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1. INTRODUCTION

Consider a multicommodity transhipment problem where the prices
at each location are an affine function of the supplies and demands
at that location and the shipping costs on a link are an affine
function of the quantities shipped on that link. A system of prices,
supplies, demands, and shipments is defined to be an equilibrium, if
there is a balance in the shipments, supplies, and demands of goods
at each location, if local prices do not exceed the cost of importing,
and if shipments are price efficient. Lemke's algorithm is used to
i compute an equilibrium in a finite number of steps.

This paper extends the works of Takayama and Judge [4] who
utilized quadratic programming. Our approach and results are more direct
and more general; we solve the equilibrium conditions directly without
passage to an optimization problem. In [3] an even more general equili-
brium problem is formulated as a complementarity problem, but in a dif-
ferent manner than that used here and without the results obtained here.

Our problem is conveniently represented with a directed graph

(¥, #) with a finite number of nodes .# = {1, ..., n} and a finite

number of links %= {1, ..., %}. Such a directed graph with n = 4




and ¢ =5 1s illustrated below.

Figure 1

Each node 1 in .# represents a producer/consumer at a
specific spatial/temporal location. Each link s in £ represents
a specific transport facility for transfering commodities between
nodes, that is, locations, and each link s 1is oriented to coincide with
the direction of a possible transfer activity. For example, if link s

has head j and tail 1, that is,

@rrere—Q)

then the transfer of goods along s 1is from node i to node J.
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We permit multiple links between the same pair of nodes,e.g.,

1
l, 2 e
1, 3ed
but we do not permit loops, e.g.,
1 €4
2
2€¥

(Technically speaking, &% indexes a finite subset of {(i, j, z)
fydew 3 28 ) 5lawl 2, 0i).)

We are concerned with the supply, demand, and transhipment of
m goods g=1, ..., m in the network (. #,%). A good g could be 1
a raw material, an intermediate product, or a finished product.

Let the variable f8 = (fsl’ enivy fsm) represent the quantities
of the various goods shipped along link s and let the per unit shipping
cost of the various goods moved along link s be an affine function
Csfs o cge Hence, fs-(CsfS + cs) is the total shipping cost on

link s.

S




Let the variable P = (pil’ Nirn pim) represent the prices

of the various goods at node 1i. Let the variable hi = (hil' Vi him)

represent the net exports from node i of the various goods; that is,

h1g is positive when node 1 produces more of good g than it consumes,

and is negative when more is consumed than produced. We assume that the

prices Py and exports hi at node 1 are related by an affine function

- e Aihi + a,.
Our network is completely specified by the graph (.4, 7), the

(Ailai) for i in .4, and the (Cslcs) for s in #. For the
graph of Figure 1 we could have, for example, the data of Figure 2

corresponding to two goods; in Section 4 we shall solve this example.

| (1 0-1) ' (1-1-1)
(A, |a,) = (A, |a,) =
11 2 1] 2 ¢ 8 0 1|-1
| (1-1 2 | (o-z 2) *
(A la,) = (A, |a,) =
AL U -1) e B S
| (2 o-1) | (1 1-1) i (1 -1 1)
(C,|c,) = (C,|c,) = (Chlz,) =
i ¢ R T2 Y0 il X Xxoal

I

0 1 0
) (C5leg) = (

0 2 4

o

(c IC)-(
4'74 11

Figure 2
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To define an equilibrium in a precise manner we need some
additional notation. For a link s, let us be the node at the tail
of s, and let sn be the node at the head of s. For example, with
respect to Figure 1, we have nl =1 and 5a = 2. For a node 1, let
»i be the set of links s entering i, and i> be the set of links

leaving i. Hence, link s is in i~ or ~»i if and only if ms = i

or sn i, respectively. With respect to Figure 1, we have 1> = {1}

18 1

and 2

A system of prices p = (pl, e pn), exports h=(hl, AL hn)’
and shipments f = fl’ o fl) is by definition an equilibrium if the
following five conditions hold.

