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ABSTRACT

Theory of Stochastic Optima l Tracking Sys tems

by

Vaqar H. Syed

Doctor of Philosophy in Engineering

University of California , Irvine , 1977

Professor James S. Meditch , Dissertation Supervisor

Professor Allen R . Stubberud , Chairman

The object of this dissertation is to study the

optimal tracking of signals modeled as stochastic proccss~ s ,

by linear plants. The signal available to the plant is a

given stochastic process in the presence of a wh i te noi.se.

The criterion for optimization is the minimization of the

original stochastic process and the plant output. The

study thus involves the design of appropriate compensators

to give the systems the desired tracking properties.

The present theory of stochastic optima l tracking , in

the mean-square sense, only considers ~.tationary systems .

The main thrust of this work is to extend the existing

theory to include nonstatioriary systems . Thus ~ :~ - - 
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nonstationary stochastic processes , time-varying plants

and sensors , and arbitrary initial times arc admissible

in this work . Moreover , due to the nonstalionary

nature of the systems , state-space techniques are exclu-

sively used here . This approach is a clear departure from

the frequency domain techniques of the present theory.

The systems in the open-loop as well as the closed-

loop configurations are studied. For each case , the

appropriate compensators are designed both in terms of

their impulse response functions and -in terms of their

state-space realizations . Finall y, the conditions for

the stability of the resulting systems are derived .
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CHAPTER 1

INTRODUCTION

1.1 GENERAL

The problem of optimal tracking of random signals by

linear plants is a basic ingredient of many communications

and control system designs. A qualitative statement of the

problem is as follows : -

Given a dynamic plant and a random signal corrupteu

by an additive noise as its input , how can one

modify the plant dynamics such that the plant out-

put follows the input in an optima l manner?

Obviously, this vague question must be quantified to

obtain a tractable design problem . To accomp lish this end ,

we make reasonable assumptions about the signal , 1:he noise ,

and the plant, and define a suitable criterian for

“optimality”.

In this dissertation , we will consider onl.y li.near

plants. The plant parame ters are allowed to be t ir~-

varying , but are required to be continuous in the entire

interval of interest. The random signal is assumed to be

a stochastic process which can be generated by passing

white noise through a finite-dii~ensiona1 linear system

with arbitrary initial conditions . The parameters of the

system generating the stochastic process can also vary

with time , but must also be continuous throughou t the 
time1



interval of interest . Note that the resulting process in

general will be nonstationary . All noise processes are

assumed to be white , although colored noise processes can

be easily accommodated in this theory. The optimization

criterion used here is such that the mean-square tracking

error , defined as the difference between the plant output

and the original random signal is minimized . Finall y,

since the modification of plant dynamics actuall y involves

placing an appropriate compensator in the system , care will

be taken to keep the mean-square value of the compensator

output to wi thin some specif ied bounds.

As pointed out above , the tracking problem requires

the design of an appropriate compensator to modif y the

plant dynamics. The compensator can be placed in the

sys tem in either of the two configurations shown in Figure

1.1 and 1.2. The compensator as shown in Figure 1.1 wi ll

be called an “Open-loop Cascade Compensator ” , and the one

shown in Figure 1.2 will be termed a “Closed-loop Cascade

Compensator” . The related design problems will be called

“the Open-loop Problem” and the “Closed-loop Prohh~ui” ,

respectively.

2 
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Li~Compensator Plant d

I.

OPEN-LOOP PROBLEM

Figure 1.1

~ ÷ f u~~~~~

~~~~~~~~~~~~~~~~

nsator Plant

Feedback
Sensor

CLOSED-LOOP PROBLEM

Figure 1.2
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1.2 HISTORICAL BACKGROUND

A special case of the above problem was studied by

Wiener in the context of stochastic filter design [ii.

His problem consisted of the design of an estimator (filter)

whose output would optimally follow a random signal

available in the presence of an additive white noise (see

Figure 1.3).

white noise

random yd 
+ 

~ 
f y

signal 
~4 

C(s) > Estimate
+ 

_ _ _

Filter

WIENER FILTER

Figure 1.3

He modeled the random signal as a stationary stochastic

process with rational power density spectrum and sought the

transfer function of. an optimal filter such that the mean-

square error between the filter output and the given

random signal is minimized.

Thus, if the “plant” in this work is a scalar identity

system ( impulse response 6 ( t - r ) ) ,  the random s ignal and the

noise are stationary , and there is no constraint on the

compensator output , the stochastic optima l tracking

problem reduces to the Wiener filtering problem .

4
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The optimal tracking problem as formulated here was

first studied by Newton et al .  and the resul ts  were

presented in [2]. They assumed the plant to be single-

input/ single-output , linear , time-invariant , asymptotically

stable , and characterized by a rational transfer function .

The requirements for the random signal , the noise , and the

optimization criterian were the same as those of the

Wiener problem . They sought the design of a closed-loop

cascade compensator of Figure 1.2. Since , as pointed out

in [23], a direct formulation of the closed-loop problem

was difficult , they reformulated the problem as an open-

loop problem . Once the transfer function of the open-loop

cascade compensator was obtained , the conversion to the

closed-loop design was direct via transfer function

manipulations.

The results of [2] were extended by Weston and

Bongiorno [3] to the case of multi-input/multi-output

plants and vector stochastic processes. More recently,

Youla, Jabr and Bongiorno in [4,5] treated the closed-loop

problem for both single-input/single-output and multi-

input/multi-output systems . In addition to designing an

optimal closed-loop compensator , they arrived at the

necessary and sufficient conditions for its existence and

the staiility of the closed-loop system . -

It should be noted that th~ work cited above was

carried out strictly for stationary systems . That is , the

5
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plants were linear and time-invariant , and the signal s

were stationary stochastic processes ovcr senii-infinite

intervals (_ c ~~, t ],  characterized by rational power density

spectra. The compensator design was therefore carried out

in the frequency domain employing Wiener ’s frequency

domain spectral factorization techniques . In the work

presented in this dissertation , the above assumptions are

totally relaxed . Thus the system admits time-vary ing

plants , nonstationary stochastic processes , and finite

observation intervals.

1.3 CONNECTION WITH THE LQG TRACKING PROBLEM

A particular stochastic optima l tracking problem called

the “LQG Tracking Problem” has been studied extensively as

a special case of the so called LQG (Linear Quadrati .c

Gaussion) Regulator Problem [10]. In the LQG Tracking

Problem, the plant and the stochastic processes arc allowed

to be nonst~ cionary . The optimization criterian is the so

called “integral of the mean-square error”, together with

a saturation like constraint on the “integral of the mean -

square control” .

As shown in [10), by augmenting the plant dynamics

with the dynamics of the system generating the given

stochastic process (called the reference system), the LQG

Tracking Problem can be formulated in the context of the

LQG Regulator Problem —. the solution of which is well

known (10). The compensator structure of the LQC Tracking

6
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Problem is particularly interesting , and is shown in

Figure 1.4 below .

In Figure 1.4 the state estimator estimates the state

of the reference system generating the given stochastic

process , and the observer reconstructs the state of the

plant. The control is simply a linear combination of the

states of the reference system and the plant. Note that

the above system configuration , together with the feedback

loop around the plant , is inherent in the LQG Tracking

Problem,whereas in the Mean-square Tracking Problem , wh ich

is the subject of study here , the system configuration is

totally free.

p 1.4 SU1’~4ARY OF RESULTS AND CONTRIBUTIONS OF TH iS RESEAR CH

t - 
Both, the open-loop and the closed-loop , problems are

treated in this dissertation . Due to the nonstationary

nature of the system , it proves natural that the problems

be formulated and solved in the time domain. Since

extensive computer algorithms are available for state-

space related computations , the final design of the optimal

compensator is given in terms of its state-space reaii~a-

tion.

First, the open-loop problem is formulated in the

time domain. Variational techniques are then used to

arrive at a Wiener-Hopf type integral equation which the

optimal compensator must satisfy. Wiener ’s spectral

factorization theory is employed to solve the resulting

— ~~~~~~~ .. - . .
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integral equation . New , special techniques to carry out

r 
the required factorizat ion in the state space are

developed in this disseration . These techniques enable

one to arrive quite naturally at the space realization of

the optimal compensator.

For the closed-loop case , as pointed out in [23], the

problem formulation in the time domain is not so straight-

forward. To accomplish this end , Volterra ’s “Compositional

Algebra”, which was developed originally as an aid in the

study of integral equations , is used. The compositional

algebra is applied here to explicitl y formulate the closed-

loop problem . Once again the standard variational tech-

niques are used to arrive at the necessary and sufficient

T conditions which the optimal closed-loop compensator must

satisfy. The resulting integral equation is solved using

the same techniques as for the open-loop problem to arrive

at the state-space realization of the closed-loop

compensator .

Contributions of this Research

This research addresses a fundamental unsolved

problem in systems theory, which is , the generalization of

the existing theory of stochastic optimal tracking to

include nonstationary systems . Thus a unificd theory of

stochastic optimal tracking involving linear , time-

varying plants and/or nonstationary processes is developed.

Many of the previous results therefore become special

9
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cases of the results developed here.

Another significant contributi.on of this research is

the development of general s ta te-space  spectral factoriza-

tion techniques. The implicit close relationship between

the Riccati equation and the spectral factorization has

been known since Kalman ’s work [12). However use of

equivalence transformations in state-space to accomplish

spectral factorization clearly and explicitl y demonstrates

‘this relationship.

It is also demonstrated in this dissertation that the

optimal minimum mean-space compensator can be separated

into a Kalman State Estimator and a dynamic system . The

previous work on this problem , and the techniques used

fail to demonstrate this important property .

Finally, Volterra ’s compositional algebra techniques

are applied here for the first time to time-vary ing

feedback system optimizations. These techn iques may

prove to be useful to other problems of this nature.

1.5 ORGANIZATiON OF THIS DISSERTATION

The next chapter , Chapter 2, deals with general

system theory concepts , mathema tical preliminaries and

linear filtering theory. The topics presented are the

ones which are used or referred to in the subsequent

chapters. In Chapter 3, the open-loop Problem is formulated

and solved . The optimal compensator is first solved for in

terms of its impulse response , and then in terms of an

10
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explicit state-space real izat ion . In Chapter 4 , the

closed-loop problem is addressed. Again , both the impulse

response and the state-space solutions of the optimal

compensator are given. Chapter 5 addresses the problem of

the open-loop and closed-loop stability of the system , and

conditions are derived which guarantee the asymptotic

stability of the system . Finally, in Chapter 6, a

Conclusion is presented and recommendations are made for

additional work in this area .

11 
.
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CHAPTER 2

SYSTEM THEORY AND

MATHEMATICAL CONCEPTS

2.1 GENERAL

A comp let e understanding of the ma te r i a l  in this

dissertation requires a knowledge of general system theory,

probability theory , stochastic processes , and some real

analysis. Such knowledge will generally be assumed . In

this chapter , however , basic definitions , concepts , and

notation fundamental to other chapters will be presented .

Additi onal concepts will  be introduced as required in the

sequel. The primary references for this chap ter ar e

D’Angelo [8], Popoulus [11], and Meditch [7].

2.2 LINEAR SYSTEMS

The state-space descript ion of a linear p-input/q-

output time-varying dynamical system is given by

x (t )  = A (t ) x ( t )  + B(t)u(t)

y( t )  = C ( t ) x ( t )  + D ( t ) u ( t )  (2 . 1)

x(t 0) =

where x(t) is an n-vector of state variables , u(t) is a

p-vector of input variables , the control; and y(t) is a

q-vector of output variables. Furthermore , A(), B(’),

C(’) and D(~) are matrix functions of the time variable t ,

and are of the order nxn , nxp , qxn and qxp, respectively. The 



dot denotes the time der ivative , to indicates the ini tial

time and x0 the system initial state .

The above set of equations , for the sake of brevity,

can also be written as [A , B C ,D; t0,x0]. If A (t) is

Continuous , and B(t) and u(t) are piecewise continuous for

all time t, the solution of the above equation is

x(t) = ~ (t ,t
0
)x( t

0
) +f~~~(t 1 T ) B (T ) u (T ) d T

for all t�t0, where ~~~ t , T)  is the state transition matrix

of the system . If the system is initially in the zero

state , that is x(t0)=O, the response of the output varjable

y(t) for t�t0 is given by

y(t) 
J

K(t 1 T)u (T)dT + D(t)u(t)

where

K(t,r ) = C( t)~~~t ,T)B(r)

The matrix K(t,-r) is called the impulse resp~~ se matrix of

the system .

A linear , relaxed , dynamical system is said to be

causal or physically realizable if

K(t,r) = 0 for all t < T

13

—

~

---

~ 

- - ...



Equivalence

Two systems are said to be zero state equivalent if

both systems have identical output when excited from the

zero state with identical inputs. Two systems are zero-

input equivalent if initial states (not necessarily equal)

exist so that both systems have identical outputs with zero

inputs.

There is a class of transformations that can be

applied to the linear system characterized by Eq. (2-1).

that always results in systems that are zero-state and

zero-input equivalent. In particular , the equivalence

transformation is defined by

x(t) = T(t)x(t)

where T(t) is an nxn matrix , nonsingular and continuously

differentiable on [t0,-tJ . Appl ying the equivalence trans-

formation to the syst~.m of Eq. (2.1) results in

c(t) A(t)x ( t )  + B(t)u(t)
— 

(2.2)
y(t) = C ( t ) x ( t )  + D(t)u(t)

where

A(t )  = [T( t )A( t )  + T(t)]f 1 (t)

B(t) = T(t)B(t)

C( t) = C(t)T 1(t)

D(t) Dçt)

14 
.
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- 
The impulse response matr ix  of the t ranformed system ( 2 . 2 )

is identical to that of the original system , whereas the

state transition matrix of the transformed system is

given by

= T(t)4(t,t)T 1 (i)

Adjoint Systems

A lin ear sys tem Sa~ 
character ized by its state transi-

tion matrix ~a (t
~

T ) and i ts  impulse response matr ix  K~ (t , -r )

is the adjoint of a linear system S characterized by its

state transition matrix ~~t ,-r) and its impulse response

matrix K(t,-r) if and only if

~1) 
a
(t
~~
T) = [~~

1(t,t)J ’

and

(II) Ka (t~
T) = — K ’ ( T , t)

for t
0
�T�t; where prime denotes the transpose . If a

system satisfies (II) only, it is termed an input-output

- adjoint system .

Theorem 2 . 1

If a linear system S is characterized by

x( t )  = A ( t ) x ( t )  + B ( t ) u ( t )

y ( t )  = C ( t) x ( t )  + D ( t ) u ( t )

then the adjoint Sa of S satisf y i ng properties (I) and ( I I )

above is given by

15 
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• 
. 

x (t) = -A’(t)x (t) ± C’(t)u (t)

- ~‘a
(t) = 

~
B’(t)xa(t) + D’(t)u (t)

Proof

Refer to [8).

Inverse Systems

A system S 1 is an inverse system of a system S if ,

when S and S~~ are cascaded , the output of the combined

system is identical with its input. Inverse systems are

classified as pre-inverse systems and post-inverse

systems . A post-inverse system for a p - i n p u t / q - o u t p u t

system can exist only if p>q, while a pre-inverse system

of S can ex ist only if p < q .

Theorem 2 . 2

Consider a sing le inpu t/ s ing le-output  system S defined

by

x( t )  = A ( t ) x ( t )  + b(t)u(t)

y(t )  = c ( t ) x ( t )  + d ( t ) u ( t )

where x , the state is an n-vector , and u and y are the

scalar input and outpu t respectivel y .  If d (t ) ~~O for all

tc [t 0, co) , then the following set of equations represent an

inverse S~~ of S in the sense that if y is the response of

S to the input u on [t 0,~~ ) ar1d the in i t i a l  s ta te  x0, then

u is the response of S~~ to an inpu t y on [e0 1~ ) and the

same initial state . Thus ~~l is given by

4
16
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~(t) = [A(t)  — d~~ (t)b(t)c(t) )z(t) + d~~ ( t)b ( t) y ( t)

u(t) = -d~~ (t)c(t)z(t) + d~~ (t) y ( t)

z(t0) 
= x0

Proof

See Silverman [21] .

2.3 STOCHASTIC PROCESSES AND LINEAR FILTERING

Consider a continuous-time measurement process m odel

of the form

z( t) = y~(t) + v(t), t�t0 (2.3)

Here is a Gaussian distributed stochastic process

signal vector and v(.) is a zero mean Gaussian vector noise

process with convariance

E[v(t)v’(t)) = R (t)6(t— -r) ; t ,T� t
0

The notation E denotes ensemble average or expectation . he

prime denotes matrix transposition and o( .) is the Dirac-

delta function . The quantity z(.) is called the measure-

ment or the observation process. It is common to assume

that the signal 
~~~~~ 

