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I.

INTRODUCTION

During the past 3 years a large number of reactions have

been studied at several labcratories as possible candidates

for electronic transition chemical lasers. At present only

two or three reaction systems appear to provide the high

photon yields, the desired specificity of excitation of

product states, and reaction products of suitably long

radiative lifetimes. For this reason we have chosen to

*
study the Y + Cl2 + YC1l + Cl atom-exchange reaction and a

second reaction system which leads to chemically formed

%*
(PO)2 excimer molecules. Sections II and III of this report

summarize the present status of studies of the yttrium

chloride (YCl) molecular system; Section IV discusses work

%*
on a potentially efficient chemically pumped (PO)Z excimer

system. This report is intended to summarize progress made

under AFOSR Grant 73-2550 for the period June 15, 1974

through March 31, 1977. Research on these reaction systems

is being continued under AFOSR Grant 77-3358.
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II. SHOCK TUBE STUDIES OF THE Y + Cl2 =+ YCl* + Cl REACTION

k Tables I and II summarize some recent photon yield
measurements for several reactions which produce diatomic

% metal oxide or metal halide reaction products. Most of the
1 reactions for which data are available, both at high and low
pressures, exhibit a low photon yield at low pressure (ca,

T Torr) and a high yield at high pressures (ca. 1 Torr).
In some cases the photon yields are remarkably high (e.g.,
SmF and SnO), exceeding 50% at high pressures. 1In general,
these reactions do not produce a high degree of specificity
of excitation either at low or high pressures. The chemi-
luminescence from Sm + 03, illustrated in Figure 1, indicates

the typically broad featureless emission observed for many

of the reactions investigated to date. These reactions include ‘

=2
37 and N02.

Spectra observed at high pressures are very similar to the low

3 Sm, Eu, and Yb with oxidizers Clz, F2’ N20, (o}

pressure spectra for these systems.

The most extensively studied reactions to date are the

Ba + O3 + Bao + O2 and Ba + N20 + BaO + N2 reactions. These
reactions give similar spectra. At high pressures the emission ;

is dominated by A12+ > xlz+ bands which are responsible for ﬁ

the high photon yields of Table II. Careful studies by
several groups, Field, et al.,3 Palmer, et al.,4 and Eckstrom,

et al.,5 have established that the A12+ - X12+ emission re-

sults from energy transfer from one or more precursor states.
The Bao(a3n) state and high vibrational levels of the Ba0(xlz+)
state have been suggested as such possible primary reservoir

states for the energy release of chemical reaction.
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TABLE I
SUMMARY OF SOME RECENT (%) PHOTON YIELD MEASUREMENTS

UNDER SINGLE COLLISION CONDITIONS (ca. 10-4 Torr)

Metal Oxidizers
N,0 NO, o F, =
Ba osb. g ob =0 i
Eu 0,2%  0.007% 9.3%  09.9® =
sc -~ ~-- -- 210¢ -
sm 850 0.07% 0.9° 11.9%Y
Y = = o o >5¢

-—— - ——— - —— -

a
C.R. Dickson and R.N. Zare, Chem. Phys. 7, 361 (1975).

bC.R. Dickson, S.M. George, and R.N. Zare, J.

Chem. Phys. 67, 1524 (1977).

c
J.L. Gole, Electronic Transition Lasers II, L.E. Wilson,

S.N. Suchard, and J.I. Steinfeld, Editors, Proceedings of
the Third Summer Colloquim on Electronic Transition Lasers,
Snowmass-in-Aspen, Colorado, Sept. 1976. (MIT Press, 1977)
PP. 136-165.
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TABLE II

SUMMARY OF SOME RECENT (%). PHOTON YIELD MEASUREMENTS

AT HIGH PRESSURES (ca. 1 Torr)

Metals Oxidizers
N,0 No, g B, P, cl,
Ba 252 e 36" g2 a.4° 502 0.6°
ca e o e sl e P o
Eu 7 52 2.55 2.5° o TP
b b b b =3P
Ge 6.15° 0.05 - 0.2 0.07 o 10
Mg d s et i 5,025 oa -
Sm 382 - g2 92 642 702 i
3. . a a -29
Sn §.7%80%) e s 0.08 0.3 - <10
Sr - - - - ' T e

aD.J. Eckstrom, S.A. Edelstein, D.L. Huestis, B.E. Perry, and S.W.

bpenson, J. Chem. Phys. 63, 3828 (1975).
G.A. Capelle and J.M. Brom, Jr., J. Chem. Phys. 63, 5168 (1974).

o

®0.J. Eckstrom, S.A. Edelstein, and S.W. Benson, J. Chem. Phys. 60
2930 (1974). f
dG.A. Capelle and C. Linton, J. Chem. Phys. 65, 5361 (1976).

