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A number of models and corresponding replacement policies have
been developed for stochastically deteriorating systems in an effort

to reduce system operation and maintenance costs. The focus of this

project has been directed toward the class of semi-Markovian replace-

ment models. Such models are semi-Markov stochastic processes where

a gliven state of the process represents a specified level of deteri-

oration of the system. By convention, the state space is a subset of

the real numbers with increasing numbers denoting increasing deteri-
oration levels and an increasing probability of total failure as well
as increasing maintenance costs.

A semi-Markov replacement model has the following characteristics:
1) vhen the system has a jump in its deterioration level, the magnitude
of the jump depends only on the dete?iorntion level immediately before
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method for obtaining either the optimal state dependent policy or the
optimal state-age dependent policy is to use the standard semi-Markov
decision theory approach as given by Howard (1971). The application of
decision theory to the semi-Markov replacement problem is given in
detail by Kao (1973). Feldman (1976, 1977) develops an alternate method
for determining the optimal state dependent replacement policy by using
Markov renewal theory to obtain a closed form expression for the cost.
The purpose of this research is to extend these procedures to include
state-age dependent replacement rules and determine its computational
efficiency.

The research was extremely successful. A closed form expression
-~ _.e long term average replacement cost was derived for state-age
replacement policy. An algorithm using the closed form expression
was developed and compared with the standard policy iteration-decision
theory approach. Forty five sample problems were compared ranging
from a problem of four states to a problem of thirty states. In all
cases the algorithm developed here was significantly faster than the
traditional approach. In general, the advantage of using the closed
form algorithm over policy iteration increased as the size of the state
space increased. The ratio of the execution time for the new algorithm
to the execution time for policy iteration ranged from 1.61 to 18.70.

A proof that the algorithm will always converge has not yet been
finished. As soon as the proofs are completed, a paper giving the

algorithm and the comparisons will be submitted to Operations Research.

-




' The Master's thesis of Tilden N. Mikel is included in the appendix
which gives the details of the algorithm and the computer program

used for making comparisons.
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ABSTRACT

An optimal state-age replacement for a semi-Markov deter-
ioration process. (December 1977)
Tilden Newton Mikel, B.S., Texas A&M University

Chairman of Advisory Committee: Dr. Richard M. Feldman

A number of models and corresponding replacement policies have
been developed for stochastically deteriorating systems with both
military and industrial applications. One such class of problems
can be modeled as a discrete time finite state semi-Markov process
with the deterioration of the system being described by a Markov
chain. Replacement policies possible for such a model include those
based only on the state of the system, only on the age of the system,
and on a combination of the state of the system and its sojourn
time in that state. The latter of these, a state-age replacement
policy, is the policy of concern to this paper. The only procedure
to find an optimal state-age replacement policy is the State-Age
Dependent Policy developed by Kao (1972), requiring solution by
Policy Iteration (Howard, 1960). This paper derives a closed form
expression for the expected long term average cost per unit time and,
using the properties of the Markov chain and additional constraints,
develops a systematic search technique for the Optimal State-Age

Replacement Policy.
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1. INTRODUCTION

A number of models and corresponding replacement policies have
been developed for stochastically deteriorating systems in an effort
to reduce system operation and maintenance costs. Applications for
such replacement models and policies abound in both industry and
the military. Among these models is a specific class of problems
that are referred to as "Markovian Replacement Models" (Kao, 1972).
In these models the deterioration of the system is represented by
the change in state of the system which follows the transition-
probability matrix of a Markov chain. The state space of this
Markov chain is {0, 1, ..., L}, where state 0 represents a new sys-
tem and state L represents a totally failed system. Given that the
system starts in state 0 and no action is taken to replace it,
deterioration will cause transitions to successively less desirable
states until eventually state L is reached and total failure occurs.
If the costs of replacing a failed system are greater than replacing
the system at some time prior to failure, then a replacement policy
based on the current state of occupancy may result in a lower over-
all cost to the user. The optimal replacement policy for such a
system will be that policy that best balances the costs associated
with repair, replacement, and operation over some defined period of
time. This balance may be easily approached by assuming that the
system will be needed in service indefinitely and that the objective

The style and format of this thesis follow that of the Journal
of Applied Probability.




of the problem is minimization of the long term average cost per
unit time. This basic Markov model was first suggested by Derman
(1962) and has since been studied by Barlow, Proschan, and Hunter
(1965), Ross (1970), and Taylor (1975).

One obvious disadvantage of the Markovian Replacement Model
is that a Markov process does not consider that the longer the
system remains in a given state, the more 1ikely it is to deteri-
orate or fail. An increasing 1ikelihood of failure with age is
very common in practice. Age may be incorporated into the model
by using a semi-Markov process where the deterioration among states
follows a Markov chain and the time spent in a state is a random
variable dependent on the current state of occupancy. Cinlar (1975)
and Ross (1970) describe the theory behind the semi-Markov process,
and optimal replacement rules for a finite state, discrete time
system are developed by Kao (1972). Kao develops three types of
replacement policies based on information that is available to the
decision maker: (1) a State Dependent Policy, (2) a State-Age
Dependent Policy, and (3) an Age Dependent Policy. Kao shows that
the State-Age Dependent policy is in general superior to the others,
but it may not be worth the additional expense to keep track of
the state of the system and the length of time it has been in that
state. Feldman (1976) considers both finite and infinite state
spaces, and develops a control limit policy for replacement using
a closed form expression for the expected long term average cost
per unit time. This method is superior to the Policy Iteration
Method of Howard (1960) and has been shown to be computationally




more efficient than the method of Kao (Lampe, 1977). The computa-
tional efficiency is of particular significance since all three
methods arrive at identical control limit policies with the same
expected long term average cost per unit time.