is genera ted by a finite-dimensional

linear model

= A(t)-ip(t) + B(t)w(t)
(2.4)

= C(t)mj~(t)

17

_ _  

_ _ _ _ _  

_ _  

I I

- - - ~~~~~~ ‘ - . - ‘~~~~~ ~~~~~~~~ - - -. , - .  —~~~ ..--——.---—•-.- — 
~~~~~ r~



for t>t0. Here A ( s ) ,  B(.), and C(.) are continuous

matrix functions in the time variable t , and the process

w( .)  is zero-mean and Gaussian d i s t r ibu ted  with covariance

E[w(t)w ’ (r ) ]  Q(t)  iS (t—t ) ; t ,

Furthermore , the initial st ate ~,(t0
) of the system given

by Eq (2 .4) is a Gaussian random variable with mean and

covariance P0, v i z . ,

E[~(t0)] =

=

Generally,  we shall assume that v ( .)  and w ( . )  are

uncorrelated ; that is

E[v(t)w’(T)] = 0 (2 .5)

for all t and r .

When we cons ider the case where there is correlation

between x ( .)  and v ( .) ,  we shall assume that

Elw(t)v ’(r ) )  = R (t)ó(t-r) (2.6)

It should be noted that the description of w ( .)  and v ( .)

as white noise processes and the model description of the

form (2.3) and (2.4) is by no means rigorous . A more

rigorous representation is the stochastic d i f fe ren t i a l

equation [15) . However , the above notation is more

familiar in linear systems theory and the results obtained 

- 
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here under this representation do not differ from the

corresponding results if stochastic differential equations

are used.

We further assume that Q(.) is a nonnegative semi-

definite matrix , and that R(.) is positive definite so that
— lR exists .

Let S(t,r) be the impulse response of a causal ,

minimum-mean-square-error filter which operates on z(.)

for t�t0 wi th 
~~~~ 

as its output. Then 
-

)~d
(t) =f S(t,r ) z ( r ) d r

is a linear functional  of the measurement process z( 1) ,

that minimizes

E[[yd(t)-~ d
(t)J [yd(t)-~ d

(t)]]

it is well-known that S(t,r) satisfies the Wiener-

Hop f type equation

+cc

JS (t , r)E [z (r)z (a)] dx E [y d (t ) z ( a ) ]

(2.7)

for all t 0�a~ t

19
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• Theorem 2 . 3

Continuous-time Ka lman-Bucy Filter . Given the model

(2 .3) , the f i l te r  S(t ,n) defined by Eq. (2 . 7) is represented

by the matrix d if ferent ia l  equation

= [A ( t )  - K(t)C(t)]~~(t) + K ( t) z ( t) (2 .8)

= C(t)~~(t)

where

K(t) = P( t)C ( t )R~~ (t) (2.9a)

in the case where there is no correlation between input

and output noise processes , i.e., (2.5) app lies, and

K (t )  = [P ( t ) C ( t )  + B(t)R(t)]R
1(t) - (2.9b)

in the s i tuat ion where (2 . 6) app lies . The matri x P ( t )

defined as E [[yd-~ d][y d -
~ d ] ]  is the posi t ive  de f in i t e

solution of the matrix Riccati differential equation

P (t) = A(t )P( t )  + p (t)A’ (t) - K(t)R(c)K’ (t) + B(t)Q(t)B’ (t)

- subject to the initial  condition

P(t0) =[E q~(t
0

)qi ’ ( t
0
)] = P0

Proof

Refer to [7 , 12) .

Theorem 2. 4

(The Innovations Theorem.) Given (2 .3) , the innova-

dons process o ( •)  defined by

20



u (t) = z (t)  - 

~d
(t), t�t~

is a zero mean , white Gaussian noise process w i t h  the same

covariance as v ( .) ,  i . e . ,

E[u(t)u’(1)) = R(t)6(t-T),

Fur thermore , the processes z(.) and u(.) are related by a

causal linear operation .

Refer to [13,14) for a proof and detailed discussion

of Theorem 2 . 4 .

Commen t

From Theorem 2.4 u(.) and z(.) are related by a

causal linear operation . That is , u(.) can be obtained from

z( .)  by passing z ( . )  through a linear causal f i l t e r ,

commonly called the “Wh itening filter”. - Thus

u(•) fW(t 1 r)z(r)dx (2.10)

where W
~
(t ,r) is the impulse response of the whitening

f i l ter .

Conversely, z(.) can be obtained from u(.) by

passing u ( • )  through the inverse* of the f i l t e r  W~ (t , r ) .

Denoting the inverse of W
~
(t,r) by W

~~~
(t ,r) in the sen se

that

*The inverse here is defined in the sense of Section 2 . 2.
The existence of the inverse of W~ (t , x) is discussed in
Kailath 113) . 

-
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f l  = f  W
~
’(t,n)W

~
(n.r)dn=I

~

where ‘n is an iden tity ma trix of appr opria te dimensions ,

we have -lz (t) W~ (t , r) u ( r ) d x  (2 . 11)

1 22
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CHAPTER 3

THE OPEN-LOOP PROBLEM

3.1 GENERAL

In this chapter the open-loop optima l tracking

problem is formula ted and solved . Since the systems under

stud y are nonstationary, it seems natural that we use

time-domain techniques for the analysis and design. The

final design of the open-loop cascade compensator is

presented in terms of its state-space representations . The

main results of this chapter are presented in the form of

Theorems 3 .1 and 3.5. The organization of the chapter is

as follows . -

Section 3 .2  is devoted to the state-space formulation

of the problem . In Section 3.3 , a necessary and sufficient

condition which the optimal open-loop cascade compensator

must satisf y is derived . This condition turns out to be

a type of nonstationary Wiener-Hopf integral equation .

The integral equation of Section 3 .3 is then solved in

Section 3.4 to arrive at both the impulse response and the

state-space representation of the open-loop cascade

compensator . In Section 3 .4 , we also develop the state-

space spectral factorization techniques and i l lus t ra te  theni

via examples. In Section 3.5, a brief discussion and

critique of the results is presented.

23 
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3.2  PROBLEM STATEMENT

Consider a linear , time-vary ing , single-inpu t/sing le-

output p lant DS1 (Figure 3.1) def ined  by

x (t) = F(t)x(t) + g(t)u(t) (3. La)

DS1: y(t) = h(t)x(t) (3.lb)

x(t 0) = 0 (3.lc)

where x(t) is an n-vector , the state; u is the control

inpu t and y is the sys tem ou tpu t , bo th scalars , and F(.),

g(.) and h(.) are real , continuous matrix functions of

time t which are nxn , nxl , and lxn , respectively. The dot

here denotes the time derivative and t0 is the initial

time .

Let yd(t) be the reference signal which the output y ( t )

of the plan t DS1 is required to track op timal ly . We as sume

that the signal 
~~~~ 

is generated by a finite-dimensional ,

linear model of the form

p(t) = A(t)mp (t) + b (t) w (t)
DS2: (3 .2a )

