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Abvstracl

Applicebility of the Bernoulli-L'hospital rule was investigated, if
the usual asswaptions fail on a zero set.

II. The probably most general extension of integrals of Ceuchy-Frullani
type was developped, which contains, beyond all specizl cases as yet
known, a great number of further types of integrals.

III. The classical theorem on irreducibility of the resultant of two gene-
ral polynonials is extended to the case where one of these polyromials
contains only one free paraueter,

IV, Vhile a polynomial ideal, P, with a basis P, (»=1,...,n) is defined

as the set of 2ll polynomials of the form

"

;_;Kypy » K, polynomials,
the Kronecker extension of the ideal P, T, is defined as the set of all
polynomials satisfying an equation of the type

m - n

T+ Sk I"* =0
MmrA o

where each ﬁ“,is a polyromial from M The investigation was concer-
ned with the properties of the Xronecker extensions of polynomial

iceals, defined in this way.




vI.

VII.

VIII.

IX.

polynomial ideal under consideration. This invariance can
be partly saved introducing algebraicélly closed ideals
as discussed in the tecnical report BMN 46.

In different discussions of the de Moivre - Laplace
formula in the calculus of probabilities, from Llaplace,
1812, to Feller, 1950, an error term was used of the

2Xh
be taken as 1. We prove that this is false in the

3
form VA-T"-\-Q"? 4-0(%) and it was asserted, that d‘n can

sense, that such a form of the remainder is possible,
but the dn, instead of being = 1, are, with n - ,

everywhere dense between -1 and 1.

The investigation is concerned with the proovlem whether
the expressicns d, used in the abstract VI are uniform-
ly distributed in (-1, 1). We prove that this is not the
case and obtain explicit expressions for the density of

dv and some more general sequences.

If J is a linear interval mod 1 of the length |J| ,™

a real frrational and R(ve),V = 1,2,¢00 are the resi-
duals mod 1 of the products ve, then s(n,J), the number
of the R(V&) from J withvg¢n, satisfies the relation

(1) N(n,Jd) = njJl + E(n) , E(n) = o(n) (n-»o0).
The article investigates the improved estimates of E(n)
for specialw , in particular in connection with T(n)
defined by

(2) T(n):= Minlz‘u + zol ( lz,lsn, Z,NZ,€ ) h

™he central result is a functionai inequality implying the
functions [E(n) and T(n).

The aim of the investigation is to generalize the results
mentionned in Abstract VIII to the case of R", m > 1, where
the irrational ¢ is replaced by a vector o :=(&X, ,...,o{m)
satisfying the corresponding independency condition.

AR -




lying mod 1 in J with 1 & v ¢ n. The Error function #(n)
is again defined by

(1) E(n):= N(n,J) - nlJ} = o(n) .

On the other hand, the functions Y (g),'P(T) ana A% (x)
are defined similarly as in BYN 50, vhile the corresponding
functional inequality has tc be written as

(2 R0 A (D) ¢ Bx/ Qi) w01, 850,

for a convenient constant ¥,. Lifferent solutions of tkre

functional inequality (2) are discussed and corresponding

estimates of E(n) obtainea.




I. Berpoulli~l.'Hospital rule

In the usuzl formulations of the general Bernoulli-L'lospital rule

one of the four liniting processes
(1) XT“) x 4 -00, xTxo,)&&xo

is consicered. The functions f(x), g(x) are assumed to have derivatives,
vhere g' is either always > 0 or always < 0, while lg!-b 0 , Then the as-

sertion is (see the appended BM¥ L43)

(2) lin £'/g' & lin f/g ¢ lin £'/g' .

It is shown on a counter example that this formulation is no lon~
cer true,.if the existence of f' and g' fails for a zero set,f) , while suck
an exceptional sel often occurs if for instance f and g are Lebesgue inte-
grals.

It .can then be shown that, if both f and g are absolutely coa-
tinuous, but f' and g' only exist with the exception of a zero set,Q2, -
and agcain g' has a fixed sign (save on L) and lsl-#oo - then (2) asgain
holds if L) is disreszarded in the extreme terms of (2),

As a matter of fact, we obtain still a partiel result if we allow

g to be discontinuous, Then ve have at least
(3) © lim Min(0,f'/g') & iz f/g € 1in fax(0,1'/g') .
A particularly useful rule is obtained in the following result J

Assune that for one of the liniting processes (1), save on & set,S1;of
of measure 0 in the range of x, £'(x) and g'(x) exist, g'(x) is either al-
ways » O or always 40 and g(x) tends nonotonically to +e or -e . Assu-

me further that we hive for a finite constant & ,

s g £1(x)/g' (x) —> &, lotl& oo (xd Q) )

and that f(x)-e;(x) is absolutely continuous., Then the relation holds:
(5) f(x)/g{x) —> K .

All deteils are contained in BMN 43 distributed previously. The paper
appearedin the American Mathematical Monthly , 83, 1976,pp. 239-2h2.




II. Cauchy-Frullani inte rals

The Cauchy=-Frullani fornmule is
o0
(1) jfflat)- f(bt)] dt/t = [:f(w) - f(O)] QZ al/b (anb>0).
o

This holds if f is L integrable end the two expressions on the right, defi-

ncd by

(2) f(20)i= bim L) | £0):= L f(4)
tfoo tlo
exist.
It is natural to ask whether f£(00) ard £(0) can be repleced, if the:ze
linits do not exist, by convenient imesn values, M(f) and m{f). Indecd, it

can be shoim, that if both linits

b3 1
(2°) M) = Lime X [dt ) m(f):= ﬁ/: x!:{(odt/t"

X1 o0 A

exist, then tihe formulu ;
(3) f(f(ag)- gon)]dt/t = [hig)-m(f)] &4 a/b
o

holds, and vice versn,if the integsral in (3) convergzes at least for a set of

positive rezsure of the quotientsa/b, then tre expressions (2°) exist ana

(3) bolds for all positive e and b. (See the chaplers I = III end V of 312! Lk,
As & matter of fuct, necessury and sufficient conditions of this kind

vere iadicated in 15h0 by i, S.K.Jyengar, the conditions corresponding to

(o0 ) being

() 3ffu)ou./+.’ ; 3 Lime x e /L’)
4

x>0 X
vhere the seccnd liait corresponds in (1) to f£(e@), Jyrencar's conditions cor-
recponling to £(0 ) cre sinilar,
However, Jyengar's proof was incorrect. A simpler proef wes given
1542 by Agnew, but this proof contains again a gap, 88 was pointed out 1545
by A. Ostrowski who gave the conditions (2°) and sketched @& ‘@irect proof

)




of their sjuivelence with Jyengzer' conditions, This proof is detailed in

ct

he chepter IV of Kul b4, Tive rears luter, 1754, Agnev succeeded irn fil-

[

ing out the gar of his proof.

The following secticns of the paper ecntain the forrulation ané the
proof of & very general extension of (1) wnd (3), the Three-Functions-For-
niule. Its formulation contains, because of its generality, several parameters,
and it is sufficient to refer to tihe sectica U5, pp.36-37, of the
D% B4, To characterize the foruula we give in the following a simplified
versicn if it.

Assuwie G(x) L-integrable in <O,00) , bounded in any clozed inter-
val of the positive x-axis aad such that T(G), =(3) exist. Acsume tte
open intgrval J betuecen a and b (a%b) snd tvo functions LP(t), yt)
defired znd absolutely continuous in J. Assuie further that the values qwa),
Yla), Y(b), Y(b) exist if defined as limite from J, and further thsat ‘-f'(a)’

a8 t
q'(a), §'(b), Y'(b) exist and y'a) Y'CB) # O.

Then ve have the fcrmula

b
, -4 U/ dt = m(q) e T2 Lo
(5) ‘{W geN/Y - 4'QD/gJdt = m(g) Y ¢'a) 04 ¢'(b)

All devails are contained in BMN 44, distributed sreviously . The paper

has appeared in Commentarii !Mathematici ielvetici, 51, 1976,pp.5T=-91.

III. Irreducibility of the resultant and connectea results

Consider two polynomials f(x) and g(x) with coefficients respecti-
vely aﬁand by » and their resultant R. Assume that the b, are polynomials
in a parameter § so that g(x) becomes a polynomial g(x,¢). Then, if g(x,g)
is irreducible, R as a polynoniul in the 'j“' and @ is also irreducible,

As corollaries of this result, eyuations satisfied either by the
suns of zecros of f and g or Ly the products of these zeros are analyzed
and their irreducibility is proved.

All details of the proofs are contained in BMN 45, distributed

previously. The paper is in print in Archiv der Mathematik.




EZ Algebraic Closure of Modules

While & polynomial ideal, P, with a basis P, (W=l,...,n) is defined
as the set of zll polynomials of the fornm

"

K P ¢ <5 Lo
Z“y » » K, polynomials,
Veq

the ironecker extensiocn of the ideal 7, P, is defined as the set of all

polynomials s«tisfyinc an equation of the type

wm
m Me
K TM =0
T +§.°_,.,-

where each %“'is a polynomial from P,

The technical report BMN 46, the copies of which were appended
to the periodic technical report of April 76, is concerned with the
properties of the Kronecker extensions of polynomial ideals , defined
in this way, and the generalization of this concept for the modules
over a ring .

