
____ -_____ __ —

U .~:—AO bO 657 INSTITuTE FOR DEFENSE ANALYSES ARLINGTON VA SCIENCE A——ETC P/S 9/2
RATiONALE FOR FI XED—POINT AND FLOATING—POINT COMPUTATTONAL RESU——ETC (LJ)
JAN 78 D A FISItR. P R WETHERALL OAHCIS—73—C.OtOO

UNCLASSIFIED P—PbS IDA/HS—77—1fl36 PU.

W
~

U
~
UIU
I! P

I - . N N_!.!r.rflEln
EF

_ _ _FE NE 1fl~j [j~9

RATIONALE FOR FIXED4’OINT AND FLOATINGPOINT
COMPUTATIONAL REQUIREMENTS FOR A

COMMON PROGRAMMING LANGUAGE
~~~~~~~~

I .

David A. Fisher
• Philip R. Wetherall

January 1978

D b C . .

• 
nip

u. I ~U L u u i ~
-
~~~~~~~~~~ 

Prepared for
Defense Advanced Rese arch Projects Agency

• I _•
T 111 T1o11 STATE?WNT A I1
_ _ _ _ _ _ _ _ _ _

C I t h~5o~ UEflmItld

I INSTITUTE FOR DEFENSE ANALYSES
SCIENCE AND TECHNOLOGY DIVISION

I •

IDA La~ No. HQ 77.’
_ _ _ _

- • -.

~~~
. 

~~~~~~~~~~~~~


• I
I
I

_ _ _ _ _ _ _ _ _

I
The work reported in this document was conducted under cantrQc]~C~~HCl5 73 C 0200 for the Deportment of Defense. The publication
of this IDA Paper does net indIcate endorsement by the Deportment
of Defense, nor should the contents be construed as reflecting the
official podtion of that agency.

_ _ _ _ _ _ _

I[A çptoved for public release; dlst~IbutIon unlimitedj• I
I
I
I
I
I

• I
I
I
I

~
“
4 .

~••~~~

f * I
~

‘ c~A~
‘

~~~~~~~~~~~~~~~~

‘ - 
.
~~~~~~ 

I
_ _ _

- ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~

‘ I
UNCLASSIFIED

SCC uOI?y C LASSIy$ CA T I ON O~ ~ W $5 PASt (0~ b~ D•,a £~ ‘.,.d)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
_

BEFORE_COMPLETING_FORM
Nt~~00T NuMItOI IDA Paper F— 1305 I GOVT ACCIU I ON we. 05C ~P i t w t S C A Y A t OG NuMCIO

I

Rationale for Fixed—Point and Float ing—~o~~~~ ~~‘ina i. 1’ e
i.~~.LL~~J_ ’—•— I ~Ttffi.)— _________3 . — e u j OtO

~ onputationa1 ~equiX~rnents for’ a ~am~ n
______________________t’rograimiing La1~guage , - _ _ _ _ _ - -u ut~owr

_______________________________________ 1~P-l3~5!
_ _ _ _ _ _ _ _ _ _

-1 et~~W~~t 00 GOA w?I ~~~~id A/~~~~ er Piilip R/Wethera~~7
~~ ~~~c15 73:c.t#J ~~~_—

I I PC* rORw,w G 00GA ~~I Z A T 0w N A M E A N D *000(53 ~O 000GIAu (LEw~ JT— ~~~~JfCt ya~,i~~~INSTITUI’E FOR DEFENSE ANALYSES ~~~~~~~ U~~~~ ,wiIit uN It US

~400 Arm y-Navy Drive DAFPp~~~igument 37
Arlington , Vii~ginia 22202 - - -

I n CON~~00LL~$G Ot t i Ct w A N t A N D *000(53 2 U E P O U T D j t g

DEFENSE ADVANCED RESEARCH PROJECTS A0ENCY~~~~ L~~~~~I~~J~~JI) N u M I E U ~~11400 Wilson Boulevard
~Ar1in~~ on Vir

~
inia 2220Q ~~~~~~~~7’7~~~~~puJ

CV A Nt A * DDR(S5(l ~~~~~~~ I. ~~~ C~~.(~~,Iffi 5 O~Io.) S S(L~d.*-~~ V 5~~Ifl (.1 •~~I NONIT NIN0~~~~~~~~~~~~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

OI C t . AS SI~~, C * T i O ~ 0 0 0 N G U * D , N GI ~~ N/A
t~ O S Y P I S u •~D D CI Approved for public release; distribution unlimited .

IT OISYOI S UTION S T A Y t M E N T (~ S A. mb.,r.~, •nI.,. d In Ato~ b 20. II dIII .,.n I
~~~~~~~~ 2 1~~8

J6U 1f1None

I B
‘S SU P P L I N I N T A U V  NO V15

I N/A

II KEY 00001 (Co.,IIn., • 0.. ••~.~•• •~~• .1 n.r. .. .p .d I~ .AI~IP by bI.cb num b..,I Fixed Point, Floatiiig Point, Numeric Computation, Scale, Range,
Precision, Prograirining Languages, Number Representations, Conmon
Language, Numeric CompilationI 

50 ~~~~~~~~ CT (C.oIIn~~ ,..0. a~ •I~~ IV n.c..I~~~ ~~d Id.0II ~~ by lIb el n~~ A*~J
• This paper discusses the considerations that led to the ~ndividua1

technical requirements for the numeric computation facilities for a
contm~n progranrdng language for the Department of Defense (DoD). Of
five kinds of arithnetic considered , one floating—point and one form

r of fixed—point including integers were found to be appropriate for the
coninon language . The inplicat ions of the various requirements for the
language desi~~ers , the compiler—writer , the user , and the machine ~~~~~~~~~ ~~

$ °“°~“ UNCLASSIFIEDI DD ~~~~~ 
1473 EDITI oN OP wOv ~~ 

$1 ~~~~ C L A S I I P I C A Y I O N  OP T HIS PA GE ,~~~~.ø n.m. I... d

~/Ø31Ø3
-_ _  — -~~~ • - ‘ . ____a- - . •- -- -



UNCLASSIFIED
SECU OITY CLA SSI F ICATION OF TH IS PAG((WSm .n 0.1. tnI.r.d)

20. 1
~2~t >desi~~er are considered.

.1

II
ACCESSION for I
I(1IS Wtti’e Sect~o~ 

~
Buff Section 0

UNANNOU NCED a
AISTIFICATION —__________

.1
II~1I1B1JflON/AVAILA~U11 cOUES

01st. AVAIL and/v SP~ I~

UNCLASSIFI ED J
SICUOITY c LAs s ,p,cArsoN OF tHIS PAGt(I0s~ 0a1. £nI•e~ d)

1
--• •—• • - - •--~~~--_ • ~~~~~~~~~~~~-- - • • • _ -•• •

~•



‘ I
1

I IDA PAPER P-1305

I RATIONALE FOR FIXED-POINT AND FLOATING-POINT
COMPUTATIONAL REQUIREMENTS FOR A• I COMMON PROGRAMMING LANGUAGE

David A. Fisher

I Philip R. Wetherall

January 1978

IDA
INSTITUTE FOR DEFENSE ANALYSES

4

SCIENCE AND TECHNOLOG Y DIVISION
400 Army-Navy Drive , Arlington, Virginia 22202

f Contract DAHCJ5 73 C 0200
ARPA Ass gnmen t A-37

I)
I 

_________ 

I

- — • • - - - — •—.--——..I—-—— - ~~~~~~~~~~~~~~ -_ - •  • —• - - • __________



f.. ABS TRACT

This paper discusses the considerations that led to the

individual technical requirements for the numeric computation

facilities for a common programming language for the Department

f of Defense ( D o D ) .  Of five kinds of ar it hmetic cons idered , one
floating—point and one form of fixed—point including integers

were found to be appropriate for the common language . The im-

p lica tions of the var ious requirem ents for the lan guage de-
signers , the compiler—writer , the user , and the machine designer
are considered .

1’

.

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~:

I
I ill

1
- —. -- — — 

_ • -_ ‘ - ~~z



V

I
CONTENTS

ABSTRACT

I I. INTRODUCTION 1

( 
A. Purpose 1
B. Audience 1
C. Scope 2
D. Caution 2
E. Organization 2
F. History of the Common Language Effort 3
G. Determining the Technical Characteristics 14
H. Philosophy of the Technical Requirements 8
I. Assumptions 10

- II. TYPES OF ARITHMETIC 11

A. Integers 11
• B. Fractions 12

C. Floating—Point Numbers 114
D. Scaled Integers 15
E. Scaled Fractions 16
F. Choice of’ Types 17

I. III. FIXED-POINT AND INTEGER TYPE 21

A. Range 22
I B. Scale 26

C. Fixed—Point Arithmetic 30
D. Other Fixed—Point Operations 35( E. Fixed—Point Literals 37

I F. Numeric Input—Output 37

IV. FLOATING-POINT TYPE 141

U A. Range 143
B. Precision 143

( C. Floating—Point Operations 149
D. Literals and Fixed—Point Values in Floating— 53

Point Computations

H 
_ _ _ _

• 
r

• — - — -  
~~~~~~~~~~~~~~~~~~~~~ 

- -~-
_ - • _ _ _ _ _ _ _•

.
1
1

REFEREN CES 57

APPENDIX Excerpts from Reviseó IRONMA N A—l

TAB I.. E S

1. Suitabi l i ty of Numeric Types of Applications 17

2. Minimum Precision Needed for Desired Significance 145

3. Maximum Obtainable Precision without Insignificant 146
Digits

vi Li

-U. • • • —
~~~~~~~

.•-•
~ 
- •. • - • — —



I •

4

I .  I N T R O D U C T I O N

A. PURPOSE) The technical requirements for a common programming lan—
guage have been developed through a long and tedious process

Involv ing many considerations . For t he most part , those con-
siderations and the rationale for Individual requirements have

( not been documented adequately . The requirements are detailed

in the ReviBed IRONMAN [1]. An older version of the require—

1’ ments , the WOODE NMA N [2 ] ,  prov ided a br ief rat ionale for many
• of the technical requirements. The background to the project
- and general design criteria for the language were discussed in

a paper presented at the 1977’ Computers in Aerospace Confer-

ence [3].

Th is paper consol idates and expan ds the prev ious document a-
tion to provide a more complete understanding of the depth ,

breadth , and soundness of the fixed—point and floating—point

requirements. It is an attempt to (a) document some of the con—

I siderations that led to the fixed—point and floating—point re-

quirement s, (b) show the strengths and weaknesses of the argu—

t ments support ing each re quirement , and Cc) point out both their

desirable and undesirable implications.

1 8. AUD I E N C E

The intended audience for this paper comprises four groups:

poten tial users of the common language , language designers ,
compiler writers , and hardware designers. When appropriate , the

I discussion Is aimed specifically at one or another of the groups.

The considerations that led to the requirements involve all four

I groups, but above all , the requirements are supposed to reflect

- 
•. -— - • • • - ~~• ~~~~~~~~~~



the needs of potential users . These needs are not only for

certain capabilities in the language , but also for a language
design that will aid the production of reliable and maintainable

pro grams , t hat can become a common langua ge , and that is prac-
tical to use. The problems of implementing compilers and opti-

mizing object code have also influenced the requirements .

Finally, many of the difficulties that users have to contend

with in the arithmetic of existing programming languages are a

direc t reflec tion of hardware design errors t hat the language
designer has passed on to the user .

C. SCOPE

This paper is restricted to discussion of the technical re-

quirements that affect the numeric processing facilities of a

common programming language for the Department of Defense (DoD).

The relevant requirements are reproduced as the Appendix.

D. CAUTION

This report is provided only as an aid to understanding the
~~1~

rationale that led to specific technical requirements. Informa—
tio1~ present ed here represen ts the opin ions of the aut hors and
In no way alters the meaning of the technical requirements pre-

sented in the Revi8ed IRONMAN .

E. ORGANIZATION

The remainder of this chapter is divided into four sections .

Section F prov ides a br ief history of the common language effor t ,
Section G discusses the methodology used In developing the tech-

nical requirements, Sect ion H gives the overall philosophy of

the requiremen ts, and Section I lists the major assumptions that
influenced the requirement s for the fixed—point and floating—

point facilities. Chapter II explains the five kinds of arith—

metic that were considered. Chapter III discusses the require-
ments for a fixed—point facility in the form of scaled Integers.

2

~! 
‘

~, 

. •
~
— —-—.- - -— -—- •



p

Chapter IV discusses the requirement s for a f loa t ing—point
facility.

F. HISTORY OF THE COMMON LANGUAGE EFFORT

The common language effort began in 19714 when groups in
eac’r ~f the Militar y Depar tmen ts Independentl y proposed the
adoption of a common language for developing major defense sys—

tems . In January 1975, a joint serv ice program was formulated
on the advice of the Director  of Defense Research and Engineer-
ing ( DDR&E*) [ 1 4] .  Ac t iv i t i e s  of this  program , the common pro—
gramming language e f fo r t , are coordinated by the High Order

• Language Working Group (HOLWG) which Is composed of official

re presen tat ives from the Arm y , Navy , Air Force , and Mar ine Corps ,
and from t he Defen se Commun ications Agency (D CA ) ,  the Nat iona l
Secur ity Agency (N S A ) ,  and the Defens e Advanc ed Res ear ch Pro-
jects Agency (DARPA). The HOLWG is chaired by a representative

of USD(R&E). Individuals from the National Aeronautics and

Space Administra tion (NA SA ) ,  the Office of the Assistant See—

f re tary of Defense for Manpower , Reserve A f f a i r s , and Logistics
(OASD(MRA&L))and OASD-Comptroller also participate. The authors

of this paper act , respectively, as the technical advisor to the

HOLWG and as the representative of the British Ministry of De—

fence to the HOLWG .

The major concerns of the common language effort are to re—

duce the number of programming languages used in the DoD, and to

k develop facilities to control , d I s t r i b u t e , support , and provide
training for those that remain. Early in the effort , it was

realized that It would be impractical to convert existing pro—

grams to a common language . Thu s , the common language Is in-

J tended only for new sof tware systems and shoul d not af fec t
existing programs . The intended applications are restricted to

I .
•Now Undersecretary of Defense for Research and Engineering
(USD(R&E)).