Yd (t)  c ( t ) m ~(t)

for ~~~~ Here , ~j , is an rn-vector , the state; w(.) and

~~~~~ 
are scalars , and A ( • ) ,  b ( .) , and c(.) are continuous

matrix functions of t , which are mxin , mxl , and lxm ,

respectively. Furthermore , the process {w(t ) , t�t 0 } is a

zero mean , Gaussian , t~ihite noise process with covariance

24
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- 

E[w(t)w(t)] Q(t)~~(t-i ) (3.3)

and the initial state ~~~t 0
) of the system given by

Eq. (3 .2) is a Gaussian distributed random variable with

mean and covariance

E[mp (t0)) 
= 141

0 
(3.4a)

E[mj~(t0
)q~’(t0)) P0 (3 .4b)

The system defined by Eq . (3 .2) will be t rmed the

re~~~ ence system DS2 .

The signal available for input to the p lan t DS 1 is

modeled as

z(t) = 
~d
(t) + v(t) (3.5)

where {v(t), t~ t0
} is a zero mean , Gaussian , white noise

process with variance

E[v ( t) v(r)] = R(t)ó(t-i), t�_ 1
0 (3.6)

We assume that Q(t) and R(t) are both continuous , that Q(t)

is nonnega tive , and that R(t) is positive definite such

that R~~(t) exists.

The tracking error Ye(t) is defined by

= y(t) - >d
( t) (3 .7)

As a measure of the system performance , we choose a

suitably weighted sum of the mean-square tracking error

25



and the mean-square control effort u. Denoting the

index of system performance (the cost functional) by L,

we thus have

L = E[y~(t)) + k(t)E[u2(t)] (3.8)

vherek(t)>O isaLagrange multiplier . A suitable value of

k is chosen in the last stages of the design pr oce ss to

sa tisf y a saturation-like constraint on u , of the form

E[u2(t)]�B

where ~3>O. Our problem can now be stated as follows :

Given the plant DS1 , the reference system DS2 , the

releven t noise statistics and the constraints on u , design

and realize in state-space an optima l open-loop cascade

compensa tor such tha t the cost fun ct ional L g iven by

Eq . (3.8) is minimized.

3.3 DERIVATION OF THE WIENER-I1OPF INTEGRA L EQUATION

A block diagram of the system with which we are

concerned in this chapter is shown below in Figure 3.1.

In the diagram , W(t,r) and W
~
(t,r) are the impulse respon se

functions of the plant and the optima l compensator ,

respectively.

To keep track of variables , as will become apparent

subsequently, we shall use u instead of u in Eq. (3.8),

where u is a linear fiinctional of u. That is

26 J - - 
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I

W(t,r ) u ( r ) d r , ~~~~~

Later , we can always choose W(t x) to be the iden ti ty

system (W(t ,r) = S(t-r)) sucti that u=u . Hence , in view

of Figure 3.1, a modified form of Eq . (3.8) is

L1 = E[y~ ( t) - 2yd (t)y ( t) + y2(t)J + k(t)E[u2(t)] (3.9)

It is clear that u(t) and y(t) can be wri tten as

u(t) =f d~~fds W(t,p)W~
(p,s)z(s) (3.10)

and

y(t) J d~f 
ds W(t ,p)W~ (p, s)z(s) (3.11)

respectively, where from causality, t0�s~p, t0�p�t , and

~~~~ Subs tituting from Eqs. (3.10) and (3.11) into Eq.

(3.9), we get

= 
E[Y~(t) 

- 2Yd(t)Jd~~f 
dr W (t,q)W~ (q,r ) z ( r )

+ 
t f dP J  ds W( t ~ P )W c (P~

S)Z(S)  x

28
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~fdqf dr W(L 1q)W~ (q~ r ) z ( r )~

+ k ~fd~~f 
ds W(t,p)W~(p, s)z(s)~

~fdqfdr W(t,q)W~(q,r)z(r) (3.12)

Equa tion (3 .12) can be rewr itten as

= y~ ( t) - 2Y d(t)fd~Jdr W (t,q)W~ (q,
r ) z ( r )  

--

+J IPfdsfd~fdr W (t,p)W~ (p, s)W(t ,q)

W~ (q,r)z(s)z(r)

+c~ +0 +o +‘x

+ kfdPfdsfd~f 
dr

W~ (q,r)z(s)z(r) (3.13)

We now assume the existence of a physi.cally realizable

compensa tor Wco(t~ S) that minimizes Eq . (3.9). Next , we

proceed to use a well known variational technique to

arrive at W
~0
(t,s) .  We thus let

29
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W(t ,s) = Wco(t~
S) + eWe(t ,s) (3.14)

where We(t~
S) is the variation of W

~
(t.s). Substituting

Eq. (3.14) into Eq. (3.13) , we have

L1 
= 
E{Y~

( t) - 2yd(t)fdqfdr W(t ,q)~ W~0(q, r) + eW~ (q.r)~~z (r )

+J~pJdsJd~Jdr W(t,p)W (t 9q)~
W~0

(p~ s)W~0(q r)

+

+ eW~ (pt s)W~0(q~r) + e
2w(p,s)~ w (q,r ) z s z r

• : + kfdpfdsfdqfdr W(t,p)W(t ,q)~ W~0
(p~ s)W~0(q ,r.)

+ eW~0(p, s)W~ (q.r)

+ eW~ (p~ s)W~0(q~ r) + e2W (p , s) ~~W (q , r ) z ( s ) z ( r ) ~ (3. 15)

A necessary condition for L1 to be a min imum is

aL1. = 0
ae e 0

• Carrying out the required differentiation and

recognizing that p is interchangeable with q, and that s

30
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is interchangeable with r , we obtain

+a  +~~
= E _2yd(t)fdqfdr W(t ,q)W (q ,r)z(r)

ae e = 0

+ct +a +c~ +~

÷ 2fdpfdsfd~fdr W (t,p)W (t ,q)

W~0(p, s)W~ (q~ r ) z ( s ) z ( r )

+cK ~~~ +~ +~
+ 2k[dPJdsfd~fdr W(t ,p)W (t ,q)

W~0(p, s)W~ (q,r)z(s)z(r) = 0 (3.16)

If we interchange the order of the integral and

expectation operators in Eq. (3.16) and use the fact that

= 0 for r<t 0 
and tha t W~ (q~r) is arbitrary for

t0�r�q�t0, we are led to the following result.

Theorem 3.1

For a physically realizable (causal) compensator W~0

to minimize L1, it is necessary and sufficient that it

satisfy

fd~fdsfdr W (t ,r)W(t ,p)W ~0(p. s )E [z(s)z ( r) ]

+~ +~
+ kfd~fdsfdr W(t,r)W(t,p)W~0(p,s)E[z(s)z(r)]

I~.
31
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=fdr W(t ,r)E[yd(t)z(r)J

for all t>t0, t0<s<p, t0<p< t , and t0
<r< t. (3.17)

Proof

Necessity is immediate from above . Sufficiency

follows from consideration of the second variation.

3.4 SOLUTION OF THE INTEGRAL EQUATION

Solution of the Wiener-Hopf type integral equation of

Section 3 .3 for a physically realizable W
~0
(t ,r) is

developed in a number of steps.

Firs t , the Innovations Theorem , Theorem 2.4 and the

• whitening f i l ter given by Eqs . (2 .10) and (2 .11) are used

• to convert the Wiener-Hopf type integral equation involving

covariances into a Wiener-Hopf type integral equation

involving operators only. This conversion process is

illustrated in Lemmas 3.1, 3.2 and Theorem 3.2. Second ,

the resulting integral equation which now involves adjoint

operators , is solved for a physically realizable operator

representing the optimal compensator . Wiener ’s spectral

factorization techniques are used during this step , and

the optimal compensator arrived at is in terms of its

impulse response W
~0
(t ,r ) .  Third , an explici t state-space

realization of W
~0
(t ,r) is obtained. This realization

process is developed in Theorems 3.3 and 3.4,

32 
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Lemma 3 .1

(E[yd(t)u(a)]R 4(a) ) * W~
(t a) = S(t ,a) (3.18)

where u(.), W
~
(.,.) and S(’,.) are respective ly, the

innovations process , the whitening filter and the

Kalman-Bucy filter associated with the process z(.’), and

the asterisk denotes the convolution of linear operators.

Proof

Let yd(t) be the filtered estimate of yd(t) . Thus

yd(t) =fS(t~r)z(r)dr~ t0�r�t (3.19)

where S(t,r) satisfies Eq. (2.7). Since z(.) and u(•)

are informationally equivalent to each other , yd(t) is also

given by

yd(t) =f~~(t1 r)u(r)dr~ t0�r�t (3.20)

where S(t ,r) satisfies the integral equation

f~(t,r)E[u(r)u(a)]dr E[yd(t)u(a)], t0~a~t (3.21)

Fr,m the innovations theorem ,

E[u(r)o(a)J E[v(r)v(a)j = R(r)S(r-a) (3.22)

1 ;  33
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• Substituting Eq. (3.20) into Eq. (3.19) and carrying out

the integration with respect to r, we have

~(t,a)R(a) = E[yd(t)u(a)J

or

~(t ,a) = E[yd(t)u(a)jR
1 (a) (3.23)

Recall from Chapter 2, Eq. (2.11), that

z(t) =fW~(t,r)u(r)dri t0�r�t (3.24)

If we substitute Eq. (3.24) into Eq. (3.19) and compare

the result with Eq. (3.20),we note that

S(t r) * W 1(t,r) = ~(t,r)

or

S(t,r) = ~(t,r) * W~
(t ,r) (3.25)

Thus, from Eqs. (3.23) and (3.25), we have

S(t,r) = 
~
E[yd(t)u(r)~

R ’(r)
~ 

* W(t ,r)

Q.E.D.

Lemma 3.2

The integral equation (3.17) and the following

integral equation are equivalent :

34
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4

+Z  +~~~+‘~
J’dr W( t ,r) 

,fiP,,[ds 
W(t ,P)W

~0
(p, s) [Ww

_ 1
(s,r)R(r)J~

+ kfclr W(t~ r)~~J1pfds W(t,p)W~0(p,s)[W~~
1(s ,r)R(r)J~

= fdr W(t,r)E[yd(t)u(r)J 
• 
(3.26)

for t�p?s�t 0, t0�r�t .

Proof

Substituting Eq. (3.24) into Eq. (3.17), we obtain

f d~J ci f ~ w(:,r ) W( t ,p)w 0(p, s)x

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ kfd;fdsfdr

E 
[!d~Jd W~~ (s , ~) u(~~) u(rl) (r ,

=J~ rW( t .r)E~Jdri yd(t)u(fl)WW (rtfl )
S

- - - -~~ - :~



Nex t , we interchange the expectation and integral

operators , substitute Eq. (3.22) into the above equation

and carry out the integration of the resulting delta

function with respect to ~ to ob tain

JlpfdsfdrfdnW(t ,r ) W ( t ,p)Wco (p,s)~c
1 (s,n)R(n)~c

1(r ,rI)

+ kJdpJdsJdrJdnW(t ,r )W( t 1p)W (p, s)W 1 (s,n ) R ( n ) W 1 (r ,r~)

+~
=~fr,J

’
dnW t ,r E[yd t)u@~~]W~,

1 r ,rI) (3. 27)

Equation (3.27) c•an be rewritten as

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ kfdrfdPJdsW(t~
r)W(t

~P)W~o(P.
s)W

~~
(s.n)P (t1)

- fw(tS r)E[yd(t)u(n)J~ = 0

Note that W~~ (r ,n) in the above equation is arbitrary in

the sense that the equation holds true for any W ,’(r,n)

over the interval t0~n�u�t . Obviously then , the abovt~

equation reduces to

36
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JdrfdPfds W(t ,r )W ( t ,P)W
00

(P,S)W~
’(
~~

,r)R(r)

+ kfdrfdPfds W(t ,r )W ( t ,p)W
00

(p,s)W~,~ (s

= fdr W (t,r)E[y~(t)u(r)] (3.28)

Equation (3.26) follows immediately from Eq. (3.28).

