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ABSTRACT
A flow model has been devised to study the viscid-inviscid interaction

within the transonic flow regime. Specifically, the base pressure problem
of a transonic flow past a backward facing step in axisymmetric configuration
has been examined. It is recognized that the flow field is established as
a result of interaction between the viscid and inviscid streams and the prob-
lem can be solved by simultaneously considering the influences from both
streams. The basic idea employed in this analysis is to interpret the in-
viscid flow field as if it were generated from an equivalent body whose geo-
metrical description relies upon some characteristic parameters and the
values of these parameters are to be determined through the viscous flow
analysis. Inviscid flow field is established from solving the full axisym-
metric potential equation by numerical method of relaxation while the vis-
cous flow is analyzed through integral formulations. It is found that the
point of reattachment behaves as a saddle point singularity for the system
of equations governing recompression of the viscous flow and this unique be-

wvior serves to determine the aforementioned parameters. Extensive calcu-
lations have been carried out to investigate the influences of the initial
momentum thickness of the boundary layer prior to separation, the size of
the sting, the shape of the equivalent inviscid body geometry, and the spread
rate parameter within the turbulent jet mixing region. The base pressure re-
sults are in reasonable agreement with available experimental data. Further-
more, they showed clearly the rise of base drag as the sonic free stream
Mach number is approached. Further improvements of the analysis have been

also suggested and discussed.
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NOMENCLATURE
Coefficient functions defined in Eq. (2.16)
Coefficient functions defined in Eq. (2.17)
Stretch parameter
Coefficient functions defined in Eq. (2.16)
Coefficient functions defined in Eq. (2.17)

 a Mz/[z/(y-l) + Mz], also dimension-

Crocco number, C
less speed of sound

Local speed of sound

Pressure coefficient

Base pressure coefficient

Integrals associated with the viscous layer

(see APPENDIX)

Constant of proportionality defined in Eq. (3.32)
Step height

Thickness of backflow viscous layer

Number of times in the calculation of corresponding
inviscid flow due to successive refinement of

grid spacings

Length of mixing region

Mach number

Power of z in equivalent body coordinate defined

in Eq. (2.1)

Pressure

Radius of curvature

Dimensionless body radius (R* = RO/H)
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Dimensionless equivalent body coordinate

Radius of dividing streamline

Body radius

Sting radius

Radial distance normal to the axis of centerline
Slope of velocity profile at the dividing streamline
Shape factor of equivalent body

Dimensionless velocity component in axial direction
Velocity component in axial direction

Dimensionless velocity component in radial direction
Velocity component in radial direction

Length along the recompression region

Location of rear stagnation point of corresponding
inviscid flow

Streamline angle

Ratio of specific heats

Thickness of shear layer

Momentum thickness of boundary iayer

Eddy diffusivity

Transformed radial coordinate, also dimensionless
coordinates within the viscous flow region
Dimensionless coordinate of the mixing process
Angle of equivalent body coordinate

Angle between x-axis and axis of centerline in the

recompression region

Transformed axial coordinate
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Subscripts

a

b

Sggerscrigts
k

Density

Spread rate parameter

Turbulent shear stress

Velocity potential function

Disturbed potential function, or dimensionless

viscous flow velocity

Viscous layer above dividing streamline

Viscous layer below dividing streamline or backflow
Dividing streamline

Free stream condition at edge of viscous layer
Index for grid points

Viscous layer below dividing streamline

Edge flow condition of viscous layer within mixing
region or the end of mixing section

Wall (sting) or axis of centerline

Stagnation state

Initial section of jet mixing region

Approaching free stream

Index for grid points




1. INTRODUCTION*

When a flow passes a body with a blunt trailing edge, it is unable
to follow the abrupt change in the wall geometry and the flow separates
at the base, forming a wake behind the body. A typical picture of
such a separated flow is shown in Fig. 1. The pressure within the wake,
usually termed base pressure, is generally lower than that of the free
stream and it contributes to a large portion of drag suffered by the body.
This phenomenon exists irrespective of whether the problem is in the low-
speed or high-speed flow regime. The base pressure problem has been the
subject of intensive study within the last two decades because of its
academic interest as well as its practical importance.

After flow separates at the base, usually a turbulent jet mixing
process occurs along the wake boundary. Mixing process is responsible
to energize the 1low energy fluid and entrains mass immediately
behind the base. A recompression process subsequently occurs as the main
inviscid flow turns toward the original flow direction. As a result of
this recompression, part of the fluid entrained within the viscous layer
is turned back to form the recirculatory wake flow while the rest of the
flow will proceed downstream.

Subsequent to flow reattachment, additional recompression coupled with
adjustments as a result of viscous flow redevelopment occurs which generally
leads to a pressure plateau higher than that of the free stream (static pres-
sure overshoot)'* Afterward, the static pressure decays asymptotically toward

the free stream value. Throughout the region of flow, both viscous and

*The major part of thc material discussed in this report is based on a Ph.D.
thesis by the first author [1]. (Numbers in brackets denote REFERENCES.)

**Qvershoot phenomenon does not occur for two-dimensional supersonic flow past
a backward facing step. Under this situation, flow rcdevelopment coupled
with a continuous rise of pressure occurs wi il the original free stream
level is reached.
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and inviscid streams coexist. It is understood that while the viscous flow
is guided more or less by the inviscid flow in the sense of the boundary
layer concept, the inviscid flow configuration, as well as the pressure level
prevailing within the wake (base pressure) relies equally on the viscous flow
mechanisms of mixing, recompression, and redevelopment. Thus the overall ]
flow pattern is established as a result of interaction between the viscid and
inviscid streams. This type of mutual influence between the streams is now
properly classified as strong interaction, indicating that the viscid and in-
viscid flows play the same important roles and no solution can be reached with-
out simultaneously cconsidering the influence from each stream.

Korst, Page, and Childs [2] reviewed the earlier work dealing with base

pressure problems. Since then, a large amount of effort has been directed to
the study of these problems. An excellent review of theories and literature
concerning separated flow problems has been published by Wuerer and Clayton [3],

Carpenter and Tabakoff [4], Chang [5], Berger [6], and recently Page [7].

The first approach to base pressure problem within the supersonic
flow regime was based on the mixing theory developed earlier by Crocco
and Lees [8]. They pointed out that in the interaction between a viscous
or dissipative flow and an '"outer" nearly isentropic stream, the "external ,
flow" cannot be regarded as known datum for the calculation of the '"internal"

dissipative flow. By introducing an empirical mixing coefficient, the mix-

ing rate is taken to be proportional to the mass flux density of the isen-
tropic stream and the equations of motion are reduced to a single nonlinear
ordinary differential equation that can be integrated numerically. It has E

been found that a critical point exists for the supersonic wake flow. This

critical point acts much like the throat of a nozzle in determining the




flow inclination angle and the base pressure after the flow expansion
around the corner for the given approaching flow conditions at the base.
Following this concept of Crocco and Lees, Lees and Reeves [9,10] formed
an integral approach by employing the first moment of momentum equation
in addition to the usual momentum integral equation which is capable of
treating the attached and separated flows under one single framework.
Stewartson's reverse-flow velocity profiles for flow over a solid sur-
face [11] has been used to represent the wake flow. The critical point
similar to that of Crocco and Lees exists downstream of the wake. The
flow solution for a particular problem is reached when the flow passes
smoothly through this critical point. This approach produced very good
results for laminar base flow problems.

Alber [12] and Alber and Lees [13] extended the same approach to
fully turbulent base flows. By assuming that the shear stress follows

the Boussinesq's formulation, turbulent eddy viscosity was obtained from
compressible transformation from that of an incompressible flow. The ob-
tained base pressure results were too high when compared with experimental
data, especially for cases with thin initial boundary layers. However, this
analysis provided a means to predict the base pressure as well as the struc-
ture of the flow.

Todisco and Reeves [14] investigated turbulent separated and reattach-
ing flows over compression corners using a strong interaction,wake-like
model of the flow and produced results which compare favorably with ex-
periments. Hunter and Reeves [15] applied the aforementioned turbulent
interaction model for separated and rcattaching flows to several important

problems associated with control surfaces on high-speed aircraft and
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maneuvering re-entry vehicles. Shamroth and McDonald [16] included a normal
momentum integral equation in their analysis and a solution method was de-
vised to eliminate this saddle-point singularity downstream of the reattach-
ment .

Recently, Strahle and Mehta [17] and Strahle, et al. [18], extended
the Crocco-Lees theory to axisymmetric turbulent wake flows. In their
analysis, the external flow is assumed to be isentropic and is treated with
an approximate method of characteristics. Only flows without base bleed have
been considered.

