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ABSTRACT

2

This paper discusses the considerations that led to the
individual technical requirements for the numeric computation
facilities for a common programming language for the Department
of Defense (LDoD). Of five kinds of arithmetic considered, one
floating-point and one form of fixed-point including integers
were found to be appropriate for the common language. The im-
plications of the various requirements for the language de-

signers, the compiler-writer, the user, and the machine designer

are considered.
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I. INTRODUCTION

A. PURPOSE

The technical requirements for a common programming lan-
guage have been developed through a long and tedious process
involving many considerations. For the most part, those con-
siderations and the rationale for individual requirements have
not been documented adequately. The requirements are detailled
in the Revised IRONMAN [1]. An older version of the require-
ments, the WOODENMAN [2], provided a brief rationale for many
of the technical requirements. The background to the project
and general design criteria for the language were discussed in
a paper presented at the 1977 Computers in Aerospace Confer-
ence [3].

This paper consolidates and expands the previous documenta-
tion to provide a more complete understanding of the depth,
breadth, and soundness of the fixed-point and floating-point
requirements. It 1s an attempt to (a) document some of the con-
siderations that led to the fixed-point and floating-point re-
quirements, (b) show the strengths and weaknesses of the argu-
ments supporting each requirement, and (c) point out both their
desirable and undesirable implications.

B. AUDIENCE

The intended audience for this paper comprises four groups:
potential users of the common language, language designers,
compller writers, and hardware designers. When appropriate, the
discussion is aimed specifically at one or another of the groups.
The considerations that led to the requirements involve all four

groups, but above all, the requirements are supposed to reflect
‘.
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the needs of potential users. These needs are not only for
certain capabilities in the language, but also for a language
design that will aid the production of reliable and maintainable
programs, that can become a common language, and that is prac-
tical to use. The problems of implementing compilers and opti-
mizing object code have also influenced the requirements.
Finally, many of the difficulties that users have to contend
with in the arithmetic of existing programming languages are a
direct reflection of hardware design errors that the language
designer has passed on to the user.

£ SEOPE

This paper is restricted to discussion of the technical re-
quirements that affect the numeric processing facllities of a
common programming language for the Department of Defense (DoD).
The relevant requirements are reproduced as the Appendix.

D. CAUTION

This report is provided only as an ald to understanding the
rationale that led to specific technical requirements. Informa-
tioi. presented here represents the oplnions of the authors and
in no way alters the meaning of the technical requirements pre-
sented in the Revised IRONMAN.

E. ORGANIZATION

The remainder of this chapter is divided into four sections.
Section F provides a brief history of the common language effort,
Section G discusses the methodology used in developing the tech-
nical requirements, Section H gives the overall philosophy of
the requirements, and Section I lists the major assumptions that
influenced the requirements for the fixed-point and floating-
point facilities. Chapter II explains the five kinds of arith-
metic that were considered. Chapter III discusses the require-
ments for a fixed-point facility in the form of scaled integers.

2
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Chapter IV discusses the requirements for a floating-point
facility.

F. HISTORY CF THE COMMON LANGUAGE EFFORT

The common language effort began in 1974 when groups in
each ¢f the Military Departments Iindependently proposed the
adoption of a common language for developing major defense sys-
tems. In January 1975, a joint service program was formulated
on the advice of the Director of Defense Research and Engineer-
ing (DDR&E*) [4]. Activities of this program, the common pro-
gramming language effort, are coordinated by the High Order
Language Working Group (HOLWG) which is composed of official
representatives from the Army, Navy, Air Force, and Marine Corps,
and from the Defense Communications Agency (DCA), the National
Security Agency (NSA), and the Defense Advanced Research Pro-
jects Agency (DARPA). The HOLWG is chaired by a representative
of USD(R&E). 1Individuals from the National Aeronautics and
Space Administration (NASA), the Office of the Assistant Sec-
retary of Defense for Manpower, Reserve Affairs, and Logistics
(OASD(MRA&L) ) and OASD-Comptroller also participate. The authors
of this paper act, respectively, as the technical advisor to the
HOLWG and as the representative of the British Ministry of De-
fence to the HOLWG.

The major concerns of the common language effort are to re-
duce the number of programming languages used in the DoD, and to
develop facilities to control, distribute, support, and provide
training for those that remain. Early in the effort, 1t was
realized that it would be impractical to convert existing pro-
grams to a common language. Thus, the common language 1s in-
tended only for new software systems and should not affect
existing programs. The intended applications are restricted to

¥Now Undersecretary of Defense for Research and Engineering
(USD(R&E) ).




embedded computer systems because they represent the majority
of costs, and, unlike data processing and scientific applica-
tions, do not currently benefit from a common language.

G. DETERMINING THE TECHNICAL CHARACTERISTICS

The HOLWG was chartered to formulate the requirements for
common high-order languages for DoD. In the spring of 1975, the
HOLWG began an effort to determine the characteristics of a
general-purpose programming language that would be suitable as a
common language for embedded computer applications of the DoD.
The characteristics were to be in the form of requirements which
would act as constraints on the acceptabllity of a language, but
would not dictate specific language features.

While there are several widely accepted general goals and
criteria (such as efficiency, reliability, readability, simpli-
city, implementability), they do not lend themselves to guanti-
fiable assessment. At the opposite extreme are specific language
features advocated by some, which if adopted as requirements,
would impose strong constraints on the form, but not necessar-
ily increase the effectiveness of the language. The arguments
for and against any specific language feature are applicable to
a class of features sharing certain properties, and often depend
on the other characteristics of the language. The requirements
attempt to isolate the needed properties from the features that
implement those properties. Initially, rigorous definition at
the level of requirements proved difficult as a position to be
confuted, so a STRAWMAN of preliminary requirements was estab-
lished. The STRAWMAN was widely circulated within the Military
Departments and, to a lesser extent, in the academic community
and industry.

The reviews of the STRAWMAN resulted in inputs which were
formed into a fairly complete, but still tentative, set of re-
quirements called WOODENMAN. This document contained descrip-
tions of the general (i.e., nonquantifiable) characteristics

4
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which were desired, together with many desirable characteristics
whose feasibility, practicality, and mutual compatibility had
not been tested. The WOODENMAN, too, was widely distributed,
not only within the Military Departments but also to other
government agencles, to the computer science research community,
and to industry. Additionally, a number of technical experts
from outside the United States were solicited for comments, the
European community being especially responsive.

Based on the various inputs and the official responses from
each of the Military Departments, a TINMAN set of requirements
was derived [5&6]. The TINMAN removed (former) requirements for
which there was no sound rationale, restricted requirements that
were unnecessarily general, and modified others to be practical
within existing technology. Each requirement in the TINMAN had
its own justification which was outlined in the document and
each individual requirement was judged to be feasible. The TIN-
MAN requirements were officially approved by the Assistant
Secretary for Research and Development of each of the Military
Departments in January 1976.

Wide distribution of the TINMAN (to contributors and other
interested groups) followed, and for a year comments were re-
ceived. 1In addition, a workshop [7] was held at Cornell Univer-~
sity in October 1976 to involve DoD representatives and the pro-
gramming language research cbhmunity in joint discussions of
technical issues that had been raised regarding the requirements
and to further investigate their feasibility.

Also, during 1976, 23 programming languages were evaluated
against the TINMAN. These evaluations were performed by 16 com-
panies and contractors., Most of the languages received at least
two evaluations with, in most cases, the designers of a language
included among its evaluators. The consensus of the evaluators
was that i1t is currently possible to produce a single language
that will meet the requirements [8]. That is, no technological




impediment to a single language was found, and it is likely that
potentially conflicting requirements, such as those for readable
programs, avoildance of unnecessary complexity, implementable
compilers, semantic and syntactic consistency, machine independ-
ence, and object code efficlency, can be met.

The languages that were evaluated included some currently
being used for embedded computer applications in the DoD (e.g.,
CMS-2, JOVIAL, SPL-1, and TACPOL), languages used for process
control and similar applications in Europe (e.g., CORAL-66, LIS,
LTR, PEARL, and RTL/2), research languages that were known to
satisfy specific requirements (e.g., EUCLID, MORAL, and ECL),
and languages that are widely used outside the DoD (e.g., COBOL,
FORTRAN, PASCAL, and PL/1). As might be expected, the more
modern languages tended to satisfy the requirements for relia-
bility and simplicity, while the languages for process control
and DoD applications more nearly satisfied the requirements that
reflect the special needs of embedded computer applications.

All of these efforts contributed to a new version of the
requirements, called IRONMAN, that was issued in January 1977
[(9]. The IRONMAN requirements are substantially the same as
those of the TINMAN, but have been modified for feasibility and
clarity, and are presented 1n a different format. The TINMAN
was discursive and organized around general areas of discussion.
The IRONMAN, on the other hand, 1s very brief and organized like
a language description or manual. The IRONMAN is still suffi-
ciently general to constraln the structure of a language without
dictating the detalls of its design.

The most recent revision, the Revised IRONMAN, was 1issued
in July 1977 and is available for comment [1]. This revision
incorporates four kinds of changes. Most are clarifications,
some remove redundancies that became apparent with the revised
format, a few correct errors and lnconslstencies that remained
from previous revisions, and the remainder deal with special
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cases that can arise from interactions between the features of
a language.

Each iteration of the requirements, beginning with WOODEN -
MAN, has reduced the number and generallty of the capabilities
requested. The requirements have become more precise, although
less constraining, as applications have become better under-
stood, as application software has been examined with respect to
known language features, and as more emphasis has been placed on
the general requirements for reliability, maintainability, and
efficiency.

At each iteration, the tentative requirements were distrib-
uted by the HOLWG and comments and suggestions were collected
and coordinated by the Services. The resulting inputs were
analyzed and integrated into a consistent set of requirements
by the Institute for Defense Analyses (IDA).

One surprising result of the requirements effort has been
the similarity of the requirements within the different applica-
tion areas. Early in this program, there was a feeling that
different user communities might have fundamentally different
requirements with insufficient overlap to justify a common lan-
guage or might have critical requirements that were incompatible.
Such communities include avionics, guidance, command and control,
communications, and training simulators. It has been impossible
to single out different sets of requirements for particular com-
munities. Almost all the potential'users have the same require-
ments at the level of language characteristics, but different
priorities. Often the priorities vary among segments of a given
task. All users need input-output, real-time facilitiles, strong
data typing, etc. Upon reflection, the technical rationale for
this is clear. The surprise was historical and based on the
observation that in the past the different communities have
favored different language approaches. Further investigation
showed that the origin of this disparity was primarily adminis-~
trative rather than technical. Thils did not, however, establish

7
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that a single language could meet all the stated requirements,
only that, if a language meeting all requirements were found,
it would satisfy the perceived needs.

In all 74 commands and offices within the DoD, 66 indivi-
duals outside of DoD, and 43 companies and organizations (not
counting the workshop at Cornell or the language evaluation
efforts) have contributed over 2000 written pages of commentary
on the requirements. Not all of theilr suggestions have been
adopted and many have been modified before acceptance, but each
has been considered in sufficient detail to determine whether it
should or should not be followed.