Q .E.D.

Theorem 3.2

The integral equation (3.28) and the following

operator equation are equivalent:

Wa * W * + kW5 W W~~ = S (3.29)

where S is the Kalman-Bucy filter associated with the

process z(.), and is given by Eqs . ( 2.8) and ( 2 . 9  ).

Proof

The bracketed portion of the first• term on the left-

hand side (LHS) of Eq. (3.26) is a convolut i on of t1~c’

linear operators W(t ,a), W
~0
(t,a) and 1W~~ (t ,a)R(a)}. We

• denote the resulting operator by W1(t,a), i.e.,

W1(t ,a) = W(t , a) * W~0
(t ,.t) *

and write the above term in Eq. (3 .29 )  as

37
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”
da W( t ,a)W 1(t ,a)

Now let Wa(t ,a) be the adjoint of the system W(t,a).

Since W( t ,a) = Wa(a ,t), the above expression can be written

as the convolution of two linear operators — Wa(a ,t) which

is physically unrealizable (noncausal), and W1(t ,a ) whi ch

is physically realizable (causal). Henc e , the first term

of the LHS of Eq. (3.29) can be written as

Wa 
* ~,q w * W

1Rco w

Using the same argument for the rest of the terms of

Eq. (3.29), this equa tion become s

Wa * W * W~0 ~ W
1R + kWa 

~ * W~~ * = Wa(at)

* {E[y (t) u(a)]}

or

*

or

~ja *~~j *~~j +kw5 * w * W  r~~W
a(a t)Co — — Co

- - - * (E[yd(t)u(a)]R~~
(a) ) ~ W(t ,a)

If we substitute the results  of Lemm a 3.1 into the

above equation, we obtain immediately the result 
•

Wa * W * W + kw a * W * W = W a * S  (3.29)

• 

- 
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for

Q.E.D.

Equation (3. 29) holds onl y for  t�t
0 

and involves

linear operators and their adjoints. It can therefore be

solved using Wiener ’s spectral factorization techniqu es

[l,2J . The solution is developed in Eqs. (3.31) through

(3.35) below . Before we proceed , we substitute for W an

iden t i ty  syst em wi th  ~~(t-T) a s i t s  impulse response. This

step is in line with the original formulation of the

problem . Equation (3.29) thus reduces to

(Wa * ~ + k)* W~0 
= ~

a 
~ (3.30)

Let

Wa * w ÷ k = M a * M  (3.V1 )

where Ma is the phys ical l y nonrealizable (noncausal)

adjoint of some operator M. Thus

(3.3?)

or

M * = [ M
a]-l * W

a 
* S ( 3 . 3 3 )

where is the inverse of the system Ma in the sense

of Theorem 2 . 2 .

Next , the right hand side of Eq. (3 .33) is written

as a “sum” of two systems described by the operators La

and L2, where .L2 is causal and L
a is noncausal . That is
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(3 .34)

Thus

M * W  = Lco 2

or

= M~~ * L2 (3 .35)

Equation (3.35) gives the impulse response of the

open-loop cascade compensator W~0 in terms of the

parameters of the systems DS1 , DS2 , the noise processes

w, v , and the Lagrange multiplier k(t), all imbedded into

and L2. The next step is to lay bare the structure

of M 1 and L2 in terms of the system parameters , and

obtain a realization of W~0 in the more useful state-space

form . To accomplish this , we carry out in the sequel , t h e

mathematical operation s described by Eqs. (3.31) through

(3 .35) direc tly in state-space. To curb the prol iferation

of symbols , we deno te by u 1 and y1 the scalar input and

output , respectivel y, of any given dynamic system .

Furthermore , we use the symbol “4— ” to denote the

equivalence between the state-space and the impulse

response representat ions of systems .

Theorem 3.3

Let (F ,g , h ; t 0, O) be a real izat ion of W , i . e . ,

W — ~ (F ,g,h;t 0, O)
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Furthermore , let

Wa 
* W + k  = Ma * M

where Wa is the noncausal adjoint of W , Ma is the noncausal

adj oin t of some opera tor M , and k>0 . Then (F ,g,h ,Y ;t0,0)

is a realiza tion of M , where

and

h =

Here T is a symmetric , nonnegative definite nxn matrix

sa tisf ying the Riccati Equation

T = - Tgg ’T + TF + F’T + h’h (3.36)

subject to the initial condition

T(t0) 
=

Proof

From Theorem 2 . 2 .

wa .~—~ (-F’ ,h’ ,-g ’ ,t0,0)

Denoting the s tLtes  of W and wa by x and X
a 

respectivel y,

• we have



x F 0 x g
= - + - - -  U Ix h’h ; -F’ X 0

Wa * W + k < > y 1 = [0 -g ’ 
+ ku1 

(3 .37)

x (t 0) 
— 

0

x ( t 0) 0

We let

M <—> (f ,&,h ,9~;t0
,0)

Therefore

M a(—> (-F’ ,h’ ,-~~’ ,~~;t0,0) -

If we deno te by ! and !a the state vectors of ~
‘-1 and

Ma, respectively, we can wri te

;y :~~ ~~~ 
+ 

~~7; 
U
i

y1 = [th  -& ‘] 
j 

+ i~~u1 (3.38)

—a

8(b ) 
— 

0

0

j_~~~~~~~~~~

_

i:I ~~~~~~~~~~~~~~~~~~~~~~~~~~~

- -

_~~~~~~~~~

•

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

: - •--~~~~~ 

• 

---• J



Equation (3.38) obviously has a sli ghtl y different form

than that  of Eq. (3 .37) . To f ind F ,~~, h , and 2., we trans-

form Eq. (3.37) into the same form as Eq. (3.38) . The

following equivalence transformation is used for this

purpose ,

A ‘nxn flXfl 

T(t) ‘nxn

so tha t

= 
O_ and 

t~~~~~~~
( t )  =

—T(t) I T(t) 0

From Section 2.2, we thus have

x F 0 x
+ — -

-T + TF -F ‘kg

h’h + F’T

(Wa 
* W + k)4—~ y1 

= [g ’T .g ’] + ku I

• x ( t 0) 
— 

0

0

(3 .39)

IL 
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compar ing Eq s. (3 .38) and (~~.39), we note that

F = F; ~ 2. = k

Tg = h’v’k (3.40)

g’T = h/k (3.6])

h’h = -T + TF + h’h + F’T (3.62)

Equa tions (3 .40), (3.41) together wiLh the requir~ n ’n L th at

k>O imp ly that T is symmetric and nonnegative dei ini t e ,

• and that

h = g ’T (3.43)

Furthermore Eqs. (3.42) and (3.43), and the initi •al

condi tions of 1~1 imply that the nxn matrix T satisfi c~;

T = - -j~- Tgg ’T + TF + h’h + F’T (3.46)

T(t0) = 0

Q. E .D.

Hence M and Ma are given by

s = Fs -I gu 1

M —> y 1 = g’Ts + /k u1 (3.45)

s(t0
) = 0
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• 
~-a 

= _ F ’ S
a 
+ )i~ 

‘rgu 1

• . 
• 

Ma ~~~~~ > y1 
= -g ’s3 

+ 1k u1 (3.46)

= 0

Example 3.1

The following example illustrates the decomposition

technique of Theorem 3.3. Let W be given by

x = -x + U

z

x(t0) = 0

Let k1 . Therefor e T is given by

T = -T2-2T + 1

T(t
0
)= 0

Solving the above Ricatti equation we obtain

T = (/2-1) + (l~ /2)e 2j~~~~~
tO)

For t0—> -~ we have

T = /2-1

Thu s a s tate space representa t ion  for ~1 in the stead y

state is

S -S + u 1
y 1. = (/2—l)s +

s( t
0

) 0

45 
S

• 
— - - - - - - -  - - - -• --~~~~~~~~ -
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4 
As a check , we Lap lace t ransforin the above equation

to obtain the transfer function N(s) of N. Thus

s+ /2M(s )  =

From classical spectral factorization techni ques , we have

Wa * W + k =  —
~~

-j- x

1 - s
2+2

-s +1 -s +1

— - sf /2  s4 /2
— X

or 

N (s )  = 

-

Theorem 3.4

Assume tha t we ar e given (a) the system S~ * S~~ S 3 ,

where S~ and S~ are adjoints of some causal s y st e m s  S1 and

and S3 is a causal system , (b) the following realiza-

tions for S1, S2 and S3

S1 ~ —> (F 1, g1, h1, 2.i ; t0, 0)
nxn nxl  lxn lxi

S2 ~—, (F~ , g2, h2 ; t0, 0)
- nxn nxl lxn

S3 ~~—> (F 3, g3, h3, t0, 0)
mxm mxl lxm

I
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and (c) the decomposition rule

S1 S2 * S3 = P1 
I~ 1 7

where is the adjoint of some causal system P1 and P2

is causal . Then , P 2 has the realization

P2 ~ —> (F3, g3, Y; t0, 0)
mxm mxl

where

Y = 2.1 g~U1 + g~U2

U~ = U1F3 + F~U1 + h2h3

• U1(t0
) = 0

f 

U2 = U~F3 
+ F~U2 + h~g~U1

U2(t0
) = 0

Alternatively, Y is given by

U1 
F ’ 0

-
~~~~~~

- = ü ~~~~~~~~~~~~~~~~~~~~~~ u ÷ UF 3 + 
h2h3

U2 2nxm h~g~ F1 2nxm (2nxm) (nixm) 0

nxm nxn nxn

(2nx2n)

U(t0
) 0 (3 .47)

= [L 1g~ gj] U
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Proof

Let ~ F and r be the state vectors of S’
~ S~~la ‘2a .3 1

and S3, respectivel y.  Then S~ ~“ S3 has the rca]iza-

t ion

_ _ ~ 3 -~~~~~~~~ -

= 
_ _~~~~~~~~:~~~~~~~~ _ _ L ~~~~~~~~ _ _ 

~~~~~~~~~~~~~ ~ 
~~~~~~~~~~~ ~“

~la ~ -hj g  -F~ ~ia 0

3

y1 = 
[ 
0 —2.1g -gj 

] 
( ~~.

1e ’ ~~)

a

To decompose the above realization into P~ and P 2, ~.-e nufte

use of the following equivalence transformation on Eq.

(3.48),

i o 0
(mxm) (mxn) (mxn)

— 
U1 1 0

— (nxm) (nxn) (uxu)

0 1
(nxm) (nxn) (nxn )

It is easy to verif y that

48



0 ‘ 0
(mxm) (mxn) (nixu)

-U 1 r 0
— 

— (nx~t) (nxn)  I (nxn )

0
(nxm) (nxn ) (nx n)

and tha t

o o : o

0 0

U2 0 : 0

The resul ts are

A I 
A

F3 : ~ : o

I~I = 

~EIIIr~I~E~IIiIEII IE~Z z~~~~ z~~~

A U2F3+h 1g2U1 
~~~~~~~ -F ’

~la c.’ ., fl ’ ~1g2 1 ia 0
+r 1v2 u2

= [~1g~u~+gju~ -2.ig~ ~-gj ] ~
‘la

0

~2a (t O ) = 0

~1 (t 0) ~~0
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The P2 part of the decomposition can be i den t i f i ed  b y

inspection . Thus

A A
= F3 F~3 + g3u1

y1 
= (2.1g U 1 +

where U1 and U3 are given by

= U~F3 
+ F2U1 + h2h3 0

= 0

and

U2 
= U2F3 

+ F~U2 + h g~U1

U2(t0
) = 0

U
Defining U = -j1 , and augmenting the differential

2

equa tions in U1 and U2, we obtain the equation (3.47)

Q.E.D.

