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1. INTRODUCTION

Consider a multicommodity transhipment problem where the prices

at each location are an affine function of the supplies and demands

at that location and the shipping costs on a link are an af fine

function of the quantities shipped on that link. A system of prices ,

supplies, demands, and shipments is defined to be an equilibrium , if

there is a balance in the shipments, supplies, and demands of goods

at each location, if local prices do not exceed the cost of importing,

and if shipments are price efficient. Lemke’s algorithm is used to

compute an equilibrium in a finite number of steps.

This paper extends the works of Takayama and Judge 14] who

utilized quadratic programming . Our approach and results are more direc t

and more general; we solve the equilibrium conditions directly without

passage to an optimization problem. In [3] an even more general equili-

brium problem is formulated as a complementarity problem, but in a dif-

ferent manner than that used here and without the results obtained here.

Our problem is conveniently represented with a directed graph

(.4’, .j’) with a finite number of nodes .4 (1, ..., n} and a finite

number of links ~~~~~~~ {l, .. ., 2.). Such a directed graph with n — 4
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and 2. — 5 is illustrated below.

Figure 1

Each node I in • 1 represents a producer/consumer at a

specific spatial/temporal location. Each link a in 1€ represents

a specific transport facility for tranafer ing co~~odities between

nodes, that is, locations, and each link a is oriented to coincide with

the direction of a possible transfer activity. For example, if link a

has head j and tail I, that is,

0—
then the transfer of goods along s is from node i to node j .
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We permit multiple links between the same pair of nodes,e.g.,

c IIIItIII::~E::~
but we do not permit  loops , e . g . ,

( I ~~
2

(Technically speaking, ~~‘ indexes a finite subset of {(i, j, z)

i, j ~~•4’ ; i ~ .j ; z 1, 2, . . .~~.)

We are concerned with the supply, demand , and transhipment of

m goods g — 1, ..., m in the network (
~4’,2’). A good g could be

a raw material, an intermediate produc t, or a finished product.

Let the variable f (f 1, ..., f )  represent the quantities

of the various goods shipped along link a and let the per unit shipping

coat of the various goods moved along link a be an af fine function

C f ÷ e . Hence, f ‘(C f + c ) is the total shipping cost on
g s  S S S S  S

link a.
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Let the variable p~ — ..., p~~) represent the prices

of the various goods at node i. Let the variable h1 — (hi1i ~~~ 
him
)

represent the net exports from node i of the various goods; that is,

hig is positive when node i produces more of good g than it consumes,

and is negative when more is consumed than produced . We assume that the

prices p~ and exports h1 at node I are related by an af fine function

p1 A~h1 + a1
.

Our network is completely specified by the graph (.A’, ¶~°), the

(Ajla 1
) for i Ln .4 , and the (C Ic 5) for s in Si’. For the

graph of Figure 1 we could have, for example, the data of Figure 2

corresponding to two goods; in Section 4 we shall solve this example.

1 0—1 1— 1 —1
(A
11a1) (2 l~ 2 

) (A2 Ia2
) — ( 

~
)

1—1 2 0—2 2
(A
3~
a3) -(~ l~_l) 

(A
41a4) -(2 0~ 2)

/2 0 —i \ /1 l— l \ /1 —1 1
(C1~c1

) — ( ) (C~Ic 2) ( J (C3
j .’3) (

\O 1 — 1 / \O 1—2 / \l 1 1

1 10 1 0— 1
(C4fc4) 

-(1 l~0) 
(C
51c5
) 

(2 J 1)

Figure 2
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To define an equilibrium in a precise manner we need some

additional notation. For a l ink a, let us be the node at the tail

of s, and let su be the node at the head of s. For example , with

respect to Figure 1, we have ul = 1 and 5n = 2. For a node I, let

he the set of links s entering 1, and i-~ be the set of links

l eaving i .  Hence , link s is in i-’ or ~l if and onl y i f  as = 1

or sn = i , respectively. Wi th  respect to Figure 1, we have l-~- = {l}
and •~ = {1,5~ .

A system of prices p = (p1, ..., p) , exports h=(h 1, ..., h),

and shipments f = f 1, ..., f~~) is by defini t ion an equil ibr ium if the

following five conditions hold .