H. PHILOSOPHY OF THE TECHNICAL REQUIREMENTS

The technical requirements reflect six major goals for the
common language: (a) that it be suitable for software in DoD
embedded computer systems) (b) that 1t be appropriate for the
design, development, and maintenance of reliable software for
systems that are large, long-lived, and continually undergoing
change; (c) that it be suitable as a common language (i.e.,
complete, rigid, and machine-independent standards can be estab-
lished)$ (d) that it will not impose execution costs in applica-
tions where it provides unused or unneeded generality; (e) that
it provide a base around which a useful software design, develop-
ment, maintenance, and support environment can be builtj and (f)
that it be an example of current good language design practice.
At the highest level, the technical requirements take the form
of general design criteria that are most strongly influenced by
the first three goals above.

The characteristics of military software and of the DoD
software environment impose several general design criteria on a
suitable language:

e Reliability. The combination of extremely complex sys-
tems and 1life and death implications may be unique to

8
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the military. Language characteristics which promote
the production of reliable software are weighted very
highly.

Modifiability. Most software costs (perhaps up to 90
percent) in embedded computer systems in the DoD are for

software maintenance. Language features that contribute
to the maintainability of reliable and efficient pro-
grams should have a major impact on software costs.

Efficiency. Efficlency of object programs is a legiti-
mate and sometimes critical concern in military applica-
tions. Physical limitations of military systems (e.g.,
alrcraft) impose time and space limitations on computa-
tions. Software that cannot meet these constraints is
worthless.

The desire for a common language that can be widely used
throughout the DoD adds still more design criteria:

Machine Independence. Over 200 computer models are

known to be used currently in the DoD. The language
must be sufficiently machine-independent that it can be
made available on a variety of object machines.

Practicality. The language must be sufficiently easy
and inexpensive to implement that it will become widely

available,

Complete and Unambiguous Definition. The language must

have a complete and unambiguous definition to ensure
that software can be shared and to avoid incompatible
implementations.

Easily Accessible Support Software, The availability

of useful and easily accessible support software is, of
course, the ultimate technical goal of the common lan-
guage effort, but the ease or difficulty in buillding
such a support environment can be influenced strongly
by the language characteristics.




The characteristics of a suitable language listed above
were translated into a series of eight general requirements that
constitute the first chapter of the IRONMAN requirements. These
requirements are further expanded into specific constraints on
the design of an appropriate language.

I. ASSUMPTIONS

The following assumptions were made in determining the
technical requirements:

e Software rellability, object code efficiency, and modi-
fiability of programs are more important than ease (i.e.,
terseness) of programming.

e The language must be as machine-independent as possible,
but must be implementable on a wide variety of existing
machines (i.e., as object machines).

e It 1s not necessary that all object machines be able to

| — e

host the translators.

e Floating-point computations will be required only on
object machines that have floating-point hardware.

Additional assumptions made with respect to specific re-
quirements are discussed in the text.

10
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II. TYPES OF ARITHMETIC

The common language 1s intended for a broad class of em-
bedded computer applicatlons that include sensor processing,
real-time control, simulation, diagnostics, counting, record
keeping, and display. All of these applications require numeric
computation facilities in varying degrees of sophistication.

The technical requirements for numeric computation facilities
appear as Section 3 of the requirements document [1] and are re-
produced in the Appendix.

Five kinds of arithmetic were considered: (a) integers,
(b) fractions, (c) floating point, (d) scaled integers, and (e)
scaled fractlions. The four kinds other than floating point are
particular forms of fixed-point arithmetic. The implications of
each of these forms of arithmetic for the user and the trans-
lator are discussed in separate sections below.

A. INTEGERS

Counting 1s required in all digital applications, so some
form of integer computation facility must be provided in every
general-purpose program language. In addition, integers are
often used to represent other data types that are not built into
the language, for indexing arrays, and in all applications that
have integer data,

Operations for integer arithmetic produce integer results
from integer operands. Integer operations for addition, sub-
traction, multiplication, integer division, and remainder from
integer division are usually needed. Integer operations can be
computed and represented exactly in digital computers.

il
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Because the representatlion of integers in computers must
be finite, there is always some maximum range of integers that
can be represented. The likelihood of errors from computations
that exceed the available range 1s low because (a) the user
usually knows the range of the (integer) values to be expected,
and (b) the arithmetic hardware frequently provides a warning
(1.e., fixed-point overflow) durlng execution whenever the re-
sult of a computation exceeds the maximum available range.

Most digital computers have hardware facilities for fixed-
point arithmetic. That 1s, they provide arithmetic operations
that assume that numbers are represented with a fixed number of
digits and with the radix point either at the extreme right or
extreme left of those digits (at the option of the user or trans-
lator writer). If one assumes that the radix is at the right,
such machines implement integers directly.

A few computers have only floating-point hardware. In such
machines, integers must be represented in floating-point format
and the arithmetic must be executed using floating-point instruc-
tions. One special problem is assoclated with the implementation
of integer arithmetic on floating-point hardware. If a result
has more diglts than can be represented exactly (i.e., integer
range error), the usual floating-point convention is to discard
the least-significant digit. This produces a result that only
approximates the exact mathematical value and, therefore, can
introduce unexpected errors in integer computations. A prac-
tical solution to the problem is for the hardware to provide a
fixed-point overflow condition that 1s ralsed whenever a nonzero
least-significant digit must be discarded to accommodate the
value in the floating-point representation.

B. FRACTIONS

Fractions are numbers whose absolute values are less than
one. Fractional computations are a form of arithmetic in which

12
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the operands and results of all arithmetic operations must be
fractions. Because the representation of fractions in computers
must be finite, there 1s always some maximum number of digits
that can be represented, Less-significant digits are discarded.
Thus, fractional arithmetic is most useful for computation in-
volving data determined from physical measurements and other
computations in which results need not be exact, but only com-
puted to some finite precision (1.e., number of digits).

Fractional operations for addition, subtraction, multipli-
cation, and division are usually needed; Each arithmetic opera-
tion produces a result that 1s rounded (or truncated) to the
nearest representable value. '

Fractional arithmetic is difficult to use because the user
must scale all data so that it will be between -1 and 1. He
must be sure when adding (or subtracting) that the absolute
value of the sum (or difference) will be less than 1. He must
be sure that the absolute value of the divisor is greater than
the absolute value of the dividend on each division. He must
determine the effective scale of final results in order to pro-
perly interpret output, All these conditions must be determined
when the program 1is written (i.e., without knowledge of the
exact data values).

Use of fractional arithmetic 1s further complicated because
the effective precision of values 1s reduced whenever there are
leading zeros in their representation. Ideally, the user must
pick a scale for each value, X, that will maintain the magnitude
1 < IXl < 1 where B is the
radix in which the number 1s represented.

of its representation in the range B~

Fractions are important because they can be used for in-
exact computations on noninteger values and because they can be
implemented directly using the fixed-point hardware availlable
on most digital computers (i.e., by interpreting the radix point
to be on the left). Fractions correspond to the mantissa of

13




numbers represented in scientific notation. The corresponding
exponent (or characteristic) must be known, computed, and repre-
sented by the user as he writes a program.

C. FLOATING-POINT NUMBERS

Floating-point numbers are a finite approximation to
numbers in scientific notation (i.e., computations in which
exact results are not needed). Each floating-point number has
a mantissa, M, an exponent, E, a radix, B, and a value MxBE.
Because floating-point numbers have a finite representation, the
mantissa has limited precision (i.e., number of digits in its
representation) and the exponent is limited to some finite range.
Floating-point values are often normalized (i.e., stored with a
unique representation in which the absolute value of the man-

tissa, |M|, of all nonzero values is in the range B g IM| < 1,

Floating-point arithmetic operations produce values that
are close to the values that would be produced by applying the
corresponding mathematical functions to the operands and then
rounding the result to the nearest representable floating-point
number,

Floating-point arithmetic is useful in any computation in-
volving data representable in scilentific notation. Floating
point is easlier and less error-prone in use than are fractions.
Floating point 1is needed in computations where the ranges of
values are not known at the time a program is written (i.e.,
where fractions cannot be used).

Floating point 1s not necessary if the exponent values are
known during translation. Floating point requires more storage
than fractions or integers for the same precision because the
exponent as well as the mantissa must be stored during execution.
Floating point requires special arithmetic hardware to manage
the exponents during arithmetic operations and to maintain values
in a normalized representation. This makes the hardware more

14
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expenslive and frequently adds time to the execution of arith-
metic operations (although these extra costs are often unim-
portant). Floating point is very expensive to use 1if imple-
mented in software. The automatic rescaling by floating-point
hardware not only makes floating point easier to use than other
forms of arithmetic, but also makes floating point more dangerous
to use. Because the scale management is automatic, the user is
unaware of situations in which all significance (i.e., accuracy)
is lost in a computation.

D. SCALED INTEGERS

Scaled~integer arithmetic, like integer arithmetic, is a
system for exact numeric computation. A scaled integer is a
product of an integer, M, and a scale, A. Any set of values can
be represented exactly with the proper choice of A. Also, since
any value can be approximated to any granularity by a suitable
cholce of A, scaled integers offer an alternative to fractions
and floating-point numbers when noninteger computations are re-
quired.

The scale in the representation of a scaled integer must be
specified as a constant when the program 1s written. This means
that scaled integers cannot be used when the appropriate scale
is unknown until execution (i.e., those cases in which floating
point is required).

The translator can determine the scales of results during
translation as a function of the scales of the operands. Conse-
quently, only the (integer) mantissa, M, need be stored during
execution and all operations during execution will be integer
operations on the mantissas. Scaled-integer arithmetic can be
exact because computing a mantissa involves only integers and
computing the scale can be done symbolically because scales are
processed only during translation and because (as will be seen
later) only the prime factors and not the actual values of the
scales are needed.

15
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Applications that require exact computations on nonintegers
can use scaled integers providing (a) the needed scales are
known, and (b) the language allows the needed scales to be used.
Applications that do not require exact computations can use
scaled integers, providing the scales can be chosen to a suffi-
ciently fine granularity to represent the needed precisions.

Scaled integers have been provided in many programming lan-
guages, usually with restrictions on the choice of scales. Many
languages restrict the scales to a limited range of powers of 2
(1.0., & = 2N, with -P < N < 0 where P is the number of bits in
the mantissa of the fixed-point representation of the object
machine). Removing this restriction on N increases the time for
neither compilation nor execution of a program, but it does
greatly increase the ranges of values that can be represented
(in fact, it permits ranges that cannot be represented in float-
ing point).

Restricting A to powers of 2 does not affect the complexity
of the scale computation. During execution, however, the cost
of scale conversions can sometimes be reduced (assuming the
obJect machine is binary) by using shifts instead of multiplying
by powers of 2, If the language did not place restrictions on
A, then a similar saving could be made whenever A is a power of
the object machine radix. In many cases, however, multiplica-
tion would be required for scale conversion.