Some of the earlier analytical studies were performed by Chapman
[19,20]. Analysis was made of base pressure in an inviscid fluid, both
for two-dimensional and axially-symmetric flows. It was found that there
were an infinite number of possible solutions satisfying all necessary
boundary conditions at any given free-stream Mach number. An approximate
semi-empirical theory for base pressure in a viscous fluid is developed
to account for the effects of Mach number, Reynolds number, profile shape,
and type of boundary layer flow. Korst [21] formulated a theoretical
treatment of the base pressure problem which utilized Chapman's model but
included additional viscous flow considerations. Four flow components
are integrated in this model, namely, the flow approaching the trailing
edge, the expansion around the corner, the mixing within the free
jet boundary, and the recompression at the end of the wake. An '"escape
concept' for determining the base pressure was suggested in conjunction
with the isentropic recompression process along the dividing streamline
prior to the rear stagnation point. It specifies that the dividing
streamline should attain a level of mechanical energy at the end of the

jet mixing region which would allow an isentropic recompression by the
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complete conversion of the kinetic energy to the ambient pressure. The
base pressure is thus determined by the condition that the stagnation
pressure of the dividing streamline shall be equal to the static pres-

sure impressed behind the oblique shock downstream of the wake. However,

B R L T T v =s—

experimental data showed that the pressure at the rear stagnation point

is much lower than what is impressed behind the shock. The asymptotic

jet-mixing solution [22,23] was applied to this base pressure problem as
"restricted theory'" which corresponds to a vanishingly small approach-
ing boundary layer thickness. Results obtained with this restriction
represent the lowest possible base-pressure value for a given con-
figuration and approaching flow Mach number. This analysis yields very
good predictions of base pressure for planar and quasi-planar flows;
however, it provides no information about the detailed flow structure

in the recompression region. Korst, Chow, and Zumwalt [24] had extended

this analysis to develop a general theory for pressures and temperatures

in separated transonic and supersonic flows. Chapman, Kuehn, and Larson
[25,26] made a similar consideration of Korst's recompression model for
fully developed laminar flow. They instead imposed a reversible adiabatic
recompression for the adjacent free stream.

Numerous attempts have been made to improve the component analysis
in the Korst theory. Nash [27] introduced an empirical factor to account
for the fact that the discriminating streamline does not stagnate at the

peak of the pressure distribution. Since the ''restricted theory" does

Rl o g

not consider the effect of finite Reynolds number, other authors tried
to include the influence of the initial boundary layer. Carriere and
Sirieix [28], Golik [29], and Nash [27]| showed that the effect of an

initial boundary layer would be represented as an '"equivalent mass bleed"




into the base region. Hill and Page [30] applied the apparent mixing
origin shift concept to calculate the flow properties for developing
flows within the constant pressure jet mixing region.

Several attempts have been made to extend the Korst theory to the axi-
symmetric base pressure problem. Zumwalt [31| assumed that the flow
recompresses, in a locally planar process, on an imaginary sting which
extends from the base. Mueller [32] stipulated that recompression oc-
curs either on a sting with a radius of one-half of the base radius, or
on a sting equivalent to the experimentally observed radius of the wake
after recompression.

McDonald [33] formulated an approach to predict the two-dimensional
turbulent base pressure for flows which reattach to a solid wall. 1In
this analysis, base pressure is assumed and a momentum integral approach
gives the velocity profile thickness parameters at reattachment by ignor-
ing the viscosity effect during the abrupt pressure rise. The effect of
remaining pressure rise on the now attached boundary layer is estimated
using the Squire and Young formula to modify the moment of momentum
equation of the ordinary boundary layer theory. Thus, thickness parame-
ters at the end of the pressure rise are obtained. Equating the drag of
the backstep to the final momentum thickness would serve to estimate the
base pressure by an iterative process. The shape parameter of the at-
tached boundary layer has been assumed to be of the flat-plate type.
McDonald [34] also extended his analysis to the axisymmetric turbulent
supersonic base flow by means of Mangler's transformation. A unique
solution is obtained by specifying the shape of the rechabilitated boundary
layer velocity profile. This analysis produced recasonably good prediction
of the base pressure; however, it was impossible to obtain a solution to
the problem of a vanishingly small sting and the initial boundary layer

thickness was restricted to be thin when compared with the body radius.
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Among other authors, Nielson, Lynes, and Goodwin [35] studied the |

laminar wake flow based upon the method of integral relations. Roache
and Mueller [36] obtained numerical solutions to the Navier-Stokes
equations. Lamb and Hood [37], Reda and Page [38], and Gerhart [39]
developed control volume analysis for the recompression region, respec-
tively.

Chow [40] recently developed an integral method of analysis for the
turbulent recompression and reattachment process associated with a two-
dimensional supersonic free shear layer. The flow field was divided
into two subregions along the dividing streamline. The external super-
sonic free stream guides and interacts with the upper viscous layer and
the pressure difference across this layer was estimated from the normal
momentum relationship. The lower viscous layer consists of a forward
flow characterized by the dividing streamline velocity and a backflow
characterized by a maximum backflow velocity. The difference in pres-
sure across this layer was also accounted for. In conjunction with the
flow conditions prevailing at the end of the constant pressure jet mix-
ing region, the system of equations may be integrated and solved numeri-
cally. It was shown that by linking the dividing streamline velocity
with its slope, calculations of these flows can be performed up to the
point of reattachment. For a given flow problem, the correct value of
base pressure and the location along the wake boundary where recompres-
sion starts were established through iterations until the conditions

at the rear stagnation point were satisfied. This analysis yielded 1

rcasonable results.
P Later, Chow and Spring [41,42] also studied the flow redevelopment

E after reattachment with supersonic turbu’ent separated flows. The flow

redevelopment was interpreted as a process of relaxation of the pressure
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difference across the viscous layer. Upon coupling the pressure difference
with a slope parameter of the velocity profile, the system of equations
governing the redevelopment of flow would produce a saddle-point singularity
corresponding to the fully rehabilitated asymptotic flow condition which
provided the closure céndition for the Chapman-Korst model of base flows.
Reasonably good agreement with experimental data has also been observed.

Weng [43] extended Chow's analysis to axisymmetric external flow
configurations within the supersonic flow regime. The Prandtl mixing
length theory has been used to compute the turbulent shear stresses in
the constant pressure jet mixing region and a spatial variation of eddy
viscosity had been used in the recompression region for the same pur-
pose. The obtained base pressure and wall pressure distribution agreed
well with experimental data. Peters and Phares [44] developed a scheme
to include the effect of base bleed which applies equally well to two-
dimensional as well as the axisymmetric supersonic turbulent near-wake
flows. Reasonably good prediction for base pressure and flow field struc-
ture has been observed.

Chow and Spring [45,46]| studied low-specd separated flow problems with
the same viscous flow analysis combined with the conformal mapping technique
for the establishment of the outer inviscid flow. It was suggested that
the corresponding inviscid flow of these problems can be described by the
free streamline theory with few unspecified parameters and their values
were determined by the viscous flow considerations. It was found that

the point of reattachment behaves as a saddle-point type singularity in

the systemof differential equations describing the viscous recompression flow
process. This feature was employed to dctermine the aforementioned free parame-

ters and thus establish the ove:all corresponding inviscid flow field. The




- resulting base pressure coefficient for the specific case agrees reasonably

well with the available experimental data. Warpinski and Chow [47,48] ex-
tended this study to investigate the incompressible separated flows associ-
ated with wedges. The effect of wind tunnel wall interference has also
been studied.

For transonic flows, due to the nonlinear and mixed character of the
inviscid potential equation, the lack of an adequate and efficient method
to calculate accurately the inviscid flow field hampered the the analysis
of separated within this flow regime. Only recently, because of its prac- |
tical importance as well as its relation to fully three-dimensional flow
via the area rule, there has been a considerable amount of activity in
this area. Murman and Cole [49] calculated the flow past thin airfoils
including cases with imbedded shock waves on the basis of the transonic
small disturbance equation. An analytical expression was developed for
the far field of an airfoil which is used as a boundary condition for the 4
numerical computation. In the near field, the governing transonic potential
equation was solved numerically using a mixed finite difference system.
Separate difference formulas are used in the elliptic and hyperbolic re-
gions to account properly for the local domain of dependence of the dif-
ferential equation. The difference equations were solved numerically by ;
an iterative line relaxation procedure. For the circular arc airfoil,

the results were good when compared with experiments.

il

Krupp and Murman [50] computed the transonic flow past lifting air-

foils and slender bodies. An asymptotic solution had been used for the

far-field potential at the boundary of a finite cylinder surrounding the




body. The solution is restricted to subsonic free stream Mach numbers.

Bailey [51] also extended the small disturbance treatment to calculate
transonic flow past slender bodies of revolution. In this analysis,
stretched grid systems had been used in the radial direction.

Steger and Lomax [52] had treated the two-dimensional inviscid full
potential equation governing compressible flow by successive over-
relaxation procedure. South and Jameson [53] also had similar consider-
ation to the axisymmetric configurations. Successive mesh refinement
has been suggested during the course of iteration. A considerable saving
in computer time can be achieved by first obtaining a converged solution
on a coarse grid, then halving the mesh size in both directions and re-
starting the solution after interpolating the coarser solution on the new

mesh.

