)? in their definition of (da,dQ)y
which modifies their eq. 6 to include the factor w,/@, rather than @;/®, in our
eq. (5.2) above. The delta function in eq. (5.2) guarantees conservation of energy. In
the general scattering case no conservation of momentum between the photon and
electron is required as the nucleus itself may carry away momentum during the
collision.

To derive the impulse result let us assume in the o function that the electron
can be treated as free (but moving) during the entire collision process. Before the
collision let the electron have momentum p, and after the collision momentum p,.
Then

(dﬂ) = (e*/mgc*)(1 + cos? ¢) (54)
1

E> = p3/2m

E, = pi/2m. 5
Conservation of momentum for this free electron case gives
p: = p, + hk: p}=pi+2hk.p, + K> (5.6)
and the J function becomes (see eq. (2.4))
Sl(2hk . py + h2k? — w)/2m) = o{"': ['5 »'kpl - (';:‘k’ - ";‘):I} (5.7)
Within the impulse approximation i is taken to be a plane wave
Wa(r) = ePrih (5.8)

The momentum space bound state wave function z;(py) is the Fourier transform of
the corresponding position space function so that

s
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71(py) = (Znh)'“J.(,!/,(r)c ipiarih d3y (5.9)

and the sum over final states is

);a J(anr)"3 d3p,. (5.10)

Choosing k to lie in the z direction and using momentum conservation

XR‘/’I leik"ll//zﬂzéu‘:z -k - o)

)
= fd3pz[(2nfz) ~3/2 J\d”r ePh 4y (r) {36{1’3: {p,, - <’;::-)— h;)]} (5.11)
Defining
=
eq. (5.11) reduces to
Jd3P2|11(Pl)lz5<}:: (1= — (1))- ; (5.13)

Noting that for w,, ¢. and w, (or w) fixed, k is fixed as well. it follows from eq. (5.6)
that the integral over d®p; is equivalent to an integration over d*p; = dp,, dp,, dp,..
Making use of the properties of the § function, eq. (5.13) becomes

m o ,
h’EfJ‘- [ 2i(P1x. P1y.9) | dp1x dp1y (5.14)

which is equivalent to an integration over the plane in momentum space p;. = q.
For a momentum density which is spherically symmetric, it is convenient to rewrite
eq. (5.14) in cylindrical coordinates from which it reduces to (m/hk)J(q) where

J(q):2n£ r|7.:(pl)|2px dp;. (5.15)
q

Expressing p and g in atomic units of momentum h/a,. eq. (5.2) becomes the well
known result for the Conmipton profile in the impulse approximation

d’e (da\ i, mad 1
] = iure ; 5.16
dQ dew (dn)ﬂu, W kag '@ (>-16)

The derivation has been presented in this much detail to bring out clearly all the
approximations leading to the impulse result of eqs. (5.15) and (5.16). and also to
serve as an introduction to the units commonly used in Compton work.

From the foregoing analysis it should be quite clear that the impulse approxima-
tion is equivalent to a photon scattering inelastically from a free electron gas with
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a spherically symmetric (although this is not intrinsic to impulse) momentum
distribution where both energy and momentum are conserved during the collision.
The momentum density for any particular momentum in the free electron gas is
obtuined from the square of the Fourier transform of the initial bound state radial
wave function. The energy-momentum conservation relations determine that for an
incident photon with energy m; scattering at any fixed k (¢ and ,), contributions
to the scattering from electrons with moumienta p, can occur only if the projection of
p. on the scattering vector k equals g. This can only occur if py is greater than or
equal to ¢.

DuMond! intuitively represented the atom as a free clectron gas. Solving the
encrgy-momentum conservation equations relativistically, he was able to show that
because the electron moves with momentum p; before the scattering, the wave-
length of the scattered photon is Doppler shifted from the usual Compton result
according to

h
Ay — Ay = (1 —cos ) + gi*/mgc (5.17)
mye
where
A* = (A} + A2 — 24,4, cos ¢)V/? (5.18)

and ¢ is the projection of the initial momentum on the scattering vector as before.
This result occurs after setting the initial electron energy to mge? and may not be
immediately discerned from DuMond’s papers since he defines A* and g slightly
differently from the above. Since the A* term varies slowly over the profile, eq. (5.17)
shows that 4, varies linearly with g. Equation (5.17) suggests that a large and
negative q corresponds to a small 2, or a large w, of the scattered photon, whereas
a large and positive ¢ corresponds to a large 4, or a small @, of the outgoing
photon, and a corresponding high energy for the ejected electron. From eq. (5.17),
one can define ¢ as

q = mocl/i* (5.19)
where

L= Ay — Ay — (h'mye)(1 - cos ¢) (5.20)

represents the displacement in wavelength from Compton scattering from a free
electron at rest. In his analysis DuMond first considered the scattering from a
mono-energetic isotropic free electron gas with momentum py. It is clear from
eq. (5.17) that such a gas would give rise to a flat intensity distribution with a width
in 7 of 2pA*/me. It also follows that the area of this intensity band is proportional
to the number of electrons with momentum p,. Then considering a gas with a
distribution in momentum and assuming scattering equally probable from any
momeiitum, Duffond obtained the result of eq. (5.15) for the unnormalized intensity
distribution. Of course this omits the slowly varying factors @,/ k contained in the
correct impulse result given in eq. (5.16). [t is certainly a tribute to DuMond that his
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intuitive approach brought out the most salient feature of the scattering. the Compton
profile J(q).
Simplified forms of 2* such as

/¥ ~2/,sin 3¢ (5.21)
(¥ ~ 2s175) 2 sin 522
21X ~ 2sy25)" T SIn 3 (2.22)

have often been used in eq. (5.19). Use of eq. (5.21) will produce an error in g of order
[(22 — 2;)/2,] while eq. (5.22) leads to an error in g of order [(Z, ~ 73)/4,]*. Since it
introduces a first order crror, one must be careful when using eq. (5.21) to determine
the value of g, especially at large g values and for the case of large scattering
angles «ndor high incident energy photons. Phillips and Weiss'” have calculated
that for Mo Kz radiation scattering at 90°, a g using 2* defined by eq. (5.21) of
095 corresponds to a g determined by eq. (5.12) or (5.18) of 1:0. At a g value of
about 80, the difference between the two g values rises to almost 10 per cent.
Williams'" has pointed out that the use of eq. (5.21) for typical X-ray wavelengths
leads to a scale change of the order of 3 per cent and hence an error of about
3 per cent in the renormalized value of J(0). From this discussion it should be clear
that such approximations are not suitable for accurate work. It can be shown'? that
q (eg. (5.12)) determined from a non-relativistic approximation approach at the
outset differs by terms of second order in (22 - 72y)/7; from the ¢ using the correct
+* given by eq. (5.18).

In conclusion we note for the interested reader some other recent derivations
and discussions of the impulse approximation.’® "% Furthermore, in connection with
the elegant derivation using a time-dependent operator formalism by Fisenberger
and Platzman (see chapter 2), it has been pointed out by Benesch and Smiith!® that
the use of the fundamental assumption

exp (—[Ho, V]i?/2) =1 (5.23)
in the many-electron case leads to an additional contribution proportional to
2J dpl L}p: l‘('\ {- Pi.P2 - klp].p:'(s((!) ‘1\:/2 'k'pl) (3.24)

where I'(p;. p2 | py. p2) is the momentum space analogue of the spin-free two-particle
density matrix in position space. It has been shown by Smith!€ that this contribution
is negligible under normal experimental conditions but should be included when one
integrates d?a,/dQ de to obtain the total scattered intensity.

