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OF~IMAL REPLACEMENT FOR SHOCK PROCESSES

by

Richard H. Feldman
Department of Industrial Engineering

Texas AM4 University
College Station, Texas 77843

Final Report

A number of models and corresponding replacement policies have

been developed for stochastically deteriorating systems in an effort

to reduce system operation and maintenance costs . The focus of this

project has been directed toward the class of semi—Markovi an replace—

ment models. Such models are semi—Markov stochastic processes where

a given state of the process represents a specified level of deteri-

oration of the system. By convention, the state space is a subset of

the real numbers with increasing numbers denoting increasing deteri-

oration levels and an increasing probability of total failure as well

as increasing maintenance costs .

A semi—Markov replacement model has the following characteristics:

1) when the system has a j ump in its deterioration level , the magnitude

of the jump depends only on the deterioration level imeediately before
‘~ ~~~~ • i  ~, :• 

•
~

-
~~~ 

•
~~~ ‘~the jump and 2) the length of time between j umps may g erz~s f4i~’ I~ ’Jt LA

•~ ~ ‘)
arbitrary distribution function dependent on the c~zrrent 1~vsl of ditèi~i~~ ~~-

~oration . The replacement policies studied with this mOdal ar 1~ thek

state dependent policy and the state—age dependent policy. The uSü*I ~
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method for obtaining either the optima l state dependent policy or the

4 optimal state—age dependent policy is to use the standard aemi—Markov

decision theory approach as given by Howard (1971). The application of

decision theory to the semi—Markov replacement problem is given in

detail by Kao (1973) . Feldman (1976, 1977) develops an alternate method

• for determining the optimal state dependent replacement policy by using

Markov renewal theory to obtain a closed form expression for the cost.

The purpose of this research is to extend these procedures to include

state—age dependent replacement rules and determine its computational

efficiency.

The research was extremely successful. A closed form expression

- .e long term average replacement cost was derived for state—age

replacement policy. An algorithm using the closed form expression
V was developed and compared with the standard policy iteration—decision

theory approach . Forty five sample problems were compared ranging

from a problem of four states to a problem of thirty states. In all

cases the algorithm developed here was significantly faster than the

traditional approach . In general , the advantage of using the closed

form algorithm over policy iteration increased as the size of the state

space increased . The ratio of the execution time for the new algorithm

to the execution time for policy iteration ranged from 1.61 to 18.70.

A proof that the algorithm will always converge has not yet been

finished. As soon as the proofs are completed , a paper giving the

algorithm and the comparisons will be submitted to Operations Research.

-~~~~~~~~~~ -:~~ii~T~TT;
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The Master ’s thesis of Tilden N. Mikel is included in the appendix

which gives the details of the algorithm and the computer program

used f or making comparisons.
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ABSTRACT

An optimal state-age replacement for a semi -Markov deter-

ioration process. (December 1977)