Chow, Bober, and Anderson [54,55] investigated the effect of boattail
junctien shape on the drag of certain afterbodies under transonic flow con-
ditions. In this investigation, they employed finite difference calculations
to solve the full transonic-potential equation and the integral boundary-
layer technique to account for the viscous displacement effect. It was found
that under this transonic flow condition, the growth of the viscous layer in-
deed contributes significantly to the resulting pressure distribution on the
afterbody and the small disturbance simplification is not adequate to describe
the flow. The final results of calculations agree well with the experimental
flow.

Deiwert [56] studied the two-dimensional compressible Navier-Stokes
equations by using MacCormack's second-order accurate finite difference
method for the separated transonic turbulent flow field over an airfoil.

Four different algebraic eddy viscosity models were employed to estimate




the Reynolds stress. A considerable amount of computing time was used
for calculations and only limited success was achieved. It clearly in-
dicates that the essential problem of modeling the turbulent mechanism
in the separated region remains.

As an effective method of calculating the transonic inviscid flow
field becomes available, the preliminary study of the viscid-inviscid
interaction associated with the two-dimensional flow past a backward fac-
ing step within the transonic regime has also been carried out by Chow
and Shih [57,58]- The basic idea employed in this analysis was to interpret
the flow field as if it were produced by an equivalent inviscid body ge-
; ometry whose description usually relies upon some characteristic pa-
rameters. The viscid-inviscid interaction can be properly illustrated
by the fact that the viscous flow analysis would determine the correct
values of these parameters.

In the present study, the same idea is employed to study the tran-
sonic flow past an axisymmetric backward facing step. It is assumed that
the isoenergetic flow field prevails throughout the flow so that the con-

sideration of the energy equation is conveniently eliminated. The basic

fam o g

purpose of the present study lies in the hope of determining the base
pressure associated with axisymmetric blunt based bodies within the

transonic flow regime. This information is urgently needed for all prac-

R s A Y AT RO AP T (R A AT e e - ¢ 5

tical flow configurations within this flight regime. The importance of

axially symmetric geometry throughout the whole flow field can readily

be seen in analytical treatment of this problem.

.
et e et




Extensive calculations have been carried out for different approach-
ing flow Mach numbers, initial momentum thicknesses, and sting radius

ratios to explore their effects on the results. It should be noted that the

present treatment can be considered only as a first approximation to the

problem. Additional improvements to the solution of the problem based on

present approach will be discussed in detail in Chapter 5.
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2. INVISCID FLOW ANALYSIS

From the introductory discussion, it is understood that for the
problem of high subsonic or transonic Mach number flow approaching a
backward facing step in axisymmetric configuration, the corresponding
inviscid flow field should be first estabiished. For an initially
uniform flow approaching the base, it may be expected that the flow will
separate at the corner of the base and a turbulent jet mixing process
usually occurs along the wake boundary. Since the mixing region is thin
in the sense of the boundary layer concept, it may be anticipated that
the boundary of the corresponding inviscid flow should assume a geometry
which is more or less similar to the path of the dividing streamline.
It is thus suggested for the present problem that the corresponding in-
viscid flow can be established from a flow past an equivalent body shape

which is given (see Fig. 2} by

Rb = (Sh) R* for z < 0
R, = (Sh) (R* - z™) for 0 < z < 1 (2.1)
R, = (Sh)(R* - 1) for z > 1

where Sh(Sh = H/zR) is the shape factor of the equivalent body and
R* = RO/H, Rb is the body profile already normalized by Zp- The point
z =1, Rb = R, corresponds to the inviscid rear stagnation point (which
is not the point of reattachment of the real flow) whose location for a
given step height H is yet unknown.

The model described above is essentially deducted from the boundary
layer concept. It should be noted that the physical region in the
vicinity of the bounding streamline of this corresponding inviscid ge-

ometry will actually be occupied by viscous flows and adoption of such
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a configuration would yield a reasonable description of the inviscid
flow which will provide proper guidance and influence to the attached
viscous flow in the sense of the boundary layer concept.

For the present series of calculations, m = 3 is selected in Eq.
(2.1) in order to avoid the introduction of a curvature discontinuity
at the corner of the base. However, this is not mandatory for the real
flow case. Some results obtained from m = 2 will also be presented for
comparison purposes.

With the body geometry given by Eq. (2.1), the corresponding invis-
cid flow field under transonic or high subsonic Mach number conditions
may be established through numerical calculations [55]. The axisym-
metric inviscid flow field may be described by the potential equation
given by

&, ¢r ¢r @z @r
(l-c—2)¢u+<1-?)¢rr-2—cz—¢rz+;—=0 (2.2)
where the subscripts indicate partial differentiation and c is the local

speed of sound obtained from

PR S, B
c? = ¢ — (0o +¢>r) (2.3)
Upon defining
¢ = Vw(z + ¢), U= u/Vm, Vo= v/Vw. C = c/Vm. (2.4)
The disturbed potential function ¢ satisfies
2 2 ¢
U v uv R
(l-——i)¢zz+<l—7)¢rr—2 2¢rz+r =0 (2.5)
C G (6
where
& 1 = ] 2 2
U=1+6¢; V=0, andC =M—2-+Y2 (- u° - vy, (2.6)
o

T A O T e 5 1 U A e 712t et 2 7o
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A transformation of the coordinates is subsequently introduced accord-

ing to

B
E=z; Eago (2.7)

where

r - R (2), (2.8)

Rb(z) is the local radius of the body, and B is a stretching parameter.

n

Equation (2.5) becomes

2 2
u L U w g L
oot mlal ol e o

2 2
[ -2+ (3- B 2 5] 30 - o

c c C
2 |
1 U j
" sopilyn BN aRy
{ = b( e > :
BT e - o) & |
2 2
2 U v uv
e bty e - huoE grlis =0 (2.9)
[ b ( c2> ( cz) czl%]} ¢
with 1
T ) L i s o ?
U=1+9¢, - R ¢ B(-2)" and V=0, BU - 0) (2.10) |

where Ré and Rg are, respectively, the first and second derivatives of
Rb(z). The flow field to be considered in the &, plane is now
- < f<w 0<g< 1.

The boundary condition on the body surface is given by

V(E,0) = R{(E) U(E,0) (2.11)

which may be reduced into

$p sl = ) = wem—smmese 1 E,g =0 2.12
¢ B(L + Rgz) [1+ ¢:(5:0 )] ( )
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and
¢ =0at £ = +2, or g = 1. (2.13)
For locations along the £-axis where ¢ = 0 and Rb = 0, the term
¢r/r in Eq. (2.5) is indeterminate. Under this situation, the term
¢r/r is replaced by ¢rr’ and terms in Eq. (2.9) are correspondingly
modified. Equation (2.9) can now be written as
E F + H + D + =0 2.14
L S R s
where
N
E = B0 - 0%
2 2
F=R{)2<1-U—2)+<1-V—2>+2U—‘2’R{); :
C (¢ C
H——B(l-)zz'l-ﬁafzﬂ- ) (2.15)
3 2| 2Ry 2 3| '
([ C
2
D=1 - 97 ; and
(6
2 1 i
S=¢ B(l-c)[ - "<1-—)-2B(1-c)F]».
c Rb+_5_— % et
B(I - 2) J

Equation (2.14) can be solved by a numerical relaxation scheme. It has
been recognized that in solving transonic flow problems by numerical
calculations, different finite-difference formulations should be used,
depending upon whether the local flow is subsonic or supersonic. For
the present problem, variable grid size is used in formulating the
finite differences in the £-direction while uniform grid size is
adopted in the ¢-direction. For the grid point situated at Ej and Ty

the equivalent finite difference forms of ¢£, ¢£€, ¢€C’ ¢€, and ¢CC may

be written as




17

8%, k 85p = 48 g 4% k 2
b * I 0 Y T R, Y T EELGE, < EEp M1
= A3l ¢§+1 + AB2 ¢§ + AB3 ¢§_1
= BBl ¢§+1 + BB2 ¢? + BB3 ¢§_1

der = z—ic— [ABI (¢k+1 % ¢]j‘;}) + AB2 (¢'.‘+1 - ¢‘j‘“1> + AB3 (¢].‘+i 2 ¢',‘:})]

j+l J e j
J
for locally subsonic flow,
i e Pk, o L o i e ! o W
e Rl wtaE 5 Yy EE - Si-10 IE (BE € REY Yj-2
k k k
= APL ¢ + AP2 ¢ ; + AP3 5 5
2 k 2 k 2 k
b, = ¢, - —— 0. + 9 B(2.17)
g6 " BE (AR, = he 3 Yy TEEBE) ‘50 BE UAE+ AT Yj-2
3 k k k
= BP1 ¢j + BP2 ¢j_1 + BP3 ¢j_2

b~ [0 (4 - 7) » wen (442 - o) s (4 - 3]
for locally supersonic flow, and .
Ll T ¢?+1 ¥ 2¢§4+ ¢§'1
(A SR < s (2.18)
where
(2.19)