5.1.2  Accuracy of the impulse approximation

Returning to the basic eq. (5.2). it is guite clear that more realistic final state wave
functions than plane waves can be used. In addition, E; in the delta function can be

chosen 1o be the electron’s binding encrey. With these changes, analytic results have

been obtained for the hydrogenic case. Results for the K-shell based on the analytic
expression of Gumimel and Lax'” were obtained by Fisenberger and Platzman®

7
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FIGURE 5.1
Comparison of EH and IH Compton profiles for a K-shell electron. Z = 5, E; = 20
keV, ¢ = 180", Solid line EH and dashed line TH.

and studicd in some detail by Mendelsohn and Biges.'® It should be pointed out that
Figure 3 in Ref 6 which has now becn reproduced in two review articles®* is
incorrect as it shows the “correct” results lying above the impulse hydrogenic results
at the profile centre. The ercor was fortunately corrected in Eisenberger's later
analyses of experiments where a Is core subtraction was needed. A correct com-
parison of impulse hydrogenic and “correct’ hydrogenic is shown in Fig. 5.1 for a
casc similar to the one discussed in Refl 6. Note in this fairly typical case that the
curves cross twice. We shall refer to the correct results as the “Exact Hydrogenid
(EH) results. Mendelsohn and Biggs'® have shown analytically that for Is electrons
the impulse hydrogenic (TH) profile result at g = 0 lies above the EH result as

J”((O) .I|“‘0) = l + 0'145/”(0(’0,‘," f;)k (53*)

where k7 is the value of the scattering vector at ¢ = 0 and ZF, is the effective charge
in the Is state. Clearly the correction is proportional to {binding energy)/(momentum
transfer)”. It should be noted that this statement is not in conflict with chapter 2
where it is stated that the impulse approximation is accurate to [binding energy
(momentum transfer)” |2, The latter comment was made with respect to the accuracy
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FIGURE 5.2
Compton scatiering from a 2s clectron. Z = 5. E; = 20 keV, ¢ = 150° Solid line
EH and dashed line JH.

of the second moment of Si(k,w) while we are discussing the accuracy of J(g) at
q = 0.

EH L-shell calculation results and comparisons with experiment have been
published in a series of papers by Mendelsohn, Bloch, and Smith.'® 2! These
calculations used hydrogenic bound states and hydrogenic contintuim states which
are represented as confluent hypergeometric functions. Again it was shown
analytically’ for a 2s state that the IH profile lies above the EH profile at g = 0.
Although no theorem was proven, it appears from calculations?® for a filled 2p
sub-shell. that the EH typically lies above the IH profile result at ¢ = 0. An additional
¥H L-shell result?® was that the 2s state can exhibit a secondary maximum on the
negative g side of the profile as shown in Fig. 5.2 and occurs at approximately the
value of ¢ for which the TH result exhibits a platcau. This secondary maximum is
more than an order of magnitude down from the primary central maximum. It
appears to be related to the structure of the electron density in the original bound
state wave function. Such secondary maxima in the 2s state have been predicted
recently in ion-atom scatiering calenlations.?2

Since the IH lies above the EH result at g = 0 for the 2s state and the TH
lies below the EH result at ¢ == 0 for a 2p state, there is a cancelling effect in the

>
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caleulation of a total [-shell Comipton profile. Thus the EH correction to an impulse
total profile is less than the corrections for the individual states. For the case of Mo Kz
radiation scatt through 1707 from neon at g = 0 the 25 IH results lie 6-0 per cent

above the EH results, whereuas they lie 7-1 per cent below the EH results for a 2

.« ‘!
(averaged) electron. Since there are 6 2p electrons, a 2:39 per cent increase of EH
over TH for the total L-shell prefile is obtained. For Mo Kz radiation scattering
through 120 from aluminium, the individual 2s and 2p corrections are each about
20 per ceit at g = 0, but the total L-shell EH J(0) lies about 6 per cent above the

IH value. In scction 5.6 we will compare some of these results with experiments

Clearly L-shell corrections to impulse can be quite significant at conventiona! X-ray
7 t I~ =,

energies and scattering angles. Table 5.1 gives typical L-shell corrections for several

Table 3.1 L-shell Corapton profile muxima J(0) for several
elements. THF is the fimpulse’ Hariree Fock resalt which
equals the Simmpulse’ hydrogenic re at g = 0 because of the
way the Z*'s have been chosen. By = 17:374 keV, ¢ = 155

Jenl0)
Element  Z3,(0) 23,00 Jeul0) Jur(0) Sy (0)

Ne 599 496 2:609 2:548 102+
Na 696 603 2200 2128 1-032
My 7-96 708 1:908 1-833 1:041
Al 891 Sl 1-692 1615 1045
Si 938 9-11 1:521 [EER S 1-033

Ar 13:69 13:08 1-077 1020 [-036

elements for Mo Kr radiation. As oue might expect, the corrections to impulse
increase with increased binding (ie. larger atomic number).

Since the EH approach to the correction of impulse profiles utilizes a screened
hydrogenic model for both the ground and continuum states, both electron exchange
and correlation are neglected. The use of a more realistic model for the evaluation
of eq. (5.2) has been considered by DeCicco and collaborators?*** and Grossman
and Mendelsohn.?® These authors have used an atomic central field model potential
duc to Herman and Skillman (HS).?® It employs the full Coulomb potential with the
Slater local approximation to the non-local Hartree Fock exchange and the so-
called Latter r~ ' tail. [t corresponds to the choice of x = 1 for the exchange parameter
in the Hartree Fock - Slater (X#) model approach of Slater and co-workers which will
be discussed in section 5.3 for impulse calculations.

In their method for calculition of exact Herman Skillman (EHS) Compton
profiles, Grossman and Mendelsohn use a modified version of the HS continuum
wave function code of Manson.?” They have found that of the order of 20 or more

nificant figures for

nice to three sig

partial waves must be included to obtain converg

a typical point on the profile. The method has been shown to give agiecment with

analytic FH results to more than three figures when a hydrogenic rather than a HS

potentia! 5 used. This method can be used to caleulate the Compton profiles of
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clectrons in any shell. Recently EHS calenlations were carried out for the neon cise

nentioned above and were found to agree hest with the \f\i‘::'iii'm".hil results over the
whole profile. In addition an impulse calculation was ;. rfoimed '-ing a ground
state HS wave function. Again L-shell cosrections to impulse of about 3 per cent were

obtained at ¢ = 0. Thus the magnitude of the corree tion for neon seems rek

independent of the theoretical bound state wave function approximation used.
Another interesting preliminary result obtained with the partial wave HS nicthod is
that for 60 keV photons scattering from Kyypton, the corrections to the 1HS J(0)
values for the individual orbitals may be of the order of a few percent. The coriection
to the impulse J(0) result for the entire atom is significantly Jess than this because
of cancellation effects. ’

As discussed in the next section. impulse Hartree Fock Slater (x7) profiles are
rameter 7, t.\x-.-,iii”\ for outer H'}"vil 1‘\' Ihe

sensivve 1o the choice of the exch nge pa
close agreement of the EHS neon calculations with L"-'\.{A.-L‘ﬂ may indicate that the
hoice of 2 = 1 may have special advantages. Such a choice of 7 is known to ;\.u! in

the spatial wave function 100 much as compared to a Hartree Fock wave function.

In the FHS calculation, this wave function choice may compensate in part for using

! for calculating the bound and continuum wave functions, (i.e.. the

the same potential
A'“LU!'\"AII""]*’Id relativistic ¢ '\'\.‘!\'
A discussion of the frozen core approxiination h.xxlum given by Currat er al.** and
by Smith.?? A further possible improvement to the EHS “method could be the use of
amore realistic value of % such as 2p determined by Sabin and Smith?® and discussed
in section 5.3.

11 has been asserted® that the impu

frozen core appronimation), and in part fori

11101 2IVES Very accuraie resuits

tum and the “‘HE‘L' wave

representation becomes valid. This would certainly be the case if this were the only

for large g since the clectron 1s then ejecic ni mlh hr;h momen
approximation inherent in the derivation of the impulse approximation. In the dela
function the bound state clectron has also been taken as fice and it is not clear how
racter of the results far out on the profile. Figure 5.1
idly above the IH profile

this affects the asymptotic ¢h
fora K uh-clrnn shows that the EH profile lies substanti
if one 2oes out far enough in g.