®W. Felder and A. Fontijn, Chem. Phys. Lett. 34, 398 (1975).
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The several reactions of Tables I and II which exhibit
a strongly pressure-dependent photon yield apparently conform
to a simple mechanistic explanation.l A large fraction of
the energy release of reaction is divided in a nearly satis-
tical fashion among the various accessible internal product
states. These states include high vibrational states of the
ground electronic state and somewhat lower vibrational states
of several electronically excited states. Communication between
these electronic and vibrational states is maintained by rapid
collisional processes. At low pressures the primary contri-
butions to the photon yield come from directly excited states
with relatively short radiative lifetimes. At higher pressures
electronic states of long radiative lifetimes and high vibra-
tional levels of the ground state are coupled to one or more
electronic states of short radiative lifetimes to provide an
efficient path for radiation as a major energy loss mechanism.

In contrast to all other reactions studied to date, the
reactions forming ScF and YCl have a high degree of specifi-
city and high photon yields under single collision conditions.

chi for

Chemiluminescent spectra observed by Gole, et al.,
*
the Y + Cl2 + YCl1 + Cl reaction are shown in Figure 2.
*
The narrow emission feature near 3950 R from YCl is thought

lz+

to arise from transitions from a 32* upper state to the X
ground state. Although very little is presently known con-
cerning electronic states in YCl, the low-lying electronic

energy levels for ScF should be similar; these are indicated

in Figure 3. Fairly complete spectroscopic analysis of the

singlet bands Eln > xlz*, C12+, and Blw s xlz+

. 8
exists.
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The “I* + X“I' transition near 350 R observed by Gole, et al.,6’7

may be the band previously observed at 3360 ® in a neon matrix
at 4°K.9 The molecular orbitals to which the two 4s electrons
in the Sc atom are promoted are given for several of the
excited states of ScF in Figure 3. At present the only
measured radiative lifetime for ScF bands is that of the

Eln = XlZ+ band which is approximately 1.1 x 10-4 sec.8 The

: - 1. .
lifetime for the ClZ+ =+ X'Z+ band is probably shorter, on the

order of 10™° sec. As illustrated in Figure 3, low-lying
molecular orbits of ScF are similar in character to corres-
ponding atomic orbitals in Sc.10 Transitions between electronic
states in ScF may be thought of as essentially two-electron
transitions between atomic orbitals in Sc. Such transitions

are of sd -~ ss, dd » ss, dd » sd, for sd » sd character, and
would not be expected to have large transition probabilities.

It seems likely that most of the transitions in the singlet

and triplet manifolds of ScF have radiative lifetimes of

* %o 102 smconds.

the order of 10~
These considerations suggest that the reaction of Figure 2
has the desired specificity and leads to reaction product
states of long radiative lifetimes. A third desirable char-
acteristic of these reactions, a high photon yield, has been
confirmed in recent studies of Gole and co-workers.7 Their
measurements indicate a photon yield of 4.8%, under single
collision conditions, for the 3500 R 32+ - xlz+ band of

*
ScF and a comparable photon yield for the corresponding

band of Ycl* at 3950 R. Even though, at present, nothing is




known concerning the collisional quenching of 5cF* and YCl*,
these molecules appear to be favorable candidates for '
electronic transition chemical lasers.

