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PREFACE

In a summer 1976 workshop at the University of Hawaii an international group met
under the auspices of the Deep Underwater Muon and Neutrino Detection Committee (DUR-
MAND) to discuss the detection of cosmic particles and their interactio n byproducts by listen-
ing through hydrophon es to the noises they make in the ocean. A full proceedings of their
work was publi shed in early 1977 (cited as Ref. 1 in this report) . Of particular interest were the
conclusions of the Acoustics Panel , which examined the acoustic aspects of DUMAND and
developed several acoustic models to serve as prediction tools. Although the models are accessi-
ble to advanced students of acoustics theory, they were not given in sufficient detail to allow
appreciation of their content . The purpose of this surve y report is to place the models in per-
spective by showing their origin , derivation , and limits of validity.

The conclusions of the DUMAND Acoustics Panel covered many features of the acoustic
problem. Points most pertinent to this survey are briefly as follows:

• The cosmic particle deposits energy in the ocean as it decelerates. The spatial distri-
bution of this energy along the path of the resultant conical cascade is roug hly Gaussian. The
length of track varies from 1 to 10 m , depending on the energy &,~ of the inco ming particle
and on the nature of the cascade. For hadronic (massive-particle ) p lus electromagnetic
show ers the full width at half maximum (FWHM ) of the Gaussian distribution in the direction
of the shower is about 3.8 m at 10 12 eVto 6.4 m at 10 16 eV. The lateral distribution (across the
sh ower) is not specified but is expected to be similar to purely electromagnetic cascades. For
purely electromagn etic cascades the FWHM is 3.2 m at 10 ‘2 eV to 4.5 m at 10 16 eV In the
cross section the fraction (FE ) of total energy deposition between r(r = 0 is the axis of the
cascade) and r1 (Moliere length , which equals 10 cm in deep sea) is FE 2.5 n t 1 if r < < r 1.

• The ambient noise in the ocean is a min imum at 25 kHz , making it a good cnoice for
a listeni ng frequency. At 25 kHz the ambient noise power (in SI units ) is proportional to (10
1uN/ m 2 ) 2 in a 1-Hz band. Since a bandwi dth of some 10 kHz is needed to resolve the expect-
ed transients due to the acoustic pulses of the cosmic parti cles , th e noise power in the receiver
is at best proportional to ( 1OM N/ m 2 ) 2 10 4, so that the noise pressure spectrum level is

~Ri 0,.tN/m) 2 10 4 = 10 3 (N/ m 2 ) = 10 ‘
~
‘2 (dyne/cm 2 ). This is taken as the lowest

D U M A N D  signal that can be detected in the band 15 to 25 kHz say.

• The mass of ocean water required to detect neutrinos must be very large because of
the extremely small scattering cross section of neutrinos. It is estimated that a volume of 10
by 10 by 1 km ~ is needed to detect 100 neutr ino related events per day, each ever t  having an
energy averaged over many of 10 13 eV. The number of hydrophones needed to make this
detection over the prescribed volume is estimated at IO 5.

One gathers from the DUMAND report that further progress in th e prediction of noise
pulses from the deceleration of high-energy particles in th e ocean must await more detailed ex-
pe rimental data , specially designed to display the impulse nature  of the physical event and give
reasonab le estimates of time duration and magnitude of heat generation. Although it has been
verified in the laboratory that high energy particles do make noise when they are decelerated
i n liq u ids , the lack of good e ’per im enta l  data precludes any decision on which model is most
nearly correct

. V



THEORETICAL MODELS AND NUMERICAL ESTIMATES
OF ACOUSTIC SIGNALS

OF HIGH-ENERGY COSMIC PARTICLES IN THE OCEAN

EXECUTIVE SUMMARY

High-energy physicists in the field of cosmic rays are faced with  a difficult problem that  is
blocking advance. They wish to clarif y their understanding of the universe by probing into the
origin of neutrinos which reach the earth from outer space. In particular they wish to con-
struct a neutrino telescope that will pinpoint the angular distribution of these particles in the
heav en s, and chart their temporal and spatial fluctuations. To date they have been unable to
do this in any practical way, because the scattering cross sections of neutrinos are extremely
sm all , even at high energies. Groups of scientists interested in this problem have assembled
themselves into a committee with the name DUMAND (Deep Underwater Muon and Neutri-
no Detection ) and have met in the last few years at annual intervals to discuss advances to-
ward solution of their  problem. The most recent meeting was at the U. of Hawaii , i n the Sum-
mer of 1976. They conclude the following in their  report: immense masses of matter will  be
needed to detect these muons and neutrinos at some usable (practical ) rate , say a few te ns or
hundreds of events per day. This mass must essentially be free to all at no cost. Clearly the
only practical resort to get great mass is the ocean. Hence they visualize the neut r ino  telescope
to be an underwater detector. Furthermore , to aveid too many non-muon and non-neutr ino
events per uni t  time , which could cause saturation in the detector they conceive the underwa-
ter detector to be deep in the ocean. Thus an immense structure of hydrophones and photo-
detectors estimated to be some 5 to 10 km square and 1 kilometer high is proposed , even tually
at a depth of 5 kilometers , in some favorable ocean far away from man-made activities which
create underwater noise.

The theory of the neutr ino telescope is this: Hig h- energy particles entering seawater give
birth to cascades of ionized collision products . These cascades can be detected by two effects:
they create a bow wave of light (Cerenkov effect) (similar to a surface “b ow wave ” ca u sed by a
ship ) which  is visible as a flash of light , and they generate an acoustic shock pulse , th eoretical-
ly det ectable with hydrophones. The source of the energy in the acoustic effect is thought to
be th e ionization energy loss caused by charged particles colliding with water molecules. The
energy ult imatel y appears as nearly instantaneous local heating of the water , in a t ime of about
I ~ts  to 0.01 ns, ov er a volume of water at the largest of radius 10 nm but generall y of the di-
mensions of a few molecules. The efficienc y of conversion of kinetic energy of cosmic particle
into  acoustic energy is estimated to be 10 ~ or less.

From the point of view of the acoustician the problem is posed as follows. Coming in
from the atmosphere , and ul t imately from outer space , is a continuous shower of high-energy
pa rticles , charged and unchar ged , which collide with molecules of air to generate cascades of

Manuscript submitted July 20, 1977.
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collision product s , ionized molecul es , etc. In particular a large flux of massless, chargeless neu-
trinos enter the seas, where they in turn collide with water molecules and create additional cas-
cades. At the instant these cascades are formed , they radiate transi ent pulses of sound. Thus
the acoustic ian sees a volume of space randomly il luminated with bursts of sound (firefly
effect) . The problem posed then is to create a mathematical model of this effect.

Several models of single cascades were initially made under the auspices of DUMAND.
These can be grouped into thermoelastic models and bubbl e models. In the group of thermoe-
lastic models are a heated-rod model , a heated-spot model , and a heated-filament model. In the
heated-rod model the cascade is considered to be a cylinder of water typically 3 to 10 m long
and I to 12 cm in diameter , heated in a time of I ~ s to 1 ns , and coherently radiating a tran-
sient whose spectrum is roug hly from 25 kHz to several hundre d kilohertz. The radiation pat-
te rn is thought to be pancake shaped , that is , sharply narrow broadside to the axis of the
cylinder. In the heated spot model a spherical volume of water of radius 10 nm or smaller is
heat ed in 0.1 ns to 0.01 ps., radiating a spherical shock wave followed by a tail thought to be
due to a heat diffusion effect. In the heated-filament model the local heating is confined to a
large number of fine filaments approximat ely I ~zm in diam. Each filament radiates a separate
acoustic wave , but all the filaments are considered to radiate coherently. In the group of bub-
ble models the principle effect is modeled as local boiling of the fluid medium into bubbles ,
with subsequent collapse of these bubbles giving rise to acoustic transients. Not too different
are models which  treat the phenomenon as local explosions , as if made of TNT , the equivalent
w eight being 0.01 jz g of TNT or less.

Both the thermoelastic models and the bubble models have been widely discussed. They
are reviewed in detail in the body of this report , and a number  of calculations have been made
to il lust rate the character of the predicti ons that  can be made with their use.

Experiments conducted to date in laboratory mockups E l ]  show that  the transient acoustic
pulse du e to high-energy particles partakes of the nat 1.ire of a wave called a bipo lar , with an ini-
tial compression wave followed by a final raref raction , as show n in the following sketch:

T2 —i

p(r ,t)
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This type of acoustic signal is predicted by a generalized thermoelastic model developed in the
body of this report. The model is obtained by solving the lin ear acoustic wave equation driven
by a heat source , namely,

v 2p ~~~~~~~~~~~~~~~~~~~ _ -.
c 2 &, 2 C,, ~it

where H is the heat flux. A typical tran sient solution of this  equation has a form

p ( r ,,)  
T1 T2 ~ const. x j ( i ) ,

i n whi ch E, is the cosmic particle energy , T1 is essentially the t ime of heat expansion , and T,
is the interval between the peak of compression and the “peak” of rarefaction . When the gen-
eralized model applied to specific cases , the differences between these specific models is found
to rest on choices of T1 and T2 . Actually,  E0/ T 1 determines the magni tude  of the peak
compression , and T2 determines the dominant portion of the frequency spectrum of the radiat-
ed wave. Measurements in laboratory experiments show T2 to be 10 to I ‘as . l eading to the
conclusion that the significant spectrum of p ( r ,t )  begins somewhere near 25 kHz and extends
the reafter upward.

A cr ucial question is the range limit  of detectability of these bursts of sound. Local noise ,
frequency content of signal , i ncident cosmic ’part icle energy, propagation a t tenuat ion . etc. all
must be considered in determining the limit  of ‘ audibil i ty ” . Rough approximates have been
made in the body of this report. For example , i f the pressure pulse is processed in a filter cen-
tered at 25 k I-l z and 10 kHz wide , then the limit of range in un i t s  of meters per electron-volt at
whi ch the transient signal magnitude is equal to the local noise (also at 25 kHz )  is given by a
particular model as 2 x 10 — 1 3  Thus , in this ‘node! , a total cosmic particle energy of some
5 x 10 14 eV is needed to permit detection at a l imit  distance of 100 ni. Other models yield
somewhat different (or vastly different ) values , depe nding on their  assumptions. The conclu-
sion is that several major problems in modeling remain to be solved:

• The basic physics of the conversion of cosmic particle energy into acoustic energy en-
visages the formation of a shock wave due to nearly instant aneous rise of heat deposition , y et
modeling to date is based on linear acousatic theory of small ampli tud e wave motion.

• In all mathematical models the key parameter of t im e estimation appears expl ic i t ly .
but the magnitudes of T1 and T2 to be assigned to the models are largely guessed at.

• Experiments conducted to date verify certain parameter dependencies which  t end to
veri fy particular models. These dependencies show that  the acoustic pressure is proportional to
the energy of the particles coining in from space , being proportional to the coefficient of ther-
mal expansion of the medium , inversely proportional to the specific heat of the medium,  and
i nversely proportional to the distance of the observation point (spherical spreading ) . In addi-
tion it is verified that  the radiation is sharply pancake shaped normal to the axis of the  cascade.
Still unknown however is the basic mechanism of energy con version , the modeli ng to date be-
ing purely phenomeno logical. 
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INTRODUCTION

Processing of Signals From the Separate Sources

A continuous bombardment of cosmic particles strikes every uni t  area of the earth ’s sur-
face. Those that  strike the sea penetrate into the water and generate a number  of showers of
secondary particles along their tracks. These showers create acoustic noise. An illustration of
the process of noise generation is shown in Fig. Ia. Here cosmic particles 

~~~~~~ 
etc. are dist ri-

but ed randomly along the track 4 T’ and radiate acoustic shock waves at time of bi r th .

As will be seen later the acoustic signal patterns SAl SA2 , etc. are shar ply normal to the
track. In view of this sharpness of pattern one can reproduc e the scene as a space and time
random distribution of showers , (Fig. ib) .  An omnidirectional hydrophone H will  then record
the acoustic pulses (or spikes) due to contributing showers say 1, 2 , 3, 4, etc. distr ibuted in
ti me .(Fig. Ic). A directional (or searchlight ) hydrophone will  record only the acoustic spikes
directly in line with the beam , say spikes 2 and 5 (Fig. I d) .  The goal of acoustic analysis is to
determine the directionality and statistical properties of th e noise made by these sources.

\ I~~ _ _

SAi~~~~~~~~~~~~~~~~~~~~

l ig. Ia -- Schematic of noise generation F ig. lb -- Space and time ran-
by cosmic particles dom distribution of showers

2 2
Hit) IA A 3 

~ 
H(t ) A ~°rrrr~ 

>t 0 -~r ~~

- 
> 5

1-ig. Ic — Schematic of voltage n- - Fig. Id — Schematic of voltage Ic-
sponse of an omnidirectional h y -  sponse of a directional hydrophone
drophone
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Fig. 2 — Addition of random noist’
p fro m two showers

One must first construct an acoustic model of one shower. This is covered in the  main
body of the report. Secondly one must find a way to add sources together. In view of the ran-
dom nature of the showers these effects must be added on a probabilistic basis. A schematic
way of doing this is as follows. Figure 2 shows two contributing showers radiating n ise to
point r. Shower I is the jth random shower of the kth random high-energy particle , and
shower 2 is the Ith random shower of the mth random high-energy particle. Many more such
showe rs contribute. The total time record of reception at r from all contr ibut ing showers is a
si mple sum of time-delayed elementary pulses:

r — R - A 
~‘k) IP (r ,t )  = 

~~~~ 
t — _____________

Since P is a random function of space and time , we will atte mpt to construct its autocorrelation .
First , let exactly K contributing particles arrive in the time interval 0 , T, and l et exactly i con-
tr ibut ing showers of these particles occur in spatial volume V . Then the total pressure due to
these showers is

J K I r  — R ,4 (,~) I
~ J K (r ,t )  ~~ ~~ P I~ t — .

i — I  k — i

Now let g(J) , and g( K ) be the probabilities that exactly J contribu t ing showers will occur in
v olume V and exactly K contributing particles will occur in the time interval 0 . 71 The auto-
correlation ‘~ of the receiv ed time-pressure record at point r is then

iLi (I ,r )  = Z g ( i) g ( K)  <P JK (r .t )  PJk (r+ l.t + T )  >J —0 K —O

i n which the overbar indicates the time average and the brackets indicate the ensemble aver-
age.

The probabilit y distributions are not known. It is plausible however to assume that  parti-
cles and showers constitute a shot effect and that g(J) and g ( K )  are Poisson distributions:

g (X )  = 
(N

,g)
X 

e NQ,

5
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i n which g ( X )  is the probabili ty that exactly X events will occur in the in terval  0.Q and ‘
~ is

the av erage number  of events  per unit interval .  It is further  plausible to assume tha t  s p a L c  and
time p robabilities are statistically independent.  Following Rice [21, we conclude tha t

= N, N A f f p ( r j ) p ( r  +l ,t +r )  did, + < P (r .t ) >  2

wher e

<~~~~7 ) > 2  — N I NA I I p(r ,,) drd, .

The space and time averaged power spectrum W(K ,w )  is then obtained by Fourier
transformation of s/i :

£d ~ 
f d l ( ! b (l ,r) > c o s wr cos K 1

4 N,N J S ( K ,w) 1 2  + 4 < P (r ,F ) >  2 h ( K ,w ) ,

i n which

S (K ,o i)  = f f p (r ,t ) e ’~~~ 
—o~i )  did,.

This means that one can obtain the power spectrum of the acoustic noise by first obtain-
i ng the space-time spectrum S of the transient pressure p and the space -time average of the to-
tal p ressure and then adding them with  the coeffici ents as shown. Other signal-processing
sche mes can be used to obtain fur ther  information on total effects in the ocean .

Models of the Separate Sources

The subject of this report is the development of acoustic models of the individual
showers gene rated by a high-energy particle. In the process of this  dev elopment we wil l  br ing
out th e important property of directionality of the acoustic signal which is a prime goal of
an alysi s.

High energy atomic particles are decelerated upon passing through sufficient thicknesses
of solid or liquid materials , l osing kinet ic  energy as they do work on adjacent molecules of the
medium. The energy loss is assumed to take place in the following steps: A fast moving parti-
cle strips off an electron at high energy, and then this electron strips off fur ther  electrons in
the ato ms along its path , the p rocess cont inuing  in a bui ldup of a mul t i tude  of fast-moving io n-
iz ed atoms and electrons. These collision products distr ibute the i r  energies among other
molecules of the medium by additional successive collisions. Each loss of energy reapp ears ul-
ti mitely as heat in the absorbing medium or as a :hange in the medium ’s mo m e n t u m  or local
ch emical state. The energy transfe r occurs quickl y and is thought  to be the origin of exp eri-
mentally observed acoustic transients.

There are several origins of high-energy particles. Man-made sources are nuclear  reac-
to rs , pa rticle accelerators , ato mic collisions , etc. In th ,~ natura l  world it is known tha t  cosmic
pa rticles pervade the entire universe. Those that  find their  way into the  earth’ s at mosphere.
ocea n s, and crust are thought  to originate from distant galaxies , supernovas , a nd the  sun.
Their  detection is of scientific and mili tary interest. Several schemes of detection have been

6 
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proposed , depending on the nature  of the particles. If the particles are charged , one can detect
them in cloud or bubble chambers in the  presence of magnet ic  fields , or by Cerenkov radia-
tio n. If the particles are not charged (say neutr inos ) ,  the i r  interact io n wi th  other mat ter  may
i nduce formation of secondary particles which  then can be detected. F ina l ly ,  it has be en pro-
posed that  high-energy particles generate acoustic pulses in media and tha t  th ese pulses are
sufficiently intense to be detected , the models of this  acoustic pulse generation h e sig the sub-
ject of this report.