AE, = By, - Bys AE; = £,

j . Ej_l; AE =& - £j_2.

o j-

Equation (2.14) may now be written in finite difference form for the grid

point (gJ’Ck) as

S e S e s it s

v s
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HAZ ) k+
BEF +25% xpa) o~
( 2 %

- - K [Asl <¢§:i - ¢§;i) + AB3 <¢§ti X ¢§:i)]

1, (-2E F + Acz D BB2) ¢§ + (E Fo s ABZ) ¢§'1

2 k k
- Az°[D(BB1 94 * BB3 97 )) + 8] (2.20)

for subsonic flow, and 1

(E P API) ¢?+1*(—2E F + A% D BPI) ¢§ " (E F - 5%5 AP]) o1
= . HAE ( kel - k-l) ( 5 k-l)
: [Apz R Y R E At
2 K K
- A [D(BPZ 03y * BP3 ¢j_2) . s] (2.21)

for supersonic flow. The boundary condition, Eq. (2.12), is specified for
all points on the £-axis (¢ = 0) by introducing a row of grid points at

Z = -AZ whose value of ¢ (identified as ¢?) are given by

00 = 077 - 200 ¢, (55,8 = O) (2.22)
where ¢C(£j,c = 0) is computed from Eq. (2.12) with ¢€ again evaluated,
depending whether the flow there is supersonic or subsonic.

For the present study, it is also assumed that the boundary conditions
at £ = *o are actually satisfied at £ = -2.0 and £ = 3.0, respectively.
Therefore, the disturbed potential should vanish at § = -2.0 and £ = 3.0
and alsoat z =1 (n > «).

Equations (2.20) or (2.21) may be written for all grid points in the

same column and the coefficient matrix for the system of equation of ¢ is
tridiagonal. The line relaxation process can be employed for the numerical
ﬁ calculations. An efficient and straightforward method of direct solution

of tridiagonal systems has becen used to find the ¢ values and the value of




the grid point to account for the boundary condition is updated im-

mediately after the calculations for this column are completed. Cal-

culations are carried out by repeatedly sweeping from upstream toward

downstream flow field. The final flow pattern is established when the
successive change of ¢ values is less than an arbitrarily small value

(e.g., € = 3.0 x 10°%) for all grid points throughout the field.

The physical and computational planes for the study of the present
problem are shown in Fig. 3. Refinement of grid spacings has been ap-
plied once for these calculations. This refinement is achieved by divid-
ing each horizontal grid segment into two equal segments and the number
of grid points in each row changes from 26 to 51 finally. This scheme
of grid point arrangement was used to produce all results of the present
study. The stretching parameter B was set to 8 for all results obtained
from this series of calculations. It is understood from experience that

different values of B would not change the results significantly. Also, |

for the case of Rs/Ro = 0.5, below a free stream Mach number 0.9, over
relaxation was used to reduce the computational time without encountering
any difficulty in the convergence of the inviscid calculations toward the
final solutions. However, for the free strecam Mach number of 0.9 or higher,
under relaxation is definitely required. On the other hand, for Rs/Ro =0,
under relaxation is not needed until free stream Mach number reaches the
value of 0.97. A typical set of results of inviscid calculations is shown

in Fig. 4 where the pressure coefficients on the equivalent body surface

are presented.

A —
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3. VISCOUS FLOW ANALYSIS

For a uniform flow approaching the base, it is expected that a
turbulent boundary layer grows along the upper wall ahead of the step
resulting in a finite viscous layer before the flow separates at the
corner. Although the growth of this boundary layer would affect the
corresponding inviscid flow field and this effect can be accounted for
through the corrections of the displacement effect on the corresponding
inviscid body configuration, this influence is disregarded in the present
study since it is usually overshadowed by the viscous effects within the
separated flow region. However, the presence of a finite viscous layer
has influence on the subsequent viscous flow processes of jet mixing, re-
compression, reattachment, and flow redevelopment, and this effect must
be taken into consideration. The continuous growth of the boundary layer
starting from the leading edge on the upper wall can be calculated by any
of the more sophisticated methods [59]. It is believed, however, that
an integral method of calculation of turbulent boundar; layer [60] would
be equally adequate for the present problem by employing the inviscid
state of flow along the bounding streamline as the guiding stream of the
viscous layer. It is thus expected that prior to its separation at the
step, an attached boundary layer of the finite thickness is present and
compatible to the characteristic Reynolds number of the approaching flow.
For convenience, a 1/7 power law velocity profile is assumed for this
viscous layer.

As mentioned in Chapter 1, mixing process occurs along the wake
boundary after the flow separates from the corner; the shear layer grows
and the dividing streamline is energized. Subsequently, the flow will

undergo a recompression process until the dividing streamline stagnates

T

el Sobin

{
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on the lower wall (sting). A wall boundary layer redevelops afterward

and eventually the pressure decreases toward the free stream value asymp-
totically. In order to study this problem, the individual flow components
must be analyzed so that the effect of each component toward the establish-

ment of the overall flow field can be identified and ascertained.

3.1 QUASI-CONSTANT PRESSURE JET MIXING PROCESS

It is known that for a supersonic flow passing over a backward fac-
ing step, a free turbulent jet mixing process occurs under an essentially
constant pressure condition after the flow separates from the wall. For
the present problem, since the pressure field of the mixing process is
determined from the freestream flow condition from the boundary layer
concept, it is obvious that the guiding inviscid flow would not have the
same velocity and the mixing process would not be under a truly constant
pressure condition. Furthermore, the existence of an initial boundary
layer would upset the similarity requirement even under a constant pres-
sure flow condition. It is thus expected that the existing turbulent
jet mixing is a non-similar problem. An analysis by Brink and Chow [61]
on the non-similar jet mixing process with pressure gradient but without
initial boundary layer has shown that a locally similar mixing process
can adequately describe this non-similar mixing flow. For the present
problem, it is assumed that the jet mixing flow can be described by a
quasi-constant pressure jet mixing process; namely, that at each section
along the path of the jet mixing region, the velocity profile can be de-
rived from a constant pressure mixing analysis starting from the same
origin with the same initial profile (e.g., the same power law profile).

A constant pressure, isoenergetic turbulent jet mixing process is

e TeRS——
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shown schematically in Fig. 5 where a system of coordinates
X,Y is chosen to coincide with the equivalent body profile. The initial
velocity profile is given by
¢1 = C{/7 for ;1 <]
(3.1)
¢, =1 for 7, > 1
where Cl = y/61, ¢ = u/ue, and 61 is the thickness of initial boundary
layer. Since the turbulence level within the wall viscous layer is
generally much less than that within the free turbulent mixing flow, it
is anticipated that the major mixing activities occur along the dividing
streamline and the condition within the upper part of the initial viscous
layer is essentially unchanged until the mixing effects reach there. This
upper edge of the mixing region is identified by cm (cm = ym/GI). There-
fore, the analysis of mixing can be divided into two parts. One covers
the region where the mixing effect has not reached the upper edge of the
initial viscous layer (Cm < 1) and another deals with the region further
downstream where the mixing effect has spread throughout the initial vis-
cous layer (cm > 1). A linear velocity profile is assumed for these mix-

ing regions. From the continuity and momentum principle, one obtains for

such a mixing region

Y Ym
purdy = p urdy (3.2)
. 0 Y4
and
E ym 2 Ym 2
i pu rdy = pu rdy (3.3)
0 §

where r = Rb + y cos eb.
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density can be related with velocity
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(3.4)

(3.5)

(3.6)

For a linear velocity profile, the following relations can be obtained after

some mathematical manipulations:

2

< %a

+ Gb) cos eb
61 Cm
R
L}
1

[

1
2

= n

a+cHa - cy

+ C
(= Cm)(l + Cd)

c C
e m

1 - ¢
[

R
[3% 1) (%) *+ Tl

]=0

(3.7)
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6a ¢m i ¢d

2
( Ga + Gb) cos eb [zn 1 L Cz ]+ (Ga + éb
6y zci 1= c; m 8

1

where Rz = Rb + (yd - 6b) cos eb,

T TV
Bﬁ
—
]
(@]

(1 + € - Cy
(- Cc * Cy

Ga + 6b cos eb l-zn
61 C 2

goc ci & IR
1.1
> 5 Il 1( )
1 - c2L%
e €

R
L PP
e

3
§ + 38 4
a b

_Ce+Cd]+(-———61 ) :

(3.8) |

(3.9)

R
o -
RPORE CERY

(3.10)
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(4 —1)+—(<:,f1 1)]=0 (3-12)

for Cm > 1. The set of equations (i.e., Eqs. (3.7), (3.8), and (3.9) or
Eqs. (3.10), (3.11), and (3.12)) can be solved simultaneously to give

¢d’ éa, Gb for Cm <1 and Cm > 1, respectively, once Cm is known. It is
necessary to relate the physical location for the specific value of Cm and
the corresponding velocity profile. If one assumes that the slope of the
linear profile matches the maximum slope of a fully developed error func-

tion profile [62], i.e.,

g—:’; 5 (3.13)
n=0 ./

with n = o(y/x) where 0 is spread parameter of similar jet mixing flows,

one obtains the corresponding location along the mixing region given by

P NERE A S (3.14)

§ +36
‘g_ Soaulo g < b (3.15)
1 il 1

for (4 e U
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Since the guiding inviscid flow condition is initially unknown, the
correct location for a specific cm value and the corresponding velocity
profile must be found by iterative process. It can also be shown that

the shear stress along the dividing streamline is given by

4., 2.2 p_(u_
" £ (u ) r dy. (3.16)

2
T T2 W B TR,
e e
S8, cos O
.2 : "(-35 B A1 SR 1)]. (3.17)
d
Ca

The displacement Y4 relative to the equivalent body boundary and the

transverse velocity component of the dividing streamline are also given by

y § dy v
1 1 d

The eddy diffusivity relating the shear stress and the velocity gradient

is evaluated according to

2

T.