Figure 4 schematically illustrates the experimental
apparatus we employ for studies of the reactions Sc + F, =+

2
* *
ScF + P and Y + Cl2 + YC1 + Cl. A heated section of the
shock tube permits vaporization of either ScCl3 or YCl3 in
The presence of an argon diluent. The heated gases are

initially confined between thin metal diaphragms which are

ruptured by the passage of the shock wave. Shock wave heating

accomplishes dissociation of the ScCl3 or YCl3 before the
gases are accelerated through a supersonic nozzle array.
This primary flow is then mixed with a secondary flow of
either F2 or C12 through slots at the trailing edge of each
nozzle blade. The desired reactions are initiated in the
supersonic mixing zone immediately downstream of the nozzle
array. The pressures and temperatures in this zone are
typically about 5-20 Torr and 800—1200°K, respectively.
Figures 5 and 6 present chemiluminescence spectra for
the Y + Cl2 o YCl* + Cl reaction observed over the wave-
length interval 3700-6700 R. The spectra are uncorrected
for film response characteristics. Predcminant features 6f
the spectra are the intense bands at 3980 and 3585 ® which
are believed to correspond to the emission peak recorded
by Gole et al., near 3950°: 8 shown in Figure 2. The data of

Gole, et al, were taken under single collision conditions .

éé b;éssures of about 10-4 Torr. In contrast the data of

Figures 5 and 6 were obtained at a pressure of about 10 Torr.
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The complex band sequences at longer wavelengths have yet to
be analyzed, but are believed to be both singlet-singlet
and triplet-triplet bands of YCl. Figure 6 indicates a set
of bands near 4300 & which may be 3n > 3A or;3A - 3A bands.
To our knowledge none of the bands of Figures 5 and 6 have
been previously observed.

It seems likely that direct chemical formation of the
3Z+ state as suggested by Gole, et al., is a precursor

to the appearance of the longer wavelength bands we observe at ;

high pressure. These additional bands may be excited by energy
transfer processes originating from the 3Z+ state. If this
situation in fact exists the prospect for population inversions
among several states situated below the 3Z+ state appear to
be good.

Additional experiments are currently underway with the
shock tube apparatus of Figure 4. Attempts are in progress
to observe laser action in the near infrared part of the
spectrum. An optical cavity consisting of hole-~coupled
gold-coated mirrors oriented transversely to the flow direction
is used. A Ge-Cu high speed infrared detector with spectral
sensitivity from about 1~25 microns is employed to detect
laser output.

Potential laser transitions include triplet-triplet,
singlet-singlet, and triplet-singlet transitions at wave-

lengths beyond 1 u and vibration-rotation transitions for

the ground electronic state near 25 microns.
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ITI. LASER INDUCED FLUORESCENCE STUDIES OF YCl

Much additional information is needed to evaluate the
potential of YCl as a chemical laser molecule. Spectral
analysis of only one band system of YCl is currently avail-
able8 and molecular constents have only been determined for
the ground state and one electronically excited state. As many
as 6 additional excited states may be identified from complete
analysis of the spectra presented in Figures 5 and 6. The
energies and identities of these states need to be determined.
Moreover, radiative lifetimes and collisional quenching data
are necessary for these several states.

The question of how energy is coupled by collisional
processes from the nascert chemically pumped states to other
radiating states must be answered before estimates of laser
performance can be made.

In an effort to determine the molecular properties of
excited electronic states in YCl we have designed and con-
structed apparatus shown schematically in Figures 7 and 8.

A tungsten crucible located within a graphite furnace is
heated to a temperature of 2200°K to provide an effusive
flow of yttrium vapor. Molecular chlorine is injected into
the primary metal atom flow by means of a water cooled
injector located 3 cm downstream from the effusive orifice.
Pressures within the mixing and reaction zone cari be varied
from 10”° to 10™% Torr.

A pulsed tunable dye laser pumped by a 200 kW nitrogen

laser at 10 Hz is used for excitation of molecular bands in
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chemically formed YCl. Laser energies of about 10-20 uJ

are available with use of various dyes covering the wave-

length region from 4000-6000 ®. The dye laser is a conventional
design with grating and telescope capable of 0.4 ® band-

width in this spectral range.

The laser intensity and fluorescence signal are
monitored with PM tubes. The PM tube signals are few into
a dual channel boxcar integrator.

At present the apparatus is not completely operational
because of some difficulties we encountered with the oven
flow éystem. When modifications are completed we plan to
make several types of measurements. The dye laser will be
progressively tuned from 3800 to 6000 ® and excitation spectra
from YCl recorded. The high resolution and reproducibility
afforded with this method should permit identification of
many of the YCl molecular bands (Figs. 5 and 6) observed in
the shock tube studies.