The purpose of this paper is to develop a closed form expres-
sion for the expected long term average cost per unit time for a
state-age rep]aﬁement policy and to develop an algorithm using
this expression to find the optimal state-age replacement policy.
This method will then be compared to Kao's method using policy
iteration to verify the optimality of the new method and to demon-
strate its computational efficiency. In Section 2, the parameters,
conditions, and notation of the problem are defined; in Section 3,
a summary of Kao's method for the State-Age Dependent Policy using
Policy Iteration is presented; in Section 4, the expected long
term average cost per unit time expression and a selective search
algorithm are developed to find the optimal state-age replacement
policy; in Section 5, an example problem is solved by each method;
and Section 6 presents a comparison between the methods for a

variety of problems using FORTRAN programming for each method.




2. PROBLEM STATEMENT

Consider a system whose underlying condition can be identified
at any distinct point in time by classifying it in one of a finite
number of states 0, 1, ..., L. This set of states will be denoted
by E. The system is subject to a sequence of randomly occuring
deterioration forces, each of which causes some random amount of
damage to the system. These forces may be shocks to the system,
the effects of normal wear and tear, abnormal stress on the system,
fatigue, power fluctuations or surges, and numerous other factors
that could cause deterioration in a given system. This narrative
will follow the format of Feldman (1976) and refer to all such
deterioration forces as shocks. A new system prior to any deteri-
oration is classified as being in state 0; a completely failed
system is in state L. The intermediate states, state 1 through
state L-1, represent discrete, ordered degrees of deterioration
short of total failure. Since each shock is of random magnitude
and damage to the system is the cumulative damage caused by the
shocks, the system can only deteriorate until it is replaced or
a total failure occurs. Replacement upon failure is assumed to be
mandatory, as it is of no economic advantage to delay replacement
if the system is nonproductive. This deterioration is assumed to
follow a semi-Markov orocess. The shocks to the system will be
assumed to occur at the end of‘the discrete time intervals according

to a discrete holding time mass function.




It is necessary to define the notation to be used and to
establish some additional conditions on the problem. The trans-
ition matrix for the imbedded Markov chain of the semi-Markovian
deterioration process is an (L+1) x (L+1) matrix consisting of
individual elements p(i,j) for i,j ¢ E, where p(i,j) is the pro-
bability of moving from state i to state j assuming there is no

replacement before failure. Since the system can only deteriorate,

then
p(i,j) =0 for j<iandi#lL
and
L
z p(i,j) =1 for all i ¢ E.
J=0

The policy vector « is the set of decisions at each state (xg,

s «nis KL), where Ky indicates the decision to replace the system
given that it has been in state i for Ki units of time. Each K

has a lower bound of zero, indicating that the decision is to
replace the system immediately upon reaching state i. The upper
bound of each Ky is the maximum sojourn time allowed in state i

by the holding time mass function, indicating that the decision is
to not replace the system as long as it is in state i. The decision

at state L is Timited to KL = 0 to force immediate replacement upon

failure. The semi-Markov kernel Q(i,j,t) is defined as the pro-

bability of moving from state i to state j in the time interval [0,t].

o ——— T



The cumulative probability distribution for the sojourn time in
state i is denoted by H(i,") for i ¢ E and is given by
H(i,t) = £ Q(i,j,t) for i,j ¢E, t> O.
jJeE

A constraint imposed on the system is that the cumulative proba-
bility distribution of sojourn times is nondecreasing in i. This
property means that the sojourn times stochastically decrease as
i increases and it implies that the mean sojourn times are decreas-
ing in i, a condition Kao imposes in his model.

The optimal replacement policy is defined as the policy giving
the minimum long term average cost per unit time. There is an
occupancy cost rate a; associated with each unit of time spent in

state i; this cost represents the costs of operation and routine

maintenance. The replacement cost <4 is the total cost of replacing

the system in state i. It may consist of a base cost for replace-
ment b1 and an additional cost rate per unit time di while the
system is out of service for replacement. The mean time for the
accomplishment of a replacement in state i is defined as ?5. The
total replacement cost ¢y and the occupancy cost rate a; are both
assumed to be nondecreasing in i in order to insure a reasonable

form for the optimal solution.




3. KAO'S METHOD

Kao's method for the State-Age Dependent Policy utilizes a
search technique called Policy Iteration which was developed by
Howard (1960). This procedure involves selection of an initial
policy x = (kgs Kys «uus KL) and through successive evaluations
and improvements the policy is made to converge to the optimal.