3.2 MOMENTUM DISIRIBUTIONS AND INIPULSE COMPTON
PROFILES

between the impulse

connection

ution within the context

In the previous section, we have discussed
Compton profile function J(g), and the inomentum distri
of a one-electron model. As shown by Benesch and Smith.'®3¢ 32 one may
gg;wr:xli/c lhc xc'...m\n\ (5. H) and (5.15) to reflect that J(p.) and J(g) are one-
tions of A(p) = *(p!p) where #(p!p)is the one-particle charge (or

{rix in momentum space for the N-electron system. It is defined

i
by eq. (3.26) in terms of the wave function in momentum space (X, Xa..... Yy
where X; = (p.5;) denotes the combined momentum and \jlﬂ coordinates of

election i
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Hplip) 2 X X nloe X, Xs i, Xy (dX)s. (5.26)

In this equation (dX), denotes the combined operations of integration over the
momentum coordinates and summation over the spin variables of electrons
P DA V. Just as the wave function in moeientum space is related to the wave
function in position space via the Dirac Fourier transformation. so is $(p! p) related

15

to ils posi sSpace .!.".',!i.";".‘»: ;'Ir: ') by

iplp) = @n) ? J“,'(rf ) F e Rt e v (5.27)
Thus the fundamental relations are
J(p:) = J ‘ % Plpz py. p2) dp. dp, (5.28)
and ~
i Jg) =} , p Y(p)dp (5.29)
e

where the radial momentum distribution I(p) is defined by

I(p) = p? l;‘u’p) dQ,. (5.30)

These relationships clearly indicate that knowledge of J(g) leads to information
about the momentum distribution. However, it is logical to ask at this point why we
should be interested in the momentum distribution except that it is accessible through
the impulse approximation from the experimental Compton line shipe. Can it add
to the knowledge of electronic structure which we can derive from the familiar

charge density p(r) = y(r{r), itself derivable from the experimentally measureable
form factor F(s)

~

Fi(s) - ’ ple) e'sr dr. (52

o

o

1)

This question is best answered by considering Fig. 5.3, where theoretical
ions* of I{p). J(g). F(s), and D(r) are prescuted for the *F state of atomic
vanadium (15°2s22p®3523p°3d>4s). Here D(r) is the radial charge density defined by

o
‘sd
9

D(r) = r? f,ym dn

N v

wion presented by Jig) and

The complementury and inverse nature of the inform
Ipiand by Fis)and Dir) is clearly seen. In the plot of D(r) we can obscrve the peaks
,

¢orresponding to the K. L, and M shells but lose sight of the .V shell in the tails

of the other shells. On the other hand, the radial momentum density [(p) curve

i

SCNNEIEE, = RN
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FIGURE 53

Cor 1 1 [ Hartree Fock and ¢

ns for

{a) Radial charg ity. D{r). (b} Atomic form facior. F(sh (¢} Radia

density. I(p). (d) Impulse Co on profile. J(g)

shows the N and M shells respectively as p increases while the L <hell 1s

shoulder on the curve at 6 a.u. and the K shell is lost in the tails of
Consideration of the experimentally measura
he

33 . 11 . e . 1= $}4 15 n
not reveal uH»'..}_\ the shell struciure while the noticeable
Jig) distinguish the N and M <hiells while the core dominates

of J(g) is simply
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Another aspect of the relation between F(s) and J(g) was shown by Benesch,

Sinvh, and Smith,** namely that

F(s) plp + s)dp (5.34)

Thus F(s) is a convolution of the entire one-particle density matrix in momentum

space #(p!p) while J(g) is a oune-dimensional projection of its diagonal component

#(p!p). The stronger smoothing naturz of the convolution may explain why corvel

tion corrections to atomic focia factors are usually smaller than those h Conmipion
- s 4 \'.:-,

profiles which in turn arc smaller than those for the momentum distribution

[nspection of Fig. .\.i contirms this. We shall returnn to the subject of correlatior

cotrections in section 5.4,
[t should ber led that if one proceeds from the position space representation

f I i [
determination of p(r) and F(s) requires only the dizgonal component y(rir), while

eq. (5.27) shows that the full y(r{r) is ru,lun;d for 7(p| p)-

5.2.1 Caleul

The preceding discussion makes clear that one wuy of calculating plp) and J(q)
te #(p|p) from (X,.X,...... X,). In turn,

:d by Dirac- Fourier transforma-

o of pp) and J(g) for atomic systems

Is to use the prescription (5.26) to calct
tion in momentum space may be obtain

wave function, i.e,

the wave func

tion of the position space
. 4 N ;

N X =) R e e m)mp(- i3 pj.r,) (dx)y (535)
=1

where x; = (r; -1) is the cor *m...\ 1 p\\\lth‘n and spin coordinuate of electron j and
(dx)y has the analogous me g to (dX), 1ed above. Since many position spac
wave functions are available fnr atomic systems or are easily calculable today, this

transformation is the commonly followed procedure (or the equivalent transforima-
tion (3.27) of ',.‘(r: ') and will be discussed in some detail later in this section. How-
or by writing the Schrddi
ine g directly.
’\M': :V'.'."VJI'I 7 Two appr yact

:r equation as an equation in terms of g, it is possible

to det

I. Dire

1es may be considered. The first is a differential

3 o » - . 3. ¢ ! xry] Nk piin o5 & - | . 3
i & mvtgi U space »«LHJ a simple reptacement of x b\ i 4[' et 1S

ce the r poum s involve differential oper l!\‘!\, thh approach is nul a

Hylleraas*® did solve this dificrential equation for z in the case of the

!
natom. [n the second approach application of the Dirac-Fourier transformu-
1
Is

S\hrm 17

+ n

to an integral equation for

xi.'

ton to the position-spuc rer equation

Z-As an example, it takes the following form for the one-electron hydroge atom
5
2 2 ) " W
(p 2E)zip) ‘hlp—p'| “xip)dp. (5.36)
J
B ; 1
’ Ciae 1t wa analogous equation for the
two-clectron ator and Coulson?” and by
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= 31 . . . . F
Henderson and Scherr®® using an iterative method of solution. The difficulties which

they encountered are one rezson for the neglect of its use since then,

) ] T P 4 23 Ale 2 N . 10t o ‘. H
.., !!/.IJ( ,i‘.f r rransjorniiadton af yoor 7 '\‘1\!'\“"‘5: '!'\ ! rect solution n hod 18
lormant today due 1o the complexities involved in making it computationally

tractable. \1~.'\‘~'\;1'1_\ and Coulson®® were led to consider 1t as a A'm\i'\;c viable

alternative to the Dirac Fourier transformation. They commented that *.. it proves
” 1

impossible to transform to moimentum space the most accurate wave funciions in

which electron correlation is .";'L,‘llz;iul_\' ‘\.‘}"!L’\‘H?L‘d. the ii‘.'.\‘_-'J:!]\ involved 1‘%','/:5’

quite insuperable’.?? Indeed, beside the difficulty of the integrals, it is certainly a
laborious undertaking 1o take the total wave function in position space, compui
its 3AN-dh
then fﬂ?k:
(eq. (3.26)). In the case of an independent particle

which 1s r¢j

nensional Dirac-Fourier transform (eq. (5.35) ). square the transform.
ates of the N 1 elect

-3 o A -
model wave function. ie. one

ate out the momentum spiace COOT(

o

resentable h_\ d \;"‘:]" Slater determinant,

Yalxy) Wulxa) ... Yulxy)

1o Ye(xy) Ue(xa) .o dp(xa) i

B (06 055, s Nl == (A Y (3.37)

dn(xy)  alxa) ... du(xs)

one needs only 1o transform each individual spin oibital by means of eq. (5.9).
Similarly in the case of a wave function which is expanded in terms of a set of spin
orbitals, the transform of cach individual spin orbital leads to z expressed as the
same expansion of Slater determinants but over the transformed set.