E. SCALED FRACTIONS

If integer scales can be managed automatically by compilers,
then possibly so can scales of fractions. To automatically
manage the scales of integers, it 1s necessary during transla-
tion to know only the maximum acceptable granularity and maximum
ranges for the variables that are needed. To automatically
determine the results scales for fractions during translation,
it 1s necessary to know the expected values of variables, within

16
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a few (preferably one) powers of the radix (i.e., upper and
lower bounds on the magnitude of the value of the variable).
The lower bound is often difficult to predict. Finally, appli-
cations that require exact computation cannot use scaled frac-
tions,

F. CHOICE OF TYPES

Some points from the above discussion are illustrated in
Table 1, which shows the appropriateness of each of six types
of arithmetic to each of four generic classes of applications.
The columns correspond to integer computations, exact noninteger
computations, inexact computations in which the upper and lower
bounds on the magnitude of values are known when the program is
written, and general inexact computations. A "YES" means that
the arithmetic type can be used for the application. "NO" indi-
cates that i1t would be very difficult or impossible to accom-
plish the computation with the designated numeric type. "DIFFI-

CULT" indicates that although the computation can be accomplished,

the use of this numeric type will be difficult, or inefficient.

TABLE 1. SUITABILITY OF NUMERIC TYPES TO APPLICATIONS

Application
Exact Results
Exact Results Needed Hot Nesded
On On P g:th b1 w?hou;l
redictable Predictable
Type Integers Nonintegers Valoki Yaluas
Integer Yes No No No
Fraction No No Difficult No
Floating Point Some No Yes Yes
Problems
Scaled Integer Yes No, except Yes No
a = 2N for powers
of 2
Scaled Integer Yes Yes Yes No
Unrestricted A
Scaled Frac- No No Yes No
tions
17
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The numeric types chosen for the common language are integer

and fixed point in the form of scaled integers, and floating

point.

The main considerations for each type are given below:

Integer. Integers are not needed if scaled integers

are provided. On the other hand, integers are so fre-
quently needed and are sufficiently simpler in their use
than are scaled integers, that integers should be either
a distinct type or a special case of scaled integers.

Fractions, Fractions provide no power that is not pro-
vided with more simplicity by the other types. Frac-
tions should not be included as a type in the common
language.

Floating Point. Floating point is essential for some

applications and, therefore, should be provided by the
language. Because floating-point hardware is not avail-
able on all object machines, floating point is not always
a viable alternative to scaled integers or fractions when
the magnitude of values are known at translation time.
Floating point is required, but its inclusion does not
alleviate the need for some form of automatically scaled
arithmetic. Also, because floating point is so expensive
if implemented in software, it need not be provided in.
object machines that do not have floating-point hardware
(1.e., we assume that if the application requires float-
ing point, it will use a machine with floating-point
hardware),

Scaled Integers. Scaled integers are needed for exact
computations on nonintegers and applications should not

be restricted to powers of 2 (in particular, powers of

10 are needed). Scaled integers aiso offer an accept-
able alternative to floating point when the magnitude

and scale of values are predictable at the time of trans-
lation. Scaled integers also permit wider precision of

18
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values than 1s normally provided by a floating-point
facility. A fixed-point type in the form of scaled in-
tegers should be provided by the language.

Scaled Fractions. Scaled fractions provide few advan-

tages over scaled integers and cannot be used when exact
results are required. Thus, scaled fractions should not
be built into the language.

19
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ITI. FIXED-POINT AND INTEGER TYPE

The language shall provide a fixed-point and integer type
(3-1Aa*). Integers are intended for all integer computations
including counting, denoting the ordinality of a particular ob-
Ject in a set of similar objects (i.e., indexing), and repre-
senting elements (i.e., atoms) of data types that are not built
into the language. Fixed-point numbers are intended for all
numeric applications that involve values other than integers and
require exact results, for numeric computations in which the
ranges of values do not vary dyrnamically, and as a substitute
for floating point when floating-point hardware is not available.

A fixed-point and integer type can be implemented effi-
cliently on most existing digital computers. Each fixed-point or
integer variable in a program is required to have a range, Rl to
R2, and a positive scale, A, chosen and specified in the program
by the user, All values, X, that must be represented in such a
variable must be within the specified range (i.e., Rl < X < R2)
and must be integral multiples of the scale. For integers, the
scale 1s 1. Because the scale of each variable is constant dur-
ing execution (3-1G), a value of the variable can be represented,
in the scale, A, as a single integer M where MxA is the value.
The amount of storage required for the variable (e.g., word
width) 1s Just that needed to store any integer M where

Rl/A <M s R2/A°

¥Hereafter references to the Revised IRONMAN are indicated by
the requirement number in parentheses. In some cases the re-
quirement number 1i1s followed by a lower-case letter to indicate

the sentence. oy
(o
(e
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A. RANGE

The range of each fixed-point and integer variable must be
specified in programs (3-1Ca) and indicates that all legal
values lie within the 1limits of the range. Range information
can be helpful in understanding and maintaining programs, it is
needed by the translater to determine how much space must be
allocated to a variable. It is also a form of assertion which
can be used to aid proofs of correctness or which can be checked
automatically during execution. If the value lies outside the
range, a range error 1s sald to have occurred.

A range specification shall be interpreted by translators
as the minimum range to be implemented (3-1Cb). That 1is, every
implementation of variables with a particular specified range
will support that range on the designated object machine (or
state that the variable cannot be represented). However, effi-
clency considerations may dictate that a desirable implementa-
tion should support a wider range than that specified. This
wider range 1s known as the implemented range and may vary from
object machine to object machine, or within the same object
machine according to optimization needs. By permitting a vari-
able to have unused states in its implementation, a language
allows the translator to select the most efficient implementa-
tion that will not adversely affect the program correctness.
For simple variables, a full word is usually the most efficient
representation, regardless of the specified range, so that the
range specification simply gives the translator a way to deter-
mine whether the obJect machine word length 1s adequate.
Arrays, however, can often be represented more compactly, and
without loss of execution time, where it is known that a par-
tial word representation will be adequate.

The range of each fixed-~point and integer variable must be
determinable at the time of 1ts allocation (3-1Ca). For most
variables, the specified range will be constant and, therefore,
can be determined durlng translation. In most object machines,
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the only efficient representation will be as a full word, so the
actual range need not be known during translation. Indeed,
there are cases where 1t 1s desirable to delay binding of the
specified range until scope entry (e.g., within a procedure, a
local variable that 1s used to index an array parameter should
have 1ts range bound to the array subscript range which may vary
from call to call). In such cases, it is safe for the translator
to use the largest representation that is used elsewhere in the
program (and which typically will be the largest efficient in-
teger representation). An optimizing compiler might implement
the minimum range that will satisfy all the actual ranges that
can occur during execution.

The maximum range of 1lntermediate results in an expression
can be determined automatically from the operations and the
range of the operands. Each operation, however, tends to expand
the range of the result so that in an assignment statement or
similar context, the maximum computed range will almost always
exceed the range of the variable being assigned (e.g., X«X+1
contains a potential range error because the computed range of
X+1 will not be within the range of X).

One way to eliminate range errors is to require the use of
explicit range conversion operations (such as modulo) that will
guarantee that values will be in range. Because such range con-
version operations would have to be numerous 1n programs, they
would detract from readability and would reduce efficiency.
Hence, explicit conversion operations shall not be required be-
tween numeric ranges (3-1Cc).

Another way to eliminate range errors 1is to use implicit
range-conversion operations. There are many choices: reduce
each value modulo the specified range, reduce each value modulo
the implemented range, replace any value that 1s out of range
by the nearest extreme value of the range, replace any value
that is out of range by a designated constant, etc. Any of
these choices can cause unexpected results, most would add to

23

—_— gy Pt I e .- - — —_— : & G




execution costs, and none would be'appropriate for all applica-
tions. Implicit range conversions modulo the implemented range
would be most efficlent and has been a traditional method be-
cause they can be implemented directly by most integer and float-
ing-point hardware. Because word lengths are not standardized,
however, such a choice would require that the semantics of cor-
rect programs be machine-dependent.

A third alternative is to ralse an exception during execu-
tion whenever a range error occurs. This is the approach taken
by IRONMAN. The language will support a mechanism, exception
handling, whereby the user can specify, in the program, the
appropriate responses to different errors detected during
execution of the program. There shall be exceptions during
execution whenever a value exceeds either the specified range of
a variable or the implemented range (10Ba). However, tests to
determine the presence of values outside the specified range can
be expensive during execution because they must be done in soft-
ware on current machines. In some cases, the translator will be
able to prove that a range error cannot occur and, thus, can
safely eliminate the corresponding test. Tests to detect values
outside the implemented range are often inexpensive because they
can be implemented directly using the integer or fixed-point
overflow interrupt of the object-machine hardware. A programmer
option that can improve efficiency without much loss of safety
is to suppress detection of errors on the specified range (10Ga)
but not on the implemented range. The effect on the implementa-
tion should be the same as if the specified range were extended
to exactly the implemented range. Thls does not affect the
semantics of correctly written programs, regardless of object
machine, but it can lead to different results on different hard-
ware (e.g., different word widths, different overflow detection
mechanisms) for incorrect programs.

A closely related problem arises in determining the range
of intermediate results, Although the variables of a program
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may have ranges that are efficiently implementable in the object
machine, the worst-case ranges (as computed from the ranges of
the operands) for intermediate results in an expression may ex-
ceed any range that can be implemented efficiently without loss
of information., In correctly written programs, the actual inter-
mediate results will tend to be within efficiently implementable
ranges.

The language designer has several choices when there is a
potential error on the implemented range of an intermediate re-
sult. The language might require the translator to (a) change
the scale of the intermediate result so that information is lost
from the least-significant digits, (b) give an error during
translation, (¢) provide a safe but inefficient implementation,
or (d) provide an efficient implementation with an exception
during execution if the actual value does exceed the implemented
range.

The first approach should be discounted because it would
lose information in a fixed-point facility that is to provide
exact results. The second case will give a translation error
in the frequent case in which the actual values can be effici-
ently represented but the potential values exceed any efficiently
implemented range. The third approach 1s theoretically best be-
cause 1t 1s safe and does not complicate the language. It may,
however, complicate the translator and will unnecessarily in-
crease the execution costs of programs in which the potential
range exceeds the maximum efficiently implementable range, but
the actual values do not.

The last (fourth) approach 1s also safe because range
errors will be detected during execution. 1Its primary advantage
is that no unnecessary execution costs are incurred for the
usual situation in which the actual data does not cause a range
error. Its main disadvantage 1s that 1t places an extra burden
on the user when the actual values exceed the implemented range.
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The translator should warn the user (during translation) of

o —

those situations where there 1s a potential range error (i.e.,

a warning that the implemented range does not cover the full
(implicitly specified) range of an intermediate result). A
variation of the last approach is for the translator to imple-
ment an automatic (correct but inefficient) reevaluation of the
expression in response to the range exception. The language
definition should specify which semantics will be given. If the
fourth-case semantics 1s the choice, translators can use the
third or either of the fourth case implementations.

B. SCALE

Every value of a fixed-point variable is an integral mul-
tiple of the variable's scale or step size. The step size of
each variable must be chosen individually to match the needs of
the application, but can be fixed during translation (3-1G) to
permit the most efficient implementation. Because the scale of
each variable 1s known during translation and 1s unalterable
during execution, only the integer need be stored during trans-
lation.

