|~ AD=A0S0 577 STANFORD UNIV CALIF STANFORD ELECTRONICS LABS F/6 972 o
EMMY/360 FUNCTIONAL CHARACTERISTICS.(U) ‘
JUN 76 W A WALLACH DAAG=29-T76-6-0001
UNCLASSIFIED SU=SEL T6-024 ARO=12958,10-M

NL

END

DATE

FILMED
4 =78

|

SEL-76-024

EMMY/ 360 Functional Charocteristics

-

AD A650577

by
Walter A. Wallach

o

June 1976

LE COPY

'
)

Technical Report No. 114

S

T

AD No..
n

The work described herein was
supported in part by the Army
Research Office-Durham under
Grant DAAG-29-76-G-000I.

DIGITAL SVSTEMS LABORATORY
STANFORD ELECTRONICS LABORATORIES

STRANFORD UNIVERSITY - STANFORD, CALIFORNIA

Wv‘d for public release;
: Distribution Unlimited

— '
-y
- £

(Z SU-SEL 76-924,

DSL-TR-114

PRVSREA S

<Z;lE"MY/360 FUNCTIONAL CHARACTERISTIC{&]
—— % <

.

]
/

15 VD MG =29-76-6- 284

by
@ﬁl ter A./Nallaﬂ ‘Wl

DIGITAL SYSTEMS LABORATORY

Stanford Electronics Laboratories

; Stanford University
Stanford, CA 94305

The work described herein was supported in part by the Army Research Office-
Durham under Grant DAAG-29-76-G-0001.

Approved for Public release;
_ 332 400 ToR Soeion Dulaiec ‘L
AT-, ;_‘M&;AA s ¢ g —..:T N R T . ik p

Digital Systems Laboratory

Stanford Electronics Laboratories

Technical Report No. 114

June 1976
ACCESSION for
NTIS White Section
i boc Buff Section [J
UNANNOUNCED O
EMMY/360 FUNCTIONAL CHARACTERISTICS JUSTIFICATION
by
BY _ RS AL et
Walter A. Wallach DNSTRIBUTION/AVAILABILITY CODES
(Dist. AVAIL. and,or SPEGIAL |
Abstract

An emulation of the IBM System/360 architecture is presented-
the EMMY/360. Problem state code which executes correctly on an
IBM 360 will also execute correctly on the EMMY/360. Code
producing execution exceptions will, in most cases, produce the
same results on the two systems. Certain exceptions occurring on
IBM 360 cannot occur on the EMMY /360, such as address
specification exceptions for main store operands, and certain
precise interrupts on IBM 360 will be imprecise on the EMMY/360,
such as address exceptions. The EMMY/360 supports the Standard
360 instruction set with single precision floating point. The 360
input/output structure is not supported; I/O on the EMMY system is
: done by Function Call instruction, rather than channel program and
Start-Test I/0.

The work herein was supported in part by the Army Research
Office-Durham under grant DAAG-29-76-G-0001.

— ——
iy

L 1.0 Introduction

The EMMY/360 is a class B [5] emulator for the IBM System/360
architecture [2] written for the Stanford EMMY [3]. The current
version supports the basic 360 instruction set (problem-state)
with single precision floating point. The 360 input/output
structure is not supported.

The EMMY/360 is intended to run the Stanford PL360 system
developed by Wirth [9]. This system provides a single job monitor
environment for the execution of PL360 programs. A 360 object
text loader will be added to allow the execution of standard 1IBM
problem state code, such as Fortran object, for the purpose of
architectural evaluation.

The basic configuration of the EMMY/360 consists of the EMMY
CPU [3] and the Datapoint 2200 terminal [l]), which is used as a
low speed I/0 channel and diagnostic console. The Datapoint
provides two 2400 baud cassette drives and access to a
printer-keyboard, CRT-keyboard, paper tape reader-punch, and
communications adapter.

System expansion plans call for the addition of a DEC PDP-11

iibus system [7] to support mass storage facilities, higher
speed unit record equipment, and a more powerful
channel/diagnostic console.

i
4

il

» e

- — s e e w——

e

B -

e

———————

2.0 Compatability to IBM 360

The EMMY/360 maintains compatability with the IBM System/360
in problem state for the 360 basic instruction set. "Correct"”
code wiil produce the same results on both systems. Most
exceptional conditions are handled the same in the emulator as in
IBM 360. The differences will be discussed.

2.1 Pocessor State and the PSW

The emulator maintains a 64 bit PSW (decoded internally),
which is returned to the progam in 360 basic control format at the
appropriate main store address upon interruption (see [2]).

The emulator progam consists of 3 phases- operation decode
(DECODE) , operation execution (EXEC), and channel emulation (I/0).
DECODE and EXEC proceed sequentially until an I/O operation or
interruption is requested. The emulator then enters channel mode
to service the transfer. In the case of an I/0 request, the
operands of the I/0 instruction are checked, and a request to the
channel processor (either the Datapoint or the PDP-11) is
formatted. The channel processor then performs the transfer while
the emulator returns control to the 360 program.