3evera l theoretical models have been proposed to explain the mechanisms of acoustic
p ulse formation by cosmic particles. The dominant  models are ther mo elastic models , in the se
models kinetic energy is converted into heat , which  raises the temperature  of the  med ium
thereby alte ring the medium density on a short time scale which causes a pressure shock ~ a~e
to radiate outward. Thre e dist inct  heat models have achie ved prominence among scien Li s t s
who hav e examined the problem [I I .  These are the heated-rod model , the heated-spot model ,
and the heated- filament model.

In the heated-rod model the cosmic particle is thought  to generate a cascade of ionization
products that  instant ly heat a cylindrical  rod in the m edium of len gth L and diameter d (the
n umerical values of L and d depending on the energy of the particle ) to a fractional degree
above ambie nt (the temperature rise also depending on particle ener gy) . Typical numbers  are
L = 5 to 10 m , d = I to 12 cm , and tempe rature rise = I ~.t K for the case of a 10 ~ eV ne utri-
no. The heated cylinder expands in 10 to 0.01 ps , radiating outwa rd a t ransient  shock wave
with an efficiency of energy conversion of about 10 ~ to 10 10 The radiation along th e en-
ti re length L is coherent over the range of the band width  frequencies of the t rans ient  and is
directional with angle of detection .

In the heated-s pot model the  kinet ic  energy of the particle is converted explosively in to  a
co,ic-e,llra1’ed heat source (the hot spot ) , wi th  the heat then di ffusing outward in f ini te  (but  ra-
pid ) time. This the rmal shock results in an elastic stress wave which  radiates outward as a
shock wave wi th  a speed ini t ia l ly  greater than , but  eve ntua l ly  equall ing ,  the speed of sound in
the medium. The pressure pulse of these waves exhibi t  compression on1~ and the spectral fre-
quencies of the transient  propagate independent  of angle.

In the heated-filamen t model the heat ing is confined to narrow f i laments  (say 1 pm in di-
amet er) , there bei ng showers of them.  The temperature  rise in a f i lament  ( l ike tha t  of the
hot-spot model ) is 100 to 10000 times higher  than tha t  in a rod. Each f i lament  radiates a
sepa rate acoustic t ransient , and it is assumed tha t  all t he  fI laments  in a shower radiate
cohere nt ly .  The heated-f i lamen t  model (as well as the  heated-s pot model ) predicts acoustic
t ransients several orders of ma gni tude  larger than  the heated-rod model because of the
confinement  of heat in g to small  volumes (wi th  consequ~ nt greater temperature  ri se ) and be-
ca use of the much shorter t ime of heat deposition .

In additio n to these three thermoelast ic  models , a nother  model , not readily calculable  but
of equal i mportance , is the microb ubbl e model. Here the concentra led heat of a secondar )
p roduct particle quickly boils the li quid into a vapor bubble .  The growth and collapse of this
bubbl e radiates sound in the form of shoc k waves .

Thus the complexity of cosmic particle showers makes acoustic modelin g h igh ly  uncer-
ta m . The most satisfac tory approach is to s im plify  the  f inal  acoustic radiator to a collection of

7
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recognizable (and computable ) acoustic shapes. In this  survey we will develop in detail
cylinder , sphere , and vapor-bubble models , with the cylinder and sphere models being ther-
nioe lastic models. These models will be used to make numerical calculations.

Cosmic-Parttcle Showers in the Atmosphere 131

The dominant high-energy particle arriving from outer space is the proton. Approximate-
ly 10 10 arrive per sec on a I -km 2 a rea at the top of the atmosphere with energies equal to or
greater tha n iø~ eV. Only the hi gh er energy protons will reach sea level. The energy flux
spectrum of these high energy protons on the top at the top of the atmosphere is extensively -

‘measured. A few entries are:

Energy (eV) Flux (s — l km 2)
IO ’~ 10
10 ’~ iø~~
10 ’s I0~~

Upon entering the atmosphere the proton collides with air molecules about once every 7 to 8%
of atmosphere thickness. Protons wi th  energy of 10 12 eV create about 10 pi mesons at col-
lision , and those with en ergy of 10 14 eV about 20 pi mesons. A proton survives each colli-
sion with about half its in i t ia l  energy. Pi mesons themselves undergo collisions , creating addi-
tio nal pi mesons in the same numbers as proton collisions. Thus a cascade of pi mesons is
created by each ini t ia l  proton collision , th e number  sequence being one proton , then — 10 pi
m esons , 100 pi mesons , — 1000 pi mesons , etc. Since the atmosphere is relatively thick ,
most of the proto n energy that  goes into creating pi mesons is absorbed before sea level is
reached. However the newly created pi mesons are unstable and immediately decay . The - 

-

pl us- and minus-charged pi mesons decay into plus- and minus-charged muons and neutrinos.
The neutral  pi meson decays into two gamma rays. Decay products then interact with the at-
mosphere to produce a cascade of electrons and protons. Muons do not interact strongly as do
pi mesons and protons , so they penetrate to sea level and below. Neutrinos have even weaker
probabili ty of i nt eraction with the atmosphere. They too penetrate into the ocean.

If a high energy neutr ino (say 10 14 eV) does interact with the atmosphere , ab out half the
i nitial  energy goes into a hadronic cascade (a cascade of “hard” pa rticles possessing significant
mass) , th e other half going in to  the creation of muons or electrons. The hadronic cascade has
the following history: The neutr ino creates pi mesons. Of the total population of charged me-
sons within 50 cm along the interaction path about tO generate (say) 10 more , resulting in a
show er of mesons. Pi mesons with zero charge create a positron-electron cascade spatially dis-
tributed in a cone estimated to be 5 to 10 cm across and 5-10 m long. The number  of particles
in this cone exceeds tO n .

If a high-energy muon (say 10 13 eV) int eracts with the atmosphere , it creates a particle
shower approximately every 100 m. These showers may begin as gamma rays , posit ron -

-: electron pairs , or pi mesons. The energy in a shower is about lO~~ eV , there being about 100
particles in a cone a few meters long and about 10 cm wide. If the high-energy muon has 10
imes the preceding energy (— 10 14 eV) , it will also generate showers every 100 m but which

will  be 10 times more energetic wi th  10 times more particles. Along each 100-rn segment of
the shower path there is a regular ionization loss of 2 x 10 6 eV per cm , or 2 x 10 10 eV. This
is roughly l% of the initial muon energy and can be assigned as a 1% energy feed into each
sh ower.

8
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Statistics of Particle Showers Reaching Sea Level

A useful model of an air shower reaching sea level is a thick rod of area 10 m by 10 m ,
one rod occurring per square kilometer. The flux of particles in this rod is a random quant i ty
but can be modeled as follows:

• In every 100 s there wil l  occur a shower of lO~ pa rticles. Of these some 99% are posi-
trons or electrons , which are stopped in approximately 10 m of water. About 1% are muons ,
which penetrate deeper.

• In every 3 hours there will occur a shower of 1O~ pa rticles.

• In every couple of months there will occur a shower of 10 10 pa rticles. Of thes e some
10 8 are muons , 1O 4 of which have enough energy to penetrate 5 km into the ocean.

Each particle has a mean energy of iO~ eV . The particles which penetrate into the ocean
deep enoug h to be of significance in this survey are the neutrinos and the muons. The flux-
and-energy statistics for the neutrinos are briefly as follows:

• On e per year interacts in 1 km ~ of water with an energy of lO IS eV ,

• 100 per year interact in 1 km ~ of 10 14 eV , and

• t O 4 per year water with an energy of 10 13 eV .

The flux-and-energy statistics for the muons are briefly as follows:

• 300 per second arrive on 1 km 2 of ocean at 10 12 eV , each accompanied by 100 muons
at I0~ eV ,

• One per second arrives on I km 2 of ocean at 10 13 eV , accom pa n i ed by -
~~ 1000 mesons

at I0~ to IO 10 eV.

• One per 100 s arrive s on 1 km 2 of water at 10 14 eV.

THERMOELAST IC MODELS

Sound Sources and Their Governing Equations

The generation of sound by cosmic particl es in the ocean may be investigated theoretical-
ly by adopting a reasonable model. Since the mechanism of energy deposition and acoustic
con version is not known with certainty, it will be useful to review various pot ential models.

A first approach to modeling is to state the equation of state for liquid pressure p in which
small deviations from the ambient (or equilibrium ) pressure P () are dependent on changes in
density ~p and in extropy ~~

9
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For a heat-conducting viscous fluid the excess pressure (acoustic pressure ) is

p 2 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ di v v + . . .2 tiP s 3 c~. c~

in which c is the speed of sound , ~ and i~ 
‘ are viscosity coefficients , x is the thermal conduc-

ti vity (units: N/ K - s) , C1,~ and C~, are specific heats at constant pressure and constants volume
(units: ni 2/ K  ‘ s2) and v is the vector fluid velocity. The simplest model of acoustic pressure
gene ration is the one-term statement

p
_ 

=c ’ 2p~.

This is the case of a linear nonviscous fluid in which the conduction of heat is negligible and
the mechanism of sound generation is exclusively a function of change in den sity. However ,
the generation of sound pulses by cosmic particles is a complicated pheno menon. Hence a
more complicated model will  be needed.

We require various more complex mechanisms for changing density in liquids. These
mechanisms are customarily listed as “sources ” in wri t ing the general linear equation of the
propagatio n of sound [4 , p.324 1:

V 2p — p K -——~ — f (r , t )  + div F — V ~ T V +  .

i n which thermal and viscous terms have been omitted on the left-hand side but  are included
on the right-hand side as potential sources. Here .f(r , t) is the sum of all monopole sources .
div F represents the dipole source terms , and V - T - V is the quadrupole source. Our interest
will be focused on the monopole term. The general formula for the monopole sources is given
by Eq. 7. 1.22 of Ref. 4:

f(r , t )  = -
~~~
- (p q )  + ~~J~J~K .~~~~~ — P~j ~~) 

~~~~

_ —

K 2 + — 

2

a~ ç
Here q is the volume flow (uni ts :  ,u3/ s  ‘ in 3 ) and P is the equil ibr ium pressure. Other symbols
will be explained below. The first monopol e term represents an introduction of new fluid into
the medium , the  second term represents an introduction of t ime varying heat , and the third
and fourth terms are sources by vir tue of th e temporal and spatial nonuni formi ty  the medium
properties , Although other sources are possible , most modelists of the acoustic effects of cos-
mic particles in liquids consider the  heat source as the most appropriate:

.f(r , t ) = -
~~~
- 

I-
~~~

-J ,

10
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OP - N l t i V  . 2
‘V = — , unt ts: 2 fK — — — (units: m IN ); y = — .

OT 
~
. . K V OP s C 1 -

Since € is the heat added per uni t  mass per uni t  time , the facto r pa is the heat added per uni t
volume per unit time. The factor is the temperature change due to the addition of heat.
Introducing the coefficient of thermal expansion (3 ( units: K ~ 1) , one can write

a y K- - -~~
- f3.p OT~~

Thus , by reg rouping all factors , one arrives at a more significant expression for the monopole
source directly attributable to heat:

fl_ OH . N~~ m
j (r, ,) — , H = p a units:

p In ‘ S

The ph ysical significance of the source is this: The addition of heat results in a change in tem-
peratur e , which in turn causes an expansion of fluid , thus altering dens ity~ and the change in
density generates an acoustic pressure , as indicated by the first equation of this  section. The
equation of propagation of the acoustic pressure is therefore

v 2p — ~~ = _i~ ~~L, H = H (r , I ) .
c 2 tii 2 C~ Or

The negative sign appears on the right-hand side to insure a positive-sign source when the
temperature increases (/3 being negative ) .

It wil l  be useful to picture the acoustic phenomenon described by this equation. In anal-
ogy with a siren which ejects puffs of air by chopping a steady air stream , the equation
describes a “heat siren ” which ejects puffs of heat by chopping a steady deposition of heat. The
heat stream is H (calories/s per unit  volume) , and the chopping action is ti/ti ,. If the chopping
is steady state , one sets ti/Or —. — 1w. A “on e-shot ” siren generates a transient heat puff.
These heat puffs in turn generate density-temperature puffs (through multiplication by Ce ’) .
and the latter are converted to pressure (density ) puffs by /3. The intensity of the sound gen-
erated will  be directly proportional to the magnitude of the steady heat flux (= H) and to the
rapidity of chopping ( = 8/00 .

Thi c p icture is common to all thermoelastic models. As we shall see , a different model is
constructed for each description of H and ti/Or. Actuall y H is specified as the calories per
second per unit volume, making the developed pressure obtainable only by integrating over the
effective volume which carries the heat. The heat in question is of course not directl y deposit-
ed by the cosmic particle , which carries kinetic energy only. However for making estimates
the magnitudes of kinetic energy and the developed heat are made equal.

We will  now survey several useful models and will  provide development of details when
it is judged usefu l to an understanding of the limits of validit y.

I I
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Heat Models Based on V 2p — ( I / c 2 ) (0 2 p / ti ’2 ) = — ((3/C,, ) ( O H / Of )

We first enquire into the nature of H. Let the initial energy of a cosmic particle be F ,,
(uni ts :  N/ rn ) .  We assume that when the particle enters the ocean , the heating effect on the
water becomes volumetric. We can represent this effect as ~ E0 I.~ V0, where E0 is th e state-
nient of the energy disturbance upon the water , as distinct from the particle energy E0. Next
we assume that at any particular point r ,, along the track the water is at first quiescent , then
responds to the heat disturbance , and then is quiescent again. The heat description is

.~~ E,
~ H = pulse x -

,
~~
-

~~
--

( units:  .V,n/ s ’ ,,,3), Three specific forms of this  function will i l luminate the meaning of the
sy mbols.

For a point (o r delta ) deposition in space and time , the form is

= p u lse x -

~~

-

~~~

— = E0 l1(r ,, ) 8 ( t ,, ) .
1)

For a deposition that is delta in time and uniform in cross-sectional area S. the form is
dE(: ,)

.~H 
,~ d:,, 

6 ( i ~ )

1 dE(: 0)
S dZ,,

which . if E,, (:,, ) = E,, e ~~~~ becomes
E0 - -

.~~ H = a —

,
~~

— e - -y (‘~~ 
(case I )

and , if E(, (:,, ) is Gaussian over volume V0, becomes

E0 (: — L/ 2 ) 2 8
= —j

~
— exp — 

L 2 ~ (‘o ). (case I I )

For a deposition that is delta in time and varies with :~ an d with  S ( r ~) ,  r j  = -s/v 2 + v 2 , the
form is

dE
~H —

~j ~
- (rk, :) 8 (e’O ),

which , i f the variation with r is  parabolic , becomes
dE(: ,) r 2

= ‘ I — — 6 ( t ~ ) (case Ill )
S,, dz0

and , if the variati on with r is  Gaussian , becomes
2r 0

dE(: ) r — - ~— ~ 8
= exp — 

2 ~~~~~~~~ (case I V )S ( ~~, r
° 0
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In these three forms the pulse nature of .~II is written as 17 (r e ) . Other pulse expressions may
be more appropriate. W riti ng ‘ pulse” as 17(t )  ( units: s 1 ) ,  we list a few pert inent  forms:

h~ (0 = rect (0, T) or rect (-T/2 , T/2 ) ,
~,2 (t )  triangle (0 , T) or triangle (- 1/2, T/2) ,
173 (t ) = cos (11 rect (- T/2 , T/2) .

Each pulse function has a Fourier spectrum of frequencies. Lettin g u and s be Fourier pairs ,
we have

rect u — sinc s,
triangle u — sinc 2

I .  I I .  Icos 7r u r e c t u — - ~- sInc ~~~~~ + - ~- s I nc . s — - ~- .

Since time is the analog of u and frequency is the analog of s, pulse descriptions and frequency
descriptions are interchangeable by means of Fourier transformation. It will  be convenient in
th e following analysis to consider both temp oral and frequency descriptions. In all cases where
the steady st ate solution p( !~w) of the pressure has been calculated , th e temporal solution will
be the standard one ,

—, ,p ( r , I )  = j  p( r lw ) h (w ) e —
‘27r

i n which 1 7 ( w)  is the Fourier transform of the pulse h (t ) .

We will now survey useful models.

Let the initial flux of particles entering the ocean be a beam of intensity I,, ( units:
Nm ~ 

H ‘ m 2 ) The word init ial  means that we know I ,, at some particular field point be-
fore additional absorption takes place. We assume that the rate of absorption with distance is
exponential of form e ‘~~~, where a (units:  m H ) is the absorption coefficient. This space rate
of ab sorption is precisely H , na mely,

H = 
—d 

I(~ e “~~~ = a i,, e

The ti me variation of H is as yet unspecified. Ini t ia l ly  we resolve the t ime variation into har-
monic components. Thus the complete specification of the energy deposition in the fluid be-
comes

H = (n I
~ 

e °—

Next  we must assume a geometrical descriptio n of the space in which the acoustic field will  be
generated. For our first model , which we call heat model I , t he space is assumed to be inf in i te
i n all directions. W e will develop this model in detai l .

Heat Model La Qn Unbounded Space) lWester velt-La rs en-Ha nishl

The transient problem to be solved is

V2 p ( r , 0 _ ....L 8 2p (r ; i) 
= — q (r ,,, ia ), q

13
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The solution of

v 2p __ !~ L~ = — 4ir q , q ’ — q/ 4~.
c 01

is know n to be

4~~p (r , 1) = 4~ f  + 

di,, f dV ,, G(r , r ,,~ i, i,, )q (r ,,. i),

where G is the Green ’s function of the scalar wave equation [5 , p. 8341. For unbounded space
17 ER/c — (r —

R
where

R = I r  — r ,,I
and

R 2 = (x — x0 ) 2 + (v — y 0 )
2 + (: —

Thus the solution of the t i -ansient problem is

p + 8 ER/C — (r — i~ ) I OH (r <, , i~p ( r, i)  = 
C,, 4 ~ di,, f  dY R di

— /3 ~ 
I-1 ’(r 0. — Rf c)

R
in which the prime signifies differentiation with respect to the argument of H (namely
i — RIO. Let the volume of integration be a cylinder of area S. l ength I. Then , subs t i tu t ing
the previously derived form of H in which the transient state , is replaced by the steady state
we arrive at

IW a 1~ Sf3 ~. dz,, e —,,:~ e 1U)(( — R ~c
p (r . w )  = — 

4ir C,, .1 R
In the far field

R~~ ~r l _ (, cos D .
where I r~ is the distance from the origin to the field point. After a certain length l (V

the function e ‘ ‘ = e ~ is effectively neglig ibl e in its contr ibutions to the value of the in-
tegral. By making I > I , one can extend I to  inf ini ty  and thus  approximate the integral to read

—wa 
~ 

S/ i  ,A I r I  e 
— 

(Up ( r , w )  = 
4i~ C,, In e d + ik cos 6 ’ C ’

The magnitude of pressure has a directivity F ( 6 1) ,  where
w i  S f 3

I~I = 
0 F ( O) ,  F 09 ) = 

1
47r C,,I r I  Vi + k 2 / *2 cos 2 (1

The maximum occurs at broadside (6 900) (See Ref. 6 additional details. ) Although the ex-
pon ential heat depostion is plausible , other types of track-dependent deposition are equally so.

14
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An example is the Gaussian dependence on penetration length (= :,, ) , which  ea rlier was la-
beled case II. Thus we use the earlier equation

E,) (:, — L/2 ) 28
~~ = — e xp  — ‘ 1 7 ( 1,, )V0 L2

and consider only a single frequency. Defining the intensi ty  flux as I ,, (r 1 ) (energy flux per
unit cross sectional area) , we write

I~, (ri) _-,, — L/2 ) 28 
—

— exp — e Iwl

L L 2

This implies that the “Gaussian length” of deposition is 1, that  deposition is a max imum at L/2 .
and that the standard deviation of deposition is r = -1( 1/2 ) (L 2 / 8 )  = L/4. The radiated
acoustic pressure is

(:,, — L/ 2 ) 2 g 
—, I ,  —R Iexp — —  exp

—iw f 3  ( L2 
-p ( r, w)  — 

4~rL (‘p ~~l 
- 

R 
I
~ 

(r ~ ) d1 0

For simplicity we take 1~ (r 1, ) to be a constant independent of the  cross sectional area variable
r1. Thus . dV = d:0 dS(r ,,) . and

— L/2 ) 28 i~ R
i0) (3 / , S L exp — 

L/2p ( r , ~~ = 
4ir L ~ ,, e ,f R ci:,,, A = w4 .

In the far field

R ri — :,, cos 1~,

wh ere U is the angle of th e observation vector with th e : (or track ) axis. Let ~v :,, - L/2 , clj ’ =
d:0 ; then , extending the limit of integratio n to inf in i ty ,

p(n , w)  = ~~ ~° ~ 
e~~1 r 1  e —~(~ /2 ) L cos~ f  ~ 

—v ~8 - L 2 
~ 

—~~~ cos ~4~~ L C , , i r i  o
Let 8/ L 2 = a and 1k cos 9 = / 3. Then the integral reduces to

f e ~~ “ + ( p/cr  ) ,~ dy = e ” (p / ~ ) 2 f  e (v  +~ ~~ 
2 

.~ +
o o

= ~~~ 
(~i — 2 ,, )~

2~~~
= ..

~~
. 