- 

~~~~~

•
_ •

~~~~~~~~~~~~

•-. 

~~~~~~~~~~~~~~~~~~~~~~~~~~


A

embedded computer systems because they represent the majority
of cos ts , and , unlike data processing and scientific applica-

tions , d~ not currently benefit from a common language .

G . DETERMINING THE TECHNICAL CHARACTERISTICS

The HOLWG was chartered to f ormu late the re qu irements for
common high-order languages for DoD . In the spring of 1975, the

HOLWG began an effort to determ ine the character ist ics of a
general—purpose programming language that would be suitable as a

common language for embedded computer applications of the DoD.

The characteristics were to be In the form of requirements which)

would act as constraints on the acceptability of a language , but

would not dictate specific language features.

While there are several widely accepted general goals and

criteria (such as efficiency, reliability, readability, simpli—

city, implementability), they do not lend themselves to quanti-

fiable assessment . At the opposite extreme are specific language

features advocated by some , which if adopted as requirements ,
would Impose strong constraints on the form , but no t nec essar-
ily increase the e f fec t iveness of t he langua ge. The ar gumen ts
for arid against any specific language feature are applicable to

a class of features sharing certain properties , and often depend

on the other characteristics of the language . The requirement s

attempt to isolate the needed properties from the features that

Implement those properties. Initially, rigorous definition at

the level of requirements proved difficult as a position to be

confu ted , so a STRA WMAN of ’ preliminary requirement s was estab—
lished . The STRA WMAN was widely circulated within the Military

Department s and , to a lesser extent , in the academic community

and industry .

The rev iews of’ the STRA WMA N resulted in Inputs which were
formed into a fairly complete , but still tentative , set of re—

qui~’ement s called WOODENMAN. This document contained descrip— ~~~~

tions of the general (i.e., nonquantifiable) characteristics

14

I
~~~- ~~~~~~~—— — - • ~•

• •i • i~~~~



• I which were desired , together with many desirable characteristics
whose feasibility, practicality, and mutual compatibility had

• not been tested . The WOODENMA N , too , was widely distributed ,
not only within the Mi l i ta ry  Departments but also to other
government agencies , to the computer science research community,
and to Indust ry . Addit ionally , a number of technical experts

- 

from outside the United States were solicited for comments , the
Euro pean community being especially responsive .

Based on the various inputs and the official responses from
each of the Military Departments, a TINMA N set of requirements

- was derived [5&6]. The TINMA N removed (former) requirements for
which there was no sound rationale , restr icted requirements that
were unnecessarily general , and modified others to be practical
within existing technology . Each requirement in the TINMA N had
its own justification which was outlined in the document and

- 
each individual requirement was judged to be feasible . The TIN-

• MAN requirements were officially approved by the Assistant

Secretary for Research and Development of each of’ the Military
Departments in January 1976.

Wide distribution of the TINMA N (to contributor s and other

interested groups) followed , and for a year comment s were re-
ceived . I’~ addition , a workshop [7] was held at Cornell Univer-.
sity in October 1976 to involve DoD representatives and the pro—
gramming language research c~ mmunIty  in jo in t  discussions of
technical Issues that had been raised regarding the requirements

and to further investigate their feasibility.

Also , during 1976, 23 programming languages were evaluated
• I) against the TINM.4N. These evaluations were performed by 16 corn—
• 

- panies and contractors. Most of the languages received at least

I two evaluations with , in most cases , the designers of a language
included among Its evaluators. The consensus of’ the evaluators

~ r was that it is currently possible to produce a single language
that will meet the requirements [8]. That Is, no technological

5

t i
_ _ _  _ _ _ _ _  • • — 

.—~~~~~~~~~

• - •~~~~~ ~~~



impediment to a single language was found , and it Is likely that
poten tial ly confl ict ing re quirement s , such as those for readable
programs , avoidance of unnecessary complexity, implementable
compilers , semantic and syntactic consistency, machine independ-
enc e , and object code eff iciency ,  can be met.

The languages that were evaluated included some currently

being used for embedded computer applications in the DoD (e.g.,

CMS—2, JOVIAL , SPL—l , and TACPOL ) ,  language s used for process
control and similar applications in Europe (e.g., CORAL—66 , LIS ,
LTR , PEARL , and RTL/2), research languages that were known to

satisfy specific requirements (e.g., EUCLID , MORAL , and ECL ) ,
and languages that are widely used outside the DoD (e.g., COBOL,
FORTRA N , PASCAL , and PL/l). As might be expected , the more
modern languages tended to satisfy the requirements for relia-

bility and simplicity, wh ile the languages for process control
and DoD applications more nearly satisfied the requirements that

reflect the special needs of embedded computer applications .

All of these efforts contributed to a new version of the

requirements , called IRONMA N , that was i3sued in January 1977

[9]. The IRONMA N requ irements are su bstan tial ly the same as
those of the TINMA N , but have been modified for feasibility and

clar it y ,  and are presented in a different format . The TIP/MAN
was discursive and organized around general areas of discussion .
The IRONMA N , on the other hand , is very br ief and organ ized like
a language descr ipt ion or manual . The IRONM A N is still suffi-
ciently general to constrain the structure of a language without

dictating the details of Its design .

• The most recent revision , the ReviBed IRON/JAN , was issued
• in July 1977 and is available for comment [1]. This revision

Incorporates four kinds of changes . Most are clarifications ,
some remove redundancies that became apparent with the revised
format , a few correct errors and inconsistencies that remained
from previous revisions , and the remainder deal with special

6

_ _  - --—--- . —- .- - -



cases that can arise from Interactions between the features of
a language .

Each Iterat ion of the requirements , beginning with WOODEN-
MAN , has reduced the number and generality of the capabilities
requested . The requirement s have become more precise , although
less constraining, as applications have become better under-

stood , as application software has been examined with respect to
known language features , and as more emphasis has been placed on
the general requirement s for rel iabilit y ,  maintainability, and
efficiency .

At each iterat ion , the tentative requirements were distrib-

uted by the I-IOLWG and comments and suggestions were collected
and coordinated by the Services. The resulting inputs were
analyzed and integrated into a consistent set of requirements
by the Institute for Defense Analyses (IDA).

One surprising result of the requirements effort has been
the similarity of the requirements within the different applica-
tion areas . Early in this program , there was a feeling that
different user communities might have fundamentally different
requirements with insufficient overlap to justify a common lan-
guage or might have critical requirements that were Incompatible.
Such communities Include avionics , guidanc e, command and control ,
communications , and training simulators. It has been impossible
to single out different sets of requirements for particular com-
munities. Almost all the potential users have the same require-
ments at the level of language characteristics , but different

• priorities . Often the priorities vary among segments of a given
task . All users need input—output , real—time facilities , strong
data typing , etc. Upon reflection , the technical rationale for
this Is clear . The surprise was historical and based on the
observation that in the past the different communities have
favored different language approaches. Further investigation
showed that the origin of this disparity was primarily adminis—
trative rather than technical . This did not , however , establish

7



that a single language could meet all the stated requirements,
only that , if a language meeting all requirements were found ,

it would satisfy the perceived needs.

In al l  74 command s and o f f i c e s  w i th in  the DoD , 66 indIvi-
duals  ou tside of DoD , and ~43 companies and organizations (not
counting the workshop at Cornell or the language evaluation
efforts) have contributed over 2000 wrItten pages of commentary
on the requirements. Not all of their suggestions have been
adopted and many have been modified before acceptance , but each
has been considered in sufficient detail to determine whether it
should or should not be followed .

H. PHILOSOPHY OF THE TECHNICAL REQUIREMENTS

The technical  requirements  re f lec t  six maj or goals for the
common language : (a) that it be suitable for software in DoD
embedded computer systems ; (b) that it be appropriate for the
design , developmen t , and maintenance of reliable software for
systems that are large , long—lived , and con tinually undergoing
change Cc) that it be suitable as a common language (i.e.,

complete, rigid , and machine—independent standards can be estab-
lished ) (d) that it will not impose execution costs in applica-
tions where it provides unused or unneeded generality; (e) that
it provide a base around which a useful software design , develop-
ment , maintenance , and support environment can be built and (f)
that It be an example of current good language design practice.
At the highest level , the technical requirement s take the form
of general design criteria that are most strongly influenced by
the first three goals above .

The characteristics of military software and of the DoD
software environment impose several general design criteria on a

suitable language :

• Reliability . The combination of extremely complex sys-
tems and life and death implications may be unique to

8

___________ — S.--— C - _______ - - - — -



I

the military. Language characteristics which promote
the production of reliable software are weighted very
highly .

• Modifiability . Most software costs (perhaps up to 90
percent ) in embedded computer systems in the DoD are for
software maintenance. Language features that contribute

• to the maintainability of reliable and efficient pro-
grams should have a major impact on software costs.

• Efficiency. Efficiency of object programs is a legiti-
mate and sometimes critical concern in military applica-
tions. Physical limitations of military systems (e.g.,
aircraft) Impose time and space limitations on computa-
tions . Software that cannot meet these constraints is
worthless .

The des ire for a common language that can be widely used
throughou t the DoD adds st ill more design cr iter ia:

• Machine Independence. Over 200 computer models are

known to be used currently in the DoD. The language
must be sufficiently machine—independent that It can be
made available on a variety of object machines.

• Practicality. The language must be sufficiently easy
and inexpensive to implement that it will become widely
available.

• Complete and Unambiguous Definition. The language must

have a complete and unambiguous definition to ensure
that sof tware can be shared and to avo id incompat ible
implementations .

• Easily Accessible Support Software. The availability
of useful and easily accessible support software is , of

course, the ultimate technical goal of the common lan—
guage effort , but the ease or difficulty In building
such a support environment can be influenced strongly
by the language characteristics.

9

- -‘----- — .- - - —----- —- -



The characteristics of a suitable language listed above

were transla ted into a ser ies of eight general requirements that
constitute the first chapter of the IRONMA N requirements. These
requirements are further expan~ed Into specific constraints on
the design of an appropriate language .

I .  A S S U M P T I O N S

The following assumptions were made in determining the

techn ical requ irements :

• Software r e l i ab i l i t y ,  object  code e f f i c i e n c y ,  and modi—
f la b il i t y  of programs are more important than ease ( i . e . ,
terseness) of programming .

• The language must be as machine-independent as possible ,
but must be implementable on a wide variety of existing

mac hines ( i .e. , as object machines) .

• It is not necessary that all object machines be able to

host the translators.

• Floating—point computations will be required only on

object machines that have floating—point hardware .

Additional assumptions made with respect to specific re—

quirements are discussed in the text .

10

_ _ _  —-.--- ~~~~~~—~~~-—---—- . ---- --- —~~~~. - -------. - --_ _ _ _ _



I

II. TYPES OF ARITHMETIC

The common language is Intended for a broad class of em-
bedded computer applications that Include sensor processing ,

real—t ime control , simulation , diagnostics , counting, record
keeping , and display . All of these applications require numeric

• computation facilities in varying degrees of sophistication .

The technical requirement s for numeric computation facilities

appear as Section 3 of the requirements document [1] and are re—
produced in the Appendix .

Five kinds of arithmetic were considered : (a) integers ,

(b) fractions, (c) floating point , (d) scaled integers , and (e)

I I scaled fractions . The four kinds other than floating point are

particular forms of fixed—point arithmetic . The implications of
each of these forms of arithmetic for the user and the trans.-
lator are discussed In separate sections below .

A. INTEGERS

Counting is required in all digital applications , so some
form of integer computation facility must be provided in every
general—purpose program language . In addition , integers are
often used to represent other data types that are not built into
the language, for indexing arrays , and in all applications that
have integer data.

Operations for integer arithmetic produce integer results
from integer operands. Integer operations for addition , sub-

traction , multiplication , Integer division , and remainder from
integer division are usually needed . Integer operations can be
computed and repre8ented exactly In digital computers.

11

_________ _ 
•. ----———.——~~~~~~~~~~———‘-—— -——- — — - _______________



Because the representation of integers in computers must
be finite , there is always some maximum range of integers that
can be represented . The likelihood of errors from computations

that exceed the available range is low because (a) the user

usually knows the range of the (integer) values to be expected ,
and (b) the arithmetic hardware frequently provides a warning

(i.e., fixed—point overflow) during execution whenever the re-

sult of a computation exceeds the maximum available range .

Most digital computers have hardware facilities for fixed—

point arithmetic . That Is, they provide arithmetic operations

that assume that numbers are represented with a fixed number of

digits and with the radix point either at the extreme right or

extreme left of those digits (at the option of the user or trans-
lator writer). If one assumes that the radix is at the right ,

such machines implement Integers directly.

A few cornp~iters have only floating-point hardware . In such

mac hines , integers must be represented in floating—point format
and the ar i thmetic  must be executed using floating—point instruc-
tions. One special problem is associated with the implementation

of integer arithmetic on floating—point hardware . If a result

has more digits than can be represented exactly (i.e., integer

range e r r o r ) ,  the usual f loa t ing—point  convent ion is to discard
the least—significant digit . This produces a result that only

approximates the exact mathematical value and , therefore , can
introduce unexpected errors in integer computations . A prac-

tical solutIon to the problem is for the hardware to provide a

fixed-point overflow condition that is raised whenever a nonzero
l eas t - s ign i f ican t  digi t  must be discarded to accommodate the
value in the f loa t ing—poin t  representat ion.

B. FRACTIONS

Fractions are numbers whose absolute values are less than

one . Fractional computations are a form of arithmetic in which

12

I
-~~~~ •--~~~-.‘

--,-—-- .- ——— - •- -- - - -  — ._ _ _



the operand s and results of’ all arithmetic operations must be
fractions . Because the representation of fractions in computers
must be finite , there is always some maximum number of digits
that can be represented . Less—significant digits are discarded .
Thus , fractional arithmetic is most useful for computation in—
volving data determined from physical measurements and other
computations in which resul ts  need not be exact , but only corn—
puted to some f in i t e  precision ( I . e . ,  number of d i g i t s ) .

Fractional operations for addition , subtraction , multipli-
cation , and division are usually needed . Each arithmetIc opera-
tion produces a result that is rounded (or truncated ) to the
nearest representable value .

Fractional  ar i thmetic  is d if ’f icult  to use because the user
must scale all data so that it will be between —l and 1. He

must be sure when adding (or subtracting ) that the absolute

value of the sum (or difference) will be less than 1. He must

be sure that the absolute value of the divisor is greater than
the absolute value of the dividend on each division . He must
determine the effective scale of final results in order to pro-
perly interpret output . All these condi t ions  must be determined

F when the program is written (i.e., without knowledge of the
exact data values).

Use of fractional arithmetic is further complicated because
the effective precision of values is reduced whenever there are

leading zeros in their representation. Ideally, the user must
pick a scale for each value , X , that will maintain the magnitude
of’ its representation in the range B 1 

~~ lxi < 1 where B Is the
radix in which the number is represented .

Fractions are important because they can be used for in-
exact computations on noninteger values and because they can be
implemented directly using the fixed—point hardware available
on most digital computers (i.e., by interpreting the radix point
to be on the left). Fractions correspond to the mantissa of

13

‘ II
-~~~~~~~ —

. — - —----— - — -- - ,.-- -----~~
--—----- - . . •--- _ _ _ _



numbers represented in scientific notation. The corresponding

exponent (or characteristic) must be known , computed , and repre-
sented by the user as he writes a program .

C. FLOATING -POINT NUMBERS

Floating—point numbers are a finite approximation to

numbers in scientific notation (i.e ., computations in which
exact results are not needed). Each floating—point number has
a mantissa , M, an exponent , E, a radix , B, and a value MxBE.
Because floating—point numbers have a finite representation , the
mantissa has limited precision (i.e. , number of digits in its

representation) and the exponent Is limited to some finite range .

Floating—point values are often normalized (i.e., stored with a

unique representation in which the absolute value of the man-

tissa , ~M j , of all nonzero values is in the range B
1 � 1M~ < 1. f

Floating—point arithmetic operations produce values that
are close to the values that would be produced by applying the

corresponding mathematical functions to the operands and then

rounding the result to the nearest representable floating—point

number .

Floating—point arithmetic is use fu l  in any computation in-
volving data representable in scientific notation . Floating
point is easier and less error—prone in use than are fractions .

Floating point Is needed in compu tations where the ranges of
values are not known at the time a program is written (i.e.,

where fractions cannot be used).

Floating point is not necessary if the exponent values are
known during translation . Floating point requires more storage

than fractions or Integers for the same precision because the
exponent as well as the mantissa must be stored during execution .
Floating point requires special arithmetic hardware to manage
the exponents during arithmetic operations and to maintain values
in a normalized representation. This makes the hardware more

14 

— -~~~~~ —---.—- — — . — -  .- — .
.—



expensive and frequently adds time to the execution of arith-
metic operations (although these extra costs are often unim-
portant). Floating point is very expensive to use if Imple-
mented in software . The automatic rescallng by floating—poInt
hardware not only makes floating point easier to use than other
forms of arithmetic , but also makes floating point more dangerous
to use. Because the scale management is automatic , the user is
unaware of situations in which all significance (i.e., accuracy)
is lost in a computation.

D.  SCALED I N T E G E R S

Scaled— integer a r i thmet ic , like integer a r i thmet ic , is a
system for exact numeric computation . A scaled integer Is a

product of an integer , M , and a scale , ~~ . Any set of values can
be represented exactly with the proper choice of ~~ . Also , sinc e
any value can be approximated to any granularity by a suitable
choice of ~~, scaled integers offer an alternative to fractions
and floating—point numbers when noninteger computations are re—

quired .

The scale in the representation of a scaled integer must be
spec~ fied as a constant when the program Is wr i t t en . This means
that  scaled integers cannot be used when the appropriate scale

ç is unknown until execution (i.e., those cases in which floating
point is required).

The translator can determine the scales of results during
translation as a function of the scales of the operands. Conse—

quently , only the (integer ) mantissa , M , need be stored during
execution and all operations during execution will be integer
operations on the mantissas. Scaled—integer arithmetic can be

exact because computing a mantissa involves only integers and
computing the scale can be done symbolically because scales are

• 
processed only during translation and because (as will be seen
later) only the prime factors and not the actual values of the

scales are needed .

15

— ~~~~~~~~~~~ --- - - -- •- - - --_ _ _



Applications that require exact computations on nonintegers

can use scaled integers  providing (a )  the needed scales are
known , and (b) the language allows the needed scales to be used .
App lications that do not require exact computations can use g
scaled integers , providing the scales can be chosen to a suffi-
ciently fine granularity to represent the needed precisions . I

Scaled integers have been provided in many programming lan-
guages , usually with restrictions on the choice of scales. Many 

I
languages r e s t r i c t  the scales to  a limited range of powers of 2

(i.e., ~ 
= 2N, with —P � N � 0 where P is the number of bits in Ithe mantissa of the fixed—point representation of the object

machine). Removing this restriction on N increases the time for
neither compilation nor execution of a program , but It does
greatly increase the ranges of values that can be represented
(in fact , It permits ranges that cannot be represented in float— I
ing point).

Restricting ~ to powers of 2 does not affect the complexity I
of the scale computation . Dur~~g execut ion , however , the cost
of scale conversions can sometime s be reduced (assuming the I
object  machine is b ina ry )  by using sh i f t s  instead of mul t ip ly ing
by powers of 2. If the language did not place restrictions on I
t~, then a similar saving could be made whenever ~ Is a power of
the object machine radix. In many cases , however, mult iplica-
tion would be required for scale conversion .

E. SCALED FRACTIO N S I
If Integer scales can be managed automatically by compilers,

then possibly so can scales of fractions. To automat ical ly
manage th~ scales o’ Integers , it is necessary during transla-
tion to know only the maximum acceptable granularity and maximum I
ranges for the variables that are needed . To automatically
determine the results scales for fractions during translation , 1it Is necessary to know the expected values of variables, within

16

I
- •—-—--•--- - •.— _ •v — ,.— — — _— __. -- -



a few (preferably one) powers of the radix (i.e., upper and
lower bounds on the magnitude of the value of the variable).

The lower bound Is often difficult to predict. Finally , appli-

cations that require exact computation cannot use scaled frac-

tIons .

F. CHOICE OF TYPES

Some points from the above discussion are illustrated in
Table 1, which shows the appropriateness of each of six types
of arithmetic to each of four generic classes of applications.
The columns correspond to integer computations , exact nonlnteger
computations , inexact computations in which the upper and lower
bounds on the magnitude of values are known when the program is

written , and general inexact computations . A “YES” means that
the arithmet ic type can be used for the application. “NO” indI-

cates that it would be very difficult or impossible to accom-
plish the computation with the designated numeric type . “DIFFI-

CULT” indicates that although the computation can be accomplished ,

the use of this numeric type will be difficult , or inefficient .

TABLE 1 . SUITABILITY OF NUMERIC TYPES TO APPLICATIONS

Application
Exac t Results Needed Exact Results

0 Wi th  Without
Type Integers

__• 
Nonintegers Pr;d~ctab le Pr;d~ctab le

Integer Yes No No No
Fraction No No Difficult No
Floating Point Some No Yes Yes

Problems
Scaled Integer Yes No , except Yes No

— for powers
o f 2

Scaled Integer Yes Yes Yes No
Unrestr ic ted ~
Scaled Frac- No No Yes No
t i ons

17 

-- --



I
The numeric types chosen fo~ the common lan~ua~e are Integer

and fixed point in the form of scaled integers , and floating
point . The main  cons idera t ions  for  each type are given below:

• Integer. Integers are not needed if scaled integers

are provided . On the other hand , inte gers are so f r e-

quently needed and are sufficiently simpler in their use

than are scaled integers , that integers should be either

a distinct type or a special case of scaled integers.

• Fractions. Fractions provide no power that is not pro-

vided with more simplicity by the other types. Frac-

tions should not be included as a type in the common

language .

• Floating Point. Floating point is essential for some

applications and , therefore , should be provided by the

1~ir~ uage . Because floating-point hardware is not avail—
-~bIe cn  all object machines , floating point is not always

a viable alternat ive to scaled integers or fractions when

the na~:n1tude of values are known at translation time .

Floating point is required , but Its inclusion does not

alleviate the need for some form of’ automatically scaled

arithmetic. Also , because floating point Is so expensive

if implemented in software , it need not be provided In.

object machines that do not have floating—point hardware

(i.e., we assume that if the application requires float-

ing point , It w~ ll use a machine with floating—point

hardware) .

• • scaled Integers. Scalel integers are needed for exact
computations on nonintegers and applications should not

be restricted to powers of 2 (in particular , powers of
10 are needed). Scaled Integers aiso offer an accept-
able alternative to floating point when the magnitude

and scale of values are predictable at the time of trans-
lation . Scaled integers also permit wider preci sion of

18

- - *- - . - • -- 