An alternati

Ve appic cloped by Benesch and Smith?® allows momentum

: i Rad SR Lot s - = 4 ov - % e Sigce -y R -,
disiributions to be obt: n the most complicated position spiace wave functions
i n\'d, Si

wherein electron correlation is adequately repre nce the one-particle char

41.4

—

density matrix y(r | r') may be expanded in terms of its cigenfunctions, ™= the natura

orbitals (NO's) ,(r),

AEe) = ) Ay (5.38)
i

where £; 1s the occupation number of Vr.(r). kunowle
i 1 i

lae of o (r| ') in terms of its NO's
enables one to use eq. (5.26) 1o obtain {(p|p’) expanded in terms of the momentum

space NO’s,

Splp) = \: Zirdp)zE(p’)- (5.39)
i
Thus in the case of a y(r|r’) of finite one-rank (i.e. the number of non-zero 4; in

eq. (5.38) is finite) one need only con

pute the Dirie Fourier tra wform (eq. (3.9)) of

. eI N TR e gl i . M 1 > J rale ~rryfile e
each individual NO. This method h: en used to calculate correlated profiles by a
%
number of authors.
Kt . aval D et 5 11411 s | N 5 ; P 1 vyt e
[he case « Ve TUNCTIONS (FI VI - Pe) W cOon 1 CAPICTHY 10RC Wr-
B T S E i AR Rerriig 1d Rl sl st sl
electrome coorcmate ry;1s mleresting Fhere are two approaches W ch may be

One can expand the r;; terms in a set of ane-particle functions which in practice
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are a ccuncited set.*? The NO expansion is then available and the Benesch Smith!?
procedure is applicat arnately, one may proceed to caleulate $(p! p) directly as
shown ret ‘.‘"’!‘\v b_s B ,-. and Benesc h.*? Some \':‘”._'f tCLrs Is involved are n
simple and require e 1sive coniputer 15 sho in the calcul of B !
for He*® Two eaclier calculations*®*” of the momentum distributions from

Hylleraas-type functions for atomic helium have been reported. One of these*®
wve functions which included only terms

: s ¢ g
contained errors - while Hicks™" chose v

15 o terins are needed to properly represent the electron

lc the evaluati of t momentum

-~ .

of the torm ry, v
# T

electron cusp. The use of ri, terms ma

distribution much simplec.

3. Dirac-Fot

functions which explicitly contain the interclectronic coordinates r;;, we have seen

IS J ij
function v or the one-

" ", . 2 rea = 3 = -
o transforination of orbitals. With the exception of the case of wave

that the Dirac-Fourier transformation of the N-electron wave
i rests on the transformation of orhital

pacticle density matrix y(r|r) ultimate
:(eq. (5.9) ). In the simplest ¢

ol et

functions from position to momentun
1, Podolsky and Paulin ¢ posit I
the exact bound-state y(p) which the later dire

a5*® and Fock?®” were in agresment. The solutions which coreespond to the

formed the position spa

: ;
iar position space solutions
i

Wir) =

2 = P Yol D, ) (5.41)

wheee Y,,00,4) and Y,(0,,6,) are the vsual spherical harmonics in position and
momentunm space, respectively. This illustrates the isomorphic nature of the Dirac
Fourier transformation (eq. (5.9)), namely that s-orbitals transform to s-orbitals,
1849 which involves

ps to ps, ete. Instend of writing down the general solution
Ge

feicrence

1er polynomials, we list the Is and 2p solutions for future discussion and

Tisti) = 2720 expi(—Zt) (5.42)
lio (327° )2
Jilq) = 8233172 + ¢ 3 (5-44)
o= 412 exp (— Zr) (5.43)
uy,(p) -
Japq) = (Z7/IHZ2 + SqHIZ7 + ¢°)° (5.47)

N
o
[
(%

3

DL s et R

1 v: * "' 2 -
wiere / s the nuclear charge and Z = Z/2.

In the case of 2 many-el n, we assume that an orbital (r) such as
& naturad orbital or Hartree may be w 1 in the position
form of ¢q. (540) or in the mors generdl case as a linear combination of
resiricted” functions. For such atomic orbitals the radial function f(#) 1s usually

P
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1en @8 an ! i ONET te set of ivtic f I Of 1 1cal
tabulation. The ntul sp ¢ orbital 1s of the form of eq. (5331). 1¢ 7 A"‘\

1 ) 1 7 % )
'\ . i ir Gepliic C¢ A r 18] 18 ¢ :.( iction " s \ by 'C
1 ) s .
symimnetrv-de aent 't I won,
b 3 i
‘l
! 3

s (5.48)

lt” imolves a spherical Be

7 il ]

is the Ha

tion ji(r) of the

el

itwm number L In t

J :jr/,_‘(/‘l. le.,

] { / yr2 C A
l’,,“(,’” L7 ;’(r)}"l 1 2lpripr) dr {(3.49)

where .]_A 12 is the I“(”wi“'_\ Bessel function. For a number of P hle forms for

Sui(r), the u,(p) have been derived in the literature for various special cases and are
he a<sociated J(g) by Smith

f‘ g

discussed and tabulated quite generally, together with t

1€ COIMNKC !_\ used functional forms

1

L S ¢ ~ ) = . sat bty &
and Kaijser.*? For atomic calculations. t
i feless Q‘i'xc."i_""\c|~.':‘:'..‘.\‘\\|())

Julr) are the hydro

'
NE N

i = (2022 UG Ly g (3.50)

i
pec orol

and the Gaussian

T
-1\

A o
Tetey A (3.31)
L o % . < - 1 3

In the case of ort - tabulated numerically or for which the
analyvtical transform is not avails mmerical techniques must be employved. The

. — 1 Iy ey = bR H . Iy 2
accurate numerical evaluation of Fourier sine and cosine transfygrms h 2s we have
in eq. (5.4%), is beset with difficul due to the rapid oscitlat | rand

1 [

Or COSIne i

in the

wctions oscillate with su
pidly aj
nade up of an extremely la

£ 1
HUONS O neany «

As p— o0, sin

case of radial functions f,(r) that very ra yproach zero as r approache

mfinity. the transform is ce number of sienific

positive and negativ rise from the cycles

of the trig. ivolved. Tt s for € ¢ results presented
In sever T hitals ic
i« transforms has been
} by Thulstrup®? with
} 1 i urdcy.
4. As i '7'":&/1"1‘4 A.':"';"l”[’l’]“'_,""j' Certain moments of the momentum
Yictit) 3 IS "3

‘p” - n"Hip) dp (5.52)
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LY

areof p ical interost. The best Knows is ‘[‘ » which is twice the Kii energy
and by of the virial tt j ice the nezative of the total atomic
enerey ¢ 1 of the bas that 1/2 {p~') is just

N/2. The operator, p*

arises in the context of the relativistic Breit equation written in the Pauli approxima-

tion 3 It is interesting to integral moments {p"» are confined

to the range 2<Lns4 and that'33+3S for0 < n < 4,
where g7 is the nth monient of the Comptor profile function J{g)
‘l
\ ‘ - -
{q"> = q"J(q) dq. (5.34)
v(\
these statements it i fie| " N S
these statements 1t 13 necessary the smail anc
Rirue p behaviour of I(p) (or j(p|p)) and similarly the large ¢ behaviour
of Jig)
i

The expansion of J(g) about g = 0is

J(g) = J10) — mp(0)g°

I(p) = 4xp(0)p” + dmp"(@)p* + -~ (3.56)

Since the experimental measurements are the most accurate around the profile peak.

107
(i

. 3 =, <~y g - g 8
Bonham®S suggested that 5(0) and 57(0) can be extracted from experiment:

N
L

curves and comparsd with theoretical calculations Use of eq. (5.56) in eq. (5.52
b | 1

ites that {p"» would not exist for n < - 2 unless p(0) vanishes.

