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I. Applicability of the iIernoulli—L’hospital rule was investigated , if

the uswtl assw~ptiOns fail on a zero set.

II. The probably most general extenr~ion of int e~ra1s of Cauchy—Frullani
type was developpcd, which contains , beyond all spec ial cases as yet

known , a Creat rnr.ther of further types of integrals.

III. The classical theoren on irreduc ibility of the resultant of two cene—

ral polynonials is extended to the case where one of these po1yr.o~ials

contains only one free parar.eter .

IV. While a polynomial ideal , P , with a basis P~, (Ii ol ,...,n) is defined

as the set of all polynonials of the form

~ K ,,, P~, , K,, polynomials.
•I”l

the Kronecker extension of thc ideal P , !~, is defined as the set of all

polynoa~ials satisfying an equat ion of the type

T
m

+ fx  ~~~~~ = 0

where each is a polyr.Glninl from 1~”. The investicat ion was con~er—
ned with the properties of the Kronecker extensions of polynomial

i~ea1s, defined in this way. 
, 
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L 
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polynomial ideal under consideration. This invariance can

be partly saved introducing algebraically closed ideals

as discussed in the tecnical report B!~2~ 46.

VI. In different discussions of the de Moivre — Laplace

formula in the calculus of probabilities, from laplace ,

1812, to Feller, 1950, an error term was used of the

form 
~~~ e

’t.,.O(~) and it was asserted , that can

be taken as 1. We prove that this is false in the

sens e, that such a form of the remainder is possible,

but the ~~~ instead of being = 1 1 are, with a -. ~~~

everywhere dense between —1 and 1.

VII. The investigation is concerned viith the problen whether

the expressicas d,~, used in the abstract VI are unif3rrr.-
ly distributed in (—1 , 1). We prove that this is not th e

case and obtain explicit expressions for the density of

du and some more general sequences.

VIII. If J is a linear Interva l mod 1 of the length 
~J (  ,o

a real Irrational and (u ),v 1 ,2,... are the resi-

duals mod 1 of the products ~?st , then A ; (n ,J), the number

of the R(V~) from J w1th v~~n, satisfies the relation
(1) N(n,J) = n I J I  + E ( n )  , E(n) = o ( n )  (n-+ Co ).
The article investigates the improved estimates of E(n)

for 8pecial~ , in particular in connection with T(n)
defined by

(2) T(n):= Minha 1~ 
+ ( Iz 1I~~n, z0rs z1 e 71. )

“~ e central result i~ a functional inequality implying thefuact ions Z( n ) ~nd T(n).
IX. The aim of the inves t iga t ion  is to generalize t h e  resul t s

ment ionned in Abstract V I I I  to the case of ~i > 1, whe re
t h e  irrationa l ~ is replaced by a vector ~ :=(o(~ ,...,øç, )
satisfying the corresponding independency condition.

— —
—-— ——-——--•-.--- —.-— - -I.——--. .
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—
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,- 
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lying mod 1 in 4 wi th  l~~ ~~~~~ ‘Ihe 1~rror func t ion  ~;( n )
is again defined by
( 1 )  E( n ) : =  N ( n ,J) — n I J I  = 0 ( n )
On the  other hand , the  funct ions  M’(~~) ,~f(t)  ana A~ ( x )
are defined similarly as In B”N 50 , while the cor responding
funct ional  Inequali ty has t~ be w r i t t e n  as
(2)  A4 ( x )  ~~~ A ( t ) + f~x/’f( ~~ ),~~ >1 , i~~~~ u ~

for a convenient constant  ~~~ L~Ifferent solutions of t~ e

funct ional  ‘inequalIty (2)  are discussed and corresponaing
estimates of E(n) obtained.

:i • -.



I. I3ernoulli—T.’rios~ ital rule

In the usual formulations of the general Bernoulli—L’Uospital rule

one of the four li~zi t in~ processes

(1) Xt~~~, X ’~~~°°~ x tx 0, )~~4, X Q

is considered. The functions f(x), g(x) are ass-~~ed to have derivatives,

where g’ is either always ~ 0 or always ~ 0, while I~ I ~~~ Co • Then the as-

sertion is (see the appended BI.Ti~ 1~3)

(2) urn  f’/
~
’ ~ lim f/g ~ lir~ f’/g’

It is shown on a counter example th~xt this formulation is no ion—

~er true, if the existence of f’ and g’ fails for a ze~’o sct,fl. , w~’.iic- suc:~
an exce~tional set often occurs if for instance 

1’ and ~ are Lebes~ue ~nte—
grals.

It can then be shown that, if both f and ~ are absolutely con-

tinuous, but f’ ~nd ~~‘ only exist with the exception of a zero set,~~ , —

and acain 6’ has a fixed sign (save on l).) and !~l—p oa — then (2) again

holds if ft is d i sre~;ardect in the extrene terms of (2).
As a matter of fact, we obtain still a partial result if we allow

g to be discontinuous. Then we have at least

(3) - ii-. ~tin(o,f’/~’) ~ ui~ f/~ 6 ~~~~~~~ : :ax( o,r ’I ~’)

A particularly useful rule is obttined in the followin~ result

Assume that for one of the li:dtin~ processes (2.), save on a set,S~.1 o
of measure 0 in the ran~.e of x, f’(x) and. ~ ‘(x )  exist , ~ ‘(x )  is either al-

ways ) 0 or always <.0 and g(x) tends ~onot.onically to too or —oo • Assu-

me further that we h~ve for a finite constant ~

(b) f’(x)/g’(x) .-.—~~~~ 
.( 10(140° ( .)

~1 
0) ,

and that t(x)—0(~ (x ) is absolutely continuous. Then the relation holds:

(5) f(x)/G(x) —9 O(

Al]. dote u s  are contained in B~~ 43 distributed previously. The paper
appss~~~in the Aat.riean Methenatiesi Monthly , ~~~~~, l976,pp. 239~2)i2.
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II. Cr~uch~—r’rull~.?1i ir.tc~:rals

The C...uchy—Fruilani for:;ula is

(
~~

) J C. (o.t)- q bt) d~./~. = [ ~~ coo ) — ç(o) 1 ~~ &/b ~a.i~b >0~ .

‘L~ is holds if f is L inLe~rable ~tri d t~ie two expressions on the r iCht , del ’ i—

ned by

C:’ ) ~(ao): ~ & ri j ,. ~U) 
~ 

• •&MA.

~~~~0O 1:4,0 -

exist.

It is nat ural t~ ask ‘.r~cther f(oo ) and f(0) can be replaced , if these

li:.it s do ~at exist, b~ coiwenic-nt :re~:n v~ luc~~, ~‘( f )  and r . . (f ) .  Iudei~~, it

c~:i be s~~o -.~~, that ~f both li:~its

(2°) M~~) : R  ~~~~~~~~~ f~udt.) ~~f) ~ £~~~J W d +~/ f .z
X~~OO 4

exist , then t:c for~i.ulu

(3) f C f ( a Q-  fCb~))oL(~/ L = [ h( ~ ) -v v a q ’)] ~~ oJb

holds , and vice versa~ i f  the int e~ ral in ( 3)  converses at least for a set of

pos it ive r.eisure of the ~uuticntsa/b , then the expr~ssions (2
0) exist as~

(3) t o 1d~ for all positive c and b. (Cee the ch.~ters I — III ar.d V of 3~~ 1~ .)
As a ratter of fact , necensar~ cnd su ff ic ient  conditions of t~.in kind

s-crc i ic~.tcd in l7I~0 by ~~~~~~~~~~~~~ tht conditions correspondin, to

f(oo ) being

(1.) 3 f((~ (+_/C 
, 

3 ~~~ x Sc”)d4- fl)
I ~~~~~~~~~~~ *

sihere the seccn~ ~L~it corresponds in (i) to f(Co). J~en~ar ’s conditions cor—

r~~~~on..ir~~ to f(O ) ..~rc sL. il a r .

iovcver, Jyen~;~.r’s proof was incorrect.. ~. s~~pler proof was given

l9~2 by ~~ now , but this proof contains ~~ain a gap, as was pointed out l~ e9

by A. Ostro~rski who e~° the conditions (
~~

) and sketched a direct proof
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o their  a ju i~ e ic nce ~ith J:-cs~~ r ’ co~~~i tion~~. This ~ r ’) of  i~ t~tiied i~:

the c~-~~- ’ cr 11.1 ef h 14k. ~~~ ~ x-~ ~~ter, ~~~~ ~~r e~’ suecee~ ed i:: f i l —

o~~ the ~,ap of his proof.

The f ollo~ in~; sections cf the ~-aj~~r ccntain th e  for ulat i en and the

proof or a very general extens io~ of (1) ~ni  ( 3 ) ,  t~ c ~~~~~~~~~~~~~~~~~~~~
;~ul~-. ts for~iul ation contains, because c~f its generality, several pa”emeters ,
and it is sufficieut to refer to the sectic.~ 14 5, p~ .3t~—37 , of tbc

if:: 1414. To characterize the forr.ula we ~,ivc in th~ follo~:i~t~ a s i l ified

versien if it.

Assu~ e G(x) L—inteGrable in (O ,Co) , bounded in s::~ d ozed inter-

val of th e j~osi~ ive x—axis and such I ~z~t . T( ( ~) , :z(~~) e:•:i~t. ! s~~ e the

open interval J bctween a and b (a~~b) and t~’o functions .pL~~) , 9’~ t)

defined :~nd absolutci:’ coritinuou~ in J. ~~su.e further that the vd~ ’~.

I4J(~~) , ‘.f~.b) , q’(b) exist  if deVin~~ as linitz from J, and. further t!mt

9”(a~1 ~f’(b~,9”(b~ exist an d ~f I ’( a )  tr’CI) $ 0.

Then we have t h e  fornula

(5) ((‘~~.~ )/q’ - cf ’ C f)/q~~dL~ ~~~~~~~~~~~~~~~~ 
- M(~ )~~ -

All details are contained in BM1~ ~~ d istrihute~1 orev iou&’Ly . The paper
baa appeared in Coinmentarii !tathematici ilelvetici , ~~~~~~~ 1976,pp.57—91.

III. Irreducibility of the resultant and connected results

Consider two polyno:uials f(x) and g(x) with coefficients respecti-

vely a~~and b,, , and their resultant P. t.ssuse that the b~, are polynomials
in a p~raaeter 

~ 
so that c(x) beco~ies a polynontial ~~~~~~ Then , if g(x,g)

is irreducible, B as a polyno~ iul in the and is also irreducible.
As corollaries of this result , equations satis fied either by the

sums of zeros of f snd ~ or b~ the products of these zeros are analyzed

and their irreducibility is proved.
All details of the proofs are contained in BMN 45, diatrihute’l

previously. The paper is in print in Arch ly der ~1athemat ik .