Channel completion or error is signalled by a hardware
interrupt of the EMMY CPU. The channel emulator determines if the
interrupt is allowed, and, if so, causes a trap to be taken to the
PSW swap code the next time DECODE is entered. This insures the
current 360 instruction will complete before the interrupt is
serviced. If the interrupt is not allowed (masked out in the
current PSW), the channel completion information is stored and,
the next time the channel is accessed, a channel status word is
returned to the program. The I/O request is not initiated in this
case.

2.2 Addressing
2.2.1 Address Boundary Alignment

System 360 normally requires that operands be aligned on
certain address boundaries. Full word (32 bit) operands must
reside on byte addresses divisible by 4, and so forth. This
restriction has been removed in the EMMY/360. All boundary
alignment, multi word fetching, and buffering is performed by the
EMMY main memory controller [4). A byte, halfword or word operand

e

i A ¢

———————

requested on an arbitrary byte address 1is always returned
correctly by the memory controller. Unaligned operand fetch or
store operations require two mainstore acceses; properly aligned
operands will be accessed about twice as fast as unaligned ones.

2.2.2 Addressing Exception

All 360 addresses are treated as 24 bit unsigned integer
values. No check is done as tc the 1legality of requested 360
addresses. When a non-existant byte of main store is addressed, a
Bus Timeout interrupt of the CPU will result (see [3]). This will
be passed on to the 360 program as an imprecise addressing
exception (ILC=0) if the request was made by the CPU. Note that,
since the CPU cannot clear the bus following a timeout, the
Datapoint or PDP-11 must clear the bus before the program can
continue. Otherwise, the system will halt.

2.2.3 Storage Protect

No storage protect feature is provided. Any
protection-related operation will result in an operation exception
interrupt. The key field of the PSW is ignored.

2.3 Optional Features

2.3.1 Decimal Feature

Decimal feature 1is not supported. Any decimal feature
instruction will result in an operation exception interruption.
Decimal feature will be supported at a later date.

2.3.2 Dynamic Address Translation

At present, dynamic address translation will not be provided.
In the future some form of virtual addressing will be supported.
The 360-370 scheme of segment and page tables in main store will
not be used, since this requires additional hardware such as CAM
buffers.

A scheme based on a translation table in control store and
paging control bits has been explored and will be implemented when
the mass storage system becomes operational [8].

-5

2.3.3 ASCII Mode

The EMMY/360 supports only EBCDIC mode (as in system/370).
The ASCII bit of the PSW is ignored. All zone and sign digits
generated are EBCDIC and all sign codes are assumed EBCDIC.

2.3.4 Floating Point

Only limited floating point support 1is provided. This
includes the 360 single precision instructions of the 360 Floating
Point Feature.

2.3.5 Interval Timer

An Interval Timer feature is included, which increments main
store location 50 (hex) by one in the 1least significant bit
position every 40,000 CPU cycles. When an overflow condition is
detected (in the timer update operation), an EXTERNAL interruption
of the program is generated with interrupt code X'80' (if not
masked by PSW bit 56). The timer may be loaded with any value and
read at any time. Resolution is 2.4 ms at 60ns internal cycle,
and 1.4 ms at 35ns internal cycle.

The timer may be used for event timing, time of day, or
internal cycle counting.

wlie

!
|
|
3
!
|
|

3.0 I/0 Support

3.1 Processor Support

The CMMY/360 does not support 360 channel program I/O. I1/0
requests are made by means of a Function Call instruction (OpCode

= B2).

Input Output Function Call

| B2

[i1 T b2 | az |

il I/0 operation requested
00 Read
02 Write
08 Rewind
09 Write Tape Mark
0A Foreward Space TM
0B Foreward Space Record
0cC Back Space TM
0D Back Space Record
b2,42 Unit Address

General Register 0 specifies Buffer Address
General Register 1 specifies Buffer Length

Condition Code

00 Operation Started

01 CSW Stored

10 Channel/Device Busy

11 Device Not Operational

Interrupt Action

Privileged Operation Exception

e .
d Se——

L P
——

sfo

AT

3.2 Program Support

The primary program support for the EMMY/360 1is the PL360
Monitor System. It consists of a single job monitor, 1I/0
routines, interrupt response and error recovery routines.

Progam level I/0 requests are made via Supervisor Call
instructions (SVC). Parameters are passed in General Registers 0,
1, and 2. The convention is as follows:

RO contains buffer address
R1 contains buffer length
R2 contains Unit address

Rl may be modified by the I1/0 routine if the requested buffer
length differs from the actual record read. The SVC routines map
logical unit requests into device requests via a device table and
code translation table, perform logical record buffering and code
translation (unit record devices), and data transfer between
system buffers and program buffers. Since the Monitor is a single
job system, the program is forced to wait wuntil the requested
record has been transferred to its buffer. The condition code
returned to the program reflects the outcome of the I/O operation
(see [9] for details of program level I/0).

