
AD AO 5O 652 MASSACHUSETTS INST oc TECH CAMBRIDGE OPERATIONS RESt—ETC F/s 12/2 ‘NTRANSPORTATION PLAP*UNG: NETWORK MODELS AND THEIR IMPLEM(NTATIO ETC (U,.JAN 76 T I. MASNANTI. S I. flI..OCN NOOO1*—75—C~ O556UNCLASSIFIED TR—1;3 pa-

I~’ r _____

__ - _
-

_ _ _ _

_ _

I
F Ni l)

4 —78
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

c i



cDC)

SI’.’.”
•

c-~



Unclassified
SECURITY CLAUIPICATION OP THIS P AGE (~~ D.~~~ L,bl.. - 

________________________________

REPORT DOCUMENTATION PAGE BEI O~*CONPLETDSo FQ~~~
~~ *tPORT NUMSIR GOVT SCCWION NO RECIP tNT S CATALOG MUMMER

Technical Report No. 143 9
r-qTLE (aid SubdU.) t1~~ J.m $OVEREO

(D ~ 1 Technical ~eP~~ .t a ;  1
TRANSPORTATION ~LANNING : NETWORK ~ODELfrt anuary ~L’~ IB

S AND ~ IEIR IJIPLEMENTATION . s. ~ ro~~ c~n.& ~~~ y MUMMER

UTHOR(.) S RAC OR ~~~I*v ~~~L a)

~~~~~~~~~~ L .f ioldenJ  
C~~~ ~~N~ø14-75-C-Ø556jD~~7.7,~ (-

~~ /
9. PERFORMING ORGAMIZAI ION NAME AND ADOREU W• PROGRAM ELEMENT PROJECT TA1I~

—

AREA A WORK UNIT NUMMERS
M.I.T. Operations Research Center /
77 Massachusetts Avenue / NR 347— 027
Cambridge, Massachusetts 02139

II. CONTROLLING OFFICE NAME AND ADDRESS (/ / ~} IrUflT

O.R. Branch, ONR Navy Dept. ~~~~~~ ‘IJan 78J j~~—
800 North Quincy Street ~

,. wu~si~ o~ PAGES —

Arlington, VA 22217 55 pages
~~

7f.
14. MONITORING AGENCY NAME A AOORLS*III ~~~~~~~ ha. Caihafl ~ 4 SM..) IS. SECURITY CLASS. (as IA . ~~~o.I)

ISa. DECLASSIPICATION/DOWNGRADING
SCHEDULE

is. DISTRISUflON STATEMENT (.5 thI . Rsp.rI) ______________

.lJ.~. ~~ ~~~~~~~~~~~~~ .— A..-paovbd k~ ~~~~~
—

Dzatith~t~.n

‘~~~~DISTRI.UTION STATEMENT (.1 A. sh.tsacI ait.r.d In Stock 20. II ass. aw ha R~~.M) D D C
~~~~~f2SJfl~fl~~~
~~~M A R l 1918~~~ l

$9. SUPPLEMENTARY NOTES [j
~ ~~ ~

II. KEY WORDS (ConIff is.. cn ra n t.. •Ido If n.c..asy aid IdaiNfr by block ,w b.r)

Transportation Planning
Network Models

20. ASITRAC? (C.N5MU. evon•. ~S* II asc..~~~ aid tduiilSI~P b~’ bS~ok øs b.t)

See page ii.

7O7~~0DO ,~~~~~~n
1473 EO~T$ON OF t NOVUIS GOIOLE~~E Unclassi fied

-~~~~~ -

SECURITY CLAIRIPICAttO,, OP TN!. PA~~ 1~~ Sal. SaKI.O

TRANSPORTATION PLANNING : NETWORK MODELS

AND TREIR IMPLEMENTATION

by

THOMAS L. MAGNANT I

and

BRUCE L. GOLDEN

Technical Report No. 143

Work Performed Under

Contract N00014—75—C—0556, Off ice of Naval Research
Multilevel Logistics Organization Models

NR 347—027 M.I.T. OSP 82491

and

Contract DOT—TSC—1058 Department of Transportation Advanced Research Program

Transportation Network Analysis and Decomposition Techniques

M.I.T. OSP 83185

Operations Research Center

Massachusetts Institute of Technology

•
Cambridge, Massachusetts 02139

~~~~
/ N

Tis 
~~~~~~~~~~

January 1978 IIis~i
~~~~~~~~~~~~~~

[J JJ~C7



• ii

FOREWORD

The Operations Research Center at the Massachusetts Institute of

Technology is an interdepartmental activity devoted to graduate educa-

tion and research in the field of operations research. The work of the

Center is supported , in part , by government grants and contracts. The

work reported herein was supported (in part) by the Office of Naval Re-

search under Contract N00014—75—C—0556 and by the Department of Trans-

portation Advanced Research Program under contract DOT-TSC—1058.

Richard C. Larson
Jeremy F. Shapiro

Co—Directors

ABSTRACT

Transportation planning plays an essential role in shaping regional and
urban lifestyle. Complex decisions regarding policy alternatives for rail-
road s, shipping, airline, and roadway traffic can often be, and of ten have
been, analyzed using network optimization techniques. In this paper, we survey
applications of network algorithms to transportation planning, stressing net-
work models and their efficient computer implementation. We discuss recent
contributions concerning shortest paths, minimum cost network flows, traffic
equilibrium, vehicle routing, and network design and we enumerate several open
research problems. Much of our discussion reflects an emerging theme in the
analysis of transportation problems, the blending of ideas from transportation
science, computer science, and operations research.

A

~~. ~~~~~~~~



1

1. Introduction: Modeling and Implementation Issues

Transportation is vital to any society. It exerts great influence on

the flow of goods , services , and information, on the location of homes and

industry, on the use of recreational and cultural activities; in many ways, it

does much to define the character of our lives.

Needless to say, planning for effective transportation is a complicated

process requiring estimation of transportation needs, technological innovations,
assessment of new and proposed investments, and efficient management of exist-

ing facilities. In most planning efforts , it is natural to view a transportation

system as a transportation network with a number of nodes (representing street
intersections , depots , ports, cities, and so on) and a number of links, arcs , or
edges (e.g. , streets , air and ship routes , or subway channels). Network models ,

hence, become the focal point for a great deal of analysis of transportation

systems. The models may be normative , the optimization of system performance

(usually with costs or travel times associa ted with the links) being the

objective. Or, they may be predictive. How will users (individuals, private
and public organizations) and the transportation industry itself respond to

various policy alternatives? We consider both types of models in this paper .

Much of the recent research in network analysis for transportation

planning has involved a blending of ideas from transportation science, opera-
tions researc h, and computer science. The interplay between modeling, algo-

rithms, and their efficient computer implementation has become a dominant theme.

To illustrate the nature of this research, and at the same time consider areas

rich in applications, we have selected the following topics for discussion:

shortest paths, minimum coat network flows, traffic equilibrium, vehicle rout-

ing, and network design.

We might note that our coverage of the first three of these topics,

when contrasted with Potts and Oliver’s highly—regarded book[105] published

only a few years ago, is indicative of the current level of activity and

recent progress in transportation planning and network analysis.

Transportation Models

The streets of a city form an obviou, network where nodes (numbered for

identification purposes) represent locations and intersections on roads, and
links represent the roads themselves. We distinguish between one—way and two—

way streets by using a directed link for the former and an undirected link (or

- .~~~~~~~- •



2

two directed links) for the latter. As an illustration of how a real trans-

portation system may be abstracted by a network model, Figure 1 shows a segment
of a fictitious city Street network.

1 5 9 13

2 - 6  ~.10 14

3 7 11 15

4 8 12 16

Figure 1. A City Street Network

In dealing with a network model of a real transportation system, trans-
portation planners typically associate various parameters with the nodes and

links. For example, each link of an urban road network may have values for the

following items:

(i) number of traffic lanes,

(ii) road length,

(iii) average travel time,

(iv) average vehicle speeds,

(v) average daily traffic flow,

(vi) peak hour flows,

(vii) capacity

(viii) total monetary cost (including tolls).

These values are frequently combined in order to obtain a single measure of cost
or distance on the link,

Different types of networks arise in other settings. What, for example,
is the maximum income for an airline system? Given a number of possible non-

stop services or flight., an associated expected income for each service, and

- 
- •

~~~ ..


3

an overnight holding cost for an aircraft, what set of services should be

flown for maximum system income (Simpson (~1lf2describes this model and many

others). Figure 2 provides a representation of such a problem as a time—space

network. There are three geographical locations A, B, and C. The network con-

sists of nodes which indicate both geographic location and time of day. Poten-

tial flights are shown by “service” arcs joining geographic locations at

various times of the day; expected incomes are associated with these arcs.

An arc from the end of the day to the beginning of the next day corresponds to
holding an aircraft overnight. There are daily rental costs associated with

these arcs. The problem is to find the maximum revenue route schedule subject

to the capacity limitation that at most one plane flies any service arc.

B0600

A0600

C0600

Time

Ii
B0559 ~~

A0559

C0559

Figure 2. An Airline Schedule Map

-

4

Although one might usually associate vehicles with the examples of

Figures 1 and 2 , networks model other aspects of transportation planning as

well, such as the flow of passengers, cargo, and vehicle crews. In fact, one

of the most noteworthy features of transportation systems, and their representa-

tion as models, is that they usually involve several different commodities. In

many instances commodities will be distinguished by their points of origin and

destination. Passengers traveling from New York to Los Angeles are not indis-

tinguishable from those traveling from Washington to San Francisco, even though
they may share some of the same transportation facilities; otherwise, the model

could route the New York passengers to San Francisco and those from Washington
to Los Angeles. When passengers (or cargo or crews) constitute one type of

commodity and vehicles another, the models are further complicated because the
vehicle flows define possible routes and capacity limits for passenger travel.

In any event, realistic modeling of transportation systems often results in

multicommodity models.
-

The taxonomy of strategic, tactical, and operational decision making,
as outlined in Table 1, helps to distinguish between different types of models
for transportation planning. In our more detailed discussion of particular

models , we shall consider problems from each general category.

Implementing Transportation Models

Since transportation models, like most others, need to be solved repeat-
edly in order to study modeling assumptions, to perform sensitivity analysis,

and to address changes over time, it becomes essential that algorithms be
designed to run efficiently. For networks, the manner in which data is stored
and manipulated often has a significant impact upon an algorithm’s performance.

Also, because of the nature of network topology, special techniques are available
to structure problem data within a computer.

Suppose that we need to store a network with a constant per unit cost

for each arc. Perhaps the easiest scheme to work with and yet the most inef-

ficient in terms of storage conservation,is a matrix representation which has
as the i,j th entry the cost of the arc from i to j, or ~ if no arc exists. If

the network has n nodes and E arcs, then n2 locations are required. Note that

for sparse networks most entries will be •. Another way of storing network data

is known as the “ladder representation.” For each arc we record its origin

node, its destination node, and its cost. This approach calls for 3E locations.

• -
~~

I 5
(0 (0 .

~~ ,;
~0 11•-•- 0 $ ‘-4 00o 41 U~ ~~~~~~~~~ 41 0 - ‘ (4

~ ~~~~~41 0 0 • ~-. .-I ~~ i i-I ~~ ~~ 0 0. (0 (0 ~~%0 (4 0 41 ~~~.-. r4 O~~~ 1 O~ —~~(0 ~~~4I 1 4 0 4
(0 ~~~ U ~4 0 (0 .X $~ ~J r4 I r 4 Q$~~~41 0 ~J I~~~4 • .0).o 0 4 1 0 1 ~ .~~~U P.
‘-4 0 ’— 14 0 . 0 (0 0 0 0 r 4 O) U .0 O~~~~ I.. ~~~.4 ‘I

00 ~~ U .-4 ~ 4 0 ~ 4 ,-4 ~ Ii 1) ~ 4 .0 0 .—. ~~ .0 ‘i-I .r4 ‘
•,•4 4) ,•4

3
W~~~~~14 C&, r4 0 0 U)

~ i-i ra. ~~‘ 1 4 . , 4 ~~41 0 N ,.~ ‘4~ —. ‘4.4 ‘~~ “ Sr~1 p 1 4(0 0 —. 0 41.~ .-4’•~~~ 4 o o~~~~~ o~~.0~~~~ (0 0 0 0 0- l ‘i ii . O ’ O U C)
41 .~4 U 41 (0 (4 r4 0 0 0 . W~~~ U 4 4 0 (4~~~~~O~~r 4 . 4 ’i 0 0 4 1 5 5
S 14 , - 4 O . 4 r4 4J 0 (0 5 Q ~~r4 00~~ $4 14 M.i O ’ 4 . i 0>~~~~~W ’ O 0
o o ~u .o .0 41 ‘0 14 -rI 0 0. 5 ~14 r ’ 4) —‘ $ • .0 ~4.i 14 ~4.i ~4 ~l 00 ,4 l.a

U)) 4 1 0 41 .$ 41 U IJ (4 -ri E ’4.1~~~ 1’0~~~~ W~~~~~U (4 1 J 1 4 U . - 4 ’ S 0. 4)
~~~~X 1i $. Z O  ~~~1 4 . 0 O~~~~~~~~b 0 0~~~ 0 1 4 0 1 4~~~~~0~~~~~0 1 4~~~.41 I P .( 4~~~ 1 . 4  Q $-( ( 0 U 1 4 . —~~0014’-- -‘-I O I-4 O~~~~ _ a 1 4~~~~ U)

~z P. $-4 .~~ $4 U) U

0
0
~1~4(0

41
0 ~I’0  IJ 1.4)
0 0 0 - r I  4 1 5

(0 r4 4 1 . 0  Ii .0 .0 00
5~~ 0 1J 4J 0

.0 -r4 4 ) 4 1  00 0 ,4
~~~U • 0 O ~ ,-4~~~ ,-4 I~4) i-l 0 0 0  0. < ‘ 0 0p-I ~~~I-l ~~~0. 0 0 0

41 0 0 5)-l Q1 Ii 14~~-4 *4 14
‘0 4 1 0 0 0 0 .-4 4) .i 00u
o ~~o U ‘0 0 . 1. 1 41 0 0
X o’-ri -~~~W (0 W~~~ .-4 ‘4.4 0. 0 4) 1 4 0

411.1 0~~~~~ U N .-4 .rl ,-4~~J Q U P . 0
00 14 (4 14 ~rl r1 U) ~4 0 Z ~1 r1
0 (4 (0 1.l ,-4 I ~~ 1.1 1.1 U ~ I1-I ..4 .0 1. 43 (4 43 *~~ $~~ -4o 1J 5 C) 4 I~~ 4 -‘-4 .0 0 .~~~(4
0 0) r4 0 ’ U $. U 4 ~ I 0 5
14 0 4 ~ - 41 1.1 (4 - r i