For large p, it may be shown that

Ip) = Cp * +01p 3 (357
Jlg) = (C[12)q~* + Olg ®) (3.38)
“g ‘li.- S5

€= 8«‘473 (Y 3%+ <Y 8ry) .-]- (539

g ARy =y )

under the assumption that the wave function satisfies both the Kato electron- nuclear

i
. o - .
and electron electron cusp conditions.” lay roles in
fctic felt v . Litive correction v AT writte
rgl tivistic and radiative corrections to the energ be written
alternately as

C RIAZ=p(0) + (3.60)
shere p(0) is the charge density at the nucleus o

g ted at the teon -¢lectron coalescence. B
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! ited for thet ] C Ihe ¢ ] 1 HIst wrim
{tl ! ontribution 1. {5.% )i s thie ¢ i this
. T8 is , v 10 note that the " Yaiion 4 o i
Is of the profile does exist in the asyimpion y but 3s probably not of tli
nagnitude ry 1o expl he older exj ! data. 1 er. it should be
noted that for the uniform electron gas the electron- ¢leciran coniribution is the onh
one present, wi for the s N /2 state of an atoin it vanishes. For a ve function
of finite one-r: ich as produced by independent particle lels and the method

‘4(‘\ ip SHiIon |‘f’{\". 10Uratons. 1he e nd fcrm Of ¢ »_"\(~ Ui)l. a (2.60) ouvld ot

4
have appear ed. 1

Use of eq. (5.57) establishes that {p™) does not exist for n > 4 unless ¢ is zero.

Fquation (5.52) follows from cq. (5.54) by integrating the expression for {g") by
f o
(n + 1)<q" Lg"" ")) l g" " J'g) dg (3.61)

hes as g ® for large q the first 1 nis zero for 0 € n < 4. Use of

Very

-~
o)
-
o G

ations of .l:.-/‘» and I(p) th

ischecked by computing {p") und {(¢") aticastforn == Qandn = 2
re ace representation as well.

53 CALCULATIONS OF IMPULSE COMPITON PROFILES FOR
ONE-ELECIRON MODELS

ination of the

iational

principle.
ed in ¢q. (3.37) or a
en so that the total wave function

on. The

S =T o
dier aeicrini

[he simplest an

<1 . 2
that of the s
)

4 ¥
) of the state in i

quations

h o ; (5.62)

where 1, 1s the Coulomb potential di charge p(r). I} is the non-
! ai ned to ‘e‘C restricted 1o 'A!\C
fi itals {gh:(r)}, the solution of thase

] ) in the theoretical description of
i1¢ calculations ;"'rntnr(‘l npion .‘\“"\'S
for ide approximations to ihe solutions of
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FIGURE 54
Radial momentum density /(p)/N for the ground states of the first row atoms.

eq. (5.62), either hydrogenic or Slater-type orbitals with shielding factors chosen on
the basis of Slater’s rules®® or similar criteria. However, many of these calculations
were reported with J(0) fixed to a common value rather than the profile area
normalized to N/2 as expressed by eq. (5.52) for n = 0. The first extensive study
was made by Duncanson and Coulson®?7® who reported calculations for the neutral
atoms from hydrogen to potassium (Z = 19) using STO's (eq. (5.49) ) or with orbital
basis functions! of the Morse -Young-Haurwitz type. They were the first to observe
the momentum space shell structure illustrated in Fig. 5.4 for I(p)/N for the first
row atoms (Li~Ne) and which we discussed in connection with Fig. 5.3 for V. They
noted that s-electrons give narrower or more compact [(p) distributions than do
p-electrons and were thus able to explain via the aufbau principle the successive
expansion and broadening of the I(p) curves observed in Fig. 5.3.

Table 5.2 Extensive tabulations of IHE Compton profiles for neutral atoms

Authors Wave function Atoms (7) Relativistic
Weiss, Harvey, Clementi’? Li(3) Ge(32) No
and Phillips™ (STO basis)
Benesch*? Numerical As(33) Yb(70) No
Numerical H(l) Kr(36) No
Numerncal Kri36) Nbi102) Yes

T9a

and Mann
Biggs. Mendelsohn, Numerical He(2) Nb(102) Yes
and Mann ™"

|
|
1
|
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With the advent of modern computers, it has become possible to solve eq. (5.62)
by the self-consistent-field (SCF) procedure either in terms of analytic basis
functions™ or numerically.”* As a result, impulse Compton profiles of Hartree -Fock
quality have been caleulated in recent years by a number of authors ¢ 3274 ¥
The most extensive and useful tabulations ™ 7“#¢ gre listed and described in Table
5.2. The Compton profiles for the numerical Hartree Fock wave functions should
be considered as a reference standard for comparison of calculations made with
cither more elaborate wave functions or basis sets intended for use in molecular
calculations. In the first four columns of Table 5.3 we have listed J(g) for four
Hartree Fock quality wave functions’?®'#2 calculated by Smith, Brown, and
Benesch®'*¥ in order to indicate the effect of basis set quality.

Table 5.3  Comparisons of various correlated and Hartree Fock impulse Compton profiles for boron (°P)*
glau) HF® HF® HF* HF*¢ 2CI* Pol! FO! 187C1*

00 29924 29887 2:9889 2:9896 2:9507 2:9685 2-8878 28954
01 29135 29107 29110 29113 28757 2:8911 2:8187 2:8250
02 26918 2:6911 26912 2:6912 2:6648 2:6735 26224 2:6256
03 23684 2:3697 23695 2:3692 2:3545 2:3561 2:3314 2:3310
04 19984 2-0006 2-0002 2-0000 1-9964 1-9929 19918 1-9885
05 1-3118 1-3129 1-3127 1-3128 1-3236 1-3173 1-3413 1-3363
08 0-8432 08429 0-8432 0-8432 0-8574 0-8527 0-8779 08750
10 0-5788 0:5784 05786 0-5785 0-5903 0-5873 06056 0-6050

* Compton profiles were calculated by Smith, Brown. and Benesch ®!
1

* Clemenu.™?
€ Bagus-Gilbert *2

4 Numerical.®!

 25-2p Correlation.*!”

! The densits matrices of the Schacffer Harris functions®'® are from Brown and Smith '1*

5.3.2  Local density models

Because of the complexity of solving the Hartree -Fock equations (eq. (5.62) ) which
is especially due to the presence of the non-local exchange term V,, there has been
along-standing interest in the development of local density models for the description
of the electronic structure of atoms, molecules, and solids. Because the atomic
Hartree-Fock equations are solvable as a routine matter today,”® atoms represent
an ideal test case for such models.

The Thomas -Fermi (TF) and Thomas-Fermi-Dirac (TFD) models have been
applied with some degree of success, especially for heavier atoms. The corresponding
momentum distributions and Compton profiles have been considered by several
authors.®3:84 89 The TF model gives a profile of the wrong shape. The peak value
is quite high in comparison with HF even for a heavier atom such as krypton. The
value of J(0) may be shown to be CZ'? where C is approximately equal to 3-2.
This wrong behaviour for small p is due to the r ® asymptotic dependence of
p(r) in the TF model instead of the proper exponential decay. On the other hand
the TFD method cuts p(r) off after a finite distance and hence leads to a more
realistic behaviour for small p and q.

.