The main points of this discussion are

a) " Linearization " of the algebraic condition imposed on the

elements, W , of P . This is done, introducing the concept of a

supporting sequence of W over P in theorem 1 in sec. 12 (partly cue

to Priifer), and more generally, introducing the concept of a doutle

supporting sequence in theorem B in sec. 15 .

We further generalize this criterion in theorem 7 in sece 51 ,
though useful, but bearing no longer linear character .

Y muL

wy &

i

procfs that P is a module, theorem 2, sec. 17, and that

o

P is algebraically closed , T-F s in theorem 4§ of sec. 33.

¢) An importante theorem of Macaulay, asserting that, if A,B,C

are mocdules and B firite, then from BC ¢ AB followsCCA, is generalized,

et s 5
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in theorem 8, sece. 60, to modules over a ring s tocether with a con-

siderable cimplification of the proof.
A great nunmber of partial results arc more ¢f techiical character

but useful and partly even necessary in applications of the theory.
In particular, attention may be drawn to the discussion in the sec,
01=-78, of the application of the valuation theory to rings and mocu-
les, which is very technical but proved to be important in the appli-
cations of the whole theory to Kronecker's theory of elimination,
discussed in the next item . 7!e paper is teing printed in Crelle's

Journal der Mathematik

V. On Kronecker's elimination theory

Kronecker's set up in his c¢limination theory starts with a

polynomial ideal
(@D P(f\,(xv...,xk)) G e S e D s ﬂ[xi,...,xk]

where LLl:= € and the n polynomials f, with coefficients fronlflform

a basis of P « To obtain the null manifold of P Kronecker makes

first the variables x%to uncergo a general linear transformation

such that the highest powers of each single variable XpgeoasXy

in any of the fy has a non vanishing coefficient from € . Then be

eliminats first X, computing the resultant with respect to X, ¢

vz4

" Lo
2 f = e
(2) Res, (:l::u\, e M A ) gud Y Rep

Here the u,, v, are indeterminates independent with respect to

v




QE‘I’“"XK] . On the rigth side of (2) the Uy are products of
pover of the uy , the Vls sroducts of powers of the vy and P&..s are
indevendent of the uy,, vy, , while the products Uy V:s are all
distinct. Then the module

(3) Tpi= (Ryg(Xpaeeesxy)) in S20inpannyny)

is the resultant module obtaincd from P by elimination of e

However, J, as defined starting from (2) is not invariant

vith respect to the choice of t'e basis elements fy of P .,

The first main result of our disgussion in case Q::C ’
is that,the ideal Tf is inaeed independent of the choice of the basis
of P and as the matter of fact only depends on P .

However, the whole discussion is undertaken on a larger front
in so far as {lneed not be = € but is assumed only a natural ring.

This embraces also the set up of Lasker in the case Q:Z .
Our second main result can be formulated as follows. Let
(L') Q = (8» (x"...’xk)) (#2 "'."m)

be another ideal in ﬂsuch that Q =P inﬂ. Denote byc(‘ the ideal
in .Q.Eca,...,xa the basis of which is formed by the coefficients
of the highest power of X, in the n polynomials fy,and x'the

corresponding ideal formed for the B e Then, if we denotie with JS




ST i

*A de Moivre s» Miscellania analytica (2nd supplement), 173};

- 10 -

the ideal i"QE‘a""”‘a defined applying (2) and (3).to the cp,

the relations hold
(9) J CJI,G‘ fCJ .

Here , r is any integer »p and r' any integer )» q, where p, q are
correspondingly the maximal degrees of the fy and of the %”in Xy .

It is of some interest to obtain , if possiktle, lower values

for r and r'.This is indeced possible, using the conc:pt of the

height of a polynomial ideal with respect to a Dedekind module as
developped in the last part of the technical report BMN 4b. However ,
this part of the discussion requires a not inconsiderable display

of technical argumentations.
The technical report BIN 47 has been distributed previously. The paper

is being printed in Crelle's Journal der '‘athematik.

VI.On the rciiainder term of the de Moivre-Laplace formula

The de Moivre-Laplace formulé'in the probability calculus is
concerned with the case of the n times repeted trials with constant

probability p,if n—+w .

P. Laplace sy Oeuvres, Vol. VII, 1812, pp 281, 284.
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Introeduce , ‘or a p, o<;)<l,and integer ¥ with o¢v<¢n,

the notations :
py := (5) P O-p*Y , v :={2p01-p)n >
n, i= [(n+])p] y W! ::';"—;“ﬂi‘ﬂl 3

'Thcﬁ,fofhé positive nz,thn formula in question in the form

in which it was given by Laplace can be written as

L(m) =9 0y (IV=hl ¢ Mw') ,

4
=L _,11 d.n - 3 (]
L(m) m S e d'q_ +-r?--eq+0(-%-) ’d,n | y

wl

while usualy the corresponding formula can be written as

M(m) =Z% (Iv-npls mw)

! 2
M(m) =#r= f e"'zld.q +% e +0(#) ,dn=A1.
o

The technical report BMN 48 contains the proof that both
formulas are false as to the valuesof dé > dn' and that even , if ne®,
toth dé ’ dn are everywhere dense betwe.n =1 and 1.

Both dn anu dﬁ can be expressed explicitly using the function
R(x) := x = [x]. Such a representation was already given for dn by
Uspensky , 19}7,*who however expressed himself very cautiously as
to the assertion of Laplace.

The proof , that dn and dé are everywhere dense in (=1,1)

requires argumentation belonging to the theory of Diophantine

SU—

approximations. The proofs are found in the technical report BMN 48

distributed previously.

* J. Uspensky , Introduction to mathematical probability,
New York, 1937. AL—

S—
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VII. Distribution Function of certain sequences nod 1.

VVhile the sequence
e ——
dy = R(mV 2p(1=plv' + pv) + *(mV2p(1-p)V'= pv ) ;
is, as proved under VI,everywhere dense in (-1, 1), the present

article discusses the prodlem whether it is uniformly distributed.

We prove that this is not the case. The céiscussion is carried out
for the general sequence

R(alV +vA ) + 2(aW’ = YA ) (v=1,2,..4)
and even more generally the sequence
(1) dy = R(Xy+VA) + R(xy ~ VA) (Ve 1. 2.004)0
The sequence %y in (1) is assumed to satisfy certain ruther special
conditions which are for instance satisfied for &y = av™, 0< & < 1.

We prove that, for any irrational N the density of (1) is x

in any point x with 0< x <1, and l=x in any point x with 1< x<2.
In the case of a rational N (1) is uniformly distributed if and
only if 2A is integer. Vle prove that the distribution function always
exists for rational N, too, and obtain this functiom in a neigaborhood
of 1.

The proofs require a rather intricate discussion of some integrals
in connection with diophantine approximations . The complete pajper ,
as the technical report BiLi L), containing all details of the proofs,
has already been distributed.The paper is accepted for publication

in Acta Arithmetica.

VIII. Rational approxirations to an irrational number.

In the following J mecans an interval mod 1 of the length (J]| ,
while R(vet) , V= 1,2,..s signify the residual mod 1 of the product
Vot , for a fixed real irrational &« . If, for an n>1 , l(n,™)
is the number of the R(vek) from J with v ¢ n, then




8 N T T BBy M

e [

(1) E(n):= H(n,J) = nlJ| = o(n) (n ~»o),
by a result due to Bohl=Sierpinski-lleyl.

The aiin  of the investigation is to improve (1) under special
assumptions for &« . In this connection o will be characterized by the
function T(n) defined by
(2) 7(n):= "tin | 2, + z | |z, ¢ ny 2 A z) € A M

e establish a functional inequality depending in a certain

way on L(n) and 7(n). To the purpose we use an arbitrary strictly
decreasing and continuous function WY(n) such that

(3) 0 «<\¥(n)g™(n) , (n)do0
and the inverse of ¥ , ¥ , so that
(4) T=YGC) ,o=¥T) .

On the other hand we introduce a majorant of L(n) by
(5) A*(x) = SupE(n) (l¢ngx 3 J arbitrary ) .
Then the functional inequality in juestion is
(6)  A%(x)¢A*(T) + hx/P (gg) ( x31,Ta32) .
In particular, fron (G) can be easily obtained , for an o with
bounded partial denominators in the continued fraction,
(1) i(n) = 0(1gn) ,
and, for algebraic ot ,
(8)  E(n) = 0(n"),
for a convenient number r with 0<4r<l .

The detailed proofs are contained in the appended report B!l 50 .

IX. The Error term in multidimensional

diophuntine approximation.

In generalization of the situation dealt with in VIII consider
the space " (m>1) and an m~dirensional vector o := (O, yeees,, )
satisfying the condition that always 2oty Feeatz X 42 #0
for integer z, with ng“ >0 o
Under the symbol R(Vetu) we understand the vector
(1) R(V%,.) = (Vol, geeeqgvel) mod 1




while J has the meaning of an m-dimensional interval mod 1, the
volune of which is denoted by [J| . The expression li(n,J) signifies
tne number of R(Vely) from J with 1l¢vg&n.