Initially given are the equations for i = 0, 1, ..., L:
o L
v(i,k) + g(k)tii,k) = f(i,x) + zoq(i.:i.x) v(J)
3 ha o] ™ o

where ;(izg) is the mean waiting time under policy x for state i,
f(i,<) is the expected cost of state i, and q(i,jtf) is an element
of the semi-Markov kernel under policy k. These equations are
solved by letting v(L) = 0 and the relative cost rate g(x) is
obtained for the policy. Thus v(i) is the relative cost of state
i when v(L) = 0 and g(x) is the relative cost rate of the policy
k. The relative values of v(i) are used to find the decision «

e i
that will minimize the test quantity r(i, Ki) given by

L
f(i!'i) + ¢ q(i,J "i) v(j )ﬁ) o v(igf_)
r(i, Ki) = j=0 5

T(ioﬁ)

When a new K has been determined for each i, a new policy «

has been defined. The new policy is then evaluated by solving
for the cost rate and relative costs of the states. Iterations
continue in an attempt to improve the policy until there is no

change in the policy from one iteration to the next. This repli-




cation of identical policies indicates that the optimal replacement
policy has been reached. The cost rate g(x) is the long term
expected average cost per unit time for the optimal State-Age
Dependent Policy.

Although this procedure will generally find the optimal state-
age replacement policy, the solutions to L + 1 simultaneous
equations for each iteration are quite time consuming. As the
problem size increases, the computations also increase, as does
the size of required array space for a computer software package
using Kao's method. If multiple solutions exist, the method can
take an inordinate amount of time to recognize that the solution
is optimal. Round-off error can also compound in a very large
problem as matrix inversion is repeated through several iterations.

A program listing for Kao's method coded in FORTRAN IV is

found in Appendix B. An example problem is solved in Section 5.




4. THE OPTIMAL STATE-AGE REPLACEMENT POLICY ALGORITHM

Prior to the development of an algorithm to find an optimal
state-age replacement policy, an equation for the expect long
term average cost per unit time, y(x), must be derived. This cost
is a function of the expected mean sojourn time in each state, the
costs of maintenance and replacement in each state, and the associ-
ated probabilities of deterioration and replacement among the
states.

Let { Zt’ t Z 0} be a semi-Markov process with state space
E as previously defined, where L denostes the failed state. Now
let {Xn, n=0,1, ..., L} be the imbedded Markov chain associated
with the semi-Markov process Z using decision «. Let P denote its
transition matrix (ﬁ actually depends on « but for notational con-

venience this dependence will not be shown). Then P is defined by
5(i,j) = q(i,j,c) for 1,j ¢ E under the policy «.

Let A be a state not in E and let P(i,A) =1 - & P(i,j).
jeE

Thus A represents the "death" of the Markov chain X.

Define the random variable ¢ by

4 =1nffn:xn¢L}Asup{n:xn¢E}.

Now the expected cost of replacement may be defined as

EgLe(X )] = c(L)P(4,L) + c()P(i,8) + & P(1,kIELe(X,)]
}

keE\(L

SR




L R(i,k)[c(L)P(k,L) + c(k)P(k,a)].

keE\(L}
Since
R(1,5) = ¥ P"(i,5), and P(L,L) = 0
n=20
then
R P(1,3) = R(i,3) - I1(i,])
and thus

Ejle(X )] = = R(i.5) c(k) P(k,a).
#
keE
It should be noted that

P(i,a) =1 - P(i,E),
P(L,j) = 0 for j E,
and P(L,A) = 1.

It is now necessary to find the expected cycle time Ei[‘]‘ The
expected sojourn time in state i can be written as

m(i) = Z‘ [1 - Q(i,E,t)] dt.

Recalling that the mean replacement time at state i is ?}, it
follows that

Egle] = m(i) + T P(i,L) + T, P(1,8) + £ B(i,k) Efr]
ke EM(L}

I ROLKIM(K) + 7 P(k,L) + T, P(K,a)]
keE\(L}

ALY T o+ 2 L)R(i,k) m(k) + 7, P(k,a)

ke E\{

L
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and E;[c] = £ R(i,k) [m(k) + 7, P(k,A)] where m(L) = 0.
keE

The Markov renewal kernel R(i,j) may now be shown to be R(i,j) =
(1 - ﬁ]'l for a given policy x. The inverse of this upper right
triangular matrix may be easily computed as follows:

r(i,0) = 0

r(i,i) =1

r(i,i+1) = r(i,i) q(i,i+1,ni)

r(i,i+2) = r(i,i) q(i,i+2,xi) + r(i,i+l) q(i+],i+2,xi+])

Since the system will always start a cycle in state 0 and return

to state O upon replacement, the only elements of the Markov

renewal matrix of concern to this problem are r(0,j) for all jeE.
The expected long term average cost per unit time can now

be defined as the total expected replacement and maintenance costs

per cycle divided by the expected cycle time, or

n~Mre

Or(O,i) [m(i) a; + ¢, P(i,0)]
wik) =

™~

r(0,1) [m(1) + 7; P(1,0)]
i=0

where ¥ b1 + ?}di and P(i,0) = P(i,A). This expression is valid
for any feasible policy x; all that now remains is the development
of an efficient algorithm to find the optimal state-age replacement
policy.