The monitor performs all tasks related to physical device
access. The program merely issues an SVC instruction with the
proper code and parameters. The monitor retrieves the device type
and characteristics from the device table and issues the proper
I/0 Function Call. Note that, if the I/O request can be satisfied
by a system buffer, data is transferred between this buffer and
the user buffer and no I/0 Function will be issued.

T ——

4.0 Emulator Program Logic

The 360 emulator for the EMMY/360 consists of 3 states-
operation decode (DECODE), semantic execute (EXEC), and channel
emulator (I/0). Microstore is organized in essentially 7 regions:

Fmmmm e —————— +
360 Local Store 000 | | Local Store
0lF | |
fommmm e ———————— +
Special Functions 020 | | Special
OFF | |
tmmm +
DECODE 100 | | DECODE
12D | |
fmm e +
1/0 (Interrupt) 12E | | 1/0
154 | |
e +
Interrupt 155 | | INT
177 | |
tmmm +
EXEC Semantics 178 | | EXEC
57A | I
S +
57B | | unused
EFF | |
et +
Semantic Pointers FOO | | PTR
FFF e +

The regions are organized according to function into 5 seaments.
The low 36 words contain 360 1local storage; general purpose
registers, floating point registers, channel status registers,
PSW, and so forth. The next segment contains special code such as
IPL, PSW Restart, microcode to clear local and main storage. A
third segment is comprised of DECODE and EXEC code, along with
INT, the interrupt generating microcode. The fourth segment is
channel emulator (I/0), and the 1last contains the semantic
pointers.

4.1 Local Storage

The 360 architecture provides the programmer with 16 32-bit
general purpose registers and 4 64-bit floating point registers.

- -

——

These are stored in the low 20 words of microstore. The 360
architecture provides a 64 bit Progam Status Word which reflects
the state of the 360 following an interruption. This is stored in
microstore in decoded form. Part of the interrupt-generating code
formats this information into a 360 basic control PSW (as opposed
to extended control format used in the Model 67 and System/370
processors) . Status and device registers for external,
multiplexor and selector channel interrupt classes complete the
emulated local storage.

Only the general purpose and floating point registers are
available to the program. These may be referenced only explicitly
(not implicitly, as in PDP-11, where registers are also main store
locations). The decoded PSW and device registers are never
available to the program.

4.2 Main Storage

Since all status and register information 1is kept in
microstor2, the entire EMMY main storage system 1is available as
360 storage. The main memory controller maps all byte addresses
to the proper EMMY word addresses and performs the necessary
fetches. This relieves the emulator of the task of checking
boundary alignment and address translation. The wunaligned fetch
feature is available on some 360 models and all 370 models.

Since multiple fetches are required when operands are not
properly aligned, the most efficient wuse will be made of the
EMMY/360 processor by observing 360 alignment conventions.

4.3 Addressing

All local storage addresses are 4-bit addresses. General
purpose registers, used for data storage and address completion,
are mapped directly into the low 16 words of microstore. Floating
point register addresses are also 4-bit addresses and are mapped
into words 16 through 24 of microstore. All 1local storage
addresses must conform to 360 address restrictions (for example,
even/odd register pairs, double length register operands, and
floating point register addresses always being even) . A
specification exception will result from any improper 1local
storage address.

All main storage addresses are 24 bit unsigned values. No
checking is done as to validity of addresses, and no alignment
restrictions are enforced. 1Invalid addresses will result in a bus

——y,

S ——

timeout. The CPU will generate an imprecise (ILC=0) address
exception interrupt if the timeout resulted from a CPU initiated
operation and the bus is cleared by the control console processor
(either the Datapoint or the PDP-11l). Other wise the condition is
ignored by the CPU.

when timeout code 1is entered, the CPU will halt. The
processor which clears the bus must start the CPU, at which time
EMMY checks if the last bus operation was CPU initiated (if so,
the busy bit of 0Old Processor State Register will be 1). If the
busy bit was zero, processing resumes. Otherwise, a program
interrupt is taken with address exception specified. The ILC is
set to 0.

-k

——

PSP ——

5.0 Special Functions

The emulator provides certain special functions which
simplify some operations.

5.1 Diagnostic Logout

When an error occurs during the emulation, or when requested
by an external processor, a diagnostic logout is taken to 360 main
store. The current PSW is written out to main store location 0.
The 360 general registers and floating point registers are written
to mainstore locations 256 through 280. (100 through 15C hex).
Emulator status is written to locations 160 through 16B, and
device registers to locations 16C through 17F. Finally,
microstore is written out to main store locations C000 through
FFFF (the upper 4k words). The CPU then halts.

5.2 Restart

A restart facility is provided, where the PSW is loaded from
location 0 (Restart New PSW) and the registers restored from
locations 100 through 15F (hex). Devices redgisters are cleared to
zero (channel reset). Processing continues.

Logout/Restart facility is provided to allow processing to be
interrupted and resumed later. Errors can be corrected in the
microcode and the 360 program restarted.