Scale conversions take place when a value has a scale which
differs from that of the variable to which it is being assigned.
Conversions can be divided into two groups, those for which the
values can be represented exactly in the target scale (i.e., of
the variable), and those which cannot be so represented. As an
example of the first, one might want to assign the value of a
variable that has a scale of 1/2 (i.e., values that are a mul-
tiple of 1/2) to a variable of scale 1/4. 1In such a case (i.e.,
any case for which the scale of the value 1s an integral mul-
tiple of the scale of the variable), the value can be repre-
sented exactly in the variable and such assignment should be
allowed without an explicit scale conversion operation in the
source program, since the actual value is unchanged. With the i
most obvious representation for these scales (i.e., radix points
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one and two binary digits from the least significant end of the
word for scales 1/2 and 1/4, respectively) a one bit shift left
would be required as part of the assignment. In general (i.e.,
for scales that differ by an integer that 1s not a power of the
radix of the object machine), implicit scale conversions will
require an integer multiply instead of a left shift.

Many implicit scale conversions can be eliminated during
translation by using less compact representations. In the above
example, the value of scale 1/2 could be kept (or computed) in
the scale 1/4, and a zero kept in the (additional) least-signifi-
cant bit of the mantissa. This method can eliminate execution
time for implicit scale conversions, but reduces the range of
the values that can be represented and may add to the cost of
multiplication to avoid unnecessary (implemented) range errors
in intermediate results.

Fixed-point and integer values are intended for computa-
tions that require exact results or require a detail of control
that can be obtained only with an exact computation (3+1Fa).

On the other hand, it 1s sometimes necessary to convert numeric
values to a scale which cannot represent them exactly. That 1s,
some other (arithmetically close) ralue in the desired scale
must be used instead of the computed value. To avoid implicit
changes in value, the language shall require explicit scale con-
version operations whenever the abstract value may be changed
(3-1Hb).

There shall be built-in operations for conversion between
fixed-point (and integer) scale factors (3-1Ha). Rescaling can
be done by either truncation or rounding, but which 1is appro-
priate for a given application cannot be determined automatic-
ally by the translator. Consequently, there shall be no impli-
cit truncation or rounding in fixed-point and integer computa-
tions (3-1Fb).
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There are two common definitions of truncation, towards ‘
minus infinity (i.e., the greatest value in the target scale
not greater than the source value), and towards zero (i.e.,
in the target scale, the value that 1s farthest from zero but
is not farther away than 1s the source value). The major

| —

invariant property of the first is:

TRUNCATE(X+na,A)
while the second has

TRUNCATE(X,A)+n,

TRUNCATE (-X,4) -TRUNCATE(X,A) .

It is possible, but nontrivial, to convert one definition
to the other. It may be deslrable that any cholce between the
two be compatible with the definition of integer divide and the
remainder operation (see III-C, below) which corresponds to the
decision between whether the sign of the remainder is the same
as the sign of the divisor or the dividend. (An always positive
remainder has no equivalent, reasonable definition for truncation.)

Rounding is the process of obtaining the "nearest" value in
the target scale. With the first definition of truncation,
rounding a value X to scale A can be expressed as

ROUND(X,A) = TRUNCATE(X+a/2,4),
whereas the second definition leads to
ROUND(X,A) = TRUNCATE(X+sign(X)xa/2,a).

These two definitions have their hardware analogue in two's
complement and one's complement implementations of arithmetic.
However, the language definition must choose one which trans-
lators must then implement, regardless of the object machine.

A firm resolution of this 1ssue in languages might lead to great-
er uniformity in hardware design.

The cholice between the two is not clear-cut, but several

——

factors can be noted. 1In particular, the invariant of the first
has greater applicabllity than that of the second because 1t 1is
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true for any integer n rather than just -1. Where existing
high-level languages have taken a position, they have chosen
the first definition (e.g., entier in the Algol's and floor in
APL). On machines that directly implement truncation toward
zero, truncation toward minus infinity is relatively more ex-
pensive to implement. In most cases, however, the actual value
will be positive (in which case the two forms of truncation are
indistinguishable) and will be known to be positive by the
translator (because of range specifications), so that whichever
hardware implementation is available can be used. Thus, it
appears that there are valid arguments both ways. To avoid am-
biguity , however, the language must define truncation and divi-
sion on negative arguments.

Truncating and rounding are always to some scale, A. To
avold the introductlion of scales that vary during execution, the
desired scale in a scale-conversion operation must evaluate to a
constant during translation.

In some contexts, the actual parameter specifying the scale
in an explicit scale conversion will be redundant and may be
omitted. Such contexts include the right hand sides of assign-
ment statements (where the scale 1is that of the variable, for
example, X+«ROUND(Y)), actual parameters (where the scale is
that of the formal parameter), and array indices (where the
scale 1is one).

Although explicit rescaling 1s always safe, it 1s unneces-
sary whenever it 1s known by other means that an actual value
(but not all values of 1its scale) 1s exactly representable in
the desired scale, For example, a value of scale 1/4 is com-
puted to be assigned to a variable of scale 1/2, but it is known
that the actual value in this case will be a multiple of 1/2.

In such a case, neither truncation nor rounding will alter the
value but might unnecessarily increase the execution costs. Un-
necessary scale-~conversion operations can be omitted from the
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object program wherever the translator can determine that the
optimization 1s safe.

What fixed-point scales should be allowed by a language?
Because fixed-point computations are exact, the scale must be
exact; fixed-point scales cannot be floating-point values.
Several possible choices for the scales that a language should
allow have been suggested: negative powers of 2, any power of
2, powers of 10, integers and their reciprocals, any rational,
and any real number, Powers of 2 and 10 (both positive and
negative) and their products are most useful. In special situa-
tions, other rational scales might be needed. Irrational num-
bers are sometimes useful (e.g., a variable might contain only
multiples of pi). Because scale computations are done entirely
at translation time, they cannot add to the execution costs. The
choice of the scale affects execution only during scale conver-
sions; rescaling by powers of the object machine radix can be
done by shifting, while the rest require multiplication.

Once powers of 2 and 10 are allowed, allowing any integer
or reciprocal of an integer as a scale will not add to the com-
plexity of the language or its translators. Similarly, once
powers of 2 and 10 and their products are allowed, allowing any
rational scale will not increase the complexity of the language
or its translators (the computational details are discussed in
Sections C and D below). Irrational scales, on the other hand,
are seldom useful, would add to the complexity of translators
(1.e., such scales would have to be treated symbolically), but
are not expensive in execution (i.e., the methods of Sections
C and D also apply to irrational scales).

C. FIXED-POINT ARITHMETIC

If all rational scales are allowed for fixed-point values,
then any rational number can be represented exactly. There will
be one abstract value corresponding to each fixed-point repre-
sentation (1.e., mantissa and scale). Information need not be
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lost in fixed-point computations. Fixed-point arithmetic should
be exact with each operation producing a fixed-point representa-
tion for the abstract value that is the exact result of applying
the corresponding mathematical operation to the abstract values
represented by the operands (3-1Fa).

Several fixed-point and integer arithmetic operations are
needed: addition, subtraction, multiplication, integer division,
remainder, and division (3-1Bb, 3-1Ha). All of these operations
have well-defined meanings, are usually included in programming
languages, are useful in any language that requires exact arith-
metic, and can be efficlently implemented.

The individual operations are discussed below., In each
case, operands will be designated as XiA1 i=1,2 where X1 is the
integer mantissa of the internal representation and Ai 1s the
rational number that is the specified scale and is processed
entirely during translation. The symbols and abbreviations used
below are for exposition in this paper and do not represent a
preference for a common language.

Addition and subtraction are least expensive when the scale
of their operands are identical: XlAl + X2A1 = (X1 + X2)Al. When
the scale of the operands differ, they can be (implicitly) con-
verted to a common scale without altering their abstract values
(3-1Hb).

Let this common scale be A3. Then, XlAl = xl(Al/A3)A3
where A3 has been chosen so that Al/A3 is an integer. Thus,

addition and subtraction might be accomplished as
XlA1 + X2A2 = xl(Al/AB)A3 + X2(A2/A3)A3
(XlAl/A3 + X2A2/A3)A3.

For the most efficient representation of the sum or difference,
A3 should be as large as possible. Al/A3 and A2/A3 are thus the
smallest pair of integer multipliers, for exact addition and sub-
traction, between values in the scales 44 and ds. They have no
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common integral factor (i.e., greatest common divisor, GCD)
greater than unity (otherwise it would have been absorbed into
A,

3)

It 1s neither trivial nor difficult for the translator to
evaluate A3. Ai can be represented as the quotient of the two
coprime (i.e., relatively prime) integers, P, and Qi (1.e.,
A1=P1/Qi, and GCD(Pi,Qi) = 1), “THu#,

i

P Fo anfgBalp .00,

2
X — 5
2 q, %9,

A3=P3/Q3 is the rational factor common to both halves of this
GCD(P1Q2,P2Q1)
expression and is . Since P, and Q, are coprime,
Q,9, £ 1

GCD(P,,P,) * GCD(Qy,Q,)

this reduces to o) which further reduces to
12
GCD(Pl,PZ)
EEMT@I?@;T where LCM 1s the least common multiple. Thus, P3 and
P3 GCD(Pl,P2)

Q3 are the smallest integers such that Q§-= oM Ql’Q2- and the

required addition or subtraction is achieved by multiplying X1
P1 LCM(Ql,QZ) P, 5 LCM(Ql,Q2)

by QI X EEﬁT?ITFET and X2 by 65 EEET?I:?ET « It will be ob=-

served that both reduce to integers (i.e., only multiplicative

rescaling 1s required) since GCD(Pl,PZ) is an integral factor of

both Pl and P,, and also that Q1 and Q2 both divide LCM(Ql,Q2)

exactly. GCD(Pl,P2) and LCM(Ql,Qg) are coprime since P1 and 01,

and also P2 and Q2, are coprime, and hence any factor of

GCD(Pl,Pz) is a factor of P, and P, and cannot, therefore, be

a factor of Ql or Q2, and hence not of LCM(Ql,Qz). Thus,

P3 = GCD(Pl,P2) and Q3 = LCM(Ql,Qg). By analogy with integers,

it will be useful to treat A3 as the GCD(Al,Aa) in the rest of

this paper.
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8,5

- - = l
5 ¥ P2 l, then A3 EEMTQITQET
(e.g., 1/2's and 1/3's must be added in 1/6's, which is intui-
tively correct). Also, if the operands have the same scale
(1.6, P, = P, and Q, = Q2), then A3 = Pl/Ql so that addition
and subtraction 1s performed directly in the scale of the argu-

It will be noted that, if P

ments.

At most, one multiplication is required during execution to
convert each operand. If an operand's scale is a multiple of
= GCD(Al,Az) or
= GCD(Al,A2)), only one conversion is necessary. In the

the scale of the other operand (i.e., A
fa
usual case for addition and subtraction, the operands' scales
will be identical and no scale conversion will be needed. When
several incompatible scales are added or subtracted in a single
expression, each operand can be converted to the final result's
scale and no additional scale conversions will be needed for
intermediate results.