An obvious initial policy for beginning a search for the optimal
is to replace the system only when it fails. This may be accomp-
lished by setting K; equal to its maximum value for i =0, 1, ..., L-1
and g 0. Evaluation of this policy gives the expected long term
average cost per unit time for the basic problem without early re-
placement. Starting in state L-1, the decision at each state may
be varied to find the minimum cost, all other decisions remaining
constant. By passing through the states from L-1 to 0 and adopting
the minimum cost decision k; as part of the new policy as the search
passes through state i, the resulting policy will be at least as
good as the old policy, and it will be better if the old policy was
not the optimal. It is not necessary to evaluate every possible
Ky at each state i. Since the costs are non-decreasing in i and

the cumulative probability distribution of sojourn times is also

i 2 K341+ This is a logical conclusion in

non-decreasing in i, K

that it could not be of economic advantage to remain in a more ex-

pensive state longer than the limiting time of a less expensive state.

Therefore, in varying the decision at state i, evaluations are only
made between K4l and the upper bound of kg as determined by the
holding time mass function for the first iteration.

A single pass may not yield the optimal solution; since all
states are initially set at the maximum decision value, a bias may
exist in the decisions computed for the higher numbered states.
This bias may be removed by successive passes through the states,

noting that %5 may only decrease for subsequent passes through

12
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state j, j¢ E. Thus the search space is decreased somewhat with
each successive iteration, as the maximum Kj is the old policy K;
and the minimum is the current policy Kj41* This non-increasing
property of decisions in successive iterations is again due to the
non-decreasing properties of the system parameters. The only cause
for a change in K; is a subsequent new minimum found at K3 where

i < j. Since the new K will be smaller than the old Ky its only
possible influence on K; will be to make it smaller than the pre-
vious decision. If the state by state iterative passes are continued
until one complete pass is made with no change in the overall
policy, the optimal state-age replacement policy has been found.

It must be noted at this point that two assumptions have been
made and used in development of the algorithm with no proof as to
their validity. The first is that the decision K; will be non-
increasing as i increases. The other is that the decision K3 will
be non-increasing through successive iterations. Both assumptions
are based on the author's intuition given the increasing nature of
the costs as the state increases and the increasing likelihood of
failure as the state and sojourn times increase. They have been
shown to be true in the solution of the sample problems to be ref-
erenced in Sections 5 and 6. A formal proof of these properties is
beyond the scope of this thesis.

A listing of the Optimal State-Age Replacement Policy Algorithm
coded in FORTRAN IV may be found in Appendix C. An example problem

is solved in Section 5 using the algorithm.
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5. AN EXAMPLE PROBLEM

To illustrate the solution procedures for Kao's State-Age
Dependent Policy and the Optimal State-Age Replacement Policy
presented in Section 4, an example is given with the following

parameters:

The state space E is {0, 1, 2, 3}.

The replacement costs are:

Co = 2.0 | bo = 1.0, dg = 1.0, 9 = 1.0 )
¢, =2.0 ( by = 1.0, d] = 1.0, ;} =1.0)
¢, = 2.0 ( b, = 1.0, d, = 1.0, ?é =1.0)
3 = 6.0 ( b3 =2.0, d3 = 2.0, ¥5 = 2.0 ).

The transition probability matrix P is
0.0 0.6 0.2 0.2
0.0 0.0 8.7 0.3

0.0 0.0 0.0 1.0

(0.0 0.0 0.0 1.0

The state holding time probabilities, h(i,t), are:

h(0,0) = 0.0, h(0,1) = 0.1, h(0,2) = 0.18, h(0,3) = 0.216,
h(0,4) = 0.454, h(0,5) = 0.050, H(0,5) = 1.0,

h(1,0) = 0.0, h(1,1) = 0.2, h(1,2) =0.14, h(1,3) = 0.528,
h(1,4) = 0.119, h(1,5) = 0.013, H(1,5) = 1.0,

h(2,0) = 0.0, h(2,1) = 0.3, h(2,2) = 0.28, h(2,3) = 0.378,
h(2,4) = 0.040, h(2,5) = 0.002, H(2,5) = 1.0,

h(3,0) = 0.0, with h(3,j) undefined for j #0.




Kao's Method

Prior to beginning the Policy Iteration step of Kao's method,

the modified transition probabilities, mean holding times, mean

waiting times, and expected cost rates must be calculated.

are tabulated below in Table 1.