5.3 Initial Program Load

Initial Program Load is accomplished by microcode. A record
is read from a device into mainstore (the microcode assumes that
the control console has accomplished this). The double word at
location zero becomes the new PSW and processing begins at the
location specified.

Special functions are provided to clear main store and 1local
store (registers) to zero. The processor halts following each of
these operations. Running the processor from here initiates the
IPL sequence.

ol O

F'_ 360 Fixed Storage Locations
Address Hex Address Length Function
0 0 8 Initial Program Load PSW -
Restart New PSW
8 8 16 unused
24 18 8 External 0ld PSW
32 20 8 Supervisor Call 0Old PSW
40 28 8 Program Old PSW
48 30 8 Machine Check 0l1d PSW
56 38 8 Input/Output 014 PSW
64 40 8 Channel Status Word
72 48 8 unused
80 50 4 Interval Timer
84 54 4 unused
88 58 8 External New PSW
96 60 8 Supervisor Call New PSW
104 68 8 Program New PSW
112 70 8 Machine Check New PSW
120 78 8 Input/Output New PSW
128 80 128 unused
256 100 96 Diagnostic Logout Area
256 100 64 General Registers (0-16)
320 160 12 CPU Status
332 16C 20 EXternal, Multiplexor, and
| Selector Channel Status,Device
f Registers.

oy 1y

o— iy —— . a

p— p————-
3 -

5.4 Invoking Special Functions

The special functions of the EMMY/360 processor can be
invoked by forcing a trap to the start of the proper microcoded
routine. The routine for invoking a trap from the maintainance
console will differ with the type of programming support. The
procedure outlined here applies to the Debug G program (binary
hardware diagnostic).

5.4.1 Initiating Microroutines from the Maintainance Console

Before performing any function involving altering the
microinstruction stream or processor registers, the machine must
be halted. Otherwise, results will be unpredictable.

Halt the processor from the display console by depressing the
HALT toggle switch, or type "HALT" on the Datapoint Keyboard.
When the procesor has halted, type 028<return>. The 028 must
appear under the hashmarks on the CRT. The console will now be
displaying the Special Function Trap Vector. The vector should be
zero in the high 20 bit positions. Type the address of the
desired special tunction in the low 12 bits of the display (in
binary at present). Terminate with <return>. Type T<return>.
This will issue an interrupt to the displayed address and the
processor will initiate the special function. If it is desired,
bit 15 of the displayed trap vector may be set to 1. This will
cause the processor to halt before beginning the invoked function.

Special Function Adé- sses

Microstore Symbolic Name Function
Address
076 SCLEARLS Clear local storage
072 SCLEARMS Clear main storage
OSF $DUMP Dump microstore to mainstore
(high 4K words)
06E S$IPL Initial Program Load
050 $LOGOT Diagnostic Logout and $DUMP
064 SRESTART Reset local store and PSW restar

-12-

6.0 Emulator Status and Instruction Interpretation
6.1 The Program Status Word

The 360 PSW is parsed and stored in decoded form. Since the
PSW is accessible only through explicit reference, the PSW may be
stored in a form convenient for the emulation.

When referenced, only the parts needed are assembled to 360
format. These references include conditional branching, branch
and link, and interrupt generation.

The 64-bit PSW 1is stored as recieved in Local Storage.
Fields which are infrequently accessed remain stored in 360
format. These fields include System Mask (bits 63:56), Wait and
Problem State (bits 49:48), and the Program Mask (bits 27:24), The
Key field (bits 55:52) is ignored. The Interrupt Code field (bits
47:32) is cleared to zero prior to storage.

The Instruction Length Code as specified in the PSW is
ignored. Each instruction cycle, a new ILC is obtained from the
Semantic Pointer. The Condition Code is left justified and stored
in Local Storage. During instructions which modify the 360
condition code, the micromachine control register, or a register
with the required condition code in the high two bits, 1is stored
in control store. The condition code is left justified, since the
host MAR contains encoded CCODES in these bit positions. This
minimizes taraet machine condition code modification overhead.

The next instruction address (NIA, PSW<23:0>) is placed in a
host register (PC, register 1), concatenated on the left with an
MMC byte specifying 4 byte transfer on a byte address (X'30').
All 24 bits of NIA are saved and used. No checking is done as to
,validity of the address, no boundary alignment restrictions are
enforced, and no checking is done as to overflow into the MMC
field of the PC upon incrementing of the NIA.

6.2 Interpretation Loop

Phases DECODE and EXEC comprise what 1is known as the
interpretation loop of the emulation. DECODE and EXEC proceed
until an interruption is generated (through external action or as
the result of an exception or SVC instruction).

13-

:+

(CExec —»{ INTERRUPT |

Interpretation Loorv Channel Cmulator and
Interrurt

6.2.1 Decode

Target instructions ar: Jccoded 2y a two level precess. The
Instruction Length Indicat '« (tiigh 2 bits ¢f the operation code)
is used to select the prop 'r !armat d-c~<1~ routine, and the entire
operation code is wused tu select & Semantic Pointer to the
execution semantic code.