- ..
. 

-—---.-..-.——-—————- ———-- —-- — —--— --- 
—

- —
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W. Algebraic Closure of Modules

~bile a ~Qi~ flG~ j~~i ideal, ~~, with a basis P., ~~~~~~~~~~~ is defined

as the set of ~~1 polynonials of the for~

. i~~ polYno:~ials ,
~~
. I

the ~ronc-cher ext e ico of the ideal , P, is defined as the set of all
polynosials s._tisfyir.~ an equation of the tyne

+ =

where each is a polynomial from ?‘
~~.

The technical report BMN 46, the copies of wh ich were appended

to the periodic technical report of April 76 , is concerned with the

properties of the Kronecker extensions of polynomial ideals , d~ f’ined

in this way , and the generalization of this concept for the module.~

over a rin,g .

The main points of this discussion are

a) “ Linearization “ of the al~çebraic condition imposed on the

eleme n ts , 1V , of ~P . This is done , introducing the concept of a

supporting sequence ofT over P in theorem 1 in sec. 12 (partly out

to t’rufer), and m ore generally , introducing the concept of a double

supporting ~eguence in theorem 
j 0 in sec. 15

,V e further generalize this criterion in theorem 7 in sec. 51 ,

though useful , but bearing no longer linear character .

b) The proof s that ~ is a module , theorem 2, see. 17, and that

~ 1... alé ebraically closed , = , In theorem 4 of sec . 33.

c) An importan to theorem of Mecaulay , assertI ng that , if A ,B,C

are modules and B finite , then from BC c AB followsCCA , is generalized,
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j~~~~ t h e ren ~~, ~ec. Lo , to m o iu l c~i cv~ r o r in d , tc 1 € th~ r wit- a cnn—

r i d c - i - ~’~lc L: inpl i  f i c a t i o n  of th e  ~rc c f .

A ~reat nu:~t&r of pnrtir~i • . .~ c

but  u~i efu l  and partly even necessary in applications of’ t he  theory .

In particular , attention may be drawn to the discussion in the sec.

ol— 73 , of the application of the valuation theory to rings and mocu-

leo , which is very technical but proved to be important in the appli-

cations of the v:hole theory to Eronecker ’s theory of elimination ,

discussed in the next item . ‘ e paper is being printed in Crelle ’s
Journal der ~‘atheniatik

V. On Kronecker ’s eliminat ion th eory

Kronecker ’s set up in his climination theory starts with a

polynomial ideal

(1) P(f,,(xl,...,xk))(.~~~~
1 ,...,n) ifl .cl[Xl , . .. , X

k]

where fl.:= C and the n polynomials f~, with coefficients from flform

a basis of P • To obtain the null manifold of P Kronecker makes

first the variables x~~to uncergo a general linear transformation

such that the highest powers of each sindle variable

in any of the f~,, has a non vanishing coefficient from C . Then be

eliminats first x 1 computing the rc~;ultant ..ith respect to

(2)  Res~ (Eu .~, 
f , , 5v ~, f , ) =~~~~U~ V~ ~~~

Here the u ,,~ , v,~ are indeterminates independent with respect to

- 
-1m~~,’’’ ’ -

~ 
—

-



• On the rigth side of (2) the U~ are products of

po~ve r of the U.j , the V~ product s  of ~:ollers of the v~ and are

independent of the U j  ~ v,~ , whil e the products U~ V~ are all

distinct~ Then the moaule —~
( 5)  ~~~~ (R j ,~ ( X 2, . . . ,x~ )) 

~~~~~~~~~~~~~~~~
is the resul tant  module obta in ~;d from P by el imination of

however , J f as defined starting from (2 )  is not invariant

.vi th  respect to the  choice of t -~~ basis eleme nts f 4 of P

The first  main result of our discussion in case f l :=C ,

is that ,the ideal is indeed independent of the choice of the basis

of P and as the matter of fact onlj depends on ‘P

Howeve r - , the whole discussion is undertaken on a larger front

in so far as fl need not be =C but is assumed only a natural  ring.

This embraces also the set up of Lasker in the case fl=Z

Our second main result can be forrnulatea as follows . Let

(4) Q = (8,. (x l,...,xk) )  ( , .~.= 1 ,...,m)

be another  ideal in f lsuch that = ~ inf l.  Denote ~~~~ the ideal

in .CL[x2,... ,x~~ the basis of which is formed by the  coeff ic ients

of the highest power of x 1 in the  n polynomials f u ,and s(
* 

the

corresponding ideal formed for the  . Then , if we denote with J
8

~ - r T ~~TT~ ~~~~~~~~~~~~~~~~~ 
- 

-

~~ ~~~~~~~~~~~~~ ~~~
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the  ideal ~~~~~~~~~~~ dcfined applying (2) and (3)~ to the

the relation-a hold

(5) O J g CJ f~ Cfs
f
Jf CJ g

Her e , r Is any integer)p and r’ any integer >, q, whe re p, q are

correspondingly the maximal degrees of the f~ and of the  ~~in x 1

It is of some interest to obtain , if possib le , lower values
f or r and r ’ .This is indeed possible , using the conc :;pt of the

hei~,ht of a polynomial ideal with respect to a Dedekind moaule as

developped in the last part of the technical report BMN Li b .  However ,

this part of the discussion requires a not inconsiderable display

of technical argumentations.

The technical report BVN 47 has been distributed previously. The paper

is being printed in Crelle’s Journal der “athe~iat ik,

VI. On the re1~ainder term of the de Moivre-’Laplace formula

The de Moivre-Laplace formula in the probability calculus is

concerned with the case of the n t imes repeted trials with constant

probability p~ if n—.~~

*A de Moivre , Miacellania analytica (2nd supplement), 1733~
P. Laplace , Oeuvres , Vol . VII , 1812 , pp 281 , 284.

- 
_____________________
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• IntrOduce , or a p , o p ~ l~ and imite~ er V w i t h  o (V ( n,
the  notat ions

n-v (I. -
‘

~V 
) p (l—p ) , ~ ~p(1 —p )r~ ,

n 0 [(n+i)p] , w ’ :=~~~~~~
(f l e1 %

Then~ for a positive ‘vj ,thc formula  in question in the form

in which it was given by Laplace can be written as

L(
1
) : = ~~~ (I~~— n .I 4 ‘~,w’) 

~

L(1) =~~~~~~ ~~e~~
21d~ +~~“ e~~ O(*) , cL’

~ I

~hile usualy the corresponding formula ~an be written as

M ( r v~ )  =E~PlhP (I~~— hp I4 1~
./ )  , -

The technical report B~~ 48 contains the proof that both

formulas are false a~ to the valuesof d , d~ , and that  even , if ~~~~~~
both d~ , d~ are everywhere dense betwe n — l and 1.

Both d~ an~ d~ can be expressed explici t ly using the  funct ion

R ( x )  := x — tx]. Such a representation was already given for d~ by
*Uspensky , 193 7, ~~~ however expressed himself very cautiously as

to the assertion of Laplace.

The proo f , that d~ and d1~ are everywhere dense in ( — 1 , 1)

requires argumentation belonging to the  theory of Diophantine

approximations . The proofs are found in the technical report BMN 48
distributed previously.

* J. Uspensky , Introduction to mathematical probability,

New York, 1937.
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VII. Distribution ~unction of certain sequences nod 1.

Jhile the 3e~juen ce

d~, :* R(~i~~ p(l—p)~ + p~,) + T~( ,,jV2p ( l—p )~~’.. r~’
is , as proved under VI ,every~ihere dense i~ (—1 , 1) , the nrenent

article discusses the i roblen whether it is un i fornly distributed.

We prove that this is not the case. The discussion is carried Out

for the general sequence
f l (a~~

’ +V A ) + ~~~~~~~ vX ) (
~ ‘~~ 1,2,... )

and even more generally the seiluence

(1) d
~~:= H(~L,

+V~~) + Ji(o~~—v )~) (
~
/
~ 1,2,...).

The sequence ~~~~ in (1) is assumed to satisfy certain rather special
conditions which are for instance satisfied for ~~j  = aVe” , 0< ~ <1.

We prove that , for any irrational ~ the density of (1) is x
in any point x with 0 x 1, and l—x in any point x with 1( x .~2.

In the case of a rational \~ (1) is uniformly distributed if’ and

only if 2~ is integer. We prove that the distribution function a1~ays

exists for rational )i, too, and obtain this function in a neignborhood

of i.

The proofs require a rather intricate discussion of sone integrals

in connection with diophantine approxim ations . The complete paper ,

as the technical report B~I~ I~9, containing all deta ils of the proofs ,
has already been distributed.The paper is accepted for publication
in Acta Arithmetica.

VIII . Rat ional approxi ::ations to an irrational number.

In the following S means an interval mod 1 of the lengt h 151 ,

wh ile R (~~~ ) , Q. 1,2,... signify the residual mod 1 of the product

, for a fixed real irrational o • If , for an n ~ l ,
is the n~~ber of th. Tl(~?o( ) f roet J with U ~ n , then

- 
- - •

~~~~ ~~~ - -_~~
-
~~ ~~~~~~~~~~~~~~~~
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(1) E(n):. ~Un,J) — nIJI = o(n) (n —‘~~~~~~ ) ,

by a result due to Boh l— 3 ierpi uski— W eyl.
The aim of the investigation is to improve ( 1) under special

assumptions for~~ • In this connect ion~~ will be characterized by the

function T(n) defined by

(2) :(n):= ~in z1~~ + 
~~ 

( 1z 11 ~ n, z A  z16 1. ) .