(a) f > 0

(b) h~ ~ f — ~ f i c~.4’
+1

(1) (c) p1 A~ h1 
+ a

i i c.J

(d) p + C f  + c5 > p s c .q’

(e) f
5~ (p 55 

+ C f  + C
s 

— p
85

) 0 S

Condition (la) requires that the shipments or flows be nonnegative,

however, note that the prices and exports, may be positive , negative,

4 ._-. _ 
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or zero. Condition (ib) represents the conservation of goods at

node i. Condition (lc) expresses the fact that node I produces

and/or consumes according to the prices. Condition (ld) is a price

stability condition requiring that the local price must not exceed

a neighboring price plus transportation costs. Finally condition (le)

requires that goods only be shipped (in positive amounts) on price

efficient links, that is , if f8 is positive, then

(p + C f  + c )  — (p )as a s  s g  sag

the price of g at as plus transportation costs along a to as

must equal the price of g at an.

In the following sections we prove and illustrate the following

theorems. Theorem 1 provides conditions under which Lemke’s algorithm

will find an equilibrium or show that none exists. Theorems 2 and 3

give additional conditions under which Lemke’s algorithm will always

find an equilibrium.

Theorem 1. If each A1 is positive semidefinite and each C5 
is

copositive plus, then Leake’s algorithm generates an equilibrium or

demonstrates that no equilibrium exists. ~

Theorem 2. If each A1 
is positive semidefinite and each C5 ~

is

strictly copositive, then Lemke’s algorithm generates an equilibrium. ~

6
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Theorem 3. If each A
1 is pos itive definite and if for each link

s , ( is coposi tivc p lu s  and t > 0, [ C I 0 , C ~f < 0 has
S S ~~~S S S

no solution , then Lemke ’s a.Igc’rithm generates ;in equilibrium . L~

~ ~~~~~~~



2. ThE LINEAR COMPLEMENTARITY PROBLEM

Here we recast the conditions for equilibrium into the form of

the linear complementarity problem, namely, into the form

w = Mf + q

(2)

w > 0  f > O  w • f = O

It is to this system that Lemke’s algorithm applies.

With regard for (ld) we introduce slack variables

(w 1,..., Wsm) for s in 2’ by setting

w p + C f  +c — p
S aS 5 8  5 55

For notational convenience let us define c to be c + a — a
S S as sa

Now use (ib) and (ic) to eliminate h1 and p~ in (ld) and

(le) to obtain

(a) w — A (  
~~ ~ t 

—

—A
85
(~~ 

~t 
— + C f  + s E 2’

(3)

(b) f •w 0 0

(c) f
5 > 0  v

5 > 0  S E 2 ’

8
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Note tha t  sn~ Is the set ~ f all  l inks whose tai ls  are the head

of s , e t c .  Hence , i f  we solve (3) and use (ib) and (ic)  to compute

and p1 
we hove solved (1, and have an equilibrium ; conversely,

any solut ion to (1) y ields a solution to (3) .

Equation (3a) can be r ewr i t t en  as

w = ( A  + A  4 - C ) f
S SS Sn S S

+(A + A  )~~~f -(A + A  )~~~fus Sn t us Sn t
a

(4)

+ A  ~~f - Aus t ua~~ t

_ A
n~~~

f
t
+ C

s

where

a ((ns-*) fl (~ ss))  ~ a = (su-*) fl (÷ns)

y = (ns- ) “.. (-~sn) ‘~~ (-*ns) ~ (sn-’)

= (-~.su) ~ . (us-k) — (sn-~) (-i-us)

9
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Note that the index sets a through r~ are pairwise disjoint ; the

following schema illustrates the partition:

Now let us cast the system (3) into the linear complementarity

problem. Define an fin x fjn partitioned matrix N by M (M5~
) with

s , t = 1, ..., 2. and is an in x in matrix defined by

N - A +A +C A +A -A -A A -A A -Aat as as s us su as si as as as su 0

if t — s  t e a  te~~ t e y t e~~ t e~~ t e n  )therwlse

Define an im vector q to be (~~, ... , ~~). Using (4) it is now

evident that solving (2) is equivalent to solving (3).

As an example, consider the multicoimnodity network of Figure 1,

we have displayed the matrix (MIq) in Figure 3.

10
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2 3 4

A + A
2

+C
1 

-A
1

— A
2 

—A
2 0 A2

2 — A 1— A 2 A1+A 2+C2 A2 0 —A 2 c
2

A2 A 2+A 3+C 3 —A 3 —A 2 C
3

1) 0 — .\3 A 3+A4+C4 —A 4 C
4

5 A2 -A 2 -A2 —A4 A2~A4+C5 
C
s

Figure 3
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3. SOLUTION

We now prove the three theorems stated In Section 1. A square

matrix N is said to be positive definite if xNx is positive for

all nonzero x. N is said to be positive semidefinite if xNx

is nonnegative for all x. N is said to be strictly copositive if

xNx is positive for all nonzero nonnegative x. N is said to be

copositive plus if xNx is nonnegative for all nonnegative, x and

if xNx equals zero for nonnegative x implies (NT + N)x equals

zero. Incidently, for clarity, we remark that the A1, C and N

are not assumed to be symmetric.