Host Register Assignments

Name Register Purpose

MAR RO Micro Status Register

PC R1 Target Program Counter

XR R2 Scratch

IR R3 Taraet Instruction Register

P R4 holds Target 12 specification
Q RS holds Target Operand 2 address
R R6 holds Target Rl specification
S R7 holds Serantic Pointer

“14-

B

T S

Upon entry to the decode routine, the XR (host register 2) is
assumed cleared to all ones and the IR (host register 3) contains
the next instruction to be interpreted. These registers are set
by the previous execution routine. No checking is done as to the
validity of these registers.

Interrupts are enabled by the first instruction of DECODE
(during the execute phase, hard interrupts are disabled). An
interrupt of the CPU by an external device causes this instruction
to be replaced by a trap instruction to the proper interrupt
ageneration code. In this way, it is ensured that the currently
executing instruction will complete before the interrupt is taken.

The high 2 bits of the IR are shifted into the XR. This puts
a negative number in the XR (-1 for SS instructions, -2 for SI
instructions, -3 for RX instructions and -4 for RR instructions).
This value is called the Format Index.

The rest of the operation code is then shifted into the XK,
leaving the opcode right justified and one filled in XR, and the
remaining bits of the instruction left justified in the IR.

The XR is used to address control store and select one of 256
semantic pointers from the high-order 256 words of control store.

Subtracting the format index from the MAR causes a branch
foreward of 1, 2, 3, or 4 words beyond the current value of the
MAR. (For SS, SI, RX, and RR formats respectively). The SS, SI,
and RX decode routines are entered via a branch table of 3
consecutive words, while the RR decode lies in-line following the
branch table. The various format decode routines complete parsing
of the instruction and interpretation of the fields as outlined in
the Principles of Operation for the System/360 (reference 2).
Effective addresses are calculated where necessary.

The parsed instruction is passed to the execute semantic
routine in predefined registers. The values contained in various
registers are determined by the particular operation. The PC
(next instruction address) is updated in some cases by the decode
routine, and in others must be done by the semantic routine.

RR R-register (host R6) contains Rl specification (right
justified, zero filled.
XR contains Rl specification
IR contains R2 specification (left justified)

=18«

TR

RX

SI,RS

6.2.2

Semantic code must parse R2 specification and update the PC
(increment by 2).

R contains the R1 specification

Q (host RS5) contains the operand 2 storage address as a 24
bit value. Bits 31:24 are unpredictable.

S (host R7) contains the Semantic Pointer, with MMC in bits
31:24.

The semantic ccde must update the PC (increment by 4).

R contains Rl specification (instruction bits 23:20)

P (host R4) contains the I1 specification (instruction bits
23:16)

C contains the 24 bit ornerand 2 storage address

S contains the semantic pointer

The PC is updated by the decode routine, and should not be
modified.

R contains the length specification(s) (instruction bits
23:16)

IR contains operand 1 address (24 bits, the high 8 bits are
unpredictable)

Q contains operand 2 storage address.
S contains the semantic pointer

The PC is updated by the decode routine and should not be
modified.

The Semantic Pointer

The upper 256 words of control store contain a table of

semantic pointers - one for each possible 360 operation code.
Cach semantic pointer contains information which controls the
interpretation of a particular instruction.

=lfe

—— est———— ——

Semantic Pointer

| wmmMC 1cc | Frags | H 00 0] ECoTRY]

31 24 23 22 21 16 15 12..11 0
MMC ~ memory controller command byte (storage operations only)
ILC - actual Instruction Length Code for this operation
FLAGS -~ operation dependent flags initially ones

H - halt indicator - normally zero, 1 indicates
"halt when semantic code entered".

reserved - must be zeros

ENTRY - address of the semantic code for this operation

6.2.3 Execution Semantics

The execution semantic code performs the required target
operation and sets up the registers for the next decode. Setup
requires the prefetch of the next instruction and clearing of XR
to ones.

The majority of 360 operation codes are invalid and generate
Operation Exception interruptions. Three operation exception
semantics are included. One each for RR and RX, where the PC must
be updated before the interruption can be formatted. A third is
provided for the SI and SS classes of instructions, where the
interrupt may be formatted immediately.

Details of each semantic routine are not included.
6.3 Interruptions of the 360 Program

Interrupts of the 360 program may result from three distinct
actions - external action (EXTERNAL and 1/0 interrupts),
programmed action (SVC instruction), and exceptional conditions
(PROGRAM). The actual PSW Swap is handled by a single routine.
Interrupts are expected infrequently, thus the extra overhead of
formatting a call to one swap routine is acceptable.