Then the Zrror terr of uniform distribution of the D.(vu.,.) in
J is given Ly
(2) (n) := I(n,J) = n|J| = o(n) (n > ),
unifornly for all J. :

We are concerned with the problem Lo improve the estimate (2) under

spccial assumptions about the o¢, . To this purpose we intro.uce the

norn |z\,of the integer vector =z = (zl,...,zm) by

1zl := f!&x lzr.l

and denote generally for all real number a by |Ja] the distance of a
from the nearest integer.

The vector & is to be characterized by a strictly diminisking
function T=¥(G) ¥ 0 such that
(3) Y(c)g 'tin 2%y (1¢ )2\ £ G, G31).
Denote the inverse of T =%(0) by C=¥(T) and put

A*(x) := Sup %(n) (l¢n¢x, J arbitrary).
If we finally put

¥or= 2™/ ((as1)2)°

the central result of the paper is the inequality
() A*(x) g *A(T) +f3x/f(-é—r) WX>1, 3 >0 .

The relation (4) is independent of the dimension m. The most

.interesting case is obtained under the asswaption

(5) e ()’ . Ut ocpar
We obtain then
(6) A*(x) = 0(x/ ¢ (==)) xtw ).

X x
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The essential problem in applying (€) is then to find special
((x) for which the inverse function, Y , of ¢ can be sinply expressed
or well approxinated.

In the special case ((x) = const. = ¢>0 the condition

corresponding to (5) is

%
(1) x/'\r(x))cl>0

and here we obtain

(8) A (x) = o(xX"%) |

Such relations hold always ifl ul""'DLn are alzebraic numbers.
If the estimate obtained for £(x) = counst. is too rough we
obtain finer estimates introducing a function k(x) strictly monoto-
nically going to o¢ with x »@ and satisfving the condition
(9) xx'(x) = o(k(x)/1g k(x)) (x o ),
Then,taking r = ¥§ > 1 and subjecting Y(x) to the condition
(10) Y (ex) k((ex)") w(x)>1 (x3x)
for a convenient constant c> 0, we obtain
(1) A =o)L
The technical report EM! 51 appended to this report contains
.the detailed proofs of the results indicated above as well as a
discussion of some solutions of the inequality (L) which present
a certain interest although they cannot be applied to the problem

on diophantine approximations which is the main subject of the paper.

Appendices:

BMI 50 On rational approximations to an irrational number,

BMN 51 On the Error tern in multidimensional
diophantine approximation.
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replace "by" with "generally by"
replace“Chebyshev" with "Tchebyshev"
add to footnote 1 : My attention was kindly

drawn to Khintchine's paper by professor
Cassels.

) 4 =
replace in formula (1.9), "gry)y " with " 75!
replacy in formula (1.12)'6>2" with'gy L

replace "are lying" with "lie"

add: , by (2.1),

replace "(2.11)" with "(3.,1)"

replace "and" with "for a certain ry and"

replace " in sec.l ... expressions" with
"expressions defined in sec.l and sec.4"

replace "and since" with'.Since"

replace "end" with "upper end"




On rational arproximations to an

irrational number.

§ 1, Introduction

1. Denote by R(a) , 0¢ R(a) <1, the fractional part of a.
Further, for a real irrational ® , denote by N(n,J) the number of

the elements of the sequence R(VOL) (V= 1,400yn) lying in a subintervall,

Jy, of <0,1) modulo 1,® remains fixed throughout .

In the case of a real irrational number,™® , the two following
results are classical.

a) The sequence R(VX) 4, V= 1,2,400 is everywhere dense in
the half open intervall <£0,1) (Chebyshev) .

b) The sequence R(Vol), V= 1,2,.¢0 is uniformly distributed
in ¢0,4) (Bonl (1] , Sierpinski {2] , Weyl [1] ).This signifies that

for any subintervall, J, ot L0,1), the relation holds:
(1.1) N(V,J) =v|J|+ o(v) (v—+00),

denoting by |J) the length of J.

2. As to the result a) the question arises how far we must go
in the sequence of the R(V®X) in order to obtain an approximation to ¢
with an error ¢ £ for any § from £0,1), More precisely, we seek to

define a function §(e), tending monotonically to ©® with €40 such that

———




for any § from {0,1) there exist two integers x>0 and y, such that
(1.2) Ixet = y -glg€ , 1¢x¢fe) .

3. In connection with this problem we have the mention
an important and extremely general theorem by Khintchin which,if
specialized to our problem,gives a solution of a similar problem
in which the condition 0$x$§(€) is replaced by the condition

A
(1.3) 1x\ ¢ §f€) E

The function io(é) is expressed in terms of the function T(O)

defined by

(1ek) T(T) = Minjz,=t + z\ » 12,146, zaz, el ,

(o]

and an arbitrerily chosen continuous and strictly monotonically

decreasing function Y(G) satisfying the relation
(1.5) 0<Y(GT)LT(T) (cz4) .

We obtain then

1
(1.6) (€)= TFHTITTEED ;

and this expression is "the best" save for the values of constants.
In this note we obtain, by a very elementary discussion, for
I(c) the expression

1) Khintehin E.] , See also Cassels [_1] PPe 9T = 99,




1
(1.7) §(£) Ve .

This expression is derived in sec.10., It is obviously "the best" save

for the values of constants.

4, As to the problem b) our solution of this problem
depends on the function W{G) introduced in (1,5)., Denote the inverse

function of T=Y(T) Ly
(1.8) f(T) =G , (T2¥(1)) ,PAYE) =G (g31) .

This is allowed as “Y(G) is continuous and strictly monotonically decreasing,

Put further

‘) n

(1.9) ulg) 1= -(-—J (TeVy(1)
: 3

[

and for any partial intervall J of 0,1) %

(1,100 Aln,d) = nl3l - n(a,3) ,

(1.11) A'(x) := Sup A(n,J) .
l¢ngx
J

Our central result is the following functional inequality for A*(x):

(1,12) A*(x) ¢ A*(G) + 2xU(G) (x>0 ,c21),

This formula is derived in § 5,
5« Using the relation (1,12) we can easily prove that for all ™ with

bounded partial quotients of their continued fraction expension, and in

particular for all quadratic irrationals et the relation holds :
(1.13) A*(x) = 0(1gx) ( x=00), %)

Another important case is that in which, for two constants g and 3':

%) First proved in Hardy and Littlewood [a]and Ostrowski ﬂ i
See also Behnke [1] .

!
i oo ‘ B Sl




(1.14) u(x) ¢ g'u(gx) v €291 (x3x,>0), L
In this case we obtain
(1,15) A*(x) = 0(xu(x)) (x —»c0),

The condition (1,14) can be used immediately for instamce for

L

(1.16) i) & =5

)y €30 ¢354 ,3)

6.The method used in our discussion of the problem b)
can be considered as a further developpment of a method used by E,Hecke A
Hecke [i] PpP.331 = 335, Hecke made in particuldr essentially use of the

expression

N
(1.17) s(n, E) ”ZR(E V),
V=4

however, only in the special case E=0, (I had occasionyduring writing
down of the above quoted paper, to add some remarks wvhich were then incorporated,
with due credit,in Hecke's paper, 1l,c, pp.332 , 335.)

However, Hecke did only arrive at partial results , For instance

in the case of bounded partial quotients he says that he could only obtain

i 2lgx )

It may be finally mentionned that an inequality similar to and a
little weaker then (1.12) can be deduced by another method ( cf.Ostrowski[in
for an essentially more general case for the n dimensional approximations.
See our forthcoming communication: On n dimensional approximations.

the estimate Ofe instead of 0(1gx),

3) The corresponding result was first proved in Ostrowski Eﬂ;
see also Hecke Eﬂ .

v




§ 2. Derivation of (1,7) .

7. Observe that in (l.h),

(2.1) Wislemtoig g -,

by an inequality going back to Dirichlet (see Cassels “ltheoren 1, Pl ),

Applying the monotonically decreasing function ¢ it follows G f=(£§),

=u ( 3 A
! (r—)wm ).

(2.2)

({e
8, Choose now an arbitrary § from {0,1). TFrom (1.,4) it follows

that for a certain positive integer 9 <G,

6 = fae = r| , iI%0¢T
with (q,p) = 1 and therefore
(2.3) p=agxi T(@ .
Consider now the congruence
(2,4) xps [A§] = ag~-R(ag) (mod q) ’

which has as a solution a positive integer x between 1 and q. Eleminating

in (2,4) p by. (2,3), we obtain
alxet = ¢) 5 ¢ x7(¢) = R(qg) ( mod q)

and dividing both sides by q,

Xotw ¢ & t%m - :S-}n (mod 1)

Uy

B




It follows that, for a convenient integer Pys

x% = § - p, =0%7(g) +%

where |9*l and © are lying between O and 1,
(2.5) + T@<xe = $-p TN F .

9. In order to obtain an upper estimate of Vq observe that

by definition of T(g), T(q) = T(G) and therefore
l ‘
Y& O 55 .

Applying to the extremeterms of this inequality the function ¥

it follows q »¥( # )

R A
(2.6) Yq & e 7.u(o-) .
2
Using (2.,1) we obtain
1 A =
(2,7) : - a’:"é: ¢xt=p =04 T +Iu(o~)

10, Prom (2,2) and (2,7) it follows

(2.8) -%U(G‘)(xu-g- P, ¢ %U(cr)

and further

(29) Jxet - g 5,14 2 Ul) .