Ti l den Newton Mikel , B.S., Texas A&M University

Chai rman of Advisory Comittee: Dr. Richard M. Feldman

A number of models and corresponding replacement policies have

been developed for stochastically deteriorating systems with both

military and industrial applications. One such class of problems

can be modeled as a discrete time finite state semi -Markov process

with the deterioration of the system being described by a Markov

chain. Replacement poli cies possibl e for such a model include those

based only on the state of the system, only on the age of the system,

and on a combination of the state of the system and its sojourn

tine in that state. The latter of these, a state-age replacement

policy , Is the policy of concern to this paper. The only procedure

to find an optimal state-age replacement policy is the State-Age

Dependent Policy developed by Kao (1972), requiring solution by

Policy Iteration (Howard, 1960). This paper derives a closed form

expression for the expected long term average cost per unit time and,

using the properties of the Markov chain and additional constraints,

develops a systematic search technique for the Optimal State-Age

Replacement Policy.

- ~~~~V - V V ~~~~~ -~~
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1. INTRODUCTION

A number of models and corresponding replacement policies have

been developed for stochastically deteriorating systems in an effort

to reduce system operation and maintenance costs. Appl ications for

such replacement models and policies abound in both Industry and

the military. Among these models Is a specific class of problems

that are referred to as “Markovian Replacement Models” (Kao, 1972).

In these models the deterioration of the system is represented by

the change in state of the system which follows the transition-

probability matrix of a Markov chain. The state space of this

Markov chain is (0, 1 , .. ., U, where state 0 represents a new sys-

tem and state L represents a totally failed system. Given that the

system starts in state 0 and no action is taken to replace it,

deterioration will cause transitions to successively less desirable

states unti l eventually state L is reached and total failure occurs.
- 

If the costs of replacing a failed system are greater than replacing

the system at some time prior to failure, then a replacement pol icy

based on the current state of occupancy may result in a lower over-

all cost to the user. The optimal replacement policy for such a

system will be that policy that best balances the costs associated

t with repair, replacement, and operation over some defined period of

time. This balance may be easily approached by assuming that the

system will be needed In service Indefinitely and that the objective

The style and format of this thesis follow that of the Journal
of Applied Probability.
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of the problem Is minimization of the long term average cost per

unit time. This basic Markov model was first suggested by Derman

IS. .. (1962) and has since been studied by Barlow, Proschan, and Hunter

(1965), Ross (1970), and Taylor (1975).

• One obvious disadvantage of the Markovian Replacement Model

is that a Markov process does not consider that the longer the

system remains in a given state, the more likely It Is to deteri-

orate or fall. An increasing likel ihood of failure with age is

very counon in practice. Age may be incorporated Into the model

by using a semi-Markov process where the deterioration among states

follows a Markov chain and the time spent in a state is a random

variable dependent on the current state of occupancy. çinlar (1975)

and Ross (1970) describe the theory behind the semi-Markov process,

and optimal replacement rules for a finite state, discrete time

system are developed by Kao (1972). Kao develops three types of

replacement policies based on information that is available to the

decision maker: (1) a State Dependent Policy , (2) a State-Age

Dependent Policy, and (3) an Age Dependent Policy. Kao shows that

the State-Age Dependent policy Is In general superior to the others ,

but It may not be worth the additional expense to keep track of

the state of the system and the length of time It has been In that

state. Feldman (1976) consIders both finite and Infinite state

spaces, and develops a control lim it policy for replacement using

a closed form expression for the expected long term average cost

per unit time. This method is superior to the Policy Iteration

Method of Howard (1960) and has been shown to be coa~utat1ona1Iy

- - .-
~~~~~~~~~~~

------ ------ -V. -



3

more efficient than the method of Kao (Lampe, 1977). The computa-
* 

tional efficiency is of particular significance since all three

V. methods arrive at identical control l imit pol icies with the same

expected long term average cost per unit time.

• The purpose of this paper is to develop a closed form expres-

sion for the expected long term average cost per un i t  time for a

state-age replacement policy and to develop an algori thm using

this expression to find the optimal state-age replacement policy .

This method will then be compared to Kao’s method using policy

Iteration to verify the optimality of the new method and to demon-

strate its computational efficiency. In Section 2, the parameters,

condition s, and notation of the problem are defined ; in Section 3,

a sumnary of Kao’s method for the State-Age Dependent Policy using

Policy Iteration is presented; in Section 4, the expected long

term average cost per unit time expression and a selective search

algorithm are developed to find the optimal state-age replacement

policy i in Section 5, an example problem is solved by each method;

and Section 6 presents a comparison between the methods for a

variety of problems using FORTRAN programming for each method .

- ~~—
--- ----  ----- —-—~~~~~~~ 

-
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2. PROBLEM STATEMENT

Consider a system whose underlying condition can be identi fied

at any distinct point in time by classifying it In one of a finite

number of states 0, 1, .. ., L. This set of states will be denoted

by E. The system is subject to a sequence of randomly occuring

deterioration forces, each of which causes some random amount of

damage to the system. These forces may be shocks to the system,

the effects of normal wear and tear, abnormal stress on the system,

fatigue, power fluctuations or surges, and numerous other factors

that could cause deterioration in a given system. This narrative

will follow the format of Feldman (1976) and refer to all suchS 
deterioration forces as shocks. A new system prior to any deteri-

oration is classified as being in state 0; a completely failed

system is in state L. The intermediate states, state 1 through

state L-l , represent discrete, ordered degrees of deterioration

short of total failure. Since each shock Is of random magnitude

and damage to the system is the cumulative damage caused by the

shocks, the system can only deteriorate until It is replaced or

a total failure occurs. Replacement upon failure is assumed to be

mandatory, as it is of no economic advantage to delay replacement

If the system is nonproductive. This deterioration Is assumed to

follow a semi-Markov Process. The shocks to the system will be

assumed to occur at the end of the discrete time intervals according

to a discrete holding time mass function.