It should be noted that implementation of scale management
by the translator is eased if it is remembered that
GCD(P,Q)xLCM(P,Q) = PxQ., There are reasonably efficient "arith-
metic" implementations for the evaluation of GCD(P,Q) based on
GCD(P,Q) = GCD(P-Q,Q). Alternatively, a "list processing" imple-
mentation of scale factors in the translator could be considered
(e.g., 12 = 22x31 could be represented as <<2, 2>, <3, 1>>),
in which case GCD, LCM, and multiplicatlon become list-process-
ing merges (i.e., min, max, and pointwise addition, respectively).
This approach enables the numerator and denominator of the scales
to be held together (e.g., 50/27 = <<2, 1>, <3, =3>, <5, 2>>).

Multiplication never requires rescaling of the operands.

The scale of the product 1is the product of the operand's scales:
Integer division is an exact division operation that can be

defined over all fixed-point values and in all contexts. The
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result of the integer division, X:Y, can be defined as the
largest integer that 1s not greater than the true quotient of

X divided by Y. Integer division by zero is undefined and should

cause an exception. As thus defined, integer division has the
property: (X+nY):Y = X:Y+n for any integer n and corresponds
to truncation towards minus infinity.

A remainder (or modulo or residue) operation, MOD, can be
associated with integer division and is normally defined as the
difference between the dividend and the product of the divisor
and the integer quotient: MOD(X,Y) = X-(X:Y)xY. With the above
definitions, X:Y < X/Y and the sign of the remainder is the sign
of the divisor.

An alternative definition of integer divide 1is truncation
towards zero of the true quotient, and has the properties that

ABS(X:Y) ABS(X):ABS(Y),

and ABS(X MOD Y) ABS(X) MOD ABS(Y).

In this case, the sign of the remainder i1s the sign of the
dividend.

The scale of the remainder will be the same as the scale
of the difference between the operands. Thus, the scale of
(X1A1+X2A2)XX2A2+MOD(X1A1,X2A2) will be GCD(lXA2,GCD(A1,A2))
which 1s GCD(Al,Az), even though it 1s exactly representable in
scale 4,. This implies that X = (X:Y)xY+MOD(X,Y) will be true,
but that X <« (X:Y)xY+MOD(X,Y) will be interpreted as a scaling
error when GCD(Al,AQ) # Al.

Full division of fixed-point numbers is also useful and
will always produce a result that can be represented as a fixed-
point number. However, in general, the result scale for divi-
sion cannot be determired until execution because it depends on
the mantissa of the divisor. Fixed-point division can be imple-
mented in a language with static scales if the user 1s required
to specify the desired scale for the result. That 1s, the
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language might permit expressions of the form: TRUNCATE(X/Y,S)
or ROUND(X/Y,S) where the scale S 1s a constant.
TRUNCATE(XlAl/x2A2,A3) can then be implemented as (le%X2n)A3
where m and n are coprime integers such that m/n = Al/(A2A3).
Similarly, ROUND(XlAl/X2A2,
(((2le%nX2)+l)+2)A3. A user view of such a division might
be floating-point division with conversion of the result to
fixed point (3-1Bb).

A3) can be implemented as

As with scale-conversion operations (Section III-B above),
in certain contexts the explicit scale for fixed-point division
will be redundant and may be omitted (e.g., when the quotient
is to be assigned to a variable of known scale).

Ancther special case of fixed-point conversion 1s division
by a constent K. The division (XlAl)/K yields Xl(Al/K) where
the division can be performed entirely during translation and
results in a reinterpretation of the assoclated scale during
execution.

Other operations, such as negation and absolute value, are
also useful. On machines with only one representation for zero
(e.g., 2's complement, 10's complement) the number of negative
fixed-point values that can be represented in any given scale is
one greater than the number of positive values, so both negation
and absolute value can cause an exception by produé¢ing a positive
value that exceeds the implemented range.

D. OTHER FIXED-POINT OPERATIONS

Relational operations are needed in all general-purpose pro-
gramming languages. For completeness and conformity with exist-
ing languages, the six relational operations < < = # 2 >, are
needed (3-1Bc). The relational operations on fixed-point values
can have a meaning consistent with the normal mathematical defi-
nition between their corresponding abstract values. In prin-
ciple, the scale of the comparison should be that of the differ-
ence between the operands. This can cause a considerable widen-

ing of the representation if the scales are disparate, leading
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to the risk of overflow exceptions or the generation of ineffi-
clent and/or unnecessarily complex code sequences, In practice,
the translator can determine from consideration of the ranges
whether this c2xception may occur and issue a suiltable warning.
It should not be considered contrary to the language definition
for the translator to implement comparisons by methods which
give correct answers efficiently in most cases, provided no pro-
gram is allowed to continue if the correct result cannot be ob-
tained.

Floating-point values are sometimes used as arguments in
fixed-point computations. Because such uses constitute a tight-

ening in the interpretation of the values (from inexact to exact),

there should be bullt-in operations for conversion from floating
point to fixed point (3-1Ba). 1In order to convert from floating
point to fixed point, the desired scale must be known. Because
the scale cannot, in general, be determined from the context, the
conversion operation should have a parameter specifying the de-
sired scale. There are again, however, certain contexts, such as
assignment of the value to a variable, where the scale is impli-
citly specified, so the explicit parameter may be omitted.
Because floating-point values cannot usually be represented
exactly in a given fixed-point scale, conversion from floating
point to fixed point may change the abstract value that is rep-
resented. Thus, there should be no implicit conversions from
floating point to fixed point (3Ba). For consistency with
scale-conversion operations, both truncation and rounding con-
version operators should be available. As with scale conver-
sions, the scale argument must be a constant at the time of
translation.

To facilitate the writing of generic definitions, the lan-
guage should provide a translation-time function that can be
applied to any fixed-point variable or value to obtain the maxi-
mum (i.e., specified) scale with which the variable or expres-
sion can be represented (in some cases, the translator might use
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a smaller scale in the actual representation to reduce execution
time) (12Da). A scale operator would be most useful in generic
definitions where 1t could be used to declare a variable to have
the same scale as that of an actual parameter. A scale operator
could also be used to improve the readability of explicit scale
conversions. For example, rounding X to the scale of Y might be
written as: ROUND(X,SCALE(Y)). Because the scales of fixed-
point variables are bound during translation, the scale operator
can always be evaluated during translation. Inclusion of a scale
operator will allow the definition of standard mathematical func-
tions on fixed-point values wilthout prior knowledge of the par-
ticular scales that are appropriate to a given application.

E. FIXED-POINT LITERALS

There shall be built-in numeric literals (2Ga). Numeric
literals are needed to designate numeric constants in programs.
Any fixed-point constant, including literals, can be represented
exactly 1n a variety of scales. The larger the scale used, the
smaller the space required for intermediate results in expres-
sions that contain the constant. The maximum scale for a con-
stant 1s, of course, the constant itself (with a mantissa value
of 1). Thus, all literals can be implemented exactly and
nelther the language nor programs should restrict the scales
used to represent literals; the translator can do this by treat-
ing literals as if their values were their scale. Implicit scale
conversions, that are needed to perform subsequent operations
(such as addition) efficiently, can be done during translation.

F. NUMERIC INPUT-OUTPUT

This section is concerned with the physical representations
that will be associated with numeric data on external storage
files, with how translators will learn the external representa-
tions, and with the operations that convert to and from symbolic
representations for display and input, respectively. The IRONMAN

37

e S O i ve——— - —— A T— e —




does not directly address the problem of input and output of
numeric data,

Because the formats of records, the precision of floating-

point numbers, and the scales of fixed-point numbers are bound
at translation (3-3Ba, 3-3Gb, 3.1Da, 3-1G), programs will be
able to read and write records using logical structures known
to the translator. In theory, the physical format of a record
could be carried with a file and processed during execution.
In practice, there 1s no reason to dynamically vary the physical
representation (for a given logical representation), and, there-
fore, the physical representation can be given to the translator
rather than to the object program.

In some cases, files must be read from or written to for-
eign systems whose format conventions would be incompatible with
any fixed convention established by a language design or trans-
lator. Consequently, the language must provide a facility for
user specification of the physical representation of records
(11Aa). Such a specification, although distinct fror the cor-
responding logical specification, must be compatible with the
logical specification. The facility for physical specifications
must be sufficiently detailed, unambiguous, machine independent,
and translator independent that the same description can be
given to translators for different object machines so that the
resulting programs will be able to write files of the designated
record formet which can be read correctly on another -system.

A common language that is intended for a wide variety of
object machines with different word lengths and numeric repre-
sentations cannot dictate any convention about the representa-
tion of numeric values. Properties, such as the lmplemented
scale, the implemented precision, sign magnitude versus two's
complement versus one's complement, radix, exponent range and
representation, and the presence of "don't care" fields within

38

O ——— e ————— e ——

e —

e ——— e




e

S—

‘--_~_‘-—u

numeric representations, must be specifiable. In practice,
most systems would use only those that are compatible with their
object-machine characteristics,

Input-output operations can be kept simple and efficlient by
restricting them to data structures already present in programs.
That 1s, 1t should be possible to read and write only those
records whose internal and external representations are 1ldenti-
cal. The input and output operations need not do format or rep-
resentation conversions. Such conversions, if needed, must be
accomplished by operations between records or fields of records
within the program. If the corresponding flelds are incompat-
ible (e.g., in radix), appropriate explicit conversion opera-
tions will be required. Such conversion need not be buillt into
the language but must be definable in the language.

Although there must be a mechanism for specifying the phys-
ical representation of a record, its use will often unnecessarily
burden the user, may preclude more efficlent representations that
could be automatically determined by the translator, and adds to
the complexity (and, therefore, error proneness) of programs.
Thus, specifications for the representations of records should
be optional (11Ad).

For files that are written and read entirely within one
program, the physical representation of records (including
numeric fields) can be chosen and managed by the tran:lator.
With additional bookkeeping, representations could be managed
safely for related programs that are developed together 1in a
common host system. In the latter case, the translator that de-
fines the representation must encode the representation in some
formal notation that can be malntained by the host system and
accessed later as other programs are translated. If the formal
notation 1s identical to that used for specifying representa-
tions in programs, 1t could also be taken from the system in
symbolic form and inserted into programs that are compiled on
other host systems.
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Input and output of numeric data in symbolic form require
two lower-level facilitlies: a mechanism to input and output
characters, and a mechanism to convert between symbolic and in-
ternal numeric representations of data. The standard input-
output operations will provide for reading and writing of char-
acter strings (8A, 8B). Conversion between numeric and symbolic
representations of numbers should be definable within the lan-~
guage and made avallable as standard library routines. If the
symbolic forms are restricted to decimal numbers, it may be
necessary to restrict the conversion operations to numeric values
that have scales that are powers of 10.