6.3.1 External Action

«17e

-

[

Hardware interrupts are disabled during the execute phase of
the interpretation cycle. During DECODE, interrupts are enabled.
when a peripheral processor requires service by the CPU, an
interrupt of the EMMY processor 1is 1initiated (see 3). when
recognized by the hardware, micro code interprets the interrupt
and determines is the interrupt is to be passed on to the program
(ie whether the interrupt is masked). 1If allowed by the SYSTEM
MASK of the PSW, the first instruction of the decode 1loop is
replaced by a trap instruction- a branch to the proper micro code
to format the interrupt. Hardware interrupts are disabled.
Execution resumes. In this way, it 1is gquaranteed that the
currently executing instruction completes execution before the
interrupt is serviced (that is, the interrupt will occur between
360 instructions). If the interrupt is masked out (mask bit 1is
zero), the channel status is saved, channel flagged as being 1in
the "interrupt pending" state, and processing resumes. No trap
instruction is inserted and hardware interrupts remain enabled.
No interrupt of the 360 program is generated.

The program will be informed of the Interrupt Pending state
the next time the channel is accessed (through an I/O Function
Call). Channel Status will be stored in the Channel Status Word
of main store (CSwW) and condition code set. Note that this
differs from 360 in that, when an interrupt is masked, it remains
pending and will occur as soon as the system mask allows. In
EMMY/360, once channel status has been stored in the Channel
Status register of 1local store and the channel flagged as
interrupt pending, no further interrupt action will occur. A more
appropriate flag for the emulated channel would be "Interrupt
Suppressed".

The 360 Start I/0 and Halt I/O0 instructions are invalid and
will result in operation exception conditions. Test I/0 will
return the same condition codes as its 360 counterpart, as well as
clear the "Interrupt Pending" state.

External and I/0 interrupts are formatted by retrieving the
appropriate device (or interrupt class) and passing this, along
with 01d PSW address as a (32-bit) word address, rather than a
byte address, to the PSW Swap routine.

6.3.2 Supervisor Call

Supervisor Call (SVC) causes a call to PSW Swap to be
formatted. The R1-R2 field of the instruction 1is passed as
interrupt code.

-

S—— - : . A

.~ 2 WA i

RETpR—————

6.3.3 Exceptional Conditions

Two types of exceptional conditions may arise during
execution of an operation. One type causes an interrupt following
execution of the instruction and 1is intended to warn of a
potentially dangerous result being detected during execution. The
second prohibits execution of the instruction (for reasons such as
invalid data) and causes the operation to be suppressed and an
interrupt to be generated immediately. In this case, no operands
are modified.

wWwhen a prohibitive condition is detected, a PSW swap 1is
immediately formatted and execution semantic code exited. When a
questionable condition is detected, a note of the condition 1is
made and execution completed. Results are stored. If any Program
Mask bits are applicable, these are interrogated and, if set, an
interrupt formatted upon completion of the operation.

6.3.4 PSW Swap

A single routine is responsible for PSW swap. This includes
the assembly of the current PSW into 360 format, inserting the
svecified interrupt code in bits 47:32, and storing at the
specified Uld PSW location. A new PSW 1s fetched from O0ld PSW
rlus 16 and decoded.

The ¢ register contains the 0l1d PSW 1location, as a word
address. The new PSW is always retrieved from this address plus
16. XR contains the interrupt code to be inserted in bits 47:32
of the old PSW. This value is simply added to the high 32 bits of
the Current PSW prior to storage in main store, thus the 1low 16
bits of the high word of the current PSW are cleared upon loading
a new PSW, and the high 16 bits of XR must be zero upon entry to
PSW swap.

The ILC is obtained from MAR<23:22>. The NIA 1is obtained
from the PC (host register 1) bits 23:0. The condition code is
obtained from control store, shifted right 2 bits for alignment,
and inserted in PSW<29:28>. For Branch and Link instructions,
only the low 32 bits of the current PSw are formatted, and no new
PSW is processed.

The new PSW is retrieved and decoded. Various fields are
stored at the appropriate locations. A display status word is
prepared with Wait and (inverted) Problem state bits in bits 31:30
and the specified WIA in the low 24 bits. This 1is displayed on

“19=

the console and stored in control store. If the wait state bit is
set, a wait loop is entered with hardware interrupts enabled. The
interrupt bit of the MAR is tested ecach loop and, if reset, decode
resumed. If an interrupt occurred during the wait 1loop, the
interrupt bit will have been reset and a trap inserted 1in the
decode loop. Thus, the wait 1loop will be terminated and the
interrupt processed.

If the wait state was not specified, the XR 1is cleared to
ones and the specified next instruction fetched. Decode resures.

«-20-

7.0 Status of EMMY/360 Project

Code for the interpretation loop has been written and the
decode routines tested. Semantic routines have also been checked,
though not to the extent the decode routines have. A 360 program
was written and used to test the functionality of the various 360
operations.

Approximately 1400 words of EMMY Control Store are occupicd
by emulator code. Semantic pointers occupy an additional 256
words. This leaves approximately 2400 words free for the
irplementation of additional instructions and I/0 support.