_ _ _ _ _ _ _ _ _  
- - ----V V - - V - - -~~~~~---- --- ~~~~————-----V — -V V

~~~~
VV

~~ 
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It is necessary to define the notation to be used and to

establish some additional conditions on the problem. The trans-

Ition matrix for the imbedded Markov chain of the semi-Markovian

deterioration process is an (1+1 ) x (1+1 ) matrix consisting of

individual elements p(i ,j) for i,j s E, where p(l,j) is the pro-

bability of moving from state i to state j assuming there Is no

replacement before failure. Since the system can only deteriorate,

then

p(i ,j)=O f o r j ’t a n d l $ L

and

L
~ p(i,j) = 1 for all i s E.

j = O

The policy vector K is the set of decisions at each state (K0,

K1, ..., 
~i~’ 

where indicates the decision to replace the system

given that it has been in state I for K
1 

units of time. Each K
1

has a lower bound of zero, Indicating that the decision is to

replace the system immediately upon reaching state I. The upper

bound of each ic1 Is the maximum sojourn time allowed in state I

by the holding time mass function, indicating that the decision Is
V to not replace the system as long as It is in state i. The decision

at state I Is limited to K
1 

0 to force Immediate replacement upon
V failure. The semi-Markov kernel Q(i ,j,t) Is defined as the pro-

bability of moving from state I to state j in the time interval [O,t).

_ _ _  
- --- — ~~~~~~~ -—- -- --V --  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The cumulative probability distribution for the sojourn time in

state I is denoted by H(l ,~) for I t E and Is given by

H(i,t) = z Q(i ,j,t) for i ,j t E, t> 0. -

j t E

• A constraint Imposed on the system is that the cumulative proba-

bility distribution of sojourn times is nondecreasing in i. This

property means that the sojourn times stochastically decrease as

i increases and it impl ies that the mean sojourn times are decreas-

inq in I, a condition Kao imposes in his model .

The optimal replacement policy is defined as the policy giving

the minimum long term average cost per unit time. There is an

occupancy cost rate a1 associated with each unit of time spent in

state I ; this cost represents the costs of operation and routine

maintenance. The replacement cost c1 is the total cost of replacing

the system in state I. It may consist of a base cost for replace-

ment bi and an additional cost rate per unit time di while the

system Is out of service for replacement. The mean time for the

accompl ishment of a replacement in state I is defined as 
~~~~

. The

total replacement cost c1 and the occupancy cost rate a1 are both

assumed to be nondecreasing in I in order to Insure a reasonable

form for the optimal solution .

- —_-,•• —
V.- - - _~~_~~~~~~r - - - - — V  - V - V V. *V.- - . -
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3. KAO ’S METHOD

Kao’s method for the State-Age Dependent Policy utilizes a

search technique called Policy Iteration which was developed by

Howard (1960). This procedure Involves selection of an Initial

policy K = (,co , K 1, ..., ~~~~) and through successive evaluations

and improvements the policy is made to converge to the optimal .

Initially given are the equations for I = 0, 1 , .. ., L:

I
v(i,,c) + g(K)~~i ,K) = f(i,ic) + z q(I ,j,K) v(j)— — — — j=O —

where ~(i ,K) is the mean waiting time under policy ic for state 1 ,

f(i,sc) is the expected cost of state i , and q(i ,j,,c) is an element

of the semi-Markov kernel under policy K. These equations are

solved by letting v(I) = 0 and the relative cost rate g(ic) is

obtained for the policy . Thus v(i) is the relative cost of state

I when v(L) = 0 and g(,c) is the relative cost rate of the policy

K. The relative values of v(i) are used to find the decision K
1

that will minimize the test quantity r(i , c
i
) given by

I
f(i,,c) + E q(I,j,ic) v(j,~) - v(i,E)r ( I , 1( 1) = j=0

When a new has been detennined for each I, a new policy IC

has been defined. The new policy is then evaluated by solving

for the cost rate and relative costs of the states. Iterations

continue in an attempt to Improve the policy unti l there is no

change In the policy from one iteration to the next. This repl i-
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cation of identical policies indicates that the optimal replacement

policy has been reached. The cost rate g(K) is the long term

expected average cost per unit time for the optimal State-Age

Dependent Policy.

Al though this procedure will generally find the optimal state-

age replacement policy , the solutions to I + 1 simultaneous

equations for each iteration are quite time consuming . As the

problem size increases, the computations also increase, as does

the size of required array space for a computer software package

using Kao’s method. If multiple solutions exist , the method can

take an inordinate amount of time to recognize that the solution

is optimal . Round-off error can also compound in a very large

problem as matrix inversion is repeated through several iterations.

A program listing for Kao’s method coded in FORTRAN IV is

found in Appendix B. An example problem is solved in Section 5.

- -  

- 

-— - —-~~~~ 
- -
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4. THE OPTIMAL STATE-AGE REPLACEMENT POLICY ALGORITHM

Prior to the development of an algorithm to find an optimal

state-age replacement policy , an equation for the expect long

term average cost per unit time, j ,(,), must be derived. This cost

is a function of the expected mean sojourn time in each state, the

costs of maintenance and replacement in each state, and the associ-

ated probabilities of deterioration and replacement among the

states.