The only restriction imposed by the IRONMAN 1s that iden-~
tical symbolic representations of numbers will produce the same
internal values, whether they are used as literals in programs
or are read as data using the standard conversion routines dur-
ing execution (2Gb). This means that all translators must use
the standard conversion routines or ones that are functionally
equivalent.
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IV. FLOATING-POINT TYPE

The language shall provide a floating-point type (3-1Aa).
Floating point 1s intended for those applications in which the
results need be precise only to some specified number of signi-
ficant digits and for which there 1is wide dynamic variation in
the range of values. Most englneering and scientific calcula-
tions can be done conveniently using floating point, as can cal-
culations that require inputs from sensors or outputs to control
devices. Many of these calculations can, however, be done
equally well using fixed point.

If floating point is used in a program for an object machine
that does not have floating-point hardware, the translator should
give a warning that the floating-point computation (which must,
therefore, be implemented in software) will be unusually expen-
sive in execution (13De). It is anticipated that the standard
library will include a software definition of floating-point data
and operations (without the usual hardware restrictions on maxi-

mum precision).

A floating-point variable has a fractional mantissa, M,
(i.e., -1 < M < 1), a positive integer base, B, an exponent, E,
a range, Rl to R2, and a precision, P. The value of such a num-
ber is MxBE, Only the mantissa and exponent need to occupy
storage in the object machine. The base 1s constant and is de-
termined by the floating-point hardware implementation. The
precision is the number of significant digits in the mantissa.
Values that have more than P nonzero leading digits must be
approximated. In many floating-point notations, each nonzero
floating~point value is normalized to eliminate leading zeroes
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from the mantissa, that is, the mantissa 1s shifted left until
-l >Mor M 2Bl
shifted, The range specification designates upper and lower

and E 1s decremented by the number of digits

bounds on the values that are to occupy a variable (3-1Cb), that
is, Rl < MXBE < R2. Because -1 < M < 1, it follows that

E < 1ogB(max(abs(Rl),abs(R2))) and the range of a floating-
point variable is an indirect specification of the range of

the exponent.

This chapter is concerned with floating-point computation
as viewed by the user, the language designer, the translator
writer, and the hardware designer. The user of a floating-point
system wants (a) a floating-point representation that has suffi-
cient range and precision to satisfy the needs of his applica-
tion, (b) computational rules that minimize the loss of signifi-
cance (i.e., accuracy) in his computations, and (c¢) floating-
point operations for which the significance of the results is
predictable from the significance of the arguments.

It is the responsibility of the language designer to pro-
vide language facilities and conventions that will supply suffi-
cient information that the translator will know what ranges of
values are expected in a program and what precisions are needed.
It 1s the responsibility of the translator writer to ensure that
(a) the implementation meets the range and precision requirements
of the program, (b) that the implementation does not unneces-
sarily cause loss of significance. and (c) that the implementa-
tion 1is as efficient as is possible using the avallable floating-
point hardware. It 1s the responsibility of the hardware de-
signer (a) to ensure that the floating-point hardware does not
cause unnecessary loss of significance and (b) to ensure that
error propagation from round-off 1i's predictable.
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A. RANGE

The range of a floating-point variable must be specified in
the program and be determinable at the time of its allocation
(3-1Ca). The user will view such specifications as the maximum
ranges needed for the computation. The translator writer will
view such specifications as the minimum ranges to be implemented
(3-1Cb). Explicit conversion operations shall not be required
between numeric ranges (3-1Cc). There shall be an exception
during execution whenever a value exceeds either the specified
range of a variable or the implemented range (10Ba). It shall
be possible to suppress individually the detection of an excep-
tion within a given scope (10Ga). Both for consistency and be-
cause the same considerations (III-A) apply, these requirements
are identical to those for the fixed-point and integer type.
Special considerations for floating point are discussed below.

The range of a floating-point variable affects the space
required for the exﬁonent but not the mantissa. Because most
floating-point hardware provides only a single choice for the
exponent range, range specifications can be used to determine
whether the available exponent range 1s adequate, but usually do
not affect the implementation. Consequently, delayed binding of
the range will not adversely affect the implementation.

Detection of values outside the implemented range is inex-
pensive because such errors correspond exactly to the floating-
point overflow interrupt in most hardware implementations.

B. PRECISION

The significance or accuracy of data and computational re-
sults 1s a primary concern to anyone using a floating-point
facility. A floating-point implementation, however, deals only
with the precision of data and results. The precision of a vari-
able 1s the number of digits to be allocated to its mantissa.

The precision of an expression is the number of digits to be
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computed when evaluating the expression. If, for example, a
variable, X, has precision, P, P+l digits may be required to
compute the sum X+X without loss of information, and 2xP

digits may be needed for the product XxX. The precision that

is needed to avoild loss of significance depends on the signifi-
cance of individual arguments, the operations involved, and the
deslred significance of the results; the precision that is
needed may vary from varlable to variable and from expression

to expression. Thus, the user should be able to specify a pre-~
cision for each floating-point variable and expression in a pro-
gram (3-1Da), This specification shall be interpreted by the
user as an upper bound on the significance provided by his data
or expected in his computation results. The specification shall
be interpreted by the translator as a lower bound on the preci-
sion to be provided in the implementation.

The language shall require explicit specification of the
precision for floating-point variables (3-1Db). Because the
appropriate precision for a variable depends on the character-
istics of the applications, no one choice for a default (i.e.,
implicitly specified) precision would satisfy most cases (i.e.,
reflect common usage as in 1Ce). For an expression or subex-
pression, there can, however, be a default precision that is
determined from the precisions specified for its arguments. In
an assignment statement, the significance of the value after
assignment cannot be greater than the precision of the variable;
thus, the precision of the right-hand-side expression need be no
greater than that of the variable being assigned. A larger pre-
cision would require additional computation for digits that
would then be thrown away,

Ideally, the default precision for a subexpression would
be the minimum precision that would produce the maximum obtain-
able significance (up to the specified precision) for the re-
sult of the expression without unnecessary computation. Table 2
shows the minimum significance that the arguments must have to
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guarantee that the result of a given floating-point operation

is correct to R significant digits. Thus, the table defines a
lower bound on the precision to which the arguments must be com-
puted to avoid loss of significance. Additional digits in the
arguments will not increase the number of significant digits

(in the result) that are later used.

TABLE 2, MINIMUM PRECISION NEEDED FOR DESIRED SIGNIFICANCE

Expression to be Precision Needed Precision Needed
Evaluated for X for v
X £ ¥ R R
b R R
A 2R R
X < ¥ R R
X « Y - R

A special case can arise for the X*Y case in Table 2.
It is clear that R digits are required in the arguments and
that R digits are sufficient for X+Y when X and Y have similar
signs and for X-Y when X and Y have different signs. If, how-
ever, X*Y results in computing the difference between the ab-
solute values of X and Y and the difference is small, the re-
sult will contain leading zeros. These are, however, signifi-
cant .zeros and do not require speclal consideration in Table 2.
Because such leading zeros are significant, it is important
that the hardware not raise the underflow interrupt when the
result of an addition or subtraction cannot be normalized.

In practice, it 1is not always possible to compute as many
significant digits as are specified for an expression. This can
occur when operands have less precision (and, therefore, less
significance) than is needed, elther because they are variables
of limited precision or because they are expressions that cannot
be computed to the desired significance. If the argument is an
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expression in X and Y of precisions (and assumed significance)

P and Q, respectively, then the number of significant digits in
the computed value of the expression can be no greater than that
shown in Table 3.

TABLE 3. MAXIMUM OBTAINABLE PRECISION
WITHOUT INSIGNIFICANT DIGITS

Maximum Precision

Expression ~__Obtainable
e Max(F,q)+1
T P+Q
X /Y Min(F,Q)

X < Y Min(F,Q)
X « Y Min(P,Q)

The number of digits that should be computed for an expres-
sion (and for which the user did not explicitly specify the pre-
cision) should be the minimum of the values as obtained from
Tables 2 and 3. Any precision greater than that obtained from
Table 2 represents computation of digits that will not be used.
Any precision greater than that obtalned from Table 3 represents
computation of digits that have nc significance, For example,
applying the tables to X « XxY/Z where X, Y, and Z each have
precision R, confirms that XxY should produce a double precision
product.

Several observations can be made from these tables. The
primary factor in limiting the growth in needed precisions for
expressions will be assignments, If an exact value (such as a
fixed-point number or an integer) is used in a floating-point
addition, subtraction, or multiplication, then the precisilon
needed to preserve significance would be infinite and, there-
fore, the expression shouid be evaluated to the full precision
required for the result. If the needed precision 1s unknown,
as might be the case for relational expressions, the maximum

obtainable significance must be computed.
46
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Computing the minimum number of digits from Tables 2 and 3
as a default, when the precision of an expression or subexpres-
sion is not explicitly specified, means that the explicit speci-
fication for the precision of an expression or subexpression
must be interpreted as the needed precision when determining the
precision from Table 2 and must be interpreted as the obtainable
significance when the expression is considered as an operand in
Table 3. That 1is, specifying the precision of a subexpression
(3-1Da) has the same effect on precision as does assigning the
value of the expression to a variable of the specified precision
and then using the variable in the subsequent computation.

If the obtailnable precision exceeds the needed precision,
it may be possible to save computation time or space by comput-
ing only the needed precision. If the needed precision exceeds
the obtalnable precision, the number of significant digits will
be less than the computed precision. The user should be made
aware of the latter situation, possibly by a warning from the
translator.

To implement a floating-point system efficiently, the
translator must use the actual precisions and radix that are
avallable in the object-machine hardware (3-1Ea). With proper
rounding rules in the hardware, the precision that is imple-
mented can exceed the specified precision without additional
loss of significance in computational results. Thus, precision
specifications (i.e., the maximum precision needed) shall be in-
terpreted as the minimum precision to be implemented in the
object machine (3-1Db),

To prevent loss of significance from additional digits of
an implementation, the object machine must round all computa-
tional results to the precision implemented by the hardware
(3-1Dec). The rounded result should differ from the true value
by less than one in the least-significant digit and the differ-
ence should be equal to one only when the remainder of the un-
rounded result 1s exactly 1/2 to the number of digits actually
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computed inside the arithmetic h.rdware. In the latter case,

any rounding rule that evenly di;tributes the direction of round-
ing is acceptable. Probably the best choice (although none
should be dictated by the langua e, given the differences among
current machines) is rounding to the nearest even, because this
will reduce the number of one bits and, therefore, the proba-
bility that rounding from 1/2 will occur in subsequent computa-
tions.

Most floating-point hardware offers at least two choices of
precision (often called single and double). If the translator
compiles programs that use minimal storage and computational re-
sources, it must be capable of implementing mixed-precision com-
putations. This, 1n turn, requires conversions between the im-
plemented preclsions during execiution. Because most conversions
between specified precisions will not correspond to precision
conversions in the object code, it will be difficult for the
user to predict where the implemented conversions will occur and,
in any case, the locations will be machine-dependent. Explicit
conversions between specifled precisions would seldom generate
machine code, Also, the user generally will not know whether
(a) an assignment reduces the precision with an accompanying
loss of information, (p) requires more significance than is
available on the right-hand side, or (¢) does not involve a
change in precision. If explicit conversions are required,
users will tend to use explicit conversion operations on every
floating-point assignment and their presence will serve no use-
ful purpose. Consequently, explicit conversion operations shall
not be required between floating-point precisions (3-1Dd).
Translators should, however, inform the user when information is
lost or when the desired precision is unobtainable. Neither of
these two situations 1s necessarily an error,

Because precision specifications are interpreted as the
maximum needed and the minimum to be implemented, they need not
be specified precisely. In particular, the precision could be
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specified in decimal digits, even though implemented on a binary
machine with a slightly higher binary precision.