Examp le 3. 2

The above decomposition technique is i l l u s t r a t e d  by

the following examp le . Let S~~, S~ and S3 b y given by

S~ ( > (2 , l , _ l , l ; L
~~

O)

S~ 4— -> (l,1 ,-1;t 01 0)

• 

. 

S3 (
— -, (-2 ,l ,l;t 0 0)

50
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such that S~ * S~ * S
3 

is g iven by

-2 0 0

x = 1 1 0 x ,~ + 0 ti
1

0 -1 2 z 0

A
‘ii

x

y l = [0 1 1]

0

x ( t 0) = 0

Z ( t 0
) 0

From Theorem 3.4 if S~ S~ S3 = P~ + 
~2’ 

thOu P2

is given by
a = - 2 a + u 1

y1 = (U 1 + U2)a

where

• 
U1 = -3U1 + 1

U 1(t 0) = 0

and

• U2 = -41J2 + U 1

U 2 (t 0) 0

51
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Solving for U1 and U2, we obtain

- U1( t)  = 
4 

- 4 e~~~~~~ O~
and

— j.. I. -4(t-t0) 1 -3 t 21üU2(t) — 

12 - 12 e . - e . e

To find the steady sta te values of U1 and u2, we let

and obtain

1 — 3 U 2 — 

12

Therefore , in the stead y state

a = -2a + u 1
5

~
yi r ~ ~

or
_ 5/ 12

~~~~ ~~~~

As a check , we compu te P2 below via cla ssic a l facto ri ,’at ion

techniques . Thus

s~ * s~ * s3 = 
(-

~~~
-2 + i) 

(~~~~~~~~~~
-

~~~~~) 
( :~~

)
I — s + s \ /  1 \ I I

= 
k~~s42J ~-s+1/ ~ sI 7.

Therefore

j  

.
. 

P2 (s) =

—
~~~~~~~~~

• ~~~~~~~~~~~~~~~~~~~~ --

. 

_________



where

A = (~~~)Ls ’H) 
~s= -2

S
— 12

or

~~~
, ~~L12~.2’~~ 

— s+2

Lemma 3.3

The L2 part of the decomposition ~ivcn by Eq. (3.34)

has the state space representation

a = (A-Kc)a + Ku 1

L2 
—> y1 

= J~ g ’{1J 1 + U2]a 
( 3 . 14 9 )

: 
a(t0) = 0

where U1 and U2 are ob tained from

U1 
= F ’U1 

1- U1(A-Kc) 
-I- h’c ( 3 . 5 ( ) i )

U1(t0
) 0

U2 = (F’ - 
~~~~ Tgg ’)U 2 + U2(A-Kc) - T~ g

’ ti
~ 

(3 SOb)

U2(t0
) — 0

Proof

The proof follows immedia tely from Theorem 3.4.

I 
Q .E .D.

The next theorem is the key result of this chapter .

~~~~~~~

-- 
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Theorem 3.5
1

The optimal compensator W~0 
= M * L2 where ti and

are defined by Eqs.  (3.31) and (3 .3 6) , respectivel y, has the

following realization

a A-Kc 0 a K

= 
1 

+ z
b 

~K 
gg ’Y F-1k gg ’T b 0

u = [-~-g ’Y - .~- g ’T] F~J
Here K and T are defined by Eqs. (2.9) and (3.44)

respec tively ; and Y is an nxm matrix given by

Y U1 + U2

where

U1 = F’U1 + U1(A-Kc) + h
’c

1J1(t0) = 0

U2 
= (F ’ - ~~~ Tgg ’)U2 + U2(A-K c) - Tgg

’U
1

U2(t0
) = 0

Al ternatively . Y is given by

1 U1 F’ 0 U1 U1 
h’c

+ 
- - - -  [A -K c] -I

U 2 -Tgg ’ F ’~~/k Tgg ’ U2 
U2 

(1

Ii
$ 1

~ 
= [ I  ‘ 1nxn nxn j  U2

I
_ _ _ _ _ _ _ _  -----—.- 

— — —•-.• -- --  - - • - -------
--

•
— I



Proof

The proof fol lows immed i a t e l y  from Theorem 3.4 , Lemma

3.3, and by augmenting the state vectors of M 1 and L2.
Theorem 3.5 thus gives an explicit state space realization

of the optimal compensator W 0.

Q.E.D .

3.5 DISCUSSION OF RESULTS

The following comments about the design of the

op tima l compens ator W 0 are in order . First , f r om Eq .

(3.35) the optimal compensator is a cascaded combination

of dynamic systems L2 and I~(1. It is obvious from

Eq . (3 .49) tha t L2 can be viewed as a Kalman-Bucv f~ 1t.er

• A(t,T) for the system DS2 with the output of the filter

mul tip lied by Y. In block diagram form , the cascade

compensator is shown in Figure (3.2) he1o~i. Thus the

separation property of the minimum mean-square compens.’i t.or

in the sense of the LQG problem becomes iinincdiate].y c1~~ar.

Second , from the structure of the compensator , it is readil y

apparent that the stability of the Kalman-Bucy filter p l~t’.-s

a major role in the stability of the compensator and t.he

overall system . This in turn is tied to the solution of the

Riccati equation for the f i l t e r  error covariance P ( t ) .

Furthermore , s t ab i l i ty  of the Ricc a t i  equa t ion  (3.64) for T

and the d i f ferent ia l  equation (3 .47)  for U p lay the key

roles in the s tabi l i ty  of the system . More on this top ic

will be presented in Chapter 5. Third , the presence of the

55
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Lagrange mul tip lier k , which is always pos it ive , assures

the existence of proper inverses [Ma]_] and H ’. The

compensator is therefore also always proper . , Final l y, the

compensator equations contai.n k as a parameter . The

choice of k is left to the discretion of the system

designer who chooses that value for k which satisfies the

constraint

E[u2(t)] ~;F~

_ _ _ _ _  

)

~ 
/ t ) I~~~ ~

Ka 1 man - Bu c y ~~~-. 
—.

~~~-~
----- —_.----

~~• Filter

Compensator P1,ant

Note: S(t,T) = c(t)A(t , i )

OPTIMAL COMPENSATOR STRUCTI RE

Figur e 3 .2

5b 
•
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CUAE ’TER 4

THE CLOSED LOOP PROBLEM

4.1 GENERA L

In Chap ter 4 , the optimal tracking problem in the

closed-loop configuration of Fig. 1 .1 is dealt with.

Once again , due to the nonstationary nature of the system

under study, we formulate and solve the problem in the t i i e

domain .

It should be recalled [2-5] that for the optimal

tracking problems of the class studied hero , th e sLarrin~-~

point is the formulat ion of a su i t ab le  p e r f o r m a n c e  ind i~~
(P1) in terms of the system parameters. in the open-loop

case [2 , 3 , 2 2 ] ,  such a formulat ion p r e s e n t s  no di fficu 1~~’ .

However , the case of the closed-loop problem is entirely

d i f f e r e n t .  For example , from Fig. 1. 2 , a p e r f o r m a n c e  index

for the closed-loop t racking  problem is

L = E
~
[yd(t) 

- y ( t ) J 2
~

= E~y~ (t) - 2 y d (t
~~~~t)  + y2(L)~ (4 • 1)

where E is the expec ta t ion  operator . For s imp l i c i ty ,  l e t

us assume tha t  the feedback sensor has u n i t y  ga in  and no

memory. Let us proceed to express y ( L )  in terms of the

system parameters .  Thus

y ( t)  fw(t ~ s)~ fG (s~ P ) [ 7 ( P )  - y ( p ) ] d p~ ds

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



or

y ( t )  + fw(t~s)fc (s~P)Y(P)&i L)d~
;

fw(t,s)fG (s ,P)~~(P)dP(k ( 6 . 2 )

It is immediately obvious from Eq. (4.2) that in order to

obtain y(t) for further manipulations as part of Eq. (6 .1),

one needs to solve a double-integral e q u a t i o n  in v(t ) —

a not so easy task ! As mentioned above , no such d i f f i c u l t y

arises in the open-loop case . This is precisely wh y t h e

open-loop approach has been used so extensive ly in t h e  p~~st

as an intermediate step towards solving the closed—l oop

tracking problem .

We overcome the above-mentioned difficultTi eS ass - i .~t d

with th t ~ closed-loop tracking pr obl em by cnip lovit -i~’ the

techniques of the “Algebra of Compositions of F u n c L i o r i a l s ” ,

f i r s t  developed by Evans and Volterra [18 ,19] in t h e course

of thei r studies of integral equations. The Al gebra ol

Compositions is used here to explicitl y forT ilate the

system performance index to be minimized in terms of the

system parameters. Variat ional  techniques are then USed t o

derive a condition which the optima l compensator must

satisf y.  This condition turns out to be an i n t e g r a l

equation similar to the one derived for the open-loop

problem ot the previous chapter .

58 

— _



______________________________________

The organization of th is chapter is a:; follows . The

nex t sec t ion , Section 4.2 is devoted to the st ’ate—space

formulation of the closed-loop tracking problem , with which

we are concerned. Section 4.3 deals with the “Al gebra of

Compos it ion” and its app lication to system theory. In

Section 4.4, an integral equation which the optima l closed-

loop cascade compensator must satisf y is derived. In

Section 4.5 , the integral equation is solved and a state

space realization of the optima l compensator is given .

Final ly ,  in Sec tion 4 .6 , a brief summary of the results of

this chapter and a conclusion are presented .

4.2 PROBLEM FORMULATI ON

Con sider a l inear , time-vary ing, sing lc-inpu t/sin~ le-

ou tpu t pl an t DS 1 , a reference system l)S2 and a feedback

sensing system DS3 int:erconnected in t he con f ig u r a t i o n  of

Fig. 4.1. The defining equations for the p lant DS1 and til e

reference system DS2 are the same as in Section 3. 2 , Chap~~-r

3, and are repeated below for convenience .

( x (t )  = F( t) x ( t) + ~~t)u (t)

DS 1: y ( t )  = h ( t ) x ( t )  (4 .3)

( 
x (t ~ ) =

q (t) = A ( t) ~~(t )  b (t)w(t)

y~~(t )  =

DS2 : (4. 4)
=

P0

~ .

________ • — - ~~~~~~~~~~~~~~~~~~~~ - — -  - -  • - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — --



where x ,tp , F,g,h ,u ,A ,b ,c ,w are exacily as defined previousl y

in Section 3 . 2 .

The inpu t signal to the tracking system is modeled as

z( t) yd ( t) + v( t) (4 .5)

where {v(t), t~ t0} is a zero-mean , gaussian , white noise

process wi th positive-definite variance R giv en by

E[v(t)v(i)] = R(t)~~(t— ’t) , T~~T~’-t
0 

(4.6)

It is assumed that the variance Q of w defined by

E[w(t)w(T)] = Q (t)6(t—i) , Lt�t o (4.7)

is nonnega tive def ini te.

The sys tem outpu t y is sen sed by the feedback sensor

DS3 which is governed by the equation

a ( t )  = c~(t)~~(t) + ~(t)y(t:)

DS3 : y0(t) y(t)a(t) (4.8)

a(t 0) 0

for t�t~~. Here , a is an L-vector , the state of the feed-

back sensor , y0 is a scalar , the feedback signal , and t~~,

~~~, and y are continuous matrix functions of the time , which

are £x2., Lxl and 1x 9. respectively. The tracking error

y
~
(t) is defined as

y~ (t )  = yd(t) - y ( t )

t For the system performance index L , we choose a su i t ab l y

weighted sum of the mean-square tracking error and the
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mean-square control u. Thus

L = E[y~(t)) + k(t)E[u2(t)} (4 . 9 )

where k>O is a Lagrange multip l ier whose va lue is chosen

in the final stage of the design process to satisfy a

saturation-like constraint on u of the form

E[u2(t)J�B>O (4.10)

The closed-loop tracking problem can now he stated as

follows : Given the plants DSI , the reference system DS? .

the feedback sensor DS3 , the relevant noise statis t ics and

the constraint on u , des ign an optimal compensator in rho

closed-loop cascaded configuration of Fi g. 4.1 such th at

the cost fuctional L given by Eq. (4.9) is ii~inimi ;~:ed.