~~~~o. 1. 41 41 04 (4.4 .,4 W~~~ ,Q .
P. 0 0 0 0 0 w  U ) O  0 i a . 0~
0
0
-‘4
1.1
(4 (0 ‘-4 00

S coo
Ii (4 i.4 .,4
o 14
0. 41 1-4 00 * 4 4 1 0 )  14

( 0 0  0
0 4)
14 0 0 . 0 1 . 0 0  0 5
14 ‘ n C )  r4 4 ) 1 4
i-i .-4 14 , - 4 0 0  ‘-4

~~~0 U 0~~-4 1.I 0 (5 00
1 4 0‘4.4 0 0 0 0 0 0o ~1 4 U Z * 4 U) Z 00 *.

51.1 1.1 04 .’ 0 0 .
14D’ S 0 ’ 0 4 - 4 0 (0 ‘0 0 . 1 4B 4 1 (4 ‘-I 0 4 1 4 1 0o $.i ’,•4 (4 4) Ø . , . 4 1 4 (0 (4—. E 4 I IJ 5 1 4 4 1

‘0 1 4 1 4~~~~ r4 1 . 1 4 U 0
1.4 1.4 41 1 4 1 4 0 . - I (4 1 4 00 r4

n4 0 0 0 . U 0 0 0I-i
34 43 0014 .i -4 4 1 0 0 41 ~-4

~~ r 1 1 . Ø (4 ‘n 4 1 . 0 0
i-I Z

.4
4*
‘-4 14
.0 U 0 4114 (4 0 0
4-’ 01 .1.41 0

0 Vi 0 U i 4.4 O ’n 4o 5$ O W (41 r4 (4 $.i
4 i.’I (4 4 . 1

~~~~ 
n i l

‘~ ~~I ‘•4 (4 ‘nh 0 ( 4
n 4 1 4  WI 1 4 0 0  ~-h I m ~~ 

0 1 4 ( 4
S N  ~‘I 0 4 1  14
14 r4 0, ~~~~~$4 U 1 4)~~~
4 * 1 4  Hi 00 41
0 0  ( 0 1 0 0 0  41

C~~~~ 
W I $-4 U 0
UI 14 .‘~ $4 .0
14$ 5 0 0

“01 -‘-4 Ii UI Ii (0 (4

~ 4~I ~2~~O .0 0

~I~~
)

U
1.4

C)
1J~~~

(#1 0. I4~~~

- 
4.-

__________ —- .•.• ——-••.—•— ,-- -—.1--________ ____ _ _  —•- .-. 



—6 -

A third representation , the “forward star representation ,” records the arcs

ordered by origin node. An arc list contains for arc k , i ts  destination node

and its cost. An auxiliary nod e list records for node i, the first entry in

the arc list originating from that node. The scheme requires n + 2E storage

locations .
Now suppose the cost functions are of a more complex nature. For example ,

if the cost on an arc with flow x is given by a quadratic function ax
2 + bx + c ,

then we could either keep three cost matrices, or store three cost vectors A ,

B, and C using the ladder or forward star representations. These approaches

would require 3n2, SE , and n + 4E storage locations respectively . The storage

schemes would be used in the same way to record other data , such as arc capacities.

Depending on the functional form of the cost functions , the sparsity of the

network, and the amount of data manipulation required by an algorithm , the user

must determine the best network representation for his particular application.

We discuss this issue, and how it relates to implementing network algorithms,

in subsequent sections of this paper.

For additional general information regarding transportation networks, the

excellent surveys by Bradley [19] and Gazis [56] are recommended . Also , see

Gartner et al. [53] and Steenbrink [1181. For an extensive bibliography on

network optimization, see Golden and Magnanti [68].



7

2. Shortest Paths

Despite the number of papers on shortest path problems surveyed by

Drey fus [ 40) and later by Gilsinn and Witzgall ( 65], new insights regarding

this class of problems continue to emerge . In the last few years , a number of

algorithmic improvements have been reported which impact directly on transpor-

tation planning. In this section , we outline some of these recent contribu-

tions.

Overview

Shortest path problems are pervasive in transportation planning for

several reasons. One of the primary objectives of any traveler (a passenger

or a carrier) is to move from one point a to another point b , along a shortest,

cheapest, or most comfortable path. Associating flow costs (distances or com-

fort factors) with arcs in a network, the traveler seeks the minimum cost path

from a to b. In economic terms, there is a supply of one or more units at node

a, a demand f or these units at node b , and a link flow cost assigned to each

link in the network .

Shortest path problems also arise in situations where this model , by

itself , is not appropriate , such as when the route selected by one traveler

effects  the cost of routes taken by other travelers . In this paper , we discuss
a number of important problems and techniques in network optimization relating

to transportation. In some way, each problem relies or builds upon a shortest
path algorithm. The minimum cost network flow problem is a generalization permitting

supplies and demands for flow at various points in the network and flow capaci-

ties on the links. The network design problem introduces link construction pos-

sibilities. When urban transportation planners try to forecast traffic, the

shortest path problem becosies an important subproblem . The vehicle routing

problem requires a shortest path matrix as input. As these problems illustrate,

a shortest path algorithm is at th. core of many problems in transportation

planning.

In terms of modeling transportation networks, it is important to realize

• that, in computing shortest paths , total travel time between points a and b

depends not only on link travel tines , but also on delays at intersections ,

often attributable to left hand turns. ?~etwork formulations model these 
situations

by imposing turn penalties , that is , by associating costs or delays with turns

at nodes . Turn prohibitions, which are enforred as policies in many transporta—

tion system., can be regarded as turns with infinite penalties.



8

p

Several researchers have proposed algorithms for determining shortest

routes in networks with turn penalties (see Potts and Oliver 1105] and Ki rby and

Potts (88] for details). Although we do not pursue this topic here , we mention

thia issue because of its important modeling implications . An example other

than a road network that might be modeled with turn penalties is a subway system

with many different lines. Switching lines involves a delay and possibly a

t ransfer  charge .

Transportation planning is not the only setting in which shortest path

problems are of interest. Similar applications arise in computer—communication

studies. In addition, shortest path problems often become subproblems for more

complex problems such as in group theoretic integer progranining (see Shapiro [113),

Chen and Zionts [24], Frieze [52], and Denardo and Fox [34)). In fact , computa-

tional studies of shortest path algorithms have inspired research in sorting ,

data structures , and list processing by operations researchers and computer

scientists alike.

For a given network G (N, A , D) with node set N, arc set A , and arc

costs given by the matrix D = [d(i,j)], there are five shortest path problems of

general interest.

(1) Find the shortest path from a specific origin s to a specific destina-

tion t ;

(2) Find the shortest paths from a specific origin s to all other nodes ;

(3) Find the shortest paths between all pairs of nodes;

(4) Find the shortest path between an origin—destination pair that passes

through specified nodes ;

(5) Find the second, third , and so on, shortest paths.

The distance entries d(i,j) can be positive, negative, or zero provided that

there exists no cycle whose total cost is negative. If a negative cycle did

exist, costs would be minimized by traversing it infinitely often.

Implementation Issues

Because shortest path problems are so central to transportation science ,

efficient implementation of computer codes for these problems often translates

into substantial savings. At times , the efficiency of a code dictates the size

of networks, and hence the detail of modeling, that can be analyzed. Furthermore,

in real—time planning situations, fast computer codes become a necessity.

In the following discussion , we focus primarily on the second problem listed

above which is, perhaps, the most common . We view this problem and Bellman ’s algo-

rithm [12] for solving it as a vehicle for illustrating how rather minor changes in a



— 
9

code’s implementation can lead to significant reductions in computer running
time. Both Bellman ’s algorithm (12], and a modification of it proposed by Pape

1104] that we will consider, are classif ied as “label—correcting” procedures (see
(65]), in the sense that tentative shortest path distances assigned to the nodes

are revised until true shortest path distances are determined. We outline each

procedur e below :

BELLMAN’S ALGORITHM (also known as the Ford—Bellman—Moore Procedure [40))

Definitions

2(v) is the length of the current”shortest patW froin node s to node v.

p(v) is the predecessor of v in the current ”shortest path”to this node.

d(i,k) is the length of arc (i,k) £ A.

Initialization

0 if v — $1(v) otherwise
p(v) 0 for all v.

node s is the first element on list T.

Basic Computation

Select the top element i from list T. For every node k such that

• (i,k) £ A, perform the following test:
If 2(i) + d(i,k) < 1(k) then

(a) 1(k) — 1(i) + d(i,k)
• 

- 
p(k) — 1, and

(b) place k at bottom of T, if it is not already on the list.

Reducing the List Size

Remove (or cross out) node i from the list. Terminate the procedure
if the list T is now empty. Otherwise return to the basic computation.

PAP E ’S ALGORITHM
This procedure is the same as the previous one except that we replace (b)

of the basic computation step with:

• (b’) If k is already on list T, do not add it again.

If k has not yet been on the list, place it at the bottom of T.

If k has already been processed (that is, was on the list once before

but is not currently), then enter k at the top of the list.

We point out that both algorithms are based on the following fundamental

recursion

2(i) + mm (1(j) + d(j,i))

_ _ _  
_ _ _



10

where the labels 2(v) are updated whenever a path of one additional arc baa a

smaller length than the previous best path. In addition, e~~h algorithm

• requires on the order of it3 additions and comparisons in the worst case, where

n is the number of nodes in the network. There are other shortest path algo-

rithms known as “label—setting” procedures ( see [65)) that only require on the
order of n2 operations in the worst case.

The following example will illustrate the computational advantage of

the second app roach ove r the first. Furthermore, recent computational studies

by Pape [104J and Klingman et al. [89] demonstrate that this approach seems to

outperform other types of shortest path algorithms as well , including frequently

advocated “label—setting” procedures, such as Dijkstra’s algorithm[36).

Example 1. Find the shortes t paths from node 1 to all other nodes in the undirected