We establish a Cunctional inequality depending in a certain
way on I~(n )  and T(n ) .  To the purpose we use an ar bitrary strictly
decreanin~ and continuous fn*ct ion ‘j’(n) such that

(3) 0 4~~jl(~~~)~~~~ T(~~~) ~‘(n)~~O

and the inverse of ‘I’ , , so that
(1
~) t = ’t”(c ) , ~~ =~f ( r )

On the other hand we introduce a inajorant of 1(n) by

( 5)  A~ ( x )  = ~3upE(n) (l~~ n~~ x ; S arbitrary
Then the functional inequality in ;uestion is

( 6)  A*( x ) 4 A * ( t )  + I4xf f (-’~~—) ( x ) 1 , t~~2)

In particular , frcxi ( G) can be easily obtained , for an ~~. with

bounded partial denominators in the continued fraction ,
( T)  ~(n )  = )(lgn )
and, for algebraic a’. ,
(8) L(n)

for a convenient number r with 0-4 r~~ 1
The uetailed proofs arc containeu in the appended report b~ I 50

IX.  The Er ror tern in multidimensional
diophantine approximation.

In generalization of the situation dealt with in VIII consider
the space t? (m > 1)  and an n—dimensional vector oi. : (oc ., ••“~~m ~sat isfying the condition that always 

~i”i +...+z % +z ~~ 0
for integer z~ with > 0
Under the symbol fl( veLp i) we understand the vector
(i)  R (Vs& ~,) • (~b 4 ,...~ VaLJ Nod 1

_________  
-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— ~~~ - - L ~ 
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while S has the meaning of an - — limensional interval nod 1, the
vol ume of which is denoted by 15 1 . The expression ;l(n ,J) signifies
the number of ~(Vc&~~) from J with 1 ~ ~ n

Then the rror tern of un i form distribution of the R ( \ . ) in
J is given by

(2) i (n) : i ;( n ,J) — nIJI = o(n) (n— ~~~),

un i formly for all J.
We are concerne~i with the nr oblesi to improve the estimat e (2)  under

spccial assumptions about the To this purpose we intro- uce the

norm ~z~~~of the integer vector z (z 11..., z )  by

: :‘ax t z ,.. 1
and denote generally for all real number a by ~~ the distance of
from the nearest integer.

The vector ~ is to be characterized by a strictly diminishing

funct ion r=~r(cr)
-4 C) such that

( 3)  (
~~ )~~“in ~~~~~~~~~~~~~~~~~~~

Denote the inverse of~~~=~4(O ) by Caf(V) and put

t~5(x )  := Sup E (n)  ( i~~~fl~~~X , J arbitrary ).

If we finally put

~~~:= 2~~~~ /((m+l) )2

the central result of the paper is the inequality

(se) A5(x)40(A(t) +~~x/~~(-~~ ) ,ci>l, ~3 >0

The relation (~4) is independent of the dimension m. The most

int eresting case is obtained under the assumption

~ ~L(x) 
)? 

, L (x)  i’ ~ 0 ~ ~ 1 .

We obtain then

( 6 )  A5 ( x)  • O ( x / f ( ~~L) )  (x f ~ )

_ _ _  -_ - 

- 

~- - T~ ~7
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The essent ial problem in applying (C ) is then to find special
( C x )  for which the inverse function , 

~ , of’q can be simply expressed
or well approximated.

In the spec ial case t ( x )  coast . = c > 0  the condition
corresponding to (5) is

(7)

and here we obtain -

(8) A (x)  = 0(x 1
~~ )

Such relations hold always if 
~~~~~~~~~~~~~~~~~ 

are al~ehraic numbers.

If the est imate obtained for t (x )  = const . is too rough we
obtain finer estimates introducing a function k(x )  strictly nonoto—
nically going to cc with x -

~~~~~~~ and satisfying the condition
( 9) xk’(x) = o(k (x)/ lg  k ( x ) )  (x - + . o  ) .

Then ,tair ing r = > 1 and subj ecting ~‘(x) to the cond ition

(10) ~~(CX)
r
k((CX)

r
)Y(X)>l (x~~ x )

for a convenient constant c >  0, we obtain
(11) A(x) = 0(x~~~ k ( x ) ~ )

The technical report B?-N 5]. appended to this report contains

the detailed proofs of the results indicated above as well as a

discussion of some solutions of the inequality (14 ) which present
a certain interest although they cannot be applied to the proble m
on diopha ntine approx imations which is the main subject of the paper.

Appendice s:

B!~C 50 On rational approximations to an irrational number.

B~1-~i 51 On the Error te rm in multidimensional
diophant m e  approximation .

_ _ _ _ _ _ _  -- 

-
-

- -~~~~
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List of technical reports issued durjn~

the g ant period.

BMN 43 Note on the Bernoulli  — L ’Hospital Rule.

BMN 44 On Cauchy — Frullani Integrals .

BMN 45 The irreducibility of the resultant and
connected irreducibility theorems.

BMN 46 Algebraic closure of modules .

BMN li7 On Kronecker ’s Elimination Theory.

EMN 48 On the remainder term of the de Moivre — Laplace formula.

BMN 1~9 On the distribution function of certain sequences ( mod 1) .

BMN 50 On rational approximations to an irrational number.

BPW 51 On the error term in multidimensional diophantine
a pproximat ion.
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Errata B~~i 50

p.1 , 5.].f.b. replace “by” with “generally by”

p.1 , 1O.l.f.b. replace
N
ChebyBhev tl with “Tchebyshev”

p.2 , add to footnote 1 : My a t tent ion was kindly
drawn to  Khintch ine ’s paper by professor
Cassels.

p.3 , replace in formula (1.9), “
~~9~) 

“ with “

replac~. in formula ( 1.12) ”c r 2 ’

p.6 , 3.l.f.a. replace “are lying” with “lie”

p.6 , 6.l.f.a . add : , by ( 2 . 1) ,

p.5 , 6.l.f .a.  replace “ ( 2 . 1 1) ”  with “(3 .1)”

p.5 , 3.l.f.b. replace “and” with “for a certain r3~ and”

p.10 , 9.l.f.b. replace “ in s ec. 1 ... expressions” with
“expressions defined in sec.1 and sec.4”

p. 11 , 4.l.f.a. replace “and since” wlth 0 .Since ”

p.12 , 5.l.f.b. replace “end” with “upper end” 

- - 

- 

- - 
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On rational a~prox imations to an

irrational number.

~i 1. Introduction

1. Denote by R(a) , O~~R(a)<1 , the fractional part of a.

Further, for a real irrational ~~~~
. , denote by N (r i ,J) the number of

the elements of the sequence R(’~oL) (1= 1 ,...,n) lying in a subintervall,

J, of (0,1) modulo 1.o( remains fixed throughout

In the case of a real irrational nurnber,~~-, the two following

results are clasnical.

a) The sequence R(~o() ,~~~ = 1 ,2,... is everywhere dense in

the half open intervall <0,1) (Chebyshev)

b) The sequence R(VoO ,V= 1 ,2,... is uniformly distributed

in ~~O,4) 
(Bohi ~iJ , Sierp inaki 

~3 ~~We~ri Eu . ).This signifies that

for any subintervall, J, ol d(O,1), the relation holds :

(1.1) N(~’,J) =~,IJ~ + o(i’ )

denoting by ~JI the length of J.

2. As to the result a) the question arises how far we must go

in the sequence of the R(V~ ) in order to obtain an approximation to

with an error ~ 6 for any 
~ 

from (0,1), More precisely, we seek to

define a function ~~~~ tending mono tonically to~~ with€ jO such that 

- -- - - - - - -~~~~~~~~~~~~~ - - ~~- - - _ _ _ _ _ _ _ _ _—- - -~~~~~~~~~~~~
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2 ’

for any ¶ from <0,1) there exist two integers x > O  and y, such that

(1.2) ~xoL — y — , 1~~~~ x .~~ (()

3. In connection with this problem we have the mention

an important and extremely general theorem by Khintchin which~ if

specialized to our problem,gives a solution of a similar problem

in which the condition O~~x~~~(E) is replaced by the condition

(1.3) tx~ ~~ ~$~~
) 4)•

The function ~~(~~
) is expressed in terms of the funct ion T(0 )

defined by

(1.4) T(~ ) = M1n~z1~~ + z~~ , ~z1kcs , z0A z 1 eu.,

and an arbitrarily chosen continuous and strictly nionotonically

decreasing function ‘t’(o ) satisfying the relation

(1.5) O<’I’(G )~ T(~~ ) (c-~~4)

We obtain then

(1.6) 
~~ ~ 16~.y(i/16~ )

and this expression is “th. best” save for th. values of constants.
In this note we obtain , by a very elementary discussion, for

the expression

1) Khintchin ~
] , see also Cassela [1) pp. 97 — 99,

V 
- ~~~~- ~~~~~~~~~~~~~~~~~~~~~~
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• (1 .7) 

~( 6 )  
~‘(376)

This expression is derived in 8ec.10. It is obviously “the best” save
for the values of constants.

14, As to the problem b) our solution of this problem

depends on the function ‘4’(C) introduced in (1.5). Denote the inverse

function of C= ‘I’(~ ) iiy

(1.3) ~ (t) =cj~ , ( t � ‘P(i)) , fp-f’ (
~

-)) =
~~~~

- (~
-
~~i)

This is allowed as ‘j’(c) is continuous and strictly inonotonically decreasing,

Put further

(1.9) u~t) 
~~

= -
~~~~~~~

-
~
-

and for any partial intervall J of (0,1) :

(1.10) :(n,J) : n — N (n ,J) ,

(i.ii) A (x) : Sup A (n ,J)
l~n~x

J

Our central ~csult is the following functional inequality for A*(x) :

(1.12) A5(x)~~A’(~) + 2xU(~) (x~o ~32  )
This formula is derived in ~ 5.

5. Using the relation (1.12) we can easily prove that for a].]. OL with

bounded partial quotients of their continued traction expension, and in

particular for all quadratic irrationals~~. the relation holds

(1.13) A5(x) — O(lgx) ( x—s~~~) . 2.)

Another important case is that in which, for two constants g and

2) First proved in Hardy and Litt]..wood [aland Ostroweki 
~~~] 

.
See also Behnk• L~J • 

-

-~~~~~~~~~~~~~~~~ ~~~~~ V
V 
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(1.114) U( x ) ~ ~‘ U ( 3 x )  , ~~>~~
‘> 1 (x~~x > 0  ),

In this case we obtain

(1.15) A*(x) — O ( x U ( x ) )  (x 4
~~~) ,

The condit ion (1.l~ ) can be used immediately for instaxee f~r

(1.16) a , c >0 , ç ~ , 3)

6,The method used in our discussion of the problem b)

can be considered as a further developpnent o a method used by E.Hecke ,

Hecke [i3 pp.33]. — 335. Hecke made in particulci.r essentially use of the

express ion

(1.11) S(n,~~) :‘~~~~R(~~+*~.) ,

however, only in the special case ~ 0. (I had occasion,during writing

down of the above quoted paper~to add some remarks which were then incorporated,

with due credit~ in Hecke ’s paper , l,c , pp.332 , 335.)

However , Hecke did only arrive at partial results • For instance

in the case of bounded partial quotients he says that he could only obtain

the estimate O (e~~~~~
’
) instead of O(lgx),

It may be finally merit ionned that an inequality similar to and a
little weaker then (1.12) can be deduced by another method ( cf.0strowski~3J)
for an essentially more general case for the n dimensional approximations.

See our forthcoming communication : On n dimensional approximations.