~~~~~~~~~~~ 
— --

I value s than is normally provided by a floating-point

facility. A fixed—point type in the form of scaled in-

tegers should be provided by the language .

• Scaled Fractions. Scaled fractions provide few advan—

tages over scaled integers and cannot be used when exact
1. results are required . Thus , scaled fractions should not

be built into the language .

1 .

I

I-

I I
19

1

F

III. FIXED -POINT AND INTEGER TYPE

The language shall provide a fixed—point and integer type
(3_lAa *). Integers are intended for all integer computations
including counting , denoting the ordinality of a part icular ob-
ject in a set of similar objects (i.e., indexing), and repre-
senting elements (i.e., atoms) of data types that are not built
into the language . Fixed—point numbers are intended for all
numeric applications that involve values other than integers and
require exact results , for numerIc computations in which the
ranges of values do not vary dynamically, and as a subst itute
for floating point when floating—point hardware is not available .

A fixed—point and Integer type can be implemented eff i-
ciently on most existing digital computers. Each fixed—point or

integer variable in a program is required to have a range , R1 to
and a positive scale, ~~~, chosen and specified in the program

by the user . All values, X , that must be represented In such a
variable must be within the specified range (I.e., R1 � X ~ R2)
and must be integral multiples of the scale . For integers , the
scale is 1. Because the scale of each variable is constant dur—

ing execution (3~ lG), a value of’ the variable can be represented ,
In the scale , ~~~, as a single integer M where Mxt~ Is the value .
The amount of storage required for the variable (e.g., word
width) Is just that needed to store any Integer M where

R 1/A � M ~~~ R 2/~~.

*Hereafter references to the Reviaed IRO NM A N are Indicated by
the requ irement number in parentheses. In some cases the re-
qu irement number is followed by a lower —case letter to indicat e
the sentence.

21

L ..~~~~~~~

A. RANGE

The range of each fixed—point and integer variable must be
spec i f ied in program s (3 — l C a) and indicates that all legal
values lie within the limits of the range . Range informat ion
can be helpful In understanding and maintaining programs , it is

needed by the translater to determine how much space must be

allocated to a variable . It is also a form of assertion which

can be used to aid proofs of’ correctness or which can be checked

automatically during execution . If the value lies outside the

range , a range error Is said to have occurred .

A range specification shall be interpreted by translators

as the minimum range to be implemented (3—lCb). That is , every

implementation of variables with a particular specified range

will support that range on the designated object machine (or

state that the variable cannot be represented). However , effi—

ciency considerations may dictate that a desirable Implementa-

tion should support a wider range than that specified . This

wider range is known as the implemented range and may vary from

object machine to object machine , or within the same object

machine according to optimization needs. By permitting a vari-

able to have unused states in its implementation , a lan guage
allows the translator to select the most efficient Implementa-

tion that will not adversely affect the program correctness.

For simple variables , a full word is usually the most eff ic ient
representat ion, regardless of the specified range , so that the
range specification simply gives the translator a way to deter-
mine whether the object machine word length is adequate.

Arrays , however , can often be repre sented more compact ly, and
without loss of execution time , where it is known that a par-
tial word representation will be adequate.

The range of each fixed—point and Integer variable must be
determinable at the time of Its allocation (3—iCa). For most

variables , the specified range will be constant and , therefore ,
can be determined during translation. In most object machines ,

I

the only efficient representation will be as a full word , so the
actual range need not be known during translation. Indeed ,
there are cases where it is desirable to delay binding of the
specified range until scope entry (e.g., within a procedure , a
local variable that Is used to index an array parameter should
have its range bound to the array subscript range which may vary
from call to call). In such cases , it is safe for the translator
to use the largest representation that is used elsewhere in the
program (and whIch typically will be the largest eff icient in-
teger representation). An optimizing compiler might implement

)
the minimum range that will satisfy all the actual ranges that
can occur during execution .

The maximum range of Intermediate results in an expression

can be determined automatically from the operations and the
range of the operands . Each operat ion, however , tends to expand
the range of the result so that in an assignment statement or
similar context , the maximum computed range will almost always
exceed the range of the variable being assigned (e.g., X4-X+l

contains a potential range error because the computed range of
X+l will not be within the range of X).

One way to eliminate range errors is to require the use of
explicit range conversion operations (such as modulo) that will
guarantee that values will be In range. Because such range con-
version operations would have to be numerous in programs, they
would detract from readability and would reduce efficiency.
Hence , explicit conversion operations shall not be required be-
tween numeric ranges (3—1Cc).

Another way to eliminate range errors is to use implicit
• range—conversion operations. There are many choices: reduce

each value modulo the specified range , reduce each value modulo
the implemented range , replace any value that is out of range
by the nearest extreme value of the range , replace any value
that is out of range by a designated constant , etc. Any of
these choices can cause unexpected results , most would add to

execution costs , and none would be appropr ia te for a l l a p r i l c a —
tions. Implicit range conversions modulo the implemented range
would be most efficient and has been a traditional method be-

cause they can be implemented directly by most integer and float-
ing—point hardware . Because word lengths are not standardized ,
however , such a choice would require that the semantics of cor-
rect pro~ rams be machine—dependent .