~~~~~~~~~~ 
—~

2 L 2 ,~~i~ 32

From this the magnitude of pressure is

I (r w) I  = 
~~ 1~ Sf 3  

7T~ 1 (,S 1
~~8 A =16 -~J ~~ C,, i n  ‘ ‘ 2ir w

In most cases L/A > >  1 , so that  t he directiona l it)  of the pressure is sharp in the broadside
direction (1) 900) The quantity i,,S is again equal to E,,/ T1 , the “ ti me ” T1 being an estimate.
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A second example of a spatial deposition of energy which is other than exponential is the
uniform deposition in which dE0/dz is constant. Thus

1 dE i dE —

~&H ~~~~~~~~~~~~~~~~~~~~~~ 
1w!,,

S dz0 T1 S dz0
so that

- L i ”R—g u f3 I dE ep ( r , w)  = 
4 ir- C,, -j~

_ -
~~-- .(

----j -- dz0.

In the far field

I p (dE 0/ dz ) 1 g” ,kcos i9:,,
4ir ~ ~~~ 

-
~
-
~
j- I ,,j e dz0I

or

i r Lsin —cos 0
w (3 (dE 0/ dz)  Ap 1 =  L4ir C l’1 r irL1’ —~— cos 6

Here again T1 is unknown.  The radiation pattern is sharp at broadside, just as in the case of
th e Gaussian deposition,

Heat Model lb t in Unbounded Space)

When the heat deposition is tran sient and there are no preferred frequencies , we replace
e ‘°“ by “p u lse” h U) .  The solution is

p 
~
. dv,, a e — i :,, h’ (t — R/ c)

R
Since all physically compatible transi ents h ( i)  start and end in fin ite time , th e time derivative
will have both positiv e and negative values (17’ = dh/d(t — RI c)) .  Hence the sound radiated
will exhibi t  both compression and rarifaction.

A simple application of this  formula is to assume th e heat deposition is a delta functionin space and time:

H(r ,,, ‘~ ) = E0 8( 10 ) 1 7 (n 0 ) 
[~~~t5: .

~~~~ m
’
~~J’

Then the radiated tr ansient is

/3 E ~ 8[_& — (1 —

p ( n , 0 = 
41T 

~ 
5 d 0 5 dv,, R

E, , / 3  c
4ir C~ m l

16
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E&
4w% r

Fig. 3a — A double impulse of pressure Fig. 3b — Pressure impulse

This pressure history exhibits a double impulse at point I r~ (Fig. 3a) . The first or compressure
p ulse is physically due to the shock of expandin g heated fluid acting against the inertia of the
statio nary non-heated fluid ; the second or rar ifaction pulse is due to the “vacuum wave ” creat-
ed by the sudden cessation of expansion of the heated fluid while the inertia of the non-hea ted
fluid continues its outward motion (Ref. 7 ,8). As a second example we assume a time history
of deposition to be a sinusoidal pulse:

17( t )  = (sin t i I ) f l l t  T 1 ,

Here II is a rectangle function of unit  height and of base Ts centered at T/2 s, which is zero
outside the range 0 to T. The radiated pressure for exponential deposition of heat is

p ( n , 0 = 

4 ~ 
5 dV,, ~ e ” ’ cos (2 (i — R / c) f l I

~~ 
— R / c)  — T/2

]

+ sin (1 U — R/ c) f l  
I’~ — Rid — T/2 II

The second term on the r ight-hand side represents a pair of impulses generated by the step
functions appearing inf l .  We shall neglect them here , b ut will  consider them later. Setting
the limits of integration to inf in ity ,  we find the pressure at distance R > > 1 2 / X  to be

f3 ( i a I  S r rp ( r , 0 = a cos (2 , — — K cos U sin (2 I —
4~

. (‘ (~~2 + K 2 cos 2 9 ) I n i “ V .

U — R/c) — T/2 K
T ‘

At 0= 90° the shape of the impulse pressure is shown in Fig. 3b. We see again t hat the  pres-
sure is a max imum at 11 90° (broadside ) . This model is analogous to a “one-shot ” siren. It
will be used in a later section on numerical calculations.

Heat Model II Gn Semi-Infinite Space)

In heat model II one again assumes that the cylindrical shower in the liquid due to the
interaction products of a cosmic particle is caused by an external beam of the same cross-
sectional area . This time however the beam enters a semi-infini te  space (z > 0) from a

17
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Fig. 4 — Laser beam entering an
absorbing half space

nonabsorbing medium (region I) into an absorbing medium (region II ) (Fig. 4). The energy
deposit io n rate is again taken as

H = a Jo e ~~
in which the units of H are again N rn/rn 3 s and the units of I,, are N - m/m 2 - s. Each
point in region II along the centerline of the beam is an elementary point source of spherical
waves. Corresponding to it is an image point source in region I . The sum of these two waves
integrated over the length of the real beam gives the field pressure at r. Using the basic equa-
tions of model 1, one finds the solution to be

— f i a l S i c r s  i k l r — r ,~ e~
k _ F 2 I

p(r ) = 
0 5 e —~~~ e 

± d:.4ir C,, I n — n i l r — n 2 1
For an acoustically soft interface one chooses the negative sign. In the far field , where R > >
12/A (I being the length of the beam , taken as a H) , one can write

I r — n i l  R — z c o s (l a n d l r  — n 2 1 R +:cos O.
To simplify the analysis , the integral over z is extended to infinity. Thus

— w fi a  I S ikR —,wi

or 

= 

4i~ 

e 
R 

f e “ (e —A :c os f? — e 1 ( 0
~~ ] cL-

— 

— 
~~ 

1,, S e~
A
~’~ 

—1w! 2 kl cos (1
— 

4ir C,, R i + k 2 l 2 cos 2 U ’

(Kozyaev and Naugol ’ nykh ref. 7) . The amplitude of radiated pressur e is then
w 13 1,,S 2 k / cos ()I~I = F ( U) ,  F ( H )  = -4ir C,,R I + (k I) 2 cos 2 U

The significance of this result is now examined. First , the amplitude depends directly on th e
power of th e beam I ,,S, where S is the cross-sectional area. This is actually the energy deposi-
tion rate in uni ts  of N~m/s. Second , the amplitude depends on the frequency w , whi ch , in th e

18
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ti me domain , represents ~j /~~i. This is the rate at which  the energy, once deposited , is released
to the medium. Third,  the  ampl i tude  varies inversely as R, showi ng tha t  the  far-field radiation
is spher ical. Al tho ugh the  beam itself is a cyl inder  and the  near field is cyl indrical , the f in i te
length of the  radiation eventual ly  appears as a point  source to a distant observer. Fourth , the
patter n fun ct ion is a strong funct ion of angle U: at (I = 900 . ( in the  plane : = 0) F(90 °) = 0, as
required for a pressure-release interface. The pressure reaches a m a x i m u m  at an angle U such
that

cos U = -h-
, or U = cos H ( a / k ) .

If k/ is large (I/A > > 1) , the angle U lies near 90° :

~~~~ ~~L2 Al
Thus the max imum radiation occurs near 90° (horizontal  direction ) .  At 90° the radiation van-
ishes. Th e ampl i tude of pressure in the direction of the max imum is independen t of k/. in
contrast , alo ng the beam in the direction of the z axis the pattern ampli tude is

F(0 ) = 
2k 1 2 2 a

I + (Al) 2 Al A

showi ng tha t  the pressure ampli tude for I/A > > I is determined by the absorption a.

A parameter of i mportance in the  detect ion of cosmic-particl e noise is the total power ra-
diated (an integ rated effect ) :

W = 2ir R 2f  
p ’ ( U) 

sin ( i d U
~ 2 p C

1 1 w f 3 I 0 S 2 
Al

= . . — arctan k/ — ________

8ir p ( ( ,, Al I + (A l ) 2

Agai n if I/A > > I , th i s  reduces to the simple form
j~2 (J 5) 2

w =  ( u a .
I 6 p C ,,~

The ha l fwidth  of the  main lobe of field in tens i ty  is then

.~ U = — ~
- = - ~~~~

-
kI A

Unt i l  th i s  point one has assumed that  the incident beam ’s effective cross-sectional diameter is
small in comparison wi th  the acoustic wavelength generated. If t he  two are comparable , there
is an additio nal direct ivi ty arising from diffraction . Thus in place of F (U)  one has

FU).b) = F(U) ~/ ( U ) ,

where
2 f 1 (An sin U )

— .An si n U

The m a x i m u m  value of th i s  funct ion is un i ty  (at ft = 0) . h ence the diffraction due to large
bea m diameters reduces the ampli tude in all other directions.
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Fig . 5 — Pressure patterns of a laser beam in an absorbing half space

A sketch of F (O ) (no diameter — diffraction effects) is shown in Fig. 5 for k/ small and ki
large. The directionality closely resembles a dipole in which the beamwidths depend on ki.

It is instruct ive to compare these results with the steady state model I . The average in-
tensity of sound generated over one period 2w/ u of model I is

— 
I 

2 i~~ 2 ( r t )  
dt = 

I ~ 13 ~ S 2 
cr 2

— 
(2ir/w ) ‘

~ 2 p c  2 p c  4 r r R C,, a 2 + k 2 cos 2 ft ’

Assume the effective depth of penetration is I = ~ 
H; then the directivity factor F (0)  be-

comes

F(U) = 1
I +k 2/2 cos O

The maximum intensi ty  of sound occurs at (1 = 900 (broadside ) . The angle at which the inten-
si ty is reduced to 1/2 of its max imum is

~ t / 2  T
The total power generated is

a w /3 2 j 2 S 2
W = ° [arctan Al — arctan ( —Al)],

l6~ r o C ,~
in which for A- I > > I (I/A > > I ) the bracket has value ir , so that

= 

a w $ ~ (I ,,S) 2

16 p

A sketch of F ( U ) for the two cases Al small and Al large is shown in Fig. 6.

Heat Model III a-leated-Rod Model )

I n heat model I l l  the  en t i re  shower of interaction products from one cosmic particle is
co nsidered to be an elastic rod L cm long and a cm in radius. A mathematical  model of such a
rod may be constructed as follows: The equation to be solved is

v 2p — ~~~ -~~---~~ = — q( r ,, , ~~~~ q = .!~?2 .IL ...L,
,.2 ~~~ fit C,, 4~r
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kI large

kI small
I- ig.  6 Inten sity patterns of a laser beani

i n infinite space

i n which ~~is the heat f lux (units:  N ~m/ s -m 3) , with the symbol Q rep lacing I/ of the  previous
sections to avoid confusion with the sy mbol H,,t t -1 for i-lanke l funct io ns. We shall be i nterest-
ed in t ime harmonic solutions q (r ,,, ,,, ) = q( r 0 ) e “, so that  the abov e equation reduces to
the inho mogeneous l-Ielmho ltz equation:

i tu 2 Q/ 3
V 2p + A 2p = — 4 ~r q ( r ,,) ,  q ( r ,, ) = —

47r

The solution is easily obtained by use of the appropriate Green ’s fu nction G:
p ,,, (n ) = f  q (r ,, ) G,,, ( rI r ,, ) dV ,, .

in which  V,, is the volu me ol’ th e source. Because we will  employ cylindrical coordinates , it is
convenient  to replace both pand Gby their  Fourier transforms , p (r~, , n) and F~GI

5 p ( r ~ ,i~ ) e ” -p-- = f q ( r ,,) 5. IiT H ,~ I (A °P) e ”t ~~~~ ~f !2~. d I ’ , ,

P = I n 1 — r ,,11 = ‘..JLv ~~~~~~ 
2 + ( ~~ 

2 
~ =

= J i~Y~~~~2 ,~ = A- sin ft .

21
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Here . (1 = 0 is b roadsid e an d UT H ,~ (k4P ) is the two-dimensiona l  Green ’s func t ion .  Thu s

= f  q ( r ,,) nr H ,~
I )  ( A *P) e  ~~~

.. 
~fl’

We next assume the heat deposition Q is uniform in over the length L of the rod and zero
outside:

q ( r ,, ) = Q (r ,,1 ) rect — -i- , 
~~~~~~

Now
5/ .

2 

t .~~~~ rect . 1. J .  = 
L sin W( - r 1)  Wh~) _ .iii:. = 

ALsin ±
—1. 2 2 ’ 2 W(i1) 2

We must next evaluate the expression ,
f  H ,~ ( A ° P ) Q ( ~~,~ ) d S ( r ,11 ) .

Only the asympt otic field wil l  be of interest ,

lim— oo ~~~ (k * P)  = e~~~
1’e ~,A °  = ~~~~~~~~~ and P = I r 1 — r ,J.

In the far field
P-= Ir 11 — r ,,1 cos ‘1,

wh ere b is an azimuthal angle. The absolute value of the pressure field is then

si n W
= w L 4 ( r ~J~ ) ,

where

A ( r1 k ’) = ~~~ J f e  — i ’ ,1co~,~

W e next recover the field in by t aking the invers e transform in

= f ’ sin W

Si nce the first zeros of sin W/ W are i, = ±2 i r/ L , we simplify by t aking  A to be constant
betwe en these l imits  with a value of A ( ,~, k)  (i.e . it = 0) ;  t h u s

p (~~,0)  =5 LA(~~, k)~~~~ = 2A ( ~~,k) . -

A (r 1 ,k )  = 
~r %4/ ’

~1 I f  ~ 
—i A~~1cosd Q (r ,,1 ) dS ( r ,,1

Noti ng that Q(r ,,,L ) is constant across the endcap areas of the cylinder , we appro ximate  the in-
teg ral (and the absolute value of it )  by QS. From the defini t ion of Q we then mu l t i p ly  p by
L/L to obtain

= ~ 2 ~~ and QSL = 
2 QSL/3 “2 ~~° 

A =47r C1, 4ir C0 4 ’zr C,, ‘ A.

22
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so t hat

I A 
________p ( r 1. 0)  -

~~~~~

- 

~~~~~ cL
The choice of A is somewhat arbi t rary.  Let us restrict at ention to frequencies 25 k Hz  an~ l ess.
so that  the smallest wavelength A = 1.5 x l0~/2 5 x l0~ 0.06 m. Since the length L of the
sho wer is about 10 iii , it is seen that  A L/I 60. This choice is equivalent to stating that  the
radius of the first Fesnal zone at a distance equal to L is laken to be R 1 = (A L ) 1 2  = L/4 r . or
A = L/ I 6ir  2 Thus the field will  be measured in the Fesnel diffraction zone. Hence

1 E t 0 2 El w 1 0  1 - /~~~
‘t i /3p ( r 1, o)  

2~r \J 167r 2 r1 (~ L 2 Cp~.f E~~ 
-

Final ly ,

( 
— ‘2/ ~~.’l sin w 

-p r 1, -~ 
~~~~~~~~~~ ~~

In the D U M A N D  Proceedings 111 Dolgeshein took f ~ = ‘2 and asc ribed this  form of the radi-
ated pressu re to Askarian.  It is called the Dol geshein-Askarian formula.  From its derivation it
is seen to be valid only when Ar 1 > > I or r1 > > L/32~~

3. Al tho ugh sin I4~ Wis  a Faun hofe r
patter n , the facto r .~JE ’~ is added as a Fes nel (or near-field ) correction.