3 ) The corresponding result was first proved in Ostrowski 0].;
see also Hecke [11

_  _ --
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§2. Derivation of (1.7)

7, Observe that in (i.~ ),

(2.1) ~t’(G)~~ T(0) 4~~~~

by an inequality going back to Dirichlet (nec Cassel~~]3theoren 1, p.1),

Applying the monotonically decreasing function ‘
~~ it follows 

~~~

(2.2) 

V 
~ 

= 4..t Cc-) r~~~~
’
~ )

8. Choose now an arbitrary ~ from 4),].). 1~ron (1.14) it follows

that for a certain positive integer q
~~ G-~~

T(~~) = — l~~q~~ c3 ~

with (q,p) = 1 and t herefore

( 2 . 3 )  p — q ~’-± 
T(~~)

V 

Consider now the congruenc.e

(2. 14) xp a — — R( q~ - )  (mod q) ,

which has as a solution a positive integer x between 1 and q,. Eleminating

in (2,14) p ~~~~~~~~ (2.3), ‘re obtain

V 
.~ :~

- 
- q(xei — ç )  ~ ± 

xT(~ ) — T~(!1 s )  ( mod q)

and dividing both sides by q,

~ ~~ 
x~(~’) — (mod 1) .

V 
-:~~~~



It follows that , for a convenient integer p1,

x.t — - p1 ~9*i’(~ ) +!

where Ie~I and 9 are lying between 0 and 1,

( 2 . 5 )  - T(~)c . x o~ — S — p1~~T(
~ )+*

9. In order to obtain an upper estimate of Vq observe that

by definition of T(0), T(q) T(0 ) and therefore

Applying to the extrest terms of this inequality the function ‘f

it follows q ) ,

(2.6) .tu(o-)

Using (2.1) we obtain

(2 ,7) — j~ $ x o c _ p 1 _ f ~ .4 - ~~ LL (U ) S

10. Frcm (2.2) and (2.7) it follows

(2.8) —~~~U(Q)4xec—ç— p1~~.

and further

(2,9) ~~~~~~~~~~~~~~~ .

:1
. 4

- - - - - - -

~

- - - j — - - - -,- -
~~~~

------ - -
~~

- - -V 
~~

-- - - - V 
- ,

• - -~~~• ‘~~~~ -~ ~ ,, ~~~~~~~~~~~~~~
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V - We see that in order to obtain an approximation of ç with
- 

a error ~~ we must make

.
~~

. U(u )~~c • 
3 

.
~~ C 

~~~~~~~

1.

2

Thence ~ (L) as defined by (1.7) indeed gives a bound for x

solvi ig the problem a)

~ 3. A lemma

11. We prove now the

Lertna . Assurie~~ a real irr ationa 1~~~Al.~~positive and a

positive integer IL Assune that for an:’ ~ from 0 
~ f ~ l there exists

a positive inte~er x~~U and a conven ient integer y such that

(3.].) - Y~~ g + ø ;

Order all residues R(xa*.) C 1~~x~~U )  in a monotonically

increaain.g order between 0 and 1 and denote them by

r1C r 2 ( •.,  <r ~

- 

V 

- Then the length,ot au. intervalls between two consecutive 
-

as veil tu~ the ].~ength of the intervalis from rN to 1. + —

4-~ 
are ~

4
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12. !‘roof. Assume that there exists two consecutive r, r ,, ,r,1, s]J
1 ~ ~ ~ ::, such that

~~ +1 - r,~~~(.~4+(J~ , r 1, ,1- ~~ )  r~,-.- cm~4 ,

and take a such that

- 

~~L
)
~~>r U 4~

Applying (2.11) to this ç we obtain a contradiction

13. Assume on the other hand that th~ sin of the lengths of the

two extrex~w interv~,.l1s (0, r1) and ~~~~ 1) is )

r1 
+ 1 - rN 

) (fr)4 +~ J % , r~ + C~) 4 ( 1 + r
1 

—

Then there exists a ~ such that

• r.1 + A)4 < ? <  l + r 1 — c ~ 2 . ,  r,~ < ! — ~ ç~~ ~~~~~ ~~~~~ 
.

Apply now (3 1) to this we obtain

r~~<. g — 

~, ~ 
xo( y4 ~ + ~~~ 1 + r1 ,

vkere x*y are integers and l~ x~~N • Thence. ~~ — y lies in the open

intervall (0.2).

If now xe( — y ( 1 then it must be one of the residues and

r~ is impossible. And if x~~ — y lies in the open intervafl (1,2)

then it must be — 1 + r~ and it follows

~ + 
~ N < 1 + r1 • r

~ ~

J
which is again impossible, Our 1e~ima is proved. -

—  

- 
~~~~~~~~~~~~~~~~~ 

-



-J

~~14. The sums 3(n , ç)  .

114. Assume ~ fixed real irrational and ~ real. Put as in (1.17):

( 14.1) 5( n , g )  :—ER(~~
+ v.c ) - , 3)

~P.4

Obviously

( 14.2) S( n ,~~ ) — S(n,() C ~ a ~
‘ (m od 1))

Assume from the half open interval]. <0,1) and put for an integer ~‘:

( 14.3) D~, : r(~ + ~ + ç) — R (~~~~~+ 
~~~

)

Then

( 14.14) S(~i,~ + ç) - S(a ,-

~~ 
) —

V:4

( 14 .5 )  D~a(~~+~~~ +~~) — (~ +w ~~~~ ( mod i)

Consider the intervall

(14.6) 3 : (1 —
~~~~~

_ ç, ‘ — -i) ,

where for + f ~ l 3 is to be understood mod 1, that is to say,

consists of the two half open intervalls

< 2 — ~~~— J ~, l )  and <o ,l— ~~ )

3) This expression was already considered by Sierpinski 0] t~
] , who,

hovever,only Investigated asymptot ic properties of S(n ,f ~ and did
not use the expressicn ( 14.9) , ~ee also Ostrovski ~]



I ssy nov that

(~ _ 1  (R( ~~~~~) g 3 )
(14,7) ~~~~~ -L ~

Ind€ed, if R(vel )*J then R(~~+ ~‘~~- )  € 3’ :“ (l —

and R(~ + i~~~~ + 
~~

) € (o, ç ) 
• R (~~ + vet + ç ) c  ~~. But then D~, is a. fortiori

f and must have the value f— 1.

On the other hand , if n( uot ) 4 J then R(~~+ v~~)4J ’ :— (l — ç,i )

and R(~~ + v . ( + c )~ .(O, r ) . B ut then R ( g + ~ M + r ) > f  and D 1, > f — 1 ,

D9 . ~

15. Applying the in sec.l and sec. 14 defined expressions N (n ,J) ,

A (n ,J) to the intervall (14.6) it follows train (14.5), (14.6) and ( 14.7) :

(14 .8) S(n ,t +S) — ~3(n ,~~ ) — n f —  N(n ,J) — A( n ,J)

16. Observe that for any couple of natural integers m ,n

• (14.9) 3(n + m~ ~
) — S(n ,~~ ) — SCm , ~

) — S(n ,~~~~+ R(met)) — S(n ,~~ )

Indeed ,

-S(n + m,~~) — S(m, ~
) a~~~~~~R(~~~+ vet) _ ER(E+ ~~~ —

— En(~~+v . ) —~~~~R((~~+ m�) +W)-

— 3(n,~~+ m~~) - 3(n ,~~~+ R ( m e t ) ) .

V 
‘V 

.
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Define generally for any natural p : 
-

• 

- (14.10) 
~~~~ 

: (1 — — fl(4pa.~~) , 1 .~~~) C /i.*,i )

Then if we replace in (14.8)~ with R(m~~) the right side expression

in ( 14.9) becomes A Cn ~Jm ) and since the left side expression in ( 14.9)

is sy~inetric in n and m we obtain

( 14.11) A ( n ,J )  — A (m.J~)

By def inition (1.11) we have

IA (n ,J)
~ ~, A

0
(n)

Using (14.11) it follows

( 14.12) I A (n ,J~, )( IA( V •3~ )I~~~A*(V)

~ 5, Deduction of (1.12 ) ,

17, Let 2 ,~ r3— :G 0 and consider the residues R(Uot )

( - b ~_ l,...,cj0) nionotonically ordered:

(5.1) O(. r1< . . .(1~, 1

Let 04  ~ 41 and assume first that

(5.2) rl4~~< rc .

_ _ _ _ _  
_ -

~~~~~~~~~~~~~~~~~~ 

--~~~~



“4,

- 
- Then, using (2.8) and the lemma of ~ 3, we see that

— r,~~2U(a) (P— ~~~~~~~~ 1)

and it follows that 
~ lies in one of the intervalls <r~ ,r~,4>

(‘~1— 
~~~~~~~~~~~~~~~~~~~~~ 

1), that is that there exist two R(Vo~~,)~4 , > ~~ ,
such that

rv 
~~~ 

— R(x1et)~~ç(X 2 — c1+1 — R (x2o(.) ,

(5.3)

14x1A x2~~O ,)~1~~~4~~2uCa)

18. Take an arbitrary but fixed ~ , 0 ~~~~ 4 1, and consider the -

intervalls , partly in not ation (14.io):

:- (1 — T ->4 ’  ~ — U ~~ — (1 — ‘
~
—\ ,  1 —~~ ) ,

(5 . l s)

3 := <l~~~~_ ç ,
l_

~~) ,

• all three with a common end: point 1 — and of the respective lengths

• ~~~~~~~~~~~~~~~~~~ 
Obviously

(5.5) .5~cJ c J~4

and therefore for any neW

~~~~~~~~~~~~~~~~~~~~~~~~~~~ nj~~. 1~(n ,~~~ )~~.n~~— 1~(n ,J)~~ n S _  N Cn ,~~4
)

— —_ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _V - - -~~ 
V
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. 
- Using (1.10) this can be written as

(5.6) A (n,.~~ ) — nOi._—~~)4A(n,J)~~A(n,J~4) + n ( ç _ ~~,)

Applying ( 14.12) and using (5 .3) it follows from this inequality that

(5. 7) — (A (G ) + 2nU(~ ))4A(n,J)~~A5(~) + 2nU(a) ,

(5.8) IA (n,J)I ~ M(~ ) + 2nU(C)

19. The relation (5.8) has been deduced under the assumption

(5.2) and we have now to consider the two remaining interval].s for ~

<i~~~,i) and 4,r1). Assume that

(5~9~ < ~-

then we can still put ~~~~ z~, arid it follows J. Using this

as in the case (5.2) , we obtain

( 5.10) A (n ,J)4A* (~’) + 2nU(r)

As to the 1o~rer bound for A (n,J) , we obtain

A (n,J)~i n f _  II(J)
~~ n ( !_  i) ~

since obviously iiCn ,J)~ n. It follows, as by lemna of ~ 3
1 — f 4 l _ r r~~~2U (O’)

—2nU(~)4 A (n,J)~ A’(O) + 2nU(~~’)

0s

- —  -—---V 

— 

- 
— — 

-
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V and (5.8) follows immediately

20. Finally,iri the case

(5.11) O~~~!4r 1 -

we can still take ) i
~~” 

r1 , 3 c J>~ and proceeding again, as

in sec. 15 it follows

(5.12) A(n,J)~ _(A*(G’) + 2nU(0))

As to the upper bound of 14(n,J) we have obviously

A (n,J) — n ç  — ~(n ,J)~ nç4 nr1~ 2nU(~ )4 A*(~ ) + 2nU(O)

(5.8) is now proved for a].]. ~, 04  f (1.

Observe now that the interval], J as defined in (5.14) can become

any part ial intervall mod 1 of (O,1), choosirig~~and~~conveniently.

It follows therefore from (5.8) :

A*(n)~ A*(~~) + 2nU(~ )

Observe finally that A* (x) is constant for a.11 x with fl(x) — n .

We see that we can replace the argument n in A0 by any positive x and

the Inequality (1.12) is proved.