network below.

~~~~~~~~~~~~~~~~~~~~~~~~~~5 l
7

The reader is encouraged to determine the shortest paths by performing

the steps indicated in Bellman ’s and Pape ’s algorithms. A crucial computational

consideration in both instances is the length of list T. To be precise , the

number of elements that have been placed on the list will determine the number
• of executions of the basic computational step, the mos t costly step in both

procedures. With this in mind, let TB be the list of nodes for the Bellman

algorithm and let TP be the list of nodes for the Pape algorithm. To avoid con-

fusion, we performed the basic step in ascending order of k. In other words , we

must consider arc (1, 2) before arc (1, 3), and so on. The lists are given below.

I!
1 1
2 2
3 3
4 4
7 7
5 5
6 7
8 2
7 4
2 6
8 8
4
6
8

ii.

In this case, Pape ’s algorithm requires almost 252 fewer repetitions

of the basic computational step than does the original Hvllman algorithm . In

addition, this simple example is indicative of more general problems which

Bellman ’s algorithm encounters quite frequently and which Pape’s algorithm is

capable of avoiding. Using Bellman’s approach in example 1, node 2 receives

an incorrect minimal distance label early in the procedure and seven other

nodes are added to the list before node 2 receives its correct minimal label.

Pape’s app roach adds only five other nodes before correcting the same initial
error. In general, the great advantage of the new algorithm is that errors in

minimal distance labels are corrected as soon as they are detected. This is

accomplished by placing the node with the corrected label at the top rather than

bottom of the list. Pape recommends a “deque” for the list T and he discusses

its storage as well as computational savings (see b~04] for details). A deque

(or double ended queue) is a linear list in which all insertions and deletions

are made at the ends of the list.

Problem 2 continues to generate research attention. Golden [66] has

studied Problem 2 for Euclidean networks only. More recently , Denardo and Fox

[33) have introduced a new family of shortest path algorithms based on buckets.

A bucket is a list of nodes whose labels fall within a given range.

Let m (assumed positive) denote the length of the shortest arc in A.

Then, define buckets of width m such that bucket p is a list of nodes i whose

temporary labels v(i) fall (currently) in the interval.

Tsp <v(i) <m(p + 1), p — 1, 2,

In Dijkstra’s algorithm nodes are classif ied either as permanentl y or

temporarily labeled. A permanently labeled node is one with a label which has

been shown to be the true shortest path distance. At each iteration, the

algorithm finds the node with the smallest temporary label defined by

v(j)~ mm (v(i) + d(i,j) : i is permanently labeled) and makes the label
permanent. With buckets, we can replace this step with the determination of

the lowest—numbered bucket p* that contains one or more temporary labels. Suppose

at the end of an iteration that v(k) is the smallest temporary label. Then, by
the very nature of ~he Dijkstra algorithm, a].]. nodes i such that

v(k)c v(i) .cv(k) + m

must be permanently labeled (see (33] for details). Since m is the length of
• the shor test arc, it is impossible for i to receive a label less than v(i)

from node k or any temporarily labeled node. This observation can result

in substantial computational savings.

12
V

We note that deGhellinck [32) has had encouraging preliminary computa-

tional experience imbedding the bucket approach to shortest paths within the

out—of--kilter algorithm for solving transshipment problems.

The research that we have been disoussing is primarily at the

“implementation level” with the goal of developing faster and faster shortest

path algorithms. Currently, problems with thousands of nodes are being solved in

fractions of a second. Since these procedures are called upon routinely by

transportation planners in so many applications, this development is worth

following.

The other four shortest path problems mentioned earlier have also

received attention in recent years. Hart et al.(73J , Nemhauser (981,and Golden
and Ball p7.] discuss the application of a generalization of Dijkstra’s algorithm

to Problem 1. Floyd ’s algorithm [50] is still widely cited for Problem 3. As an

alternative, we can repeat Pape’s algorithm from each node. Dreyf us (40) has

proposed an algorithm for solving Problem 4. Kershenbaum et al. [87] also

solve this problem in the context of telephone network routing. Regarding

Problem 5, Shier (114 3, ~lS] has developed an extremely effective procedure for
finding the k shortest paths from a given node to all other nodes in a network.

Dantzig et al. (30] have recently studied decomposition techniques for solving

large scale shortest path problems.

We recommend Dreyf us (40], Gilsinn and Witzgall (65), and Christof ides

(25] as general sources of information and references on shortest path problems.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- •-



13

3. Transshipment Models

In making shortest path trip selections , travelers assume that their

actions do not effect one another. Whenever transportation systems are operat-

ing near capacity , however , there are congestion delays and this assumption

becomes untenable. In these situations, realistic models should account for

interactions between the users. Another extension to the shortest path model

is the classical transshipment problem in which goods are to be moved simultane-

ously from several sources to several destinations, f or exatziple , when empty rail

freight cars .~re to be transported from their current rail yard locations to

other yards where the cars are needed to provide hauling services (124 3 . In this

section, we study some of these important extensions to the shortest path model,

concentrating on recent algorithmic contributions for solution of the transship-

ment problem.

Modeling Considerations

To set notation, we cast the transshipment problem as follows:

minimize £ £ c~ x1i i  j j

subject to I Xjj  £ Xrj — b
1 

(i — 1, 7 , . . .,  ii)

j  r

I~ < 11
— i — i ‘ I

In this formulation , which models the flow of a homogeneous good , be it a class

of passengers , freight, vehicles, or crew personnel , the decision variable
is the flow of the good on arc (i ,j ) ,  Cjj is a given per unit flow cost , and

U
jj 

is a given upper bound (possibly uij 
+ ) for flow on arc (i,j). The

quantity bi 
is the known supply at node 1, a negative value being interpreted

as a demand. In practice , few of the possible arcs in this network model will.

correspond to links in the underlying transportation network , with three to five

times as many links as nodes being typical. Accordingly, we assume that the sum—

nations and indexing in the model are restricted to links (i,j) and (r i) of the

physical network. This characteristic of network sparsity impli*s that a forward
star representation of the data is an attractive storage scheme.

In the past f~w years , remarkable advances have been mad e on these problems.

Using contemporary special—purpose network codes, it is now possible to obtain

solutions up to two orders of magnitude faster than by’ solving these problems

with general—purpose cosmiercial linear prograizmiing packages. Solving the trans-

shipment problem efficiently , like solving - shortest path probl ems efficiently,
- - - -—---. ~~~~——-,~--—- --- - •. • — -



14

is important for two reasons. First, the transshipment problem realistically

models a number of distribution and transportation decision—making situations.

The empty freight car redistribution problem mentioned previously in this section

and the aircraft scheduling model introduced in an earlier section are but two

examples. Moreover, the repeated solution of this model is often embedded within

procedures for solving more complex transportation problems.

As an illustration of this second point, consider a multi—fleet routing

version of the aircraft scheduling model with, say , 707’s, 727’s, and 747’s as

airplane types in the fleet. The constraints of the transshipment model with

superscripts k — 1, 2, or 3 differen tiating between plane types on all var iables
and on all data b~ . C~j~ and U~ j~ models the routing of each individual plane

type. The multi—fleet model includes additional “bundle” constraints of the form

X1j + X~j 
+ X~j ~ 

1

on all service links (i,j) ,  for example, a potential flight leg connecting Boston
at 8 AM to Atlanta at noon. The bundle constraint ensures that only one aircraft

type, if any, provides this service. In this example, we would require, as well ,
integral values for the decision variables x~j.

The more general version of this multiconinodity flow problem involves

K~ 2 commodity types , each subject to its own transshipment constraints . Bundle

constraints imposed upon certain arcs of the network with bundle capacities, not

necessarily equal to one, model interactions between the commodities. The model

might be formulated as a linear program or might be formulated as an integer

program and solved via branch and bound using linear programming. In either

case, two different solution strategies, each of which decomposes the problem
into a number of transshipment models, are candidates for solving the linear

program. Price—directive decomposition places a value (or price) on the
bundle capacity of each arc (i,j) and “charges” for use of this capacity in a
modif ied (Lagrang ian) objective function

k—l 
E (c~j  

— A~~ ) X~ j

to be minimized . Resource—directive decomposition allocates the capacity of

each bundle arc (i,j) among the commodities , i.e., imposes addi tional capaci ties
on the flow variables such that 0 mm (Y~j. U~ j

) . Feasible allocations

of the bundle capacities require that E y14 
. Both algorithms operate by

k—I “

fixing values of the new variables or and discarding the bundle constraints

so that the p roblem then separates into K independent transshipment models, one



15

for each commodity type. Iteratively , the values of these variables are read-

justed until an optimal solution to the problem is computed . The price—directive

decomposition approach, implemented as Dantzig—Wolfe decomposition, has been very
successful in several recent computational studies. Assad (6 1, (7 3, Kennington
[841, [85], Kennington and Shalaby (86], and Swoveland t120] discuss further
details of these algor ithms , descr ibe a number of applications, and report on
computational experience.

An alternative approach to modeling of multicoimuodity flow problems

accounts for interactions between the commodity types by incorporating congestion
effects into the objective function. The transshipment constraints for each com-

modity are modeled as before, the bundle constraint is eliminated, and the objec-

tive function is replaced by
Minimize f (x)

where £ is a nonlinear function of the vector x of flow variables x~j
. The

modeling of urban traffic flow leads to an important class of problems of this
type. In this setting, each traveler , or group of travt~lers , moving between an
origin node, such as a suburban housing community , and a destination node, such
as a work zone in the central business district, is identified as a commodity.
The traffic delays on any street (i,j) of the network might depend on the total

flow ~ x~ on that street. We discuss several modeling possibilities for this
k.l

problem in the next section. Having defined the delay on each link, we might

choose , as a normative model, to minimize total delay in the network or some
function of delay such as total fuel consumption. These scenarios assume that

a central authority (e.g., a city planner) directs the optimization and assigns

routing plans to all travelers. For this reason, the model is of ten referred to
as system optimization; we discuss a decentralized decision—making mode]. known

as user optimization in the next section. As we shall see, user optimization

frequently leads to the same type of multicounmodity flow model.

We postpone discussing solution techniques for this nonlinear multicom—

modity flow problem until after we have introduced the user optimized problem

and described urban traffic flow modeling in greater detail in the next section.

At this point , we merely note that one algorithmic strategy is to linearize the

objective function and repetitive ly solve transshipment problems , which at

times , ar e simple shortest path problems .

— - ~~~~~~~~~ • - - -



16

Consequently, solving both the bundle and congestion forms of the multi—
commodity flow problem requires repetitive and , hence, efficient solution of the
single commodity transshipment model——a topic that we consider next.

Solving the Transshipment Problem Efficiently

Because of the special network structure of the transshipment model,

considerable streamlining is possible in implementing the simplex method Co

solve the problem. Figure 3 shows a typical iteration of the simplex method

when applied to a 15 node transshipment model.

4 4

9 2 9 2

5 2 6 5 12 6

outgoing

8 ~ . 10 ~ 
variable 8

incoming ’~~ 1
var iable ‘. 5

5 3

14

7 3

4

Add ing Arc (8, 5) to New Basis
the Basis

Figure 3. A Simplex Iteration

The solid arcs in this figure, these arcs correspond to the variables
in the linear programming basis , illustrate a fundamental and well—known

property of this class of problems: every linear programming basis corresponds

to a spanning tree in the underlying network. That is, when arc or ientations

are ignored , (i) the basic arcs contain no circuit, and (ii) any nonbasic arc

forms a unique circuit with the basic arcs. The darkened arcs in Figure 3 are

the basic arcs in the circuit formed by the nonbasic arc (8, 5).

~~~~~~1~~~~~~~~~~~ 
— -

~~
-- - — - —

17
In the simplex algorithm , the basis is updated from step to step by

introducing a nonbasic arc to replace one of the basic arcs. This update requires:
(1) determining the circuit formed by the basis and the arc being intro-

duced , which we call the pivot circuit (knowledge of the circuit and

the problem data determines the arc to leave the basis), and

(2) recomputing the simplex multipliers, or node potentials, ii i, that

satisfy
0 — C

ii
— ir

1
+ lI

j

for every arc (i,j) in the new basis.

At each step, any nonbasic arc (i,j) with c~1
— + < 0 becomes a can-

didate to enter the basis. The method of selecting from these candidate arcs, though

something of an art , has a profound effect upon solution time. The most successful

methods choose a subset of arcs, varying from step to step , and introduce the arc

(p,q) whose reduced cost is minimal within the subset. Mulvey (97] and Bradley

et al. [20] describe several mechanisms for implementing this strategy.

Efficient implementation of requirements (1) and (2) necessitates the care-

ful storage and manipulation of data describing the current basis. Since these issues

have been so successful in improving algorithmic performance , and since they illus-

trate so nicely the use of c.omputer science techniques in transportation appli-

cations, we describe the implementation details more fully .

In Figure 3, we have arbitrarily “rooted” the basis at node 4. Concep-

tualizing a basis in this manner actually facilitates implementation. In order

to determine the pivot circuit formed by nonbasic arc (p,q), we, first , may f ind

the unique paths P and P in the basis connecting these nodes to the root of the

tree. Those arcs lying in just one of these paths together with (p,q) form the

pivot circuit. Here, it is convenient to record the predecessor of each node (the

root has none), which is the first node encountered when traveling from this node

to the root , I.e., the next higher node in the tree. Then, to determine the paths

and P
q
we simply trace predecessors to the root.

Computing the paths P~, and P
q
and merging them to find the pivot circuit is

inefficient in most circumstances, bu t par ticularly when the circui t is small and
lies deep in the tree so that the paths P and Pq

are long and share many common
arcs. An alternative is to move upward through the tree from nodes p and q, one

step at a time, until their paths meet. There are several ways to implement this

strategy. For example, we can store the dep th of each node in the

_ _ -
--- -

18

tree; the depth of a node is the number of arcs in the path joining the node

to the root. In Figure 3, nodes 8 and 5 have respective depths of 3 and 5.

Because the paths P~ and Pq
must meet at the same depth , we may find the pivot

circuit as follows. Move from the deeper of the nodes p and q, say p, toward

the root to a node that is as deep as node q. Then, move towards the root con-

currently on both paths P~, and Pq
until the point where the paths first meet.

An alternative is to store the number of successors of each node (i.e., the

number of nodes lying below it in the tree). We then move from the node with

fewer successors (choose arbitrarily when ties arise) towards the root until

we again encounter the same node on both paths P~ and Pq • Both methods have

been implemented successfully .

Having found the pivot circuit and next determined the outgoing basic arc

by one of these techniques, we must then compute the simplex multipliers for

the new basis. Note that dropping the outgoing arc, arc (12 , 7) in Figure 3,
splits the current basic tree into two subtrees. If we hold the simplex multi-

pliers for all nodes in one of these subtrees at their current values, then to

achieve c — ~t . + ~ — 0 for all arcs in the new basis (and c — ir + it in
ij 1 j pq p q

particular), the simplex multipliers for every node in the other subtree must

change in magnitude by lC pq Z• Thus , to complete this step, we need to enumerate

all nodes in one of the subtrees. It is, of course , attractive to enumerate the

nodes in the smaller of the subtrees, an identification that is simple to make

when the number of successor nodes has been stored. Sequencing the nodes

properly , and maintaining this information from one iteration to the next ,

greatly facilitates enumerating the nodes of a subtree. One possibility is a

sequence, or traversai, that “walks” through the nodes of the tree , starting
with the root, from top to bottom and left to right. For our example, this

sequencing would r e a d 4 — 9 — l 5 — 8 — l — l 2 — 1 0 — 7 — l l — 5 — 3 — l 4 — 2 —

6 — l 3 before a n d 4 — 9 — 1 5 — 8 — 5 — l l — 7 — 3 — l 4 — l — l 2 — l O — 2 — 6 —

13 after the basis change. These traversals satisfy two conditions: (I) the

predecessor of each node appears in the sequence before the node itself, and

(ii) directly following each node , in sequence , are its successors in the tree

(if there are any).

Nov suppose that we wish to perform the basis change indicated in Figure 3.

Deleting the outgoing arc (12 7) creates two subtrees. To enumerate the nodes

below node 7 in one subtree and update the simplex multipliers, we extract from
the traversal the sub—sequence 7 — 11 — 5 — 3 — 14. Knowing the number of

19

successors of node 7 determines the length of this sub—sequence , i.e., that

it terminates at node 14. This information can also be obtained from the pre-

decessor data since 2 is the first node after node 7 in the sequence whose

predecessor is not in the sub—sequence, or could be recorded directly——for each

node, store the last node in the sequence that is one of its descendents. The

choice among these options depends upon trade—offs between storage and computation

time .
We have now seen how several types of data structures (predecessor, depth or

numbe r of successors, traversal) might reduce computation time for the simplex

method. The efficiency of the algorithm as a whole, however, also requires

efficient updating of these structures from step to step . The change in the

tree is rather simple conceptually. “Holding” the tree, with the incoming arc

attached , at its root, we “cut” the outgoing arc. The tree then “falls” into

its new position (see Figure 3). Note that the subtree below the cut in our

example appears in the new tree with the path from node 5 to the cut at node 7

reversed , but the rest of the subtree remains unchanged. Exploiting this

observation helps in updating the data structures efficiently.

State—of—the—art papers by Barr et al. (10] and by Bradley et a].. [20]

describe thoroughly this updating process, as well as other details of the

algorithm and its implementation . These papers and an earlier survey by

Magnanti [94] cite and review a number of previous contributions. In a related

development, Aashtiani and Magnanti (2) have used similar data structures to
reduce the computation time of the out—of—kilter method for solving the trans-

shipment problem.

Theoretical Bounds on Efficiency

The implementations just described have proven to be effective in solving

numerous problems; they lead to computation times of about 8 seconds on a CDC 6600

computer for solving 1500 node, 4300—5100 arc problems. Nevertheless, Zadeh (1261 ,

(1271 has constructed arbitrarily large examples requiring a number of iterations

that Is exponential in N the number of nodes. These examples show that solution

times can become prohibative as the problem parameter N becomes large. Algorithms

for network problems like the transshipment problem are said to be “good” if the

solution time for any example is bounded by a polynomial in N. Several researchers

(Edmonds and Karp [41], Dinic L371 , Karzanov (833) have proposed good algorithms

for the transshipment problem, or special cases. One result of their effort is a

novel algorithm for the maximal flow problem whose running time is bounded by an

order N3 polynomial. Even (44] reviews the algorithm in detail and Baratz (91

shows that this run time bound is best possible. This analysis invites further

investigations into the complexity of the transshipment model.

20

4. Traffic Equilibrium

How can a subway system, an expanded major artery, a new bridge, one—

way Street assignments, priority lanes, and other policy alternatives available

to urban planners help to alleviate congestion in our cities? More specifically,

how would users respond to these alternatives? What demands would they impose

upon public transportation facilities, what routes would they select in their

travel by private vehicles, and what levels of congestion would the system

experience. In this section, we consider models and algorithms for predicting

such behavior.

Ingredients

The flow pattern of an urban transportation network depends, to a large

extent, on relationships between demand and congestion:

(1) as the number of users of any link (arc) of the transportation net-

work increases, the delay time (impedence) along that arc increases,

and

(2) as the delay times* increase , the demands of users fur travel decrease.

The models that we consider attempt to predict flow by determining when the

demand “forces” and delay time “impedences” equilibrate.