G dz Bl (3.19)
u 1 = C2

- P e e

The value of o is 12 for present analysis. Calculations with

other o values (0 = 10, 11, 13, 14) have also been carried out for com-

parison purposes.
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3.2 RECOMPRESSION AND REATTACHMENT

Near the end of the wake, the flow realigns itself to the original
flow direction, thereby initiating a recompression process. The pres-
sure is impressed by the freestream condition of the already established
corresponding inviscid flow field and the flow within the viscous region
copes with this continuously increasing in pressure mainly at the expense of
its kinetic energy. The portion of the flow which does not possess
enough kinetic energy is forced to turn back to form a recirculatory
wake flow and the rest of the flow will proceed downstream.

For a system of curvilinear coordinates, X,y within the meridian
plane, the conservational principles written in time averaged quanti-

ties for the dissipative flow region can be expressed (also see Fig. 6)

as [43]
: 3(p u r) _3_[ _X]z
\ 3% e (== 0
which is the equation of continuity, and
2
d(pu"r) 3 _x]_P_u_v_z:_?E 3
ax i oy L (1 R) R T ax 5 oy
v (AR
. [r T (1 - E)] - R (3.21)

which is the x-momentum equation where r = rc(x) + Yy cos Bc(x) and

drc/dx = sin ec(x), r, being the radius of the base of the coordinate
system and R is the radius of curvature of the curvilinear x-axis. It

is understood that the effect of the normal viscous stress has been dis-
regarded. In the present study, the x-axis is selected to assume a
straight line trajectory which is aligned with the freestream fiow direc-

tion but located at the dividing streamline at the end of the mixing

(3.20)
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region. The governing equations for this recompression process can be
greatly simplified by letting R -+ . Under this situation, Eqs. (3.20)

and (3.21) become

9 T
aip B g§° ¥l .0 (3.22)
and
2
3(p u® r) dfpuvyy) 3P 3
ax * 3y =T o tay (F Ty {5:23)
withr=r_ + y cos 8 , and dr_/dx = -sin ©_, where 6 is now a positive
c c C ( c

valued constant angle.

With the initial conditions provided by the quasi-constant pressure
jet mixing analysis, the recompression region can be studied within the
framework of the boundary layer concept. As aforementioned, the shear
layer is divided into two regions along the dividing streamline, namely,
the upper viscous layer and the lower viscous layer, including the back-
flow. Referring to Fig. 6 where the thickness of shear layers are also
shown, integration of continuity equation (Eq. (3.22)) across the upper

viscous layer would yield

<

y
dy a
g =Cloge i0d v 1 1 - u_
ol Sl Ry + 8, cos6_p, u_ dx Pe us/. TR 4
y

'ol'o

e e e
d (3.24)

where Be is the streamline angle at the edge of the viscous layer with
respect to the x-axis. For the lower layer, similar consideration would
lead to
g B
(VR = B S . 2
Pq U4 r dy = py ubf b)’w dy,, (3.25)
R




29

Also, integration of the momentum relationship (Eq. (3.23)) would yield

y
T el g
By Ta " 32 O ¥ Pe U, 3 (1 ue 9 = Pe B J[ Pe Ug i
Yq b
du d Ya P d
. 3;_ - (R - Y4 cos ec) a;-PeJ[ 5; dy - cos Gc o Pe
Y4
Ya p D dya dyd
.J( Ez»y dy + Pe(Rd + 6, cos ec) e Pd Rd 7o (3.26)
Y4
for the viscous layer above the dividing streamline and
y
d 2 $ dp
S B Y, e b
Rq %a dxpdudf pduzrdy+6b(kd 7 <05 0. ) 5
Ya~% d
d R +h P u hb de
+cose a——b f ~_2ywdyw+_2_(2Rs+hb)'&T]
R, by,
(3.27)

for the viscous layer below the dividing streamline where the wall shear
stress associated with the backflow wall boundary layer has been neglected.
In the present analysis, it has been assumed from the boundary layer con-
cept that Pe = Pd = Pw' It is also assumed that the velocity profile fol-

lows a polynomial of the form given by

0 =S s e s v [301- 0y - 25] g+ [s - 201 - 4]

C':

(
3
e WG, 1) (3.28)

for the viscous layer above the dividing streamline where
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(0 =i‘£ S=—a-¢— =y—)'d'
d u ’ ac ’ Ca 6 3
e a a
d

%
a linear velocity profile given by :
u 1
==y G 055 <) (3.29) 1

(<

for the forward flow of the viscous layer below the dividing streamline

where
T T
L Gb
and
piecolL vl P T
¢ = Ue ¢b cos > Cb (0 f.Cb.i 1) (3.30)

for the reverse flow where ¢b = ub/ue, and gy o, = RS)/hb.

It is further assumed that the slope parametef\s can be coupled [40,
45, 46,48,57] with dyq through
s =89, (3.31)
where g is a constant to be evaluated from the condition at the end section
of the mixing region by

S
m

g=— (3.32)
¢dm

where the subscript m refers to the end section of mixing region. Such a
coupling would assure that both s and ¢d would vanish together at the point
of reattachment.

It is understood that due to the existence of the lower wall, an ad-
ditional wall boundary leyer exists within the reverse flow and the pro-
file would not have the shape given by Eq. (3.30). However, if one as-

sumes that a cosine profile also describes the reverse wall boundary

layer flow, the profile as given by Eq. (3.30) would yield the same mass
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and momentum flux as the actual reverse flow with boundary layer as long

as hb and ¢b are the same. The remaining difference is the small wall

shear stress which is usually neglected.

For iscenergetic flows, the density ratios can be found through the ' E

: velocity ratios given by
2 2 f
3 1-C 1 -C
, b4 —anaf-- b (3.33) .‘
gy v -d(y)
d ¢d b ¢b

where ¢d = ud/ue = Cd/Ce, and ¢b = ub/ue = Cb/Ce.

Upon substituting Eq. (3.33) and after some mathematical manipulations,

Eqs. (3.24) through (3.27) can be written as

Mapebo ot Jute Suiid .

dy
2 a
[(Ry + 68, cos 8) - (1 - CO(Ry F1 + 25, cos B, F2)] 5= i

2 g
+ (1 - CeJ[(Rd F1 + 26a cos OC F2) - Ga cos ec F1) S

do
2 d
- @t - CJ 8 R P56, cos 6, Fa) o=

1 3y -1
- Ga[(ce e Ce) (Rd F1 + Ga cos ec F2)

dC
e

2 =
+ 2Ce(1 - Ce)(Rd F5 + Ga cos 6. F6)] X - tan Be Ry + Ga cos Bc]

(3.34)

. 2
- Ga sin ec(l - Ce) F1
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d

C, § cos Gc F13 —— * Gb Ce {(Rd = Gb cos GC) P13 + Gb cos 6. Fl14

d b

+

2
2c5 (R, -

+ €y [(Ry - 25, cos 8_) F13 + 28 cos 6, F14] 3—

dx

Gb cos ec) F17 + 6b cos Gc F18]} =—

dhb

2
- €, (2h, F16 + R F15) 5= - hy C_ [hy F16 + R F15 + 2C

* (h, F20 + R

8 (hb F20 + R

+ 6b cos ec F

dc
. -—e-=

dx Cd ab
(Rd F7 + 26a cos ec

dyd

i dx o 5a(Rd

(]