- ~~~~~~~~~_ _;,
~~~~~_~~~ __ _ —i
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~ 6. Special cases

21. We assume first that

(6.1) T(~ ’)~~~~ ,

This is the case if the continued traction deve1o~sent of at has

bounded artial quotients , for instance for all quadratic irrationalities.

In this case we can take

( 6.2) ‘t’(o’) — f ,  ‘f (o ) ~~~~~~~~~ , u(c’)

The functional equation (1,12) becomes now,

(6.3) A ( x)~~A0(C) + _ ~ .._.L.

22. Taking here G~~ we obtain A*(x)
~~

A*(t) + 2e/’(

iind generally

V 

(6. 14) A*(_4_) 4 A0( + 2e/y’ (~ ‘— 0,1,... )

Putting

(6. 5) ii:.. ~lg~ ~~1gx<n + 1

add the inequality (6.14) over V 0,1,...,n, We obtain

A*Cx)4 A’( ..4,rj) + ~(n+l)e/ y1 .

_
__ _ __ _  L

~ V 

—

- - V



- - If we now put

(6 .6) ?-Iax A *(x) — (
~ ~~

OO ( O4X ~~4)

it follows using ( 6. 5 )

(6.7) A*(x)~~2e(n+l)/f +~~(~~ 1~x + 2e/It + 13

In the particular case of the function A*(x) defined by

(1.10) and (1.11) , obviously (
~ 

0 and we obtain

(6.8) A*(x)~~ 2e(1gx + i ) / y ’

23. We consider secondly the case where, assuming two
cOnstants g and ~ with

(6.9)

the funct ion U(x)  satisfies for a constant x0~.2 the inequality

(6.10) U (x)4~~’U (gx) (x
~~

x
~
)2)

Then we are going to show that

(6,11) A’(x) — 3(xtj(x)) Cx -.~~~ )

- More precisely , assuming for an L> 0 that

(6.12) U(z)~~~~L (x0~~x~~gx0)

and defining D by

_  

_ _ _  - -



-
, - (6.13) D Max ( ~~~~~~~ ~~

we will show that

(6.114) A*(x)~~DxU(x) (x~~x )2)

214. In order to prove (6.114) observe first that from the

definition (6.i~,) it follows ID ~ and therefore

( 6.15) (ID + 2)g ’~ gi)

Assume now that we have already proved (6.114) for an x ~x0 .

Then replacing in (1,12) x by gx and 0 by x , we obtain train (6.114)

A*(gx)~~A*(x) + 2xIJ(x)~~ (D + 2)xU(x)

But th is is in vir tue of (6.10) and ( 6 . 15)

~ C D+2)g’xU (gx)~~Dc~xU(gx)

We see that ( 6.114) is true for any~~cwhei~ever it is t rue for x.

We have therefore only to prove (6.114) throughout the interval].

(x0~~x~~gx0) . This inequality follows, since A0(x) is monotonically

increaaing~ by (6.12) and (6.13) train

A*(gx,~~Dx0L

The relation (6.114) is proved.

25. The simplest special case is that of



(6 .16)  ~j’(~ ) 
a .~.ç (~~ >1)

p Then we have

~f(y) ~.(.2.)~”! , ~e(~~~
—) (2cy) 1

~ , TJ(x) 
~2cx)

41
~ ‘

(6.11) A*(x) o( ~ 1 V f )  (x —~ ~~ )

In particular it follows , in notations of § 1 ,

(6.18) N (x ,J) — x( 13 1 + O( 4j ))  (x -‘s~~~).

&s to t~e detailed inve~ti~~tion of the case considered in
sec. 23 — 214 we will give it in another paper dealing with multi-
dimensional approximations.
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i 1. Introduct ion

1. Consider the euclidian space and rn real irrational n-xiber5

~~ ( j ~~=1 , .•,,~~) such that 
~~~~~~~ ~ are linearly i~tde~endent wi th

re~~ect toZ that is th~tt for integers C1,...,g_ ,g0the relation

(1  • 1) + ••~~ + 
~~~~~~ c~ = 0

only holds if all g~~van ich.

‘~enote ~enera11y for any real a br  the s~ntho1 ~aI% the

distance of a from the nearest integer. ~urther, consider a variable
rn vector, z, with integer components, z (z ,..., z ) ~ which is
assumed never to vanish and put

?1~~X Ill

Then we can use as the ~neasure of independence 5 of the
any continuous and strictly monotonically- decreasing ‘4~O~)4 0 Cc->, i)
such that

(1.2) ~j’(cr) ~ i ’iu hI ’~~ z,~nd( (1 
~ (zLctr), 

V ( G  
~~ 

1)

2. By !~(k.~~) we denote generally- the point

nod 1

We define n%ropcr intervall a j in ~~~~ an a cartenian product

of rn line;Lr segirents , open in the direction of increasing coordinates ,

a x ~~(F ~ (p4 . 1,...,rt )

-~~~~~~~



h .~ t~~ : V o l  to - -~~ ~~t’ J , ~~~ i:; t h e  nro~ Let of the lendthn of these

- • ~ .ot _ . t .  1 i .~ tt. ~.rvtiil j : :  cO!l5i *~~L ( ~ --~~t 1, we take i’onarally
t~~

) : ‘ t - i r V V : ;  
- 

~t :; i i .~~t i~~tl if t L ’ ir corrcspotiuin~ coordinates d i f fe r

by inte ;or-~. i hen  usually the  points of J have to bo taken with
a co-~ven1ent nultiplicity . If all, points of J , taken mod 1 , are simple ,
J can ~e contiidcreu a~ a part of the unity cube , 0~ ~ 1 C ~~
and In called ~- i r r . r1e .ThentJ l is defincu as cartesian product of

m r~~i 1, 0~ i~~~ x l ~~~ 1 or (O~ ~~ lb,) U ~~~~ x<l). i’enOtlng by~~in

in L~~e first. C t - c  U ~~~ i~a t i e  ~‘econL c~ .5t~ 1, the Jen~th o the p—th e4~ e oL .7 is

(1.3 b/4 — a ,A + Jf. ,

J h 1 1 e  t l t  vo1u-’.~ of J bccones

= 1~ ~~~ — . S,.) .

.le rut ~cnera1ly 
-

t.(J) :~ Mm (b — a +4 )/4 fr~

3. The essential point of Kronec ker ’s theory of irrationals
is the result that for any J and for at least one integer q:

(1.4) P(qet)aJ

This r e :;ult  wa... sharpend by Weylf~,1 who proved that for a given £>0
fo r any J with t (J )~ £ the integer q in (1 .4) can be choosen 

~~. ~~~~w i t h  a .~( L )  1:~ue~, ndent  ~4 the speclal 3 with t ( J )~ 5 :
f

( 1 . 5)  P(q~~i.)EJ , qJ~~j(e) . t

l+.~e will denote by I~(x,J) the number of all. P(voc) w i t h
1 

~ ‘4 x lying mod 1 in J,

3
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(l.b) N(x,J) := N (~.’: P(*c)~~J , 14 ~~~~~ .

Then it follows immediately from .Veyl ’n theorem (1 , > ) ,  tha t for

any fixed olaple intervall J mod 1 the relation holds

(1.7) N(x,J )  = x WI + o(x) (x —s~~ )

ç,vo lntrouuce , for x ~~l , A ( x )  by

(1 .8) A(x) Sup ~N(x,J) — X t J I I
4 ~~sA

::here J runs through all simple Intervalls mod 1 in the unity

cube in Rm ~nd denote by c3~~’r (t) the nvcrse function of q —
in (1.2). We put further

(1.9) ~~~~ 2m+l/ ((m+l)~ )2 
, € (x)  : ~,

1: . tax

~.It is easily seen that A (x)  • o(x) (x — . I O) . Our aim is to

improve this estimate using the function £(y) .  Our essent ial result is the
Theorem i. Mx ) , as defined by (1.8) , sat isf ies for m > 1  an inequality

(1.10) Mx) ~~o’.A(y) + fix C(y ) , l~ y~ x , cu~ > 1, f3 ) O

with constants c~~ l and t~~° deDending only on ri.

This theorem is proved in the ~ 2 — 5 while the inequality (1.10)
is discussed in ~ 6 under different assumptions about E (y ) .  In the case
m 1 an inequality (1.10) holds even with a~— 1. This case however has
been already discussed in Oatrowski [2]

7. Before attacking the problem of o(x) in (1.7) we have to obtain
a relationship between f and 7(1) in (1.5) and ‘j’(U) in (1.2). This relationship

follows in a particularly simple and fun damental way from a special cue of

an important theorem due to 1~hintehine C Khintchine [i] 1) .We obtain frcr~
this theorem for the -conotantZ from ( 1.9) the relation (sec.13,(2.lo)):

1) My attention was drawn kindly to this theorem by J.~i.S. (~n.sne1s
(Canad a (

~
] , pp. 97—99j .

~~
V
~~~~V V V V V



(i ii) .

~ .

Lit is well known since 1)irichlet that ‘j ’(y) • o(~~ ) . If there

exists a ç , 0 ( ç 1 , such that

(1.12.) ‘y(y)~~
....e. (yu 0)

then we show that (sec . 33)

(1.13) A(y) = o(x~~~)

This is in particular always the case if the O(~ , . • • ,o( are algebraic.
However the estimate of A (x) with the exponent 1 — g could only be obtained

using r~iiintchine ’s theorem, published 19~9, In Ostrowski Li] , 1930, we used
a weaker result then (1.13),due to Landau.