In practice, the most successful applications of urban transportation

modeling have been limited to the modeling of a single transport mode, namely

private vehicles. In this case, the delay time ta along an arc a is frequently

modeled as

t (f) = t0[l + a(f/ca
)8] (1)

Here f is the total flow of vehicles on the arc, C
a
is the steady state capacity

of the arc, t0 is the free flow time and ~ and ~ are constants; values of

— 0.15 and ~ — 4 are typical of those used in practice. Branston (21] describes

a number of alternate formulations for the link delay curve ta (f) and makes
several suggestions concerning the proper use of these functions in practice.

A weakness of delay function (1) is that It does not account for the

fact that the delay along a link is often a function of flows on other links in

the network. For example, the delay along a link feeding into a busy intersection

might depend upon flow on other links feeding that intersection. Furthermore,

since two—way streets are modeled as two (directed) arcs with opposite orienta-

tions, the delay in one direction is often a function of the traffic in the other

direction due, in part, to left hand turns.

* Any user cost may be used in place of delay time throughout this discussion.

~

-
~~~~~~~ 

- - --
~~~--


—21—

The demand componen t of urban transportation modeling usually concen-

trates on origin and destination points , O—D pairs , for travel. Households ,

businesses, and other end points for travel are aggregated into zones that are

represented by nodes in the transportation network. Other nodes In the network ,

such as intersections , are transshipment points for vehicle travel.

Most systems currently available for predicting urban traffic flow , such

as the UNTA (Urban Mass Transit Authority) Transportation Planning System , generate

demands by considering trip production and attraction factors such as income and

parking availability in the zones, and travel tine between the zones. Having fixed

interzonal demands by this trip distribution phase , a trip assignment procedure ,

such as the equilibrium model that we discuss in the next subsection , predicts the

route choice that users make in order to meet their travel demands.

Because the traffic patterns generated in this second phase may provide
new estimates of travel times between the zones, adjustments to demands may be

called for. The ultimate prediction of urban flow would be obtained by iterat-

ing between the trip distribution and trip assignment phases in some way, either

formally or heuristically.

This iteration can be automated by using damand functions in the equilib-
rium model that depend upon travel times with respect to prevailing network con-

gestion. We might model demand between each 0—fl pair i as a function D1(u~
) ,

possibly linear , of the shortest travel time u1 between that pair. More

generally , demand could be expressed as D~ (u), a function of the vector u of
shortest travel times U

j
between all 0—fl pairs j — 1, 2, . . ., n. This extended

formulation permits broader modeling capabilities, such as incorporating destina-

tion choice. Suppose, for example, that 0—D pairs 1 and 2 represent travel from
a given zone to each of two shopping districts. Dial’s [35] extended “logit

model” with

r1e
°’1 r e6~’2

-

D1(u) — d
r1
eOUl + r2e

Ou2
D2

(u) — d
r1e~~~ + r2e

OU2

(2)

where d is the total number of shopping trips to be made and r1 and r2 are
attraction factors for the two shopping districts, permits the traffic assignment

procedure make destination choices between the shipping centers .

When time dependent demand models are used , the second phase procedure
simultaneously determines traffic distribution and traffic assignment with

factors such as zonal income and parking availability held fixed. These models

are short range planning tools. Longer range analysis, for instance, studies on

_

22

the impact of new transportation facilities on urban development , would require

data relating variations in the “fixed” factors to demand.

For further discussion of transportation demand models, the reader might

consult Domenenich and McFadden’s monograph [39]. Nguyen [l01),U~o2] considers

a problem related to our discussion, namely estimating 0—D zonal trips from

observed link flows.

An Equilibrium Model

In his seminal paper 1122], Wardrop posited two principles for determining

the distribution of traffic in an urban network. The first of these, which is

the basis for most urban transportation planning models, is a fundamental behav-

ioral assumption about user objectives in traveling between a given O—D pair:

“the journey time on all routes actually used are equal, and less
than those that would be experienced by a single vehicle on any
unused route.”

The following mathematical model of equilibrium captures the principle:

T (h) ~ u~ all p c (3)

T~ (h) = u1 if h~ > 0, p c P1 (i—l ,2,...,n) (4)

L h = D i(u) J (5)
pEp

i
P

where T (h) ~ z {ta(h): arc a belongs to path p1.
acA

This model is usually referred to as a user equilibrium and contrasts with the

system equilibrium model introduced in the last section which corresponds to

Wardrop’s second principle.
In the formulation (3)—CS), A denotes the arcs of the network, i”l ,2,

...,n denotes the O—D pairs, and P~ denotes a set of paths joining O—D pair i.

Usually P~ consists of all paths joining O—D pair 1, although it may contain a
subset of these paths (e.g., only those that the user perceives). The term h~
is the number of vehicles using path p; u1, Di(u) and ta (h) are the shortest

travel times, demands and link delays introduced previously . T~ (h)~ the sum of

travel times along all links a belonging to path p, gives the total travel time

on path p.

Condition (3) states that the travel time on any path joining an O—D pair

must be at- least as large as the shortest travel time. Condition (4) states that

a user travels (denoted by h~ ‘ 0) only on paths giving the shortest travel time

-_ — —~~-~~~-~~~—

23

between any 0—fl pair. Equality (5) implies that all demand for travel between

any O—D pair is satisfied by flow along paths joining that 0—fl pair.

As Rosenthal [101] has pointed out, this formulation is, in a sense, a
continuous approximation to Wardrop ’s principle, since in practice vehicles are
indivisible and the path flow variables should be integral. Weintraub [l2~

has
studied relationships between the continuous and integral formulations. Since

the integer model has not been implemented, we shall conf ine our discussion to
the continuous model.

Several features of this model are worth noting. First, we observe that

the link delay function for each arc a is written in terms of the entire flow

pattern in the network and not merely in terms of the total flow

~ E{h~: arc a belongs to path p} (6)

on that arc. Thus the model can, in principle, incorporate the link inter-

actions mentioned in the previous section. Second, because each demand function
D~(u) is expressed in terms of the shortest path distances between all 0—fl pairs,

the model has the potential to provide for destinat ion choice modeling and other

extensions.

Finally , we should recognize that the formulation (3)—(5) encompasses

multimodal distribution. To illustrate this point, let us consider modeling of
buses and autos as two alternate means of transportation. We envisage two net-

works, one for each mode (possibly copies of the same road network) identifying
a mode with its network. Each path set P1 then represents 0—fl transport by one

mode. The demand and link delay function will embody interactions between the

modes. In this simple setting, 0—D indices I and 2 might correspond to bus and

auto travel between the same physical O—D pair; the logit model (2) is one pos-

sibili ty for expressing the demands D1(u) and D2(u) for the two modes. The

interpretation of (2) is much the same as before; d is the total demand between

the 0—D pair and r
1

and r2 are attraction factors for the modes.
Recently, Florian [4~~) and Abdulaal and LeBlanc

[3) have proposed two
mode equilibrium models along these lines and suggested algorithms to compute

a solution. Note that this type of model is capable of computing traffic dis-

tribution, modal split, and traffic assignment simultaneously, in contrast to
the one pass sequential approach of the widely—used UMTA Transportation Planning

system. For related work see Bruynooghe (22], Florian, Nguyen, and Ferland
(49), Evans [43) and, particularly, Florian and Nguyen (48].

- - - - - -- - -~~~~

24

Although, as we have seen, the equilibrium formulation (3)—(5) permits

richness in modeling, calibrating the link de lay func tions and demand functions
and computing equilibr ia for the most general formulation remains an unattained
objective. One comforting feature of this modeling approach is that very mild

restrictions on the problem data (ta(0) > 0~ t~ (h’)
~

ta(h) whenever h’ ~
ta(h) continuous, and Di(u) continuous and bounded from above) guarantee that

an equilibrum exists. Aashtiani [I] recently established this fact using
results from nonlinear complementarity theory.

The use of the equilibrium model as a planning tool has, to date, been

limited to single mode private vehicle applications in which (i) the volume

delay on each link depends Qnly on the total flow
~a

on that link as, for
example, in (1), (ii) the demand between each 0—D pair depends solely upon the

shortest travel time between that origin and destination, i.e., demand is given
by Ei(uj), and (iii) D1(u~) is a decreasing function. The key to analyzing

this situation is an observation made by Beckman, McGuire , and Winston [ii],

that the Kuhn—Tucker conditions to the following optimization problem (in

variables h and d)
p i f a d

Minimize Z ta (r) dt — £ J g
1

(y) dy
acA i l

0 0

/ (7)

subject to E h — d~ (i 1, 2, . . ., n)
pcPi

P

h
~~~

0
~~

di~~~
0 pcPj,(i .l ,2,...,n)

are equivalent to the equilibrium conditions (3)—(5) when the Kuhn—Tucker multi-

plier A 1 for the 1th equality constraint is identified with the shortest travel
time U

1 
between 0—D pair i, if d1 > 0. In this optimization model gj(y) • D1

1
~(y)

is the inverse of the demand function (the model includes the special, but

important, case of constant demands Dj(ui) by setting gj(y) ~ 0).
The importance of modeling the equilibrium problem as an equivalent

minimization problem is that the objective function of (7) is convex whenever

ta(t) and g,j(y) fulf ill the prac tical assumptions of being, respectively, non—
increasing and nondecreasing. Consequently, methods from convex programming can

be applied computationally.

Computing An Equilibria

Of the several proposals that have been made for computing equilibria by

solving (7), see Nguyen (.99], the most widely used is the Frank—Wolfe algorithm.



25

t
This method solves nonlinear programs with linear constraints, i.e.,

mm {f(x): Ax — b , x ~ 0) , by repeated linearization of the objective function.

Given any feasible solution x-’ to the problem, the method f inds a solution y
to the linearized problem

win {Vf (x 3) y: A y — b, y ~ 01 (8)

where Vf (x~) is the gradient of f evaluated at x~ . It then solves the one—

dimensional search problem of minimizing £ in the line segment joining x~ and
y, obtaining a new solution ~~~~ The method iterates over j 0, 1, 2, *

starting with an arbitrary initial feasible solution x°.

This algorithm is particularly well suited for solving problem (7).

Consider, f irst, the f ixed demand model in which di is a constant and g1(y) ~ 0

for ~ 
a 1, 2, . . ., n. Any linear objective function i~l 

~~~~~ h~ is

minimized subject to the constraints of (7) by setting hq~ d~ where q1cP~
satisf ies Cq1 win {C~~: pcP11; that is, the demand is met by any minimum cost
path. Some algebraic manipulations reveal that the coeff icient C of h
obtained by linearizing (7) about any vector (h) of given path flows is
simply the sum of ta(f

a
) along arcs a belonging to path p. Consequently, the

linearized problem (8) reduces to a sequence of shortest path problems, one for
each 0—D pair, with the prevailing link delays as arc costs. These shortest

path problems can be solved eff iciently by the techniques descr ibed in an
earlier section of this paper.

Two points about the algorithm are worth noting. First, there is no
need to enumerate all paths in each path set P~ prior to the analysis. The

algorithm generates them as needed. Second, only the total flow
~~

on each
arc needs to be maintained from step to step. Once the one—dimensional line

search has been performed at each step, the shortest path solut.L’~ins can be dis—

carded. Exploiting this fact leads to substantial reductions in storage

requirements.

The variable demand version of (7) is solved in much the same way.

When linearized, the objective function coefficient of d~ for probLem (7)

becomes U
1
• gi(dj~

). The solution to the subproblem (8) then depends upon

both the values of cq1as def ined above, and the current shortest path distances
u1. A solution is:

— ---- -—----- - - ~~
-. ----- ~

-
~~~~~~~~~~~ ---



26

h~ — 0 if p 7~

(
0 if Cq~~> Uj

hq~ — dj .~
1di~ 

if Cq~ U
j

if Cq~ < ti j

where b
i 
is any known upper bound on the demand between O—D pair i. Nguyen ~ioo]

describes further details about this algorithm and discusses other methods for

solving for an equilibrium with variable demands.

Several researchers have contributed ideas related to this algorithm.

The excellent survey [47] contains additional references and provides his-

torical perspective concerning this and other algorithms for solving the minimiza-

tion problem (7). We should emphasize that problem (7) is just one manifestation

of the congestion formulation of the multicommodity flow problems discussed in the

last section. Any algorithm for solving (7) usually applies to this broad generic
set of models.

An alternative to casting the equilibrium problem in equivalent convex

minimization form (7) is to view the model as a nonlinear complementarity problem.

The model then can be studied from the viewpoint of this theory (Aashtiani [1 1,
~~1l [721) or the viewpoint of fixed point theory (Kuhn 

[91 ],Kuhn and Cullum [92))~
This approach has the advantage of applying to the general equilibrium formulation,

but the disadvan tage, to date, of requiring much greater computer time and storage
than the minimization approach.

Computational Experience

To test the validity of equilibrium modeling as a predictive tool,

Florian and Nguyen [46] applied model (7) to data from the city of Winnipeg.

They assumed fixed travel demands, as generated from a previous study, and used

an alternate to (1) for modeling link delays. The model predicted flow on high

volume links quite well, but did not perform as well on links with observed

• volumes in the range of 0—300 vehicles per hour. Their findings show, as might
be expected, that the predictions of route travel times were better than those
of link travel times. They concluded that “the results are encouraging and

demonstrate the suitability of the method for planning purposes.”

In this study the Frank—Wolfe algorithm, equipped with a Dijkstra—type

shortest path routine, required 15—18 iterations and about 700 CPU seconds on
a CDC Cyber 74. The convex simplex method solved the same problem in about

500 CPU seconds, but required more storage . The network contained 1319 links.

_



27

In another study, Hera (78) considered a 9386 link, 3027 node network
of Washington, D.C. The Frank—Wolfe algorithm, as implemented in the TRAFFIC
computer code , required 221 CPU seconds per iteration on an IBM 360/91.

— --~ _ _  --- - - -- ~~~~~~~~~~~~ -~~~~~~~-~ --~~~~ - _ _ _



28

5. Vehicle Routing

Like many operational issues in transportation planning, the vehicle routing

problem is encountered routinely and repeatedly in business and industry. The

basic problem is one of designing a set of vehicle routes of minimal total

distance leaving from, and eventuall y returning to, a central depot, which
satisfies capacity constraints and meets customer demands. Demands occur at

points or nodes in the transportation network and may be deterministic or

probabilistic in nature. Generally, there are enormous ~imounts of detailed

data and a far larger number of feasible sets of routes to consider. As a

result, only small problems can be solved for optimal solutions; otherwise, we

must reconcile ourselves to the fact that heuristic solutions (hopefully near—

optimal) must suffice. In addition, there are a host of inter—related aspects

of the vehicle routing problem including the number and location of depots and

demand points , the capacity of vehicles and makeup of fleet, frequency of

service, and other geographical considerations. The computational complexity

of this problem and the fact that this type of problem is often solved every

day underscores the need for powerful and efficient solution techniques.

Deterministic Setting

First , we focus on the case where demands are deterministic . Examples

of this problem include municipal waste collection [13], fuel oil delivery [55],

newspaper distribution [69], and routing of school buses [14]. Notice that in

some examples pick—ups are made ; in others deliveries are made. As long as only

one of the two operations is performed throughout , the distinction is not important.

There are many heuristic techniques which have been proposed for this class

of problems . We concentrate , in this section , on one approach which has been suc-

cessful in solving large problems (more than 100 nodes). Gillette and Miller [64]

and Orloff [103) discuss alternative heuristic strategies .

The algorithm we describe is an efficient implementation of the Clarke—

Wright savings method [27]. Suppose we let node 1 denote the central depot and

d(i,j) be the distance from node i to node j. if every two demand points i and

j are supplied individually by two vehicles from the central depot , then total

distance traveled is 2 d(1,i) + 2 d(l,j). However, if both points are served

by a single vehicle then the combined route results in a savings in travel

distance of

(2 d(l,i) + 2 d(l ,j)}  — (d(l,i) + d(l ,j)}
— d( 1,i) + d(1,j) — d(i,j).

— ~~~--~—~~~~~~~~~~~



29

A similar savings occurs whenever the endpoints of two vehicle routes are

joined to form a single route. In the Clarke—Wright algorithm, we proceed as

follows:

Step 1. Evaluate all potential savings

S(i,j) — d(l,i) + d(l,j) — d(i,j) for i,j 7’ 1.

Step 2. Order all feasible savings from largest to smallest.

Step 3. Select the node pair (i,j) with the greatest positive feasible savings.

Link nodes i and j on a single tour.

Step 4. Eliminate infeasible savings and return to step 2, until there are no
remaining positive feasible savings.

When we say a savings S(i,j) is feasible we mean that linking nodes i and j does
not cause the violation of any constraint (tour integrity, vehicle capacity,
maximum route time, and so forth). After each linking of nodes, a number of
savings become infeasible (see [69) for details). For example, an intermediate

tour l—2—i—3—l implies that, for all k, savings S(i,k) are infeasible since
otherwise we would not preserve the tour.

This algorithm can be coded efficiently by taking advantage of two
important observations :

1. Step 1 can be very costly both computationally and in terms of storage

requirements. For instance, a 600—node problem requires 360,000 storage
locations for inputs (distances d(i,j) above the diagonal and savings

S(i,j) below the diagonal for an undirected network with symmetric dis-

tances).

2. At each step of the algorithm, we must determine the maximum feasible
savings.

These observations can be exploited by using special data structures

and list processing techniques. First, rather than consider an entire matrix

of pairwi.. linkings, we can focus on the most promising linkings only.

Instead of storing the network topology in a matrix, we would record for each

potential arc its origin node, its destination node, and its length, i.e., use
a ladder representation. From this information we then calculate the savings.
We restrict the entries in this list to reduce the number of savings con—
sidersd to under 10,000 for a 600—node problem. One procedur. for accomplish—

ing this reduction is to consider linking node i to any node j within a

_  - - -



30

distance of r units of i. Golden, Magnanti, and Nguyen [69] document an
alternative approach involving a rectangular grid. An extremely convenient

and efficient method for finding the best feasible savings is to partially

order the savings in a heap structure and update the structure from step to

step (see [69]). These ideas lead to an implementation of the Clarke-Wright

algorithm which is between one and two orders of magnitude faster than the

traditional implementation.

Stochastic Setting

Now, we consider the more complex problem of constructing a fixed set

of routes when demands are probabilistic. Such a problem would arise when

daily deliveries of fuel oil are being made to automotive service stations

and, although each route is fixed in advance, the demand on a particular day

is stochastic. For simplicity, let us assume that the demand at each node i,

denoted by dj, can be modeled by a Poisson distribution with mean A~
. The

discussion here follows Stewart [3.19] and colden and Stewart [70].

We say that a primary error has occurred if a vehicle cannot satisfy

the demands of the customers on the route to which it has been assigned. This

situation has various penalty costs associated with it. Clearly, one objec-

tive is to minimize the probability of a primary error. The stochastic

vehicle routing problem can then be formulated as determining a fixed set of

routes to:

Minimize (1) expected total travel distance

subject to (2) meeting customer demands;

(3) not exceeding vehicle capacity;

(4) Prob (primary error on a route) ~ a.

We can solve the problem heuristically in such a way that we take

advantage of the efficient Clarke—Wright implementation discussed in connec—

tion with deterministic demands. Suppose a route contains nodes n1, a2, ...,
and has total demand and total expected demand

x d  +d + ...+da
1 ‘

~2

E(x) — A + A + ... + A , respectively.n1 n2

Then, by appealing to the Central Limit Theorem (see (70 ] for details) we can
approximate the Poisson distribution for total demand by a Normal distribution

with



31

i — A  +A  + ...+A and
‘
~l ~2

o - ~~~~~

If we assume that all vehicles have the same functional capacity c, then the
probability of a primary error is given by

Prob (x~~~c) 
_ Prob {z~~~

C
~~~~}

using the NormLil approximation where z is a unit normal variate.

Our soi.ution strategy will be to replace the functional capacity of a

vehicle with a reduced “artificial” capacity and to replace the stochastic

demand at each node with a deterministic “artificial” demand in such a way

that the deterministic model may be used.

Let u denote the artificial capacity of a vehicle and A
~

the artificial

demand at node i. If vehicles are loaded to their artificial capacities, then,
solving

- —

> c — pProb {z — —) = a ,

we obtain, af ter some algebra, the value of ~i which insures that constraint

(4) is satisfied. That is,

—
2c + —

~~~~ 
+ 4c

2

where z1_~ is defined by Prob (z ~ z1 } — 1 — a. For instance, if c 100
and a — .10, then — 1.28 and ~ — 87.9. Using an integral artificial

capacity of 87 uait~, this gives a safe ty stock of 13 units as a cushion
against the oct~urrence of primary errors. Fixed routes are constructed on

the basis of the artificial capacity and artificial demands, as in the deter-

ministic case. Sensitivity analysis is recommended for differing values of a.

Golden and Stewart (7U) have implemented this solution strategy and presented

computational results. We point out that the procedure applies to many prob-

ability distributions other than the Poisson.

A potential transportation application involves the design of an effec-

tive subscription bus service for large employment centers. A reliable daily

bus service would make pickups at pre—specified bus stops each morn ing , travel
to the employment center, and make drops at the bus stops in the evening. There

might be a fixed monthly fee for service. Since a subscriber need not show on

a particular day b cause of illness, vacation, or special plans, we have a
probabilistic vehicle routing problem.



32

6. Network Design

There are a number of options in the design of a transportation system,

ranging from operational alternatives such as one—way street assignments to the

physical improvement of existing facilities or construction of new facilities.

We shall view any of these options as a network synthesis and refer to any

alternative in terms of a network construction.

A general taxonomy of design problems divides into (i) arc construction
in which certain arcs (e.g., roadways or railbeds) are added to the network, or
not, and (ii) facility location models in which nodes representing warehouses,

depots and the like are “opened,” or not. In each case, the objective is to

determine economic tradeoffs between the cost of construction and the savings

in routing cost that it provides.

After briefly reviewing several models for assessing these tradeoffs,

we consider, in this section, recent algorithmic advances for this class of
problems. Our discussion focuses on three different approaches——branch and

bound, Benders decomposition, and heuristic procedures.

Design Models

For k — 1, 2, . . .,  K let rk denote the flow requirement between nodes

and tk of a given network; let c~j 
denote the per unit routing cost on arc

(i,j) for “commodity k” goods, and let f 1~ denote the fixed cost of construct-

ing arc (i,j). Then, a rather general network design model is:

Minimize E Z Z c~ x~ + Z Z f~ Yj
k i j  ~ ij

subject to
I r~ if i = s

k k Ji: X
jj 

— E X~~~ — 
~
—rk 

if i — tk (9)j r 
~ otherwise

E x~~ ~ 
Ku y~1 

(10)

£ E e ~ y1 ~~B (11)
i i  I I

(x,y) £ S (12)
all i and j

— 0 or 1 all i and i.

_______________________ —~  ____



33

In this formulation , x~1 
is the flow on arc (i,j) of goods being transported

from node S
k 

to node t
k• The binary variables y~~ indicate whether or not an

arc is constructed . Indexing conventions for this model are similar to those

we have used for the transshipment model in section 3.

Equations (9) are the usual transshipment constraints. The “bundle”

inequalities (10) specify that the total flow on arc (i,j) must be zero if that

arc is not constructed (i.e., y
11 

— 0) and cannot exceed the capacity K
11 

of

the arc if it is constructed . Inequality (11) is a budget constraint stating

that total construction cost is limited by a budget B. In this expression ,

is a cost function , which need not equal f~~ , related to the building of arc

(i,j). The set S encompasses further side constraints , possibly expressed as linear

inequalities in the vectors x = (x
ii
) and/or y — (y

11
). These might include pre-

cedence relations (e.g., construct arc (i,j) only if arc (i’,j’) is constructed),
multiple choice relations (e.g., choose at most (at least , exactly) two of some

subset of arcs), limitations on resources shared by several arcs, or prior

specifications of arcs already constructed such as y
11 

— 1. When prior speci-

fications have been made , the model is often referred to as a network improve-

ment model.

Most papers written about network design consider specializations of

this model. We shall use the following terminology for these problem variants:

Uncapacitated Design——every K1. > 
~ 
r~ so that constraints (10) impose

~ k
no (capacity) restrictions on flow when Y 11 

— 1.

Fixed Charge Design——the budget constraint is eliminated :

tradeoffs between fixed charge and routing costs are

investigated .

Budget Design——the fixed charge term £ £f
~j 

y
i1 

is eliminated .

Optimal routing is sought within a fixed construction budget.

We should note that although our formulation includes only one construction level

K
11 

for each arc , multiple capacity levels can be modeled by parallel links. Also,

as an alternative to the bundle constraints (11), we might incorporate nonlinear

congestion costs in the objective function . This type of formulation is attractive

for continuous models where incremental improvements are being made to an existing

network. Dantzig et al. [29], (301 and Harvey and Robinson [74] have considered

such a model for budget design. They apply a Lagrange multiplier to the budget

constraint, use the Frank—Wolfe algorithm (see section 3) for any fixed multiplier

value , and iterate to find the optimal value for the multiplier.



34

A facility location model similar to this formulation of the network

design problem is:

Minimize E E c
1~ 

x14 + E f1 y
i .J J i

subject to E x~ d4 (13)
i i J

Z x~1 ~ 
K~ y~ 

(i1~)
I
E e i yj~~~

B (15)
i

(x ,y) £ S

x. ~~O alliand j
ij

= 0 or 1.

In this case , the underlying network is bipartite. There are m possible loca-

tions for (production) facilities. The variable Yj equals 1 if site I is

selected and. is zero otherwise. denotes the capacity of a site if it is

selected, d
1 
denotes the demand at destination node j and f1 is a f ixed cost

for selecting site i. As before, (15) represents a budget constraint and the

set S incorporates various side conditions. When the fixed charge term of the

objective function is omitted, each ei = 1, and B = P is a limit on the number
of facilities that can be selected, the model is called a P—median problem.

As demonstrated by Wong 1125 ], the location model can be cast as a net-
work design problem by adding an artificial node and an arc joining this node

to every source node i. Let r
1 
denote the flow requirement from this new node

to destination j and associate 
~~ 

K1, and e1 with the arc joining the new node
with source node 1.

- ~~~~~~~ — ___  —~~~~



35

Johnson et al. [81] have shown that the network design budget problem,

even with each e
11 

— 1, is NP—complete. That is, it can be solved by an

algorithm that is polynomial in problem input (number of nodes, size of

budget) if and only if any of a number of other notoriously difficult problems

(including the traveling salesman problem, and the multiconunodity flow problem

in integers) can be solved similarly. This result provides some theoretical

insight concerning the difficulty of design problems.

Branch and Bound

Several researchers have proposed branch and bound algorithms for solv-

ing network design and facility location models (Boyce et al. [ 18], Christof ides
and Brooker [ 26] , Dionne and Florian [38], Leblanc [93] Scott [ l i i ]  Steenbrink

~ll8~, Efroymson and Ray [42], Davis and Ray [ 31], Hoang [79] and Geoffrion

and McBride [63], among others). To illustrate the nature of this work , we

describe two of the more recent contributions from this list.

Several years ago , Hoang 1 791 suggested an enumerative algorithm for
budget design problems with unit flow requirements between every pair of nodes.

In this instance, the optimal routing, given any network configuration, is via

shortest distance paths joining each origin—destination pair. Consequently,

the objective function cost, denoted F(y) , is determined completely by the
network conf iguration, i.e., by the choice of 0—1 values for the components
y of the vector y. At any node P in the branch and bound enumeration tree,

certain arcs A are fixed as constructed (either — 1 or y~1 
— 0).