Heat Model IV 0-leated-Spot , or “Spike ” Model)

Let a par t icul ar volume 
~~ 

in in f i n i t e  space sudden ly receive a quantity of heal which
the n flows outward at the rate I-I = pC ’,, V,, wh ere the uni ts  of H are calori es per uni t  volume
pe r un i t  t ime (N ‘ ni/ni 3 . s) , p is the de nsity of the medium (N - s/m 4), 

~~ 
is the  speci fic

heat (iii 2 - s/K ) . and U~ is the flux of temperature (K/s ) . The equation of heat conduction to
be solved is th en

r i T DV 2 T + t .

or

H
D fi ’ D

in which D is the diffusivi ty  constant (uni ts :  m 2/s ) and T is the temperature (K ) .  To solve
this  equatio n , one uses an appropriate Green ’s funct io n G/) which  is th e solution of the auxili-
a ry equation

I fiG73V — -
~~~ 

—
~~
— = — 4ir~S (r —r , ) ~ (,~~~~)

Thus the solution of the inhomogeneous temperature equation is

= .~j
!
;~ C D  ~f 

di , 5 G~ (r , r ,,I , i , , )  I I ( r , , 1,, ) d I ’ ,, ( r , )

Now (91

G~ (R T = ~f -:
~~~

- 
(D  r )  ~ 2 ‘ —R ~ ~~~~~~~ R = r —r ,, I and r = i I f)

23 
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Thus
+

T 
8lT~ ’~~~P C ’P £ di,, f (D r) 312 e _I ~

2
h,40T H (r ,,, i~, ) d V,,.

In conformity with the model we choose H to have the special form of a point source in shape
and time ,

H(r ,,, i , ) = E0~ (r —r 0 )8 (1 —1,, ) ,

in which the units of E,, are calories , i.e. (N Sm ) , and we take r ,,, ‘~ 
to be at the origin. Then

the history of the temperature distributi on at space point r ( =Ir l  ) and time ( i s
E(, e —r 2/4D1

T(r , t)  =—  
-pC,, (4ir Di ) 312

We now turn to the propagation of a thermoe lastic wave. In the immediate vicini ty of
the origin the temperature rise due to H causes an expansion of the medium in the amount /‘3T
(units of /3 :m/m ~K ) .  This expansion propagates away as the thermoelastic potential ‘l (units:
m 2) governed by the equation

v 2
~ ~~~~~~~~~~~~~~~~~~~~ = _ 41rf3 T*, T* = T/4 ir .

c 2 ~~2

This is a small a,npliiude linear equation of motion in which c is the speed of propagation of the
disturbance. Since the Green ’s fu nction of the scalar wave equation is well known , the sol u-
tio n is easily derived to be

MR / c — ( i  —z
~)1

~ = —4
--- -f d t 0f d v ,, R 

f 3 T ( r ,,, e’,, )

T(r ,, a ’ —R/ c)
~~=- ~ - f d v,, ‘ R

or
f J E  — R 2/4D (s —R/C )V ( r , t ) = ° f a ’v ,, c’ , R 1 r — r  I.4irp c,, R [4~ D (,  —R/C ) ] 312

The integral is taken over a volume of radius R =ci , with center at r.

As it stands the form is difficult to evaluate. Nowacki [10] has circumvented these
difficulties by solving the problem in a different way. He begins with the thermoelastic equa-
tion of motion ,

~ V~u + (A+~~)V(djvu ) —y VT p U
(units of each term , N/rn 3), in which u is th e displacement (m) , ~z is the second Lame ’ con-
stant for an isotropic elastic cont inuum (units: N/rn 2) , A is the first Lame ’ constant , y is the
thermoelastic constant (N/K m 2 ) and p is the medium density. He th en seeks solutions of
two scalar pot entials ‘P. and ~/i such that

u = V’P + cur ltj , .
Substitution leads to an equation for ‘P:

(A + 2~~) V (V 2~p~ — )‘V T = 
~‘ ~~2

24
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or

o =

where

o ?  V
2 _ _L _~~ _ c . 2 = A + 2 I2 and I?I = ‘t’ 

-c 2 fit 2 p A +2M

Since the heat-conduction equation for Tis

____ I fio ? T =  D ’ ~~~ = V 2

it is seen that
m U2 2d  —3 L J I — 

D~~
Formally this can be written as

f o ? — o ~~J’P = _~~~~~~
f _

.!-~~ 
_ _

~..J u1 m ( T — S) ,

where
L-’

, I U, 1T = — —
~~

- 

~~~ 
and S = — 

~~~~~
- 

~~~ 
-

Hence
— 

I D ~~ I ~~ 
m ( T 5) .

Ass uming the thermoelastic c ont inuum was free of all s trains and stress for a’ ~ 0, one can
take the Laplace transform (writ ten wi th  an overhead bar ) and obtain

[* m ( T  —
‘

Since 0 ? V 2 — ( 1 / c 2 ) 0 2 /f l a’ 2 and o = V 2 — ( l / D )  fl/fl ’, th e Laplace transforni of S
ca n be obtained from the Laplace transform of Tby r eplacing s/D in the  latter wi th  s 2/c 2 :

= _______ —R ’. . 1)
4irDR

so that
— E ,S = e — Rs , + = —-- ( un i t s :n l  ‘ K )  -4 i’rDR

Thus
N

— — R~. s ! )  — ,

‘ P = ’”~’4~rR
— ------ 1)

C2

25 
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Laplace inversion leads to

‘P = 
4ir R ~~~~~ 

(R,,) + 
[i 

0
~

i < R / t .
Rd ll

Here , ,/~ 
(R .i)  describes the heat d i ffusional effect in producing displacement potential , and

./~ ( R i )  describes the wave propagation effect (time scale much faster than  j~) . Using J2 on ly ,
one can directly show that  the displacement potential of elastic waves produced by heat is

(I) = ~~ Q + — ( , — R h~~1) — i i  a ’ > .~ - .
W~ V~ 4ir R C

The pressure wave (shock wave) due to this  potential  is

~ 
=

~~~ 
= 

p~p~Q + 
~~~~~~ 

~ 
-

~~~
— e _ ( ? , /3, ,~~R/(’.4ir R D2

Since this is a transien t , it w i ll be convenient to form first the pressure impulse (uni ts :
N ‘ s/rn 2 ) and then divide by some average time .Xr to obtain the time-average pressure . P,ir
Thus

f  p ( a ’) d ,  = 
p~~Q + 

~ 
2 I) (R  C 

_
~~ ~~ di

= 
p ni Q +

4n ’RD
Since t~ = A /  (y  +2,.t ) , and A has the  un i t s  N/rn 2,. K , m has the units of K tha t  is , in is
identical to /3. the coefficient of thermal  expansion . Simil ar ly ,  since Q + = L~,/p ( ’,,, one can
w rite

/ i E c 2

£ di = 
iT

Thus the time-average pressure will he

— 
/3 L’,, c 2

— 

4~~C,, DR .~r
The crucial parameter in this model is .~r , the du ration of the  t ransient . A disc ussion of ~~T is
rese rved for the  section on numerical  calcul ations.

The preceding model was original ly derived by Bowen ( I I ,  and is called the  Bowcn “hot-
spot ” model.

In a later paper ) r c l . I  I )  Bowen reexamined his basic formulation in the l ight  of contra-
dicting exper iments  on received acoustic waveforms which  displayed “bip olar transients 0 (na me-
k plus and minus  sp i k e s )  ra ther  than  a mono polar t rans ien t  (or plus spike on I ~ ) .  l i e  conclud-
ed that  the  par t icular  sol ution I ,, 1 = ‘P ) already given by hi m above mus t  he extend ed to a
more general solution con ta in ing  complenu ’nian solutions (called 4’ ) i.e.

+ 4’ 
— ( ,- + - t )

= ‘P,, ( r , i ) + —
~~~

- - (r  — t i  I + r 
——
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in wh ich  4i + is an outgoing wave , and t!i 
— is an ingoing wave. The solution is subject to the

bou ndary condition that  at the origin (r  =0) the displacement potential ‘P ,,,,,,~ must vanish for
all ti me a’ ~ r/c , vi z .

‘Ii ,, (o ,i)  + i,, + (0 — c i)  I l~~ r ,  + ib (0 + Ci ) I i>r , = 0
in which  = (K/ r ~ !!I a’,. In addition the solution must satisfy a set of in i t i a l  conditions.

fl’P
‘P ,,,, (r.0) I ~~~~~ 

= 0; —
~~~

— (r . 0 ) 1  0.

By use of this formulation Bowen made several improvements to his earlier theory: ( I )  the
inf in i ty  at r = 0 in the particular solution ‘P = was removed (2) the  discont inui ty  at r = t i

in ‘P ,, (o r in its derivatives ) was removed (3) the radiated pressure impulse I ( i ’.i )  ~~ £ p ( r . a”)

E /3 c
di =p f l ’P /f l i )  became I ( r ,t) = [F(ci — r ,0) ]

4 ir c~ dR

— I c - (ci — r) + 2c (b + I)F= — exp — [c(b) + (ci — r)1 . cr1
2 D [4D (b + , ) ) l ~2

i n which b is the “i ni t ia l  t im e ” (not zero) related to the  in i t ia l  size < r 2 > , ~~ of the heated
sphere by the formula < r 2 > , ~ = 6 Db. Whe n c ’(b/D)  1/2 > >  I it can be shown that  the
time variatio n of I(r ,i) is Ga u ssia n ,

Fx  exp 1 —  (ci — r) 2/4Db~.

As a result , the acoustic pressur e is bipolar , i. e.
fi! f l F  

— — 
2c (ct  — r)

f l u  4Db 
F.

This result agrees with experim ent. The first moment of the radiated pulse , n amely

J~~~pt ’ p (r .t ’)di =f ,~4!i (i ’) d u ’

can be shown to reduce to th e value
F,, /3

4irC ,,r

if (agai n )  C ( b / D)  1, 2  > >  I .  This agrees wi th  the magnit ude of the generalized Westerveit-
Larson-Danish model explained below .

These improvements by Bowen move his model in the direction of the generalized model
used in the calculations noted above. Bowen notes again that the pressure itself because of its
ultrashort t ime duration is essentially undetectable directly if a single hot-spot is in question .
However I itself (as defined above) is finite , and certainly the superposition of m any hotsp ots
is det ectable if E,, is large enough.

Far- Field Patterns of Pressure Radiation

It was shown in the section on heat model III that  th e far-field angular  dis t r ibut ion of
pressure p (H ) is proportional to the Fourier transform of the spatial di str ibution of heat deposi-
tion (designated here h (z) ) :  that  is ,

27
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L 
h(z)

o U /
,

1: 1g. 7 - -  [)el lnit ton s of aperture tunction

and far field pressure pattern

p ( u )  5 h (:) e ,A:u dz, k = 2iT/A , and u = sin P .

Th e angle 6’ is de fin ed in Fig. 7 .

Several dis tr i but io ns h ( :)  may be per t inent  to thi s  survey. We list them here , togetherwith fact s on sidelobes of the developed patterns. In each case we take th e length of the depo-sition track to be L and choose the center of the patt ern to be at = 0. Patterns other thanthe following can si milarly be construct ed as needed to conform to experim ental result , or toadditio nal modeling.

Exponential Heat Deposition

Let h ( :)  be proport ional to e ‘ and for ease of computation shift  the line =0 to =
L/2 ; that  is , take h ( :)  = e ~~‘ , ~ 0. Then , as sketched in Fig. 8 the normalized radiati onpatt ern is

p ( u )  = _

I + i — ~- s i nP
Cs

This pattern has no zero crossing .

Im plu)

1-i g. 8 — Radiation pattern caused by
exponential heat deposition
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Uniform Heat Deposition

Let h( :)  = rect L, having unit  amplitude between —U2 and +112 and being zero else-
where. Then , as sketched in Fig. 9, the norma lzied radiation pattern is

sin (ir Lu/A)
ar Lu/ A

The first zero crossing is at u = AlL , and the first sidelobe is at u = 3A/2 L. The 3 dB
beamwid th is 0.88 AlL, and the first sidelobe is — 13.4 dB down. This is the case of heat
model I l l .

p’,’1

3A12L

Fig. 9 — Radiation pattern cau~~d b~
uniforn heat deposition

I

Cosine Heat Deposition

Let h (z ) = cos -
~~~~

- rect L, for ÷ ~ z ~ ~~~~~, with h ( :)  being zero elsewhere. Then , as

sketched in Fig. 10 , th e normalized radiation pattern is 
pl u)

ir sin W sin Yp ( u)  =
~~~ ~~ 

+ , ‘

~~\ 
2X/I

whe re ____________ “I I J

ir L A irL A —

W — i i  — -
~~

-

~~

- and Y =—  ii + - ~~~~~~~~ . 21

Fig. tO - Radiation pattern iauscd h~cosine heat deposition

The first zero crossing is at u = ~~~~~~~ and the first sidelobe is at a = -~~~~
- and has a magni tude of

Deposition 
/

._~~
<u)

Let h( : ) = e 2 2/ L ’, and assu me no limits in :. Then , as 
~sketched in Fig. I I , the normalized pattern is

— 
—

~~ 
2 L 2 i,2/2 A 2 F ig. I I  -. Radiation patternp (u )  — c cau sed by gaussian heat depo-

e 
—,i 2 /2 r ~ 

si t io n

in which ‘r~ 
is its standard deviation , namely “ t = A/ir L There are no zero crossings.

29 
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Parabolic Heat Deposition 4

pl u)

Let h ( :)  = ( 1  — (2 : / L) 2J rect L, — - i- ~~ ~~ 
~~ 

~~~~~Then , as sketch ed in Fig. 12 , the normalized beam patt ern is

p ( u )  = —
~~

-— -
~~~~~‘~~

-
~ 

— cos 4i , 4, = .-~—4~L, Fig. 12 — Radiation pattern caused b~,
4, 2 4j 2 parabohe heat deposuson

The first sidetobe occurs at u = -
~~

-
~~

-, and its magnitude is —22 dB. The 3-dB beamwi th h is
1.16 AlL.

Impulse Response

As was noted earlier, th e transient  acoustic pressure given by
— ,p ( r , t )  = I p ( r ,u, ) h (w  ) e “ — .2iT

The steady-state pressure is a directional function of the  spatial coordinates. A discussion of
spati al dependence has just  been presented. We are interested now in the  temporal aspect and
omit details of spatial distribution by assuming the radial pressure to be spherically syn imetri-
cal:

p (r , w)  =~~4— ,
r

To find A , we shall specify some radial surface velocity of a f ict i t iou s sphere (radius a) . Let
this be y r and let the medium of propagation be homogeneous and isotropic. Then

,.4 1 ,,.,-
V r = 

2 ~ 
— ikr l  e , A =

kpcr

and on the surface of the sphere
v , (a ,w ) A pca 2

A ( a  ) = ei ( l  — i/t a )

Hence , the acoustic pressure anywhere is
A c a 2 e ’1’t ’ ’~

°1
p ( r .oi ) = 

~(1 — i / t a )  r v , (a,o4 .

If we choose a surface radial velocity v~ (a ,i)  then

V r (a ,w )  = 5 v~ (a ,i)  C ” (If.

Thus the transient acoustic pressure radiated into the far field is

p (r , t )  = 5 kpca 2 c IA r —~~) 
—,,.,,

—
~~ ‘( I — ika ) r 2iT
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As an example , let the impulse of heat deposition be a rectangle:

~~~ 
= v 0 < i <  7 ,, .

= 0 elsewhere.
The Fourier spectrum is known to be

j o Tv r (a ,tti ) =—  I — t ’

By direct integration one obtains the transie nt radiated pressure to be
pO’,u )  = 0 , a ’ < r — a/ c,

= p cL ’,, —
~~

— e —
~~ ~~ I’ — ( r — a ) d .!i ..i~.. < ~ < + i~ .

p cV,,~~~Ie 
_
~ 1’~ I ’ — ( r — a ) - d  — 

+ 
~~~ > + i,, .

Clearly the nature of the response will  depend on th e ratio T,,/ ( a / c) .  Three conditions of this
ratio , and the consequent pressure plots are shown in Fig. 13. In Fig. 13a the  si gn al p travels a
dista nce cT,, much greater than the radius of the  sphere ; both positive and negative impulses
are wid ely separated in t ime and are therefore equal. In Fig. l 3b the signal j , travels a distance
cT,, whi ch is approxim ately the same as radius a. The positive impulse overrid es the  negative
i m p u lse , reducing the latter. In Fig. l3c the travel distance cT,, is smaller than  a. Thi s
corresponds to a spherical radiation suddenl y i ncreasing in size from small to large. The nega-
tiv e pulse is due to th e fluid inert ia (moving radially outward ) at the t ime of cessation of es-
pa nsion , It is much larger than the  positive pulse , because the  la rger sphere is a more effective
radiator.

(a) (b)

It
Ic)

Fig. I )  - — Impulse response caused by rectangular heat deposition
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Another time impul se is the triangle
T

v ( i)  =rnu , 0 < i < — ~2
2- .

T
= —nu + 2 V 0, —~ - < 1<  T~,

= 0 : elsewhere.
The radiated transi ent appears as sketched in Fig. 14. (Reference [12J gives additi onal de-

tails.)

O~~~~~~~~~~~~~~~~~~~~~~~
>t

(a) (b)

1:15. 14 — Impulse response caused by triangle heat deposition.