We see that in order to obtain an approximation of ¢ with

a error ¢ € , ve must make

3 1 3
%u(cr)sc ' : c€E, Ax=) -
i

TENE) gy 2
21/(-;:’-)

Thence § (&) as defined by (1,7) indeed gives a bound for x

solvi.ug the problem a) ,

§ 3, A lerma .

11, Ve prove now the

Lemma.  Assume & a _real irrational e, AW, positive and a

positive integer i, Assume that for anv ¢ from 0 & ¢ €1 there exists

a positive intepger x g1l and a convenient integer y such that

(3.1) =W kX% =V & @+ W, .

Order all residues R(xe) ( 1¢xglN') in a monotonicallx
increasing order between O and 1 and denote them by

!'1(2'2< [ LN ) <I‘" )

Then the lengthsof all intervalls between two consecutive i
ry s well as the length of the intervalls from ry to 1 ¢ Ty ey

BLe, § wyswy -




Lo

= ¢ ;
12, Proof. Assume that there exists two consecutive r, Ty 0T, 419

l1¢ VvV € I,such that

r ST,2W 0, , r “W, >r

v+l 2 vt Wy

VvV +1
and take a ¢ such that

r\,*l-w,")f)rvﬁw,‘ .

Applying (2.11) to this ¢ we obtain a contradiction ,
13, Assume on the other hand that the sum of the lengthsof the

two extreme intervalls (U, rl) and {r,, 1) is > W+, ,

r. ¥ 1 = p

1 dW,eW, ,

N* W, <1+r

N l-wz .

Then there exists a ¢ such that
ru+w4<g< 1+r1"‘°z' rn<g-w‘<g+u,.<l+rl.
Apply now (3,1) to this $; ve obtain

In< § =W, € xek ~y g Q +wz <l+r1,
wkere xAy are integers and 16 x¢N , Thence xx = y lies in the open
intervall (0,2),

If nov xel = y ¢ 1 then it must be one of the residues 1, and
Ty > T, is impossible, And if x« « y lies in the open intervall (1,2)

then it must be = 1 + ry and it follows

l+r,.<1¢r1, Ty € 1y ’

which is again impossible, Our lemma is proved,




§ b, The suns S(n, §) »

14, Assume o fixed real irrational and ¥ real, Put as in (1.,17):

(4,1) S(n, ¥) :-ZR(§+ vet ) 5 )

Veq
Obviously

(%,2) S(n, §) = S(n, {') (E = g‘ (mod 1)) .

Assume ¢ from the half open intervall {0,1) and put for an integer Vv :

(4,3) B :-F(§+w+g)-a(§+ vt)

Then

(h,4) S(n,§+¢) - S{(n,E) -inv '
Ve

(k5) D,m(E+Vt+8) - (E+Vef )¢ (mod 1)

Consider the intervall
(4,6) J := (1-;- g,l-{) "

wvhere for g + %1 J is to be understood mod 1, that is to say,

consists of the two half open intervalls

2-%-¢,1) wand K0 ,1-F) .

3) This expression was already considered by Sierpinski (] [2] » Who,
however, only investigated asymptotic properties of S(n, g ) and did
not use the expressica (4,9), See also Ostrowski CB] "




I say now that

-1 (R(vet)eJ)
(hOT) D\’ =
 (R(ve ) ¢J)

Indeed, if R(vot ) € J then R(E+ vet) € J' :={1 = €,1)
and R(E+wk +¢) € 0,8) , RCE+ Vvt +¢)< €. But then D, is a fortiori
< ¢ and must have the value ¢ - 1,

On the other hand, if R(wet ) § J then R(E+ Vek) 3" :={1 -¢,1)
and R(E+ vk +¢)${0,§) . But then R(E+ Vel + £)>¢ and Dy>p- 1,
Dv . B

15, Applying the in sec,1 and sec,4 defined expressions N(n,J) ,

A(n,J) to the intervall (L4,6) it follows from (4,5), (4,6) end (L,7) :
(4,8) S(ny§+8) =5(n, §) = np = N(n,J) = A(n,J) .

16, Observe that for any couple of natural integers m,n :

(4.9) S(n +my §) - 8(n, [) = S(m, §) = S(n, f+ R(ne)) - S(n, §) .
Indeed,
o Laal
S(n + m, ) = Sln, §) = > _R(L+ vet) -ZR('{# Ve ) =
Vedq Veq
=2 R(E+vet) =) R((E+mek) + V)=
90.‘04! V-ZO ; 5 )

= S(n.!‘ m“) = S(n. g’ R(ﬂ“))o




Define generally for any natural P
(4,10) Ju =€1l=-f=-R(px) , 1 =F) (penw ) ,

Then if we replace in (4,8)¢ with R(m«) the right side expression
in (4.9) becomes A(n,Jm) and since the left side expression in (4,9)

is symmetric in n and m we obtain

(4,11) Aln,J ) = A(m.Jn) .
By definition (1,11) we have
ja(n,3)] ¢ £n)
Using (4.11) it follows

(k,12) |A(ry o )l = [Aly I g A% v)

§ 5, Deduction of (1,12)

17, Let 6 32,[¢)=:G, and consider the residues R(vVet)

(V= 1,.44,0Q,) monotonically ordered:
(501) 0(!'1(.00(%.‘1 .
Let 0 4§ <1 and assume first that

(5.2) T é$< g .




e

Then, using (2.8) and the lemma of § 3, we see that

rv"’l - I‘" 2u(e) (= l.....G'.- 1)

and it follows that § lies inone of the intervalls {r, ,ry,.)

(V= lyeees G, - 1), that is that there exist two R(\«'o().)\4 '\t =

such that

" -Xl = R(xlu)¢g(>\2 " e " R(xao() ;
(5.3)

1€ %) A% €0 s X = A, € 2U(G) .

18, Take an arbitrary but fixed €., O‘g‘ 1, and consider the -

intervalls, partly in notation (k4,10):

VSRR 5 VY S SRS 2 VAR I SO
(5.%)
J =Q1 -€-¢,1-%),

all three with a common end point 1 = g and of the respective lengths

Ao» )‘ ' g Obviously

(5.5) J,\‘c. Je J"z

and therefore for any neWN :

N(n.J,M)‘N(n.J) ‘H(n,JA’.), ng = Xl(n.JM )gnp =~ N(n,J)¢ng - N(‘n.-&") .




GOUTETREL T IR X

Using (1.10) this can be written as
(5.6) Alny&y ) - ny-¢)€ A(n,J) g AlnyJ, ) + n(g=2,) o
Applying (L4.12) and using (5,3) it follows from this inequality that

(5¢T) -(A%(g) + 2nU(G)) £ A(n,J) § A*(G) + 2nU(O) ,

(5.8) IA(n,J)| €& A*(S) + 2nU(G) :

19, The relation (5.8) has been deduced under the assumption
(5,2) and we have now to consider the two remaining intervalls for § ,

<!'¢. ,1) and <D.rl). Assume that

then we can still put A = Y. and it follows J, € J. Using this
° “

as in the case (5,2), we obtain
(5.10) A(n,J) ¢ A*(G) + 2nU(E)
As to the lover bound for A(n,J), we obtain
A(n, )3 ng-u(J) yn(g=1),

since obviously li(n,J)¢ n. It follows, as by lemma of § 3

1-9¢1-rg¢20(0 :

-2nU(6)§ A(n,J)¢ A*(0) + 2rU(G)

12




. - AR
t

and (5.8) follows immediately ,

20, Finally,in the case
(5.11) 0£¢g<r,
ve can still take Ag= e JeJM’ and proceeding again as
in sec. 18 it follows
(5.12) A(n,J)3 =(A*(G) + 2nU(T)) .

As to the upper bound of A(n,J) we have obviously

A(n,J) = ng - X(n,J)¢ ng ¢ nr, & 2nU(G) § A*(G) + 2nU(G) .

(5.8) is now proved for all ¢ , 0 §< 1,
Observe now that the intervall J as defined in (5.4) can become
any partial intervall mod 1 of {0,1), choosing‘and ¢ conveniently,

It follows therefore from (5,8) 3
A*(n) g A*(G) + 2nU(Q) .

Observe finally that A*(x) is constant for all x with R(x) = n ,
We see that we can replace the argument n in A* by any positive x and

the inequality (1.,12) is proved,




§ 6, Special cases ,

21, We assume first that
(6.1) 'r(u');%- + 329

This is the case if the continued fraction development of & has
bounded partial gquotients , for instance for all quadratic irrationalities,

In this case we can take

(6.2) Y@ =%, v) =X, vie) =t .
< ¢ =

The functional equation (1,12) becomes now,

(6.3) A*(x) ¢ A*(G) +-§—% .