As a bounding mechanism for his algorithm, Hoang noted that any solution

y with the arcs in AF fixed at these same values satisfies the inequality

F(y) ~ F(y1’) + £ 
~~ ~ (yP) (16)

(i,j)kAF I I

where — 1 — y~1
. In this expression, denotes a solution with 1

for every arc not in AF and ‘
~
‘
~~~~ Yjj for every arc (i,j) £ Ak’. Thus F(y~’) is

the best possible shortest route solution with the given fixed values of arcs

in As’. I~~ (9) denotes the increment to the shortest route cost from node i
to node j when arc (i,j) is deleted from the network defined by y1’.

Expression (16) has the following interpretation. If arc (i,j) is

deleted (set — 0 and — 1) from the network defined by y”, then thecost for shipping the unit of demand between these nodes must increase by at

least i~~(9) in the solution y. It might increase by more because other arcs

are being deleted as well. Hence, the right—hand side of (16) is a lower bound

on the routing cost F(y) of solution y.

3b

To compute lower bounds quickly , Hoarig suggests relaxing the integer

requirement on y
~~

and minimizing the right—hand sid e of (16) subject to the

budgetary constraint ~ E e~1
y.. ~ and 0 ~ 1ij ~ ~ >‘~~ Y~1

for arcs

(i,j) t Ar’. A soluti~n~ y * to thia continuous knapsack problem has at most

one fractional component and , in light of (16), gives a lower bound

F(y) ~ F(y~) + y*.. t~ . (9) that applies to every node below node
ti)~~ AF 3 3

P in the branch~a~d bound enumeration tree. Using this lower bound as a

fathoming mechanism and branching from node P on (i.e., next fixing) the

fractionally valued variable in the continuous knapsack solution , b ang imple-

ments his algorithm in the framework of a straightforward branch and bound

algorithm.

Dionne and Florian [38] have noted several ways to improve this algo-

rithm. First , in computing I~~ (9) it is not necessary to resolve from scratch

for shortest paths between all nodes. Specialized algorithms are available for

recomputing shortest path distances when one arc has been deleted from a net-

work. Second , they suggest branching on the variable y~~, (i,j) ~ A
F with high-

est incremental improvement per unit of budget , i.e., that arc (i, j) rnaxirn.izizig

~~
($)/e~3

. These modifications lead to marked improvements in the algorithm.

A typical example with a 65% budget level , i .e . , B = 0.65 ~ e~ , with 20 nodes ,
i i j

and with 30 arcs, requires 20 seconds to solve on a CDC Cyber 74 computer with

their algorithm , while Hoang ’s algorithm , af te r 500 seconds, is not able to

determine that the current best solution is optimal. The authors note , however ,

that this branc h and bound approach is probabl y limited to medium—sized networks

like this , and that computation time seems to grow exponentially with a decrease

in budget level . For example, the algorithm requires 288 seconds to solve the
same problem with a 50% budget level .

In another development Geoffrion and McBride [63] consider Lagrangean

relaxation embedded within a branch and bound approach to the fixed charge

facility location problem. To adhere to their notation, let us assume that

d
1

> 0 for all j and let us substitute zij x.1 /d
1

in our formulation . They

assume that the side conditions of S are expressed as a system of linear

inequalities Ay + B~ ~ b and attach a vector of Lagrange multipliers ii to these

constraints and a vector of Lagrange multipliers A to the constraint (13) to

form a Lagrangean relaxation:

37

‘p

L(A ,p) Minimize E E e’11
z~ . + Ef

1y~ + ZA
1

(E~ z1j-l) + p (b — Ay — Bz)

subject to: E d
1

Z
il ~ ~~~~ .

‘~
all i (17)

I
0 ~ z~1 ! 1. all i and j (18)

Y~~~~0or l a].l i (19)

Here, C’
j j

— c~1
d
~
.

There are several reasons for considering this type of relaxation. The

well—known “weak duality” property of Lagrangean duality demonstrates that
L(A ,ia) is less than or equal to the optimal value v of the location problem

for any value of A and any p ~ 0. Thus, the Lagrangean relaxation provides a
lover bound that can be utilized as a bounding mechanism in branch and bound.

This particular Lagrangean relaxation is attractive because it is so easy to

solve. It separates into independent subproblems, one for each. i. For each 1.,

either y~ — 0 and z~1
= 0 for all j or , Yj — 1 and the computation of optimal

reduces to a continuous knapsack problem. Moreover, the value L(A ,p) of the

Lagrangean relaxation when A and p are set equal to optimal dual values of the

linear programming relaxation provides a sharper (larger) lower bound on V

than does the optimal value of the linear prograiim~ing relaxation.

Computing the tightest Lagrange.an lower bound, i.e., finding
L max{L(A ,p) p ~ 0} yields insight into the structure of location models

.

Due ~ó~tne equivalence between dualization and couvexification (see Geoffrion
(57) and Magnanti et al. 19~1), L also equals the optimal objective value of the
problem:

Minimize E E C ii z~ 1 + Ef~y~
z ,y i i i

subject to E — 1 all j

A y + B z ~~~b

and (x,y) c Convex Hull. of solutions to (17), (18) and (19).

As Geoffrion and McBride point out, the convex hull constraints of this formula—

tion are equivalent to the linear inequalities (17), (18), and 0
~ ~ 1

together with the inequalities ~
y~ for all I and j. This result gives some

theoretical justification for appending the constraints Zil ~ y~
for all I and I

to the location model. Moreover, Geoffrion and McBride conjecture that “linear

- - - -__ - - ---

38
P

programming technology will advance to the point ” that solving for L in this
linear inequality form may be “preferable to involving Lagrangean relaxation.”

Computational. experience with problems ranging from 7 possible facili-
ties and 122 transportation links to 25 possible facilities and 1250 links

indicates that Lagrangean relaxation provides much tighter lower bounds on v

than does linear programming relaxation. A branch and bound algorithm equipped

with Lagrangean relaxation solved these problems in from 3.4 to 112.9 seconds

on an IBM 370/158 computer compared with a range of from 6.8 to greater than

300 seconds for a branch and bound algorithm equipped with conventional
Driebeek—Tom.lin penalties.

Benders Decomposition

When applied to ne~work design problems , Benders decomposition proceeds

i terat ively by choosing a tenta t ive network configurat ion (i . e . , set t ing values

for the integer variables y 1.) , solving fo r the optimal routing on this network ,

and using the solution to the routing problem in order to redefine the network

configuration. Figure 4 illustrates this last step for an uncapacitated fixed

cost design problem in which one unit of a good is to be sent from node 1 to

node 6. In this instance , the routing problem reduces to a shortest path compu-

tation between nodes 1 and 6.

10 ~3 5 0 40

IT1 0 100 1T6 — 100

Figure 4. A Step of Benders Decomposition

The dark arcs in the figure are members of the current network configura—

tion; the dashed arcs are candidates for inclusion in the optimal design . With

respect to the routing costs shown next to each arc, the node numbers are

optimal dual variables fo r the linear programing routing problem. The dual

var iab les indicat, that introducing arc (2, 3) into the current design reduces

39

V
the routing cost from node 1 to node 3 from ~r3 — 50 to

~2
+ C23 — 20 + 10 for

a savings of 50 — 30 — 20 units . Similarly , introducing arc (4 , 5) reduces

the routing cost from node 4 to node 6 by T5 — (n~ + C~ 5) - 90 — (70 + 10) —
10 units. Since either of these arcs night , but need not , become part of the

shortes t route path from node 1 to node 6 in the optimal network design , the

optimal routing cost R is constrained by

R ~ 100
— 20 Y23 — 10 y~~ .

(20)

That is, at best , the current routing cost which is 100 units will be reduced

by the full savings of introducing arc (2, 3) (i.e., setting Y23 — 1) and the

full savings of introducing arc (4, 5) (i.e., setting yi,~ 1).

Constraints like (20) , which are known as Benders cuts , are by— products

of the optimal. routing calculation for any tentative network configuration .

Benders algorithm computes the new configuration at each step by minimizing

the fixed charge design cost F plus the routing Cost bound R subject to the

Benders cuts (20) generated by every previous tentative configuration. This

minimization , called the Benders master problem , is a mixed integer program in

the integer variables y~1
and single continuous variable R. At each step , one

new constraint , a Benders cut , is added to the master proL !em. Note that since

R becomes a lower bdund on the routing cost , the minimum cost v of any design

is bounded by the optimal value F* + R* of the master problem , i.e., v ~ F*+R*.

Also, every solution y — to the master problem determines a network and the

combined fixed and optimal routing cost on this network is an upper bound on

v. These two bounds permit early termination of the algori thm with an assess-

ment of degree of suboptimaliry .
When applied to more complicated design problems such as facility location

problems , and even to general mixed integer programs , Benders decomposition

operates in much the same way and has similar interpretations .

In their highly regarded paper (61] (see also [62]) concerning a facility

location model with shipments from plants to customers through intermediate

distribution centers , Geoffrion and Graves report on the most successful docu-

mented implementation of Benders decomposition to dare . They solve problems

with from 249 to 513 binary variables . From 0 to 30 of these correspond to

distribution centers to be opened , or not; the remainder are 0—1 variables

indicating whether or not a distribution center serves a customer. The compu—

tations required no more than seven Benders iterations to reach within 0.20%

of the minimum cost design value, and required from 16.7 to 191 seconds of

execution time on an IBM 360/91.

40

Their paper is rich in its description of implementation both in terms of

management/model interaction and computer prograu ing of Benders algorithm .

The authors note , for example , that solving the Benders master problem to com-

pletion at each iteration may be an unnecessary computational burden. Rather ,

they search for a solution at each step that merely increases the lower bound

by at least a given constant r > 0. They also note that modeling constraints

like Z x.4 ~ K1 y~
, where K~ — d1, in the uncapacitated facility location

j ~.J I
model (see (14)) as x~ . ~ K. for all i and j leads to much be t ter algorithmi c

performance desp i te the fact that the la t ter representation requires many mo re

const ra ints . We comment f u r t h e r on this observation in the next subsection.

Even for a given model representation , it is possible to accelerate

Benders decomposition by generating “ st rong cuts ” at each i terat ion . Referr ing

to Figure 4 will help illustrate this point . Not e that the shortest path

distance f rom node 3 to node 6 using all arcs that are candidates for inclusion

in the optimal network design is 60 uni ts . Since the distance to node 2 in the
current design , as speci fied by the dark arcs , is 2C uni t s and the current

shortest path cos t is 100 units , introducing arc (2 , 3) whose rout ing cost is

10 units can save no more than 100 — (60 + 20 + 10) — 10 units , and not the 20

units computed earlier. Consequently , a valid Benders cut is

R ~ 100 — 10 Y2 3 — 10 YL. 5 . (21)

Note that this cut is stronger in the sense that it provides a tighter lower

bound on R , than (20) ; the right—hand side of (21) is as large as that of (20)

for all 0— 1 values of the decision variables y 1~~, and exceeds the r ight—hand

side of (20) whenever Y2 3 — 1.

The opportunity to generate strong cuts , like (21) , is made possible

because of degeneracy in the shortes t path linear program , or equivalently

because of multiple optimal solutions to its dual. In this example , ~~ — 0 ,
— 20 , 713 — 40 , ~~ — 70 , ir5 — 90 , and v6 — 100 is an alternate optimal dual.

solution to that shown in Figure 4. Computing a Benders cut as before , but

using these dual values leads to the stronger cut (21) . Because network problems

are renowned Lor their degeneracy , considerations of this nature are attractive

for a number of transportation applications .

Magnanri and Wong (96] describe this strong cut methodology in greater
detail. They show how to generate pareto—optimal cuts , i.e., cuts with the

property that no other is stronger , for arbitrary mixed integer programs by

V ~~~~~~~~~~~~~~
V _ -

41
I,

solving a linear program to choose f~om among optimal dual solutions . Special-

izations of this approach lead to a pareto—optimal cut methodology for P—median
problems that avoids explicit linear prograi ing comp~itations . Computational
experience on a variety of P—median problems (up to 33 nodes) shows that Benders

algorithm equipped with strong cuts finds solutions known to be within 10% of
oprimality in ten or fewer iterations. The standard imp1~ mentation usually pro-

vides no better solutions within 25 iterations and solutions 10% farther from

optimality within ten iterations . The authors obtain similar experience with

strong curs for uncapacitated fixed charge design problems , though in this case

the error bounds are generally not as tight.

Heuris tics

Several researchers (Billheime r and Gray [16), Scott n il) , Stairs LJ,17),

Steenbrink [i1~~, .and Dionne and Florian [38) among others) have proposed

heuristic procedures for solving network design problems . These are generally

of three types—add , delete , or interchange . The add heuristics start with

some feasible design and add arcs , one at a time , choosing at each stage the

arc that gives the greatest decrease in cost , or some surrogate measure of

cost. The delete heuristics are similar , but start with an initial design

containing all candidate arcs , and delete arcs one at a time . Starting with

some initial design , the interchange heuristics add and/or delete an arc at

each step until no further improvement in cost is possible.

Recently , Dionne and Florian [38] have reported impressive computational

experience with a new type of heuristic for budget design problems with , for
convenience , one unit of demand between every two nodes in the network. They

use their branch and bound algorithm described earlier in this section with the

following modification. In place of the term r~ (y1’) in the lower boun d
• expression (16), they use a term I(y) which is the increment to shortest route

costs between every pair of nodes, not just i and j, when arc (i,j) is deleted
from the network. This algorithm is a heuristic because, as examp les show , the

new lower bound need not be valid .

The authors have tested this algorithm on problems ranging from 7 nodes
and 16 candl4ate arcs to 29 nodes and 54 candidate arcs , and they have compared

V
its performance with an add heuristic , with Scott ’s £1.11) combined delete and

exchange heuristic , and with a variant of this algorithm. With but one excep—

CLan, in which th. relative error between the heuristic and optimal solutions

was 0.03%, the new heuristic found the optimal solution to every problem . The

- -- -~~ ~~~
- - - -~~ V _ _

42

relative errors ranged from about 1% to 7% for the add heuristic and we re less

than 1% in all, cases for the other heuristics. The new heuristic required from

0.05 to 8.47 seconds of computation time on a CDC Cyber 74 computer.

Cornuejols et al. [28], who cite a number of references on heuristics for

facility location models , have initiated a new line of investigation. They

consider uncapacitated fixed charge tacility location models with the P—median

constraint £ y~, ~ P. Let us consider the special case where f~ 0, d
1

1

and c1. ~ 0 for all i and j. These assumptions are not essential , but are

merely convenient for our exposition . To conform with this paper , we assume

that the problem has been formulated in maximization form .

The autho rs derive the following results . If v is the optimal value to

the problem and ~a is the value of the solution determined by the add heuristic

then

V va
(
P ; 1) P

< -
~~

(22)

where e is the base of the natural logarithm . The clever proof of this result

uses the fact that the value v D of the Lagrangean dual problem forme d by dual—

izing with respect to the demand constraints E = 1 is equivalent to the
i

optimal value of the Linear progra ning version of the problem (i.e., 0 ~ y~, ~
1)

when the constraints x2,~ ~ fo r all i and j rep lace (14) . The analysis of the

Lagrangean dual shows that (22) is valid when vD replaces v. Since va ~ v ~ vD ,

we also have

vD - V < (P
- l
)
P <1 (23)

vD e

V which indicates by how much the value of the linear programming relaxation of

the problem can deviate from the value of the problem itself.

Not only do the authors show, by examp les , that these bounds are best pos-

sible , they also construct examples to show that other heuristics (delete,

exchange , dynamic programming) cannot provide relative error bounds as tight as

(22). Moreover, they show that the relative error of the optimal value of the

“weak” linear prograimning relaxation based upon the constraints (14), rather

than the “strong” formulation based upon the constraints ~ for all i
and j , need not be as tight as (23) (the relative error can be made as close to

1 as desired by judicious choice of data). This fact helps to explain modeling

~~~~ ~~~~~~~V_ _  - - ---__-



43

‘I

experience mentioned previously , namely that the strong linear programming

formulation is preferred to the weak formulation.