Estimation of Time Durations

In all heat models the estimation of time durati ons of impulsive heating and acoustic ra-
diatio n is most important .  Loosely two types of tim e-dependent processes must be considered:
the  heat f lux itself (calories per second) entering the energized volume of the liquid and the
rate at which the  thermoe lastically induced shoc k waves cross the heated region and are radiat-
ed outwa rd as sound. The two time durations are explained by a simple mathematical model.
It was noted earlier (for heat model Ib ) that if the heat source is a delta function in space and
ti me i.e. F ,, i ( I )  / 1 ( r ) ). the  acoustic pressur e developed is a shock transient:

I 3 E,, Jjp ( r ., )  — 8 — a ’ .4,, C,,IrI c

The rate of energy deposition is F,, /1 (a ’) or E0/ 7 ’1 .  The acoustic time hi story is f l / f i t F E ,, /1 (a ’) )
or — L ,, / T 1 T2 Our goa l is to find estimates of T1 , and 

~
‘2 ,

32



- .•_ —. —— _—-—-~--.-. - , -. —.—.-——--. . — - —
~—‘--_—.—- .—--— -,--__—- .—.. - _ _.. - --— - --—— .- — —.----‘— -- - - — — _ — _ _ _ — ———_-- —

~
—--,-——-.--— ..--..-—.. -

NRL REPORT 8150

It is simplest to estimate the “aco ustic time ” charact eristic of the radiation process. Let d
be a characteristic dimension of the heated volume (e.g. diameter of a cyl inder  or sphere ) .  By
analogy with traveling waves in a parallel- plate duct we seek a cutoff frequenc y of such wav es ,
that is , th e frequency associated with a mode which just fails to propagate down the  duct.  If /
is the width of the duct , the first transverse mode (defined as reinforcement of incident  and
reflected waves one wavelength A apa rt ) travels at an angle a’) such that  2! cos 6’ = A ( or such
that  A ~ 2!) . Each A is associated with a particular 6’. The largest wavelength for the  first
transv erse mode is A = 2/ at H = 0°, which mea ns the wavefront is parallel to the  duct wall  and
forms a standing wave , bo unc ing  back and forth between walls at one wavelength reinforce-
ment and not propagating down the duct. The cutoff fre quency is then  j~,, = —s—- = 

~~~~~ 
In a

Ill

si milar way acoustic reinforcement in a heated volume at one wavelength separation occurs
whe n A = 2d , and th e cutoff frequency is .1,, = c/2d. The choice A = 2d is equivalent  to the
wave number-diameter  product kd = IT ( or A- = 2 ir /A ) . In acoustic theory of radiat ing surfaces
this  prod uct is favorable to radiation of wavelength A (favorable in that  the normalized radia-
tion resista nce is near uni ty  and the reactance is low) . Al terna t ive ly  expressed , it is favo rable
to radiation of wave numbers near ~‘/ d.

The cutoff frequency may be taken as the bandwidth ~ f  of the radiated acoustic power
spectrum. The time duration of the associated transient is ~ r (.~f) ~ . Thus , roughly.  T2

/ ,,~~~ . The estimation of T1 is uncertain , the varyi ng values put forth being the principal
di fference between models. All models in which heating of the  fluid is the source of sound can
be reduced to the schematic formula

f 3 E,,
4~r C ,j r I  T~~ T~’ ’

in which the subscript 1 refers to heat deposition t ime and the subscri pt 2 refers to acoustic
transie nt t ime. We assu m e T2 =.f2

_ l 
_ 1H Thus T2 is fix ed by the speed of sound in the

liq uid and the characteristic dimension (= 0 of the model. The value to be assigned to T1
depends on the model. Four models and their  assigned values are as follows:

• Hea t model ía ( inf ini te  with space , steady state ) , w i th

( 3 E ,, 2ir -I PI = 

~~ C’~ I ri 7~ 
./ 2 ‘

so that

T1T1 = ~~~~~~~~ , where T1 is u n k n o w n ;
2ir

• Heat m odel lb (infinite space , t ransient ) ,  wi th
/ 3 E0 ~I~ I 41T C~ I r I  -i— , f iT2 =ir ,

so that
T1T1 =— , where T1 is unknown;
IT
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• Heaa’ mij odel Ill (Dolgeshein -Askanan , or heated rod , model ) , with

— 
t i E,, 2IT ./ 1 j 2I~I — 

4~ C ,, Ir~ I .5I/ Z 7~~ 
. ./~ 

= ‘2 ’

so that

. T2 ,Ji7~~— _______

• Heat m ode! ii ’ (Bowen , or heated-spot , model ) , w ith
1 3 E0 c2

I~ I — , T2 .~~r,4 I T C~ R DT2
so that

D
C2

Thus in both th e  Dolgeshein-Askari an model and the Bowen model the value of T1’ cami be in-
terpreted as being assigned. For th e other models we can estimate T1 i n the following (some-
what  a rbit rary ) way: We assume that the cosmic particl e on entering th e liquid is decelerated at
a constant rate from a maximum velocity v to zero , making  th e average velocity v/2 . The time
required to complete the transit  over a length I of the shower is therefore

2!TI = — .v
For a relativistic particle of energy F and rest mass m0c~, CL being the speed of lig ht , the
velocity is

/ 2 2
/ 11l() C’

v = C L v 1  E
A typical applicati on is for muons , for w hich ma r, c 2 I x 10 8 eV . Si nce cosmic p articles of
th e heavy nucl ei  type have energies that  exceed cosmic-r ay protons (E 2.5 x I0~ eV) , the
speed of muons is appr oximately the speed of l ight .  Thus

-1
In each model in whi ch  T1 is not assigned we choose some char acteristic length I t o  est imate
T1 by this formula.

The arbitrarine ss of this  estimate is appar ent. From tentat ive exper iments  [1 1 and other
m odels [71 it seems more pla usible to take T1, to be abo ut I~as , which  is some 2 or 3 orders of
mag ni tud e  larger than the values predicted above. This estimat e is sharply different  from whatis predict ed from bubble models , from which , as disc ussed latter in th i s  report , T1 appears to
be of the  ord er 10 • .t.

Numerical Calculations

The models li sted above will  now be numerically evaluated. In each case we wil l  pres ent
‘he absolute magnitude of the pressure field in the direction in wh ich it is a max i mum , at a

34
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nominal  distance of I ni t’rorn the origin (or radiation center ) ,  and per un i t  energy i n p u t  ( in
electron-volts ) .  When , as discussed in the  preceding subsect ion , the  deposi t ion t in ie  is not as-
signed , ~se wi l l  assume the  in t e rac t ion  shower to he a cy l i nde r  a cm in radi us and L m long.
t h e  values of’ a and L b e ing  assumed in p a r t i c u l a r  cases. -:

Model Ia

In model Ia
Ii, I,~ S~

4~ ç, r~ ~~~~+ A 2 / 2 cos 2 a’)
We take I ,, S = = E ,/ T 1,  and ~ = 2 IT ‘2’  w here ‘2 = T, ’ , and we calculate  the  m a x i m u m
at broadside , which  is at a ’) = 900 . To calculate 

~ 
we assunie th e  shower length  L to be 10 iii

[ I I .  Thus

• 21. 2 x lO r n
~ 1 = 

~
- = 67 ia ’ s .

‘ a’ 0.3 1< IO ’~ rn/ s
To est imate T2 ,  ~ e w i l l  take h = , 2il. where d is t h e  ( l ian le ter  of t h e  c y l i n d e r .  The d iameter
depends on the  energy and is es t imated  to be between I and 12 cm. Let us assume il = 3 cm ,
so t h a t

/ 
l . 5 <~~ I0~~cm/s =2 5 k// :- - 2 x 3 cm

and

T2 = /~~~ 40~~s.

Thus  at I rn

p 1
F , 4IT ~~ T1 T2 r i

— 1.4 x 10 4 K H x l . 6 x l O  H9 J/,, j
— 

‘l iT x 4 . 18 x io~ ( n i 2/s 2 K )  x 40 x 10 6 s l iii x 67 x 10 ~~

= 1.6 x 10 —
~~~ N/ni 2 . eV = 1.6 x 10 —

~~~ dynes/cm 2 . eV
Hence for Model Ia

p 1 / F ,, = 1.6 1< 10 —
~~~ Pa/e V rms at I m from th e  axis  of a rod 10 iii long and 3 cm in~ iij

aniet er , for steady-state condi t ion s  at 25 kH z , wi th  T1 = 67 n S .

The total power radiated in the  case l~l > > 1 is
,, 2 

~ j  S )  
2

.IL uI,~~i ,C 
— 

. 
- — -

16 a” (

Setting 10 S = F , 1 ~ I - 
—l L. we estimate

= 
2ir J2 / ~~ 2 i r x 2 . S  x x ±L~_L~ ~~~~~~~~~~~~~ 1 1 0  x 10 H S

(E , /T 1 ) 2 I. 16 , ( ,~ 10 16 x I0~ x (4. 18 x l0~~) 2

L 
_______ 
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Hence for model La the total radiated power is

= 1.10 x 10 —
~~~ (E ,,/ T? , W rms from a rod t O meters long at 25 kI -Iz.

Model lb (One-Shot Siren )

For model lb the t ime history of the t ransi ent  radiation is

p ( r , a ’)  = s cos fi  a’ — ~ ‘~!‘_ — K cos H sin ii a’ —

‘liT C
,,, (a 2 + K 2 cos 2 6 ’ ) l r I  C C —

~ 
— R/ c)  — T / 2 1 K  = f l / c .

At b roadside 1) = 90°; Hence th e maximum amplitude is

— ~~E,, f i
~ 4i~~C,,I rI T1

As before we take f t  T2 = ir, so th at
p E ,, t iI~I — ______ —

4 C ~ r T1 T2
This is IT t imes larger than model Ia; tha t  is , for model lb

= 5.03 x 10 ~~ Pa/e V at I m from the axis of a rod 10 rn long and 3 cm in diameter ,

(~~~~ ransi en t  condit ions at center  frequency of 25 k Hz , with  T1 = 67 ns.

Model III

In the Dolgeshein -Askarian model
/t P E,, . /~ sin w

p ( r ~~~~ ) 
2 ( ~,JT~ ~

On the axis at b roadside sin W/ W = I .  Taking f ~ = f ~ , and 
~~~ 

= T2 ,  one arrives at

i~L _ _ _

E,, 2 c,, .S,,/T~~~ 
T2 T2

In the  near field , at r~ = I ni ,

IL~ ,~~~~~~~ _ I.4 X 10 ~ ( K )  X 1.6 x JO H9 J/eV
— L ’,, 2 x 4. 18 IO~ (rn 2/ s 2

~ K )  ( 10 x 1) 1 2  ni (4 x ~O — 5 ) 2 s 2

He nce for model I l l

p I lE ,, = 5.2 x 10 t 9 Pa/eV rms at I m on the  axis of a rod 10 ni long for stead j
state conditions at 25 k u ,. ]
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M odel IV

In the Bowen model th e average pressure radiated is

— 
/ i E~~c

2
— 

4ir(’,,DR.~ r ’

Thus
1~’uv 13 D= 

4ir (’,,T1 T2 R ’ T1 = -~~- and 
~
‘
2 =~~r .

The effective deposit t im e is given by

F T1 = 
1 .43 x 10 7 m/s 2 

= 6.35 x 10 ~t4 5(‘2 (1.5 x J Ø 3 ) 2 rn/s 2
and the  interval  between compression and rarefaction is

T2 4 x 10 ~~ s.
Hence

Pay 
— 1.4 x 10 4 K H x 1.6 x 10 H9 J/e V

E,, — 

4ir x 4.18 x iø~ (rn
2/s2 K) x 6.35 x JO H45 (4 x 10 ~S ) s x I in

= 1 .67 x 10 l~ N/ mi, 2 ‘ eV.

Thus for the  Bowen model

Pan E,, = 1 .67 x 10 HO Pa/e V at I ni from th e origin of a spike , averaged over 4OM~.
corresponding to 25 kFl z .

Ambient Noise and Molecular Agitation Noise

Below 35 kHz the noise in the ocean at th e lowest measured level is the ambi ent  noise.
in disti nction to molecular agitation noise. The lowest l imi t  of prevail ing ( ambient )  noise has
been compiled for all th e oceans by Wenz Iref. 13]. Table I is a brief l is t ing of sound-pressure
spect rum level in a 1 Hz ban d in various uni ts  taken from this  reference. Above 35 kFI z the
n oise L, ( uni ts :  dB) due to molecular agit ation is predominant .  It can be cal culated from an
empirical formula at frequency [(units: Hz),

L, —75 + 20 log10, [ dB re I ~tPa

[14). At 25 kHz

L, - _  —7 5 + 20 log10 25 ,000 = 13 dB re 1 )APa. = — 87dB re a’i bar

L 

This is 5 dB less than  ambient  (Table I ) .  In making  our calculat ions we wil l  use the  (rough )
noise figure of 7.9 x 10 ~ Pa in a I II , band.

To process the acoustic t ransients  in thei r  ent i rety,  one must arrange to have sufficient
ba ndwidth in the receiver ci r cui t .  We noted earlier tha t  th e  smallest t ime intervals  to be
recorded are of the  order of 40 ~.ts. Roughly  we tak e the required bandwidth  to be iø~ Hz
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Table I — Ambient -Noi se Sound Pressure
Spectrum Level in a I -Hz Band

I dli re dB re
(Hz) “ “ 20 p Pa I p bar

I 28,300 63 - I I
10 1 .1 20 35 -40

100 100.2 14 -60
1 ,000 22.4 1 -73

10,000 10 - 6 -80

25,000 7. 9 — 8 -82
30,000 6.3 -10 -84

Hence the total noise spectrum leveiji gain st which the signal spectrum level to be detected is
(again roughly ) 7.9 x 10 ~ x s/ lO 4 = 7 .9 X 10 H Pa at 25 kH z (say approximately 10 —

~~

Pa). Here the spectrum level is a~surned flat over the band. However , if we do not desire to
k now the entire  signature of the  t rans ient  radiation , the  rec eiver bandwidth  can be much
smaller. The theory of signal detection in noise allows the choice of receiver bandwidth  to op-
t i mize the probabili ty of detection against the  probabil i ty of false a arnls relative to a threshold.
Th us the bandwidth is fixed only to the  extent  tha t  probabil i t ies and thresholds are selected
subject to the goals of the signal processing itself. We con t i n u e  the analys i s  on the  arbi t rary
basis of a 1-Hz band and a t1at 104-Hi band.

Limits of Detection Range

Local noise (ambient or molecular ) l imi ts  the detection of a dis tant  signal to certain
ranges. We choose a criterion that  a signal is dete ctable if its absolute level is equal to or is
ab ove the sound pressure spectrum level of local noise over the bandwidth  of the  receiver. In
p ractice the threshold is set higher  than  the local noise level , but  here we are seeking orders of
magnitude. Applying our criterion , we see that  the  li mi t  range of detection (R ,,,,,,, ) in uni ts  of
meters per eV may be obtained from the previous numerical  calculations by use of the  formula

R~ ,,,, x BW 1 2  = 
p/ E,,~ R = l
pnoise

H: L 2

i n which a depends on the model and SW is the bandwid th  of the  receiver in hertz (relat ive to
power) . W e choose th e local noise to be in a I -Hz  band at 25 kHz :  7.9 x 10 ~ Pa/ ( i i i )  1 2

Applyi ng the formula to selected models we have the following. In these calculations we as-
sume at tentuat ion is due only to spherical spreading and neglect absorption .
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Model In

In model Ia , ii = 1 and Ip/ E,,I R =1 = 1 .6 x to —16 Pa/eV. Thus

x ~~~~ 
2 1.6 X 10 — 1 6 Pa/e V x

7.9 X 10 ~ Pa/Hz I 2

= 2 .03 x 10 ~ ~YHz ) 1 2

fr om whi ch we obtain
R,,,,,,, = 2.03 x 10 —l I JI!_. for SW 1 Hz

and

R ,,,,,,, = 2.03 x 10 —13j 1L for BW = io~ Hz.

Model lb

In this  model lb a = I and the max imu m amplitude of transi ent pressure measured at 25
kHz is 5.03 < 10 H6 Pa/eV . The range l imi t  is therefore

R, x BW t 2 = 5.03 x 10 — 16 Pa/eV x l m
7.9 x 10 —6 Pa/Hz I 2

u 1 2
= 6.37 x lO~~~ iii J I Z

eV
fr om which  we obtain

R ,,,,,,, = 6.37 x 10 ni /eV for BW = 1 Hz

and

R1,,,,,, = 6.37 x 10 H ) rn /eV for BW = lO~ Hz.