Let ( Z~, t ~ O} be a semi-Markov process with state space

E as previously defined, where L denostes the failed state. Now

let (X 1,, n = 0, 1 , ..., Li be the intedded Markov chain associated

wIth the semi-Markov process Z using decision K. Let P denote its

transition matrix (P actually depends on K but for notational con-

venience this dependence will not be shown). Then P is defined by

P(i,j) = q(i,j,~) for i ,j s E under the policy K.

let a be a state not in E and let P(i,a) = 1 - ~ P(i ,j).j.E
Thus a represents the “death” of the Markov chain X .

Define the random variable c by

= inf (n:X~~ L1 A sup1n:X~e El .

Now the expected cost of replacement may be defined as

E1(c(X )) c(I)~ (i ,I) + c(I)P(1,a ) + E P( i ,k)E k[c(X )]
V • k’E~(I}

__-V.— - ---- ~-——-V - --- - -  V- 

~~~

V V

~~ 

V. — - 

~~~~~~~~~~~~~~~~~~~~~~



E R(i,k)[c(L)P(k,l) + c(k)P(k,a)] .
keE\ (L}

• Since

R(i,j) = ! pn(i~~) and P(L,L) = 0
n = 0

then

R P(i ,j) = R(i ,j) — I(i ,j)

and thus

E1[c(X )] = E R(i ,j) c(k) P(k,A).
kt E

It should be noted that

= 1 - P(i ,E),

P(l,j) = 0 for j E ,

and P(L,a) = 1.

It Is now necessary to find the expected cycle time E~(~]. The

expected sojourn time in state i can be written as

m(i) = [1 — Q(i ,E,t)] dt.

Recall ing that the mean replacement time at state I is r .~, It

follows that
• E1[c] m ( f )  + rI P( f ,L) + 

~i 
P(1,a) + E P(f,k) Ek[r]ki E~(I}

t R(i,k)[m(k) + k P(k ,L) + tkk.E~(L}

t • R(1,L) 
~L 

+ R(1,k) m (k) + Tkk s E\ (L}

_ _  - - -~~~
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and E1[~] = E R(i ,k) [m(k) + 
~k 

P(k,a)] where m(L) = 0.
kt E

The Markov renewal kernel R(i,j) may now be shown to be R(i ,j) =

[I - P1’ for a given policy K. The inverse of this upper right

triangular matrix may be easily computed as follows:

r(i,0) = 0

r(i,i) = 1

r(i,i+l) = r(i,i) q(i ,i+l ,K I)

r(i,i+2) = r(i,i) q(i ,i+2,ic1) + r(i ,i+l ) q(i+l ,i+2,K~~1)

Since the system will always start a cycle in state 0 and return

to state 0 upon replacement, the only elements of the Markov

renewal matrix of concern to this problem are r(O,j) for all j s E.

The expected long term average cost per unit time can now

be defined as the total expected replacement and maintenance costs

per cycle divided by the expected cycle time, or

I
z r(0,i) [m( i) a4 + C

i 
P(i ,0)]

i = O

I
E r(0,i) [m(i) + r1 P(i,0)]1 = 0

where c1 
• b1 + ~1d1 and P(i ,0) P(i,a). This expression is valid

for any feasible policy 
~; all that now remains is the development

of an efficient algorithm to find the optimal state-age replacement

policy.

--_.-. --- . 

-V 

- V .- 
_
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An obvious initial policy for beginning a search for the optimal

is to replace the system only when it fails. This may be accomp-

lished by setting IC
1 
equal to Its maximum value for i = 0, 1 , ..., L-1

and CI 
= 0. Evaluation of this policy gives the expected long term

• average cost per unit time for the basic problem without early re-

placement. Starting in state L-l , the decision at each state may

be varied to find the minimum cost, all other decisions remaining

constant. By passing through the states from L-l to 0 and adopting

the minimum cost decision as part of the new policy as the search

passes through state i , the resulting policy will be at least as

good as the old policy, and it will be better if the old policy was

not the optimal . It is not necessary to evaluate every possibl e

K
1 
at each state i. Since the costs are non-decreasing in i and

the cumulative probability distribution of sojourn times is also

non-decreasing in l , c
~ 

> K i+l . This is a logical conclusion in

that it could not be of economic advantage to remaIn in a more ex-

pensive state longer than the limiting time of a less expensive state.

Therefore, in varying the decision at state i , evaluations are only

made between cj+l and the upper bound of c
i 
as determined by the

holding time mass function for the first Iteration.

A single PdSS may not yield the optimal solution ; since all

states are initially set at the maximum decision value , a bias may
V 

exist in the decisions computed for the higher numbered states.