In computational experiments with problems containing as many as 164

potential locations for facilities , the authors used the add heuristic followed
by a subgradient algorithm applied to the Lagrangean dual to obtain an improved

feasible solution and upper bound. This algorithm determined the optimal solu-

tion to almost every problem that was tested and required no more than 30 seconds

of computation time on an IBM 370/168 computer.

_ _---V . --• ... . . .~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -_



44

7. Open Research Problem s

In this section, we enumerate several areas where future work may

prove fruitful:

* Aggregation of Network Data. In most transportation studies, underlying
data is aggregated in order to obtain data sets that are manageable from

both the viewpoints of data collection and limitations on algorithmic

capabilities . What are the “bes .” procedures for aggregating data, how

are aggregate solutions to be disaggregated for the actual problem setting,

and what degree of suboptimality does the aggregation/disaggregation

process entail? Chan et al. [23], Geoffrion [58], [59], Kuhn [91], and

Kuhn and Cullum [92 ] have initiated research to answer these questions.

* Shortest Paths from an Origin to a Few Destinations. There are very eff i—

cient algorithms for finding shortest paths from an origin to one other

node and to all other nodes. In practice, however , it night be desired

that several nodes serve as destinations. Can this problem be approached

directly? In particular, when distances are Euclidean can the geometry

be exploited to obtain more efficient algorithms?

* Multicommodity Flow. Can list processing structures, like those recently

developed for transshipment problems (see section 3), be extended eff i—

ciently to solve multicominodity flow problems with bundle constraints?

Are there effective heuristic techniques for large mu].ticominodity flow

problems?

* Normative Models of Urban Traffic Flow. Suppose that a system optimized

traffic equilibrium (e.g., fuel minimization) is desired, but that users

act in accordance with Wardrop’s first principle of individual cost, or
time, minimization. What available policy alternatives, e.g., one—way

street assignments , prohibited turns, or road tolls, guarantee that a user

equilibrium would coincide with the desired system equilibrium? Rosenthal

[108] has shown that road tolls, alone, will not suffice. To perform analysis

of this nature might require solution methodologies which incorporate pre-

dictive models as part of the underlying constraint structure of normative

optimization. Theoretical tools for performing sensitivity analysis on

equilibrium solutions (see Hall (71]) would undoubtedly aid this effort, and
would be of independent interest to transportation planners.

- - -- .~~~~~~ V - - - 
V 

V



45

* Predicting Origin and Destination Choice of Urban Traffic. When the traf-

fic equilibrium model includes destination choice possibilities (see section

4) there is no known equivalent convex optimization problem for predicting

traffic flow. Origin choice models that would be capable of predicting

homeowner location decisions for long range urban planning encounter the

same d i f f icu l ty . The ability to compute solutions to either variant of

this model, or to a combined origin and destination choice model, would
greatly extend urban traffic planning capabilities.

* The Stochastic Vehicle Routing Problem. There has been some recent work

on this problem as described in this paper, but much more research needs
to be done and real applications need to be iuvestigated.

* The Vehicle Routing Problem with Window Constraints. Timing restrictions

become a component of the vehicle routing model in the event that some

customers impose delivery deadlines and earliest delivery time constraints,

thereby imposing a “window” or “interval” of time during which a delivery

or pickup must be made. Biles and Bradford ( 15] and Russell [io~ have
recently looked at these sequencing restrictions, but more efficient

algorithms should be within reach.

* Tight Lower Bounds for Vehicle Routing Problems. Can a relaxation approach

similar in nature to the work of Held and Karp (76), [77) be of value in

deriving tight lower bounds on the minimum distance solution to the vehicle

routing problem. This would allow one to evaluate the effectiveness of

various heuristic approaches.

* Airline Crew Scheduling. An airline has a set of a flights each of which

requires one of a set of N crews. Crews must be allocated to flights in

order to minimize operating costs (see Arabeyre et ci. [ 5] for details).
Powerful heuristics need to be developed and analyzed for this important

class of problems.

* Worst—Case Analysis of Heuristic Algorithms. For a given network optimiza-

tion problem where the only known efficient solution procedures are heuristics,

how badly might the heuristic solution deviate from the optimal solution?
Rosenkrantz et al. (106] and Cornuejols et al. (281 provide examples of this
kind of analysis.

* Probabilistic Analysis of Network Algorithms. See Karp (82] for a giumbar of

open problems of a mor e theoretical nature relating to probabilistic, as

opposed to worst—case, analysis of heuristics.



46

* The Loading Problem. Let X jj and y1~ denote the flow of goods and vehicles
on the arcs (i,j) of the same network. Given a linear or nonlinear objec-

tive function of x (x~1
) and y — (Y jj ) to be minimized , add to the

separate transshipment constraints for goods and vehicles loading constraints

of the form x
ii ~ K for  each arc (i,j). The interpretation is that goods

are to be loaded on vehicles each with capacity K. Applications, among

others, are the loading of passengers on planes , the loading of cargo on
trains, and the assignment of railcars to rail engines. Straightforward

modeling extensions encompassing inulticommodity goods and multiple vehicle

types might be expected in practice. What is an efficient solution tech-

nique for this class of problems?

* Freight Flow Management. Modeling of freight involves a number of issues.

In rail applications, decisions must be made concerning the assignment of

freight to cars, the composition (in terms of cars) of trains leaving a

railyard, train routing, the scheduling of engines to train routes, the
capacity and location of railyards, and many other aspects of rail opera-

tions. Modeling is complicated by “blocking” or “grouping” contingencies

in which cars destined for several final locations are grouped together and

treated as a unit along their route to some intermediate railyard. In most

instances, the number of possibilities for blocking and “reblocking” is
enormous.

Although analytic approaches have been successful for dealing with

certain aspects of freight flow management (Assad (8~ delIneates efforts
in rail), there remains great potential for mode.U.ng and algorithmic

development.



—47—

1. Aashtiani, H., “Multi—Modal Traffic Assignment ,” Ph.D. Thesis, Operations

Research Center , M.I.T. (in preparation).

2. Aashtiani, H. and Magnanti, T., “Implementing Primal-Dual Network Flow

Algorithms ,” Working Paper OR 055—76, Operations Research Center ,

M.I.T. (June 197(i).

3. Abdulaal, M. and Leblanc , L., “Multitnodal Network Equilibrium ,” Tech. Report

IEOR 77013, Dept. of m d .  Eng. and Opers. Res., Southern Methodist Univ.

(June 1977).

4. Amit , I. and Goldfarb , D., “The Timetable Problem for Railways,” 379—387, in

Developments in Operations Research, Vol. 2 (B. Avi-itzhak , ed.), Gordon

and Breach, New York (1971).

5. Arabeyre , J., Fearnley , J., Steiger , F., and Teather , W., “The Airline Crew

Scheduling Problem: A Survey,” Trans. Sci., 3, 140—163 (1969).

6. Assad, A. A., “Multi—commodity Network Flows—-A Survey,” forthcoming in

Networks.

7. Assad , A. A., “Multi—commodity Network Flows——Computational Experience,”

Working Paper OR 058—76 , Operations Research Center , M.I.T. (Oct. 1976).

8. Assad , A. A . ,  “ Supply Modelling of Rail Networks : Toward a Routingklakeup

Model,” Working Paper OR 069—77, Operations Research Center , M.I.T. (Dec. 1977).

9. Baratz, A., “Construction and Analysis of Network Flow Problem Which Forces

Karzanov Algorithm to 0(N3) Running Time,” Tech. Memo LCS/TM—83, Labora-

tory for Computer Science, M.I.T. (April 1977).
10. Barr , R., Clover, F., and Klingman , D., “Enhancements of Spanning Tree Labeling

Procedures for Network Optimization,” Res. Report CCS 262, Center for

Cybernetic Studies, Univ. of Texas (Dec. 1976).

11. Beckman, M. J., McGuire, C. B. and Winsten, C. B.,  Studies in the ~ooncvnics of
T’rcznsportation, Yale Univ. Press, New Haven, CT (1956).

12. Bellman, R., “On a Routing Problem ,” Quart. of Applied Mathematics, 16 , 87—90 ,

( 1958) .

13. Beltrami, E. and Bodin , L., “Networks and Vehicle Routing for Municipal Waste

Collection,” Networks , 4, (1), 65—94 (1974).

14. Bennett, B. and Gazis, D., “School Bus Routing by Compute~ ,” Transportation
Research , 6, (4), 317—325 (1972).

15. Mice , W . and Bradford , J , ,  “A Heuristic Approach to Vehicle Scheduling with

Due—Date Constraints,” presented at the Spring ORSA/TIMS Meeting, Chicago,

Illinois (1975).

_ _ _ _  ‘—
V . - V - - V~~~~V~~~~ --~~~~~~

V
~~ ~~~~~~~



—48—

16. Billheimer , J. and Gray , P., “Network Design with Variable Cost Elements ,”

Trans. Sci., 7, 49—74 (1973).
17. Bodin, L., “A Taxonomic Structure for Vehicle Routing and Scheduling Problems ,”

Comput. and Urban Soc., 1, 11—29 (1975).

18. Boyce , D. E . ,  Farhi , A., and Weischedel, R., “Optimal Network Design Problem:

A Branch and Bound Algorithm ,” Environment and Planning , 15, 519—533 , (1973) .

19. Bradley , G., “Survey of Deterministic Networks,” AIIE Transactions , 7, (3),

224—234 (1975).

20. Bradley , G. H., Brown , G. G., and Graves , G. W ., “Design and Implementation of
Large Scale Primal Transshipment Algorithms7Managerient Science, 24(1),
1— 34, 1977.

21. Branston , D., “Link Capacity Functions: A Review,” Trans. Res., 10, 223—23€

(1976).

22. Bruynooghe , M., “Un Modèle Int~gré de Distribution et d’Affection de Traffic

sur un R€seau ,” Tech. Report , Inst. de Recherche sur les Transports, Dept.

de Recherche Opérationelle et Informatique , Arcueull (1969).

23. Chan, Y., Follansbee , K. C., Manheim , M. L., Mumford , J. R., “Aggregation in

Transportation Networks: An Application of Hierarchical Structure ,”

Report R68—47, Dept. of Civil Eng., M.I.T. (1968).

24. Chen , D. and Zionts , S., “Comparison of Some Algorithms for Solving the Group

Theoretic Integer Programming Problem ,” Operations Research , 24 , 1120—1128

(1976).

25. Christof ides, N . ,  Graph Theory : An Algorithmic Approach , Academic Press, New

York (1975).

26. Christof ides, N. and Brooker , P. ,“Optivial Exp~insion of ~in Existing Network ,
’

Math. Prog., 6 , 197—21 1 ( 1974).

27. Clarke, G. and Wright , J., “Scheduling of Vehicles from a Central Depot to a

Number of Delivery Points,” Operations Research, 12 (4), 568—581 (1964).
28. Connuejols, C., Fisher , M., and Nemhauser , C., “Location of Bank Accounts to

Optimize Float: An Analytical Study of Exact and Approximate Algorithms,”

Management Science, 23 (8) , 789—810 (1977).

29. Dantzig, C. B., Harvey, R. P., Lansdowne, Z. F., Maier, S. F., McKnight, R. W.,
and Robinson , D. W., “Two Geographic Decomposition Approaches in Trans—
portation Network Analysis,” Tech. Report, Control Analysis Corp., Palo
Alto, California (June 1977).

- 
~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~ * - ---



—49—

30. Dantz ig ,  G. B . ,  Maier , S. F. and Lansdowne , 1. F., “Application of Decomposition

to Transportation Network Analysis ,” Tech. Report DOT—TSC—OST—76—26 ,

Control Analysis Corporation (Oct. 1976).

31. Davis, P. S. and Ray , T. L., “A Branch—Bound Algorithm for the Capacitated

Facilities Location Problem ,” Naval Res. Log. Quart., 16, 331—334, (1969).

32. de Ghellinck, G., private communication , May 1977.

33. Denardo, E. and Fox , B., “Shortest Route Methods : 1. Reaching, Pruning and

Buckets,” forthcoming in Operations Research.

34. Denardo, E. and Fox , B., “Shortest Route Methods: 2. Group Knapsacks ,

Expanded Networks, and Branch and Bound ,” forthcoming in Operations

Research.

35. Dial,R. B., “A Combined Trip Distr ibution and Modal Split  Model ,” paper

presented at the 1974 Annual Meeting of the Highway Research Board (1973).

36. Dijkstra , E., “A Note On Two Problems in Connection with Graphs ,” Num.
Mathematik , 1, 269—271 (1959).

37. Dinic , E. A., “Algorithm for Solution of a Problem of Maximum Flow in a Network

with Power Estimation ,” Soviet Math. Doki., 11, 1277—1280 (1970).

38. Dionne, R., and Florian, M., “Exact and Approximate Algorithms for Optimal

Network Design ,” Pubi. #41, Centre de Recherche sur les Transports , Univ.

of Montreal (Feb. 1977).

39. Domenich , T., and McFadden , D., Urban Travel Demand, North Holland Publ. Co.,

Amsterdam (1975).

40. Dreyfus, S., “An Appraisal of Some Shortest Path Algorithms ,” Operation s

Research, 17 , 395—412 ( 1969).

41. Edmonds, J., and Karp , R. M., “Theoretical Improvements in Algorithmic Eff i—
ciency for Network Flow Problems ,” JACM, 19,248—264 (1972).

42. Efroymson, H. A and Ray , T. L., “A Branch and Bound Algorithm for Plant Loca-

tion,” Operations Research, 14, 361—368 (1966).

43. Evans, S., “Some Models for Combining the Trip Distribution and Traffic Assign-

ment Stages in the Transport Planning Process,” in Traffic Equilibrium

Methods, Proceedings 1974 (M. Florian, ed.) Vol. 118, Lecture Notes in
Economics and Mathematical Systems, Springer Verlag (1976).

44. Even , S.,  “The Max Flow Algorithm of Dinic and Karzanov ,” Tech. Memo LCS/TM—80,

Laboratory for Computer Science , M.I.T. (Dec. 1976).