Model I H

In model Ill . n = -
~~

- and I p / E ,,I = 5.2 x 10 —1 9 Pa/e V x ni I 2 The range l imi t  is

. 1 2  x BW 1 2 — 
5.2 x 10 ‘ 19  Pa/e V x ni I 2

— 

7,9 x 10 ~ Pa /Hz 1 2

= 6.58 x 10 H4 rn t 2 . Hz t 2/eV ,
fro m which , for poi nts of observation in the near field ,

~~, . 6.58 x 10 _ l 4 .~_L~~for B W = l  H z- eV

and

,~~ = 6.58 X 10 ~~ ‘
~~~
— for SW = iø~ Hz.- - eV

In the  Ia ’  l i C k !  -
~ replaces r~ 

2
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Model IV

In model IV , a = I , and Pay / L~, = 1 .67 x 10 HO Pa/e V x I m. The rang e l imi t  is

R ~< BW t
~2 — I~1 x 10 — 10 dy nes/ca i 2/eV x I m

— 

7.9 x 10 ~~ Pa/ Ilz 1 2

2.1 1 x 10 5 m [11l12 /eV
From whtch

R,,,,,,, = 2.11 x 10 ~ ni/e V for SW = I E li

and

= 2.1 I x 10 ‘
~ m/e V for SW = 10 sup 4 liz .

MI CROBUBB LE MODELS

The mechanism of the generation of sound by high-energy particles in water describ ed in
the preceding section is that  of a thermal  shock of an elasti c medium.  We consider nex t  a
di f ferent  mechanism , in wh ich  sound is produced by for mation and collapse of n iicrobubb les.
The theory of this process origtnated with Sette (15], who hypothes ized thai cavi t ation nuclei
in liquids may be fo rmed in part by i rradiation by cosmic particles. In several subsequent arti-
cl es Sette and Wander l in g h [ 16,171 elaborated on this  hypothe sis both wi th  theory and experi-
me nt and applied it to explain the  phenomena of bubble chambers. Al though they did not
disc uss the connection b etween microbubbl e formation and collapse to acoustic noise genera-
tion , it is a di rect matter  to relate these two. We will  make th is  connect ion later , but first we
will review the theory of bubble nucleat ion to lay the  basis for num erical  calculation.

Bubble Nucleation

Historically the  first s igni f icant  paper 00 bub ble nucleat ion by hig h-energy particl es in
liquids was that of’ Seitz 1181 in connection with the theory of bubb le chambers. He hy-
poth esi zed that  most of the  bubbles are nucleated by energetic free electrons resul t ing from
collisio ns of the  particles wi th  th e molecules of the liquid medium in the b ubble  chamber.
These electrons are decelerated wi th  extreme rapidi ty,  producing localized hot regions or “ ther-
mal spikes ” which explod e into bubbles of larger than  critical size (that  is , the  min imum-s ize
b ubble is not in equi l ibr ium wi th  its surroundings , wh i ch  permits growt h by vapo rization from
its walls in to  i n cavity at the  temp erature of the  cavi t y) .  The t ime of bubble creation by explo-
sion he calc ulat ed to be of the order of 0.1 to 0.0 1 rts . The buhbte , aft er be ine cr ealed, is
t h o u g h t  to expand by w i t h d r a w i n g  heat from the  immedia t e  su r roun d ing  f luid .  The m a x i m u m
bubble size a t ta ined  is l imi ted  by the  i n i t i a l  energy of explos i on , by heat di f l u siol l  ~~~~ from
the bubble , and by depletio n of local permanent  gas (air )  in equ i l i b r ium wi th  the  su r rounding
medium.

The energy for growth of bubbles i n the  th e  bubble  chamber is wholly supplied by the
medium.  In contrast to the theory of bubble chambers the production of microb ubhte s in or-
d i nary  l iquids by h igh-ene rgy particles requires tha t  both creation and growth be energized by
the k in c l ic  ene rgy of th e  particle , no energy is supplied by :he medium.  In b ia h~ift c .  i mbers
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the  temperature of the medium is locally near the boiling point. When a high-energ ’. pa rticl e
ionizes the medium , th e particle supplies energy to create an embryo of critical size. Growth
then proceeds by evaporation of the medium at the  bubble wall , the heat being supplied by the
medium to the embryo in an isothermal process. In contrast , whe n a high-energy particle
enters an ordinary liquid whose temperature is well below the boiling point , there exist no em-
bryos wi th  critical radius. First a limited region of medium must be heated above the boil ing
point , and in it an embryo must be formed which has the critical size as determined by the ini-
tial temperature of explosion. Then , as the embryo expands , it d raws heat from its heated sur-
roundings , cooli ng down a local heat pocket (“ spike ”) i n the medium. As the temperature of
the heated pocket falls , the theoretical critical size of a microbubble increases (Fig. 15) at the
same time as the radius of the actual expanding bubble (of ini t ia l  energy E,,) increases , the
latte r being larger , but the difference between them eventual ly  growing smaller because of ex-
haustion of the original heat of deposition by heat transfe r and gaseous diffusion At some
lower temperature the bubble radius becomes critical , th en growth ceases (p oint A) . If E,, is
larg e en ough , th e critical radius is not reached at any lower temperature: the bubble keeps on
expanding (curve E,, ) un t i l  stopped by exhaustion of the in i t ia l  energy.

: ~~~~~~~~~~
~ 450 — T H E O R E T I CAL 7’ 

~~~~ 
—

: 

Critica l Radiu s

io 7 io 6 to to-’4 ia”3
RA DIUS cm

F ig. 15 — Theoretical c ritical radiu s vs tempe rature of medium
(1 1g. 7 of Ref . 16)

A more int imate  description of bubble nucleation has been developed b y Sette and Wa n-
de r l ingh [ i l l .  From various experiments  and thermod ynamics they have constructed the fol-
l owing theory of the energy balance in bubble formation . The generation of a bubble of ra-
di us R requires an energy E ( R )  wh i ch  is the  sum of two terms: the energy required to form
an interface of given surface tension fixed by the temperture of the bubble and the  energ ~ re-
quired to evaporate water from the interface into the  bubble. Thus

E ( R)  4~~R ?,r * + ,n~~H,

i n whi ch r is the surface energy density —p— . a; is the mass of liquid (water ) evaporated in

grams and ~ H is the heat of vaporization in J/g. A calculation based (in th i s  equation sho~~,

4 1
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that  hundreds of mil l ions  of electron-volts ( I eV = 1.6 x 10 I 9 J )  are needed to produce
bubbles of raduis 10 ~ cm a nd larger and R is the radius in in. Experiments  show that  only
10 MeV (approximately )  are needed , thus  contradicting the calculation. The discrepacy is ex-
plain ed by not ing tha t  the role of dissolved gases has been neglected. Actually the heat .~H is
the  sum of the  heat associated with  the transition of dissolved gases from the liquid into the
b ubble cavity and the heat of evaporation of water from the bubble wall.  The first heat is
negat ive (energy is released when gaseous air comes out of solution ),  and the second heat is
posit ive.  E ( R)  is always positive and goes to zero at the  critical point of the liquid.  Below 450
K the gas diffusion predominates and .~H is negative [Fig. S of Ref. 16) . The importance of
this  case requires additional comme nt . If one rewrites the energy balance in the form

E(R) = 47r R 2 {lr * + .
~H1 (RP~, + 2 r )/ 3 RTJ }

i n which  the  braces include the total surface energy, ~ H is the sum of gas and vapor heats ,
and (RI 3 , + 2o’ ) / 3 R T  is the mass in grams , assuming  a perfect gas (R being the gas con-
s t a n t ) , and if this equation is plotted as the expression in braces vs absolute temperature , it wi l l
he seen ( Fig. 6 of Ref. 161 that  the  un i t  surface energy (the en t i ty  in braces ) required to form a
bubble of radius  R = lO0~im is negat iv e below 410 K and positive above it. This means that
below 4 10 K the  heat generated by the freeing of permanent  gases from solution into the  cavi-
ty is more than  adequate to evaporate the medium at the wall and sustain surface tension of a
IO O /A ?iI bubble  and above 410 K it is inadeq uate and energy must be supplied from the cosmic
pa r t i c l e .  T h u s  at 600 K . w n i ch is the threshold for the sure formation of a cavitation nucleus ,
an e x t e r n a l  source of energy wi l l  be required to form a lOO~.t,n bubble. In Ref. this energy is
es t ima ted  to be 4 to 5 MeV for a 7O~tni  b ubble , both as to its ini t iat io n and its “indefini te ”
growth. Energies less than  th is  create bubbles of lesser size whose growth ceases when a criti-
cal rad ius  is reached. This phenomenon of bubble growth and cessation is vital enough to re-
quire  addi t ional  co m m e n t .  It can be pictur ed as follows (Fig. 16) . A marble is pitched up the
slope ~ i t h  an i n i t i a l  energy E 1 .  < 4 MeV . This brings the marble to radius R 1 ,  where motion
cease’, (the  bubble stops growing ) .  If ’ the energy is E2 ,  also less than 4 MeV , th e marble stops
at R2 .  However , if the energy is 4 to 5 MeV the marble rolls over the threshold and continues
on “ i n d e f i n i t e l~~’ ( the  bubble  expands  indef in i t e ly  by absorption of heat , if availabl e from its
sur round ings ) .

The phenomeno n of zero or negative energy required to form bubbles at particular tem-
peratures  may lead to the  conclusion tha t  th ere is no l imi t  to the  number  of bubbles that  can
he formed. H o w e v e r  each bubb le  format ion is based on the  ava i lab i l i ty  of an embryo or nu-
cleus.  The probabi l i ty  of f i n d i n g  such a nucleus depends strictly on the in i t i a l  temperature of
the  heated region. Above 600 K t h i s  probabi l i ty  is near u n i t y  (assuming atmospheric pres-
sure ) . and below 600 K the  probabi l i ty  becomes negligible [171. Hence there must be enough
energy to br ing a suff ic ient  volume of water to 600 K. Making  the assumption that  the water
so heated is saturated leads to an initial  water pressure (in a local area) of 12.2 MPa (1786.6
psi) abs (from steam tables ) . After expansion to ambient pressure (or below) the bubble
reaches a final radius Rmax whose value is determined by the initial energy of the interaction
products.

The expansion to lower pressure occurs so rapidly it can be thought  of as an explosion .
It  is p i c t u r e d  in t h i s  w a y :  Wate r  at room temperature  is heated at nearly constant  volume to
600 K (6 20 °F) . as if the  water were in a t i n y  steel t ank .  The momentary existence of this  tank
is a t t r i b u t e d  to t h e  high rate of deposition of the energy from the cosmic particle (or its in-
te r u ct i u n products ) .  When su fficient  heat is added to br ing  th is  t i n y  volum e of water to satura-
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I ig. 16 — llustrativc analog of bubble growth and cessation

t ion , the saturation pressure in the  f ic t i t io us tank is 12.2 MPa . as noted above. At the  ins tan t
of completion of deposition the tank explod es into a bubble  which  expands un t i l  the  energy of ’
deposition original ly  supplied is exhausted.  The expansion is nearly isothermal as th e  bubble
draws energy from the heated tank.  Toward the end of the cycle , whe n no more heat is avail-
able , the  bubble can cont inue  to expand briefly in an adiabatic process down to ambien t  pres-
su re or below , the  drivi ng force being the  residual iner t ia  of the  water immediate ly  surround-
i ng the  bubble.

Theory of Forster and luber

The p receding description of bubble  formation and growth ha s yielded t~~o impo rtan t
para meters: the  dr iv ing  in i t i a l  temperature and the f inal  (or m a x i m u m )  radius. The dr iv ing
temperature  (here taken to be 600 K ) in i t i a t e s  t he  explosion , and the  i n i t i a l  i n p u t  energy
determines the  final rad ius of the  bubble.  The time history R ( t )  of the  radial expansi on is
howeve r not simple. Numerous authors have investigated this  kn ot ty  problem. We wi l l

- “ proceed her e to sketch an approxim ate theory based on the  work of Forster and Zuher  1191,
wh ich  has been selected because of the clar ity with which it brings th e intrac t ab l e  parts ol the
theory in to  focus.
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The equation of radial motion of a bubble wall begins with an extended version of the
early formulation of Rayleigh. To set this up we note that  the rate of change of volume veloci-
ty of a bubble of radius R is

~~~~~~~~~~~~~~~~~~~ ~4ir~ 2RR 2 +R 2 R) .di d i 3

If one assumes the liquid is incompressible and then applies Bernoulli’ s law of the flow of an
incompressible fluid , one arrives at an equation of motion

R 2 R + 2RR 2 
— 

R 4 R 2 
— 

P ,,,, — P ,.,,,
1’ 2r 4 —

in which r is any radius ~ R and the r ight-hand side is the difference between the internal
pressure and the external pressure (divided by , ) . Setting r = R and writing the internal
pressure as the sum of the vapor pressure p~ and the permanent  gas pressure Pg and the exter-
nal pressure as the sum of the surface-tension pressure P,r and the hydrostatic pressure p,~,,,
one can then write

3 ‘ 2 2u’p 1 R R + - ~- R  p, + p~, — p
~ 

+ — ~~
-- .

To simplify matters , one first neglects the internal  gas pressure and then relates the quanti ty
= — p.,,. to the change in temperature .~ Tby means of the Clausuis-Clapeyron equation

L
T(c 5 — i., )

i n whi ch Vg and v, denote the specific volume of the vapor and fluid resp ectivel y, L is the la-
tent heat of vaporization , and .~~ T is the rise in temperature above T. The temperature
difference .~aT is determined by the solution of a problem involving heat conduction across a
moving surface of evaporation (in spherical geometry ) .  This solution may be found in Ref.
[151. If the heat input  to the fluid is Qcalories per uni t  volume per uni t  time , the n for thermal
di ffusivity D

.~ T( i)  = 1(i)  +.~r + —%-.
C1 (ir D) ~

2p 1
Here P g and p 1 ar e the densities of vapor and liquid respectiv ely , D is the thermal diffusivity of
the fluid , J ( r ,r ,i)  is an integral functional arisin g from th e solution of the  heat-conduction
equation noted in Ref. [201, ~~~~~ is the  superheat , and C, i s the specific heat of the  liquid cal/gm
K. Subsit i tut ing all these expr essions into the equation of motion , one obtains

RR + A 2 + -
~

- — /3 + y J ( i )  = Q 1,

where
2 r /3 

L~ r = 
‘ P g

a , 

i’~ T(t ’g — v,-) ~~ 
~~ 

T( ~ — v, ) (ND) 2 C,’

= 

p / C 1 T ( v g — I ’ )

This is an integral-differe ntial equation in R ( i ) :  1(i) is a functional  of R ( i ’) .  A more reveal-
ing equation can be obtained by introducing the concept of critical radi u s. This is done by not-
ing that for superheat .~ r there is a corresponding pressure rise
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L~ r
.~ Ps =

T(v ~ — v, )

The bubble radius corresponding to a surface tension iT at pressure .~p 5 is call ed the critical ra-
di u s

R 2o 2 r
— 

~~~ 
— 

13p 1 
— 

/3 ’

Dividing the equation of motion by R,2r,, , one has the more useful form ,
3 ‘2 A ( r — 1 )

r~~+ — r  — + B J = qi ’.2 r
where

A = 
2ir B = —~~ -— _~~~~_ r = —f--- .

R~r,i 
‘ R~3.,, 

‘ Rr.r, t

Because of the functional integral J ( i)  the solution of this equation is intractable as it stands.
I-fence a general formula r ( t )  for all t ime i is not available. Forster and Zuber demonstrate
that for ve ry small bubbles one can neglect the water inertia during growth. They then reduce
the p roblem to the solution of an equation of the Volterra type ,

r — I I i” r ’ ( i ) ~ (i ’) 
* A+ q ( t )  = —;-J da , C =

r C r 0 (~~ 
— , ‘) BRcr , ,

i n which J ( i)  has been reduced by various arguments to the integral shown. Even this form is
intractable. However an upper l imit  for r ( i)  may be obtained by using the mean-value
theor em to calculate the integral (which then becomes 2r, i 1 2 ). Using th is  approximation and
assumi ng q ( i )  is small relative to the other terms , one finally arrives at a solution for r ( t )  im-
p l icit ly given by

r + In r — I 
= ~.*, l/2  

~>
r1 - - l  C

The ini t ia l  condition is r = r 1 for i = r ?/C °
~. To start the numerical  calculation , one assu mes

is sl ightly greater than I , say r 1 = 1 .01. Si n ce

= 
A 

= 
2u’ P/ T( V g — 

t’,) (ir D) ‘ 2 C,R~
2I.,,

BR. R 3 L 2 , Rin, P, in , , I g i-ri !

— 
‘~~

-
~~ 

T(ir D) 112C1
— 

Rir ii LP g 
‘

we ca n interpret  .~ Tto be the in i t i a l  superheat , Hence

.~~r(  -(irD) 1 2 v
C* =

Rt~n, t Lvi
This is a useful formula for estimating the numerical  value of the r igh t -hand  side of the  solu-
tio n. To obtain a feeling for the magnitude of the terms and parameters involved we will  calcu-
lat e two cases as follows.