( (a) fs >0 se
(b) h, = £l f 1ens
X iz-> s }i s
(1) < (C) pi e Aihi g ai i G./"
(d) Pus * csfs i Sy = L =
\ (e) fs'(pus + CsfS + G psu) =0 s €L

Condition (la) requires that the shipments or flows be nonnegative,

however, note that the prices and exports, may be positive, negative,




or zero. Condition (1b) represents the conservation of goods at
node i. Condition (lc) expresses the fact that node 1 produces
and/or consumes according to the prices. Condition (1d) is a price
stability condition requiring that the local price must not exceed
a neighboring price plus transportation costs. Finally,condition (le)
requires that goods only be shipped (in positive amounts) on price
efficient links, that is , if f88 is positive, then
(pns ¥ Csfs :; cs)g % (psn)g

the price of g at mns plus transportation costs along s to sn
must equal the price of g at sn.

In the following sections we prove and illustrate the following
theorems. Theorem 1 provides conditions under which Lemke's algorithm
will find an equilibrium or show that none exists. Theorems 2 and 3

give additional conditions under which Lemke's algorithm will always

find an equilibrium.

Theorem 1. If each Ai is positive semidefinite and each Cs is
copositive plus, then Lemke's algorithm generates an equilibrium or
demonstrates that no equilibrium exists.

Theorem 2. If each A, 1s positive semidefinite and each Ca ‘is

i
strictly copositive, then Lemke's algorithm generates an equilibrium.




Theorem 3. If each A

i is positive definite and if for each
s, C, 1s copositive plus and £ 2.0, is.csfs =Oy.e s <0

no solution, then Lemke's algorithm generates an equilibrium.
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2. THE LINEAR COMPLEMENTARITY PROBLEM

Here we recast the conditions for equilibrium into the form of

the linear complementarity problem, namely, into the form

w=Mf + q

(2)

It is to this system that Lemke's algorithm applies.
With regard for (1d) we introduce slack variables
L (wsl,..., wsm) for s in & by setting

wsapus+csfs+cs_psn s e¥

For notational convenience let us define ¢ tobe ¢ + a =R
s s ns sn

Now use (1b) and (1c) to eliminate hi and Py in (1d) and

(le) to obtain

(a) e Ans( z ft i Z ft)
s> s

_A“(a,z,., ft' - +§u ft) + CBfB + e s €EP
(3)
(b) fsws = 0 se¥?
(c) £, 20 wze s ey
8

|




Note that sm> is the set of all links whose tails are the head

of s, etc. Hence, if we solve (3) and use (1b) and (lc) to compute
hi and p; ve have solved (1) and have an equilibrium; conversely,
any solution to (1) yields a solution to (3).

Equation (3a) can be rewritten as

. (Aus » Asu) Z ft 0 (Aus i Asn) z ft
o 8
(4)
. Aus Z ft i Ans Z ft
Y §
+ 3 -
Asu 2 ft Asn I f + Cq
n
where

=3
L}

((ms>) N (»sm)) v s B = (sa>) N (»ns)

(as») v (+sn) § = (+mg) v (sno+)

oy
it

g = (»sn) ~ (as+) n = (sp+) ~ (»ns)

©
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Note that the index sets o through n are pairwise disjoint; the

following schema illustrates the partition:

Now let us cast the system (3) into the linear complementarity
problem. Define an 2m x 4m partitioned matrix M by M = (Mst) with

8, €t = T o and Mst is an m x m matrix defined by

=JA +A +C A +A -A -A -A
us smn s| ms sal ns so mws us sn so 0

if t=3s tea teB Jteylte s teE]t e niOtherwise

Define an &m vector q to be (El, e El)' Using (4) it is now

st

evident that solving (2) is equivalent to solving (3).

As an example, consider the multicommodity network of Figure 1,

we have displayed the matrix (M|q) in Figure 3.

10
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1 - 3 4 5
-
:\1+A2+(‘. —Al~-A2 —/\2 0 AZ Cl
—AmA, A1+A2+C2 Ay 0 -A2 y
—A2 A2 A2+A3+C3 —A3 —A2 Cq
0 0 —A3 A3+AA+C —f\a c4
as - 5 + b
A, A,y A,y A, A, A4+C5 Cg
Figure 3




3. SOLUTLON

We now prove the three theorems stated in Section 1. A square
matrix N is said to be positive definite if xNx 1is positive for
all nonzero x. N 1is said to be positive semidefinite if xNx
is nonnegative for all x. N is said to be strictly copositive if
xNx 1is positive for all nonzero nonnegative x. N 1is said to be
copositive plus, if xNx 1is nonnegative for all nonnegative, x and
if xNx equals zero for nonnegative x implies (NT + N)x equals
zero. Incidently, for clarity, we remark that the Ai’ Cs and M

are not assumed to be symmetric.