A third alternative Is to raise an exception during execu-

tion whenever a range error occurs. This is the approach taken
by IRONPIAN. The languare will support a mechanism , exce pt ion
handl inr~, whereby the user can spec if y , in the program , the

anrropriate responses to different errors detected during

execution of the program . There shall be exceptions during

execution whenever a value exceeds either the specified range of

a variable or the implemented range (lOBa). However , tests to
determine the presenc e of values outside the specified range can
be expensive during execution because they must be done in soft-

ware on current machines . In some cas es , the translator will be
able to prov e tha t a ran ge error cannot occur and , thus , can
safely eliminate the corresponding test . Tests to detect values

outs ide the implemented range are often Inexpensive because they
can be implemented directly using the integer or fixed—point

overflow interrupt of the object-machine hardware . A programmer

option that can improve efficiency w ithout muc h loss of safe ty
is to suppress detection of errors on the specified range (lOGa)
but not on the implemented range . The effect on the Implementa-
tion should be the same as if’ the specified range were extended

• to exactly the implemented range . This does not affect the

semantics of cor rec t ly written programs , regardless of’ object
machine , but it can lead to different results on different hard-

ware (e.g., different word widths , different overflow detection

mechanisms) f or Incorrect programs .

A closely related problem arises in determining the range • I
of intermediate results. Although the variables of a program

2~4

1
- -,—--- - •

~~~~~~
—r 

- - - — 
~~~~~

• - - —-•- • —
•

- .

may have ranges that are efficiently Implementable in the object
machine , the worst—case ranges (as computed from the ranges of
the operands) for intermediate results in an expression may ex-
ceed any range that can be implemented efficiently without loss
of information . In correctly written programs, the actual inter—

¶ mediate results will tend to be within efficiently implementable
ranges.

I The language designer has several choices when there Is a
potential error on the implemented range of an intermediate re—
sult . The language might require the translator to (a) change
the scale of the intermediate result so that information is lost
from the least-significant digits , (b) give an error during
translation , (c) provide a safe but inefficient implementation ,
or (d) provide an efficient Implementation with an exception
during execution If the actual value does exceed the Implemented
range .

The first approach should be discounted because It would

lose information In a fixed—point facility that is to provide

exact results. The second case will give a translation error

In the frequent case In which the actual values can be effici—

t ently represented but the potential values exceed any efficiently

implemented range. The third approach is theoretically best be-
cause It is safe and does not complicate the language . It may ,
however , complicate the translator and will unnecessarily in-
crease the execution costs of programs in which the potential
range exceeds the maximum efficiently implementable range , but
the actual values do not .

a The last (fourth) approach Is also safe because range

• errors will be detected during execution . Its primary advantage
is that no unnecessary execution costs are incurred for the
usual situation in which the actual data does not cause a range
error. Its main disadvantage is that it places an extra burden
on the user when the actual values exceed the Implemented range .

25

- - - • • • • -•• - _________

The t ransla tor should warn the user (during t rans la t ion) of
those situations where there is a potential range error (i.e.,

a warning that the implemented range does not cover the full
(implicitly specified) range of an intermediate result). A

var ia t ion of the last approach is for the t ransla tor to imple-
ment an automatic (correct but inefficient) reevaluation of the
expression in response to the range exception . The language

definition should specify which semantics will be given . If the

four th -case semantics is the choice , t ransla tors can use the
third or either of the fou r th case implementa t ions .

B. SCALE

• Every value of a fixed—point variable is an Integral mul-
t iple of the variable ’s scale or step size. The step size of’
each variable must be chosen individually to match the needs of

the application , but can be fixed during translation (3~ lG) to
permit the most efficient implementation . Because the scale of

each variable is known during translation and is unalterable

during execution , only the integer need be stored during trans-
lation.

Scale conversions take place when a value has a scale which
differs from that of the variable to which it is bein~, assigned .

Conversions can be divided into two groups , those for which the

values can be represented exactly In the target scale (i.e., of
the variable), and those which cannot be so represented . As an

example of the first , one might want to assign the value of a
variable that has a scale of 1/2 (i.e., values that are a mul-
tiple of 1/2) to a variable of scale l/~ . In such a case (i.e.,
any case for which the scale of the value is an integral mul-
tiple of the scale of the variable), the value can be repre-
sented exactly in the variable and such assignment should be

allowed without an explicit scale conversion operation in the
source program , since the actual value Is unchanged . With the
most obvious representation for these scales (i.e., radix points

26

— . - .- -w __•__ _
~~~

• — —..--— -.---- - -  - - - -—- - -•



I

one and two binary digits from the least significant end of the

word for scales 1/2 and l/~4 , respectively) a one bit shift left
would be required as part of’ the assignment . In general (i.e.,
for scales that differ by an integer that Is not a power of the
radix of the object machine), Implicit scale conversions will
require an integer multiply instead of a left shift .

Many implicit scale conversions can be eliminated during

translatIon by using less compact representations . In the above
example , the value of scale 1/2 could be kept (or computed ) in
the scale l/L4 , and a zero kept in the (additional) least—signifi-
cant bit of the mantissa . This method can eliminate execution
time for implicit scale conversions , but reduces the range of
the values that can be represented and may add to the cost of
multiplication to avoid unnecessary (implemented) range errors

in intermediate results.

Fixed—point and integer values are intended for computa-
tions that require exact results or require a detail of’ control
that can be obtained only with an exact computation (3—lFa).
On the other hand , it Is sometimes necessary to convert numeric
values to a scale which cannot represent them exactly. That is,
some other (arithmetically close) ~‘alue in the desired scale
must be used instead of’ the computed value . To avoid implicit
changes in value , the language shall require explicit scale con-
version operations whenever the abstract value may be changed
(3—lHb).

There shall be built—in operations for conversion between
fixed—point (and integer) scale factors (3—iHa). Rescaling can

• be done by either truncation or rounding , but which is appro—
priate for a given application cannot be determined automatic—
ally by the translator . Consequently, there shall be no 1mpH—
cit truncation or rounding in fixed-point and integer computa—

[ 

tions (3—lFb).

27



j

There are two common definitions of truncation, towar d s
minus infinity (I.e., the greatest value in the target scale
not greater than the source value), and towards zero (i.e.,
in the target  scale , the value that  Is f a r t he s t  from zero but
is not fa r ther  away than is the source v a l u e) .  The major
inva r i an t  property of the  f i r s t  is:

TRUNCATE (X+n~ ,1~) = TRUNCATE(X ,~ )+n ,
while the second has

TRUNCATE(-X ,t~) = -TRUNCATE(X ,t~).

It Is possible , but nontrivial , to convert one def init ion
to the other . It may be desirable that any choice between the
two be compatible with the definition of Integer divide and the

remainder operation (see Ill—C , below) which corresponds to the
decision between whether the sign of the remainder Is the same
as the sign of the divisor or the dividend . (An always positive
remainder has no equivalent , reasonable definition for truncation.) 

(

Rounding is the process of obtaining the “neares t” value in
the target scale. With the first definition of truncation ,
rounding a value X to scale ~ can be expresse d as

ROUND(X ,t.) = TRUNCATE(X +~/2,ta ),
whereas the second definition leads to

ROUND(X ,~~) = TRUNCATE(X+sign(X)x~ /2,A ).

These two definitions have their hardware analogue in two ’s
comp lement and one ’s complement implementations of arithmetic . S

However , the language definition must choose one which trans-
lators must then implement , regardless of the object machine .
A firm resolution of this issue in languages might lead to great-
er uniformity in hardware design .

The choice between the two is not clear—cut , but several
factors can be noted . In particular , the invariant of the first
has greater applicability than that of the second because it is

28

_ _ _  — - - - -_



• true for any integer n rather than just —1. Where existing
high—level languages have taken a position , they have chosen
the first definition (e.g., entier in the Algol ’s and floor in
APL). On machines that directly implement truncation toward
zero , truncation toward minus infinity is relatively more ex-
pensive to implement . In most cases , however , the actual value
will be positive (in which case the two forms of truncation are
indistinguishable) and will be known to be positive by the
translator (because of range specifications), so that whichever
hardware implementation is available can be used . Thus, it
appears that there are valid arguments both ways. To avoid am-
biguity , however , the language must define truncation and divi-
sion on negative arguments.

Truncating and rounding are always to some scale , ~~ . To
avoid the introduction of scales that vary during execution , the
desired scale in a scale—conversion operation must evaluate to a
constant during translation .

In some contexts , the actual parameter specifying the scale
in an explicit scale conversion will be redundant and may be
omitted . Such contexts include the right hand sides of assign-
ment statement s (where the scale is that of the variable , for
example , X~-ROUND(Y)), actual parameters (where the scale is

J that of the formal parameter), and array indices (where the
scale is one).

Although explicit rescaling is always safe , it is unneces—
t sar y whenever it is known by other means that an actual value

(but not all values of Its scale) is exactly representable in
• I the desired scale . For example , a value of scale 1/14 is com-

puted to be assigned to a variable of scale 1/2, but it is known
that the actual value in this case will be a multiple of 1/2.
In such a case, neither truncation nor rounding will alter the
value but might unnecessarily increase the execution costs. Un—

necessary scale—conversion operations can be omitted from the

29

_ _  . -~~~~
.
‘ ~~~

• • .



object program wherever the translator can determine that the

optimization is safe .

What f i xed—poin t  scales should be allowed by a language?

Because fixed—point computations are exact , the scale must be

exact; fixed—point scales cannot be floating—point values.

Several possible choices for the scales that  a language should
allow have been suggeste d: negat ive powers of 2 , any power of
2, powers of 10, integers and their reciprocals , any rational ,
and any real number . Powers of 2 and 10 (both positive and

negative) and their products are most useful. In special situa-

tions , other rational scales might be needed . Irrational num-

bers are sometime s useful (e.g., a var iable might contain only
multiples of pi). Because scale computations are done entirely

at translat ion t ime , they cannot add to the execution costs. The

choice of the scale affects execution only during scale conver-

s ions ;  rescal ing by powers of the obj e ’~t machine radix can be
done by shifting, while the rest require multiplication.

Once powers of 2 and 10 are allowed , allowing any integer
or reciirocal of an integer  as a scale will not add to the corn—
plexity of ’ the language or its translators. Similarly, once
powers of 2 and 10 and their products are allowed , allowing any
rational scale will not increase the complexity of the language
or its translators (the computational details are discussed in

Sections C and D below). Irrational scales , on the ot her hand ,
are seldom use fu l , would add to the complexity of translators
(I.e., such scales would have to be treated symbolically), but

are not expensive in execution (I.e., the methods of’ Sec tions
C and D also apply to irrational scales).

C.  F I X E D - P O I N T  AR ITHMETIC

If all rational scales are allowed for fixed—point values,
then any rational number can be represented exactly. There will
be one abstract value corresponding to each fixed—point repre—

sentation (i.e., mantissa and scale). Information need not be
30 • 



lost in fixed—point computations . Fixed—point arithmetic should
be exact with each operation producing a fixed—point representa-
tion for the abstract value that is the exact result of applying
the corresponding mathematical operation to the abstract values
represented by the operands (3-lFa).

Several fixed—point and integer arithmetic operations are
needed : addition , subtraction , multiplication , integer division ,
remainder , and division (3—lBb , 3—lHa). All of these operations
have well—defined meanings , are usually included in programming
languages , are useful in any language that requires exact arith-
metic , and can be efficiently implemented .

The individual operations are discussed below . In each
case , operands will be designated as X1~~ i=l ,2 where is the
integer mantissa of’ the internal representation and is the
rational number that Is the specified scale and Is processed
entirely during translation. The symbols and abbreviations used
below are for exposition in this paper and do not represent a
preferenc e for a common language.

Addition and subtraction are least expensive when the scale
of their operands are identical : X 1t~1 ± X~~1 

= (X
1 ± X 2 ) A 1. When

the scale of the operands differ, they can be (impl ici t ly ) con-
verted to a common scale without altering their abstract values

(3—lHb).

Let this r~ommon scale be 
~~ 

Then , X1~ 1 = X1(~ 1/~ 3
)~ 3

where has been chosen so that 
~1’~3 

Is an integer . Thus,
addition and subtraction might be accomplished as

x1~1 ± x~~2 = x1 (~ 1/~3 )~ 3 ± X2 (A 2/~ 3)~ 3

= (X 1~ 1/~ 3 ± x2~2/~3 )~ 3 .

For the most e f f ic ien t  representation of’ the sum or difference ,
should be as large as possible . 

~1’~ 3 and A 2/~ 3 are thus the
smallest pair of’ Integer multipliers, for exact addition and sub—
traction , between values in the scales and tx~ . They have no

31 

-~~~~---—--- - - - —- ~~~~~~~~~ -- - - - -- —--



common integral  fac tor  (i . e . ,  greatest  common divisor , GCD)
greater than unity (otherwise it would have been absorbed into

It is neither trivial nor difficult for the translator to
evalua te t~3~ ta~ can be represented as the quot ient of t he two
coprime (i.e., relatively prime ) integers , P1 and Q1 ( i . e . ,

and GCD(P 1,Q1) = 1). Thus,

P.~ X1P1Q2 ± X2P2Q1= x  ~~~~~~~~ _-~a~= _________

1 2 1 2

~3
=P

3
/Q

3 
is the rational factor common to both halves of’ this

GCD(P
1Q2 ,

P2Q1)expression and Is — —-— . Since and are copr ime,
l~ 2

GCD(P1,P2) 
X GCD(Q1,Q2)this reduces to ,., ,~ which further reduces to

~l~ 2

GCD(P ,P )

M 
1 2,~ where LCM is the least common multiple . Thus , P andLC ( Q1,Q2,

P GCD(P1, P2)Q., are the smallest integers such that = T~~~M t P a  -, ~~
- and the

J-i

required addition or subtraction is achieved by mul t ip ly ing  X 1
P1 LCM(Q 1,Q2) P2 LCM(Q1,Q2)by x 

GCD(P1,P2) 
and X2 by ~~ -~- X 

G CD (P 1,P~ 3~ 
. It will be ob-

served that both reduce to integers (i.e., only multiplicative
rescaling is required ) ~ince GCD(P1,P2) Is an integral factor of’
both P1 and P2, and also that and both divide LCM (Q1,Q2)
exactly . GCD(P1,P2) and LCM (Q1,Q2) are coprime since P1 and Q1,
and also 

~2 
and Q2, are coprime , and hence any factor of

GCD(P1,P2) is a factor of’ P1 and P2 and cannot , therefore , be

a factor of or 
~2’ 

and hence not of’ LCM(Q1,Q2). Thus,
P3 

= (ICD(P 1,P2
) and = LCM(Q1,Q9). By analogy with integers ,

it wi l l  be usefu l  to treat as the GCD (~1,A 2) In the rest of

this paper . t

32 j

-l
-.—- —- -— —••— - - • — -_________________



‘
4 ’

It will  be noted that , if P1 = P2 
= 1, then A

3 
= LCM (Q1,Q2)

(e.g., 1/2’s and 1/3’s must be added in 1/6’s, whIch is intul—

tively correct). 
• Also , if t he operan ds have the same scale

( i . e . ,  P1 = P2 and 
Q1 = Q2 ) ,  then A

3 
P1/Q1 so that addition

and subtraction is performed directly in the scale of the argu—

ments .

At most , one mul t ip l i ca t ion  is required during execut ion to
convert each operand . If an operand ’s scale is a multiple of

the scale of the other operand (i.e .,, A 1 = GCD ( A 1,A 2) or
= GCD (~ 1,~~2 ) ) , only one conversion is necessary . In the

usual case for addition and subtraction , the operands ’ scales
will be Identical and no scale conversion will be needed . When

several incompat ible  scales are added or subtracted In a single
expression , each operand can be converted to the fInal result ’s

scale and no additional scale conversions will be needed for
intermediate results.

It should be noted that implementatIon of scale management
by the translator  is eased If It is remem bered that
(CD(P ,Q)xLCM (P,Q) = PxQ . There are reasonably efficient “arith-

metic ” implementations for the evaluation of (ICD(P ,Q ) based on
GCD ( P ,Q) = GCD(P—Q,Q). Alternatively, a “list processing ” imple-

mentation of scale factors in the translator could be considered
(e.g., 12 = 2

2
x3

1 could be represented as <<2 , 2> , <3, 1>>),
in which case GCD , LCM , and multiplication become list—process-

ing merges (i.e., mm , max , and pointwise addition , respectively).
This approach enables the numerator and denominator of the scales
to be held together (e.g., 50/27 = <<2 , 1> , <3, —3> , <5, 2>>).

Multiplication never requires rescaling of the operands.

The scale of the produ ct is the product of the operand ’s scales :
=

Integer division is an exact division operation that can be
defined over all f ixed-point  values and in all contexts .  The

33



r
result of the integer division , X~Y, can be defined as the
largest integer that is not greater than the true quotient of
X divided by Y. Integer division by zero is undefined and should
cause an exception. As thus def ined , integer division has the
property: (X4-nY)÷Y = X÷Y+n for any integer n and corresponds

to truncation towards minus infInity.

A remainder (or modulo or residue) operation , MOD , can be
associated with integer division and is normally defined as the
difference between the dividend and the product of the divisor
and the integer quotient : MOD(X ,Y) = X— (X+Y)xY . With the above
definitions , X*Y � X/Y and the sign of the remainder is the sign
of the divisor .

An a l te rna t ive  d e f i n i t i o n  of integer divide is t runcat ion
towards zero of the true quot ient , and has the properties that

ABS ( X~Y) = ABS(X)+ABS(Y),

and ABS(X MOD Y) = ABS(X) MOD ABS(Y).

In t his case , the sign of the remainder is the sign of the

dividend .

The scale of the remainder will be the same as the scale

of the difference between the operands. Thus , the scale of
(X
1~ 1+X 2A 2

)xX 2~ 2+MOD (X 1A 1,X 2A 2) will be GCD(lxA 2 , GCD(A 1,A 2) )
which  Is GCD(~ 1,t~2) ,  even though it is exactly representable in

sca le 
~~ 

This implies that X = (X+Y)xY+MOD(X ,Y ) will be true ,
but that X ÷ (X~ Y)xY+M OD(X ,Y) will be interpreted as a scaling
err or when GC D ( A 1,A 2) ~ A 1.

Full division of fixed—point numbers is also useful and

will always produce a result that can be represented as a fixed—

point number . However , in general , the result scale for dlvi—

sion cannot be determined until execution because it depends on

the mantissa of the divisor . Fixed—point division can be imple-

mented in a language with static scales if the user is required

to specify the desired scale for the result. That is , the

314

_  _ _  

El
• 
‘ 

- — —•-——- —-- -• .—••.—.,——— .-—• —•—•—- - ———- — —— —-—•— ~~~••—————— - —•— —— -



I
~ I language might permit expressions of the form: TRUNCATE(X/Y ,S)

or ROUND(X/Y ,S) where the scale S is a constant .
TRUNCATE(X 1A 1/X2A 2,A 3

) can then be Implemented as (X1m+X2n)A 3
where m and n are coprime integers such that rn/n =

Similarly, ROUND (X1A1/X2A2,A 3) can be implemented as
(((2mX 1~nX2)+l)+2)A 3. A user view of such a division might
be f loa t ing—poin t  division wi th  conversion of the result to
fixed point (3—1Db).

As with scale—conversion operations (Section Ill—B above),
in certain contexts the explicit scale for fixed—point division

will be redundant and may be omitted (e.g., when the quot ient
is to be assigned to a variable of known scale).

Ar~cther special case of fixed—point conversion is division
by a constant K. The division (X 1A 1)/K yields X1(A 1/K) where
the division can be performed ent i re ly  during t ranslat ion and
results in a reinterpretation of the associated scale during
execu tion.

Other operations , such as negation and absolute value , are
also useful . On machines with only one representation for zero• [ (e.g., 2’s complement , 10’s complement) the number of negative
fixed-point values that can be represented in any given scale is
one greater than the number of positive values, so both negation
and absolute value can cause an exception by producing a positive

J value that exceeds the Implemented range.

D. OTHER FIXED - POINT OPERATIONS

Relational operations are needed in all ge.~eral—purpose pro—

grainming languages. For completeness and conformity with exist—
ing languages, the six relational operations < � = � > , are
needed ( 3 — l B c ) .  The relational operations on f ixed—point  values
can have a meaning consistent with the normal mathematical defi—
nttion between their corresponding abstract values. In prin—
ciple , the scale of the comparison should be that of the differ-
ence between the operands. This can cause a considerable widen—
Ing of the representation if the scales are disparate , leading

35

- • —