(‘cisc I.  The liquid (water ) is superheated 5°C above boiling at atmospheric pressure. We
desire to find R,~,, and the time required to form a bubble of radius R = 20 ,.t,n.
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Solution io Case 1: The thermodynamic chart for water shows that  at T = 373 + S =
378°K , v~ 27 ft 3/lb , v, 0.02 ft 3/lb , L = 974 Btu/l b , C, = 4. 18 J/g/ ’K , and D = 1 .43
x 10 3 cm 2/s. Then

/3 
L~~rs ’~ (974 x 2.32 ) (J I g ) x 5 °K x 0.02 x 62.4 cm 3lg

T(v ~ — v, ) 378 ° K L ( 27  — 0.02 ) x 62.4 1cm 3/g
=2.3 x I0 5cm 2/s 2

and

a -k-’ = 2a~v, = 2 x 50 x 0.02 x 62.4 124 .8cm 3/s 2 .p -i
Therefore

Rcn,, = = 
124.8cm 3/s 2 

5.6 x 10 “4 cm 5.6 ~.t ,n .
/3 2.3 x 10 5cm 2/s 2

From this

.~r (v’D) 112C vC4 = I x
Rini i Lv1

= 
~~~~~~~~~~~~ x 1 ,43 x 10 ‘3 ) ’ t2cm/s ’12 X 4.18 (J / g ’K ) X 27 x 62.4cm 3/g

5.6 x 10 “ 4 cm x 974 x 2.32 (J/g ) x 0.02 x 6.24 cm 3/g
— 1494 s —1/ 2

Since r = RIR~,,, = 20 ~t rn/ S .6 ~cn; = 3.57, we find

r + In r — 1 
= Cel l!2

r1 1:: 3.57 + In = 1494, 1/2

I = 37 ~LS .

This is approximat ely the result that Forster and Zuber show in their  Fig. I , where
R = 2 x 10 ‘~~~ cm corresponds to a formation time of about 30~ts. Note th at i depends on C°
inversely; that is , the higher the superheat , the faster the time of formation of a bubble of
specified 3ize.

Case 2. We now calculate the case of a cosmic particle (or interacti on product ) wi th
enough energy to form a 600-K spike. We desire to find the time requir ed to expand an em-
bryo to a radius of 70 urn .

Solution to Case 2 The superheat is 227°C. From steam table s , using vapor at 15 psi and620°F , and fluid at 15 psi , 212°F , we have 43.6 ft 3/lb 2.72 x 10~ cm 3/g, t , = 0.02ft 3/lb — 1.25 cm 3/g, latent heat of vaporization is 1345 — 180 1165 Rtu/ l b — 2. 7 x 10 10
erg/g. The specific heat at constant pressure is 4.18 x l0~ erg/g ’K , and the diffusivi ty  is 1.43
x 10 l3 cm 2,~ Then
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= 
LAr v1 — 

2.7 x 10 10 x 227 x 1.25 (cm 3/g) 
— 4 7  x 10 6 cm ~~ 2T(v g — v )  600 (2.7 x iø~ cm 3/g)

and

a °-
~~~~~~ 2 X 10 x 1.25 25.
p

-i

Th erefore
a 25 —6R .  , =— = —5.3 x 10 cm = 53nm .
/3 4.7 x 106

From this ,

- ‘ I ,

~~~ Lv1
227 (7r x 1 .43 X 10 “3)1/2 418 X i0~ 

)< 2.72 X I0~
5,3 x 10 “

~~ x 2.7 x 10 10 x 1.25
—9.7 x 106 s — I - ?

The time required to form a bubble of radius R = 7 x 10 “5cm (~ = 
7 X 10 -~~ = 13.2) is

5.3 x 1 0 ’~’then

13.2 + ln’~~~— = 9.7 x 10 6: 1 2

or
t = 4.38 x 10 — 12 s.

This is the same order of magnitude as that predicted by Seitz (=r 10 “n s) .

Clearly such small times must be treated with caution . The process is essentially an ex-
plosion , and the difficult y of treating an untractable integral-differential  equation places a great
strain upon the analyst to quantify the growth of a bubble in such short times. Althou g h th e
work of Forster and Zuber allows one to construct a graph of r ( i)  vs t and from it i ( l )  and
r ( t )  needed for estimating the radiated sound , the l imited conditions of validi t y,  neglig ible
heat input , simplified heat conduction , mean value integration , etc.) make it unsatisfactory for
small radius bubbles and short times. We adopt next  a different approach.

Approximate Solution of Bubble Growth and Collapse
Using Thermodynamic Charts

The formation and growth of a bubble will be traced on a tem perature vs entropy (TS)
chart for water (Fig. 17). We imag ine the process to occur as follows: water at 77°F (room tem-
perature ) , point A , is heated nearly at constant volume (as if in a t iny steel tank ) to 620°F ,
point B; the heated spike then furnishes heat to an embryo along a constant temperature line
BC , followed by a final expansion to ambient pressure along an unkno wn route CD. With
such a picture in mind we perform the following calculations.
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Fig. 17 — Temperature entropy char t for water

Embryo Bubble Radius (Critical Radius)

At the instant of explosion (point B on the TS chart) there is present an embryo (or ini-
tial b ubble ) in the heated spike. We wish to determine its size. The critical bubbl e size is ob-
tained by momentari ly balan cing all pressures at the bubble wall:

2o-
Pv + P g P o +~~~~~ 0.

cr 11

neglecting the vapor pressure due to permanent gases (p a ) . we have
2~rRcrit — 

p
~ 

( T)  — p,,0

Here r is the surface tension; estimated from Ref. 1211 to be 10 dyi ~e/cni at I = 600°K. Tak-
ing p ,  to be I S psi , we calculate

R 2 x 10 
= 1.6 x 10 ‘7 cm = I .6Cr, ( 1786 — 15) 6.895 x iø~
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Mass and Volume qf Water Heated

The mass of water heated is determined by the change in enthalpy in going from 77°F to
620°F. From steam tables we find this change to be 646.7 — 45 600 Stu/Ib. For reasons
noted earlier , w e choose the energy of the cosmic particle to be 4 Mev. Thus the mass of wa-
t er heated (thermal spike) is

£ 4 x 1O 6 eV x 1.6 x 10 5 J/eV — 16= = 
600 (Btu/lb ) x 2.32 (J/ g)/ (Btu / l b ) = 4.6 x 10 g.

The volume VH of heated water is found from t i c  specific volume of water at 620°F , which ’is
0.0247 ft 3/ lb (x  62.428 =1.54 cm 3/g) . Thus

V,,~ = 4.6 x 10 H6 g X 1 .54 ~~~~~~~ = 7.1 x 10 16 cm 3

whose radius is
1/3

R H = 7.1 x 10 —16 x .—
~~

-— =5, 5 x 10 “6 cm =55  nm.
4ir

I n accord with the growth process pictured by Sette and Wander l ingh this volume of water is
considered to be a heat source which contains a supply of heat (4 MeV) to expand the embryo
(p rocess BCD on the TS chart , Fig. 17) .

Final Bubble Radius

From the heat balance equation we have

.~ T
niL

In infinitesimal form ,

dT ( t)  = 
I f i E ( R)  

= 
.~ T ~ E ( R)  

dR
mL rnL &R E FiR

The minus  sign means that  an increase in radius of the bubble corresponds to a decrease in
temperature. As before

E ( R )  ° 47T R 20- ° + ~ .~H’ E T ( R) 1 .

To estimate the mass of vapor , we note that 4 MeV will  bring 4.6 x 10 — 16 g water to 600°K.
The same 4 MeV will expand an embryo to a radius of unknown value at point A on the TS
chart , where the entha lpy is 1150 Htu/l b.  Thus the mass of vapor is estimated to be

‘Pi g = ~~~~~ ~~ 
x 4.6 x 10 16 = 2.5 x 10 ‘~

6g.

From Fig. 18 the value of .~H ’ of gassed water at 375 K is approximately —6.5 kJ/mole.
Hence the energy required is

E ( R)  47r (7 X 10 5 ) 2 140 — 6.5 x io 3
~-~ _J (2.5 x 10 -16 ) erg

= 5 MeV ,
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where r~ = 140 in from Ref. [21]. Here the final temperature is taken to be 215 °F. Since this
energy is nearly the 4 MeV we have postulated , we will  accept the 4 MeV as consistent wi th  a
mass n,~, of 2.5 x 10 — 16 g vapo r .

Let us specify the terminal  thermodynamic point  more carefully. The specific volume is

(7 x 10~~~)~ 3
= _________________ = 5.74 x I Q- ~ -~~~~~

-— = 92 ft 3/ Ib.
A 2.5 x 10 16 g

Thus point D o n  the TS chart has Ii = 1155 Btu/ lb , s = 1.896 , T = 2 15°F (— 375 K ) ,  and p =

4.3 psi.

If the wat er is not gassed , th e latent heat All” and critical radius change. From a bubble
at Rt~n,i = ~ x 10 cm is at temperature of about 410 K ( 137°C or — 280°F ) , and from Fig.
IS (Ref. 17) ANy is —4 x ~~ 1/mole. The total energy required is still about 4 MeV , and the
mass of vapor is still 2.5 x 10 16 g. The specific volume is also the same , the enthalpy is 1185
Btu/ l b , the entropy S = 1.93, and the vapor pressure is 4.8 psi.

Acoustic Radiation Based on R ayleigh ’s Formulas

Si nce the derivation of a history of wall expansion (namely R I t ) )  is f raught  wi th
diff icult ies , we will  resort to a modified Rayleigh theory to calculate the acoustic effect of grow-
ing and collapsi ng bubbles. A convenient  summar y of this modified theory is found in Ref.
1221.

We first s implify the picture and assume there is an average driving pressure throughout
the growth period which performs work in expanding  th e bubble from R 0 to R = 7
x 10 ~ cm. We neglect compression of the medium. Thus , for a volu me cha n ge A I , and
100% heat-to-work efficiency,
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P~~~ 
A t -  =

or

4 x l0~’ x 1.6 X 10 ~~
2 erg 6 2= = 4.45 x 10 dyne/cm

~- i r (70 x 10~~~) - ~
Thus although the initial  pressure is 1786 psi abs and the final pressure is about 4 psi , theaverage pressur e is about 4- 1 /2 atmospheres (say 67 psi). The potential energy of the  ful ly  cx-pan d ed bubble is th en

P .E. p~~ A V  6.4 x 10 6 erg.
Accordi ng to Rayleigh’ s theo ry the wall velocity is approxim ately constant dur ing  niost of th egrowth phase. Thus [23]

R = ~! 2 p~ = / 2 4.45 x l0 6dyne/crn 2 ‘cm 4

V ~ V 3 I dyne ‘ s 7

= 17 rn/s .

(Note that  th e density of the water is taken at room temperature.) Since th is  wall  v elocity i~well below th e velocity of sound (- ‘--1 .5 km /s) , compressibi l i ty effects can be neglected. The
average time required to expan d the bubble to its final radius is

0.7 x 10 6m
- = 

17 m/s~~ 
0.04 ~.rs.

The average aco u~t ic pow er radiated over th e period of the growth phas e is obtained by in-tegrating over the square of th e acceleration:

~~ ~~,±L f k2~~~ d A = 4ir ( 2 R A 2  + R 2 A) .

For constant velocity this  reduces to [24]

S [ ~~~~~~~ 8 / 2 4.45 )< 10 003P.E. 
— 

3 
~ ~ ~,, c~

� — 

3 
~ 

3 1( 1 .5  x 10 5 ) 2  
—

Thus only about 3% of the input  energy is radiated as sound . For an inp ut of 4 MeV , theacoustic power radiated in 0.04 ~ts is
Eac = 0.03 x 4 MeV x 0.16 pJ /MeV = 0.02 pJ = 2 x 10 ~ erg.

The average acoustic pressure at I m from the center of the bubble is
l ’ 2  = .

~/ 
~~ 

PIQ 2 X 10~~ x I x 1.5 x j O ~
A i 4~r R 2 4 x iO~~~ 4~r ( 10 2 )

or

Par — 2.4 dynes/cm 2 at 1 m , transient , from one bubble due to 4-MeV cosmic-parti cle interac-
tion product.
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Resonant Frequency, Steady-State Radiation

The pressure calculated above is the  average (shock wave ) pressure transient  over the
period of bubble formation. Subsequent to formation the bubbl e  wil l  execute quasi-harmonic
vib rations at the resonant frequency ./~~~~, where (25 1

i [ 3 y P,.,~
.‘R = 

2ir R ,, V ~~,

in which R~, is the nominal  bubble radius , y = ~~~~ of the  gaseous contents of th e bubble ,
P~ , is the external pressure on the bubble , and p~, is th e density of the water ‘ at in f in i ty . ” For
air C1,, = 0.24 , C~ = 0.17 , and y = 1.41; for water C,, 0.35 , (‘

~ 0.27 , YN( I I , r  rap or 1.3 at
room temperature. For ease in computation we take y = 4/3 for both gases in the cavity.  The
ext ernal pressure is

= ~~ + 
2 r ( T )

Let us make th i s  calculation on the assumption tha t  the  f inal  bubble  tempera ture  is 410 K
( 137°C 280°F) ; we then estimate u- =40 dyne/cm (21]. Set ’ing P~ = 1 atmosphere , we ob-
tain for a 0.7~tm bubble ,

= 1 .03 x 10~ + 2 x 40 
= :.~ x 10 6 dyne/cm 2

- 7 x 1 0 5

Thus the resonant frequency of the bubble is

— 1 
x 10 6

‘R 2ir x 7 x  10 ”5

— 7 MHz.

To calculate the acoustic radiation due to resonance of th e  bubble , we m ust account for
energy losses. We assu med earlier th at  the potential  energy of the bubble at ra dius
R = 0.7 ~i m is exactly the e~i ergy of deposition (4 MeV ) . Now let v represent the fraction of
energy input lost i n shock-wave radiation hot/i in the growth and collapse phase. Al though we
have not calculated the collapse phase , we assume it radiat es the  same as the  growth phase.
Thus the energy ~iva il ab l e for energizing bubble vibrations is ER = (I — .t )  E,,,,,0, = ( I — .v) 4
MeV . We use this  energy to determine th e volume displaced in going from R = R,, = R ,,,,,,,,,,ai
= 0.7 ~.t m (say) to some m i n i m u m  radiu s R ,, — a dur ing vibra t ion .  The potential  energy at
minimum radius is seen to be

P.E.0110 = 6~~y P ,,, R ,, a 2 .

so that

U 
V 6ir y P,.,, R~
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wher e E R is the pote ntial  energy or radius R. From the previo us calculation we estimate r to
be 0.06 , so that  E f i 0.94 >~ 4 x 10 6 X 1.6 x l 0  H2  = 6  x 10 6 erg. Hence

6 x 10 6
a = / = 0.39 zm.

6~r 2.2 X 10 6 x 7 x 10 ~

If we assume sinusoidal radial motion during vibrat ion , so tha t  at the resonant frequency

R = R,, + a sin 2
~”R~’

the n

R = 2~~/ R a cos 27Tj R 1.

The volume velocity is then

S = (4ir R ,~ ) 2lr IR a cos
Hence the  steady-state ampl i tude  of radiated (acoustic ) pressure wil l  be (at I m )

x 6.7 x 10 6 ) 2 ( I )  (7 x 10 
_
~~) 2 (3.9 x It )  ~

‘ )I = 
~~

—
~~~

- (~~~ .S.l 

10 2 
——

or

I I =3 .4 dynes/ em 2 rrn s steady state (maximum )
at 1 meter at resonant frequency /~ = 6. 7 M l i i
f rom I bubble excited by 0.94 x 4 MeV .

Si nce the radiation has a f ini te  band of frequencies because the radial motion is not exact ly
pe r iodic , we will  calculate the acoustic effect at 25 k u ,. That is , roughl y ,

Ip,,J = 3.4 x ~~~ x l0~ 
2 

= 
~~~~~ X 10 ~~dy n c s - c r n  2

6 . 7 x 1 0 6

rn~s st eady state at 25 k H z  at I meter from I bubbl e
excited by 0.94 x 4 Mc\ -

This result is based on acoustic pressure being proportional to radial acceleration of the  bubble
wall , he nce proportional to (Frequency ) , 2
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Extrapolation to Higher Energies

Let us assume that a single cosmic particle enters the ocean wi th  an energy of 10 14 eV . I t
every 4-MeV interaction collision generated one bubble , we could expect 2.5 x iø~ b ubbles to
form (at the maximum ) .  Further , i f all bubbles radiated coherently,  then the steady-state
acoustic pressure measured at 25 kHz would be

IPa,- I = 4.7 x 10 —
~ x 2.5 x = 1.2 x IO~ dynes/c m 2 a, I

meter at 25 kHz due to a 10 14-eV pa rticle (steady state ) .

At 100 m this pressure reduces to

IPaJ — I2dynes /c m 2 .

This is above ambient  noise (at 25 kHz ) .

Collapse Pressure and Acoustic Radiation

The initial calculation made above was based on an isothermal expansion BC to a f inal
state B at 280°F and about 4 psi , the last part of the expansio n being u n k n o w n .  To estimate
collapse pressur es, we require a more expicit statement of the final stage of expansion . From
Ref. 17 it can be inferred (though it is not so stated by them )  that  the  final expansion is adia-
batic. Hence we hypothesize the path on the TSchar t  (Fig. 17) to be ,4 BCL)E1-

Let us calculate the final radius at point E. We calculated previously tha t  4.6 x 10 ~~6 g
of water are heated on the thermal spike to 620°F , requiring an input  of 4 MeV . We now allow
this heated spike to transfe r heat to the embryo bubble , expanding it isothe rmally from B to C
to E, the point E being at 620°F and atmospheric pressure , wi th  a speci fic volume of 43.6 ft -‘ lb
( x  6.24 = 2.72 x iø~ cm 3/ g) ,  enthalpy of 1344 Btu/l b , and entropy of 1 .982. W e ne x t  inia-
gine that the final expansion from £ to F lakes place at constant entropy to a temperature  of
280°F. At this point the pressure p~ is 2.1 psi , the specific volume is 192 ft~’!lb , and the  en tha l -
py is 1159 Btu/lb. To bring water to superheat at E requires an addition of 1344.5 — 45 —-
1300 Btu/lb. We estimate the number of grams of superheated vapor to be

m, = -f ~j~- )< 4.6 x 10 —1 6 = 2. 12 x lO H6 g.

Since the specific volume is 192 x 62.4 = 1.198 x l0~ cm 3,/g, the volu me of superhe ated
vapor is

V~ — 2.12 x 10 16 g x 1.198 x IO~ ‘~~~~~
— = 2.54 x 10 H2  cm

whose radius is ,

R~ 2.54 x 10 — 12 x —~~— 

- 

= 0.846 ~.L m.
4ir
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This is close , but  not quite the assumed final value of 0. 7 t am. To obtain a more consistent final
point we require that  the adiabatic expansion arrive at a radius of 0.7 Mm , hence at a specific
volume of

t
_ 

~~~7i .(7 x I0~~~)~ ~= —i- = 
_________________ ~~~~~~— = 6.8 x l0~ cm

2.12 x 10 ~~~~~ g
= 108 ft 3,—I b .

The terminal  point (from steam tables ) is then  350°F , en t ha lpy  is 1 209 Btu/ lb , entropy is
1.982 , and pressure is 4.5 psi.

Aft er expansion the forces acting on the  m a x i m u m  bubb le are unbalanced.  The net col-
laps e pressure wil l  now be calculated. Th i ’. is

2 r
= ~ + R 

— — P~fl~l lit

at T = 350°F (~~I75°C) we estimate ir = 35 dyne/cm , so that
2 r  2 x 35 6 2= = — 

—s 
= 10 dyne/cm

“niat 7 X 10 -

Also , at a temperature of 350°F (~~458 K ) we estimat e the  dissolved gases to have a pressure
of 2.7 x l0~ dynes/cm 2 (see below for th is  est imate ) .  Since p~ 4.5 psi ( x  6.895 x l0~ =
3.1 x 10 5dy nes/cm 2 ) and since P . = I atmosphere .

p,,,, = I x 10 6 + I x 10 6 — 3 . 1  x l0~ — 2.7 x 1O 3

= 1.6 9 x IO 6dynes/em 2 .
Let us asurn e that  dur ing collapse the vapor is not ins tan t ly  reabsorbed , so that  it ca n act as a
b uffe r to total disappearanc e of the cavity.  Then the ratio of the net collapse pressure to the  va-
po r pressure (called P / Q) is

P ,,e, P 
= 

1 .69 x l O 6 
5.44 or 2 =0.18Pt Q 3.l x lO 5 ‘ P

These ratios wil l  enable us to calculat e bubble dynamic s on collapse. The m i n i m u m  radius of
collapse is obtain ed by setting [26!

l 3 ( ~ — I )  — l 3 ( ~ — I )
R = R  1 +mm mat P( y — I)  P(y — 1)

This formula is due to Neppiras and Noltingk [27).