4 .3  MATHEMATICAL PRELIitI~ ARlES, ALGEBRA OF co :-1I ’OSITU t :: 01”
FUNC TIONALS [18 , 19J

Giv en two funct ions  f~ y , ç )  and g ( - , , ;) of two vari ab les

y and ~~, the function h(-,,f) defined by

Y
h(y ,~ )

is called product  by composition of two f u n c t i o n s  f and g

and is denoted here by

h =

If

j  
then f and g are said to be permutable. The operation of

‘ composition is evidentl y associative and d is t r i bu t ive , i . e . ,
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=

and

~ (~~ ih) =~~~~ 4- ?t~

where “+“ denotes ordinary addition . Powers of composition

for positive integral exponents are defined by

= ~2 ~n-l~ = ~n 
= fln-l

Power with exponent zero is defined such that. for any  f

and g
• *0* **ot g = g r  , -

and

*o *0 -r = g

Symbolically, then we can def ine  a “unity” function I SUC h

that

~ *0 )~OL = g  = L

Therefore for n funct ions  
~1’~~2 ’~~~

•
~~n of y and ~ the

• following series is well defined .

F(f 11 f 2 1 ---f ~ ) = t + ~~~~~l n  
+ k 2~~~~~~?. ,~~bn

+... 

Here k~ s are constants and n j s  and h
~
s are integers. The

series is called a functional  F of ~~~~~~~~~~~~
Fractional powers of composition of funct ionals  are

defined in the following manner . If for a given funct ion

h (y ,~~) ,  there exists another function g ( y ,~~) such tha t

_____



*n j cg = n

where n is a positive in teger , then we d e f i n e

~1/n

fr p *qIf ti = g for some positive integers p and q ,  then we

define

= ~q,’p and ~ ~b/ q

We say tha t -
~~~

- is a “Fraction of Composition with numerator
g

and denomina tor ~ if = 
~I. Two fraction —

~~
-
~~
- and

g1
are equal ~~ = ~2g1.

The following relationships are self evident

* *~ *g gh h ..
~
. g~~~.

= 
~~~~ 

= Ii; g
f fh h f

Negative exponents are defined by

*g
= gr

L

or by
*

It can be shown that [18] from any analytic func~:iou

Z(z 1,z2,. . ~~~~~ regular in the region around z1=z 2=

we can ob t ain a corres’ponding functional F(f1,f2...
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Moreover , if Z(z  ,~~ z ) i s  an i n f i n i t e  series which i s1 2  n
convergen t when the module z are s u f f i c i e n t l y sma l l , -then

the corresponding series F(f 1, f 2 .  . . .f~) is always convergent

wha tever f
r
’s may be , provided they are limited. That is ,

for all fr’s such that

I~r(i’~
)I< ’

Fur thermore , the algebra for the manipulations of the

functionals and their compositions is exactl y analogous to

ordinary algebra .

Integrals and derivatives of functionals and their

compositions are defined in exact l y the same fash ion  as

ordinary integrals and derivative s . Thus

dF
~~ (f 1,f2,--f ) is i tself  a new function by composition of

d~
*
F

Linear Systems
-

• The compositional algebra presen ted above is d ir ec t ly

app licable to linear sys tems . ~Thus two linear systems wi th

impulse response functions f(t ,~ ) and g(t , i ), when

cascaded , are equivalent to a system given by the impul se

response

h(t,t) = ff (t , c ) g ( o , T ) d J

Or , al terna tely, we can wri te

*

:~



Thus signals in a particular part of an interconnected

linear system can be represented as functionals and their

composi tions , operating on signals existing in some other

part of the system . The fact that these functionals and

their compositions can be manipulated just like functions

in ordinary al gebr a and calculu s , is of great value in

optimization problems .

4 .4 THE INTEGRA L EQUATION

In this sec tion , we derive a necessary  and s u f fi c i e n t

condition which the closed-loop optima l cascade compensator

must satisfy.

In order to keep track of the variables , as it. was

done in the las t chap ter , here too we choose to constrain a

functional u of u rather than u. Thus the revised cost

funct ional  L’ is

L’ = E[y~ - 2YdY ~~ y 2 ] + kE[u 2 ] (4 .11)

where

U = fW(t~ T ) u ( T ) d 1~ t > t 0

From Fi g. 4.1

e = z  - FWGe

or
(~~+ F(4~)e = z

or 
e = (t +



p Thus

y = [~~(Y + ~~~~~~1j Z  (4. 12)

and
** ‘~ *** — lu = [wc(1 + FWG) Jz (4.13)

For convenience , in wha t follows , we omit the “asterisk” .

Subs titu ting Eqs. (4.12) and (4.13) into Eq. (4.11), we

ob t a in

L’ = E {Y~~~2 Yd wc( l+Ft4c) 1]z~

+ ~[WG (l+FWG)~~ ]z~ + k~[WG(l+FWG)~~~]z~

App lying the calculus of variations , we let

G = G  + e Gc e

where G~ is the value of G which m akes L’ stationary , and

cC is the variat ion of C . Thus
e 

L’ = E[Y~-2Yd~ [W
[G+eG e](l+FW

[Gc+eGe]Y
~]z~

+~ [W [Gc+eCe ](l +FW [Gc+eGe J) _ l ]z
~

+ k~[W [Gc+eGe](l+FW
[Ce+eGeJy h]z~ (4.14)

The s ta t ionary value of is next found by setting

dL’
de c=0 ° k

1

67

• — - . —- - •-—. —.- - — —,--——————--— ——— —— —- —-- -~ 



Differentiating the right-hand--side of Eq. (4.14) term

by term with respect to e, we have

First Term

• d r 2 _
~~~~ 

LYd

Second Term

-
~~~~ E [_2Yd c e’ G 4 ~~~~ J ) ]z

= E {-2 Y d~ [WG C ~~
(1+FW [C

~ +eC~])~~ 
, 

e=O

+ ~~~~~~
- W [G +eG ]x(1+FWC )~~ ]z

= E1_2yd [-WG (l+FWG ~
2FWG +WG (l+FWC ) ~h] z

= E [_2Yd ~[~
WC FWG G+FwG 2+wG 1~FrWc Y1]z~

J

Third Term

t ~ E[[W [Gc+eG)(l+FW [Gc+eGe]Y4]z~~
J

= 2E[~~[WG~ (l+F~JGcYh]z~x 

=0

~~ ~[W [G +eC ] ( [c +E~C J ) ~~ ]z

= 2E[~[WG~ (l+FWG
CYh]z~x
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~[~
wG FWG l+FwG +WG l+Fwc l]~z]

Four th Term

k 
~~~~~~

- 

E[~ [W [G + e G ] ( l +FW [G +eC )Y 1]z~~
]

= 2k E[~ [WG C (l +FWG~ Y h]z~ x

~~~ ~[w [Gc+eG e]( l+F w [Gc+eG e]r 1]z~
] =0

= 2k E[~ [~ Gc (l +FWG c) _ l ] z~ x

t : ~[_WCcFWGe(l+FWCc)
_2

+WGe (1+FWGc)~~l]z~
]

We post-multip ly each of the above terms by the operator

(1+FWG
~
)2, gather all four terms and obtain

E [_2Yd ~
_WG

cFWG
e

+WCe (l+FWG c)~ z]

+ 2E[~ [WG c (l+FWCc) _ 1]z
~ ~[_WG cFWG e+WG e ( 1+FWG c)] 

~
]

+ 2kE[~[~G~
( 1+FWG C)

_l]z~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— o

_ _ _ _ _ _ _ _  - 
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Post-multip lying each term of the above equation by the

opera tor ( l+FWG
~

) and s imp lifying, we obtain

- 2E[~~
[ l+FW G]Y d~ ~~~~~~

+ 2E~~ [WG ]Z ~~ [WG Jz~
]

+ 2kE[~
[W
~
]z
~ 

[wc~]z~] 
0 ( 4 . 1 5)

Since Ge 0 for t<t 0 and arbitrary for t~ t0, Eq. (4.15)

can be rewr i tten as

E[~~
[W G ] z H [ W ] z

~~] 
+ kE[~

[WG]zM [W]z
~
]

= 
E[~YdH[W]z ]

+ E[~~
[FWC 

~~~~ 
[ W ] z ~

] 
(4 .16)

f or t�t 0.
It should be noted that

[WG
~
]z = ~~~T2fdTl W (t,T2

)G
~
((2,1 l)Z(Tl)

[WG~~] z  = fdT2f
dT 1 w(t , I 2)G~

(T2,t i)Z(Tl)

.
. [W]z W ( t , o ) z ( o )
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+r

[W]z = J1o 1 W(t ,o)z(o )

[F W G J Y d = ~~:3fth2fthi F(t ,7
3

)W( T 3,1 2
) G (T 2 , T l

)y
d

(T
l

)

where t �-r
3

�T
2

�T
1~~

t0, and t�o�t 0. Substituting the integral

representation for the operator representation in Eq. (4.16),

and in terchang ing the order of integral operators with the

expectation operator , we obtain the following integral

equa t ion .

~~~:2 JdT 1fd: W(t ,12)G (l 21 T 1) W ( t ,u)E[z(~ 1)z(o)]

+ W (t,T 2)G (T 2 , T 1)W(t ,~~)E[Z(T 1)z(o)]

= W (t,c)E[yd(t)z(o)]

+ ~~~:3~~~ :2fd: 1Jd: F(t ,13) W ( T 3, 12 )G (T 2 , 11)W (t ,~~~)

(4.17)

for t � T
3

’T
2

�.t
1

� t 0, and t ?o �t 0.

The key result of this section is given by Theorem

4. 1 below .

4 
.
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Theorem 4.1

The necessary and sufficient condition for the

physically realizable closed-loop cascade compensator G
~0

to minimize L’ is that it satisfy the integral equation

(4 .17) .

Pr oof

The necessary part of the proof is immediate from the

above derivat ion . The sufficiency follows from considera-

tion of the second variation .

Commen t

In Eq. (4.17), if we set F(t ,i)~~0 (which is equivalent

to breaking the feedback loop), the equation reduces to the

integral equation (3.17) for the open-loop problem . This

is , of course , what one should expect.

4.5 THE OPTIMAL COMPENSATOR

The optimal compensator G
~
(t,T) is obtained by solving

the above integral  equation in the t ime d o m a i n .  The

solution of Eq.  (4.17) follows along the l ines  of the

t solution of Eq. (3.17). It should be noted that the first

three terms of Eq. (4.17) are identical with the three

terms of Eq. (3.17). Therefore , the resul ts of Lemma 3 . 2 ,

and Theorems 3 .1 and 3 .2  are direc tly appl i cable here .

The following theorem summarizes the steps necessary to

convert Eq. (4.17) involving covariances into an equation

involving operators .
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Theorem 4 .2

The integral equation (4 .17)  and the fol lowing

operator equation are equivalent

Wa *W * G  + k W a * W * Ge — — e

= W a * S + S a * S * F * W * G c (4.18)

for ~~~~~ where Wa and Wa are , re spec tively, the noncausal

adjoints of W and W; and S is the Kalman-Bucy f i l ler

associated with the process z(.), and is given by Eq. (2.8).

Proof

The proof follows immediately if we substitute for

z(t) in Eq. (4.17), the in tegral

JW(t i i ) u ( t ) d -r . t~~i�t~

-

where o(•) is the innovation process associated w i t h  z(.),

and use the arguments developed in Lemmas 3.1 , 3.2 and

Theorem 3 .2 .

Q.E.D.