This bias may be removed by successive passes through the states,

noting that sc~ may only decrease for subsequent passes through

- -_ _—,, -- — - - - - -V —
~
-—--- - 
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state j, j ~ E. Thus the search space is decreased somewhat with

each successive iteration, as the max imum ic~ is the old policy K
3

and the minimum is the current policy Kj+l • This non-increasing

property of decisions in successive iterations is again due to the

non-decreasing properties of the system parameters. The only cause

for a change in K
3 

is a subsequent new minimum found at 
Ki where

I < i. Since the new Kj wi ll be smaller than the ol d its only

possible influence on K~ will be to make it smaller than the pre-

vious decision . If the state by state iterative passes are continued

unti l one compl ete pass is made with no change in the overall

policy , the optimal state-age replacement policy has been found.

It must be noted at this point that two assumptions have been

made and used in development of the algorithm with no proof as to

their validity . The first is that the decision Ki will be non-

Increasing as i increases. The other is that the decision will

be non-increasing through successive Iterations . Both assumptions

are based on the author’s intuition given the increasing nature of

the costs as the state Increases and the increasing likel ihood of

failure as the state and sojourn times increase. They have been

shown to be true in the solution of the sample problems to be ref-

erenced in Sections 5 and 6. A formal proof of these properties is

• beyond the scope of this thesis.

A listing of the Optimal State-Age Replacement Policy Al gorithm

coded in FORTRAN IV may be found in Appendix C. An example problem
V 

Is solved in Section 5 using the algorithm .

— --a--
—-. --

-V .
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5. AN EXAMPLE PROBLEM

To Illus trate the solution procedures for Kao’s State-Age

Dependent Policy and the Optimal State-Age Replacement Policy

presented In Section 4, an example Is given with the following

parameters :

The state space E is {0 , 1 , 2, 3).

The rep1~ccment costs are:

c0 
= 2.0 ( b~ = 1.0, d0 = 1.0, = 1.0 )

c1 = 2.0 ( b~ = 1.0, d1 
= 1.0, -r

1 
= 1.0 )

c2 = 2.0 (b2 = l .0, d2 = 1. O ,~~2 = l . 0)

c3 
= 6.0 ( b3 = 2.0, d3 = 2.0, = 2.0 ).

V The transition probability matrix P is

0.0 0.6 0.2 - 
0 . 2

0.0 0.0 0.7 0.3

0.0 0.0 0.0 1.0

P0.0 0.0 0.0 1.0

The state holding time probabilities , h(i,t), are:

h(0,O) = 0.0, h(O,l) 0.1, h(O,2) = 0.18, h(0,3) 0.216,

h(O,4) = 0.454, h(0,5) • 0.050, H(0,5) = 1.0,

h(l,O) a Q•~, h(l ,l) = 0.2, h(l ,2) = 0.14, h(l,3) = 0.528,

h( l ,4) — 0.119, h( l ,5) — 0.013, H(l,5) — 1.0,

h(2,0) — 0.0, h(2,l) — 0.3, h(2,2) = 0.28, h(2,3) • 0.378,

h(2 ,4) — 0.040, h(2,5) = 0.002, H(2,5) = 1.0,

h(3,0) z 0.0, wIth h(3,j) undefined for j riO .

- -  V ~~~~~~ 
—- V ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Kao’s Method

Prior to beginning the Policy Iteration step of Kao’s method,

the modified transition probabilities, mean holding times, mean

waiting times, and expected cost rates must be calculated . These

are tabulated below in Table 1.

Table 1. Data used for State-Age Dependent Policy (Kao ’s Method)

State Alt Transition Pi~obabllities Mean Holding Mean Exp.
Times Wait Cost

Time Rate

I Kj P10 1’il ~i2 ~i3 
TiO Tjj t(i ,K

1
) f(i,K

i )

0 0 1.000 0.000 0.000 0.000 1.0 0.0000 1 .000 2.0000
1 0.900 0.060 0.020 0.020 2.0 1 .0000 1 .900 1.4737
2 0.720 0.168 0.056 0.056 3.0 0.6429 2.620 0.2748
3 0.504 0.298 0.099 0.099 4.0 2.2339 3.124 1.161 3
4 0.050 0.570 0.190 0.190 5.0 3.0779 3.174 1.0158
5 0.000 0.600 0.200 0.200 6.0 3.1740 3.174 1 .0000

1 0 1.000 0.000 0.000 0.000 1 .0 0.0000 1.000 2.0000
1 0.800 0.000 0.140 0.060 2.0 1.0000 1.800 1.4444
2 0.660 0.000 0.238 0.102 3.0 1 .4118 2.460 1.2683
3 0.132 0.000 0.608 0.260 4.0 2.3779 2.592 1 .0509
4 0.013 0.000 0.691 0.296 5.0 2.5735 2.605 1.0050
5 0.000 0.000 0.700 0.300 6.0 2.6050 2.605 1.0000