) - # ; el . A g
s
% A %, 4‘ ag £ Q’&g" “ ¥ ; &
AT gl i ARNEO T, Ras
7 Al B S gy SRR e
& 3 = b
LT Sy ke o R TR, S TN Sy 2

Atoms 121

As an outgrowth of the ideas of the Thomas Fermi model,®” there has been a
great deal of attention paid in recent years to developing methods wherein the
electronic potential energy is a local functional of p(r).”" ?* A common feature of
these models is the replacement in (eq. (5.62) ) of the exchange potential V; by

Vx: S 1 sz
V.. = 4(3/8x)p(n) "> Y

where V,, was introduced by Slater®® by consideration of the properties of the
electron gas. A number of criteria have been suggested for the choice of the para-
meter « and have been studied from a number of viewpoints including momentum

01+

00— s V

01k / Ar

T
e

-0-2

R

-03F e
B ittt ol Sk
0:0 10 2:0
q(a.u)
FIGURE 5.5

Difference between the vx and HF impulse Compton profiles for different choices
of g, —«—s—g=]geeens 2 =08 ----- 1T, =i




o

122 COMPTON SCATTERING

space properties.?™**9*“ 1t was found that the Compton profile was sensitive 1o i

the choice of # In Fig. 5.5. the difference between J,,(g) and Jyy; is shown™ for ! ;
several choices of x including in decreasing magmitude of z: the original Slater value ‘
7 = 1, 2 = 0-8, the virial theorem value"® 2y, and the Gaspar®” Kohn Sham®®
value of 2/3. Tt is seen for Ar and Kr that zyq is the best choice of those illustrated,
while for Ne there is a significant discrepancy. Since the choice of 7y emphasizes
{p?. it was suggested by Sabin and Smith** that a different criterion be employed
for Compton profile studies which emphasizes {p~ '), namely 2y should be chosen 1
such that J,,(0) = Jug(0), which is similar to the method introduced by Bloch and
Mendelsohn®? for the choice of atomic shielding parameters. In Table 5.4 we compare
impulse Compton profiles and the relative percent difference for » = 2/3, 2y (0-7458), 3
and zcp (0-8032). It is seen that J,,, is clearly in quite good agreement with Jye 1
for Small ¢ and in reasonably good agreement for a larger range.

In addition to the replacement of V, by ¥, there has been much interest*®:91:97
in its replacement by various exchange and correlation potentials V¢ based again
on electron gas considerations. We note that several authors®®-°® have calculated ]
1(p) and J(q) from orbitals determined from different V,¢'s. 3

Table 5.4 Impulse Compton profiles™®-9*

difference from the HF value

for various local exchange potentials for neon ('S). A gives the

g lau.) X22/3 A(%) Xetyr A(%) Xacp A(°,) HF 3 ’
0-0 2-8088 -30 2:7699 -1-5 2:7279 00 2:7279 i
0-5 2:5631 -20 2:5358 -09 2-5053 03 2:5131
1-0 1-8684 ) | 1-8695 10 1-8696 1-0 1-8889
1-2

2:0 07510 26 0-7616 07735 -03 07709

54 ELECTRON CORRELATION AND IMPULSE COMPTON PROFILES

Since accurate Hartree-Fock (HF) calculations for atomic states have become
available in recent years, it is now possible to test the adequacy of the HF model
for the description of electronic properties. HF-theory has been found to reproduce
some expectation values of physical interest quite well, but for others it is not
sufficiently accurate. As an example of the latter category. one may cite the clectron
affinity where for atomic oxygen the HF value is of the wrong sign. The problem of
the difference between the HF and the exact non-refativistic prediction is callea the
correlation problem. It was originally formulated for the correlation energy,’ °® namely
the difference between the exact (non-relativistic) and the restricted Hartree Fock
(RHF) energy, i.e.

Emlr i Eg-\ucl i EKHF (§64)

Since this error is a small fraction of Egyp. it is usually only in questions involving
energy differences where the correlation energy is important.
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Oune of the reasons for the accuracy of the HF energy is expressed by
Brillouin's theorem'®! that Eyp and E. ., agree to second order. Similarly the
Moller Plesset theorem 22193 indicates thut the HE expectation valuesof one-electron
operators should be correct to second order as well. The magnitude of this correction
would be dependent on the nature of the operator and the state involved. In addition
it is formulated for the HEF model without restrictions rather than the RHE model
which is commonly used.

Weiss'®* was probably the first to inquire about the possible effects of electron
cotrelation on momentum distributions and Compton profites. He felt that atomic
HF momentum densitics would probably not be as accurate as the HF atomic
form factors which our previous discussion of eq. (5.34) supports. Calculations are
now available at both the correlated and RHF level for the lighter atoms (He Ne).
In the case of helium??+#3:193 the data in Table 5.5 indicates that the HF and both

. Table 3.5 Comparison of theoretical impulse Compton
profiles for helium ('S)

5

g(au) HE 04 MCHF3-103 Corr *

00 1-0705 1-068 10683
0-1 1-0368 1055 1:0545
02 10172 1013 1-0143
03 09557 0954 09512
0-4 08782 0-876 0-8737
0-3 07911 0-788 0-7859
0-6 0-7004 0-698 06951
07 06112 0609 0:6060
0-8 0-5271 0-525 0-5225
09 4251 0449 04463
1-0 0-:3820 0-381 03818

of the correlated profiles therein are in quite good agreement with a slight flattening
of the profile because of electron correlation. Similar results were found for Li”
and other two-electron ions.>' Comparison of the HF and correlated I(p) values
for Li calculated by Benesch and Smith*? indicates discrepancies of the order of
2-3 per cent while the Compton profile was more accurate. The maximum dis-
crepancies for J(g) occurred at the peak. 2:5928 (RHF) versus 2:5743 (correlated). a
difference of 0-75 per cent. The atomic form factors'®® were in their turn even more
accurate, illustrating the comparative smoothing nature of the convolution (eq.
(5.34)) and the integration (eq. (5.29)) involved. The largest discrepancies for I(p)
and J(q) occurred in the valence or L-shell region while in the K-shell region they
were very small as in the case of Li™ mentioned above.

Subsequently Benesch and Smith'®” and Naon and Cornille'™ examined
bersllium ('S). Both investigations revealed very large correlation effects in Hp)
and J(g) which were primarily in the L-shell region. There was a decrcase of
approximately 7 per cent in the magnitude of J(0) due to electron correfation. The
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Table 86 Comparison of J(0) values for several neon
('S wave functions®

Wave function Ji0) E
RHF (Clementi) 27279 128 5470
RHS (Bagus-Giibert) 2-7257 128:5347]
AH-MCHF* 27371 1288016
CI(VHS)¢ 27245 1288767
Cl (VHS-«caled)® 2-7282 1288770
BGI 27340 °

* Al caleulations except BGI are from Sinith and Brown '*

® The energy was not given in Ref. 108 Tt is only stated that
98 per cent of the correlation energy was reconveied. For com-
parison, C1 (VHS) and AH-MCHF yield 89 und 67 per cent
respectively.

© The MCHF wave function of Ahlrichs and Hinze''* which
included only L-shell corr on. 1t should be noted that another
caleulation reported in the iterature™ vsed un incorrect version
of this wave function ! 1?

¢ The full second order C1 of Viers. Harris. and Schueffer.!!?

€ Scaled 10 satisfy the virial theorem in Ref 109

! Profile calculation of Naon and Cornille'®® using Nesbet's
Bethe Goldstone increment method to treat L-shell correlation
only

cause of the discrepancy could be identified as being due to the near-degeneracy
of the 15°2s% and 15%2p* configurations.

The calculations on atomic neon by Smith and Brown’®® and Naon and
Cornille! °® showed that for this well-closed shell system. electron correlation plaved
a very minor role in determining the Compton profile. This is seen by comparing
the J(0) values which are tabulated in Table 5.6. It should be observed that all the
correlated values for J(0) with the exception of one are larger than the HF value and
hence provide a counter-example to the conjecture that

J(0)yr > J(0) oy (3.65)

This conjecture which 1s based on the virial theorem originated with McWeeny and
Coulson.?® It was suggested in recent vears by Brown and Smith??%1'® and was
satisfied by calculations for He 3945103 132 Be,'07-10% B8 and H,."*° However.
recent calculations for H,O''! which is isoelectronic with neon. also contradict (3.65).