- Ry FL+ 8

1 (
+ R
1 - CZ d
e

d¢b

L F19)] =

: 2
{hb oy [hy F16 + R F1S + 2C;
s F19)] - & ¢, {(Rd - §, cos 8_) F13

2
14 + 2C5 [(Ry - 8 cos 6) F17 + § cos 6 Flsl}}»

sin Sc F13. (3.35)

dy
F8) 3;2 + [8, cos 8, F7 - (Ry F7 + 28 cos 6. F8)]

d¢d Ga
F9 + (Sa cos ec F10) % + q
¢ =1 N
—Y——_-—l' Ce ) (Rd B7 + 63 cos ec F8)
2
cos ec F2) + ZCe(Rd F11 + da cos ec F12)
dC R, T
+ l-6 cos 6 ) S aatod E + 8 sin 6 F7
2 "a c/|dx 2 a C
pus J =it
e e ¢

(3.36)
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P dyd P

8, =2 2 cos 6 F21 #2982

b P q 5 s b ﬁ;;-c Cd {(Rd - 5b cos Oc) F21

2
+ 6, cos b, F22 + Cy [(Ry - & cos 6.) F25 + § cos 6 F26]}

oy Py d6b
s~ po d [(R - 26 cos 6 ) F2] + '6b cos 6 F22] =
p d
%8 €2 [Rs B23 + 7h, E24] cos 60, —EP-+ 55 2h C, C_ cos ©
p b b P b c
(o O
2 d¢b
* [Ry F23 + hy F24 + Cp (R, F27 + hy F28)] o2

P
= 2
+ {2 pom [(Sb Cd ¢d { (Rd = (Sb Ccos eC) F21 + (Sb coS ec F22 + cd

[(Ry - & cos 6.) F25 + & cos 8 F26]} + cos 0. hy Cp ¢b

. 2 2y
{Rg F23 + h, F24 + C, (R F27 + hy F28)}] s
2
$ h
M wadl A AT _b
[ 2y {Rd 8, - = cos 8_ + 5 (2R, + hy) cos 6}

+

2
Cd [(Rd - Gb cos ec) F21 + §, cos GC F22]

2 2.1/y-1
+ hy Cp cos 8 (Rg F23 + hy F24) ] (1 - C2) }

b

dc. R, 1 P
har P o SRR Nl R e :
e + §, sin 85— Cj F21 (3.37) ;
Pe Ye g 4

where F1 through F28 stand for integrals associated with the viscous

layer (the detailed list of these integrals is given in the APPENDIX)
which can only be evaluated by the numerical integration method.

In addition, it is assumed that the gcometry of the wake has a

locally triangular shape which can be expressed by
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dh h
i 15 (3.38)
dx Eb dx

Such an assumption would assure that the wake centerline and dividing

streamline shall pass through the point of reattachment together on the

lower wall at the end of the wake (see Fig. 7). Also, the geometrical

relationship drc/dx -sin ec can be written as

dy, ds,  dhy
-Cos ec a—;(— + CcOs ec dT’ + Ex_ = =S1n ec. (3.39)

Equations (3.35), (3.37), (3.38), and (3.39) can be combined to give

p 8, cos 6 dy
e .2 CF5 CF11 b d
[Gb R T R o CF14] &x
P d¢
T, CF6 CF11 | “"d
+ [Zéb p—o: Ca Cd CF3 + ~CE7T ]dT’
P 2
. [2 §E_ (Gb Cd ¢d CF3 + hb cos ec Cp ¢b CF4) - Y Y 1
Om

dc
Y-l _2.1/y-1 _ crg cF11] Te _
( R CFIS) Ce(1 - C2) = | T

R, 1 P
d %4 3. 1/y-1 .2 : B

Sa-c) €2 + §, sin 8 5 Cy F21
p.u o
€ €

6, sin 0O
CF9 CF11 b c
e 5 cos O, CF14 (3.40)

2
where CF1 = (Rd - Gb cos ec) F13 + Gb cos ec F14 + ZCd

. [(Rd - Gb cos ec) F17 + § cos ec F18]
2
CFz = RS F15 + hp Fl6 + 2Cb (RS F19 + hy F20)

2
CF3 = (Rd - Gb cos Oc) F21 + Gb cos Bc F22 + Cd

. [(Rd - Gb cos ec) F25 + Gb cos 6. F26]
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CF4 = R_ F23 + h F24 + CZ (R_ F27 + h, F28)
CF5 = Cd 6b cos 8, F13

CF6 = C_ 6§, CFl

CF7 = hy C, CF2

CF8 = hy ¢, CF2 - & ¢, CFl

CF9 = Cq Gb sin 6C F13
CF10 = Cq [(Rd - 26b cos Bc) F13 + 26b cos ec F14]

- Cb (hb/6 (R. F15 + Zhb F16)

b)
CF11 =2h, cos 6_ (P, /P ) C, C_ CF4

CF12=R, §, - (8,2/2) cos 6_ + (h,/2) cos B_ (2R + hy)

CF13 = §,, cg [(Ry - 6, cos 6_) F21 + & cos 6_ F22]

2
b

. 2 _
CF14=(P /P ) {Ci[(Ry - 28, cos 6 ) F21 + 26, cos 6 _ F22|

+ hy cos 6 C; (R, F23 + hy F24)

+ (h,/8,) cos 8 cg (R, F23 + 2h, F24)} + (CF10 CF11/CF7)

Equations (3.34), (3.35), (3.36), (3.38), (3.39), and (3.40) form a
system of first order simultaneous differential equations.

The shear stress along the dividing streamline which appears in
Eqs. (3.36) and (3.40) will be evaluated from an eddy diffusivity formu-

lation, i.e.,

M elx)p 3 (3.41)

2 " u. & p. AT
Pe Uy e "a’e “Cal,

where €(x) is the average eddy viscosity over the thickness of the upper
viscous layer within the recompression region. The information of eddy
viscosity along the dividing streamline within the rccompression region
is scarcely available even when the flow is incompressible. For the

present study, the eddy viscosity has been evaluated by [46].

B
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where Zm refers to the length of the mixing region, and X, measures the

b

length along the recompression flow process.

It should be noted that the guiding inviscid flow condition at the
edge of the viscous layer is furnished from the already established cor-
responding inviscid flow field depending upon the location of the edge of the viscous
layer,and the value of the freestream Crocco number is thus a function of
(Rd + Ga cos ec) which describes the spread of the viscous layer. It is
found from numerical calculations that the term dCe/dx in the system of
equations varies slowly throughout this region. Consequently, this term
can be left at right-hand side of these equations as a known quantity
which can be evaluated from the previous steps of integration. In this

way, iteration can be completely avoided (except at the initial step of

recompression) and the numerical calculations can be considerably simpli-

1 fied.

The foregoing system of differential equations (Eq. (3.34), (3.35),

(3.36), (3.38), (3.39), and (3.40)) describe the variation of Ga’ Yqr
¢d’ ¢b’ Gb, and hb throughout this recompression flow process. These
values can be c¢stablished through numerical integration with the initial

condition provided by the preceeding jet mixing process.

3.3 REDEVELOPMENT OF FLOW

After the flow reattachment, the viscous layer further undergoes a
process of redevelopment while the pressure rises continuously until a

platcau is reached. Thereafter, the pressurc is reduced toward that of




37

the original approaching flow level asymptotically until the fully reha-
bilitated state is reached at far downstream positions. In the study

of the corresponding flow problems within the supersonic flow regime
[42,43], the flow redevelopment was interpreted as a process of re-
laxation of the pressure difference across the viscous layer. It has

been found that the concept of relaxation of pressure difference can in-
deed be adopted to predict the base pressure and to describe many special
features associated with axisymmetric flows (e.g., effect of sting, over-
shoot in static pressure on the sting). It has been also shown that upon
adopting such an interpretation, the fully rehabilitated state is a saddle-

point singularity of the system of equations which provides the closure

condition for the Chapman-Korst model. For the present study, the major

difficulty in the calculation of flow redevelopment after reattachment lies
in the non-equilibrium nature of the turbulence structure which is uniquely |
|
u different from both the wall or free turbulent types of flows. Neverthe-

less, the inviscid flow field is already specified for this region and the
problem of redevelopment of viscous flow is more or less of the parabolic nature.
More detailed experimental investigations are needed before additional

progress can be made in this aspect of the problem.
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4. METHOD OF CALCULATIONS

For a specific flow condition where the Mach number of the approaching
flow and the step geometry (e.g., sting-body radius ratio) are given, the
usual purpose of performing such calculations would be the determination
of the flow field corresponding to a specific momentum thickness ratio*
of the boundary layer at the step compatible with the characteristic
Reynolds number of the flow. It has been found that to achieve such a
purpose, many sets of inviscid flow calculations with different Sh values
must be performed through an iterative procedure and the costs of produc-
ing such results are prohibitively high. Instead, one is forced to de-
termine the correct initial momentum thickness ratio of the boundary layer
of the flow at the step with a specific value of the shape parameter Sh.
For convenience, the momentum thickness ratio of the boundary layer at the
step is calculated from the initial boundary layer thickness with the free

stream condition furnished by the already established inviscid flow field

through
1 2
§** § p 1 -C 8
.. 7 e _ H "1
z ‘H—f R o (1w o) oy - (5:1)
0 e 91 g
1/7

Here, ¢1 = (cl) for Cl.i 1, and ¢1 = 1 for Cl > 1. For detailed cal-
culation of the transonic or high subsonic Mach number flow past a back-
ward facing step in axisymmetric configuration, one begins with the se-

lection of a value of the shape parameter Sh and proceeds to calculate

the corresponding inviscid flow with the given information. A typical

set of results obtained from such calculations of the inviscid flow field
is shown in Fig. 4 where the surface pressure coefficient on the equiva-

lent body is presented. A sharp change from decreasing *o increasing

*Strictly speaking, the build-up of this 'nitial boundary layer at the
step relies on the flow on the upper wal . For a given upper wall
length, it is thus a problem to be solved by successive approximations.
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pressure occurs at the section of minimum Cp within the wake region. It
suggests that the recompression process shall begin from this section
and the length of the quasi-constant pressure jet mixing region can be
determined.