2 0 1.000 0.000 0.000 0.000 1.0 0.0000 1.000 2.0000
1 0.700 0.000 0.000 0.300 2.0 1.0000 1.700 1.4118
2 0.420 0.000 0.000 0.580 3.0 1.4828 2.120 1.1981
3 0.042 0.000 0.000 0.958 4.0 2.0814 2.162 1.0194
4 0.002 0.000 0.000 0.998 5.0 2.1583 2.164 1.0009
5 0.000 0.000 0.000 1.000 6.0 2.1640 2.164 1.0000

3 0 1.000 0.000 0.000 0.000 2.0 0.0000 2.000 3.0000

Selecting the decisions wi th the minimum expected cost rates , the

Initial pol icy K Is (5,5,5,0). The gain equations will be:

V -
~~~
-- - - -— - - . V .
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* 

v(0 ,K ) + 3.174 9(K) = 3.174 + 0.0 v(O,,c) + 0.6 v(l ,K)
+ 0.2 v(2 ,,c) + 0.2 v (3 ,,c)

v(l ,ic) + 2.605 g(ic ) = 2.605 + 0.0 v(O ,K) + 0.0 v( 1,K)
+ 0.7 v(2 ,ic) + 0.3 v(3,K)

v(2 ,,c) + 2.164 g(ic ) = 2.164 + 0.0 v(0,,c) + 0.0 v(l ,ic)
+ 0.0 v(2 ,ac) + 1.0 v(3 ,,c)

v(3,,c) + 2.000 g(ic) = 6.000 + 1.0 v(0,ic) + 0.0 v(l ,,c)
+ 0.0 v(2,,c) + 0.0 v (3,K)

Setting v(3.,ic) = 0.0, the gain equations may be solved to yield

g(sc ) = 1 .49513

V (0,K) = -3.00974

v(1 ,,c) = -2.03984

v(2,K) = -1 .07146

v(3,c) = 0.0

Solution of the r equations yields a new policy of K = (3,0,0,0).

Four iterations are required to find the optima l policy , ,~~~ = (4 ,2,0,0)

wi th expected long term average cost rate of q,(Ic*) = 0.32315. A

tabulation of the iterations may be found in Table 2. Execution of

the FORTRAN program for this method required 0.0671 seconds under a

FORTRAN IV-H compiler.

• The Optimal State-Age Algorithm

The same problem can be solved using the Optimal Sta te-Age Repl ace-

ment Algorithm in only two iterations . The initial policy is the same

as that of Kao’s method, K = (5,5,5,0). Step-wise calculations are

provided In Table 3. The solution Is identical to Kao’s method, with

V -- 
-

~~~~~~ ~~~~
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Ic* = (4,2,0,0) and ~~~ic *) = 1.32315. ExecutIon of the FORTRAN program

took only 0.0232 seconds , a 2.9 to 1 advantage over Kao ’ s method.

Table 2. Resul ts from State-Age Dependent Policy (Kao ’s Method)

State Alt. Iteration Iteration Iteration Iteration
1 2 3 4

0 0 2.0000 2.0000 2.0000 2.0000
1 1.5564 1.5358 1.5276 1.5277
2 1 .4428 1 .4011 1.3843 1.3846
3 1 .4109* 1.3489* 1.3241 1.3243
4 1 .4861 1.3693 1.3225* 1.3232*
5 1 .4951 1.3722 1.3229 1.3236

1 0 1.0301* 1.3489 1.6344 1.6318
1 1.1567 1.2434 1 .4057 1 .4043
2 1.1863 1.2035* 1.3421* 1.3232*
3 1 .4335 1.2841 1.4051 1.4045
4 1.4888 1.3031 1.4249 1.4244
5 1 .4951 1.3053 1 .4273 1 .4268

2 0 0.0618* 1.3489* 1.3241* 1.3232*
1 0.8027 1.6115 1.6057 1.6054
2 1.1073 1.7944 1.7963 1.7964
3 1 .4566 2.1815 2.1920 2.1924
4 1 .4933 2.2229 2.2344 2.2348
5 1 .4951 2.2251 2.2366 2.2370