Although the derivation of the "best" precision for a given
computation is complicated, the user need only know (a) that the
implementation will produce the maximum obtainable significance
within the specified precisions (where it 1s assumed that the
number of significant digits in a varliable is equal to the vari-
able's specified precision), (p) that a warning will be generated
during translation if the specified precision is greater than the
obtainable significance, and (c¢) that the translator has the in-
formation necessary to minimlze the time and space required dur-
ing execution without losing significance. The translator writer
need only (a) understand why mechanical application of Tables 2
and 3 will produce the least (and, therefore, least expensive)
lower bound on the precision without loss of significance, and
(b) know that, except for changes in precision across the hard-
ware single/double precision boundary, the resulting object code
will be unaffected by the precision calculations.

C. FLOATING-POINT OPERATIONS

Because floating-point values are finite approximations to
real numbers, each floating-point number corresponds to an in-
finite set of real numbers. Floating-point arithmetic computa-
tions can only produce values that approximate the corresponding
results using real arithmetic (thus, floating-point computations
are sald to be inexact). Although a floating-point number cor-
responds to infinitely many real values, it has only one value;
that value will be called the designated value (i.e., the ab-
stract value designated by the floating-point number). Floating-
point operations can be defined only in terms of the values that
can be represented (i.e., in terms of the designated values).

Four arithmetic operations - addition, subtraction, multi-
plication, and division - are needed in floating-point computa-
tions (3-1Bb). Absolute value is also useful and is difficult
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to implement efficiently in terms of the other four operations.
Each floating-point arithmetic operation should be defined so
that its result approximates as closely as possible the true
value resulting from application of the corresponding mathemat-
ical operation (using real arithmetic) on the designated values
of the operands. Rounding rules for floating-point computation
were dilscussed in Section IV-B.

Although floating-point arithmetic is inexact, it can and
should retailn the properties of the corresponding real arith-
metic functions wherever possible. It cannot be guaranteed that
multiplication or division will distribute over addition or sub-
traction, that operations will be associative, or that values
will have exact reciprocals, Addition and multiplication should,
however, be commutative. Because the lack of associativity does
not affect the results in many calculations, translators should
be able to assume that floating-polnt operations are associative
in order to produce the most efficient execution, except in
those cases where the program contains explicit parentheses to
designate the execution order desired (4Ga). The rules sug-
gested in the previous section for defining the precision to be
implemented will preserve commutativity, providing the corre-
sponding hardware operations are commutative (this can be done,
even though the rules may call for mixed-precision calculations).

There are three exception conditions that can arise in
floating-point computations (10A). PDetecticn of the error when
an actual value exceeds the specified range is not normally pro-
vided by floating-point hardware and must be implemented in soft-
ware with substantial execution cost. Consequently, it 1s likely
that its use will often be suppressed (10B, 10G) by the user.
Errors on the implemented range can occur in the primitive float-
ing-point operations of the language and can be efficiently de-
tected using exponent overflow hardware interrupts (10B).

Errors in precision arise when a floating-point value cannot be
normalized because the unnormalized representation already has
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the minimal (i.e., most negative) representable exponent. Thus,
the actual precision 1s reduced by the number of leading zeroes.
Detection of errors from loss of precision can be efficiently
implemented using exponent-underflow hardware interrupts. It is
important that the hardware raise the underflow interrupt when
the result of a multiplication or division cannot be normalized,
rather than when the result is zero (i.e., when some rather than
all significant digits are lost).

Arithmetic operations such as integer division and remainder
require exact arguments and are, therefore, inappropriate for
floating-point arguments. When exact computations are to be
applied to floating-point values, the floating-point values can
be (explicitly) converted to fixed point and the appropriate
fixed~point operation applied,

Relational operations are needed in all floating-point com-
putations (3-1Bc). Because floating-point numbers are approxi-
mations to real numbers, a comparison between the designated
values of floating-point numbers does not necessarily produce
the same result as would comparison between the real values that
are represented by the floating-point numbers. Nevertheless,
floating-point relational operations should have a precise mean-
ing that preserves the mathematical properties of the correspond-
ing real operations. In particular, < < = > > should be transi-
tive, = should be commutative and reflexive, and for any float-
ing~-point values X and Y, X<Y iff ¥Y>X, X<Y iff Y2X,

XY 1rP (X=Y), XsSY Iff X<Y or X=Y, and X3Y 1ff XsY or X=Y.

These properties can be achieved easily by implementing
floating-point relations as exact comparisons between the des-
ignated values. Notice, however, that these properties will not
always be preserved in combination with floating-point arith-
metic (e.g., X < Y does not imply that X+Z < Y+Z).
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Other useful arithmetic operations, including square root
and trignometric functions, should be available as standard
library definitions (3-1Bf, 12A). Particular important library
functions are exponentiation to integer powers and logarithm,
which are needed for conversion from symbolic representations to
floating point on input and for conversion from floating point
to symbolic scientific notation for dilsplay, respectively. If
the library interface is sufficiently transparent to the user,
the difference between bullt-in operations.L and standard library
definitions should be indistinguishable to the user.

Because the actual implementation of a given floating-point
computation will vary from machine to machine and because the
numerical results are affected by the detalls of the implementa-
tion (although, if properly used, the number of significant
digits will be identical), the language should provide operations
that can be used to access the actual precision, radix, and expo-
nent range used in the implementation of a variable or expression
(3-1Eb). Because these properties of floating-point representa-
tions are fixed during translation, the corresponding functions
can be treated as constants during translation.

To facilitate the writing ongeneric definitions, the lan-
guage should provide a user function that can be evaluated dur-
ing translation (12Da) to access the (explicit or implied)
specified precision of a variable or expression. A precilsion
operation would be most useful in generic definitions where it
could be used to specify the precision of local floating-point
variables. A precision operation could also be used to improve
the readability of explicit conversions to floating point (e.g.,
FLOAT(X,PRECISION(Y)) meaning convert X to a [lcating-point
number having the same (specified) precision as Y). Because the
precision of an expression is bound during translation, the pre-
cision operation can always be evaluated during translation.
Inclusion of a precision operation will permit the definition of
standard mathematical functions without prior knowledge of the

precision needed.
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D. LITERALS AND FIXED-POINT VALUES IN FLOATING-POINT

COMPUTATIONS

Fixed-point values are sometimes used as arguments in
floating-point computations. In order to convert from fixed
point to floating point, the precision needed for the result
must be known. Any precision less than that needed to obtain
the maximum precision that would otherwise be obtainable from
the floating-point expression containing the fixed-point argu-
ment can unnecessarily reduce the significance of the result.
Any precision greater than that needed to produce the maximum
obtalnable significance for the floating-point expression may
introduce unnecessary execution cost. Thus, there is just one
"best" precision and it can be determined from the context
during translation. Although the precision could be determined
by the user, the determination is nontrivial and error-prone if
asne by hand. In any case, it must be done by the translator
to determine the most efficient implemented precision (inde-
pendent of what precision is specified). Consequently, an ex-
plicit precision parameter is undesirable for conversion from
fixed point to floating point.

As a general rule, explicit conversion operations should
be required for conversions between types (3Ba). By this gen-
eral rule and for cdonsistency with other conversions between
types, an explicit operator should be required for conversion
from fixed point to floating point. The reasons which lead to
the general rule, however, do not apply in this case. Although
there is a change in the interpretation, it 1s a relaxation
(exact to inexact) and, therefore, is not error-prone. Although
there can be a change in the designated value and in the phys-
ical representation, conversion will be into that floating-point
representation that corresponds to the abstract value of the
fixed-point value (without introducing loss of significance in
subsequent computations). That is, the abstract value will
still be represented. An explicit conversion is not needed to
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designate result precision (and even if desired, could be
accomplished oy explicitly specifying the precision of the
resulting floating-point expression). Explicit conversions
from fixed pcint to floating point introduce extra notation

in programs, thereby increasing the chance of error, without
adding additional information and without adding useful re-
dundancy that could be checked by the translator. If explicit
operations are required for conversion from fixed point to
floating, programs will be more difficult to write, read, and
understand without other compensating advantages. The lan-
guage should not require explicit conversion from fixed to
floating point. Such implicit conversions will permit expres-
sions to produce floating-polnt results from operands, some of
which are fixed-point.

As was seen in Section IV-B, it is possible to correctly
evaluate expressions that have results of limited precision
from operands that, in some cases, are exact (i.e., that have
infinite precision). For example, one might want to assign the
product of the integer two and a floating-point value X to a
variable Y of precision P. Although 2xX would have to be
computed to infinite precision to avoid loss of information,
in practice it need be computed only to P significant digits
to obtain the same value in Y (within 1 in the last digit)
as would be obtained by computing 2xX to infinite precision
and then rounding to P digits.

There shall be built-in numeric literals (2Ga). Numeric
literals are needed to designate numeric constants in programs.
A literal 1s a symbolic representation of a constant value and
in common usage designates some one abstract value (e.g., in
decimal notation 61.2 is exactly one-tenth of the integer 612).
The value of a literal can be represented exactly in a variety
of fixed-point scales, but may not be exactly representable in
the available floating-point representations (e.g., 61.2 is not
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exactly representable 1n any floating-point representation with

exponents to base 2, 8, or 16).

Literals, therefore, must be converted to the nearest
floating-point value of appropriate precision. As with fixed-
point values that are used in floating-point computations, the
"best" precision can be determined automatically during trans-
lation and should not be specified as an explicit paramreter.

It is not necessary to make floating-point literals syntactically
distinct from fixed-point literals because whether a literal is
fixed or floating point is easily determined from the context
(i.e., floating-point operations have at least one norliteral
floating point argument). Thus, floating-point and fixed-

point literals can share the same syntactic formns without
complicating the language or its use.

J
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APPENDIX
EXCERPTS FROM REVISED IRONMAN

Paragraphs of the Revised IRONMAN relevant to the numeric
processing facilities for the common language are:

Paragraph
1A through 1G
2G
3B
3-1A through 3-1H
3-3B
3-3G
LA
4B
4G
7G

| 8A

8B
10A
10B
10F
10G
11A
11C
12A
12D
13D
13F
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1A. Generality. The language shall provide generality only to the extent necessary to
satisfy the needs of embedded computer applications. Such applications require real
time control, self diagnostics, input-output to nonstandard peripheral devices, parallel
processing, numeric computation, and file processing. The language shall not contain
features that are unnecessary to satisfy the requirements.