We note that the one calculation in Table 5.6 which obeyved eq. (5.65), did not
satisfy the virial theorem but when scaled to do so no longer satisfied the conjecture.
A study of atomic boron (P) by Smith. Brown. and Benesch®! revealed that correla-
tion flattened the J(g) curve with the largest deviation (3-23 per cent) occurring for
J(0). Here again. the effect of electron correlation on J(g) and I(p) was largest in the
L-shell region and relatively minor for the core (Fig. 5.6).In order to isolate the
particular types of electron correlation which are important for describing I(p) and
J(g), Smith. Brown.and Benesch®! reported calculations for a series of wave functions

: ! ; . VAL
which were carefully constructed by SchaefTer, Klemm, and Harris’'*'?° 10
]

successively include the contributions in the Sinanoglu' ' decomposition of the exact
wave function into orthogonal parts
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Wevset = Qrup + Lint + L + Lexa (5.66)

whate By, is the REHE configuration and the remaining terms represent various
types of orbital substitutions with respect to it. 7,y includes the internal correlation
contributions, i.e., those double orbital substitutions where both substituted orbitals
belong to the open shell (the 2s-2p shell in our case). g includes orbiral polarization

and semi-internal contributions. The latter are doubly substituted configurations,

36 = - o — " s

3
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where only one of the substituted orbitals belongs to the open shell. The remaining

term ypyg contains the remainder of the wave function including the external
substitutions where all of the substituted orbitals are outside the open shell.

I'he Compton profiles corresponding to these correlated wave functions are
included in Table 33, The 2CT wave function’?” consists of @y + 7187. 1.€.. the two
configurations 15727 2p and 1572p* while the *Pol.” wave function included zgpr + 75
and the FO (first order''® or charge-density¢) wave functions consist of @y +
7e + 7zing. The 187-term CI includes most of the same contributions as the FO
function plus some of the external contributions. Inspection of the table shows that
the latter two functions are in very good agreement while the 2CI and Pol. functions
each account for approximately half of the discrepancy at the peak. Smith,
Brown, and Benesch®™! concluded that inclusion of the internal orbital polarization
and semi-internal correlation effects in the valence shell 1s necessary to adequately
describe the Compton profile for open-shell states while the external correlations
play only a minor role. Since the internal and semi-internal contributions are absent
for well-closed shell states, the reported accuracy of RHF for helium ('S) and neon
(1S) 1s understood.

The most recent study is that of Munch and Davidson®? for vanadium (*F).
Inspection of Fig. 5.3 shows that the correlation contribution is mainly in the valence
recion with a flatiening of the profile in agreement with the conjecture of eq. (5.65).

3.5 RELATIVISTIC PROFILE CORRECTIONS

In this section we will discuss the effects of using a relativistic Hartree Fock spinor
wave function on the momentum density and impulse Compton profile. We will not
touch upon the important question of a correct formalism relating the scattering
cross-section to the impulse Compton profile for high incidence energy ;-ray photons
scattered at any angle except to state that it has recenty been reporied by
Ribberfors' ¥ (see also chapter 2).

5.5.1 Relativistic Hartree Fock formalism

Relativistic Hartree -Fock impulse profile calculations have been reported in a series
of papers by Mendelsohn. Biggs. and Mann.”? 119129 The wave functions used were
Mann’s numerical relativistic Hartree Fock wave functions.'?! These were obtained
by solving the Dirac equations self-consistently taking all the two-particle interactions
as Coulombic. In the relativistic central field Hartree Fock case a particular n.l
orbital (except for s orbitals) splits into two orbitals, one with j == [ 4+ 1 and one with
j =1~ 1. For cither of the nlj orbitals, the four component spinor may be expressed

in terms of only two radial components: G,;;(r). a large component which looks very

much like the non-relativistic radial wave function for orbitals of small atoms. and
Fujtr). a small component. In terms of these components. the wave function

normalization condition may be taken as




J (G 1) + (Fotr)r do
0

The two components of the spinor which contain G(r) are n
harmonics of order [ The two components of the spinor which con

multiplied by spherical harmonics of order [ + 1 for the j = [+ § case and «
[ — 1 for the j =/ - 4 case. Taking the Fourier transforms of the indivi
componeats, the momentum wave function spinor can also be written in te
radial momentum components g (p) and zhp), where

~
]

/2’,1[1) (:’ bid 2 l (I.,,;/H')j.([w ) 2 dr
Jo

i *

2hp) = (/) —'J Foiryj, - dpr)e” dr (3.69)
0

where i =1 for j=[+ 4 and i = — 1 for j=[— 4 and ji(pr) is a sphericul Bessel

function of the first Kind. Finally the impulse profile is calculated from
Jn!,"“l) F4 J IZ,::I»I'[?\'.‘;"
q

Pl

Hedm)? + (grp)*p dp
where the factor i, rather than 2z, comes from the normalization of G and F in
eq.(3.67). A discussion of the numerical procedures employed to evaluate the integrals
may be found in Ref. 79 (see section 5.2.1(3) ). In addition a complete set of refativistic
Hartree -Fock Compton profiles for the individual orbitals of all free atoms with
Z > 36 is given in this reference

552 Relativistic correctinns to the Compton profile

The most interesting result of the relativistic caleulations is that relativistic effects on
outer electron, and therefore total, Compton profiles are much larger than one would
expect a priori. The orbituls which contribute significantly at the profile centre are the
outer elecrron atomic ocbitals. One does not ordinarily think of these orbitals, where
the electrons are moving comparatively slowly. as being affected very much by
relativistic effects. On the other hand one expects the relativistic spatial wave functions
of rapidly moving electrons in the inner orbitals of heavy atoms to be pulled in
considerably when compitred to non-relativistic wave functions. This pulling in of the
relativistic electron density can be understood simply from considering the miss

velocity effect as a perturbation to the non-refativistic Hamiltonian, As such it has
the same sign as the attractive nuclear potential®* and therefore pulls in the ¢fectron
wave function so that it is larger nearer the nucleus. Since a more sharply peaked

Inner electron spatial wave function leads to a flatter momentum space wave function,
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and Compton profile. we expect a relativistic wave function to give @ flatter Coinpion

the centre, higher in the tails) than a non-relativistic wave function

profile (lower in tivis
However it is clear at once that if the inner 1s, 2s. and 2p orbitals are
nificantly by including relativistic effects. outer s and p orbitals may @lso be

Sig

significantly altered because of orthogonalization (outer stoinner s, outer ploinner p

Ihus in lead a 1s clectron shows a relativistic decrease in J(0) of 18-7 per cent.
Because its wave function has been altered significantly due to orthogonalization
10 the inner s states. a relativistic 6s electron exhibits a decrease in J(0) of 139 per cent.
These percentages are based on a comparison of profiles calculiated with yelativistic
and non-relativistic Hartree Fock wave functions. To see this clearly the non-
relativistic (dashed line) and relativistic (solid line) Hartree Fock electron charge
and momentum densities for the 4s orbital of lead are compared in Fig. 5.7and Fig. 58.

ciectron density

il

0114

FIGURE 5.7
Comparison of Hartree Fock (----- ) and relativistic Hartree Focek ( jelection
densities for the 4s state of Jead.
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Clearly the relativistic pulling in effect is quite large. Another difference not shown
in the figure, is that the relativistic electron density does not exhibit nodes since the
F and G components do not go to 0 at the same point. A similar type of comparison
for the 6p electron ol lead again shows a surprisingly large relativistic decrease in
J(0) of 9:52 per cent. In lead, as in other materials, relativistic flattening effects for
d and f electrons are negligible for the most part. When the J(0) values for all the

ochitals of lead are added up, one finds a relativistic decrease of the total profile of

5-24 per ceat at the profile centre. Since these relativistic profile calculations were

erformed within the impulse approximation using normalized Dirac spinor wave
) i 1

functions, the normalization condition on the profile of any orbital

% Jlq) dg = 1 (5.71)
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his condition insures that the relativistic . 70 out on the wings will

ne £ ™ file result Fo 2Ive the reader some estimane
of relativistic flatieni g ults for smaller atoms, we cite the results for the rare
gases: for argon (£ ivistic decrease in the total J(0) of 0187 per cemt

Iy

is found: for kiyg 36). a decrease of 0-712 per cent 18 obtamned: for xenon
} n
(Z = 54). the effect 19:1.47 per cent.