22, Taking here @ = -%- we obtain A"(x)‘A’(i-) + 2e/y

and generally

(644) A% (=) & A%( e:“') + 2ely (V= 0,1,000),
Putting
(645) e (1gq ¢ lex<n + 1

add the inequality (6.4) over V= 0,1,,.,,,n, We obtain

A%(x) ¢ A*( =—frp) + 2(n+l)e/y
e

i




If ve now put

(646) Max A*(x) = 3 < 0 (0&axg4)

it follows using (6.5)

(6.7) A%(x) € 2e(n+1) /¥ +13<'=;§ lgx + 2e/g + B

In the particular case of the function A*(x) defined by

(1.10) and (1,11), obviously (3= O and we obtain
(6.8) A*(x) g2e(1gx + 1)/ ¢ .
23, We consider secondly the case where, assuming two
constants g and g with
(6.9) e>g>1
the function U(x) satisfies for a constant x_» 2 the inequality
(6.10) U(x) ¢ S'U(gx) (x ¥x 3 2
Then we are going to show that
(6.11) A*(x) = 0(xU(x)) (x »@) ,

_ More precisely, assuming for an L> 0 that

(6.12) U(x)¢ L (x ¢ x¢ gxo)

and defining D by




(6,13) D := Max ( -A—(-”-ﬁ- )
we will show that
(6414) A*(x) ¢ DxU(x) (x)xo)e) .

24, In order to prove (6,14) observe first that from the

L
definition (6,13) it follows D 3 g—f-i"&-. and therefore

(6.15) (D +2)g'¢ gd .

Assume now that we have already proved (6,1%) for an x X .

Then replacing in (1,12) x by gx and G by x, we obtain from (6,1h4)

A*(gx) < A*(x) + 2xU(x) € (D + 2)xU(x)
But this is in virtue of (6,10) and (6.15) .
& (D+2)g' xU(gx) ¢ DexU(gx) .

We see that (6,14) is true for any ’,xwhenever it is true for x,
We have therefore only to prove (6,14) throughout the intervall
(xo‘x(gxo) « This inequality follows, since A*(x) is monotonically

increasing, by (6,12) and (6.13) from
A*(gx )¢ Dx L .

The relation (6.,14) is proved.

25, The simplest special case is that of




(6.16) Y(x) = = (g>1) '
Then we have
SV | plade) = (2e9)78 u(x) = B
Yiy) = ; ’ '2"},"' cy » x = {2ex) e )

1-1/’ )

(6.17) A*(x) = 0(x (x » @) .

In particular it follows, in notations of § 1,

A
(6.18) N(xyd) = x( 174 + 0(=77 ))  (x = e).

As to the detailed inventif,ation of the case considered in
sec, 23 = 2k we will give it in another paper dealing with multi-

dimensional approximations.
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% 1. Introduction

1, Consider the euclidlan space R and m real irrational numbers.

oty (J=1,444ym) such that 011,. ey 41 are linearly indepcndent with

ret Ject to Z, that is that for integers By sesssC,, sRethe relation
(l.l) L’,lb(1 + 00 t+ :'#m'.' GO =0

only holds if all g,‘vanish.

Denote generally for any real a by the symbol jall the
distance of a from the nearest intcger, Turther, consider a variable
m vector, z, with integer components, 2z = (z~.....zn),which is
ey 1 .

assumed never to vanish and put

(2l += Maxizd .

Then we can usc as the "measure of independence of the &y

any continuous and strictly monotonically decreasing W@)d 0 (&3 1)
such that

- 2 s y
(lol_) Y(ﬂ') £ 1““;2‘“&,‘“ (1 < ‘z‘asc). (G 2 1) .
2, By P(x "/‘) we denote generally the point
.”(kuf‘) g (koll,...,ko(n) mod 1 ,

. ) . . m .
We define a’proper intervall ® J in " as a cartesian product

of m linear segments , open in the direction of increasing coordinates,

Eri x"(bf‘ (IP- l.ooo.n) .




USRI ————— = T —

Then the volute of Jo WJI, is the nroauct of the lengths of these
aecments, 10 aa iatervall is considered mod 1, we take gencrally
o nod 1,
tyvo peiats of U ay ldentical if thedir corresponaing coordinates differ
by inte; erse Then usually the points of J have to be taken with
a convenieat wpultiplicity. If all pomts of J, taken mod 1, are simple,
J can oe coasidered as a part of the unity cube, 0¢ Xo ¢ 1 ( pa= 15000,m)

and is called gimrele .Then\Jlis definca as cartesian product of e

n segnents nod 1, €€ ’1}“ Xu¢lbugl or (0g x<¢ l;‘) O (a,¢ x<1), Denoting by&,.in

in the first eise 0 and in the second esmce 1, Lhe Jenmth o~ the M=th edce of J is

(1.3) bp- autde ,

while the volume of J becones
———

|‘T‘=?("»’ 8”0 ’A)o

Vra
e put generally

o= B - ; .
b ‘T‘l’%‘n"(bﬂ n )

5« The essential point of Kronecker's theory of irrationals
is the result that for any J and for at least one integer q:

(1e4) P(qet ) e J o

Thic result was sharpend by Weyl [l] who proved that for a given ¢ >0
for any J with T(J)¢ £ the integer q in (l.4) can be choosen < y(g),
with a ¢(€) inuerendent of the special J with T(J)g £ :

e

(1.9) P(q ox) €4, q;¢y(6) .

4.Yle will denote by N(x,J) the number of all P(va) with &
1€ V¢x lying mod 1 in J, |

—




-

e

(1e6) N(x,J) 2= N(v: P(Vx)€Jd, 16 V&x) .

Then it follows immediately from Weyl's theorem (1.,5), that for
any fixed simple intervall J mod 1 the relation holds

(1.7) N(x,J) = x }J| + o(x) (x »0 ) .
S .%e introduce, for x 31, A(x) by

(1.8) A(x) := Sup lN(x,J) - le" .
4¢vex

d

where J runs through all simple intervalls mod 1 in the unity
cube in Rm, and denote by G =¥ (T) the inverse function of ¢= Y()

in (1,2), We put further

(1.9) g 2™ (e )2, (k) 1 .-;—'17_)_
6.It is easily seen that A(x) = o(x) (x-—ee®), Our aim is to
improve this estimate using the function £(y)., Our essential result is the

Theorem 1, A(x), as defined by (1,8), satisfies for m>1 an inequality

(1,10) Alx) ¢ #A(y) + Bx €(¥), leyg¢x , x>1, B3>0

with constants e« 31 and (3>0 depending only on m,

This theorem is proved in the §§ 2 - 5 while the inequality (1,10)
is discussed in § 6 under different assumptions about & (y). In the case
m = 1 an inequality (1,10) holds even with ek = 1, This case however has
been already discussed in Ostrowski E2] .

7. Before attacking the problem of o(x) in (1.,7) we have to obtain
a relationship between ¢ and y(€) in (1,5) and W (@) in (1.,2), This relationship
follows in a particularly simple and fundamental way from a special case of
an important theorem due to Khintchine ( Khintchine [1] 1) +We odbtain from
this theorem for the ~constantf‘ from (1,9) the relation (secel13,(2.10))2

1) My attention was drawn kindly to this theorem by J,W.,S, Cassels
{cassels Ll] » PPe 97-‘)9; .
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(1,11) y=
LY(i%)

§It is well known since Dirichlet that W(y) = O(-L"T) « If there

J
exists a ¢, 0<¢<1 , such that 7
c
(1.12) Y(r); W (y3v,)
y
then we show that (sec. 33)
(1.13) Ay) = o(2"%)
This is in particular always the case if the 0‘1,...,&“ are algebraic,

llowever the estimate of A(x) with the exponent 1 - ¢ could only be obtained
using fhintchine's theorem, published 1949, In Ostrowski [1] s 1930, we used
a weaker result then (1,13),due to Landau,
In the case m = 1 the fact that (1,13) follows from (1,12) has been
clready proved by llecke 1922, however with a method which apparently cannot
be generalized to m > 1, 1530 we annonced the results corresponding to
(1.12) and (1.13), however in the form A(x) = O(¥*) , 0<et <1, (see Ostrowski [2]),

9, iore generally assume k(y) as a positive constant or a continuous

positive function strictly increasing to e , such that

Y(y) 2 - (ya7) caD>O0 const, =
S F k(o)) ¥ :

Then for a conveniently defined B(x):
(1414) Alx) = of = Hx)t) X

This follows from lemna$ , sec 43,

5 g P k(x
If in particular x k'(x) = o(ls T §
then we obtain even
(1,15) Alx) = o(x*=f k(x)‘) (Theorem 2, sec 50), .

ah
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10, Our proof of (1.,10) was given for m=1 , 1930, in f)r.trovr:ki[l] .
Its essential point wus our lemma 3 of ¢ 3 which we developped l,c¢, for m=1,
but indicated that the whole discussion can be generalized ton>1 , In the
mean tine, 1950, S,llartmann (linrtmann [:1]) has developped in a very carreful
way the corresponding generalization of the lemma 3 to m»1 , discussing also
the limiting cases ., As we neced only a part of this argument, we give in
% 3 our original proofy which is a straightforward generalisation of that
given for m=1 in Ostrowski [1] .