~~~~1

to the risk of overflow exceptions or the generation of ineffi-
cient and/or unnecessarily complex code sequences. In practice ,
the trans lat or can determ ine from cons iderat ion of the range s
whether this 3xception may occur and issue a suitable warning .
It should not be considered contrary to the language definition
for the translator to implement comparisons by methods which

give correr’t answers efficiently In most cases , provided no pro-
gram is allowed to con tinue If the correc t resu lt cannot be ob-
tained .

Floating—point values are sometimes used as arguments in

fixed—point computations . Because such uses constitute a tight-

ening in the interpretation of the values (from inexact to exact),

there should be built—In operations for conversion from floating

point to fixed point (3—lBa). In order to convert from floating
point to fixed point , the des ired scal e must be known . Because
the sca le cannot , in general , be determined from t he context , the
conversion operation should have a parameter specifying the de—

sired scale . There are again , however , cer tain con texts , suc h as
assignment of the value to a variable , where the scale is impli-
citly specified , so the explicit parameter may be omitted.
Because floating—point values cannot usually be represented
exactly In a given fixed—point scale , conversion from floating
point to fixed point may change the abstract value that Is rep-
resented . Thus, the;~e should be no implicit conversions from
floating point to fixed point (3Ba). For consistency with

scale—conversion operations , both truncation and rounding con-
version operators should be available . As with scale conver-

• slons , the scale argument must be a constant at the t ime of
translation .

To facilitate the writing of generic definitions , the lan—
guage should provide a translation—time function that can be
applied to any fixed—point variable or value to obtain the maxi—
mum (i.e., specified) scale with which the variable or expres-
sion can be represented (in some cases, the translator might use

36

_ _ _ _ _ • •— -—-- ----

a smaller scale in the actual representation to reduce execution
time) (l2Da). A scale operator would be most useful In generic
definitions where it could be used to declare a variable to have
the same scale as that of an actual parameter. A scale operator
could also be used to improve the readability of explicit scale
conversions. For example , rounding X to the scale of Y might be
written as: ROUND(X ,SCALE(Y)). Because the scales of fixed-
point variables are bound during translation , the scale operator

L can always be evaluated during translation. Inclusion of a scale
operator will allow the definition of standard mathematical func—
tions on fixed—point values without prior knowledge of the par-
ticular scales that are appropriate to a given application .

E. FIXED-POINT LITERALS

There shall be built—in numeric literals (2Ga). Numeric
literals are needed to designate numeric constants in programs .
Any fixed—point constant , including lltera ls, can be represented
exactly in a variety of’ scales. The larger the scale used , the
smaller the space required for intermediate results in expres-
sions that contain the constant . The maximum scale for a con—
stant is, of course , the constan t itself (w ith a mant issa value
of 1). Thus, all literals can be implemented exactly and

neither the language nor programs should restrict the scales
used to represent literals; the translator can do this by treat-

ing literals as if their values were their scale . Implicit scale

conversions , that are needed to perform subsequent operations
• (such as addition) efficiently , can be done during translation .

F. NUMERIC INP UT-OUTPUT

This section is concerned with the physical representations
that will be associated with numeric data on external storage

• files, with how translators will learn the external representa—

tions , and with the operations that convert to and from symbolic
representations for display and input , respectively. The IRONM~4N

•
tI

••

~
_

~~~~~~~~~~~~~ -~~~~ - -~~~~



I

I
does not directly address the problem of’ input and output of
numeric da t a .

Because the f orma ts of re cor ds , the precision of floating—
point numbers , and the scales of fixed—point numbers are bound

at translation (3—3Ba , 3—3Gb , 3. lDa , 3—lG), programs will be
able to read and wr ite recor ds us ing logical struc tures known
to the translator . In theory , the phys ical format of a recor d
could be carried with a file and processed during execution .

In practice , there is no reason to dynamically vary the physical
represen ta t ion  ( fo r  a given logical representatio n ) ,  and , there-
fore , the physical representation can be given to the translator

rather than to the object program .

In some cases , files must be read from or written to for-

eign systems whos e forma t conven t ions woul d be Incom pati b le wit h
any fixed convention established by a language design or trans.-
lator. Consequently , the langua ge mus t provide a fac ility for
user specification of the physical representation of records

(llAa). Such a specification , aat hough distinct from the cor—

responding logical specification , must be compatible with the

logical specification. The facility for physical specifications

must be sufficiently detailed , unambiguous , mach ine independent ,
an d translator  independent that the same descr iption can be

• given to translators for different object machines so that the

resulting programs will be able to write files of the designated
record format which can be rea d corre ct ly on another -system .

A common language that is intended for a wide variety of

object machines with different word lengths and numeric repre—

sentations cannot dictate any convention about the representa—

• t ion of numer ic values .  Pro pert ies , such as the implemente d
scale , the implemented precision , sign magn itu de versus two ’s

complement versus one ’s complement , radix , exponent range and
representation , and the presence of “don ’t care” fields within

38 I_ ’

_ _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- _
~~~~~~~~~~~~~~

- --- •-
~~~~~~~~~~~~~~


numeric representations, must be specifiable . In practice ,
most systems would use only those that are compatible with their
object—machine characteristics.

Input—output operations can be kept simple and efficient by
restricting them to data structures already present in programs.
That is, it should be possible to read and write only those
records whose internal and external representations are identi—
cal . The Input and output operations need not do format or rep-
resentation conversions . Such conversions , if needed , must be

j accomplished by operations between records or fields of records
within the program . If the corresponding fields are incompat—
ible (e.g., in radix), appropriate explicit conversion opera-

tions will be required . Such conversion need not be built into

the language but must be definable in the language .

Although there must be a mechanism for specifying the phys-

ical represen tat ion of a record, its use will often unnecessarily
burden the user , may preclude more efficient representations that
could be automat ically determined by the translator , and adds to
the complexity (and, therefore , error proneness) of programs .
Thu s, specifications for the representations of’ records should
be optional (llAd).

For files that are written and read entirely within one

program , the physical representation of records (including
numeric fields) can be chosen and managed by the trar.~. lator .

With additional bookkeeping , representat ions coul d be managed
safely for related programs that are developed together in a
common host system. In the latter case , the translator that de—
fines the representation must encode the representation in some
formal notation that can be maintained by the host system and
accessed later as other programs are translated . If the formal
notation is identical to that used for specifying representa—
tions in programs , it could also be taken from the system in

symbolic form and inserted into programs that are c ompiled on
other host systems .

V
In pu t and ou tput of numer ic data in symbol ic form require

two lower—level facilities: a mechanism to input and output
charac ter s, and a mechanism to convert between symbolic and in-
ternal numeric representations of data. The standard input—
output operations will provide for reading and wr it ing of char-
acter strings (8A , 8B). Conversion between numeric and symbolic
representations of numbers should be definable within the lan—
guage and made available as standard library routines . If the
symbolic forms are restricted to decimal numbers , it may be
necessary to restrict the conversion operations to numeric values

that have scales that are powers of’ 10.

The only restriction imposed by the IRONMA N is that iden—
tical symbolic representations of numbers will produce the same
internal values , whether they are used as literals in programs
or are read as data using the standard conversion routines dur-

ing execution (2Gb). This means that all translators must use
the standard conversion routines or ones that are functionally

equivalent .

]

140

— —
~~~~~~~~~

---- ——- - - -- - - -
~~
--_____



I

1
I

IV. FLOATING-POINT TYPE

The language shall provide a floating—point type (3—lAa).