In the case m — I the fact that (1.13) follows from (1.12) has been
cJ.ready proved by llecke 1922 , however with a method which apparently cannot
be generalized to ri)l. 1930 we annonced the results corresponding to
(1.12) and (1.13), however in the form A(x) o(~’) , 0.~ c] , (see Ostrowski [2~ ).

9. !~ore generally assume k(y) as a positive constant or a continuous
positive function strictly increasing to ~~ , such that

C 
(7)7 ) , c * 1) ) O  , eonst,

‘k ( ( D y ) ? ) °

Then for a conveniently defined t (x ) :

(1.14) It (x) — o( ~~~t((~ )~ )

This foilovs from levg,aS , sec 1~3.
If in particular x k’(x) a 

~~~~~~~~

V 
then we obtain even

(i.ls) A (x )  a 0(x~~~ k(x~~) (Theorem 2, sec 50), -
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10. Our proof of (1.10) was g iven for ~=l • 1930 , in ‘)rt row ~k i[1] •

~~~ Itn essential point was our lemma 3 of ~

‘
, 3 which we developped l.c . fo r mal ,

but indicated that the whole discussion can he generalized to r i ) l  • In the

mean tin e , 1950, ~,1Lartmnnn (1~artnann D]) has Ueve1oppe~i in a very carretul

way the corresponding generalization of the lemma 3 to m) - 1 , discussing also

the limiting cases • As we need only a part of this argument., we give in

~ 3 our original proof s whic h  is a s t ra ightforward generaimsation of that
given for m=1 in Octrowoki 0]

~ 2. Use_of ?~h intch ine ’s lemma

11, ~Je formulat e f i rnt  one part of ~thintch ine ’s thoore~ in the for~
in which it was given by Cassels ( C11 p .99) ,  but changing conveniently

the notation. We will denote generally for an n—vector
by
~~I~

the norm ~~I~~: MaxIx~~.

~~~~~~~~~~~~ 1~ Let n and n be natural integers with m+n = Q~,Conn ide r a real

(n~~.a)~ natrix, A=(~~~~ ) , 
~~~

— l ,...,m ; ~~ 1,...,n and the linear forris

(2.1) C U ~~~~ x~ ( p~ A , ... , rn)
~~ .4

(2.2) N~~~ 
(~~ ) Z ( ~ ~~~~~~~~~~~~ ,

~~ t4

where the x~ and the z~ are respectively the co~poncntn of the n—vector

and the n—vectors • Consider two positive eonstsnts £,y and a real

rn—vector~ with c~mponcnts bi,...,b~
Then, In order that there exists an integ~~ vector ~ satisfying

the relations

(2.3) I ,( 
~~

) — b,j~L (,a s 4,...,rn~ ~ I ~ I ,. ~

it in sufficiest that for y~ :— 2t~~/((f)6 the following r~1ation holds

for every intcger~*—vector ~

—
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(2.1k) ~
) ~~~~~~~~~~~~~~~~~~~~~~~ ~ N,(ç)~ , dci.)

As a matter of fact the complete formulation of Khintchine ’s

theorem contains also the necessary condition for (2.3), which we

howe ver do not need .

l2.~’or our purpose we must now specialise the assumptions of Khintchine’s
theorem.

Assume n 1, L~~~ i and Obs erve that t0:~ 2m+1,~~ m+ 1)~~~~ &.Thc n—vector
becomes a sc~ lar which we will denote by q, the elements of the matrix A

become ~(,,, := ~~~~~~ so that. ~~( ~ ) becom es and the linear form s ;~~( ~~)
become V ! (  ~ ) ~~~~~~~ • The re~ u ircrments (2 .3)  of Khintch ine ’s theorem

(2. 5)  ~qo~~— ~~~~~ ~~~~~~~~~~~~~~~ I~ %~~ j  •

It follows then from the condition (2.~i) of lZh intchine ’s theorem
that ( 2 . 5)  can he certainly re alized by a rational integer ~ if for any

m— vector we have

(.~~~
) I I b ,4 ?

~~~
t4ax cyl:I( C) I 

~~~~ ~~ 
= 2~~

u ,((,~~l):)
2

-- 
A3~’”~:e condition ( d . C )  is sharpened, replacing the left side expression

by 1/2. As it is certainly uatj sfj ed if ~~~~~~~~~ it suffices
to consider 

~ with 
-

(2.7) EI~L ‘

Thence our c ondition becomes :

(2.8) 1~ ‘y0y r4 N ( C )~ follows always from I~L, ~

_ _  

-~~~~~~~~~~~~~~~~~~~~
_V
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If we now assume that (1.1) holds and use the definition (1.2)

of ~‘(t), (2.3) is satisfied if

and we can take ~ in (2.5) as

(2.9) ~‘Y(~):= — ‘s— —-——

u sing the inverse function to ~Y ,f ~it follows as in ( 1 . 9)

Cz. 1O~ = E (~i) : =

Lemma 2. 1”or any y 
~~

. there exists an integer q with

(2.11) l~II~~~~ , U-i~~ 
— 

~~~~~~~ ~~~
(
~ ) = (,u.~ l ,...,rt )

~ 3~ A ler ia

114 . In what follows we will consider a sequence

V (3.1) ~~~~~~~ (~‘= i,...,n)

for a fixed interor n ~~]. • t~e define the sys~bo1 — O)as (,~1 
if •t is

not integer and ~ — 1 if ,~ i~ inter.er.

15.L. er’.ia 3. Consider a simple intervall mod 1 contained ip the unity

cube. a~ characterized in nec.2~ and asnun e the~~~ as in sec.1 • _Then there

V 
• exi~ t two intervnl ls 3’ ~nd 3’’ mod 1 in~ obta ined from J by parallel

t rnnr , lat ionn. such that

(3.2) N ( n ,J ’)~~~n~J01 , i ( n ,I T~,’) ) n t J 01

a. ~ _ *VVV~~~ - — V~~ •~_~~~~~ V__ ~
___ V .V . V V -~~~~~ - - - -
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l~ . Proof. Uithout loss of generalit:’ we can assume , that all

~~~ lie in th~ open intcrvzill (0 ,1) and further , that J is not identical

wi th  th e  wilt.  cut t’ , b ’t  “l .~~ins ” at the or ir ine , that is that all a~
in (3 .1) vun i~;h. ~eflote the lcn Cth of the ~~ ecIge of J by d~ , ~?hc re

O < u ~~~1 (~ .t=l ,...,m ) , = u~ • . .  d < l.

~:e sh i f t  J in the uir .ctions of the x~ by the iMe~ ers ~~0
we obta in a proper interval ! whiel ’  ~ill be denoted by 3

Then the original 3 can be wr i t t en  as J • Obviously J ~ 
is theo o ,...,o

cartesian product of the segment s

<q~~d~ , ( i .,,
+ 1)d ~ ) ( p 1,...,m)

18. Ue let now~ for positive integers n1,,•.,r , run each

th rough O,1,...,\,-4, Then a!]. intervalls obtained in this  way form
together art interval]. 3* with t~ e edges ‘~~~d~ (p . l ,...,r.)
and ‘its volume is

I a (r~~~d1,, ) , 
~~~~~~~~~~~~~ 

So

Put further

(3.3) 1 := N(n,J )

and denote by ~ the sum of all I; (qaO,l,...,91;...;q~
a.0,1,...,%)

~1~
•’ ,q5

(3.4) N :

S

I

II
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19. Denot e by f( .~) the number of all points in J* which , considered

mod 1, coincide with the P( ~ ) from (9. 1) • These point s have the
coordinates

[~l 
+ ~~~~~ ~ 

g2 + fl(V~~) , ... , ç,~ 
+

where
/

o4~~1~([21d1 — i~( v ~ 4) — o] , .. ., ~~~~~~~~~~~ — fl (UOIm) — o].

Therefore we have

(3.5) r(u) =1 ~n d + 1 — n ( v~~~) — o]

By swwsation over U~~ l,...,n we obtain the number of all points

in J* equal mod 1 to the point s (3.1) , that is N. Dividing by ~ we

obtain finally

(3.6) ~-~~ lr [2,.~d1~. + 1 — H(*L?*) — o] ~~~~~~~
20. If we let all O .,.~, increas e to ~ , the left side expression

in (3.6) tends to n IJ~t , Therefore the sane holds in the right hand

expression and we obtain 
V

2].. Assume first that n I .i~I is not integer and lies between
- t k,k+l. Then obviously, as soon as the left side expression in (3,7)

lies in the open interval! (k ,k+l) , ~t is impossible that all N

• in (3.7) are ) k+1 Neither can all these 11 be 4 h

Therefore there exist at least two different 3 , say J’ ,J ’’ ,o 0

so that (3.2) is satisfied.
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22, Assume nov that n is an integer. If there exist two
J say 3’ and J’’ , so thatq1 ~~~~~~~~~~ 

0 0

N (n,J’)(n ~~ , N ( n ,J ’ ’ )>  n I J I  ,

(3 .2)  is again sat is f ied,  Otherwise for all J the corresponding. .
in (3 .7 )  are equal to n~~J ~ and then we can take J’ = .7’’ = J

0 0 0 0

and the relations(3 ,2) arc satisfied with the equality sign

§ 4. ‘~n up~ er limit for J ( n ~~T) — nIJI

23. Consider a simple interval] . 3 mod 1 with the edges

and a pos itive ~ < 1j14 • Assume first that

(4 .1) 1 —  d 1~) .2~ (~~=l,...,m)

Let J be an Intervall concentric to 3 with the edges

(3ee fig l , p.28, for rs = 2 ) ,

Dy ( i t , 1)  J0 is also a simple intervall and we have

( 14.2) IJO % a lT’ ( d~~ + 2E. ) • IJI zIT
1

d,..

2 14.iiy the first inequality (3 ,2) there exists an int erval!

congruent with such that

4
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(li .3) :l (n ,J~~) ~ n I i~ .

Consider a cube , C , with the edges rnrallel to the axes and of
• the length ~ , placei so t hat it has wi th  3 only one point of the

boundary in cor.rron, the vertex ( c1,...,e~ ),and lies complete-

ly in J ( see the hatched square C in the fic. 1. p.28) .