Since Eq. (4.18) holds for only t�t 0, and involves

linear operators and their adjoints , it can be solved vi a

Wiener ’s spectral factorization techniques . Once again ,

as was done in the last chapter , we set. W=6(t--m ) and obtain

the following equation

II - .
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or 

(Wa * W + k )  * G c = W a * S [ 1 ÷ F * W * G ~ J

(%.Ja * W + k) * G~ 
* [1 + F * ~.J * G ] 1  = ~a 

*

Let

* ~ + k = Ma 
* ?‘~~

where ~.1a is the noncausal adjoin t of M. Thu s

M *  C~ * [i + F * w * c
~
]
~~ 

= {~1a]_ 1 
* ~ a 

*

where [Ma]-l is the inverse of Ma in the sense of Theorem

2 . 2 .

Furthermore , let

[Ma]_l * Wa 
* S =

where L is a causal opera tor and L2 is noncausal . Then

M * C C [ l + F * w * c ~]~~~= L 2
or

or 

G
~ 

M~~~*L2 * [ l + F * W * G~]

C _ M ~~~* L * F * W * C  = M ~~~* Lc 2 CO 2

(l _ M *L
2
* F *W ) * G ~o

t1l *L

= [1 - M~~ * L2* F * Wr 1 
* M 1 

* L2 (4.19)

( 

..
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Equation (4.19) gives the impulse response of the closed-

ioop op t imal compensator in terms of the operators M , L2 , F

and W. Once again if we set F(t , T)~~O , Eq. (4.19) reduces

to Eq. (3.35) , the equation for the open-loop compensator

of the last chapter . The state-space realization of

Eq. (4 .19) is given by Theorem 4.3 below .

Theorem 4.3

A realization of the closed-loop opt imal  compensator

is given by

I I I I — —

a A-Kc 0 1 0  0 o l o
—— — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ F I F

• b 1 ‘ 1 I b

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 

~ gg ’Y gg ’ T F  ° ~~~~~~~~~~ ~gg ’T 

a 0 0 0 0 i A-Kc 0 
-t I —  .

I ‘ 1 F
0 0 0 0 1 j ~gg ’Y ’

1 ‘T

K
0
0

+ 

0
0
0
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a

u [ 0 0 0 0 ~~~g ’Y ~--~~ g ’T ] 
~

where K , T and Y are given by Eqs . (2.9), (3.36) and (3.1~7)

respectively.

Proof

From Chap ter 3 , 14 ’ *L2 has the realization given by

a (A-Kc) 0 a K
= - 

~~gg’Y~~~F-~~ gg ’T 
-

y1 g ’Y -~~~ g ’ T ] (4 . 20)

where K and T satisf y the Riccati  equations ( 2 . 9)  and

(3.36) respectively, and Y is given by Eq.  (3. 4 7 ) .  The

realization of 1-M~~ *L 2 * F * W is thus given by

76

• •~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • .  ~~~~~~~.



I I I
x F i 0 , 0 0 x g

- -I- - - - -- - _  - . •  --

a Eh Q - I 0 I 0 ci 0
--  — — - - - - I - - — — — -  _ 1 - J _ .
a = 0 I K A-Kc 0 a + 0 U1

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~

I ~-~~gg’T

I I I 
—

- x
I ‘ I 

— —

1 I l  ci
= 0 ‘ 0 i -~ g ’Y i+~g ’T - +

Thus (1-Ma *L2 * F * W)~~ from [21] has the state-space
representation

F O~~~~~~~~~~~ Y j ~~~~~ ’T ~~~

.

~h I ‘ ~ 0 0
- - _ L _ _ _ _ _ ’ _ . _

~~~~~~~~~~~ L -

0 1 K A- ICc 0 0

r 1gg~y ’ F
— I ‘-~~ gg ’T

1

- .. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ::: T: 1 ~~i



A
x

y1 — [ 0 0 ~~g ’Y -~ g ’T ] ~ + u1

(4 .2)

Theorem 4.3 will follow immediately if we augment Eq. (4.20)

with the above equation .

Q.E.D.

Theorem 4.3 gives a state-space realization of the

optimal closed-loop cascade compensator . The realization

is explicit and can be easily computed from a knowledge of

the sys tem parame ters . Here also , the compensator equations

contain k as a parame ter . The value of k is chosen by the

designer via trial and error or graphical techniques such

that the constraint equation (4.10) is satisfied.

4.6  SUMMARY AND C(M~CLUSION

In this chapter , the closed-loop cascade compensator

design problem for nonstationary systems was formulated

and solved . The approach used was a time-domain one , and

the final design of the compensator was given in terms of

its state-space realization .

The usefulness of the closed-loop desi gn versus the

open-loop design of the last chapter lies in the fact that ,

in general , closed-loop systems are less sensitive to

t
: 
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.. system disturbances and variat ions in system parameters .

BUt before such a system is imp lemented in pract ice , one

has to be assured of the stability of the loop . This

important question , that of the stability of the closed-

loop as well as the open--loop system , is the topic of the

next chapter of this dissertation .

I 
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CHAPTER 5

STABILITY

5.1 GENERAL

In Chapter 5 we derive the conditions for the stability

of the open-loop and the closed-loop compensators , as well

as the resul ting systems.

It was pointed out in Chapter 3 that the stability

properties of the Kalman-Bucy filter associated with the

input signal z ( ’)  p lay a maj or role in the s t ab i l i ty  of the

open-loop system . It will be shown in the sequel tha t the

same holds true for the closed-loop system as well .

This chapter is organized into five sections . In the

nex t section , Sec tion 5 .2 , we present a brief introduction

to the stability theory , and state condi tions for the

stability of Kalman-Bucy filters. Sections 5.3 and 5.4

deal , respec tively, with the stability of the open-loop

and the closed-loop systems . Finally, in Section 5.5 , a

brief summary of our results and a conclusion are

presented.

5.2 STABILITY AND THE KALMAN-BUCY FILTER

We start with a few basic theorems of the stability

theory . For the definition of the ternis used here , the

reader is referred to [10] and [24]. Consider a linear ,

• dynamic autonomous system

x ( t )  — A( t)x( t) (5. 1)
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Theorem 5.1 [24]

The zero state of Eq. (5.1) is asym p totical ly stable

if there exist positive numbers k 1 and k 2 such tha t

II~(t ,t0)II < k1e
2(t tO)

for any t 0 and for all t�t0, where IHideno te s the

Euclidean norm . Al ternat ively ,  th e zero s ta te  of Eq. (5. 1)

is asymtotically stable if

II~(t,t0)If-’- 0 as t-~ z

Note that  for linear sys tem , asymp tot ic stabi l i ty also

imp lies exponential s t ab i l i ty .

Nex t , consider the linear dynamic system E given by

x(t) A(t)x(t) + B(t)u(t) (5.2a)
E:

y ( t )  C ( t ) x ( t )  (5 .2b)

The bounded-input bounded-output (BIBO) stability [24]

of E requir es that

fI~~(t)~~(t ,T)B(T)IldT<k<a

for any t and all t> t 0.
We will be concerned here with the total stability, or

T-stabili ty of Systems [24] which requires  tha t  for any

initial state , and for any bounded input , the outpu t as

well as the state varLables of the system E are bounded .

The following theorem gives the conditions for the T-

stability of E.
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Theorem 5. 2 [24]

If the matrices B and C in Eq . (5 2) are bounded on

~~~~~~~~~~~~ 
and the zero-state of x=Ax is asymptoticall y stable ,

the system E is T-stable.

The following two theorems state the conditions for

the boundedness of the solutions of matrix Riccati equations,

and the stability of Kalman-Bucy f i l ters .

Theorem 5.3 [10]

Consider the linear dynamic sys tem Fl given by

x( t) = A(t ) x (t) + B(t)u(t)
Fl:

y( t) = C( t )x ( t )

and the matrix Riccati equation

P( t) = A( t)P( t) + P( t)A ’ ( t) + B( t)K 1(t)B’ 
(t )

- P(t)C’(t)K2
( t) C( t)P ( t) (5 .3)

Then if (a) ACt) is continuous and bounded , (b) C(t), B(t),

and K2(t) are p iecewise con tinuous and bounded , and

fur thermore , that K1 and K2 are positive definite , (c) the

homogeneous system x=Ax is exponentially stable , the

solution P( t )  of the Riccati  equation (5.3) with the initial

condition P( t 0)— P 0>0 is bounded , and converges to a non-

negative definite matrix P( t )  as t
0
÷-a . ~~(t) is a so lution

Eq. (5.3) .

Theorem 5.4 [io]

Consider the measuremen t process z ( .)  of Chapter 2 and

its associa ted linear model , whose governing equations

L ~~~~~~ 
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(2.3) and (2.4) are rewritten below

z (t )  >‘d (t )  + v ( t )  (2 . 3)

~~ t) = A( t )~p ( t ) + B( t )w( t ) -

(2 .4)
= C( t) 4 ( t)

Then if (a) A(t) is continuous and bounded , (b) B(t), C(t),

Q(t) and R(t) are p iecewise con tinuou s and bounded , and

furthermore , that Q(t) and R(t) are positive definite , and

(c) the system given by Eq. (2.4) is either

I. both uniformly comple tel y recon struc tibl e , and

uniformly comp le tel y con trollable , or

II. asymptotically stable .

• the Kalman-Bucy filter given by Eqs. (2.8) and (2.9) is

asymptotically stable .

5.3 THE OPEN-LOOP SYSTEM

In this section we derive the condi tions for the T-

stability of the open-loop compensator and the overall

sys t em .

Recall from Chapter 3 that the impulse response

of the open-loop compensator is given by

= M~~ * L2

Note from [24] that the T-stability of two or more tandem-

connected linear systems guarantees the T-stability of the

resulting overall system . Therefore for W~0 to be T-stable

it is sufficien t that M~
’1 and L2 be each T-stable.  First

we consider M ’.



From Chapter 3 , th e s ta te  space representa t ion of

b = (F- gg ’T)b + g u 1 
-

-4- 4. (5 .4)

where , T(t) satisfies the matrix Riccati equation

T — TF + F ’T + h ’h  - Tg g ’T (5 .5)

T(t 0) = 0

Obviously, the boundedness of T(t) is a necessary condition

for the T-stability of M ” . The fol lowing theore m

establishes the conditions for the boundedness of T(t).

Theorem 5.5

Consider the dynamic system DSI given by Eq. (3.1) and

the Riccati equation (5.5). If (a) F(t) is continuous and

bounded , (b) g ( t ) , h(t), and k(t) are piecewise continuous

and bounded , (c) k(t) is positive definite , such that

exists for all ~~~~ and (d) the zero-state of the homo-

geneous system x=Fx is asymptotically stable , the solution

T(t) of the matrix Riccati equation (5.4) is bounded .

Proof

The proof of Theorem 5.5  is an immediate consequence of

Theorem 5 .3 .

Next , we prove in Theorem 5.6 that  the conditions

under which T(t) is bounded are also sufficient to ensure

. , 
the T-stabili ty of M ’1. For the proof of this and a
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0- subsequent theorem , we need the following lemma .

Lemma 5.1

If F is a negative definite matrix , the homogeneous

system x=Fx is asymptotically stable .

Proof

Choose a positive definite quadratic form

V = x i x

Therefore

V = 2x ’x = 2x ’Fx

For negative definite F, V is negative definite , and

therefore , from Lyapanov ’s stability criterion [29], x=Fx

is asymptotically stable.

Q . E . D .

Theorem 5.6

Under the assumptions (a) through (d) of Theorem ~~ 5 ,

the system 11 given by Eq . (5.4’) is T-stable. 