I Floating point is intended for those applications in which the
results need be precise only to some specified number of signi—
ficant digits and for which there is wide dynamic variation in
the range of values. Most engineering and scientific calcula—
tions can be done conveniently using floating point , as can cal—

culations that require inputs from sensors or outputs to control

devices. Many of these calculations can , however , be done

I equally well using fixed point .

If floating point is used in a program for an object machine
1. that does not have floating—point hardware , the translator should

give a warning that the floating-point computation (which must ,

I therefore , be implemented in software) will be unusually expen-
sive in execution ( l3Dc ) .  It Is anticipated that the standard

I library will include a software definition of floating—point data
and operations (without the usual hardware restrictions on maxi—
mum precision).

A floating-point variable has a fractional mantissa, M ,
(i.e., —l < M < 1) ,  a positive integer base , B, an exponent , E,

• a range, R1 to B2, and a precision , P. The value of such a num—

r ber is M x B E . Only the mantissa and exponent need to occupy
storage in the object machine . The base is constant and is de-
termined by the floating—point hardware implementation . The
precision is the number of significant digits in the mantissa .
Values that have more than P nonzero leading digits must be
approximated . In many f loat ing—point  notations , each nonzero
floating—point  value Is normalized to eliminate leading zeroes

141

I~
.

__________  • 
•— —-  — —



from the mantissa , that is , the mantissa is shifted left until

� M or M � B ’ and E is decremented by the number of digits
shi fted . The range specification designates upper and lower
bounds on the values that are to occupy a variable (3—lCb), that
is , R1 � MXBE R2. Because —1 < N < 1, it follows that

E < log~ ( m a x ( a b s ( R
1

) , ah s ( R 2))) and the range of a floating—

poInt variable is an indirect specification of the range of

the exponent .

This chapter is concerned with floating—point computation

as viewed by the user , the language designer , the translator
wr iter , and the hardware designer . The user of a floating—point

system wants (a) a floating—point representation that has suffi-

cient range and precision to satisfy the needs of his applica-
t ion , (b) computationa l rules that minimize the loss of signifi-
cance (i.e., accuracy) in his computations , and (c) floating—
point operations for which the significance of the results is

predictable from the significance of the arguments.

It is the responsibility of the language designer to pro-

vide language facilities and conventions that will supply suffi—

cient informa tion that t he tran sla tor will know what ran ges of
values are expected in a program and what precisions are needed .

It is the responsibility of the translator writer to ensure that

(a) the implementation meets the range and precision requirements
of the program , (b) that the Implementation does not unneces-
sar ily caus e loss of signif icanc e . and ( c )  that the imp lemen ta-
tion is as efficient as is possible using the available floating—
point hardware . It is the responsibility of the hardware de—

signer (a) to ensure that the floating—point hardware does not
cause unnecessary loss of significance and (b) to ensure that
error propagation from round—off is predictable. •

142

_ _ _ _- - —-.---- - —I-—-- - — — - - - - -
~~~ 

--

[
t

A. RANGE

The range of a floating—point variable must be specified in
the program and be determinable at the time of its allocation

I (3—iCa). The user will view such specifications as the maximum
ranges needed for the computation. The translator writer will

I view such specifications as the minimum ranges to be implemented
(3-lCb). Explicit conversion operations shall not be required

I between numeric ranges (3—1Cc). There shall be an exception
during execution whenever a value exceeds either the specified
range of a variable or t h e implemented range (lOBa). It shall
be possible to suppress individually the detection of an excep —

I tion within a given scope (lOGa). Both for consistency and be-
cause the same considerations (111—A) apply , these requirements
are identical to those for the fixed—point and integer type .

I Special considerations for floating point are discussed below .

The range of a floating—point variable affects the space
required for the exponent but not the mantissa . Because most
floating—point hardware provides only a single choice for the
exponent range , range specifications can be used to determine
whether the available exponent range is adequate , but usually do
not affect the implementation. Consequently , delayed binding of
the range will not adversely affect the implementation .

I Detection of values outside the implemented range Is inex—
pensive because such errors correspond exactly to the floating—

point overflow interrupt in most hardware implementations .

B . PRECIS ION

The significance or accuracy of’ data and computational re-
sults is a pr imary concern to anyone using a f loat ing—point
f a c i l i t y . A f loat ing—po int implementation , however , deals only

- with the precision of’ data and results. The precision of a vari-

able Is the number of digits to be allocated to its mantissa .
The precision of’ an expression is the number of digits to be

~~4 3

-

I
computed when evaluating the expression. If, for example , a
variable , X , has prec~sIon , P, P+l digits may be required to
compu te the sum X+X without loss of informa tion , and 2xP
digits may be needed for the product XxX. The precision that
is needed to avoid loss of significance depend s on the signifi—
cance of individual arguments , the operations involved , and the

desired si gn i f i cance of the r e su l t s ; the precision that i~
needed ma y var y from var iab le to var iab le and from ex press ion
to expression. Thus , the user should be able to specify a pre—

cision for each floating—point variable and expression in a pro—

gram (3—iDa). Thi.~ specification shall be interpreted by the -~~

us er as an ~pper bc~ nd on the significanc e provided by his data

or expected i~ ~is computation results. The specification shall

be interpreted by the translator as a lower bound on the preci-
sion to be provided in the implementation . J

The language shall require explicit specification of the

precision for floating—point variables (3—1Db). Because the

appropriate precision for a variable depend s on the character-

istics of the applications , no one choice for a default (i.e.,

Implicitly specified) precision would satisfy most cases (i.e.,

reflect common usage as in 1Cc). For an expression or subex—
pression , there can , however , be a default precision that is
determined from the precisions specified for its arguments. In
an assignment statement , the significance of the value after
ass ignment cannot be greater than the precision of the variable;
thus , the precision of the right—hand—side expression need be no
greater than that of the variable being assigned . A larger pre-
cision would require additional computation for digits that
would then be thrown away .

Ideally , the default precision for a subexpressiori would
be the minimum precision that would produc~ the max imum obta in-
able significance (up to the specified precision) for the re—

suit of the expression without unnecessary computation . Table 2

shows the minimum significance that the arguments must have to
1414

- - - ~~-~~~~~—~~~~ -—- —- — • _

guarantee that the result of’ a given floating—point operation

-
is correct to R significant digits. Thus, the table defines a
lower bound on the precision to which the arguments must be corn—
puted to avoid loss of significance. Additional digits in the

• arguments will not increase the number of significant digits
(in the result) that are later used .

TABLE 2. M I N I M U M P R E C I S I O N N E E D E D FOR D E S I R E D S I G N I F I C A N C E
I Ex p ress i on to b e P r e c i s i o n Nee d ed P r e c i s i o n Nee d ed

Eva luated for x for y

I X ± Y

-

F

X x Y R F

I X / Y 2R

X < Y H H

I X~~- Y - •

I A special case can arise for the X±Y case in Table 2.
It is clear tha t B digits are required in the arguments and

I that H digits are sufficient for X+Y when X and Y have similar
signs and for X-Y when X and I have different signs . If, how—

I
ever, X±Y results In computing the difference between the ab-
solute values of X and Y and the dIfference is small, the re-
sult will contain leading zeros. These are, however , signifi—

I cant.zeros and do riot require special consideration in Table 2.
Because such leading zeros are significant , it Is important
that the hardware not ra ise the underflow interrupt when the
result of an addition or subtraction cannot be normalized.

1 In practice , it is not always possible to compute as many

• significant digits as are specified for an expression . This can
occur when operands have less precision (and , therefore , less
significance) than is needed , either because they are variables

1’ • of limited precision or because they are expressions that cannot
be computed to the desired significance. If the argument is an

1; ~45

- --‘—- - - - — - •••. — — -- - —--•----•--—--

• •.•s - • • -- -- --

• expression in X and Y of precisions (and assumed significance)
P and Q, respectively , then the number of significant digits in

the computed value of the expression can be no greater than that

shown in Table 3.

TABLE 3. MAXIMUM OBTAINABLE PRECISION
WITHOUT INSIGNIF ICANT DIGITS

M a x i m u m P r e c i s i o n
Expression _ O b t a i n a b l e

X ± Y M a x (P ,Q)i-1
X x ? P+Q

X / Y i1!n(F ,Q)
X < Y N in (F ,Q)

X Y Nin(P,Q)

The number of digits that should be computed for an expres-

sion (and for which the user did not explicitly specify the pre-

cision) should be the minimum of the values as obtained from

Tables 2 and 3. Any precision greater than that obtained from

Table 2 represents computation of digits that will not be used .

Any precision greater than that obtained from Table 3 represents
computation of digits th~ t have no significance. For examp le ,
applying the tables to X XxY ’Z where X , Y , an d Z eac h have
precision R , confirms that Xxi should produce a double precision
product.

Several observations can be made from these tables. The

primary factor in limiting the growth in needed precisions for
expressions will be assignments , If an exact value (such as a
fixed—point number or an Integer) is used in a floating—point

addition , subtraction , or multlplication , then the precision

needed to preserve s ign i f i cance would be i n f in i t e and , there—
fore , the expression shouid be evaluated to the full precision
required for the result . If the needed precision is unknown ,
as might be the case for relational expressions , the maximum

obtainable significance must be computed .

- -~~~~~~--~~~~~~~~~-~~ r~~~
- - _ _

I

Computing the minimum number of digits from Tables 2 and 3
as a default , when the precision of an expression or subexpres—
sion is not explicitly specified , means that the explicit speci-

fication for the precision of an expression or subexpression

must be interpreted as the needed precision when determining the

precision from Table 2 and must be interpreted as the obtainable
significance when the expression is considered as an operand in
Table 3. That is , specifying the prec ision of a su bex press ion
(3—lDa) has the same effect on precision as does assigning the

va lue of t he expre ssion to a var iab le of the specif ied prec ision
and then using the variable in the subsequent computation.

If the obtainable precision exceeds the needed precision ,

it may be possible to save computation time or space by comput-

ing only the needed precision . If the needed precision exceeds

I the obtainable precision , the number of significant digits will
be less than the computed precision . The user should be made

I awar e of the latt er situa tion , possibly by a warning from the

translator .

I To implement a floating—point system efficiently, the

translator must use the actual precisions and radix that are

I available in the object-machine hardware (3—lEa). With proper

rounding rules in the hardware , the precision that is imple-

I mented can exceed the specified precision without additional
loss of sign if icance in computat iona l resu lts . Thus , prec ision
specifications (i.e., the maximum precision needed) shall be in—

I terpreted as the minimum precision to be implemented in the
object machine (3—1Db).

To prevent loss of significance from additional digits of

• an implementation , the object machine must round all computa—

tional results to the precision implemented by the hardware

(3-lDc). The rounded result should differ from the true value

I by less than one in the least-significant digit and the differ-

ence should be equal to one only when the remainder of the un—

I
rounded result is exact ly 1/2 to the number of digits actual ly

147

I
-- —-- - • --- - - _ _

p
computed inside the arithmetic h ird~are . In the latter case ,
any rounding rule that evenly di ;tributes the direction of round —
ing Is acceptable. Probably the best choice (although none

should be dictated by the lanrua ;e , given the dif fe rences amon g
current machines) is rounding to the nearest even , because this

will reduce the number of one bits and , therefore , the proba-

bility that rounding from 1/2 will occur in subsequent computa-

tions.

r~ost floating—point hardware offers at least two choices of

precision (often called single and double). If the translator

compiles programs that use minimal storage and computational re-

sources , it must be capable of implementing mixed—precision com-

putations . This , in turn , requires conversions between the im-

plemented precisions during execution . Because most conversions

between specified precisions will not correspond to precision

conversions in the object code , it will be difficult for the

user to predict where the implemented conversions will occur and ,

in any case , the locations will be machine—dependent . Explicit

conversions between specified precislons would seldom generate

machine code . Also , the user generally will not know whether

(a) an assignment reduces the precision with an accompanying

loss of information , (b) requires more significanc e than is

available on the right—hand side , or (c) does not involve a

change in precision. If explIcit conversions are required ,

users will tend to use explicit conversion operations on every
floating—point assignment and their presence will serve no use-

ful purpose. Consequently, explicit conversion operations shall

not be required between floating—point precisions (3—lDd).

Translators should , however , inform the user when information is

lost or when the desired precision is unobtainable. neither of

these two situations is necessarily an error .

Because precision spec if icat ions are inter preted as the
maximum needed and the minimum to be implemented , they need no t
be specified precisely . In particular , the precision could be

V

specified in decimal digits , even though Implemented on a binary
machine with a slightly higher binary precision .

Although the derivation of the “best ’ precision for a given
computation is complicated , the user need only know (a) that the
implementation will produce the maximum obtainable significance

within the specified precisions (where it is assumed that the
number of significant digits in a variable is equal to the vari-
able ’s specified precision), (b) that a warning will be generated
during translation If the specified precision is greater than the
obtainable significance , and (c) that the translator has the in-
formation necessary to minimize the time and space required dur-
ing execution without losing significance. The translator writer

n€ed only (a) understand why mechanical application of Tables 2
and 3 will produce the least (and , therefore , least expensive)
lower bound on the precision without loss of significance, and
(b) know that , except for changes in precision across the hard-

ware single/double precision boundary , the resulting object code
will be unaffected by the precision calculations .

C. FLOATING-POINT OPERATIONS

Because floating—point values are finite approximations to
real numbers , each floating—point number correspond s to an in-
finite set of real numbers. Floating—point arithmetic computa—
tions can only produce values that approximate the corresponding
results using real arithmetic (thus, floating— point computations

are said to be Inexact). Although a floating—point number cor-
responds to infinitely many real values , it has only one value ;

•
1

that value will be called the designated value (I.e., the ab—

• s tract value designated by the floating—point number). Floating—
point operations can be defined only in terms of the values that

t can be represented (i . e . , in terms of the designated values) .

Four arithmetic operations - additIon , subtraction , multi—
pllcation , and division — are needed ii. floating—point computa—

tions (3—lBb). Absolute value Is also useful and Is difficult

________ -

~~

to imp lemen t eff icient ly in terms of’ the other four operations .
Each floating—point arithmetic operation should be defined so

that its result approximates as closely as possible the true

value resulting from application of the corresponding mathemat-

ical operation (using real arithmetic) on the designated values
of the operands. Rounding rules for floating—point computation
were discuss ed in Section IV—B .

Although floating—point arithmetic Is inexact , it can and
should retain the properties of the corresponding real arith-

metic func tions wherever poss ib le. It cannot be guaranteed that
multiplIcation or division will distribute over addition or sub-

tract ion , that operations will be associative , or tha t value s
will have exact reciprocals. Addition and multiplication should ,

however , be commutative . Because the lack of associativity does

not aff ect the resu lts in many calcu lat ions , trans lators shou ld
be able to assume that floating—point operations are associative

in order to produce the mos t eff icien t execut ion , except in
those cases where the program contains explicit parentheses to

designate the execution order desired (~ Ga). The rules sug— 4

gested In the previous section for defining the precision to be

implemented will preserve commutativity, providing the corre-

sponding hardware operations are commutative (this can be done ,

even though the rules may call for mixed—precision calculations).

There are three exception conditions that can arise in
f loa t ing—poin t c omputat ions (1C’P) . De tec t ion of the error when
an actual value exceeds the specified range is not normally pro-
vided by floating—point hardware and must be implemented in soft-
ware with substantial execution cost . Consequently , it is likely

• that its use will often be suppressed (lOB , lOG) by the user.

Errors on the implemented range can occur in the primitive float—

ing—point operations of the language and can be efficiently de-

tected using exponent overflow hardware Interrupts (lOB).

Errors in precision arise when a floating—point value cannot be L
normalized because the unnormalized representat ion already has

50

• —- - - • - - - -• ~~ • . - -•• -~~-—‘•--
- - ----- - • - -— ~~~~~~~~ -• —- ,-

~~

the minimal (I.e., most negative) representable exponent . Thus,
the actual precision is reduced by the number of leading zeroes.
Detection of errors from loss of precision can be efficiently
Implemented using exponent—underflow hardware interrupts. It Is
Important that the hardware raise the uriderfiow interrupt when

the result of a multiplication or division cannot be normalized ,
- rather than when the result is zero (i.e., when some rather than

all significant digits are lost).

Arithmetic operations such as integer division and remainder
require exact arguments and are, therefore, inappropriate for

I
floating—point arguments. When exact computations are to be
applied to floating—point values , the floating—point values can
be (explicitly) converted to fixed point and the appropriate
fixed—point operation applied.

Relational operations are needed in all floating—point com-

putations (3—lBc). Because floating—point numbers are approxi—

- mations to real numbers , a comparison between the designated

values of floating—poInt numbe~.’s does not necessarily produce
the same result as would comparison between the real values that

are represented by the floating—point numbers. Nevertheless ,

j floating—point relational operations should have a precise mean-

ing that preserves the mathematical properties of the correspond —

I irig real operations . In particular , < � = � > should be transi-
tive , = should be commutative and reflexive , and for any float—
ing—point values X and Y, X<Y 1ff Y>X , X�Y 1ff Y�X ,

I X~ Y 1ff -~(X = Y) , X~ Y 1ff X<Y or X=Y , and X�Y 1ff X>Y or X~Y.

~~

. These properties can be achieved easily by Implementing
I floating—point relations as exact comparisons between the des—

Ignated values. Notice , however , that these properties will not
(always be preserved in combination with floating—po int ar lth—

metic (e . g . , X < Y does not Imply that X+Z < Y + Z) .

1 51

I
—