25, Consider the vertex of 3 corresponding to and the

corresponeing vertex of J~~,1’ ( C ,~~, i~~g e
~r

)  • Then b~’ what has

been proved in sec.l3 about the relation (1,5) it fol1o~rs th a t  for

a convenient positive integer ~~~~~~~~~~~~~~~~~~~ ~~~ c ,rvLnient

integers q1,...,~~ the relations hold

(14 , 14) — c~ = R(q .’e,~ • ~ 
1 (j.~~ i,..,,-~)

It follows that if we apply the parallel translation first

by the ~~~ tor q~~ and then l;y the inte€ er vector ( q~ ) to the  int ervall J’ ,
th i s  interval] . goes over int o a congruent interv~Ul J • which has the
property that the  vertex of J corresponding to J- ’ lies in the hatched
dor~ain C. Obviously , 3 is contained in 3

2i..Consider the translation fr~~ .1’ to J~ To the points

P(~~~~) , 1~~ Q 4 n  , lying in 3’ correspond the points congruent mod ito

+ q)~~) that is to the point~ r’~~~), T’-1~~ ~‘~~n+q, Their number in

Iu(n ,30
) = U(mi  + q, 3 ) — :~(q ,  3

But the minuend here can be written as

Y ) ~(n,Y ) + U(!?(~~) ~~~~~~~ n+14 ~~~ ri+’i )

Here the last summand can he again written an N (~~,J*) if we denot e
by J* the intcrvall obtained from Y by the parallel translat ion

with the vector ~(n~~) • And obviously 1J9 
~~~ 

=

2LWe obtain therefore from (14.3)

(‘~.5) n(n,3,) = N (n,7 ) — ~( 1,Y ) + i~( q,
35) ~n I 1.I

N ( n ,J)~ f l~J 0~+ N(1,T) —

I
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As J cS , it follows further

:l (n ,~~)~ :~~nJ  ) 
~~ 

n~J~ — !~~r11Y ) + i1(q ~J*)

. ;in cct  ~I =  IJ~I , we can wr i t e  th i s  in the form

N ( n ,J)~( n I J
~

I — [;(q~,Y ) — n)Y ~J + [N(q ,J*) — ri~Y I]

The two last bracket terms on the right h~ ve moduli ~~‘t ( q )  and we

obtain  fur ther

— nIJ I 42A (q)

On the other hand it follows from ( 1t , 2 )

L~ I — 1J~~T(d + 2€ ) —lid ~~(l + 2~.) m 
—l (~ L

TI1+4
~~0 /4~~ 4

as 2.~~< 1 and the development of ~~~ — I J ~ in products of the

has 1~ositive coeffi c i en t s

. ir.ce q~ ~ ( L )  and A ( q )  is not decreasing we can finally
wri te

(4 .o) ~(n ,J) — ~ l J~~4 2 / t ( y ( E ) )  +

28. (14,6) has been derived assuming the condition (14 .1)

1” this  condit ion is not satisfied , we can by half ing each edge of the

unity cube decompose the unity cube into the sum of 2m cubes of the
edge length 1/2. Correspondingly S is decomposed into at the most

2m intervalls J
(~~ (~ ) =  1,2 ,...) with the edge lengtht ~

For each of the intervalls the condit ion ( 14 ,1) Is satisfied

so that we can wri te

:~(n ,J~”~~) — a ~~~ ~ 2A(~~(~~) )  + 2m+1 ~~

Cu~rn ing ovs~r ~ it follows

(14.7) :;(n,,T) — nIJI~~2
mI
~
]. 

A(Y (~.)) + 2~’m+1 
~~
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5. A lower limit for ‘l(n ,J) —

F
29. We consider again the simple interval! J ~ od 1 of the

sec.23 with the edges di,...,d~ , but asstr~e f i r s t  that  for a positive

~ < 1/14 the relations hold:

( 5 . 1 )  d~ >2 t

Let now J be an intervall concentric to S with the edces
0

— 2€ , . . .,  d — 2£ . S in again a simple intervali with

(5.2) ~J = U — 2~~. )  , ) J )  =~~~d~0 M~ 4

~y the second inequality in (3 .2)  there exists an intervall

J’ congruent with S and such that

(5 3) I i (n ,J~ ) ~ n (J01

Consider a cube , C , w ith the edges parallel to the axes
and of the length E. which has with 

~~ 
only an edge

in corsnon (see the hatched square in fig.2 , ?.28)
30. Consider the vertex of 3’ , E’ = ~~~~~~~~~~~ wh ich

corresponds to E. Then,by what has been proved in see,13 about the

relation (1.3), it follows that for a convenient -ponitive integer

and convenient integers q11,..,q~ the relations hold:

e~~— e~ = f l (qr~) + q~~+ E~4~ , 0~~ ~~ <. 1

We see that if we apply to the interval! the parallel

translations first by the vector q.~ and then by the integer vector

q a (q~) , this interval! goes over into a congruent interval 3

I
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which has the property that the vertex of Y corresponding to
lies in the hatched domain C, Obviously J contains 3 (see fig.2 for m 2).

31. By parallel translat ion from 3’ to 3 , to the point s

• 1~~ ~~ n , lying in ~~ correspond point s congruent mod 1

to P ( (~ )+ q~~~~) that is to the P ( -~~~ ) , q+l~~ ~ 4 n+q

Their number is

r l (n ,3) = 1i(n+q, 3 ) — N (q,J )

But the minuend can be writ ten as

ll(n+q,Y ) = !;(n~J ) + I~(R (~ o~~€ Y  , n + l~~ v~~n + q )

Ilere the last surr~und can be again written as :1(q,J~) if we denote

by J5 the  interval! obtained from J by the parallel translation
w ith the vector :~(n~~ . A nd obviously IJ*I =~J~ I 1 1

~:e obta in therefore

~(n,~
’ ) — ~1(q,Y ) + U(q,J*) •

N ( n ,J ) :~(n ,J~ ) + ~~~~~ • )  — 
~~~~~~~ jJ.. [~(q,j*) —

But here i-l (5 ,J ) is ~ N(n,J) while N(n,J~) is, by (5.3),

~ n~J . ~.s both bracket expressions are 4 A( q )  we obtain

(5 4) H(n,J) ~ n~J~J— 2A (q) .

32. On the other hand 1similarly as in sec.27 ,

=~J t 1L (d,.~_ 2E. ) ~~td,A — 2€ 2
m 

~~ 2m+lE0 0

Introducing this into (5 . 4)  we obtain finally -
~~~

l~(n ,J) — n I J% ~ — (2A(q ) + 2151 nL ) •

I
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33. If we now drop the restriction (5.1) and assume that at
least one of the d~ is ~ 2E. • obviously (s I~~ 2(. • But then the
relation (~,5) holds again and is therefore now proved independently
of the restriction (5.1).

Combining ( 14.7) and (5.5) it follows

I N ( n ,J ) — n i J i t  ~ 2m~~A(Y(fl) + 2~~~~nt.

Refering now to the definition (l.~ ) of A(x) it follows 
now since

obviously A (x) A([xJ),~~ile y(C) in (2.10) is continuous ,

(g4)) A ( x )~~ 2m
~~A(~~) + 2

2m4
~ x~~

(y) (xAy >1)

Th is functional inequality the derivation of which is t’~e essential

point of our method~is a special case of the following inequality

A (x )~ ~~A (y) +(~xE.(y) ~~~~ 
x~~y~~l),

where ~ and (~ are given constants ,

§ 6. Discussion of the fundamental inequality.

314, We are going first to treat the general inequality (5,6).

We assume generally about £.(y) that it is positive and rsonotonical].y
decreasing to 0 with y—.~~ while A (x)  is assumed to be positive and
monotonically increasing for x ~l.

Lenma l&.Assume that for four con ’tants ~,g’ ,L ~~~

• (6.1) g~~l , 0 4 g ’<~~ , L)-0 • x0~~l

the followinj 1 relations a~e satisfied 

-~~~_—-~._



1-~) •

(6 ,
~
) €(x) ~ ~ €( gx) C x~~ x) 

~

(u,3) Ccx ) ~ (l~~ x~~x ,) ,

~r~der - these conaitions

(C.~*) A(x) = 0(x,~ (x)) (x t co)

and ~ore precise!:’

( 6 5 )  A( x ) ~ D X E ( x )  (x ‘i) ,

~:here U is defined by

( t . & )  D:= ~‘ax ( A (~~ ~ ~~~~

35.~’roof. If we first assume that l~~x~~x it follows by (6.3) and . (‘.‘)
as A (x )  is increasing,

A(x)~~fL(x )~~DL~~Dx~~(x)

an d w e  see that (6.5) holds for 1-4 x~~x .

It is therefore sufficient to prove that,if (6.5) holds for
an x~~1 it also holds for gx. But replacing in (5.6) x with gx and
y with x it follows

A(gx )~~b( A (x ) + ~ gx € (x )  a (otD+pg)xC(x)~~f(o D +(3g)(gx)€ (gx)

and here the factor ~
‘(%‘D +f~g) is ~D as follows i~mnediately from

~~~~~~~~
I :

The inequality (6.5) is completely proved . 
- 

-

36. Consider now instead of the assutnptiona made in sec. 3~e
the .iaiaspt ions

- —--——-—— - . 
~~~~~~~~~~~~~~~~~~~~~~~ aSi.4
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(6. 7) • (C x) a ~~~~~~~~ O4(x)~~l , h(x)~~x (x~~l).

Then choosing

(6,2 ) 1g~ :a ~~ig~~ lg~~
’

put

( , ~l) n .

It ?ollows 1 ~ xj ’4 (-L •

1oi~~~~ ~~~~1

(6.40) o&~
’ 
~ e 

g igz 
= ~lg%lgx ~ •

31. Put in (S.d) y • We obtain, by (.1) ,

j A (x)~~ ci.A~ ~ ) + • -

Writing this inequality foriv~’ instead of i and multiplying it with

o&~k( ~~~~~o~~A~-~~1 ) +( 3~~~~ •

Summing over V 0,1,...,n~1 it follows

M x )4 o?A(.%) + ( 3 Z~~~~o&’~’
v~o

- ~~~~. vie use now (6, AO) and obtain

• ~4~- -



( ( ~~ 1) Mx )~~ ~~ C 1 +~~~~~ ) = o( e ~ 1gD~ 1g
’
~ • 
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The reader may be reminded that in the case e~ = I , from
t( x) = O(1/x )  follows

A ( x )  = 0( lg x )

as is shown in ostroJski t2)

3~. 2eplace now the condition$ of eec , 314 by the conditions

(u , 1L) s~.~~~j ~~~~~~ (x ~~x , x~~~e) ,cf, l ,

Denote 1/6 byg and put in (&.~~) y a ~L . As by (6.12 ) z*~(x € )~~x.
it follows

(6. 43) ! t (x )~~o A (x E ) + f3~~ ( x ) x ) ,

Peplac ing here x by ~~ and “~ult iply iag by~~ we obt ain

ot”A(x~
’) ~~~~~~~~~~ +PXOC’ (O~~~~ n-.l)