1/0 support must still be developed for the various
peripheral processors. I/0 interrupt generation 1is included 1in
the emulator; only the semantic code for the actual 1I/0 Function
Call instruction need be written.

Floating point semantics must be added to the emulator. This
code has already been developed for DELTRAN [10], and need only be
conied, with code to test for 360 exceptional conditions.

Streams of 360 instructions have been executed wusing the
enulator. The DECODE/EXEC interpretation loop perforired
reliably,though some hardware problems were encountered. Due to
hardware availability, instruction timing determination is
incomplete.

ACKNOWLEDGEMENT

Many people contributed to the development of the
EMMY/360 and it is not possible to mention all here.
However, the author wishes to thank, in particular,
Lee Hoevel, Robert McClure, and Charles Neuhauser for
their comments, suggestions, and contributions to the
design of the EMMY/360.

«2le

A S e =

- - i — -
» yﬂ d i P, G L
R Y- B N ¥ 2 Y

6.

10.

References

batapoint Corp., Datapoint 200 Reference Manual, Catapoint

Corp., 9725 Datapoint Drive, 5an Antonio, Texas 78284.

IBM Corp., System/360 Principles of Operation, order no
GA22-6821-8.

Neuhauser, (Brr An Emulation Oriented. Dynamic
Microprogrammable Processor (Version 3),THN October

Digital Systems Lab, Stanford University, btanford Ca 94305

Neuhauser, C., EMMY System Peripherals -- Principles of
Operation, TR 77, December 1975, Digital Systems Lab,
Stanford University, Stanford, Ca. 94305.

Hoevel, L. and Wallach, W., A Tale of Three Emulators, TR 98,
October 1975, Digital Systems Lab, Stanford University,
Stanford, Ca 94305.

wallach, W., 360 Emulator Performance Lstimate, TN 6o,
October 1975, Digital Systems Lab, Stanford University,
Stanford Ca. 94395.

Wallach, wW., EMMY/Unibus Interface-Preliminary Specification,
TN 88, June 1976, Digital Systems Lab, Stanford University,
Stanford Ca., 94305.

wWallach, W., Virtual Addressing for EMMY/360, TN 89, June
1976, Digital Systems Lab, Stantord University, Stanford Ca.
94305.

wWirth, N., The PL360 System, TR CS91, April 1968, Computer
Science LCepartment, Stanford University, Stanford Ca., 94305.

Hoevel, L., report on DELTRAN (direct execution of FORTRAN)
to be issued

-22~-

Appendix A - Notes on 1/0 Support

As currently written, the emulator includes code to support
1/0 1interruptions. Hard interrupts of the EMMY CPU are
interpreted into soft interrupts of the 360 program. The
peripheral processor must supply certain information.

Each potential source of hard interrupt (that 1is, sources
capable of producing a 360 EXTERNAL or I/0’interrupt) is provided
with a Device Register. I/0 channel processors are also provided
with a Status Register. Just prior to initiating an interruption
of the EMMY CPU, the peripheral processor should write the device
identifier (channel/device for 1/0, EXTERNAL SOURCE for EXTERNAL)
to its Device Register. The EXTERNAL Device Register 1is located
at Control Store 1location X'lB', Selector Channel 0 Device
Register (the Datapoint) at location X'lD', and Selector Channel 1
(not installed) at location X'lF'. The 1low 16 bits of this
reqister will be inserted into the Interrupt Code field of the 0ld
F54 upon interrupt aeneration (the high 16 bits must be zero, or
the high 16 bits of the O0ld PSW will be unpredictable).

The I/0 processors are also supplied with a Status Register.
The CPU should set the high bit of this register when an operation
involving its associated channel 1is initiated, indicating the
channel is busy. Wwhen the peripheral processor completes the 1/0
operation, this bit should be cleared. Any relevant status
information should be placed in the low 24 bits of the register.
This information will be supplied to the 360 program upon
interrupt.

If a peripheral processor attempts to interrupt the 360
program while its mask bit is zero, bit 30 of the channel's status
register will be set by the CPU. This 1indicates there 1is an
interrupt pending for that channel and inhibits further access of
that channel until the 360 program clears the interrupt. The
interrupt may be cleared by issuing a Test I/O instruction or an
I1/0 Function Call. In each case, the Channel Status Register will
be stored in main store (location 64, the Channel Status Wword) and
condition code set to 01.