~~~~~ a— ‘t - _•_-—-, - • —.- — — - -  — —-— ------- - - — — •



I
r i

Other u se fu l  a r i thmet ic  operat ions , including square root
and trignometr ic func tions , should be available as standard
l ibrary de f in i t i ons  (3— lB f , l 2 A ) .  Part icular  important l ibrary -

funct ions are ex ponent latlon to integer powers and logarithm ,

which ar e needed for convers ion from sym bol ic represen tations to -

floating point on input and for conversion from floating point
to symbolic  s c i e n t i f i c  nota t ion for display , r e spec t ive ly .  If
the librar y interface is suff icient ly transparent to the user ,
the difference between built—in operations , and stan dard librar y
definitions should be indistinguishable to the user .

Because the actual implementation of a given floating—point (
computat ion will vary from mac hine to mach ine and because the
numerical result s are affected by the details of the implementa—

tion (although , If properly used , the number of significant 
-.

digits will be identical), the language should provide operations

that can be us ed to access t he actua l prec ision , radix , an d expo-
nent range used in the implementation of a variable or expression i
(3—lEb). Because these properties of floating—point representa-.

tions are f ixed dur ing translat ion , the corresponding funct ions
can be treated as constants during translation .

To facilitate the writing of generic definitions , the lan—

guage should provide a user function that can be evaluated dur-
ing translation (l2Da) to acce3s the (explicit or implied)

specified precision of a variable or expression . A precision
operatIon would be most useful in generic de f in i t i ons  where it
could be used to specify the precision of local floating—point
variables. A precision operation could also be used to improve

• the readability of explicit conversions to floating point (e.g.,
FLOAT(X ,PRECISION(Y)) meaning ~~nvert to a floating—point

number having the same (specified) precision as Y). Because the

precision of an expression is bound during translation , the pre— 1
cision operation can always be evaluated during translation .

Inclusion of a precision operation will permit the definition of j
standard mathematical functions without prior knowledge of the 

-

precision needed .
52

I
_ _ _ _  - •—

-~~~~~~~~~~~~~ —,--- --- - - • - - -~—---- --- .• _ _ _  — - _ _ _ _ _ _ _



D. L ITERALS AND FIXED -PO INT VALUES IN FLOATING -POINT
C O M P U T A T I O N S

Fixed—point values are sometimes used as arguments In
floating—point computations. In order to convert from fixed
point to floating point , the precision needed for the result
must be known . Any precision less t han that needed to obtain
the maximum precision that would otherwise be obtainable from
the floating—point expression containing the fixed~point argu-
ment can unnecessarily reduce the significance of the result .

Any precision greater than that needed to produce the maximum

obtainable significance for the floating—point expression may

Introduce unnecessary execution cost . Thus, there is just one
“best” precision and It can be determined from the context

during translation . Although the precision could be determined
by the user , the determination is nontrivial and error—prone if
a’ ne by hand . In any case , it must be done by the translator
to determine the most efficient implemented precision (Inde-
pendent of what precision is specified). Consequently, an ex-
plicit precision parameter is undesirable for conversion from
fixed point to floating point .

As a general rule , explicit conversion operations should
be required for conversions between types (3Ba). By this gen-
eral rule and for consistency with other conversions between
types , an explicit operator should be required for conversion
from fixed point to floating point . The reasons which lead to
the general rule , however , do not app ly in this case . Although
there is a change in the interpretation , It Is a relaxation
(exact to inexact) and , therefore , is not error—prone . Although

there can be a change In the designated value and in the phys-
ical representation , conversion will be into that floating—point
representation that corresponds to the abstract value of the
fixed—point value (without Introducing loss of significance In
subsequent computations). That Is, the abstract value will
still be represented . An explicit  conversion is not needed to

53

I
• • — - • ••— —~~~~~~~~ — —•-—— .— — — —• —•-•---•--•— — — — — • —



I
I

desi~ r~ate result precision (and even if desired , could be
accor~ 1~~ }.~d t~~~ explicitly specifying the precision of the
resul~ Ir~ fi~~ ’Ir~g—point expression). Explicit conversions
fror:. fixed pc h’. t-o floating point introduce extra notation
in programs , thereby increasing the chance of error , without

adding ~icifltional information and without adding useful re-

dundancy that could be checked by the translator. If explicit
operatIons are required for conversion from fixed point to

f loa t ing , programs will be more d i f f i c u l t  to write , read, and
understand without other compensating advantages. The lan-

guage should u~ot require explicit conversion from fixed to

floating point . such implicit conversions will permit expres-

sions to produce f l oa t i ng—poin t  resul ts  from operands , some of
whIch are fixed—point .

As was seen in Section IV—B , it is possible to correctly
evaluate expressions that have results of limited precision

from operands that , in some cases , are exact (i.e., that have
infInite precision). For example , one might want to assign the
product of the integer two an d a floating—point value X to a
variable Y of precision P. Although 2xX would have to be

computed to i n f in i t e  precision to avoid loss of Information ,
in practice it need be computed only to P significant digits
to obtain the same value in Y (wi th in  ]. in the last digit)

as would be obtained by computing 2xX to infinite precision
and then roun ding to P d ig i t s .

There shall be built—in nurreric literals (2Ga). Numeric
literals are needed to designate numeric constants in programs .

A literal is a symbolic representation of a constant value and
in common usage designates some one abstract value (e.g., In
decimal notation 61.2 is exactly one—tenth of the integer 612).
The value of a literal can be represented exactly In a variety
of f ixed—point  scales , but may not be exact ly  representable In
the available f loat ing—point  representations ( e . g . ,  61.2 is not

514 ti

_ _  _ — ~~- -  -— - - - _ _



I
1.

exactly representable in any floating—point representation with

exponents to base 2, 8, or 16).

I 
Literals , therefore , mus t be conv erted to the nearest

f1~~ating—point value of appropriate precision . As with fixed—

point values that are used in floating—point computations , the
“best ” prec ision can be det erm ined automat ical ly  dur ing trans-
lation and should not be specified as an explicit parameter.
It is not necessary to make floating—point literals syntactically

d i s t i nc t  from f i x e d — p o i n t  li terals  because whether a l i te ra l  is
fixed or floating point is easily determined from the context
(i.e., floating—point operations have at least one nor.literal

floating point argument). Thus , floating—point and fixe~1—

point literals can share the sam e syntact ic forms with out
complicating the language or its use.

I.

I ~
11
Ii 55

- _ _ _ _ _  - -~~~~ ~~~~ - - -- . - • • -•- - - . ~~~~~~~~~~~~ • - 

- 

~~ 

j_~



I
I
I
I
i 

R E F E R E N C E S

1. High Order Language Working Group, Department of Defense
I Requirement for High-Order Computer Programming Languages
I --Revised IRONMAN, July 1977

2. “WOODENMAN” Set of Criteria and Needed Characteristics for
1 a Common DoD High Order Programming Language, Institute

for Defense Analyses Working Paper, David A. Fisher,
13 August 19-75

3. “The Common Programming Language Effort of the Department
of Defense ,” 1977 Computers in Aerospace Conference ,
David A. Fisher

14. DoD Hi gher Order Programming Langua ge, Memorandum issued
by Malcolm R. Currie , Director , Defense Research and
Engineering (DDR&E), 28 January 1975

5. High Order Language Working Group , Department of Defense
Requiremen ts for High Order Computer  Programming Language s

- - -TINMA N, June 1976

6. Ins t i tu te  for Defense Analyses , A Common Programming Language
for the Department of Defense- -Background and Technical
Requirements, Paper P—ll9l , AD—A028297, D. A. Fisher,
June 1976

7. Le cture Notes in Computer  Science, Vol 54, Desi gn and
Imp lementation of Programming Languages--Proceedings of a

J DoD Sponsored Workshop, October 1976, Eds. John H. Williams
and David A. Fisher , Springer—Verlag , 1977

-
• 1 8. Language Evaluation Coordinating Committee Report to the

I: High-Order Language Working Group (HOLWG ), S. Amoroso,
• P. Wegner , D. Morris , D. Whit e , AD— A 0 3763 14 , 114 January 1977

- with appendices by:

a. Lloyd Campbell , Army Ballistic Research Laboratory,

1 
Aberdeen , Maryland

b. P. Parayre, Centre de Programination de la Marine,
Paris, France

1 57 - - !I - 

- - 
-

• 
• J~~~IWJ -

--- 
~~ _ _ _  

-.- ---- -•-~~~~- —

~~~~
--—-- .~~~~~~~~~

—-• • -- -• - •

______ •

c. J. D. Ichbiah , Cu —Honeywell Bull , Louvec iennes , France

d. Computer Sciences Cor porat ion , Falls Church , Virginia

e. A. Demers and J. Williams , Corne ll Univers ity, It haca ,
New York

f. Jean E . Sammet , Maurice Ackroyd , Michael L. Bell ,
I. Gray Kinnie , and Richard Kopp ; IBM Federal Systems }
Divis ion , Gai thersburg , Maryland

g. Brian L. Marks, and Robert F. Maddock , IBM Un ited
Kingdom Laborator ies , Winc hester , England ; and Tom C.
Spillman , IBM Federal System s Division

h. J. G. P. Barnes, Imperial Chemical Industries Limited ,
Slough, England

i. B. M. Brosgol , R. E. Hartman , J. H. Nestor , M . S. Roth ,
and L . M . Welssman , In termetrics , I n c . , Cambridge ,
Massachuset ts

j . Stephen L. Squires , Na tiona l Secur ity Agency , Ft. Meade ,
Mar y lan d

k. Dr. Tomas Martin, PEARL Dev elopment Boar d , d o
Gesellschaft fur Kernforschung MBH , Karlsruhe , W .
Germany

1. RLG Assoc iates , Inc., Res ton , Virginia

m . E . F. Mi l ler and A. I. Wassermann , Science Appl ica t ions ,
I n c . , San Francisco , Cal i forn ia

n. John B. Goodenough , Clement L. McGowan , and John R. Kelly ,
SofTec h, Inc., Walt ham , Massachuset ts

o. Software Sciences Limited , Farnborough , Hampshire .
England

p. Texas Instruments Incorporated , Hun tsville, Alabama

9. High Order Language Working Group , Department of Defense
Requirements for Higher Ord er Computer Pro gramming Language s-
TRONMAN , l~4 January 1977

I
58 1

I
_ _ _ _ _

• - • - - • - — ---~~~~~~~~——~~~-——--- ~~-•• T-~~~~ ~~~~~~~~

-

~~~~~~~~~~~
~-



3

APPENL ) IX

EXCERPTS FROM REVISED IRON/JAN

Paragraphs of the Revised IRONMA N relevant to the numeric
processing facilities for the common language are :

Paragraph

1A through 1G
20

3B
3-lA through 3—lH

3-38
3—3 0

h G
70
8A
8B

1OA
EL 

- lOB
1OF
lOG

h A

Ii
12A

I 1 3D
13F



1A. Generality. The language shall provide generality only to the extent necessary to
satisfy the needs of embedded computer applica tions. Such applications require real
time control, self diagnostics , input-output to nonstandard peripheral devices, paralle l
processing , numeric computation , and file processing. The language shall not contain
features that are unnecessary to satisfy the requirements.

lB. Reliabilit y. The language should aid the design and development of reliable
programs. The language shall be desi gned to avoid error prone features and to
maximize automatic detection of programming errors. The language shall require some
redundant , but not duplicative , specifications in programs. Translators shal l produc e
explanatory diagnostic and warning messages , but shall not attemp t to correc t
programming errors.