§ 2. Use of Xhintchine's lemma

11, We formulate first one part of Xhintchine's theorem in the form
in which it was given by Cassels ( [1] p.99), but changing conveniently
the notation, We will denote generally for an n-vector ,§=(xl.---.xn),
by [§| othe norm | €l = Max|x,f.

lLemsa 1, Let m and n be natural integers with m+n =0 ,consider a real

(n x m)~matrix, A=(d~’ e f£= Laesoy? § V= 1y0uq,n and the linear forms

'l

" .
(2,1) :x,‘(g)-z otv»xv (p=z4,..ym)

<
>

o (V s4,.-55n0) |

Ma

(2.2) n, () = vp Zn

<4

¥

where the x, and the 2z, are respectively the components of the n=-vector |4

and the mevectors . Consider two positive constsnts €,y and a real

m-vector i with components ©1peee ‘bn .

Then, in order that there exists an integral vector § satisfying

the relations

(2.3) bou(E) = vllse (pedem) | 18lg €Y

- ,? . . <
it is sufficiest that for 4 := 2‘ 1/(‘!) the following relation holds

for every integer p-vector [ :

e U ———




m
(2.4) llZb,.zrllqnax(yr-aaxIN,(C)I\ o FIELS
PR 2

As a matter of fact the complete formulation of Khintchine's
theorem contains also the necessary condition for (2.3), which we

however do not need .

12.,Mor our purpose we must now specialise the assumptions of Khintchine's
theoren,
Assume n=1 “"+l and obser ad =%
Assume n=1, {=n ve that g:= 2" '/ [(m+1)1] = %.The n-vector
: becomes a scalar which we will denote by q, the elements of the matrix A
become o, 1= 8, 50 that .‘:P( E) becomes o4, and the linear forms l,(T)

m

becore I T) = %z, + The requirements (2,3) of Khintchine's theoren
Mmq

becoue

(2.5) Nao = Bhge (u=ay0-9v), [4ley .
It follows then from the condition (2,4) of Khintchine's theorem

that (2.5) can be certainly realized by a rational integer q if for any

mevector [ we have
(26) [0 abegmex[y01C DN WElTL] 4, = e 2
»

A3, The condition (2,6) is sharpemed replacing the left side expression

by 1/2. As it 1s certainly satisfied if ’;C'Ehn"’ it suffices
to consider  with

4
(2.7) e|§|° $ 3 o

Thence our condition becomes:

(2.8) 16 %y I )|l follows always from ([l 'A- .
of
Ao

ERr s

AN g s R

pow



If we now assume that (1,1) holds and use the definition (1.2)

of Y(t), (2.3) is satisfied if

4. A
‘*'(m) >4y

and we can take y in (2.5) as
(2.9)  YoY(O)i= mmmrm— .,
© X ¥(z)

Using the inverse function to Y,f, it follows as in (1.9)
A 4

o e e, rem iz e
~ (8%)

Lemma 2. l'or any y » 7‘,:—4‘7(7‘» there exists an integer q with

w A
(2.21) bkl S b el T B
2Y(%5)
5 3, A lerma
14, In what follows we will consider a sequence
(3.1) P(vety) (V= 1,000,n)

for a fixed integer n 31 . We define the symbol [_ - (aas [.2'1 if a is
not integer and a -1 if a is interer,

15.Lerma 3, Consider a simple intervall Jo rmod 1 contained in the unity

cube, as characterized in sec,2, and asswic the ofy 25 in sec,1 , Then there

. exist two intervalls 3") and J(’" mod 1 in '!_'L obt.ained fronm Jo by parallel

tronslations, such that

(3.2) W(n,J!) ¢ n|J°| S ::(n,.r;-);an .




16, Proof, \lithout loss of gencrality we can assume, that all
o lie in the open intervall (0,1) and further, that J is not identical
with the unit cube, but "begins" at the origine, that is that all 8

in (3.,1) vanish, Denote the length of the peedge of J0 by du 4 vhere

O(d»‘l ([.I.:l.-.o.m) » 'Jo‘ - Ui"' dm< 1, o

AV 10 we shift J, in the dircctions of the xy by the integers q, ,

we obtuin a proper intervall which will be denoted by J i Lo

‘qlgoo¢.% .

Then the original Jo can be written as J + Obviously l\

is the

O..OO.O "")qm

cartesian product of the segments Qypeverd,

<q)~d}-\ l("’-'L"' l)d”) (Fglnoo.m) &

18, iie let now, for positive integers Q)seees?, o TUD each U

through 0,1,444, 44 Then all intervalls obtained in this way .form
together an intervall J* with the edges 0/,dp (ra=l.....n)
and 1tsvolume is

n .

T ',ﬁ:(qﬁ"r Iy Qi s

Put further

(3.3) N t= N(n,J

and denote by li the sum of all qu....qm (q-O,l,....ng...;qmno.l..,,.qm) . é

s i

(3.4) N o= uq
aﬂ'"!’n 1. .qm

B PARAGR

b R
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19, Denote by f(v) the number of all points in J* which, considered
mod 1, coincide with the P( V&) from (9,1) . These points have the

coordinates
[81 + Rlve) 4 gy * RIVRY)  wes g * P.(vog“)]
where
0sg,< [Qldl - R(vety) = 0] sitvn g 08 cn‘Emdm - R(ve ) = o],
Therefore we have
L"‘.
= 0 - -
(3.5) f(v) ,):4[)4‘1)"* 1 R(w’,) 0] s

By summation over V= 1,,,,,a we obtain the number of all points
in J* equal mod 1 to the points (3.,1), that is N, Dividing by 0 we
obtain finally

)
- A4 i A
(3.6) el E " Nady, + 1 =« Rivet,) = o] === I
GVI1P=4L" 7 o » %’__ﬁmql.....% .

20, If we let all O, increase to @ , the left side expression
in (3.6) tends to n \Jol « Therefore the same holds in the right hand

expression and we obtain

4

(3'7) a-zﬁql.ooo.% -5 n |J°| (V"P“)o

Wil

21, Assume first that n |J°|is not_integer and lies between
k,k+l, Then obviously, as soon as the left side expression in (3,7)
lies in the open intervall (k,k+l), it is impossible that all N

ql..oo'lm
in (3.7) are » k+1 , Neither can all these N be £ k o
ql.....qm
Therefore there exist at least two different J s 5y J;,J;' .
1.000.1“

so that (3,2) is satisfied,
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22, Assume now that n ‘Jo\ is an integer, If there exist two

J say Jé and J;', so that
ql ILLANY S

N(n,d?)<n |3l » H(ny3')>n lJol S

(3.2) is again satisfied, Otherwise for all J the corresponding
Qyrecery

I i . ' = JY =
“ql""'qn in (3.7) are equal to n |JCA and then we can take Jo To 5

and the relations(3,2) &re satisfied with the equality sign ,

§ 4, An upper limit for H(n,J) = nlJ| .

23, Consider a simple intervall J mod 1 with the edges dygeseyd)

and a positive € € Vi , Assume first that

(h.l) l - d"> 2E (F=l..'o.m) .

Let Jo be an intervall concentric to J with the edges sze....,dm§15-
(See fig.1 , p.28, for m = 2),

By (%.1) Jo is also a simple intervall and we have
m -"“T'
2y dad = T Came2e) 130 =g

24,8y the first inequality (3,2) there exists an intervall 7

congruent with Jo such that




e

11

()“3) :‘(n.JC')) ‘ nl‘lol -

~

Consider a cube, C, with the edges parallel to the axes and of
the length € , placed so that it has with J only one point of the
boundary in common, the vertex I = ( Claerese, )y and lies complete-

ly in JO ( see the hatched square C in the fig,41,p28),

25, Consider the vertex of .To corresponding to I and the

= - ' \ o
corresponding vertex of J('),.‘;' = (el,....e”l) « Then by what has

been proved in sec,13 about the relation (1,5) it follows that for
a convenient positive integer q¢ V(€)= 4/[80‘1'(%_)] and convenient

integers 9 9eve9Q, the relations hold

(Loh) 'e" - c,"= R(qu,)#q”ﬁ-q‘i y 0¢PPulc 1 ()*': 1,...,-*.) .

It follows that if we apply the parallel translation first
b; the md then by the intezer vector {q») t;;z_.‘ﬁ intervall J"),
this intervall goes over into a congruent intervall J , which has the
property that the vertex of 4 corresponding to Iic') lies in the hatched

domain C, Obviously, J is cortained in J ,
T Ao S S e |

20,Consider the translation from .T(') to J.° To the points

P(vet), 1§ V&n , lying in J(') correspond the points congruent mod 1 to

?((V+ q)x) that is to the points P{vx), q+1g vg n+q, Their number is
i(n,d ) = H(n ¢+ q, 7 ) « Rlged )
But the minuend here can be written as

Hintq, T ) = u(n,T ) + 1u(n(va) ,’Rw«)ej s N+l VEn+y) o

liere the last summand can be again written as N(g,J%) if we denote
by J* the intervall obtained from J by the parallel translation
with the vector R(ne) , And obviously |J*| = IJol = )Tl

13.We obtain therefore from (4.3)

(4.5) H(nydy) = 8(n, T ) = nlq,T ) + 1u(q,7%) &Nl el

¥(n,3) ¢ nlI )+ 1(q,T) - 1u(q,d%).
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As J €J, it follows further

H(n,7) g 1i(n,T ) ¢ 0|3 | - H(q,T ) + 1(q,%) .