3 0 1 .4951* 1.3489* 1.3241* 1.3232*

Policy
Eval uation

g(ic ) 1 .4951 3 1 . 34889 1 .32406 1 .32315

v(O ,K) -3.00974 -3.30220 -3.35187 -3.35368

V(l ,,c ) 2.03984 2.65109 2.98630 2.98547

v(2 ,c) -1 .07146 -2.65109 -2.67593 -2.67683

v(3 ,K) 0.0 0.0 0.0 0.0

= (4,2 ,0,0)
= 1.3231 5

~~~~~~~~~~~~~~~~~~ V V -- - V . V •-~~~~~~~~~~~ 
•
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0
Tabl e 3. Resul ts of Optimal State-Age Replacement Policy Al gori thm

Iter. State Decision Renewal Kernel Cost Rate
I ci r(0,O) r(0 ,l )  r (0,2) r(O ,3)

1 2 0 1.0000 0.6000 0.6200 0.3800 1.34 984*
1 1.0000 0.6000 0.6200 0.5660 1.38972
2 1.0000 0.6000 0.6200 0.7396 1 .42743
3 1 .0000 0.6000 0.6200 0.9740 1.48869
4 1.0000 0.6000 0.6200 0.9988 1 .49482
5 1.0000 0.6000 0.6200 1.0000 1 .4951 3

1 0 1.0000 0.6000 0.2000 0.2000 1.36580
1 1 .0000 0.6000 0.2840 0.2360 1.34092

2 1.0000 0.6000 0.3428 0.2612 1.32340*
3 1 .0000 0.6000 0.5646 0.3562 1.34443
4 1.0000 0.6000 0.6145 0.3777 1.34928
5 1.0000 0.6000 0.6200 0.3800 1.34984

0 2 1.0000 0.1680 0.0960 0.0731 1.37228
3 1.0000 0.2976 0.1700 0.1296 1.32406
4 1.0000 0.5700 0.3257 0.2481 1.32315*
5 1.0000 0.6000 0.3428 0.2612 1.32340

2 1 0 1 .0000 0.5700 0.1900 0.1900 1.36393
1 1.0000 0.5700 0.2699 0.2242 1.34008
2 1.0000 0.5700 0.3257 0.2481 1.32315*

0 2 1.0000 0.1680 0.0960 0.0731 1.37228
3 1 .0000 0.2976 0.1700 0.1296 1 .32406
4 1.0000 0.5700 0.3257 0.2481 l.323l 5*~

K = (4 ,2,0,0)

*(K) = 1.32315

I -V

~~~

-V
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6. A COMPARISON OF THE METHODS

* 

In order to compare the Optimal State-Age Al gorithm wi th Kao ’s

method, both solution procedures have been programed in FORTRA N IV .

A main program was developed to do all data input operations , prelim-

m ary calculations requi red by both methods, and checks to insure that

the problem parameters are acceptable. The main program then calls

a subroutine for Kao ’s method, recording the execution time of the

subroutine; it then calls a subroutine for the Optimal State-Age

Al gorithm and again records the execution time. Output for the pro-

blem solution is provided by the individual subroutines. The exe-

cution times are printed by the main program prior to termination.

Thus an unbiased coniparison between the methods is provided based only

on the separate solution procedures unhampered by the calculations

that are comon to both methods.

The resul ts of forty- five sampl e problems compared by this com-

puter program are contained in Table 4. Some of the problems were

read in on data cards while others were generated by a subroutine

employing a random number generator. This exercise has shown the

Optimal State-Age Algori thm to be superior to Kao ’s method. A ratio

of execution times was computed as a measure of the computational

efficiency, with Kao’s method execution time in the denominator and

the Optimal State-Age Algorithm in the numerator. The smallest

ratio was 1 .61 for a four state, six discrete time unit problem.

The largest ratio was 18.70 for a thirty state , twenty disc rete time

unit problem. A statistical analysis was not performed on these

results, as Inspection of the ratios clearly implied that the ratio

____ - -- ~~~~ -----~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~~~~~~~~ ~~~~~~~~~~T
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p is a function of the simplicity of the solution as well as the problem

size. This is caused by the increase in the number of i terations that

are required by Kao’s method for a di fficult problem. The Optimal Sta te-

Age Al gorithm required a maximum 0f three iterations for the largest

ratio problem, while Kao’s method required eleven Iterations. In general

it appears that the new method will be in the neighborhood of two or more

times as efficient as Kao’s method. The Optimal State-Age subroutine

also compiles faster than Kao ’s method’s subroutine.

An additional benefit of the Optimal State-Age Algorithm is a reduc-

tion in the required array space required .~y the program. This array

space and the actual coding will vary with the size of the problem under

consideration, but it will be substantially less wi th the Optimal State—

Age Algorithm. For a thi rty state, twenty discrete time uni t  problem,

core requirements for main program and Optimal State-Age subroutine ex-

cl uding compiler and input softwa re are 9606 bytes. The same problem

requi res 169 ,372 bytes of core for Kao ’ s method. Although this space

savings may not be of the came magnitude in smaller probl ems, i t  does

allow the Optimal State-Age Al gorithm to be employed on computers wi th

much smal ler stora ge areas than woul d be possibl e wi th Kao ’s method.

It can now be concluded that a more efficient method has been

found In the Optimal State-Age Al gori thm. Thus the objective of this

research has been achieved. Al though the method is restricted to a

special class of problems as stated in Section 2, the concept of a

systematic search using a closed form cost expression has been shown

to be both feasible and efficient. Further research in this area to

develop an algorithm for a more general model is reconinended.