Radiative lifetimes will be determined for selected
molecular bands with measurements of the fluorescence decay
times at low reaction zone pressures. Additional fluores-
cence decay measurements will be made as a function of the
pressure of several additive gases to determine collisional
quenching cross sections for YCl states of laser interest.

In some cases it may also be possible to measure energy
transfer rates between states. An example of great interest

would be a determination of energy transfer rates from the

upper states of the 3980 to 3995 % bands of Figure 5 to other

?




=

lower-lying states. The tunable dye laser affords the
possibility of selective excitation of the 3980 and 3995 1
bands. A search will be made for fluorescence from other
bands at longer wavelengths as the pressure of the reaction
zone is progressively increased. Measurements of energy
transfer rates will require observations of the decay times
of the 3980 and 3995 ] fluorescence and fluorescence rise

and decay times for the longer wavelength secondary fluores-

cences.




=10~

IV. AN IDEAL REACTION MECHANISM FOR AN EFFICIENT VISIBLE

CHEMICAL LASER

The remarkably high photon yields observed for several
of the reactions of Table II hold much promise for efficient
chemical laser operation. These reactions demonstrate that
radiant energy can be efficiently obtained from chemical reac-
tions even when the released energy initially resides among
nonradiating states. What is needed is a kinetic mechanism
which acts to ensure that this radiant energy is emitted from
the upper state of an inverted population.

An ideal mechanism of this type is illustrated in
Figure 9. Given a chemically produced metastable atom or
molecule A*, suppose that an association reaction A* + BC -~
(ABC)* can occur to form an electronically excited excimer
molecule (ABC)*. If radiative transitions to a repulsive
energy hypersurface account for the major source of decompo-
sition of the excimer, then efficient laser action may be
possible analogous to that of the recently developed rare
gas-halide ultraviolet lasers.

An example of such a system which we are currently inves-

tigating consists of the reaction steps
p(*s) + nyoxtzh) » po(tm) + wyxlsh) (1)

4 2 =
PO('m) + PO(X"m) ~ (PO)2 (2)

(PO)Z* + hv + PO(X%m) + PO(X%m) (3)
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Reaction (1) is expected to lead to the efficient production
of the metastable PO(4ﬂ) state illustrated in Figure 10.
Precursor reactions of importance in the PH3/N20 system are
listed in Table III. Studies of the chemiluminescence
resulting from the discharge initiation of chemical reactions
in mixtures of PH3 and Nzo.have revealed a strong continuous
emission extending from about 3200 R to beyond 2 p with a
broad maximum near 7500 8. Chemiluminescence spectra are
presented in Figures 11-13. The spectra of Figures 11 and 12
are uncorrected for film response. This emission is believed
to arise from the (PO)Z* excimer emission of process (3),
as indicated schematically in Figure 1l4. To data attempts
to achieve laser emission from this system have been incon-
clusive, although photon yields for wavelengths from 3200 R
to 2 p have been found to exceed 10"3 under favorable con-
ditions.

A flashlamp pumped dye laser has been used to measure
the intracavity absorption spectra associated with the PH3/N20
emission over the wavelength range from 5000-6500 . Typical
pulse shapes for the dye laser and excimer emission are
given in Figure 15. Very little absorption occurs when the
two profiles coincide as is the case in Figure 15. A strong
molecular absorption is observable, however, when the dye laser
is delayed with respect to the excimer emission.

Strong evidence in favor of the excimer hypothesis is

given in Figure 1l6. Here the peak spontaneous emission in-

tensity determined from emission profiles similar to the
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Figure 10: Low-lying Potential
Energy Curves for PO Adapted from
R.D. Verma, M.N. Dixit, S.S. Jois,
S. Nagaraj, and S.R. Singhal, Can.
J. Phys. 49, 3180 (1971).
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lower trace of Figure 15 is plotted as a function of initial
total reagent pressure. For pressures above about 20 Torr
the temporal profile remaims constant in duration, but the
peak intensity varies approximately as the square of the
pressure up to pressures of one atmosphere. Our cell is
not designed for operation at higher pressures, but it is
clear that quenching processes do not become dominant for
pressures below one atmosphere.

Additional work on this interesting reaction system will
be continued in an attempt to positively identify the

emitter responsible for the strong radiation we observe.
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