Adding over ~J 0,l~.,,,n-4 it follows

i\ (x)~ tA (x0), j3x~~~o(
”
~~~ t’x )(~ .4(oi’(x  +~4 ) ,

V~O

as soon as ~~~~ x , that is , as soon as

-1 
l3x~ C1e!0 , nieJ~~i8 4. • I

’

- - _ _ _ _
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3~• The last condition is satisfied a:; soon as nlgI~ -lg lgx ,

F

l~ 1~ x —

For this v~tlue of n it follows

~~~~~~~~~~ 1
= n l g o< l g o ( ( l  + 1~ 1~~ ) 1~[1~,~cs 

_~ 

,

•1

or putting

(0 .14) ‘~ ~~~

Therefore,finally,

(6.4$) A(x)4 (x +~~~~) ~~ (lgx)~
°

~ 7. A(x ) in dependence on

40. Returning now to the functional inequality (5.6)

derived under the conditions specified in sec.1 we have to

use the value (1.9) of ~(x) ,

1 .
t 4

(7.1) C(x ) a •

I

Thence , solving with respect to ‘9 and using the inverse function ‘y

L i z ~~
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V 

(7.2) ‘f( 
~~~ 

= f~~(x)  ‘ 
= ‘y( 

r0
E(X)

However the cases (6.7) and (6.12) can be discarded.

Indeed under the assumption (6.7) it follows from (7.2)

~ 1 ) - 1 > X 
tiJ (.2_) )- 

r0E(x) ~~ 
~ T

so that  finally y ( x ) >  —i- . But this is only possible for m= 1 ,
~
.
ox

= 1 an d in this case ‘~(x) is always < 1/x .

In the case of the condition (6.12) we obtain from (7.2)

•1 S

~ 
a , ~~ (...L) >

and putting y:= x’/(-.d,g ) , x = (~~X~j )1/hi it follows

~
(y) >

which is impossible since 1/5 ~ 1

• We have therefore only to consider the case of sec. 34.

41. The assumptions (6.1), (6.2) and (6.3) in sec . 34

can be considerably simplified. Putting ~~> 1 ,

(7.3) O( f :=  ~~~ (1 , g~ x) ~ : ~~~~~~~

the relation (6.2) become s
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£ (x)~ g
tg (gx), (jj~ .)?~ ((~~(~~X1) f (

(( CX) )?

(7.14) ~(x) -~ t(gx) (x1x ~
)

The relations (6.1) and (6 ,3) become now

(7.5) g> 1  • O~~ f<l , g~~
9>c~ , L > 0  , f(x))L ( l~~x~~x0)

The inequality (7. 14) is in any case satisfied if £(x) is assumed
as non decreasiflg , In this particular case (~ .2) holds for any sufficiently

large c >1 and, for a fixed ~~~, (6.2) holds for all g’ = gT from a g ) 1 on.
Prom now on we restrict ourselves to the case (7.3) with a constant ,0~~~ 4 ,

The simplest case is of course e(x )  c = constans,

• (7.6) £(x)~~ (—~—)T 
, O<~~ <l , r

By (7.2) it follows

xc 
_ _ _ _(7,7) ~p(_.L.) -~-~~ , ~~~~~~~~~~~~~~~~

Por the inverse function of y ‘~(x) it follows now

(~ ,8) 
(I
1l(Y)~~(~~_)

r _.~_.

Inversely from (7.8) follows (7,7). Prom (6 .5) we obtain now

1—f(7.9) A(x) — OCx )

1~2, The formula (7 .9) holds in par~ ieu1ar ir -th e 09~ .i~ (1.1)
• are all algebraic. To prove this denote bys  som e primitive element of

the field 
~~l’ ’’~~m~ 

so that

~~~(oc) (/ .~a 1,...,m)

• where the h~ are polynomials with rational coefficient s • Then, denoting
by U

O • UJ • • I • • U
m 

independent indeterminates, put
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P(x) 
~~~~

u,A h
r
(x) + U

0

I.et be n+l be the degree of ~~ with respect to :. U~ ru ’t~iui ~ bY
(0)

~~ . (~~~ a 0,1,...,n )  , ~( , the complet e set of the conjugat es
of e , form the expression ‘ 

-

T(uo,s..,um) ~~~~~~~~~ 

P)~

which is a polynomial with rational coefficients with connon denominator II ,
If we put for the u~, rational int egers g~ with f:a i.taxI~~Lwe 

have for a fixed
nat ural N :

ii T(g 0 1...,g~ ) a ~ 0 ,

with a rat ional integer C: • so that ~fl T(g
0,...,ç)~ ~ 1.

On the other hand

: T(G0 ,...,eL~)/ ~~~~~~~~~~~ + 
g]

~ 4 T 4

is of dimension n and therefore ~~~~~~~~~~ = o(y fl ) , It follows

, C,o
~~~t 4

with a constant C. We obtain from (1.2)

which is the relation (7.8) with r a n and thence (7.9) with f — ½~.
1e3. Ve can asswse now (Cx) as strictly monotonically increasing.

The essential difficulty in a~pplying (6.s) consists in the necessity to
obtain sufficiently good approximation of the inverse functions ‘(Cx)
and ‘~‘(x) • To do this we use the

Lers~ui 3. Ass’*ne (Cx) for an x)x~~ l a positive strictly monotonicaUy

increasing function of x such that x/ (Cx) also strictly monotonically

I

• • -• - ---
~~~~----—
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increases, Let 0 < f (1 and put r :ah/c , Then necessary and suf f ic ien t  for the
inequality

(7.10) L(x) — t f l, x)J ’~~~~~~~ 
(x~~x~)

is that ‘Y(x) satisfies the inequality

(7.11) ~ (Y)~~_— y~’~~~~~~ • D : rc (y)y0)

for a convenient constant y
~,> 

O~where with

(7.12) z :— ~/e (~) , 5
~~L~

- ) ‘

k(z) is defined h~y

(7.13) k(z) ; e (x) , x = zk(z)
1414.Proof. Using €(x) from (2.10) it follows from (7, 10)

(7.114) f ( )~~(~~~yf/Da:y . 
-

Since z a x/t(x) is strictly monotonically increasing, the same holds
for k ( z )  defined by (7.13) and it follows from (7.13) and (7.114) that

(7.15) — (Dy ) ”t , z~ , y~ (~( °~ f/D —:

Applying to both sides of (7.114) the function q’ we obtain

and since by (7.13) and (7.15) x . (Dy)!~
’f k ((Dy )~”~), (7.11) follows.

145. On the other hand, assuming (7,11) for y~~y0 with

~~~~~ k((Dy0)
1/
~)>l and defining z by (7.15) we can rewrite (7.11) as

S 

W(Y))
r~~(z) 

, z~~(Dv~,
)1’
~ 

a:
0



Put then in (1,16)

(7.17) x : z h(z) x ~z k( z )  : x0> 1

and apply on both sides of (7.16) the fuction ‘f , We obtain

(1.19) y ~~~~~~~~ .

Defining now ((x) by (7.13) we obtain from (7,12) and (7.15)

(7.16) becomes now

and the formula (7.10) follows
46. Applying the lemma 5 and starting from an inequality of the

type of (7.11) • it is import ant to find convenient fuektions k (y ) .  The
following lemma allows this in a greater number of cases.

Lemma ~~. Assume for x ~ x0 ~ c
c 

, with x —0 ~~

(7.19) e4 k (x )  f~~ , Cx t~ )

(7.20) x k’(x) - o(k(x)/lg k(x)) , j
and define Z(x) ~~:
(7.21) z k(s) a x, a a Z(x ) f

Then for an arbitrary small L > 0 with x —0 ~~- :

(1.22 ) Z(x ) > .
~~~ ,. ,

(1.23) k(x ) 0(q1~ 1 X )

(7.214) Z(x) a 
k(x)u1 + 0(1)) .

- ~~~—• -.—.-———-——.~~.~~‘-~ - •~~ •
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14~. Proof. From k (x0)> e it followa by (7.21) Z (x0)(x0, Z(x)(x .

r

k (z) 4 k (x )  ( x~~x )

and from

(7.25) ~ 
~~~~~

We obtain

(1.26) z (x ) >~~fr,. • k ( z ) > k (

From ( 7 .2 5)  and (7.26) we obtain further

x

and (7.22) is proved

48. By (7.20) we obtain,for anf>0,

x((lg k(~~~)~ ~~ ( x x 1
)

C(1g k(x)f)’C -4_ (x)x
~
) 

‘

(lg k(x))2~ £~ lg x + (1g k(x
1

)) 2 — gtlg x1

~~~~~~~~~~ -~~~~~~ ~~~~~~

ig k (x)( yc’lg x + c < f~~1g x +

for a constant c , and (7.23) follows.

149, Finally using (7.20) we obtain

11(x) - k(~~~y) 
a k’(y)dy a o ( f k(y~ 

~~~

• y/ 
~) ~Ikc~

But obviously , in virtue of

1~S .
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(lg k(x))2( k() ), a k’(x) (lg x — l)~~~, O ,

we can take in the last integral the factor l g J  out of the

integral and obtain

k ( x )  - k(~~~ ,.) = ~~~~~~~~~ J ~~~ = 0( k ( X )  ig k( x ) )  = o (k (x ) )

It follows

—+1 + 0(1)

and (7.214) follows from (7.22) • Lemma 6 is proved.

50, We can now formulate in a particularly simple and important case
Theoreme 2, Assirie k(x) a constant or strictly increasing function

sat isfying the conditions (7,19) and (7,20) . Assume (7.11 ) for a convenient
C > 1 and a ~ with 0 ( ~ <1, Then

(7.28) £ (x )  = O((~~~~!~~~) ,

(1.29) A(x) a O(x
l_ t

k (XF )

Proof, Defining a by (7.21) it follows from ~(x) : k(s) and (7.214):

1(x) = ______ = ~~ (1 + o(l)),

( Cx )  — k(x)(l + o(l))

and therefore (7.28) and (7.29) . 
-

5l.Consider, for instance • the monoton ically increasing expressions
of the type

11 (x) :. c lg~~~. lg~~~ ... 1g~~ g (x x
0
) ,

where generally the ~ —ti~nea iterated logarithm of x is denoted by lg~x
and the first non vanishing term in the sequence 

~~~ ~ 
is Po~1tive.

- - ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 
- - -•



Then we have for the loCarithmic derivative of k(x)

p _ 
_ _ _ _  

_k ’( x ) 
~~~~

“ 
= ~~ 

i ~
k (x) 

— L.... x lg1x ... lc~,41 
‘x l c x’

• v.a

Since ].~ k(x) = O(lg2
x) it follows

1g.~x
xk (x~lg k(x)/k(x) = °

~r
’—

~ 
= o(1)

and the conditions of lemma ~ are satisfied. It follows

1— ~
(7,30)
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