These

15

Table 1. Data used for State-Age Dependent Policy (Kao's Method)
State Alt Transition ProbabiTities Mean Hoiding Mean Exp.
Times Wait Cost
Time Rate
Tk P Pip P2 Piz Too Ty tlag) flig)
0 0 1.000 0.000 0.000 0.000 1.0 0.0000 1.000 2.0000
1 0.900 0.060 0.020 0.020 2.0 1.0000 1.900 1.4737
2 0.720 0.168 0.056 0.056 3.0 0.6429 2.620 0.2748
3 0.504 0.298 0.099 0.099 4.0 2.2339 3.124 1.1613
4 0.050 0.570 0.190 0.190 5.0 3.0779 3.174 1.0158
5 0.000 0.600 0.200 0.200 6.0 3.1740 3.174 1.0000
1 0 1.000 0.000 0.000 0.000 1.0 0.0000 1.000 2.0000
] 0.800 0.000 0.140 0.060 2.0 1.0000 1.800 1.4444
2 0.660 0.000 0.238 0.102 3.0 1.4118 2.460 1.2683
3 0.132 0.000 0.608 0.260 4.0 2.3779 2.592 1.0509
4 0.013 0.000 0.691 0.296 5.0 2.5735 2.605 1.0050
5 0.000 0.000 0.700 0.300 6.0 2.6050 2.605 1.0000
2 0 1.000 0.000 0.000 0.000 1.0 0.0000 1.000 2.0000
1 0.700 0.000 0.000 0.300 2.0 1.0000 1.700 1.4118
2 0.420 0.000 0.000 0.580 3.0 1.4828 2.120 1.1981
3 0.042 0.000 0.000 0.958 4.0 2.0814 2.162 1.0194
4 0.002 0.000 0.000 0.998 5.0 2.1583 2.164 1.0009
5 0.000 0.000 0.000 1.000 6.0 2.1640 2.164 1.0000
3 0 1.000 0.000 0.000 0.000 2.0 0.0000 2.000 3.0000

Selecting the decisions with the minimum expected cost rates, the
initial policy x is (5,5,5,0).

The gain equations will be:
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v(0,c) + 3.174 g(x) = 3.174 + 0.0 v(0,x) + 0.6 v(1,x)

+0.2 v(2,k) + 0.2 v(3,x)

2.605 + 0.0 v(0,k) + 0.0 v(1,k)
+ 0.7 v(2,c) + 0.3 v(3,x)

2.164 + 0.0 v(0,x) + 0.0 v(1,x)
+ 0.0 v(2,) + 1.0 v(3,x)

6.000 + 1.0 v(0,x) + 0.0 v(1,k)
+ 0.0 v(2,c) + 0.0 v(3,x)

v(1,k) + 2.605 g(x)

v(2,x) + 2.164 g(x)

v(3,x) + 2.000 g(x)

Setting v(3,c) = 0.0, the gain equations may be solved to yield

9(x) = 1.49513
v(0,x) = -3.00974
v(1,c) = -2.03984
v(2,k) = -1.07146
v(3,¢) = 0.0

Solution of the r equations yields a newpolicyof x = (3,0,0,0).

Four iterations are required to find the optimal policy, x* = (4,2,0,0)
with expected long term average cost rate of w(ﬁ*) = 0.32315. A
tabulation of the iterations may be found in Table 2. Execution of
the FORTRAN program for this method required 0.0671 seconds under a
FORTRAN IV-H compiler.

The Optimal State-Age Algorithm

The same problem can be solved using the Optimal State-Age Replace-
ment Algorithm in only two iterations. The initial policy is the same
as that of Kao's method, x = (5,5,5,0). Step-wise calculations are
provided in Table 3. The solution is identical to Kao's method, with
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k* = (4,2,0,0) and y(x*) = 1.32315. Execution of the FORTRAN program
took only 0.0232 seconds, a 2.9 to 1 advantage over Kao's method.

Table 2. Results from State-Age Dependent Policy (Kao's Method)

State Alt. TIteration Tteration Iteration Iter:tion

1 2 3
i ® 5 5 Ty J
0 0 2.0000 2.0000 2.0000 2.0000
1 1.5564 1.5358 1.5276 1.5277
2 1.4428 1.4011 1.3843 1.3846
3 1.4109* 1.3489*% 1.3241 1.3243
4 1.4861 1.3693 1.3225* 1.3232%
5 1.4951 1.3722 1.3229 1.3236
1 0 1.0301* 1.3489 1.6344 1.6318
1 1.1567 1.2434 1.4057 1.4043
2 1.1863 1.2035* 1.3421* 1.3232*
3 1.4335 1.2841 1.4051 1.4045
4 1.4888 1.3031 1.4249 1.4244
5 1.4951 1.3053 1.4273 1.4268
2 0 0.0618* 1.3489* 1.3241* 1.3232*
1 0.8027 1.6115 1.6057 1.6054
2 1.1073 1.7944 1.7963 1.7964
3 1.4566 2.1815 2.1920 2.1924
4 1.4933 2.2229 2.2344 2.2348
5 1.4951 2.2251 2.2366 2.2370
3 0 1.4951* 1.3489* 1.3281* 1.3232*
Policy
Evaluation
9(x) 1.49513 1.34889 1.32406 1.32315
v(0,x) -3.00974  -3.30220 -3.35187  -3.35368
: v(1.x) -2.03984  -2.65109  -2.98630  -2.98547
R v(2,k) -1.07146  -2.65109 -2.67593  -2.67683
v(3,x) 0.0 0.0 0.0 0.0

&. » (4’2v0 ,0)
olk*) = 1.32315




Table 3. Results of Optimal State-Age Replacement Policy Algorithm

Iter. State Decision Renewal Kernel Cost Rate
@ i Ky r(0,0) r(0,T) r(0,2) r{0,3) v(x)
1 2 0 1.0000 0.6000 0.6200 0.3800 1.34984*