The flow conditions at this section as a result of jet mixing,
such as values of ¢d’ Ga/H, and Gb/H, may be obtained from the quasi-
constant pressure mixing analysis with a selected initial boundary layer
thickness in conjunction with the information obtained from inviscid flow
calculations. The streamline direction Be at the edge of the mixing re-
gion at this section may also be found. A slanted system of coordinates
X,y is chosen for the study of the subsequent recompression process that
both Be and yq at the end of mixing are zero within this coordinate system.

The results obtained from the previous jet mixing analysis are tacitly
taken as the initial conditions for the recompression process. As the
system of equations (Eqs. (3.34), (3.35), (3.36), (3.38), (3.39), and
(3.40)) is integrated numerically step-by-step toward the point of reattach-
ment, it is found that different values of initial boundary layer thickness
would produce widely different and divergent values of dividing streamline

velocity. As shown in Fig. 8, for larger values of 6{*/H,¢d is reduced

drastically énd will vanish before the lower wall is reached; while
for slightly smaller values of 6;*/H, ¢d will eventually increase. This
phenomenon suggests that the point of reattachment behaves as a saddle
point singularity for the system of equations describing the flow.

Ideally, the point of reattachment can be reached by repeatedly perform-

| ing the calculations with intermediate 6;*/” values between two different
branches of integration paths. However, for the present flow problem,

the calculation of third or second digit after the decimal point for

i : . T T———
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the initial momentum thickness ratio of the boundary layer will be good
enough for the engineering purpose if one is not interested in the
detailed pressure distribution up to the point of reattachment. The
available results would provide a rough estimation of the base drag.
Calculations with different shape parameters Sh can be carried out
similarly and the graph of base pressure coefficients as a function of
initial momentum thickness with specific sting radius can also be con-

structed which will be presented in the next chapter.
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5. RESULTS AND DISCUSSION

Upon employing the flow relations presented in the previous chapters
for the individual flow processes, calculations can be made for the
specific cases of flow. Since the viscous flow processes are guided by
the inviscid flow established from numerical solution of the full po-
tential equation, it is important to determine the inviscid flow field
accurately. Figure 9 shows the effect of refinement of grid spacings
for the flow case of M_ = 0.75, Sh = 0.135 with Rs/Ro = 0.5. It is ob-
vious that there is no significant difference in the surface pressure
coefficient on the equivalent body when the grid spacings are successively
refined. It seems that it is adequate to employ the inviscid results
after the refinement of grid spacings has been applied once.

The inviscid calculations have been made in wide ranges of Sh values
in order to investigate its effect on the surface pressure coefficient.
Figure 10 shows the effect of Sh values on the pressure at the upper corner of
the step with different Mach numbers at vanishing sting radius ratio.

It is obvious that the pressure at the step decreases with increasing Sh
value which corresponds to shorter equivalent body. Also, for certain

Sh values, the pressure at the step decreases with increasing Mach number
within the range of Mach number calculated (this trend may be reversed
when the Mach number is less than but close to unity). Figure 11 shows
the effect of presence of sting to the pressure at the step with different
Sh values for the free stream Mach number of 9.75. It shows that the
pressure at the step decreases with increasing sting radius ratio for all

calculated Sh values. This is indeed the effect of axisymmetric gcometry.
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When the viscous flow analyses are combined into the considerations,
the effect of the initial boundary layer momentum thickness with differ-
ent Mach numbers for vanishing sting radius ratio is illustrated in
Fig. 12. Generally speaking, the pressure at the step is lower for
smaller momentum thickness ratio. The small value of momentum thickness
corresponds to the flow condition of higher Reynolds number. Therefore,
this figure reflects the Reynolds number influence on the pressure at
the step. It is natural to expect that the viscous flow with higher
Reynolds number can cope with stronger recompression. Nevertheless, it
should be noted that doubling the momentum thickness would correspond
to a tremendous reduction in the Reynolds number. It also shows that
the Reynolds number has little influence under flow conditions of fairly
thick initial boundary layer. For a fixed initial momentum thickness,
cases of higher approaching flow Mach number produce longer wake regions
and higher values of Cp at the step; this phenomenon will be discussed
some more later.

The effect of sting radius ratio on the pressure at the step for
freestream Mach number of 0.75 is shown in Fig. 13. It shows that a
smaller sting radius results in higher pressure at the step, while larger
sting radius would produce lower pressures at the step. Also, for a fixed
initial momentum thickness, a smaller sting radius would have a longer
wake so that the turbulent exchange process will transport momentum more
effectively that the viscous layer can cope with a stronger recompression

process. However, this mechanism is effective only when sting radius

ratio is close to unity. Figure 14 further illustrates that the pres-
sure at the step decreases as sting radius ratio increases and this can be

easily explained by the effect of axisymretry. Also, it shows that the

pressure at the step is reduced with decreasing initial momentum thickness ratios.

AR A e a2 o
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; If one implies from the boundary layer concept that the pressure

at the step is the base pressure, Fig. 15 presents the comparison of 3
base pressure coefficients with several available experimental data.
For experiments carried out under transonic flow conditions, a tunnel
must have a perforated test section with an auxiliary pumping system ]

to attenuate the reflected shocks and expansion waves originated from 4

the model. Since transonic facility is much more elaborate and expens-
ive, there is rather meager amount of the consistent and reliable ex- 1

perimental data. Koh [63] obtained the base pressure data by using a -

TN N T T

long cylindrical body model extended from far upstream in the Boeing
transonic and supersonic wind tunnel to eliminate the support inter-
ference. Merz [64] obtained the base pressure data with similar cy-
lindrical model but under a constant pressure boundary condition (open
jet test section). No specific momentum thickness is reported by Koh
in his tests. Merz reported in his tests that the momentum thickness
ratio §{*/H varies from 0.06 for M_ = 0.27 to 0.05 for M_ = 0.8.

Figure 15 shows that the pressure at the step is much higher than the
base pressure reported from experiments. For higher approaching sub-
sonic flow Mach numbers, the pressure at the step may approach that of
the free stream even though the base pressure may be reduced. This is
obviously true when the approaching flow is sonic (M = 1). Under this
situation, the Mach number at the step is also sonic while the base is
impressed by a lower pressure resulting from a Prandtl-Meyer expansion.
Therefore, the pressure at the step is inadequate to be taken as the
basc pressure under these situations. Since the cxperimental pressure
data were taken from the base of the model body rather than from the step,
it is necessary to identify a characteristic wake pressure from the

theoretical calculations as the base pressure. Since the recirculating

i i il it
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flow will sweep by the face of the base, the static pressure of the back-
flow at the end of mixing Cpbm may be selected for this purpose. It was
originally suggested [1] that the stagnation pressure of the backflow at
this section be taken as the base pressure. Since the backflow velocity
is usually small, the present selection would not significantly change the
results at lower free stream Mach numbers, and yields better results at
high subsonic free stream Mach numbers. Figure 16 presents the so defined
base pressure coefficient Cpb as a function of Mach number for zero sting
radius ratio. It may be observed that Cpb decreases with decreasing
initial momentum thickness which, again, indicates the effect of higher
Reynolds number. The comparison of Cpb with experimental base pressure
data is shown in Fig. 17. Much better agreement, especially in demonstrat-
ing the transonic drag rise, leads one to conclude that Cpbm may be taken
as the base pressure under this high subsonic Mach number or transonic Mach
number flow conditions.

Figures 18 and 19 present the pressure distributions on the sting
(for Rs/Ro = 0, there is no sting and it can bé considered as the center-
line of the wake) within the wake region with two different momentum
thickness ratios at M_ = 0.75 for two different sting radius ratios, re-
spectively. It can be observed that the pressure at the point of reattach-
ment is already above the approaching free stream value. This is mainly
due to the fact that the edge of the viscous layer is located within the
influence of the inviscid stagnation point even though axisymmetric ge-
ometry would generally induce stronger pressure rise during recompression.