6 COMPARISON OF THEORY AND EXPERINIENT FOR FREE ATOMS

X-Ray Compton scattering experiments using Mo K« (17:374 keV) and Ag K2 (22:163
LeV) sources have been performed by Fisenberger on helium!®® and neon.’?? ;~Ray
experiments with a 160 keV " Te source have been made by Eisenberger and
Reed??? on helium. argon, and krypton. Both experiments on helium were found to
be in very good agreement with inipulse Hartree Fock profile calculations. a not
surprising result since correlation. binding. and relativistic corrections are quite small
for helium. The s-ray data for argon and krypton was subsequently re-unalysed’™*
using a newly derived theoretical relativistic relationship between the j-ray cross-
section and the impulse Compton profile. Williams'?® has shown that this new
derivation cannot be the correct relativistic one since when it is expressed in ierms
of the usual variables. it reduces essentially to the non-relativistic result. Thus we are
left with a problem in interpreting experimental profiles obtained from experiments
using --ray sources. as the experimental analyses have all used one form or another
of an incorrect theoretical relationship to obtain the Compton profile from the
experimental cross-section. However. it is expected that such eirors will not be
large. As we stated in the previous section, a new derivation of the correct relativistic
redationship between cross-section and impulse Compton p.ofile has recently been
reporied.’™ Only at very large incident energies (above 160 keV) and or small
scattering angles will the errors after normalization affect the profile to any appreci-
able extent. In particular Ribberfors''® diows that for a scatiering angle of 150°
ble oul

and incident photon energies up to 330 keV. the corrections will be negl
10 g = 10 a.u afier renormalization. Tt would be most interesting 1o see an analysis
of the experimental data using Ribberfors™ iterative procedure insicad of the first
approximation,

In the rest of this section theory and experiment for X-ray Compion scattering
from neon will be compared and some of the apparent anomalies which have come
out of the X-ray experiments on hrypton will be discussed.

56.1 Neon

In Table 5.7°% Fisenbereer's experimental L-shell profiles for Mo Ko and Ag Ka
X-ravs scattering through 170° from neon are compared with EH profile caleulations
and five impulse calculations: one HE, one shiclded hydrogenic, and three which
Ading factors Z*(0) in the 2s

rosen 10 match the impulse hvdrogenic (IH) profiles
! v & }

include correlation effects. In the EH calcuiations. <h

and :I' wave functions were ¢
y

for the individual states to the respective impulse Hartree Fock (IHF) Compton
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Table 5.7 Comparison of theoretical and experimenta! neon L-shell Comgron profiles for Mo K 2 and
A2 Az Xerays scatteriag through 170

Mo Kz
q EH" ¥ IH

4.
-

00 2609 2:398 2-348
01 2:612 2:592 2550
02 2593
03} 2-357
04 2498
0 241y
06 2320
0-7 2206
(13 2073
09 1940
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Profile caleulation of Smith and Brown'™ usir

profiles at ¢ = 0. With this choice of effective charge, it was found that the IH L-shell
neon profiles agreed with the THF profiles to three or more figures out to a ¢ of
about 0-3. In arzon” a similar comparison of [HF with TH using Z*(0) values
showed agreement of the 25 and 2p profiles to three significant figures or more out to
a g greater than 1. Mendelsohn and Bloch?! asserted that if one was interested in
obtuining an accurate EH profile calculation in the neighbourhood of ¢ = 0, it was
most reasonable to use these same Z*(0) values which gave TH profiles in agreement
with THF profiles, not only at g = 0, but also in some neighbourhood of the
profile centre. This appeirs to be the case for EH Mo K calculations for ¢ between
0 and 0-3, where the EH results lie much closer to the experimental profile than either
of the two impulse calculations. At ¢ = 0 the EH J(0) result lies only 0-42 per cent
above the experimental value. Since the experiment cites error bars of 1 per cent,
the EH value falls well within the error bars. On the other hand the THE J(0)
value lies 1493 per cent below the Mo Kx experimental results and therefore lies
outside the experimental error bars. From the EH calculations the value of J(0)
decreases as the incident photon encrgy increases in agreement with experiment. The
impulse profile calculation has no intrinsic dependence on incident photon energy
and therefore can never explain such incident photon energy effects. We expect the
[HF to fall closer to the Az Kz experiniental results than the Mo Kz ones becius
the [HF should improve in accuracy with increased photon enery e
observed to be the case. The Ag Kz EH JtO) value falls n the experimenta

error bars but appeirs to offer no real improvement to THE, A possible explanatior

o
i
i

!

“of this is given in Refl 19
h

We observe thut all four ir

S




at g = (0 and that t orrel on J(0) are quite small. Fisenberger hud
previously compared his experimental results with an impulse profite caleutated with
a correlat ve function which contained errors and which gave a J(0) value
0-75 per cent above the IHF result. This led him to conclude that improved

1 3 % 'k > rr - -

Id be obtained when a better corselated wave
) L A RS = . i
shows that correlanon effects on the Con pion

agreement with experiment wou
function was used. However Tuble 5.7
profile of neon are 100 sinall to be observed experimentally at this time or to decide
the question of the sign of the corrclation correction to the IHF peak value Ag
Table 5.7 reveals, the two wave functions which yield the largest correlation energy
give the opposite sign for the correlation correction to the ITHF profile peak. As we
discussed in section 3.3, virial theorem scaling of the VHS peak value raises it <lightly
above the IHF one. Furthermore. the AH-MCHF and BGI calculaiions include
only L-shell correlation while the VHS function included K, L, and K I intershel)
correlation. In this case, the experimental procedure of subtracting the IHF core
contribution was followed. Relativistic flattening of the neon profile which 1s not
included in any of the calculations is also about 0.1 per cent.

Recently Bonham and associates’*® have performed experiments to determine
the Compton profile of neon from the fnelastic scattering of 25 keV electrons. {See
chapter 8.) They find that the EH results lie closer than any impulse calculation
to their experimental profile. in the vicinity of the profile centre. even though the EH
results still appear to be about 2 per cent too Jow. They state,’2¢ ‘the EH calculations

betier description of the experimental Compton process’.

The partial wave Hartree Fock-Slater (Herman-Skillinan) calculations of
Grossman and Mendelsohn?® on neon give the closest agreement with experiment for
both small g (except for Mo Kz scattering at g = 0 where EH gives the best result)
and large g for both Mo Kz and Ag Kz Compton scatiering. Of all the theorctical
calculations. the EHS results are found to be in closest agreement with the experi-
mental neon results over the whole profile.

Table .8 Comparison of theoretical and experimental Compton
profiles for hrypron. Experiment veing 160 kel photons seantered
"unu;h 173°

Experiment Theory
glau) Original'®® Re-analyvsed'?4 IHE JDHF ™
00 7205 7:3 724 7-19
01 #1152 i 720 7-15
02 7:022 710 710 708
-4 6359 65 660 657
06 5700 § 378 577
10 4134 o 204 04
20 3533 2 244 244
20 1-338 ] )-33 1533
60 0-687 0 0677 0679
10:0 0254 0 (260 0261

S50 0024 0026 0027
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562 Krypton
[n Table 3.8 the impulse non-relativistic Hartree-Fock (IHF) and the relativistic
Dirac Hartree Fock (IDHE) calculations are compared with the original'** and
< { : ‘ . .
re-anatysed ' p-ray cesults of Eisenberger and Reed. The only eftects omitted from

the [DHIE calcu

1 are binding effects and correlation effects. Cleaily binding

Il system correlation effects are expected to be quite small.

angles. For this closed she
hus it appears that the re-analysed experimental results are in worse agreenient

with theory than the original results near the profile centre.
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