1 1.0000 0.6000 0.6200 0.5660 1.38972
2 1.0000 0.6000 0.6200 0.7396 1.42743
3 1.0000 0.6000 0.6200 0.9740 1.48869
4 1.0000 0.6000 0.6200 0.9988 1.49482
5 1.0000 0.6000 0.6200 1.0000 1.49513
1 0 1.0000 0.6000 0.2000 0.2000 1.36580
1 1.0000 0.6000 0.2840 0.2360 1.34092
2 1.0000 0.6000 0.3428 0.2612 1.32340*
3 1.0000 0.6000 0.5646 0.3562 1.34443
4 1.0000 0.6000 0.6145 0.3777 1.34928
5 1.0000 0.6000 0.6200 0.3800 1.34984
0 2 1.0000 0.1680 0.0960 0.0731 1.37228
3 1.0000 0.2976 0.1700 0.1296 1.32406
4 1.0000 0.5700 0.3257 0.2481 1.32315*
5 1.0000 0.6000 0.3428 0.2612 1.32340
2 1 0 1.0000 0.5700 0.1900 0.1900 1.36393
1 1.0000 0.5700 0.2699 0.2242 1.34008
2 1.0000 0.5700 0.3257 0.2481 1.32315*
0 2 1.0000 0.1680 0.0960 0.0731 1.37228
3 1.0000 0.2976 0.1700 0.1296 1.32406
4 1.0000 0.5700 0.3257 0.2481 1.32315**
« = (4,2,0,0)
w(x) = 1.32315
s i
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6. A COMPARISON OF THE METHODS

In order to compare the Optimal State-Age Algorithm with Kao's
method, both solution procedures have been programmed in FORTRAN IV.
A main program was developed to do all data input operations, prelim-
inary calculations required by both methods, and checks to insure that
the problem parameters are acceptable. The main program then calls
a subroutine for Kao's method, recording the execution time of the
subroutine; it then calls a subroutine for the Optimal State-Age
Algorithm and again records the execution time. Output for the pro-
blem solution is provided by the individual subroutines. The exe-
cution times are printed by the main program prior to termination.
Thus an unbiased comparison between the methods is provided based only
on the separate solution procedures unhampered by the calculations
that are common to both methods.

The results of forty-five sample problems compared by this com-
puter program are contained in Table 4. Some of the problems were
read in on data cards while others were generated by a subroutine
employing a random number generator. This exercise has shown the
Optimal State-Age Algorithm to be superior to Kao's method. A ratio
of execution times was computed as a measure of the computational
efficiency, with Kao's method execution time in the denominator and
the Optimal State-Age Algorithm in the numerator. The smallest
ratio was 1.61 for a four state, six discrete time unit problem.

The largest ratio was 18.70 for a thirty state, twenty discrete time
unit problem. A statistical analysis was not performed on these

results, as inspection of the ratios clearly implied that the ratio
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is a function of the simplicity of the solution as well as the problem
size. This is caused by the increase in the number of iterations that
are required by Kao's method for a difficult problem. The Optimal State-
Age Algorithm required a maximum of three iterations for the largest
ratio problem, while Kao's method required eleven iterations. In general
it appears that the new method will be in the neighborhood of two or more
times as efficient as Kao's method. The Optimal State-Age subroutine
also compiles faster than Kao's method's subroutine.

An additional benefit of the Optimal State-Age Algorithm is a reduc-
tion in the required array space required by the program. This array
space and the actual ccding will vary with the size of the problem under
consideration, but it will be substantially less with the Optimal State-
Age Algorithm. For a thirty state, twenty discrete time unit problem,
core requirements for main program and Optimal State-Age subroutine ex-
cluding compiler and input software are 9606 bytes. The same problem
requires 169,372 bytes of core for Kao's method. Although this space
savings may not be of the same magnitude in smaller problems, it does
allow the Optimal State-Age Algorithm to be employed on computers with
much smaller storage areas than would be possible with Kao's method.

It can now be concluded that a more efficient method has been
found in the Optimal State-Age Algorithm. Thus the objective of this
research has been achieved. Although the method is restricted to a -
special class of problems as stated in Section 2, the concept of a
systematic search using a closed form cost expression has been shown
to be both feasible and efficient. Further research in this area to

develop an algorithm for a more general model is recommended.




Table 4.

Comparison of Execution Times
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Number of Range of Execution Time in Seconds Ratio
States i A B A/B
Kao's Optimal
Method State-Age
Algorithm
4 6 0.0122 0.0076 1.61
4 6 0.0161 0.0089 1.81
4 6 0.0191 0.0091 2.10
4 10 0.0151 0.0082 1.84
4 10 0.0215 0.0110 1.95
4 10 0.0201 0.0110 1.83
4 20 0.0276 0.0124 2.23
4 20 0.0327 0.0142 2.30
4 20 0.0302 0.0140 2.16
8 6 0.0462 0.0145 3.19
8 6 0.0460 0.0204 2.25
8 6 0.0489 0.0187 2.61
8 10 0.0606 0.0176 3.44
8 10 0.0601 0.0274 2.19
8 10 0.0623 0.0255 2.44
8 20 0.1327 0.0269 4.93
8 20 0.1182 0.0461 2.56
8 20 0.1212 0.0472 .57
10 6 0.0884 0.0187 4.73
10 6 0.0892 0.0301 2.96
10 6 0.0748 0.0296 2.53
10 10 0.1127 0.0248 4.54
10 10 0.0966 0.0421 2.29
10 10 0.097M 0.0414 2.35
10 20 0.2118 0.0398 5.32
10 20 0.1908 0.0734 2.60
10 20 0.1091 0.0477 2.28
20 6 0.4895 0.0665 7.36
20 6 0.5992 0.1321 4.54
20 6 0.3953 0.1487 2.66
20 10 0.6999 0.0922 7.59
20 10 0.5919 0.1940 3.05
20 10 0.5954 0.21711 2.74
20 20 1.1532 0.1612 7.15
20 20 0.9020 0.3624 2.49
20 20 0.91M 0.1183 7.70
30 6 1.4567 0.1704 8.55
30 6 1.7972 0.3578 5.02
30 6 1.4970 0.4750 3.15
30 10 1.6848 0.3051 5.52
30 10 1.7010 0.5466 3.1
30 10 1.7292 0.7362 2.35
30 20 5.0424 0.4335 11.63
30 20 3.5923 0.4257 8.44
30 20 3.5961 0.1923 18.70
; Loss
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APPENDIX A
MAIN PROGRAM