This phenomenon was also observed in the two-dimensional flow past wedges

of small wedge angles [48].
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Variations of pressure, stagnation pressure of the dividing stream-
line and the backflow are shown in Figs. 20, 23, 26, and 29 for various
Mach numbers, sting radius ratios, and initial momentum thickness ratios.
Figures 21, 24, 27, and 30 present the dividing streamline velocity and
maximum reverse flow velocity and Figs. 22,~25, 28, and 31 show the ge-
ometry of the wake region for these different flow cases. These provide
a rather detailed comparison of the flow properties within the wake re-
gion. It is generally observed that the dimensionless velocity of divid-
ing streamline is energized in the mixing region, decreases in the recom-
pression region, and finally vanishes at the reattachment point. While
these property values may vary from one case to another, they all show con-
sistent behavior compatible to the adopted flow model, and the influences
from each flow mechanism can beextracted from detailed comparison of these
results. It should be mentioned that the backflow upstream of the recom-
pression region has not been considered and presented within these figures,
since there is no such a need in the process of calculations of the present
problem (as a result of assumption of a semi-dead wake region). It may be
estimated from continuity principle if the need should arise, since the
dynamic effect of this backflow within the essentially constant pressure
region would be negligibly small. Also, the apparent unsmoothness ex-
hibited by some of the curves presented within these figures is the in-

herent result of component analysis when two different components are

joined together.
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In the quasi-constant pressure jet mixing analysis, an empirical
parameter o, the turbulent mixing spread parameter, has been introduced
to facilitate the calculation of the mixing process. Originally, o is
a similarity parameter for plane mixing flows which are inversely pro-
portional to the rate of spread of mixing layer and is adopted as a
parameter for the present non-similar flow situation. For incompressible
flow, the value 0 = 12 is generally used and this seems to be a proper
value for conditions which correspond to the mixing between a uniform
stream and a quiescent fluid. However, there is no adequate information
provided for the axisymmetric case. Tanner [66] suggested that the angle
between the wall from which the flow separates and the wall on which the
flow reattaches has a great influence on the value of o. It has been ob-
served that, for fully developed compressible turbulent mixing flows,
the mixing zone width varies linearly with the x-coordinate although the
rate of spread depends upon the Mach number. It implies that at constant
Mach number, o is also constant. Experimental investigations have shown
that there is a trend for o to increase with increasing Mach number.
Tanner also reviewed several relationshops between ¢ and Mach number sug-
gested by many investigators. Because of lacking extensive experimental
results, it is difficult to establish the correct relationships between
0 and Mach number. . In order to assess the influence of ¢ in the present
investigation, different values of o have been employed to carry out the o
calculations. Figure 32 presents the influence of 0 to the initial mo-
mentum thickness compatible to a certain set of inviscid calculations
(constant Sh value). For a specific inviscid flow field, smaller o

values lead to larger initial momentum thickness ratios. This phenomenon

canalso be illustrated in Fig. 33. Large - ovalues yield higher pressure ratios
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at the step for a given geometry and approaching flow conditions as a ’

result of ineffective transfer of momentum across the viscous layer.

Figure 34 presents the influence of 0 on the pressure distribution on
the sting for the frecstream Mach number of 0.75 and Rs/Ro = 0.5. It
can be seen that ¢ has an influence on the pressure distribution in
the whole wake region.

For the purpose of comparison, calculations of corresponding in-
viscid body geometry with m = 2 have also been carried out. Figure 35
presents the variation of pressure at the step with respect to the
initial momentum thickness ratios for different Mach numbers with zero
sting radius ratio. The curves are similar to that of m = 3. However,
the level of pressure coefficient is much lower and decreases more
quickly when initial momentum thickness decreases. This can be observed
from Fig. 36. Even when one reccognizes that the pressure at the step is
not the base pressure, good agreement with the base pressure data is ob-
served when Cp step under this condition (m = 2) is employed and is shown
in Fig. 37. Figure 38 presents the comparison between different inviscid
pressure fields with a specific Sh value obtained fromm = 2 and m = 3
calculations, respectively. For the case of m = 2, the pressure at the
step is lower and the mixing region is relatively short. This also can
be seen from Fig. 39 where the dimensionless velocity of dividing stream-
line of these two cases is presented. The dividing streamline velocity
reaches a higher value at the end of the mixing region for the case of
m = 3 due to relatively long mixing region. Figure 40 presents the com-
parison of the pressure distribution at the centerline of the wake region
between cases of m = 2 and m = 3. [t is obvious that the pressurc within
the wake and the pressure ut the point of reattachment for the casc of m = 2

is much lower than that of the case with m = 3. In addition, the case
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of m = 2 would yield also shorter wake region as shown in Fig. 41. Since

consistent and reliable experimental data are not yet available, it is not pos-

sible to decide which m value is preferable to simulate the actual flow
condition.

As mentioned in section 3.3, after the flow reattachment, the flow
further undergoes redevelopment process while the pressure rises con-
tinuously until a plateau is reached. Thereafter, the pressure is re-

duced toward that of the original approaching flow level asymptotically

and the fully rehabilitated state is reached at far downstream positions.

However, the study of flow redevelopment is not yet possible as it is
hampered by the extremely complex nature of the flow as well as the non-
equilibrium turbulence structure in this region. Figure 42 shows the
pressure distribution downstream of reattachment for a specific

case of calculations by tracing the streamline starting at the edge of
the viscous. layer at the section of reattachment. This simple tracing
qualitatively illustrates the complex nature of pressure distribution
after the flow reattachment.

It should be noted that the reshits reported thus far can only be
regarded as the first approximation to the solution of the problem [58].
The corresponding inviscid body geometry compatible with the estab-
lished viscous flow with a finite Reynolds number will be different
from what originally has been assumed (Eq. (2.1)) which corresponds
to the limiting case of infinite Reynolds number. The profile of the
equivalent body for the case of finite Reynolds number should be at a
distance away from the dividing strcamlinc which is approximately equal

to the '"local displacement thickness'" of the viscous layer above
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the dividing streamline, and it would not coincide with the sting
downstream of the wake. Since the inviscid flow field is estab-
lished through the finite difference calculations, it is possible
to include this correction of the effect of finite Reynolds number
into the consideration. However, it is cumbersome to apply to the
present analysis because different velocity profiles have been assumed
for the quasi-constant pressure jet mixing region and recompression re-
gion, respectively. Also, redevelopment of flow must be analyzed before
such additional improvements can be made. However, it is expected that
the present analysis as a first approximation will yield close prediction
of the base pressure of this problem.

For the two-dimensional supersonic flow case, it is possible to
show rigorously that the fully rehabilitated state is a saddle point
singularity. It is not feasible, however, to show in the present cal-
culations that the point of reattachment is a saddle point singularity.
This saddle point behavior can only be illustrated through numerical
calculations. Although the real flow doecs not reveal any sensitive
characteristics, as associated with a saddle point, the validity of
this mathematical behavior should be judged only by the merits of its
ultimate results when compared with experimental d;;;i— It is well known,
however, that as long as one adopts the Navier-Stokes equation to de-
scribe the steady viscous flow, meanwhile demanding continuous solution to
this equation, saddle point singularity or singularity of other types may

inherently occur.
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6. CONCLUSIONS

It has been shown from calculations that the overall flow pat-
tern of separated flows is established as a result of interaction be-
tween the viscid and inviscid streams, and the solution of this problem
can be obtained only by simultaneously considering the influence from
both streams. The present theoretical analysis is effective in dealing
with the axisymmetric transonic turbulent separated flows by performing
the finite difference and integral calculation procedures with a minimum
of empirical information. The results of this analysis show reasonable
agreement with the available experimental data. Although the adoption
of the form of a spatial variation of eddy viscosity is based on specu-
lation, fortunately, this theoretical analysis has provided a reasonable
prediction of flow field as well as the base pressure and has turned out
to be a workable scheme for the present situation. However, extensive
and reliable experimental data with the transonic flow regime are
needed for determining proper values of the parameter o for mixing and
parameter m for the corresponding inviscid body geometry. Also, more
detailed experiments must be carried out to provide the information of

turbulence structure in the redevelopment region so as to facilitate !

the development of a model for analysis of this flow component.
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APPENDIX

INTEGRALS ASSOCIATED WITH THE VISCOUS LAYER

In the present analysis, it is assumed that the velocity profile of
viscous layer above the dividing streamline follows a polynomial of the

form given by

R o 4 2 < 3 3
¢ = ﬁ; =g+ st *+ [3(1 - ¢g) - 2]+ [s - 200 - ¢,)] ¢
©0<g, <1
where
u Y =y
s | 9 = d
. B 14 R S :
e aly a

and

L
¢=§;=wbws5% (< 21

for the reverse flow where

s YT %y
B T R e
e b

It is further assumed that the slope parameter s is coupled with ¢d

through s = g ¢d; therefore,
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Thus, the integrals F1 through F28 can be represented by

1 1
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These integrals can on.y be evaluated through numerical integrations.
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