— —
—- - - . - - --- -- -

~~ 
-.—

~
-——‘-

~~~~~~~~
—--- -- - - V _ _ _ -

4
— 50—

45. Florian , M . , “A T r a f f i c Equ i l ib rium Model of Travel by Car and Public Transit

Modes , ” for thcoming in Trans. Sci.

46. Florian , M. and Nguyen , S., “An A pp lication and Validat ion of Eq u i l i br ium Tr ip

Assignment Methods ,” Trans. Sci., 10, 374—390 (1976) .

47. Florian , M. and Nguyen, S., “Multicommodity Flow Problems with Convex Costs:

Models , Algorithms , ~nd Applications ,” Centre de Recherche sur les Trans-

ports , University of Montreal (March 1977).

48. Florian , M. and Nguyen , S., “A Combined Trip Distribution , Modal Split and

Trip Assignment Model ,” Publication 34, Centre de Recherche sur les

Tr anspor ts , Univ . of Montreal (March 1977).

49. Flor ian , M . , Nguye n , S., and Ferland , J., “On the Combined Distr ibution Assign-

ment of Traffic ,” Trans. Sci., 9, 43—53 (1975).

50. Floyd , R., “Algorithm 97——Shortest Path ,” CACM , 5, 345 (1962).

51. Frank , H. and Frisch , I., Communication, Transmission, and Transportation

Networks , Addison—Wesley , Reading , MA (1971).

52. Frieze, A., “Shortest Path Algorithms for Knapsack Type Problems ,” Math. Prog .

11, 150—157 (1976).

53. Gartner , N., Golden , B., and Wang , R ., “Modell i ng and Op t imiza t ion for Trans-

portation Systems Planning and Operations ,” Proc. of the Intern. Syinp . on

Large Engineering Systems , Win nipeg, Ca nada , August (1976).

54. Gartner , N., Little, J. D. C., and Gabbay, H . , “Optimization of Traffic Signal

Settings by Mixed— Integer Linear Programming , Parts I and II,” Trans. Sci.,

9,321— 363 (1975).

55. Garvin, W., Crandall , H., John , J., and Speilman , R., “App lIcations of Linear

Programming ~r the Oil Industry ,” Managenent Science , 3 (4), 407—430 (1957).

56. Cazis, D., “Transportation Networks ,” Networks , 5 (1) 75—79 (1975) .

57. Geoffrion , A., “Lagrangean Relaxation for Integer Programming ,” Math. Prog.

Study #2 , 82—114 (1974).

58. Geoffrion, A. M., “A Priori Error Bounds for Procurement Commodity Aggregation

in Logistics Planning Models ,” Naval Res. Log. Quart., forthcoming 1977.

59. Geoff n o n, A. H., “Customer Aggregation in Distribution Modeling ,” Working

Paper No. 259, Western Man. Sci. Inst., UCLA (Oct. 1976).

60. Geoffrion , A. M . , “Bet ter Distr ibution Planning with Computer Models ,”

Ilarv ird Business Review 54(4) , 92—99 (1976) . Reprinted in this volume.

- - ---~~~~~~~~V . - - ~~~~~-~~~~~ - V~~~~

—5 1_ —

61. Geoffrion, A. M. and Graves , G., “Multicommodity Distribution Systems Design

by Benders Decomposition .” Man. Sci., 20, 822—844 (1974).

62. Geoffrion, A. M., Graves, C., and Lee, S., “Strategic Distribution System

Planning: A Status Report ,” in Studies in Operations Management

(A. C. Hax, ed.) North Holland—American Elsevier (1978).

63. Geoffrion , A. M. and McBride, R., “Lagrangean Relaxation Applied to Facility

Location Problems ,” Working Paper 263, Western Man. Sci. Inst., UCLA

(Jan. 1977).

64. Gillett , B. and Miller , L., “A Heuristic Algorithm for the Vehicle Dispatch

Problem ,” Operations Research, 22 , 340—349 (1974).

65. Gilsinn, J. and Witzgall, C., “A Performance Comparison of Labeling Algorithms

for Calculating Shortest Path Trees ,” NBS Technical Note 777, National

Bureau of Standards , Washington , DC (1973).

66. Golden, B., “Shortest—Path Algorithms : A Comparison ,” Operations Research ,

24 , 1164—1168 (1976).

67. Golden , B. and Ball, M ., “Shortest Paths with Euclidean Distances: An

Explanatory Model,” submitted for publication.

68. Golden, B. and Magnanti , T., “Deterministic Network Optimization——A Bibliography ,”

Networks, 7 (2) , 149—183 (1977).

69. Golden , B . , Magnanti , T . , and Nguyen , H . , “ Imp lementing Vehicle Routing Algorithms ,”

Networks, 7 (2) , 113—148 (1977) .

70. Golden , B. and Stewart , W . , “Vehicle Routing with Probabilistic Demands ,”

Proc. of the Tenth Annual Synrposium on the Interface of Computer Science

and Stati8tics, Gaithersburg, Maryland , April 14—15 (1977).

71. Hall, M. A. , “Properties of the Equilibrium State in Transportation Networks ,”

Unpublished Repor t , Bell Laboratories , Piscataway , NJ (1976).

72. Hall, H., “New Methods for Computing Transportation Network Equilibria,”

ORSA/TIMS Bull etin, 2, p. 212 (Nov. 1976).

73. Hart, P., Nilsson, N., and Raphael, B., “A Formal Basis for the Heuristic
Determination of Minumum Cost Paths ,” IEEE Tran8. on Systems Science and

Cybernetics, Vol. SSC-4 , 100—107 (1968).

74. Harvey , R. P. and Robinson , D. W., “Computer Code for Transportation Network

Design and Analysis,” Tech. Report DOT—TSC—OST--77—36, Control Analysis
Corporation (May 1977).

75. Hax, A., “Aggregate Production Planning,” in Handbook of Operations Research

(.1. Moder and a. E. Elmaghraby, eds.) Van Nostrand Reinhold , New York,

V

for t~~ omi n~~

-
~~~~~ -

- 

- V 

V



—52—

76. Held , M. and Karp, R., “The Traveling Salesman Problem and Minimum Spanning

Trees,” Operations Research , 18 (6) ,  1138-1162 (1970).

77. Held , M. and Karp, R., “The Traveling Salesman Problem and Minimum Spanning

Trees: Part II,” Math. Prog., 1, 6—25 (1971).

78. Hem , D. W., “Network Aggregation in Transportation Planning , Par t I ,” Tech.

Report , Mathtech , Inc., Princeton , NJ (June 1977).

79. Hoang, H. H., “A Computational Approach to the Selection of An Optimal Net-

work ,” Man. Sci., 19, 488—498 (1973).

80. }loupt , P. K., and Athans , M ., “Dynamic Stochastic Control of Freeway Corridor
Systems: Volume I——Summary ,” Report ESL—R—608, Electronics Systems

Labo ra to ry ,  M. I .T .  (Aug . 1975) .

81. Johnson , D. S., Lenst r a , J. K. and Rinnooy Kan , A. H. G., “The Complexity

of the Network Design Problem ,” Mathematisch Centrum Amsterdam (1976).

82. Karp,  R . ,  “The P robabilist ic Analysis of Some Combinatorial Search Algorithms ,”

in Algorithms and Complexity: Recent Results and Directions, 1-19 ( J .  F.
Traub , ed.), Academic Press (1976).

83. Karzanov , A. V., “Determining the Maximal Flow in a Network by the Method of

P reflows ,” Soviet Math. Doki. , 15, 434—437 (1974).

84. Kenningt on , J . ,  “Mul t i—co mmodity Flows : A Survey of Linear Models and Solution

Tech n iques ,” for thcoming in Operations Research.
85. Kennington , J. L . ,  “Solving Multicominodity Transportat ion Problems Using A

Pr imal Pa r t i t ioning Simp lex Tech n ique ,” Report CP 75013 , Dept.  of m d .

Eng . and Oper. Res., Southern Methodist Univ. (revised Hay 1976).

86. Kennington , J. L. and Shalaby , M . ,  “An E f f e c t i v e  Subgradient Procedure for

Minimal Cost Multicominodity Flow Problems ,” I4anageJnent Science, 23,

994—1004 (1977).

87. Kershenbaum , A., Hsieh, W., and Golden , B., “Constrained Routing in Large

Sparse Networks ,” Conference Records of 1976 IEEE Intern. Conference on

Communications, 38.14—38.18, Philadelphia , June 14—16 (1976).

88. Kirby, R. and Potts , R., “The Minimum Route Problem for Networks with Turn

Penalties and Prohibitions,” Trans. Res., 3, 397—408 (1969).

89. Klingman, D., Dial , R., Clover , F., and Karney, D., “Solving Large Scale
Shortest Path Problems ,” TIMS/ORSA Bulletin , 147 (May 1977).

90. Kuehn, A. A. and Hamburger , H. J., “A Heuristic Program for Locating Ware-

houses ,” Man. Sci., 9 , 643—666 (1963).

- ~~~~~~~ —-———~~~~— - —- —- - -—-— -- - — —



—53—

91. Kuhn, H., “Network Aggregation in Transportation Planning, Part II,” Tech.

Report, Mathr.ech, Inc., Princeton, NJ (June 1977).

92. Kuhn, H. W. and Cullum , D. E., “Aggregation in Network Models for Transporta-

tion Planning,” Tech. Report, Mathtech, Princeton, NJ (1976).

93. Leblanc, L., “An Algorithm for the Discrete Network Design Problem,” Trans.

Sci., 9 , 183—187 (1975) .

94. Magnanti, T., “Optimization for Sparse Systems,” in Sparse Matrix Computations

(J. R. Bunch and D. J. Rose, eds.), Academic Press, New York , 147—176 (1976).

95. Magnanti, T., Shapiro, J., and Wagner , M., “Generalized Linear Programming
Solves the Dual,” Management Science, 22 , 1195—1203 (1976) .

96. Magnanti, T. L. and Wong, R. T., “Accelerating Benders Decomposition for

Network Design,” Discussion Paper, Center for Operations Research and

Econometrics , Catholique Univ . de Louvain, Belgium (1978).

97. Mulvey , J., “Testing of a Large—Scale Network Optimization Program , Harvard

Working Paper HBS 75—38 (1975), submitted to Math. Prog.

98. Nemhauser, G., “A Generalized Permanent Label Setting Algorithm for the

Shortest Path Between Specified Nodes,” J. of Math. Anal. and Appl., 38 ,

328—334 (1972).

99. Nguyen, S., “A Mathematical Programming Approach to Equilibrium Methods of

Traffic Assignment with Fixed Demands,” Pubi. #138, Dept. Informatique ,

Univ . of Montreal (1973).

100. Nguyen, S., “Procedures for Equilibrium Traffic Assignment with Elastic

Demand,” Publication 39, Centre de Recherche sur les Transports, Univ.

of Montreal (revised March 1977).

101. Nguyen, S., “On the Estimation of An OD Trip Matrix by the Equilibrium

Methods Using Pseudo Delay Functions ,” Unpublished Report, Centre de

Recherche sur les Transports, Univ. of Montreal (1977).
102. Nguyen, S., “Estimating an OD Matrix from Network Data: A Network Equilibrium

Approach ,” Publication #60, Centre de Recherche sur les Transports , Univ .

of Montreal (Feb. 1977).

103. Orloff, C., “Routing a Fleet of H Vehicles to/from a Central Facility,” 
V

Networks, 4 (2) , 147—162 (1974)

104. Pape , U., “Implementation and Efficiency of Moore—Alg orithms for the Shortest

Route Problem ,” Math. Prog., 7, 212—222 (1974).

_ _ _ _  - -~~ -- -V-~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -- V - - --_ _



54

105. Potts, R. and Oliver , R., Flows in Transportation Networks , Academic Press ,

New York (1972).

106. Rosenkrantz, D., Stearns, R., and Lewis, P., “Approximate Algorithms for the
Traveling Salesperson Problem ,” Proc. of the 15th Annual IEEE Symposium

On Switching and Automata Theory , 33—42 (1974).

107. Rosenthal, R. W ., “The Network Equilibrium Problem in Integers ,” Networks , 3,
53—59 (1973).

108. Rosenthal , R. W ., “Congestion Tolls: Equilibrium and Optimality,” Economic

Discussion Paper #94, Bell Laboratories (April 1977).

109. Russell , R., “An Effective Heuristic for the M—tour Traveling Salesman Problem

with Some Side Conditions ,” Operations Research , 25 (3), 517—524 (1977).

110. Salzborn , F. J. N., “Timetables for a Suburban Rail Transit System ,” Trans. Sci.,

3, 297—316 (1969).

111. Scott , A. J., “The Optimal Network Problem: Some Computational Procedures ,”

Trans. Sci., 3, 20 1—210 (1969).

112. Scott , A., Combinatorial Programming, Spatia l Analysis and Planning , Methuen ,

London (1971).

113. Shapiro , J . ,  “Shortest  Route  Methods for  Finite State Spac e Dete rm in istic

Dynamic Programming Problems ,” STA1~! J. on Applied Math. , 16, 1232—1250

(1968).

114. Shier , D . ,  “Computational Experience with an Algorithm for Finding the K

Shortest Paths in a Network,” J. of Research of NBS, 78B, 139—165 (1974).

115. Shier, D., “Iterative Methods for Determining the K Shortest Paths in a

Network ,” Networks, 6, 205—230 (1976)

116. Simpson , R., “Scheduling and Routing Models for Airline Systems,” M.I.T.

Flight Transportation Laboratory Report , December (1969).

117. Stairs , S., “Selecting a Traffic Network ,” J ourna l of Transport Economics
and Policy , 2, 218—231 (1968).

118. Steenbrink , P . ,  Optimization of Transport Networks , Wiley , London (1974).

119. Stewart , W ., “The Delivery Truck Routing Problem with Stochastic Demands,”

Management Science/Statistics Working Paper , MS/S 76—005, University of

Maryland at College Park (1976). V

120. Swoveland , C., “Decomposition Algorithms for the Multicommodity Distribution

Problem , Work ing Paper #184 , Western Man. Sd . Inst., UCLA (Oct. 1971).

121. Turner , W., Ghare , P., and Fourds , L., “Transportation Routing Problem——A
Survey ,” AXlE’ Transactions , 6 (4) ,  288—301 ( 1974) .

— 
—-- V - — - - -

~~~ 
.—

~~~~~ 
__—,______ - -- .—

~
7.r • - - -  — - -



-55-

122. Wardrop, J. G., “Some Theoretical Aspects of Road Traffic Research ,” Proc.

Inst. Civil Engineers, Part II, 1, 325—378 (1952) .

123. Weintraub, A., “Optimal Flows in Networks and Games: The Multicommodity Flow

Problem in Integers ,” Publication 76/21/C, Dept. of m d .  Eng., Univ. of
Cnile (Oct. 1976).

124. White, W. W. and Boinberault , A. H., “A Network Algorithm for Empty Freight

Car Allocation,” IBM Systems Journal, 9 (2) , 147—169 (1969).

125. Wong, R. T., “A Survey of Network Design Problems,” Working Paper OR 053—76,
Operations Research Center , M.I.T. (May 1976).

126. Zadeh, N., “More Pathological Examples for Network Flow Problems,” Math. Prog.,

5, 217—224 (1973).

127. Zadeh , N., “A Bad Network Problem for the Simplex Method and Other Minimum Cost

Flow Algorithms ,” Math. Prog., 5, 255—266 (1973). 

~_ V_~
_ —