- - J~~___ V _ - V -~~~~-~~~~~~~~~~~ --V--V - .  -
~~~~~ 
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p Table 4. Comparison of Execution Times
Number of Range of Execution Time In Seconds Ratio

Sta tes A B A/B• Kao ’s Optimal
Method State-Age

Al gori thm

4 6 0.0122 0.0076 1.61
4 6 0.0161 0.0089 1.81

• 4 6 0.0191 0.0091 2.10
4 10 0.0151 0.0082 1.84
4 10 0.0215 0.0110 1.95
4 10 0.0201 0.0110 1.83
4 20 0.0276 0.0124 2.23
4 20 0.0327 0.0142 2.30
4 20 0.0302 0.0140 2.16
8 6 0.0462 0.0145 3.19
8 6 0.0460 0.0204 2.25
8 6 0.0489 0.0187 2.61
8 10 0.0606 0.0176 3.44
8 10 0.0601 0.0274 2.19
8 10 0.0623 0.0255 2.44
8 20 0.1327 0.0269 4.93
8 20 0.1182 0.0461 2.56
8 20 0.1212 0.0472 2.57

10 6 0.0884 0.0187 4.73
10 6 0.0892 0.0301 2.96
10 6 0.0748 0.0296 2.53
10 10 0.1127 0.0248 4.54
10 10 0.0966 0.0421 2.29
10 10 0.0971 0.0414 2.35
10 20 0.2118 0.0398 5.32
10 20 0.1908 0.0734 2.60
10 20 0.1091 0.0477 2.28
20 6 0.4895 0.0665 7.36
20 6 0.5992 0.1321 4.54
20 6 0.3953 0.1487 2.66
20 10 0.6999 0.0922 7.59
20 10 0.5919 0.1940 3.05
20 10 0.5954 0.2171 2.74
20 20 1.1532 0.1612 7.15
20 20 0.9020 0.3624 2.49
20 20 0.9111 0.1183 7.70
30 6 1 .4567 0.1704 8.55
30 6 1.7972 0.3578 5.02
30 6 1 .4970 0.4750 3.15

• 30 10 1.6848 0.3051 5.52
30 10 1.7010 0.5466 3.11
30 10 1.7292 0.7362 2.35
30 20 5.0424 0.4335 11.63
30 20 3.5923 0.4257 8.44
30 20 3.5961 0.1923 18.70
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APPENDIX A

MAIN PROGRAM

• Following is a program listing for the main program used to eval-

uate the efficiency of Kao ’s State-Age Dependent Policy and the Optimal

State-Age Replacement Policy Algorithm developed in this paper. The

program is wri tten in FORTRAN IV for a H extended compiler and shoul d

easily adapt to any machine wi th a FORTRAN IV compiler. The Subroutine

TIMER is a system subroutine unique to the Texas A&M University Data

Processing System; its function is to keep track of actual execution

time for each of the method subroutines and it can be easily replaced

by a routine to access the computer’s internal clock prior to call ing

and upon return from the method subroutines. This listing is dimen-

sioned for a thirty state, twenty possibl e discrete time problem. For

larger problems or to save array space in smaller probl ems , the user

need only change the DIMENSION and COMMON statements to reflect the

problem size desired.
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APPENDI X B

SUBROUTINE HPIM

Following is a program listing of Subroutine HPIM, a routine to

solve for the optimal state-age replacement policy for a semi-Markov

deterioration process . The solution procedure is that of Kao (1972)

using Howard ’s Policy Iteration Method. Solution of the L+1 linear

equations is done by inversion in place . This listing is for a

maximum size problem of thirty states and twenty possibl e discrete

holding times per state . For larger problems or to save array space

in smaller problems , the DIMENSION and COMMON statements may be mod-

ified without effecting execution of the subroutine . All output is

internally coded in the subroutine so that It may be used wi thout

the main program found in Appendix A if the user supplies a program

to furnish input variabl es and call the subroutine.

_ _ _  
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I’
APPENDIX C

• SUBROUTINE MFM

Following is a program listing of Subroutine MFM, a routine to

solve for the optimal state-age replacement policy for a semi-Markov
a

deterioration process. The solution procedure is the one developed in

this paper, the Optimal State-Age Replacement Policy Al gorithm, using

a closed form expected long term average cost per unit time expression

and a selective search technique to find the minimum cost policy . This

listing is for a maximum size problem of thirty states and twenty poss-

ible discrete holding time units per state . For larger problems or to

save array space in smaller problems, the user may modify the DIMENSION

and COMMON statements to the appropri ate size wi thout adverse effect

on the routine execution . All output is internally coded in the sub-

rou tine so that It may be used wi thout the main program found in Appen-

dix A If the user suppl ies a sui table main program to input the pa ra-

meters of the problem.

_ _  _ _  _ _ _ _ _  - -
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