CincelTI=13* , we can write this in the form
:‘(H'J)\( nlJol . {:"(q.:f ) - n"}. l] + [N(q.J*) - ﬂ!j I] =

The two last bracket terms on the right hzve moduli §A(q) and we

obtain further

i(n,J) - nlJo‘ $2A(q)

On the other hand it follows fronm (h,2) :
T - n m4A
2 1 2¢) = 1 ag)" &
|Jo\ ‘J\‘,.“,.(‘r**“) ’L’dﬂg(l*-”t) B e ’

as 2£<1 and the development of \Jo\ - 17} in products of the du
has positive coeff'icients .

Since q¢ ¥(&) and A(q) is not decreasing we can finally
write

(4a6) H(n,d) = nlJ\¢2a(y(e)) + 2% ng .

28, (4,6) has been derived assuming the condition (4,1) ,
If this condition is not satisfied , we can by halfing each edge of the
anity cube decompose the unity cube into the sum of 2" cubes of the
edge length V2, Correspondingly J is decomposed into at the most

» intervails 3V

(V= 1,24sss) with the edge lengths & % .
Por each of the intervalls J(v) the condition (h,1) is satisfied
so that we can write

(v))

H(n,J n ‘J(v)‘ 6 2Aly(e)) + 2™ ne

Swaming over v it follows

m+1 2m+l

Aly(e)) + 2 ne .

'

(he) (ny,t) = nidlg?2
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o

' 5¢ A lower limit for !(n,J) - n|J|.

29, Ve consider again the simple intervall J mod 1 of the

sec,23 with the edges d sesesd y Dut assure first that for a positive

1
¢ < /4 the relations hold:

(')01) u’*>2£ ()-L=1.....m) .
Let now Jo be an intervall concentric to J with the edges

d) = 2€ 4oy a =-2¢&. Jo is again a simple intervall with

(5.2) 1) =l‘:( ad,- 2&), 17 =;ﬁ=:d" .

By the second inequality in (3,2) there exists an intervall

J(') congruent with Jo and such that
(5:3) i(n,3?) » nly | .

Consider a cube, C, with the edges parallel to the axes
and of the length € which has with Jo only an edge E—-(el,...,em)
in common (see the hatched square in fig.2, . 28).

30, Consider the vertex of i (ei,....e;l), which
corresponds to L., Then,by what has been proved in scc,13 about the
relation (1,3), it follows that for a convenient positive integer

q‘y(;) and convenient integers Qoeeeady the relations hold:

e -l = R(qu) + qr+ GuE , 0& 9 ¢ 1 (P=l.....m).

We see that if we apply to the intervall J(') the parallel

translations first by the vector qx and then by the integer vector

q= (q”) , this intervall goes over into a congruent interval 7
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which has the property that the vertex of J corresponding to E:,

lies in the hatched domain C, Obviously J contains J (see fig.2 for m=2),
31. By parallel translation from Jé to J , to the points

P(vk) , 1 € V& n, lying in Jé correspond points congruent mod 1

to P((V+ q)&) that is to the P(Vek) , q*1 { V & n*q ,

Their number is y

W(n,J) =l(n+q,T ) = N(q,T ) .

But the minuend can be written as
U(n+q,7 ) = N(n,J ) + L(Rv)eT , n+1lgvgn+q).

liere the last summand can be again written as l(q,J*) if we denote
by J* the intervall obtained fron J by the parallel translation
with the vector R(ne). And obviously IJ*I=|JOI =\ Ty,

Ve obtain therefore

IX(n,J")) = ii(n,J ) = H(q,T ) + nlq %) ,

l(n,J ) = u(n,J¢) + [u(q,i’ ‘) - n|T U- [:z(q,.r*) = nlfn .

But here ii(n,J ) is ¢ N(n,J) while H(n,J;) is, by (5.3),

> n|J°l + As both bracket expressions are ¢ A(q) we obtain

(5.4) N(n,J) » nIJ:)l- 2A(q)

32, On the other hand,similarly as in sec.27,

; +1
I ={3 1= T (&, - 26 ) 2 M4y, - 2¢ 2" =|J]- 2" 5
1a) \o\j'f;,‘ 3 E,. €
Introducing this into (5.,4) we obtain finally

(5+5) i(n,d) = nldl 3 = (2A(q) + 2™ ng) .

sewy

F
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33, If we now drop the restriction (5.1) and assume that at
least one of the du is ¢ 2¢ , obviously [Jl & 2€ , But then the
relation (5.,5) holds again and is therefore now proved independently

of the restriction (5.1).

Combining (4,7) and (5.5) it follows

2m+l 2m+1n

|u(n,7) - nldll € 2" Aly(€)) + 2 £

Refering now to the definition (1.8) of A(x) it follows now since

obviously A(x) = A([x]),vhile y(€) in (2,10) is continuous,

mtl 2m+1l

(5.6) Alx) € 2™ xy) + 2 xgly)  (xay 3 1) L

This functional inequality the derivation of which is the essential

point of our methodyis a special case of the following inequality
(5.6) A(x) § XA(y) +Rxe(y) («24,3>0, xA¥ 1),

where o and (3 are given constants,

§ 6, Discussion of the fundamental inequality.

34, We are going first to treat the general inequality (5.6).

We assume generally about £(y) that it is positive and monotonically
decreasing to 0 with y-ee while A(x) is assumed to be positive and

monotonically increasing for x 1,

Lenma L.Assume that for four constants g¢,g',L and X, with

(6.1) c>1, o:.g'<£- » 120 , x31

the following relations are satisfied

- S B » . — _—
L - g - S PR A A e AR, A IPU——




(642) E(x) ¢ ¢ elex)  (x¢x)
(6.3) €{x) > L (L x ¢ %) .
nder ‘these conaitions AL e
(C.4) A(x) = o(xg(x)) (xt o)
and more precisely
(6.9) A(x) g Dx g (x) (D),

vhere D is defined by

(6-‘) D:= Yax (-A:.—‘l]-) ?%&_

e

35.7roof, If we first assume that 1¢ x¢ X, it follows by (6.3) and (6.6}

as Alx) is increasing,
A(x) ¢ Ax;) ¢ DL ¢ Dx € (x)

and.we see that (6,5) holds for lexgx, .

It is therefore sufficient to prove that,if (6,5) holds for
an ®31 it also holds for gx. But replacing in (5.6) x with gx and
y with x it follows

Algx) ¢ o A(x) + Bgxe (x) = («D +fBg)x c(x)‘-g'(oﬂ) +B¢&)(gx) € (gx)

L
and here the factor'g (D +fAg) is ¢D as follows immediately from
A :

D;_ﬂ_.L_
LI

The inequality (6.5) is completely proved.
36, Consider now instead of the assumptions made in sec,3

the assumptions

e —

1o

é_
s
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(60.7) w1, £ =L 0eflner, Mxex (xa).

Then choosing

(6.8 ) lca := Vige 1gx

put
¢ o [dex v_l;_ :
(()oJ} n s L[:l]g[ltﬁ
It “ollows 16x3 " ¢e ,
lgx
(60‘0) &l'\ ‘ e ]81 = elgo& lgx = 1 .

3% Put in (5.6) y =2 . Ve obtain, by (6.3) ,

A(x) & ok A{ -"i) + B3.

v

Writing this inequality forxn’ instead of x and mult.iplying it with & »

Vi X ol v
¥ A( v}gd’“ﬁ} V+l) + Bax .
® z
Summing over WV=0,1,,44,0=1 it follows

ne-
A(x)‘ol'h(-_l?-‘;) +pe o

vz=0

We use now (G,40) and obtain

. o e o e v 4 - B ISP ———SE R S
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{6.11) A(x) g 12 i 4;‘@.1. )= ol e ‘lcult:x Y
The reader may be reminded that in the case « = 1 , from
T(x) = 0(1/x) follows
A(x) = 0(1gx) g

as is shown in Ostrowski[2] .

———————————————

38. “eplace now the conditions of sec,3k by the conditions

(6.2) >4, g(x)gf‘, (x3x, 4 x2e) ,d>1, x>0,

Denote V4 byg and put in (5.6) vy = x€, As by (6.12) xg(xf)g k.
it follows :

(6.43) Alx)§auA(xt) + BX (x)xo).

v S Y ;
Peplacing here x by £ and multiplying byot we obtain

v . o
A€ ) ¢ RGET) + Ko (0g vgn-1)
g
Adding over V = 0,1,s0eyn=4 it follows

n-A P
A(x) " Alx ) « ﬂx&«"s u"xoogx:-i-'_'—} <ot"(x0 *%I )

» .
as soon as ¢ %, that is , as soon as

X
19x ¢ 6"1,:0 & nla‘ >1g T%;o "
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39, The last condition is satisfied as soon as nlgtf; lglex

lplex 1plax

For this value of n it follows

PV A
Lo lplrex 1z 8
gk = nlgx<leoek(l + —1—5-?:) = 1g [(1(;%) ’

or putting

(6,1%) Po""%":.%‘ 3 & L y

o < $ i og(l%x)’“ ;

Therefore,finally,

(6.48) A(x) ¢ (xo +°-g_§) oL (lgx)’“ y Mo:= aﬁ' .