For any system of shipments f and exports h satisfying the

conservation equations, we have the equality

(5) f'Mf = J h :Ah + ) f «C_f
N p SEER: 1 ¢ P 8 s's

From our formula (5) we obtain the following lemma.

Lemma 4. If each Ai is positive semidefinite and each C8 is co-

positive plus, then M 1is copositive plus.

Proof. If each Cs is copositive plus, then so is the matrix
C= diag(cl, sy cl). Also, clearly the matrix M - C 1s positive
semidefinite, and, therefore, copositive plus. Finally, the sum of

two copositive plus matrices is copositive plus. &

12




Towards solving the linear complementarity problem (2) we

apply Lemke's algorithm to the system

Iw - Mf - ez = g
(6)

Briefly, Lemke's algorithm proceeds by generating a path of solutions
to (6) beginning with the family of solutions for which f = 0. A
complete description of Lemke's algorithm can be found in lemke [2],

or [1].

Theorem 5 (Lemke). Suppose M is copositive plus. If Lemke's

algorithm is applied to (6) where e = (el, €rs ees s )y e 1

if 9 < 0, and e = 0. 4if A > 0, then either a solution to (6) with

z = 0 1s generated or a vector f is generated satisfying (7).

(7 fM <0 fME =0 feq<O £>0

Proof. See [1]. i

13




Theorem 1 now follows from Lemma 4 and Theorem 5; note that (2)

cannot have a solution if (7) does.

Proof of Theorem 2. Suppose the hyptheses of Theorem 2 are satisfied

but Lemke's algorithm does not find a solution. From (5) and (7)
0= f-Mf =) hi.Aih1-+§ £ oC 1,

Since each term is nonnegative, each term is zero. Since each C‘

is strictly copositive, each fs equals zero. But this contradicts

feq < 0. So Lemke's algorithm will generate a solution. X
q

Proof of Theorem 3. Suppose the hypotheses of Theorem 3 are satisfied,

but Lemke's algorithm does not find a solution. From (5) and (7)

0 = fMf = ] hoeAh, + 3 E s

Since each term is nonnegative, each term is zero. Each h1 is zerc

since each Ai is positive definite. Also

0> z fs'(cs + ans - asu) = Z cs-fs + Z ai-hi = X cs'fs

so for some link s, cs°f. < 0, £8°Csfs =0, fs > 0 which contradicts

the hypotheses. So Lemke's algorithm will generate a solution. B

14
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4. EXAMPLE
We shall now illustrate the preceding results by solving the
2-commodity network problem defined by the graph of Figure 1 and
the data of Figure 2. (M, q) 1is shown in Figure 4, see Figure 3.

Lemke's algorithm is applied as described in Theorem 5. In view of

Theorem 2 convergence to an equilibrium is guaranteed; the flow

<.2353 ( 0 )

; 3 = f =

5 .7059) 2 2.2941
(1.5294) (1.0098) ( 0

£, = £, = £f_ =

3 0 ’ .2451 3 0 )

Hence, (p, h, f) 1is an equilibrium when the prices p and

generated is

exports h are computed according to (1b) and (lc).

.2353 1.2941
h

i
=2
]

-1.5882 1.5882

-.5196
h, =

. 2451

- 7647 -1.2941
p - p =
A .8824 2 .5882
1.2353 2.4902
Pq = P, =
3 -1.2745 4 .0196

15




4 | -1 | -2 1 1-1 1 0 0 1 |-1 -1
2 31| =-2 } =2 0| -1 0 0 0 1 2
-2 1 3 0 1] -1 0 0| -1 1 -1
-2 | =2 2 3 0 1 0 ¢ 0 ]-1 -5
-1 1 1] -1 3]1-3|-1 1 | -1 1 -2
0| -1 0 1 2 3]1-1]-1 0| -1 1
0 0 0 0] -1 1 2 | =2 0 2 0
0 0 0 0| -1} -1 4 2 | =2 0 -3
1]-11]-1 1| -1 X 0 2 2 1=3 2
0 1] 0} -1 0] -11] -2 0 4 2 4
Figure 4
16
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