Following is a program listing for the main program used to eval-
uate the efficiency of Kao's State-Age Dependent Policy and the Optimal
State-Age Replacement Policy Algorithm developed in this paper. The
program is written in FORTRAN IV for a H extended compiler and should
easily adapt to any machine with a FORTRAN IV compiler. The Subroutine
TIMER is a system subroutine unique to the Texas A&M University Data
Processing System; its function is to keep track of actual execution
time for each of the method subroutines and it can be easily replaced
by a routine to access the computer's internal clock prior to calling
and upon return from the method subroutines. This listing is dimen-
sioned for a thirty state, twenty possible discrete time problem. For
larger problems or to save array space in smaller problems, the user
need only change the DIMENSION and COMMON statements to reflect the

problem size desired.
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APPENDIX B
SUBROUTINE HPIM

Following is a program listing of Subroutine HPIM, a routine to
solve for the optimal state-age replacement policy for a semi-Markov
deterioration process. The solution procedure is that of Kao (1972)
using Howard's Policy Iteration Method. Solution of the L+1 linear
equations is done by inversion in place. This listing is for a
maximum size problem of thirty states and twenty possible discrete
holding times per state. For larger problems or to save array space
in smaller problems, the DIMENSION and COMMON statements may be mod-
ified without effecting execution of the subroutine. A1l output is
internally coded in the subroutine so that it may be used without
the main program found in Appendix A if the user supplies a program

to furnish input variables and call the subroutine.

28




29

S3NIL ONILIVA NVIN 34VINDIVD
(AL = OII*E*M)Na 28
WN ¢ = N] 21 0C
CUINN = WN
0°T = N1 + (1)1 = (MNI®T*1)Ns 11
wN*t = %1 tf OC
CIIIN = nN
INI°t = 1 t1 QG
TWNS 7 WNS = (XNI*F*1)MNL 6
0°tl = InNSs
0°0 = WNS £1
6°CEI*ET (TmWNS)I]
(IX*IDH + TNNS = TmNS O1
CIN*IDIH = (T = 1) ¢ WNS = WNS
di*tT = I» Ot OC
0°0 = IWNS
0°0 = WNS
€1 04 09 (1 *37 riHidl
WNel = %1 6 0G
CIMNN = NN
I*T = ¢ 6 00
q*T =1 6 Q0
S3WIL NYNOrOS NVY3IN 34VNDIWVD
0o =11
*0 = AVSHS
(02°0E°0E) W (OEIIAVSIH*(02°0E)ID* (1
IECCEIXXCCLIE*CEIXNC(OEIACCOC*O0EINL*LOC*0E)IND(02°0LE°0E)NL NOISNINIA
NI TATCTINTIC (OEDIN® (O DANT
¢ (02 0E*O0E N (0L DAL (O0E)Q(OEIE*(0E)DV*(02°0EIH(O0E*0E )d NONNDO
FEXEESE LS SSESEESSEELEES XL SELE BEL XL LSS XS XSS BE SR LSS XSRS S ECE B S LE XSS S S SRS S

NOIAVY¥3L1I ADIT0d HAIM GDHA3M S0V ONISN SS3D0uc
NOJLVHOI¥3i3Q0 AONUVYWN=IW3S V 20 AD]I0d IN3NIIDVId3¥ WHiIidO ¥03 3INIANOHNENS

S EXBERAAX RS ARS XX XBEX AR RXRE XS XX XSRS S S XX XXX SR EX X B SRR SRS LS S XS SRS S
NidH 3N1IL1NO¥EeNsS

B e e T

9

VVuVvuvwuwv

I ——




30

CINCIDNO = NINX 12
12°02°02(CIN®I)N0 = NINWX)I]
WN*ET = In 02 00
CIDNN = Wb
I = (1IN
(1°1)XM0 = NINX
7 ¢1 =1 02 0G

A21IT70d IVILINI 103713S

(NYLZ7((NY + (MNUL=(T)A) = (NI*TIINO 66
weel = N1 6600
NN = Nk

NNS + (N3Q/7CCIDU+CIDULECTI DA+ CI)IVHCOTaI) ) (NICTCI)IVI=(NIIINO 61
0°1l = I + (1)¥L = N3G

(I)V = CXNI®F*ID)W + KNS = WNS 61
q*1dl = Fr 61 00
1 + 1 = 1dl
0°0 = WNS
uel = %1 8t 00
CININ = NN
INI°*t = 1 8t 00