§ 7. A(x) in dependence on ¥Y(x) »

40. Returning now to the functional inequality (5.6)
derived under the conditions specified in sece.! we have to

use the value (1.9) of g(x) ,

A
(7e1) E(x) = ——T
93 x)
o X

19

Thence, solving with respect to ¢ and hsing the inverse functiony ,
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(7.2) () = = P G )
; Wb cagingt ¢ o SR 7 S A ¢ i
However the cases (6.,7) and (6.12) can be discarded,
Indeed under the assumption (6.7) it follows from (7.,2)
i RS ! & 5 oy s A
e 't.x) ¥, E(x) L ’Y("o) >¥°X
so that finally ¥(x)> — . But this is only possible for m=1,

2
fox
¥o = 1 and in this case Y(x) is always < 1/x .

In the case of the condition (6.12) we obtain from (7.2)

s g
Plmde) 5 Aa sy e

Yo X 7% "y(x:x ¥o X

and putting y:= x‘r/(x.)() y X = (XY )Vf it follows

1
YiY) > et
V> X KY)

which is impossible since 1/§ <1 .
Ye have therefore only to consider the case of sec. 34,
41. The assumptions (6.1), (6.2) and (6.3) in sec. 34

can be considerably simplified. Putting 3‘)’] 3

(7:3) 0¢gi= thbcr, gix) = bin)y g

the relation (6.2) becomes

N U, g RIS
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€l ¢ felen), Al Slleyf . Hony
(Ta4) tx)s {(ex) eax)

The relations (6,1) and (6,3) become now

(7.5) g>1,0<g<1,gl-9>u,L>0, E(x)>L (1gxgx) .

The inequality (T7.4) is in any case satisfied if £(x) is assumed
as non decreasing » In this particular case (6.2) holds for any sufficiently

large g>1 and, for a fixed ¢, (6.,2) holds for all g' = g'

from a g>1 on,
From now on we restrict ourselves to the case (7.3) with a constant, 0<$<4,

The simplest case is of course {(x) = ¢ = constans,

: (7.6) € ¢(==)° ,0<gc1, r s

a1 (2
L]

By (7.2) it follows
4

X %,
‘ e S

For the inverse function of y = ¢(x) it follows now

% r 1

Inversely from (7.8) follows (7.7)s From (6.5) we obtain now

(7.9) Alx) = 0(x1'f) ¢

42, The formula (7.9) holds in particular if the oy in (1.1)
are all algebraic, To prove this denote by ™ some primitive element of

the field R(® 40040 ) s0 that

“r- l’% (ex) (P- l.ooo.m)

where the h'“ are polynomials with rational coefficients , Then, denoting

by U eUygeee gty independent indeterminates, put




rn
rn

m
P(x) -Zur hr(x) * Uy
M 24

Let be n+l be the degree of & with respect to I, Denoting by

ek“” (V= 0,1,400,n) , o((o)nu( , the complete set of the conjugates
of & , form the expression

T(\lo.o-. ,um) = T “(u.(V) )

V0

which is a polynomial with rational coefficients with common denominator i,

If we put for the Uy rational integers 8o with §:= Maxl H)“ ve have for a fixed
natural l: Vol

i T(co,....gm) = G * 0.

wvith a rational integer G , so that |Il T(go,....gm)| 21,
On the other hand

Tt(go,...cm) = T(“o"""-'m)/ [igﬂh',(u) + g{!

| ol

is of dimension n and therefore 'I’(go,...,gm) = 0(y"), It follows

Ze:,.‘.*(u) + 8°! > ?cw » Cyo

Mmed

with a constant C, Ve obtain from (1,2)
C
Y(y) > ===
X

which is the relation (7.8) with r = n and thence (7.,9) with ¢ = ¥n,

43, Ve can assume now {(x) as strictly monotonically increasing.
The essential difficulty in applying (6.5) consists in the necessity to
obtain sufficiently good approximation of the inverse functions (x)
and WY(x) . To do this we use the &

Lerma §, Assume {(x) for an X)x > 1 a positive strictly monotonically
increasing function of x such that x/ l(x) also strictly monotonically
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increases, lLet 0 < <1 and put r:-llg » Then necessary and sufficient for the
ineguulitz

(7.10) E(x) = m‘ C(-e-)(?ﬂ)? (x)xo)
o o

is that Y(x) satisfies the inequality

(7.11) O e JD = 4C (yyy)
£_(oy) T x((0y) ) : o

for a convenient constant y > O,where with

X
o= O
(T.12) z 1= x/ {(x) , z)m g
k(z) is defined by
(7.13) k(z) 1= @(x) , x=zk(z) ,

L4, Proof, Using €(x) from (2,10) it follows from (7.10)

(7o1lk) f( )3(m)’/D= Vi

Since z = x/€(x) is strictly monotonically increasing, the same holds
for k(z) defined by (7.13) and it follows from (7.13) and (7.14) that

- Ve *o X5 i
(7.15) z = (Dy) - z)m y Y3 (mf/D PY e
Applying to both sides of (7.14) the function ¢ we obtain

Y3 s
L4

and since by (7.,13) and (7.15) x = (Dy)vf k((Dy)V’), (7.11) follows.,

45, On the other hand, assuming (7.11) for Y3y, vith
(Dy )V’ lr((l)y )V’)>1 and defining z by (7.15) we can rewrite (7.,1l1) as

(7.16) YO FRET v ) e
o

N e L1 B TR O O . SRR 3 NN N5 RN o VAT e 4
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Put then in (T7.16)

(7.17) x := 2z k(z) , x)zok(zo) = x.51

and apply on both sides of (7.16) the fuction ¥ . We obtain

1
T.18 P (e .
( ) y (r x)

-

Defining now e(x) by (7.13) we obtain from (7,12) and (7.15)
? xf
y=12Y/D = (m) /D .
(7.18) becomes now
L x \f
( %x) > (m) /D

and the formula (7,10) follows ,

h6. Applying the lemma 5 and starting from an inequality of the
type of (7.11) , it is important to find convenient fucktions k(y). The

following lemma allows this in a greater number of cases,

Lemma 6, Assume for x)x°>ee s With x =0 :

(7.19) egk(x) b , (xto)

(7.20) x k'(x) = o(k(x)/1g k(x))
and define Z(x) by: :
(7.21) zk(z) =x, z=2(x) 0@ . 1

Then for an arbitrary small €>0 with x =% ® ;

(1.22) s Y Z(x) > wh
k() a0 By
(1.23) k(x) = o(eEX)
(1.24) Z(x) = ;’(‘-;,-(1 + 0(1)) .
e N el e L AW A e A D e ——————




47, Proof, From k(x )>e it followsby (7.21) Z{x )ex , Z(x)¢x ¢

’A
k(z) ¢ k(x) ( x;xo)
and from
_A x
(7.25) 2% giee .
We obtain
(7.26) Z(x))ﬁ‘-ﬂ- , k(z)> k( -;’{-;,-). ¢

From (7.25) and (7.26) we obtain further

X

k(ﬁ‘-;y)

Z(x) ¢

and (7.,22) is proved ,
48, By (7,20) we obtain,for ang>0,

x((1g k(x)f)' < Ez (x >x1) A

2
((1g k(xfYe £ (x>x)

(1g k(x))°< ¢ 1g x + (1g k(xl)):2 - €1g X

1g k(x) < VE"lg x + c’< 5’13 x + '?

for a constant ¢, ané (7.23) follows.

} 49, Finally using (7.,20) we obtain
: ¢ .
X [} - k v
a e Ty 'JWW : ‘J‘Tﬁ%ﬁ ) s
. ¥/kw) %/k(x)

But obviously , in virtue of
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(g k(x))°( k) = K'(0) (18 x-1)30,

k(x)

m out of the

4
we can take in the last integral the factor

integral and obtain

x
X k{x) a k(x)
k(x) - k(m) = o(m J ;I) = O(m 1g k(x)) = o(k(x)) .
x/koo
It follows

x(ﬂ/Mﬁ;T) —1 + o(1)

and (7.24) follows from (7.22) . Lemma é is proved.
50, We can now formulate in a particularly simple and important case

Theoreme 2, Assume k(x) a constant or strictly increasing function

satisfying the conditions (7,19) and (7.20), Assume (7.11) for a convenient

C>1 and a¢with 0<f< 1., Then

(1.20)  glx) = o(lelyfy |

(7.29) Alx) = 00 fr(x¥ ) ;

Proof, Defining z by (7.21) it follows from e(x) := k(z) and (7.24):

L. o k(x)
X

Pt e 2 B 11 4 s1)),
€(x) = x(x)(1 + o(1))

and therefore (7,28) and (7,29) v

51.Consider, for instance , the monotonically increasing expressions

of the type

k(x) := ¢ lg:&. lg:’y oes 18:"',( (X>xo) .

where generally the V-times iterated logarithm of x is denoted by lgyx
and the first non vanishing term in the sequence “1'“1. g g“n 1s positive,

RN
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Then we have for the logurithmic derivutive of k(x) :

bl

Viq

ol 1

X lglx xx lcv.‘* x 1

= 0f Y

X

o

Since 1z k(x) = O(lczx) it follows

\ lg?x
x k(x11g k(x)/k(x) = O(TE';-) = o(1)

and the conditions of lemma b are satisfied, It follows

l1=8
(7.30) A(x)to(frzy) .
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