For any system of shipments f and exports h satisfying the

conservation equations , we have the equali ty

(5) f M f  — ~ h1 A1h~ + ~ f •C 5f5
2’

From our formula (5) we obtain the following lenina.

Lemma 4. If each A
1 is positive semidefinite and each C5 is co—

positive plus, then M is copositive plus.

Proof. If each C
5 is copositive plus, then so is the matrix

C — diag(C1, ..., Ci
). Also, clearly the matrix M - C is positive

semidefinite, and, therefore , coposiuve plus. Finally, the sum of

two coposi tive plus matrices is copositive plus. ~

L 
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I
Lvi  ng the ii i~~~.i i co mp lementarity pi oh en ( 2 )  we

a p p l y  1.ernke ’ 4 algorithm to tlw ~ystem

1w - MI — ez q

( ‘))

w~~~~Q w f 0

hriefly , Lemke ’s algorithm proceeds by generating a path of solutions

to (6)  beginnIng with the family of solutions for which f 0. A

complete descript ion of Lemke ’s algori’hm can be found in Lemke (2h

or [1].

Theorem 5 (Lemke). Suppose M is copositive plus . If Lemke ’s

algorithm Is app lied to (6) where e = (e1, e2, ..., e~ , ...), e~

< 0, and e
k 

= 0 if > 0, then either a solution to (6) with

z 0 is generated or a vector f Is generated satisfying (7).

(7) f M< 0  f~H f — 0  f .q < 0  f > O

Proof. See [1]. ~

13
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.4
Theorem 1 now follows from Lemma 4 and Theorem 5; note that (2)

cannot have a solution if (7) does .

Proof of Theorem 2. Suppose the hyptheses of Theorem 2 are satisfied

but Lemke’s algorithm does not find a solution. From (5) and (7)

0 = f~Mf — 
~ 
hi

.Ajhi +X 
f .C f

Since each term is nonnegative, each term is zero. Since each C

is strictly copositive, each I equals zero. But this contradicts

U < 0. So Lemke’s algorithm will generate a solution. @

Proof of Theorem 3. Suppose the hypotheses of Theorem 3 are satisfied ,

but Lemke’s algorithm does not find a solution. From (5) and (7)

0 — f~Mf — 
~ 
hj Aihj + ~ f5

.C
5
f
8

Since each term is nonnegative, each term is zero. Each h
1 is zert

since each A
1 is posItive definite. Also

0 > ~ 15
(c + a — a8~

) — ~ c ’f  + ~ ~~~~ ~

so for some link a , c5’f8 ~ 0, f5 C f  0, f5 > 0 which contradicts

the hypotheses . So Lemke ’s algorithm will generate a solution . ~

14
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4. l~X.AMPI F.

We shall now liids trate the preceding results by solving the

.‘-eorn~ o d i t y  ne t wor k  problem dot  m e d  by the graph of Figure 1 and

t h e  J :iv i of Figure 2.  (M , ~ ) is shown in Figure 4 , see Figure 3.

Lemke ’ s a l g o r i t h m  is appl ied as described in Theorem 5. In view of

Theorem 2 convergence to an equi l ibr ium is guaranteed ; the flow

~~ nera ted  is

/ . 2 353\ / 0
1 = 1  f = (
~ \ .7o~’~/ 2 \2.2941

/l.5294\ 1.0098 0
= 

~ 
) = ( .2451) = (

~~)

Hence , (p, h, f) is an equilibrium when the prices p and

exports Ii are computed according to (ib) and (lc).

I .2353\ /1.2941
h =

—1.5882 2 1.5882

/ -- .5196 \ /—1.0098
h 3 

= I h4 I
\ .2451

/ 
— .2451

j _ .7647 \ /— 1.2941
P1 I I

.8824 / .5882

/ 1.2353 /2.4902
p 3 — 

~ I p4
= 

~\_t. 2745 / .0196

15
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V

4 —l —2 1 —l 1 0 0 1 —1 —1

2 3 —2 —2 0 —l 0 0 0 1 2

—2 1 3 0 1 — l 0 0 —1 1 —l

—2 —2 2 3 0 1 0 e 0 —l —5

—1 1 1 —l 3 —3 —l 1 —l 1 —2

0 —1 0 1 2 3 —l —l 0 —l 1

0 0 0 0 —l 1 2 —2 0 2 0

0 0 0 0 —l —l 4 2 —2 0 —3

1 —1 —l 1 —l 1 0 2 2 —3 2

0 l 0 —l 0 —l —2 0 4 2 4

Figure 4
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