1C. Maintainability. The language should promote ease of program maintenance. It
should emphasize program readability over writabili ty. That is, it should emphasize the
clarit y, understandabil It y, and modifiabilit y or programs over programming ease. The
language should encourage user documentation of programs. It snail require exp ir it
specification of programm er decisions and shall provide defaults onl y for instances
where the default is stated in the language defin it ion, is alway s meaningful , reflec. ’s
common usage , and can be explicitly overridden.

10. Efficiency. The language design should aid the production of efficien t ob ;act
programs. Constructs that have unexpectedly expensi ve or inex7erlsive
impleme ntations should be easil y recognizable by translators and by users. Where
possible, features should be chosen to have a simple and efficient imp lementation in many
object machines , to avoid execution costs for avai lable generality where it Is not needed,
to maximize the number of safe optimizations available to translators , and to ensure th at
unused and constant portions of programs will not add to execution costs . Execution time
support packages of the language shall not be included in object code unless they are
called.

1E. Simplicity. The language should not contain unnecessary complexit y. It should
have a consistent semanti c structure that minimizes the number of underlying concept s.
It should be as small as possible consistent with the needs of the intended application s.
It shoul d have few speci al cases and should be composed from featu res that are
individually simple in their semantics. The language should have uniform syntactic
conven tions and should not provide several notations for the same concept.

iF. Implementabil ity. The language shall be composed from feature s that are
understood and can be implemented. The semantics of each feature should be
sufficien tl y well specified and understandable that it will be possible to predict its
Inter action with other features. To the extent that it does not interfere with other
r.cpj lrements , the language shal l facili tate the production of translators that are easy to
implement and are efficient during trans lation. There shall be no language restrictions
that are not enforceable by translators.

- 

-— -i

A.- ~ p~ z ai~* I.~M0T

F ~‘ 
—

~

----
---—-—--- - -—- - • - • 

~~~~~~
—--- ‘-- - - • -

~~~~~~
-- ----



1G. Machine Independence. The language shall strive for machine independence. It
shall not dictate the characteristics of object machines or operating systems. The
design of the language shall attempt to avoid features whose semantics depend on
characteristics of the object machine or of the object machine operating sys tem. There
shall be a facility for specifying those portions of programs that are dependent on the
object machine confi guration and for conditionall y compiling programs depending on the
actual conf iguration.

2G. Pkj mcric Litera l;. There shall be built-in numeric litera ls. Numeric l iterals shall
have the same value s in programs as in data.

3R. Impl icit Type Conversions. There shall be no implicit con versions betw ~!~en types.
Differences in range , precision , sca!e , and representation shall not be interpreted as
differences in type.

3—lA. Numeric Values . The lang uage shall provide an nteg e and fixed point type i’
a floating point type. Numeric operations and ;s~signmc~nt th ?t would caii :~ ‘~ e mo~t
si gnificant digits of num eric value s to be trunc ~~ d (c~g., when overflow oc~ u ~

) ~ha”
constitute an exception situation.

3— lB. Numeric Operations . There shall be built-in operations (i.e., fu~ctions) fo~conver s ion between numeric types. There shall be built-in op erat i ,ns ~or addition ,
subtrac tion , multi plication , division with floating point result , and negat io~ for al l numt’ri~types. There shall be built-in equality (i.e., equal and unequal) and ord ering oper at ons
(i.e., less than, greater than , less than or equal , and greater than or equal) betwe ei
elements of each numeric type. Numeric values shall be equal if and onl y ‘ the:;
represent exactly the same abstract va lue.. The semantics of all built-in numori~operations shall be include d in the language definition. [Note that there mi ght also hr.
standard library definitions for numeric functions such as exponentiation. ]

3-IC. Numcric Variab lcs . The range of each numeric variable must be speci fi ed in
programs and determinable at its allocation time. Such specifications shall b.
interpreted as the minimu m range to be imp lemented. Explicit con version oper at onc
shal l not be required between ‘~umeric ranges.

3—10. Floating Point Precision. The precision of each floating point variable and
expression shall be specifiable in programs and shal l be determinable at t ranstat ton time.
Precision specifications shall be required for each floating point variable. Thoy shall be
interpr eted as the minimum pr ecisions to be implemented in the object machi ne, floating
point results shall be implicitl y rounded to the imp lemented prec i&o n. Explicit
conversion operations shall not be required between fsoat ing poir .t precision s .

3- IE. Floating Point Implementation . A floating point computatio n may be imp lemented
using the actual precision , radi x , and exponent range avai lable in the object mach ine
hardware. There shall be built -in operations to access the a tua l precis ” n , r?di x , and
exponent range with which floating point vari ab les and expre s&n ns are imple mented.

A— 1l

_ _  

_ _  

I . .,



3- iF. Integer and Fixed Point Numbers. Intege r and fixed point numbers shalt be
treated as exact numeric values. There shall be no implicit t rt ’nca t~on or rounO~ng in
integer and fixed point computati ons.

3— 1G. Fixed Point Scale. The scale ~r step s~.e (i.e., th’ minimal represer.kabk~difference between values) of each fixed poin t variable m:19t L~ specified in program ..
and be determinable at translation time.

3- 1H. Integer and Fixed Point Operations. There ;hail be built-in operet c.is for
integer and fixed point divi sion with remainder and for c~nvers iQn between fixed pot ~scale factors. The language sha ll require explic it scale convers ion operations wh eneve r
the abstract value may be change d.

3-36. Component Spec ifications. For elements of composite types , the type of each
component (i.e., field) must be exp licitly sp ecified in programs and det r~rr~inab le at
translation time. Components may be of any typ e (including array and re~:c? ~d ty pes).
Range, precision and scale specifications shall be re~tj ired for each component of
appropriate numeric types.

3—3G. VarIant Types. It shall be possibl e to define types with alternat ive record
structures (I .., varian ts). The structure of each variant shall be determ inable at
translation time. The value of a variant may be used anywh ere a value of the var iant
type is permitted (i.e., if A is a variant of B, then elements of typ e A may be used
anywhere type B is allowed).

4A. Form of Expressions. The parsing of correc t expressions shall not depend on the
types of their operands or on whethe r the typ es of the operands are built into the
language.

48. Typ. of Expressions. The language shall require that the type of the value of each
expression be determ inable at translation time. It shell be possible to spec ify the type
of an expression exp licitly. [Note that this does not provide a mechanism for typ e
conversion. )

4G. Effect of Parentheses. If present , explici t parentheses shall dictate the association
of operands with operators. Explicit parentheses shall be required to resol ve the
opera tor-operand associations wherever an expression has a nonassociative operato r
to the left of an operator of the same precedence and wherever consecut ive operators of
an express ion are of the same precedence but have different operand types.

7G. Parameter Specifications. The type of each formal parameter must be explicitly
spec ified in programs and shal l be determinable at transla tion time. Parameters may be
of any type. Range, precision, and scale specifications shall be required for each formal
parameter of appropriate numeric types. A translation time error shall be reported
wherever correspond ing formal and actual parameters are of different types and
wherever a progr am attempts to use a constant or an expression where a variab le is
rec~~re~i

I
I 

~~~~
-.. .—. - — -___

I
8A. Low Level Input-Output Operations. 1 here shall be a set of built-In low level
input -output operations that act on physic al files (e.g., input-output channels and
peripheral devices). The low level operations shall be chosen to insure that all
application level input-out put operations can be defined within the language. They shall
Include operations to send control information , to receive control information , to begin
transfer of data in either direction , and to wait for completion of a data transfer.

86. Application Level Input-Output Operations. There shall be standard library
definitions for application level input-output to log ical files. These shall Include
operations for creating, deleting, opening, closing, reading, writing, positioning and
formatting logical files. The meaning of such operations shall depend on the genera l
characteristics of the files or devices (e.g. , on whether they are sequentially or randomly
accessed), but shall not be dependent on a specific device.

IOA. Exception Handling Facilit y. There shall be an excep tion handling mechanism for
responding to unplanned error situations detected during execution. rhe exception
situations shall include errors detected by hardw are, software errors detected during
execution , error situations in built-in operations , and user defined exceptions.
Exceptions should add to the execution time of progra ms onl y if they are enabled.

lOB . Error Situations. The errors detectable during execution shall include exceeding
the specified range of an array subscri pt , exceeding the specified range of a variable ,
exce eding the implemen ted range of a variab le, attempting to access an uninitialized
variable , dynamic al iasing of array components , att empt ir~ to access a fie~d of a variant
that is not present , termination of a parallel path , and fai ling to satisfy a prog rar . specified
a~scrtion. [Note that many of these checks can be done or partially dune during
translation, thereby reducing execution costs. Several ~~~ very expensive in execution
unless aided by special hardware , and consequently will ofti n be suppressed (cc. I

1OF. Assertions . It shall oe possible to include assertions in programs. I~ an assertion
is false when encountered during execution , it shall enable an exception. Translat ors
shall give warning if an assertion has side effects. [Note that assertions can also be used
to aid optimiz ation and maintenance.]

lOG. Suppressing Exceptions. It shall be possible at translation time to suppress
indivi dually the detection of exceptions within a given scope. Shou ld an exception
situation occur whe n its detection is suppressed , the consequences will be unpredic table.
An exception must not be enabled nor reenabled in a scope in which it is sup pressed.
[Note that suppression of an excep tion is not an assertion that the enabling erro r wi ll not
occur.]

1 1A. Data Representation. The language shall permit but not require programs to
speci fy the physical representation of data. These specifications shall be distinct from
the logical descriptions. Specifications for the order of fields , the widt h of fie lds , the
prcscnce of “don’t care ” field s , the positions of word boundaries , and the object
representation of atomic data shall he allowed. If objec t representations are not
specified , they shall be determined by the translator.

A —

_______ -—c,-. — . — -— - -

1 1C. Translation Tim e Constants and Functions. The translator shall require the
specification of the object machine configuration ir’ludirg the machine model, the
memory size, special hot dwnre options, the oper~~rg ystem it present, and pct ipheral
equipment. The transl at ot shall use this spccificat~nr~ when generating the object code.
The language shall supp ly translation t ime constants and f t ’nctions so th at , Jut ing
translation, programs can access the objert morhine charar.t~r,stics and can check
prop ert ics of the pro gram component s includi ng their types, their speci fied and
implemented range s, their spec ified rep resentation , whethor an exception ss suppr essed,
whether an actual parameter is a tran slation time constant , and the current opt irn~zot io n
criteria.

12A. Library Entries. The language shall support the use of an external library.
Library entries shall include type definitions, input-output packages, common pools of
shared declarations , application oriente d software packages , other separately compiled
segments , and machine confi guration specifications. The library shall be structured to
allow entries to be associated wit h particular applications , projects , and users.

120. Generic Definitions. It shall be possible to define functions, procedures and
encapsul ations that have generic parameters. Such parameters shall be insta ntiated
during translation at each call and may be any defined ldentif ~er (including those ~or
variables , functions , types , or representations), any expression , or any s~atornen ~.
Generic parameters shall be evaluated in the context of the call. [Note that a generic
definition is a restricted form of macro , often cannot be separate ly comp iled, and that
where generic definitions are implemented as clos ed routines , several instantiations can
of ten share the same object code.]

130. Translator Diagnostics. Translators shall be responsible for reporting errors that
are detectable at transla tion time and for optimiz!’-~g ub~’ ~t code. If it can be ~~iat ~nteed
that a function or procedure call will not terminate normally, th~~ the exception shall he
reported as a translation error at the point of call. Iransia tor s shall do full sy r.t~~ and
type checking, shall check that all language imposed restrictions are met, and shall
provide warnings where construc ts wil l be unusuaUy expensiv a in execution. ~recomme nded set of translation time diagnostic and w~r Ping rnessagL~ shall be included
In the language definition.

13F. Translation and Execution Restrictions. Translato rs should fail to compile correct
programs onl y when the program exceeds the resources or capabilities of the intended
object machine or when the program requires more resources during the transla tion than
are available on the host machine. An error sha ll be reported whe n a program requires
memory, devices , or special hardware that are unavailable in the object machine.
Neither the language nor its translators shall impose arbitrary restrictions on language
features. For example , they shall not impose restric tions on the number of array
dimensions , on the number of identifiers, on the length of identifiers , or on the number of
nested parentheses levels unless such restrictions are dictated by unavoidable
limitations of the host machine. The size of object prOgrams and data structu res shall be
limited only by the object machine characteristics. All such restrict ions shall be
documented in user accessible manuals.

A— 7

,_ --- - - . - .— - - —— - - - ________