WAS 7/ (NI°C*1L % (NI°r*1I)dNd = (NI°F°1)v 91
a1 = ¢ 91 0C

WNS + (MNICFIDNA % (NI°FrIdNd = WMNS ol
ML = .1 0OC
0°0 = WNS
WNeT = NI 91 0C
CINN = NN
Wt = § 91 00

S31Vd 4S0J G3403dX3 3AVINOIVY

NS = (NI*1)NL o1

OIISF*IINL = OIIr*1I)Nd ¢« NS = NS S1
q*t = St 00
0°0 = wNS
NNt = NI o OG
CI)NN = mn
‘'t =1 ¢1 00

2




31

I3°t = 1 0§ 00
NOI.VE3dO AN3N3IAOUDN] ADIT0d o)

(147°)xXx =99
0°0 = (M)A

(Ee°1)XX = (I)A EE
INI¢t = 1 £€ 00

3NN I1AM0D SV

SNNIANDD Wy
(Frelldxx = ¢rr*iidx
Id7*3 = rr v 00
T = 11 o 00

INNIANDD 1Iv
CI*I)X 7/ UN°IDX % CQI°NIX = (WeNIX = (WeNIXX
Iv O1 09 (1°03a°*°w)dl
I 01 09 (1°03°N)3
Id7*t = u Iy 0OC

It =N 19 OC
CI°1IMX/¢1°FCIX % O0°1l= = (]1°F)IXX £V
I*T = r £v 00
(1¢I)MX/7CF°I)X = (Fr°1)XX 2%
id7*t = ¢ 29 00
0°% = (1°1)XX
q°t =1 §v 00

30vId NI NOISE3ANI A8 SNOI4AVND3 VVSNI SNOSNVLITINNIS T 40 NO1.NT0S 2
0°T @ (V)X = (VX
0°t ¢ (I°1)X = ¢1°1)X 1€
(0°%c) ((IXNFIdNd = (r°1DX 2E
N ¢t = r 2 OO
CCIdN*IDIma = (°1)X
CCIN DMLt EIINTINMID = LT+ 1DX
I*t = 1 1€ OC
I ¢« 43 = 41
d34S NOIAVATWA3 AJ1T0d 9
INNIANOD 222
INN 1ANOD ©2
1% = ¢1)»

A i Ay

o i A i




32

(S°0Td%e= U1SOD °dX3 o°XS°2I%: = (o°21°%e)Ne® HI)ALVWNOS
(F*1)9°m*31 (102°9)311HA

I =1 =131

Il =n

CId)xn =r

Tt = § S$ 00

(sSNOJLVYHILL o°E1°s NI ONNO3 NOILANTIOS NNWI L0 *OHE ) AVNED S
41 (002°9)3.i1um

SNNILNOD

222 01 09 ((1)3AVSX °3N° (1I))N)J1]

q°T = 1 8 00

99 = AVSS

vS 04 09 (99°03°AVS9)4]

v$

AJ170d G0 ASNIVOV ADIT0d AIN MNIIHD o

(S°01d4%s = NIVOs® HI)LYNNOS

(eND11T

4V33d0 NOIAVAIVAI ADINOde*XI/E1°e NOILVUIL] 30 SL NS * HI)LVYNMO0S
99 (402°9)3418A

41 (902°9)s.ilua

XN = (1M

CI)N = (3)3AVYSH

3NN IANDD

NI = XN

NI®1)9 = NImX

€S 01 09 (NINX®3D°*°(N]1°])9)3]

Wt = N1 2§ 0Q

CIDNN =

T = XN

(1°1)9 = NIWX

71 = ] £€§ 00

(XIS DINAZCECIDA=RNNS )+ ENI*T)IND = (NI°1)D
(FCIA & (NI°FC1I)Nd + WNNS = NS

q*T = ¢ 1S 00

0°0 = WNS

WN*T = NI 0§ 00

(I)AN = Wk

402

£S

44

0s
is




o

¥

1 1

{

? ‘
E

{

J .

|

i .

i
§

.

&

i o

{ 9

i
L 4 1
Bt % £
. |
1 -
i 3 .
:




34

P APPENDIX C
SUBROUTINE MFM

Following is a program listing of Subroutine MFM, a routine to
solve for the optimal state-age replacement policy for a semi-Markov
deterioration process. The solution procedure is the one developed in
this paper, the Optimal State-Age Replacement Policy Algorithm, using
a closed form expected long term average cost per unit time expression
and a selective search technique to find the minimum cost policy. This
listing is for a maximum size problem of thirty states and twenty poss-
ible discrete holding time units per state. For larger problems or to
save array space in smaller problems, the user may modify the DIMENSION
and COMMON statements to the appropriate size without adverse effect
on the routine execution. All output is internally coded in the sub-
routine so that it may be used without the main program found in Appen-

’ dix A if the user supplies a suitable main program to input the para-

meters of the problem.
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