1B. Reliability. The language should aid the desigr and development of reliable
programs. The language shall be designed to avoid error prone features and to
maximize automatic detection of programming errors. The language shall require some
redundant, but not duplicative, specifications in programs. Translators shall produce
explanatory diagnostic and warning messages, but shall not attempt to correct
programming errors.

1C. Maintainability. The language should promote ease of program maintenance. It
should emphasize program readability over writability. That is, it should emphasize the
clarity, understandabillty, and modifiability of programs over programming ease. The
language should encourage user documentation of programs. It snall require expli~it
specification of programmer decisions and shall provide defaults only for instances
where the default is stated in the language definition, is always meaningful, reflects
common usage, and can be explicitly overridden.

1D0. Efficiency. The language design should aid the production of efficient objact
programs.  Constructs that have unexpectedly expensive or inexpensive
implementations should be easily recognizable by translators and by users. Where
possible, features should be chosen to have a simple and efficient implementation in many
objcct machines, to avoid execution costs for available gencrality where it is not needed,
to maximize the number of safe optimizations available to translators, and to ensure thot
unused and constant portions of programs will not add to execution costs. Execution time
susp;rt packages of the language shall not be included in object code unless they are
calle

1E. Simplicity. The language should not contain unnecessary complexity. It shouid
have a consistent semantic structure that minimizes the number of underlying concepts.
It should be as small as possible consistent with the needs of the intended applications.
It should have few special cases and should be composed from features that are
individually simple in their semantics. The language should have uniform syntactic
conventions and should not provide several notations for the same concept.

1F. Implementability. The language shall be composed from features that are
understood and can be implemented. The semantics of each feature should be
sufficiently well specified and understandable that it will be possible to predict its
interaction with other features. To the extent that it does not interfere with other
requirements, the language shall facilitate the production of translators that are easy to
implement and are efficient during translation. There shall be no language restrictions
that are not enforceable by transiators.




1G. Machine Independence. The language shall strive for machine independence. It
shall not dictate the characteristics of object machines or operating systems. The
design of the language shall attempt to avoid features whose semantics depend on
characteristics of the object machine or of the object machine operating system. There
shall be a facility for specifying those portions of programs that are dependent on the
object machine configuration and for conditionally compiling programs depending on the
actual configuration.

2G. Numeric Literals. There shall be built-in numeric literals. Numeric literals shall
have the same values in programs as in data.

38. Implicit Type Conversions. There shall be no implicit conversions betw=en types.
Differences in range, precision, scale, and representation shall not be interpreted as
differences in type.

3-1A. Numeric Values. The language shall provide an intege: and fixed point type - 3
a floating point type. Numeric operations and assignment thet would cau:e e most
significant digits of numeric values to be truncated (e.g, when overflow occur =) sha!’
constitute an exception situation. ;

3-1B. Numeric Operations. There shall be built-in operations (i.e., functions) for
conversion between numcric types. There shall be built-in operatians for addition,
subtraction, multiplication, division with floating point result, and negation for all numeric
types. There shall be built-in equality (i.e., equal and unequal) and ordcring operations
(i.e, less than, greater than, less than or equal, and greater than or equal) belween
elements of each numeric type. Numeric values shall be equal if and only if they
represent exactly the same abstract value. The semantics of all built-in numeric
operations shall be included in the language definition. [Note that there might also b
standard library definitions for numeric functions such as exponentiation.]

3-1C. Numecric Variablcs. The range of each numeric variable must be specified in
programs and determinable at its allocation time. Such specifications shall b.:
interpreted as the minimum range to be implemented. Explicit conversion operations
shall not be required between numeric ranges.

3-1D. Floating Point Precision. The precision of each floating point variable and
expression shall be specifiable in programs and shall be determinable at translation time.
Precision specifications shall be required for each floating point variable. They shall be
interpreted as the minimum precisions to be implerented in the cbject machine. Floating
point results shall be implicitly rounded to the implemented precision. Explicit
conversion operations shall not be required between fioating poirt precisions.

3-1E. Floating Point Implementation. A floating point computation may be implemented
using the actual precision, radix, and exponent range available in the object machine
hardware. There shall be built-in operations to access the actual precisian, radix, and
exponent range with which floating point variables and expressions are imple mented.




3-1F. Integer and Fixed Point Numbers. Integer and fixed poirt numbers shal! be
trcated as exact numeric values. There shall be no implicit trincation or rounding in
integer and fixed point computations.

3-1G. Fixcd Point Scale. The scale or step size (i.e, the minimal representabie
difference between values) of each fixed point variable m:st b specified in programs
and be determinable at translation time.

3-1H. Integer and Fixed Point Operations. There shail be built-in operaticas for
integer and fixed point division with remainder and for conversion between fixed poi
scale factors. The language shall require explicit scale conversion operations whenever
the abstract value may be changed. :

3-3B. Component Specifications. For elements of composite types, the type of each
component (i.e., field) must be explicitly specified in programs and determinable at
translation time. Components may be of any type (including array and re-ard types).
Range, precision and scale specifications shall be required for each component of
appropriate numeric types.

3-3G. Variant Types. It shall be possible to define types with alternative record
structures (e, variants). The structure of each variant shall be determlnable_ at
translation time. The value of a variant may be used anywhere a value of the variant
type is permitted (i.e., if A is a variant of B, then elements of type A may be used
anywhere type B is allowed).

4A. Form of Expressions. The parsing of correct expressions shall not depend on the
types of their operands or on whether the types of the operands are built into the
language.

4B. Type of Expressions. The language shall require that the type of the value of each
expression be determinable at translation time. It shall be possible to specify the type
of an expression explicitly. [Note that this does not provide a mechanism for type

conversion.]

4G. Effect of Parentheses. If present, explicit parentheses shall dictate the association
of operands with operators. Explicit parentheses shall be required to resolve the
operator-operand associations wherever an expression has a nonassociative operator
to the left of an operator of the same precedence and wherever consecutive operators of
an expression are of the same precedence but have different operand types.

7G. Parameter Specifications. The type of each formal parameter must be explicitly
specified in programs and shall be determinable at translation time. Parameters may be
of any type. Range, precision, and scale specifications shall be required for each formal
parameter of appropriate numeric types. A translation time error shall be reported
wherever corresponding formal and actual parameters are of different types and
wherever a program attempts to use a constant or an expression where a variable is

required.
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8A. Low Level Input-Output Operations. There shall be a set of built-in low level
input-output operations that act on physical files (e.g., input-output cheannels and
peripheral devices). The low level operations shall be chosen to insure that all
application level input-output operations can be defined within the language. They shall
include operations to send control information, to receive control informaticn, to begin
transfer of data in either direction, and to wait for completion of a data transfer. :

8B. Application Level Input-Output Operations. There shall be standard library
definitions for application level input-output to logical files. These shall include
operations for creating, deleting, opening, closing, reading, writing, positioning and
formatting logical files. The meaning of such operations shall depend on the general
characteristics of the files or devices (e.g., on whether they are sequentially o randomly
accessed), but shall not be dependent on a specific device.

10A. Exception Handling Facility. There shall be an exception handling mechanism for
responding to unplanned error situations detected during execution. The exception
situations shall include errors detected by hardware, software errors detected during
execution, error situations in built-in operations, and user defined exceptions.
Exceptions should add to the execution time of programs only if they are enabled.

10B. Error Situations. The errors detectable during execution shall include exceeding
the spccified range of an array subscript, exceeding the specified range of a variable,
cxcceding the implemented range of a variable, attempting to access an uninitialized
variable, dynamic aliasing of array components, attempting to access a fieid of a variant
that is not present, termination of a parallel path, and failing to satisfy a prograr . specified
asscrtion. [Note that many of these checks can be done or partially dune during
translation, thereby reducing execution costs. Several ar.» very expensive in execution
unless aided by special hardware, and corsequently will oftc n be suppressed (se.. ! 0G).}

10F. Assertions. It shall be possible to include assertions in programs. [f an assertion
is false when encountered during execution, it shall enable an exception. Translators
shall give warning if an assertion has side effects. [Note that assertions can also be used
to aid optimization and maintcnance. ]

10G. Suppressing Exceptions. It shall be possible at translation time to suppress
individually the detection of exceptions within a given scope. Should an exception
situation occur when its detection is suppressed, the consequences will be unpredictable.
An exception must not be enabled nor reenabled in a scope in which it is suppressed.
[Note that suppression of an exception is not an assertion that the enabling error will not

occur.]

11A. Data Representation. The language shall permit but not require programs to
specify the physical representation of data. These specifications shall be distinct from
the logical descriptions. Specifications for the order of fields, the width of fields, the
prescnce of “don’t care” ficlds, the positions of word boundaries, and the object
representation of atomic data shall be allowed. If object representations are not
specified, they shall be determined by the translator.




11C. Translation Time Constants and Functions. The translator shall require the
specification of the object machine configuration irciudirg the machine mod_el, the
memory size, special hardware options, the operaiirg « ystem it present, and ;:fmpheral
equipment. The translator shall use this specification v/hen gencrating the object coﬁe.
The language shall supply translation time constants and functions so that, during
translation, programs can access the object machine characteristics and can check
propcrtics of the program components inclucing their types, their _speclfled and
implemented ranges, their specified representation, whether an exceptionis supprf!ss»jd.
whether an actual parameter is a translation time constant, and the current optimization
criteria.

12A. Library Entries. The language shall support the use of an external library.
Library entries shall include type definitions, input-output packages, common pools of
shared declarations, application oriented software packages, other separately compiled
segments, and machine configuration specifications. The library shall be structured to
allow entries to be associated with particular applications, projects, and users.

12D. Generic Definitions. It shall be possible to define functions, procedures and
encapsulations that have generic parameters. Such parameters shall be instantiated
during translation at each call and may be any defined identifier (including those for
variables, functions, types, or representations), any expression, or any ctatement.
Generic parameters shall be evaluated in the context of the call. [Note that a generic
definition is a restricted form of macro, often cannot be separately compiled, and that
where generic definitions are implemented as closed routines, several instantiations can
often share the same object code.]

13D. Translator Diagnostics. Translators shall be responsible for reporting errors thot
are detectable at translation time and for optimizing ub;- ct code. If it can be guar nteed
that a function or procedure call will not terminate narmally, the-» the exception shall be
reported as a translation error at the point of call. Transiators shall do full syntax and
type checking, shall check that all language imposed restrictions are met, and shall
provide warnings where constructs will be unusually expensive in execution. A
recommended set of translation time diagnostic and werning messages shall be included
in the language definition.

13F. Translation and Execution Restrictions. Translators should fail to compile correct
programs only when the program exceeds the resources or capabilities of the intended
object machine or when the program requires more resources during the translation than
are available on the host machine. An error shall be reported when a program requires
memory, devices, or special hardware that are unavailable in the object machine.
Neither the language nor its translators shall impose arbitrary restrictions on language
features. For example, they shall not impose restrictions on the number of array
dimensions, on the number of identifiers, on the length of identifiers, or on the mmper of
nested parentheses levels unless such restrictions are dictated by unavoidable
limitations of the host machine. The size of object programs and data structures shall be
limited only by the object machine characteristics. All such restrictions shall be
documented in user accessible manuals.
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