-

• “- 
- First consider the homogeneous system

b = (F- ~ gg ’T)b

The state transition matrix S(t,T) of M 1 is given by

S(t,i) exp [f(F_ ~ gg ’T)do
]

- 

_ exp [J ~ do] 

~~~~~ 

gg ’T da]
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=

where $
1

(t ,T) and •2(t ,T) are the state transition macrices

associa ted wi th F and - gg ’T respect ivel y. Denoting the

Euclidian norm by U (( . we have

f~,(t ,T) 1k U~1(t ,-r) It t I’~’2 (t ,T) (5.6)

From the assumptions and the consequence of Theorem 5.5 ,

gg ’T is bounded and positive semidefinite , and ther efore

- gg ’T is bounded and negative semidefinite . This

implies , from [8] that

II~2(t ,T)II <K1
<oc

Fur thermor e , since xFx is asymptotically stable , Theor em

5.1 implies that

- • . 
It~j(t,T)II— ’~O as t - ,~~T

and therefore
• I~ (t ,t) It-~O as t -’-~

Theorem 5.5 also implies that g and ~~~
- g’T are bounded .

Therefore is T-stable .

Q.E.D.

Finally, we proceed to establish conditions for the

T-stabil i ty of L2. Recall from Eq. (3.49) that the

boundedness of the nxm matrices U1 and U2 is a nec essary

condi tion for the T-s tabil i ty  of L2 .  Here U 1 and U2 are

1 - ’ -
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solutions of the first order linear matrix differential

equations (3 .50a) and (3.50b) respectively. The following

Lemma 5.2 which establishes conditions for the boundedness

of the solutions of linear matrix equations will be

required in the subsequent discussion .

Lemma 5.2

Consider the matrix differential equation

X(t) = A (t)X(t) + X(t)B(t) + C(t) (5.7)

X(t0) =
Here X , A , B, C and D0 denote , respectivel y, matrices of

dimensions nxm , nxn , nucm , nxm and nxm . The elements of A ,

B and C are bounded , piecewise continuous time functions ,

and is a matrix of constant coefficients. If both A and

B are stability matrices [25], that is , both

= A (t) X (t)
and

= B’(t)X2(t)

are asymptotically stable , the solution X(t) of Eq. (5.7)

is bounded .

Proof

Let •1
(t , t )  and ~ 2

(t , t )  be the state transition

matrices of the two matrix differential systems

P — A P
and 1 1

P2 B

such tha t

_ _  -- _ _ _ _  ~~~
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I

I
.

= A~1(t,i); ~1(t,t) =

d A  A A

~~~ 2~~~~~ t~~ = B’~ 2(t,t); •2(t,t)

Then from [26], the solution X(t) of Eq. (5.7) is given by

X(t) = 

f~~i(t~T)C(T)~ 2(T~ t)dT

Thus t

IIX(t) II~/ 
jI~1(t ,T)C(T)IJ fl~2 (t , t) Udt

Since B is a stability matrix , from a theorem in [8),

is bounded . That is

and therefore ,

II x (t ) U �R ij
1’

Ii~i(t~ T ) C ( 1 )U d T

Furthermore , asymptotic stability of P 1 = AP1 implies that

fIr ( )c( ) I~Ii�K2
<cr

Thus f PC(t)IjsK1~ 2<cc , and hence X(t) is bounded .

Q.E.D.

Using the results of the above lemma , we state and prove

in Theorem 5.7 below the stability conditions for L2 .
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Theorem 5.7

Consider the dynamic systems DS1 and DS2 given by Eqs .

(3.1) and (3.2) respectively. Under the assumptions (a)

through (d) of Theorem 5.5 concerning the parameters of DS].,

and the following additional assumptions (e) through (h)

concerning the parameters of DS2; (e) A(t) is continuous

and bounded , (f) b(t), C(t), Q(t) and R(t) are piecewise

continuous and bounded , (g) Q and R are positive definite ,

(h) the dynamic system DS2 is either

I. both uniformly completely reconstructible and

uniformly completely controllable , or

II. asymptotically stable

the dynamic system L2 given by Eqs. (3.49) and (3.50) below

is T-stable.

a = (A-Kc)a + Ku1
L2 

-

~ 
y1 = ~ g ’[u 1+u 2Ia (3.49)

a(t
0
) = O

where

= F ’U1 + U1(A-Kc) + h’c (3.50a)

= 0

U2 = (F’-~~~Tgg’)U2 + U2(A-K c) 
- Tgg ’U1 (3 .50b)

= 0

Proof

First consider the homogeneous part of Eq. (3.49) given

by
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a (A-Kc)a (5.8)

Assumptions (e) through (h) above , and Theorem 5.4 imply the

asymptotic stability of the Kalman-Bucy filter associated

with the system DS2. Consequently, the homogeneous system

of Eq. (5.8) is asymptotically stable, and futhermore , K is

bounded.

Next , we prove that under the assumptions of the

theorem , U1+U2 is bounded. In Eq. (3.50a) for U1, F’ and

(A-Kc) are stability matrices. Therefore , from Lemma 5.2 ,

U1 is bounded . Furthermore , in Eq. (3.50b) for U2,

F’-~~ Tgg ’ is also a stability matrix from Theorem 5.6.

Thus U2 is also bounded. Hence U1+U2 is bounded and the

T-stability of L
2 follo~zs.

Q.E.D.

The above discussion establishes the conditions for the

T-stability of the open-loop compensator W
~0

=M
~~*L2.

Since the impulse response of the overall system is W~•W ,

and since W must be T-stable in accordance with the

conditions of Theorem 5.6 , the overall system is T-stable.

In summary , we thus conclude that the conditions (a)

through (d) of Theorem (5.6), and the conditions (e)

through (h) of Theorem (5.7) guarantee the T-stability of

the open-loop compensator , and that of the overall system .

90 

—--—-— - -— - - -- —.--—----- -- —-  - “—- —-- ———---. - - - -~ .——--- -—-- - - - - - --- — -- -.- - -—------



5.4 THE CLOSED-LOOP SYSTEM

In this section we discuss the stability properties of

the closed-loop compensator and the closed-loop system of

Chapter 4. We show below that the stability of the closed-

loop system (but not necessarily that of the closed-loop

compensator) is a direct consequence of the stability of

and L2 .
From Chapter 4, we have

y(t) W * C *(l+F * W * ~~~ }z(t) (4.12)

where C~ , the impulse response of the closed-loop

compensator is given by

= ~1-M~
1 

* L2 * F * * W 1 
* L2 (4.19)

Substituting Eq. (4.19) into Eq. (4.12), and for

convenience , omitting the asterisk , we obtain

y(t) = W( 1— ~f
1L2FW) M L2 {l+FW(l- M L 2FW)~~ M~~L2 T~ z(t)

(5.9)

( Now consider the bracketed portion of Eq. (5.9), which we

rewrite below .

{l+FW(1-M~~L2FW) ~
‘1M~
4L2 } 

-1 (5.10)

Expanding (l-M~~L2FW)~~ incoaNeumann series 128] Eq. (5.10)

is written as

_

_

_  

~~~~~~~~~~~



1+~~~(l -N ‘L2~~+M 1L2FWM 
1L2~~- . . . . ) M~ 

1L~) 
-

— {1+FWM L2~ F L2 FWM L2+FWN L2FW?( 112FwM ’Lz . .
— (( l -FWM L2 )~~~) 4

—11-FWM L2

Thus Eq. (5.9) reduces to

y(t) = W(l -M ~~ L2FW) M 1L2 ( 1-FWM~~ L2 ) z (t )  (5.11)

By expanding (l-M~~ L2FWY4 once again into a Neuman series ,

it is straightforward to show that

(1-M L2FW)4M~~L2 = M ’L
2
(1-M~~ L2

FWY’ (5.12)

Substituting Eq. (5.12) into Eq. (5.11), we obtain

y(t) = W M L 2 (1-N L2FW)~~
1 ( l -M~~ L2F W ) z ( t )

_ W * M ~~~*L 2 * z(t) (5.13)

The discussion so far , on the closed-loop system leads to

the following theorem .

Theorem 5.8

Under the assumptions (a) through (d) of Theorem 5.5

concerning DS1, and the assumption (e) through (h) of

Theorem 5.6 concerning DS2, the closed-loop system of

Fig. (4.1) is B1BO stable.

Proof

The proof follows immediately from Theorems 5.6, 5.7

and Eq. (5.13).

Q.E.D.
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It should be noted that Theorem 5.8 gives conditions

for the B1BO stability of the closed-loop system . The

T-stability of the system , in addition requires the T-

stability of the closed-loop compensator and the feedback

sensor (DS3) with impulse response functions and F

respectively. From Eq. (4.19)

= [I-N * L2 * F* w 1 1 * if1 * L2
Thus in addition to the conditions of Theorem 5.8 which

imply the T-stability of M 1 
* L2, the T-stability of the

closed-loop system requires the T-stability of the operator

[l-M~~ * L2 * F * w]~ - . The additional conditions which

must be imposed on DS1, bS2 and DS3 for the T-stability of

j [l4f~ * L2 * F * are left as a topic of future

research on this problem .

5.5 SUMNARY AND CONCLUSION

In this chapter we derived conditions for the T-

stability of the open-loop compensator and the open-loop

system, and the B1BO stability of the closed-loop system .

It was shown that the conditions which must be imposed upon

the plant (DS1) and the reference system (DS2) for the T-

stability of the open-loop system , also guarantee the 81B0

stability of the closed-loop system . The T-stability of

the closed-loop system requires , in addition , the T-

stability of the closed-loop compensator . The T-stability

properties of the closed-loop compensator are left as a

topic of future research in this area.
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CHAPTER 6

‘ CONCLUSIONS AND RECOM MENDATIONS

FOR FURTHER RESEARCH

6.1 CONCLUSIONS

The object of this research was to develop a unified

theory of optimal tracking (in the mean-square sense) which

would admit stationary as well as nonstationary systems .

Only single-input/single-output , multi-state systems were

considered here. The research , in essence involved the

design of compensators which would give the systems under

study the desired tracking properties.

The systems in both , an open-loop and a closed-loop

configuration , were studied . For each of the configura-

tions, the optimal compensators were realized explicitl y

in the state-space. The compensator equations contain an

unknown parameter (a Lagrange multip lier) , whose value is

chosen , usually by graphical techniques , to limit the input

signal to the plant.

The question of the system stability for the two

configurations was also addressed . It was shown that if

the Kalman-Bucy filter associated with the input signal ,

and the given plant are asymptotically stable , the open-

loop system is totally stable (T-stable) . It was also

• • . 
shown that for the same conditions , the closed-loop system

is only bounded-input bounded-output stable. Additional
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conditions which must be imposed upon the closed-loop

system for the T-stability, need further research.

6.2 RECOMME N DATIONS FOR FURTHER RESEARCH

The theory of stochastic optimal tracking of nonsta-

tionary systems is by no means complete a t this time .

Some related problems and areas which warrant further

research are given below .

1. Conditions for only the bounded-input/bounded out-

put stability of the closed-loop system are given

here. The question of the T-stability of the

closed-loop system warrants further research .

2. Recall from Chapter 5 that a necessary condition

for the T-stability of the open-loop system , and

the B1BO stability of the closed-loop system , is

the asymptotic stability of the plant. What if

the plant is unstable to start with. The open-

• loop compensator is of no direct value here , unless
• the plant is stabilized first by an auxilliary

closed-loop [21. A possible alternative is the
t

closed-loop compensation scheme along the lines of

Youla , Jabr and Bongiorno {sJ for the stat ionary

case . Thus if the unstable plant-sensor combina-

tion can be stabilized at all , and if ~ is the set

of all possible stable and proper compensators

which stabilize the system , then the search for the

optimal compensator need to be restricted to this

I •*•-• . ••
~~~~~T~

1 
~T~J~~~ I ~~~~~~~~ _ _ _  _ _ _ _  ~~~~~~~~~

~•



set.  An extention of this  method to the case of

nonstationary systems is nont r iv ia l  and warrants

considerable research.

3. The case of multi-input/multi-output system and

colored noise should be investigated. Extention

of all of the above work , completed or suggested ,

for the discrete time systems is of great

practical value .
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