=3 8w

i o ;’ 3 ' ¥ Z{"'ﬁ?‘:;‘;\‘ 5

Channel Status Register

ta] 1] reserved | STATUS 1

31 30 29 24 23 0
B BUSY-1 indicates channel is busy
1 Interrupt Pending-1 indicates an interrupt

from this channel is pending
STATUS Channel and Device status bits dependent uopon
channel processor and device characteristics

-2l

} o ——

Appendix B - Supported Instructions

List of Instructions by Set and Feature

Standard Instruction Set

NAME
Add
Add
Add Halfword
Add 1.ogical
Add Logical
AND
AND
AND
AND

Branch and Link
Branch and Link
Branch on
Condition
Branch on
Condition
Branch on Count
Branch on Covnt
Branch on Index
High
Branch on Index
Low or Equal

C:zmpare

Compare

Compare Halfword
Compare Logical
Compare Logical
Compare Logical
Compare Logical
Convert to Binary
Convert to Decimal

Divide
Divide
Exclusive OR
Exclusive OR
Exclusive OR
Exclusive OR
Execute

Insert Character
Load

Load

Load Address
Load and Test
Load Complement
Load Halfword
Load Multiple
Load Negative
Load Positive
Load PSW

Move

Move

Move Numerics
Move with Offset
Move Zones
Multiply
Multiply
Multiply Halfword
OR

OR

OR

OR

Pack

MNEMONIC

AR
A
AH
ALR
AL
NR
N
NI
NC

BALR
BAL

E
3
2

RRRZZIRRZR0GR IDIARIIRREN RBUEIRE ZR00ZIRNZZ 2 RBX 3 REB2ZZRIRX

QOO0 nOn0nn0n

anaonnan

Q000

Q0

I alele]

annn

$58 23S9%85 AARPERLET % 8 388 3 axpErramsesf

e ————————

w) B

C
L

NAME
Sct Program Mask
Sct System Mask
Shift Left Double
Shift Left Single
Shift Left Double
Logical
Shift Left Single
Logical
Shift Right Double
Shift Right Single
Shift Right Double
Logical
Shift Right Single
Logical

Store

Store Character
Store Halfword
Store Multiple
Subtract
Subtract
Subtract Halfword
Subtract Logical
Subtract Logical
Supervisor Call
Test and Set

Test Under Mask
Translate
Translate and Test

Unpack

MNEMONIC

SPM
SSM
SLDA
SLA

SLDL

SLL
SRDA
SRA

SRDL
SRL

ST
STC
STH
ST™M
SR

S
SH
SLR
SL
SvC
TS

™
TR
TRT

UNPK

Key

Condition Code set
new Condition Code loaded

TYPE

RR
SI
RS
RS
RS
RS
RS
RS
RS

RX
RS
RR
RR
RR
SI

SI

SS
SS

(Reproduced from Reference 2)

L

C
C

an

O aaaao

(¢}

SU———

QT e———

& -
. L
b SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
V . = .
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT’S CATALOG NUMBER
l ‘m - on

4. TITLE (and Subtitle)

5. TYPE OF REPORT & PERIOD COVERED

EMMY/360 FUNCTIONAL CHARACTERISTICS Technical Report

6. PERFORMING ORG. n?mﬁ NUMBER
¥ SEL-76-024
7. AUTHOR(s)

8. CONTRACT OR GRANT NUMBER(s)

Walter A. Wallach DAAGQY-76-G-0001

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Sl iy AREA & WORK UNIT NUMBERS
Digital Systems Laboratory

Stanford Electronics Laboratories *
Stanford University, Stanford, CA 94305

1l. CONTROLLING OFFICE NAME AND ADDRESS

U.S. Army Research Office-Durham

12. REPORT DATE

June 1976

13. NUMBER OF PAGES

25

15. SECURITY CLASS. (of this report)

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Ollice)

15a, DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

(‘ Q‘ 3
App{ ‘!‘.\‘~l fQr ub 1¢c T ease (l\ﬂtl{l)\l

unlimitec.

17. DISTRIBUTION STATEMENT (of tho abstract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

413

VR 1

‘ontirged as nY
iwla ehar '

g ek, ny unless
designated by oth shorized document

-

19. KEY WORDS (Continue on reverse side {f necessary and identify by block number)

\|

200 ABSTRACT (Contlnue on reverse side If necessary end identify by block number)

An emulation of the IBM System/360 architecture is presenteqh#he EMMY/360. Pro-
blem state code which executes correctly on an IBM 360 will also execute correct}]y
on the EMMY/360. Code producing execution exceptions will, in most cases, pro-
duce the same results on the two systems. Certain exceptions occurring on the
IBM 360 cannot occur on the EMMY/360, such as address specification exceptions
for main store operands, and certain precise interrupts on IBM 360 will be ;
imprecise on the EMMY/360, such as address exceptions. The EMMY/360 supports._qD,‘,{'

T, S

\

——————R AR

DD ,%u'ys 1473 €oiTion oF 1 NOV 68 IS OBSOLETE "‘;"

SECURITY CLASSIFICATION OF THIS PAGE (When Duta Entered)

e —— A
” ¥ -

i i il - i

-

SECURITY CLASSIFICATION OF THIS PAGE(Whea Deta Entered)
o
Sthe Stanferd 360 instruction set with single precision floating point. The
360 1npu§/output structure is not supported; I/0 on the EMMY system is done
by Function Call instruction, rather than channel program and Start-Test 1/0.

B

SECURITY foA“IFICA'ﬂON OF THIS PAGE(When Data Entered)

5 o —— -
F—— ot ,ﬂ : o v
’ — - b Sl RN