Assuming y = 4/3, we obtain

R~1~ 0.18 x 3
-~~~~~~~~~~ 0.35 sa~ —

~~~~ 1 + 0.18 )< 3 . 3
Th is par arnete l , pl us knowledge of P/ Q, all ows us to calculat e the peak radiated shock wave on
collapse. F rom Ref.  1281 at 1 m

p D D 2 D 3
+ — 

,wt mat max mmPmax — 

R ~ 0r 
~~ “mat

= 
1 .69 x l O 6 dyne/cm 2 

~ 
7 x 10 ‘5cm 

( 3 ) 2 I — 4  _L
3 10 2 3
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or

3 dyne/cm 2 shock amplitude at I m during collapse of a
0.7 M m bubble based on assuming the vapor acts as a buffer. ]

The shoc k power radiated is (roughly ) given by [29 1

~~ 1 ~~~~~~~ Rmax 
3 , 2

P.E. — 

3 V 3p ,-C? ~~~

i / 2 x 1 .69 x 10 6 
(3) 3/ 2

~ V 3 x 1 x ( 1.5 x 10 5 ) 2

= 0.012.

We estimated ea rlier that  the acoustic output on collapse was about the same as upon growth
(3~ each) . Here the figure on collape is 1%. Of course some of the vapor will be reabsorbed on
collapse , Hence 1% is too pessimistic. If a / I  the  vapor returned to the liquid (water ) upon col-
lapse , and left only permanent  gas pressure , the n it is simple to calculate that the peak shock
wave pressure will  be p~~ = 1.5 x lO 5dy nes/cm 2 at I m from one bubble. This is overly op-
ti mistic.

Calculation of Gas Pressure

The partial pressure of the permanent gases in the bubble is an essential parameter in
calculating the shock-wave magnitude. However it is difficult to calculate it. The gas content of
th e ocean is reported in books on oceano graphy in the following way. First , whateve r the loca-
tio n of the water volume , it i s assumed that at some time it had been at the surface of the oce-
an and in e qui l ibr ium with the air [301. Thus regardless of depth the water is assumed nearl y
saturat ed (at NTP = normal temperature and pressure ) . Hence gas content is reported in sa-
tu ration values (say mI/I )  in equilibrium with  a normal dry atmosphere. From page 188 of Ref.
( 211 we see that at 0°C and 35% salinity the saturation volume of oxygen in seawater is about 8
mi/ I and of nitrogen is about 14 ‘nI/ I. We next suppose this dissolved gas is in the microbubble
described above, and we desire to calculate the partial pressure of the dissolved gases at the in-
t erface. According to Henr y ’s law th e concentration in of a gas in a liquid is related to the par-
tial pressu re of the gas as in = ~~~~ where C, is the coefficient of saturation. If in is exp ressed
in units  of mil l i l i ters  per liter and p is expressed in torr (760 torr = I atmos = 1
x 106 dynes/cm 2 ) the n at 0°C ( 273 K ) and 35% salini ty the value of C, is 38 for oxygen
(0

2
) and 14 for nitrogen (N 2 ) [Table 41 , p. 191 , Ref. [30) 1. Thus the  partial pressures are

in 8 l x l O  2 202 : P() = = x -—~~~~
-
~

-—— = 2.8 x lO dynes/cm

and
14 1 x 1 0 6

N2 : p~ = -j-
~
- X —

~~~~~~
——— = 1.3 X l0~ dynes icm 2~

The total gas pressure is therefore about 1.6 x iø~ at 0°C. However the tem perature of the
bubble at m a x i m u m  radius is taken to be 458 K. h ence the estimated gas pressure is 458/273
:‘ 1.6 x 10~ =2.6 x 10 3 dyn es /cm 2 .
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Effect of Depth of Particle in the Ocean

Let us again consider a 4-MeV particl e heating a mass of 4.6 x 10 H6 g water in a ther-
mal spike to 620°F , at which temperature the specific volume is 0.0247 ft 3,~b (= 1 .54 cm 3/g ) .
As be fore this water acts as a heat source and feeds an embryo that expands (say) to ambient
pressure. Let ambient be 1600 psi (say about 3500 ft , or 1 km , of water). At the end of ex-
pansion the pressure is so great that the specific volume is only 0.272 ft 3/lb ( x  62.4 = 16.97
cm 3/g) the enthalpy is 1187 Btu/ l b , and the entropy is 1.348. Since onl y 600 Btu /l b is avail-
abl e, th e mass of the heated vapor is

= 
1187 —45 

x 4.6 x 10 16 = 2.4 x 10 “~
6 g.

Thus the volume of superheated vapor is

= 2.4 x 10 H6 g x 16.97 -
~~~~~

-— = 4.1 x 10 15 cm

whose radius is

1/3
R , = 4.1 x 10 ”~ x —

~~
-- = 9.9 x 10 6 cm ( say 0.l~~m ) .- 47r

W e compare this expansion to 1600 psi with the earlier calculated expansion to 15 psi (at
620°F) . At the latter point the specific volum e is 2.72 x i0 3 cm 3/g, from which the volume
of heated vapor is

= 2.4 x 10 16 g x 2.72 x i0~ ~~
-
~~~

-— = 6.5 x 10 —13 cm
- l5P ~- g

whose radius is
1/3

R , = 6.5 x 10 “t3 x —
~
-— = 5,4 x 10 5 cm O.54 i.tm.

47r

Thus the r ’su ltan t bubble at 1600 psi is about 5-1 / 2 times smaller than at 15 psi for the same
energy. Ihiwever it is larger than critical (~~r~ I nm ) ;  hence it can grow by further adiabatic ex-
pansion. But Sette and Wander l ingh show [Fig. 7) that  the final expansion (after isothermal
expansion ) is small. We have calculated th at  in the case of adiabatic expansion from 620°F at
15 psi to 350°F at 4.5 psi the change in radis is about 2/7 or 30°!’. Thus we estimate the final
radius at the depth of 1 km to be about 0.13 Mm , still a factor of about 7 smaller than a bubble
near the ocean surface. This smaller radiu s bubble wil l  reduce the acoustic effect. For exam-
pl e the peak shock wave on collapse will  be about 7 times smaller , assuming the ratio of
R n, in /R m,,t is abo ut the same as in the earlier case. Greater depths will even have a more
d rastic effect , pri mari ly due to reduction of the maximum bubble that can form with the given
i nput  energy. Of course , if h igh er energy particles parti cipate in bubble formation , a la rge r
acoustic output can be expected.

JET MODELS AND OTHER MODELS

Jet Models

Afte r a cosmic particle creates a shower of interaction products in a liquid , th e shower it-
self can be imagined to be the cont inuat ion of a jet of equal diameter entering the liqui d from
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the outside. This j et creates noise as it traverses the liquid. Several mechanisms may be con-
sidered. The princip al mechanism is inject ion of mass of jet , hence monopole radiation is to be
expected. However, if the flow of the jet meets obstacles (fluid molecules), the expected radia-
tio n is dipole. If the jet creates thermal  (or velocity ) turbulence , th e radiation will  be quadru-
pole. Our obj ective will be to calculate th e noise power due to these three mechanisms.

By dimensional  analy sis one can establi sh relations between the  parameters of jet noise.
These are: the density p, of the jet material , the speed V of the j et flow , the pert inent length L
and the mach numb er  M = V/c’, whe re c is th e speed of sound in the liquid. For jets of f ini te
cross-sectional area Sone chooses L such that  L 2 S. The relations between the noise power
W generated and these parameters are as follows:

m onopol e radiat i o n : W,,, ~ i’, L
2 V3 Al

dipole radiation : W,1 p , L 2 V3 M 3
quadrupole radiation: Wq ~ p~ L

2 V3 M 5
The constants of proporti onality depend on th e process. Various estimates of their  magnitude
hav e been calculated . For example , if the mechanical stream of the jet has a kinet ic  power

= .1.. ~,, V2 (uni ts  of in,: kg/s ),

then the aco ustic power generated is roughly

M5-5 PWe,. _ W,,,,1, -

~

——

~~~~

- , —i- = 10 ,

M55 P
“ 10,830 ‘

w M 5 - 5 /~ -

“~‘~“ 120,470 
— 0.01 ,

provided W~,, < W,,,,,,,, [Ref. 3 1J . Since W,,,,,11, p 1 Si ” =p , L 2 
~~ , we see that

= ~~~~~~~~~~~ M — COilS,. W~ M ~~~~

= consi . W01. Al —2
Wq = coils,. W~,,The constant in each case mat ches the constant in the expression for We,..

The calculation of th e effective mach number  M of the fluid jet requires cons iderable
care. Let the imagined cosmic-particle jet have a uni t  f lux of energy (per cross-sectional area)
of magnitude W,. Upon interaction with the liquid the particle jet is converted to a liquid jet
whose powe r is W,. The interaction itself depends on the captur e area presented by th e fluid
to the incident particle stream. The ratio of powers W1 to W,,, is designated y, where

in,

‘V = 
in, V1/ 2

in wh ich  in, and in, represent mass flow. As sume next that the mass flows are proportional to
mass density.  Then

p., V/ 1/2
‘ 2 orV ~ =—  V,.

li l y, p 1
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This is the initial velocity of the fluid. Thus the effective mach number  of th e jet is ,
V~ 1 ) ‘P, 

1/2

~~~~~~~~~~~~~ 
V~.

Noting that W,~,,1.1, = ‘V W,. we see that  the acoustic power generated is
1/2 v ~

~~~ 
= y

P~ . 1
K 1

where

K
i 

= 1420 -
~~~~

- =10
P 1

K 1 =10 ,830 = 1p.,
K 1 = 120.470 -

~~~
- = 0.1

p 1

The coefficient of momentum transfe r v is roughly the ratio of the scattering cross section of
th e incident particle to that of the fluid particle. The noise power generated is seen to be pro-
portional to ~~3.75

Transient Radiation Fr om Sources in Motion

Wh en a cosmic particle is decelerated by a liquid the  liquid itself is accelerated. Such an
acceleration constitutes an acoustic source , and an acoustic pressure (shock wave ) is radiated
outward . A simple theory constru cted on this picture is as follows.

Let the volume flux of liqui d set into motion be S( ,n 3/s) , a nd let the  corre~p on ding mass
flux be p,S = q ( t )  (units: N ‘ s/m) . The motion of the cosmic particle is equava lent to the
motion of q ( i ) .  The latter constitues source distr ibution density Q(r .t) (u nits: N - s/Fl , 4 ) of
form ,

Q(r ,t)  = q ( t )  ~~ (: — i/f )  ~ (yTh (x ),

which radiates shock waves according to the formula

V 2 p —
~~

- -
~~

—
~~~ 

= — - ~— q ( t ) ~~(: —

C ~j 1 l~i1

The solution of this  equation is obtained by a coordinate transformation [4 , pp. 721 lii . Whe n
the velocity V of the  eq uival ent source is supersonic (as we assume) , th e solution can be ex-
pressed as function of distances R ~~~

, R 
—

, an d an gles H ~~~, H —
, ex plai ne d below~ th us

R’ ~’— q  ~
p(R ,H.t )  = + 

q ~ R , )
4ir R ” ( Mcos H 4’ _ 1 ) 2 4,r R (,n cos H — _ I ) 2

— 
g ( i  — R~~/ c) (M  — cos H ” ) V  

+ g( i  — R /c ’) (M — cos H )l’
4ir (R + ) 2 ( Pil cos ~~ 

+ — I ) ~ 4ir (R “ ) 2 (Al cos H — 
— 1 ) ~~~
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lig. 19 — Transient radiation from a source in motion

i n which q ’ is th e derivative with respect to the a rgument .  Distances and angles are given by
Fig. 19. In this figure the source S is moving in the  direction : wi th  supersonic velocity I
( mach number  M > 1) . It is the origin of a cone of shock waves (A , B). Any point P inside
th e cone wil l  hear the pressure p given above at t ime I. This pressure wil l  consist of radiation
fro m two fictitious origins , E + and E , with  E + at a dista nce R + from P. and E at dis-
ta nce R — from P (E is in front of Pand E~ is behind ) .  The distances are given by

MUi — : )  ± ( I ,  — : )  — 
(M’ — 1  )r 2

R~ = 
It — ) 

, = 1. 2 + :2 .
M2 - I  .

The half angle of the  cone is H = sin —l (M  
~~~~~). Outside the cone at time t there is silence.

The directionali ty inherent  in the formula for pressure p must be obtained by numerical
eval uation. If the time dependence is harmonic , that is , q ’(t — R/c ) = q0su ,, cos
o ,, (t — R/ c)  then the fields due to E + and E — interfere , so that  the reserved sound pressure

oscillat es with time (beating phenomenon ) .  The ampli tude spectrum of th e  radiated pressure
can be obtained by Fourier transformation:

p (R ,i9,w ) = f  e ””’ p ( r ,ll , l) d,.

A nother model of cosmic particles as travel l ing sources may hav e relevance to acoustic
pul se formation. In this picture the interaction products bounce back and forth due to succes-
siv e collisions. Thus the advance of the cosmic particle is imagined to be that  of a dipole
sourc e travelling with supersonic speed. A formulation of the pressure fiekl developed is
presented for convenience.

The bouncing byproducts exert a force F, (p er un i t  volum e) conceived to be

F, = .i; (s ) ~ (: — I’,) ô (x )  Fm ( v ) ,

i n w hich ./ , ( i )  is an impulse force (units:  N ) , To apply this  force to the  pressure equation , one
lets p div A , and solves for A; the governing equation is
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~ _____V 2 A , — 

- 2 —i; ( I )  Fm (: — Vi) Fm (x) Fm (j ,),c d t

whose solution is

A = — JL~ — 
R “Ic) 

— 

j  (i — R 7c)
4ir R 1

+ 4n’ R~~
Ultimately the field pressure is [4 page 721111

— R t/c)cos 0 + I , (t — R “‘Ic’ ) (M — cos H
p (r .t)  = — - — -

4~r R ”’ c (Mcos 0 ”’ — I ) 2 4 1 T (R ~~ ) 2 (M c o s H ” — l ) ~
I, ( m ’ — R /c) cos H — I, (i — R 7c) (M — cos H)

+ + -

4it- R ~c (Mcos O — — 1 )  4 it- (R ) 2 ( M cos H — 
— 1) ~

This di pole case is conceptually related to the monopole travelling source: if one sets q I’ = / ,

so that the oscillati ng force is numerically equal to th e monopo le mass flux t rav el ing at velocity
V, it is th en possible to intercha nge the formulas. In pa rticular one sets q ’ = / / c , and then the

de rivations of the formulas are identical.

CONCLUSION 
-

The generation of sound by sources is well understood when the sources can be categor-
i zed as monopo le , dipole , quad rupo le , etc. In the pa rticular case of the noise pulses generated
by cosmic pa rticles in the ocean the greatest emphasis in modeling to date is on monopole
sou rces related to the t ime-varying application of heat. Two varieties of heat models have been
surveyed and developed in this  report: the thermoelastic model , in which a deposition of heat
in to  th e liquid results in an elastic expansion which radiat es outward as a shock wave , and is
the microbubble model , in which the deposition of heat “boils ” the liquid locally, creati ng an
expa nding (and collapsing ) bubble , which  radiates sound as shock waves. Other models are
possible , such as a jet noise model , a movi ng-source model , and an explosio n model. The first
two have been noted , b ut no detailed calculations given. An explosion model is discussed in
Appendix A. Numerical  calculations of several heat models have been made in th e  text and
are fur ther  amplified in Appendixes B and C. As expected , they yield di fferent (even radically
di fferent )  answers for the same input  parameters. These differences are a t t r ibuted to different
conceptio ns of what  the precise physical event is in the liquid. It is concluded that  fur ther  pro-
gress i n modelling must await ren ewed effort in exper iment  work.
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Appendix A
RADIATION MO DEL BASE D ON THE THEORY OF EXP LOSIVE SOURCES

In the theory of explosive acoustic sources the potential energy of the explosi on bubble( W 8) is only a small percentage of the intrinsic energy of the source ( W ,) , that  is ,
W8 = K W~, where K is 0.10 or less. In the well-known theory of Wi llis the ini t ia l  radiu s of a
bubble due to potent ial energy W8 at hydrostatic pressure P is

R — 
~~~~~~ 

I I)  
— 

3KW ., 1/3
— 

4ir P ‘

and the first period of the bubble oscillation from the Willi s-Rayleigh theory is
3KW 1/3 1/2

TB = 2 x 0.914 -‘~~
-

~~~~,
‘ -

~~~
-

Two types of radiation propagate from the bubble: a shock wave , a nd tn en a wave due to bub-
ble oscillation. The peak pressure developed by the shoc k wave has been empirically found to
be

jA,i 113 ‘‘
‘~rn ax  A 

R

in which W is the weight of explo sive (its internal energy) , R s the  distance of measurement ,
and k , a are empiric al constants. Many experiments show that  a is approximat ely un i ty .  Thus
‘~max W ’/3 [Ala ]. To includ e the effect of the explosion pressure subsequent to the passage
of the peak pressure, one uses the t ime integr al of the pressure , called the i mpuls e , defined as

1(1) = f  P(t) di.

Empirically the impul se is given by [AIb]

I = I W 1/3
[ 

w h ’3
r

where / and  /3 are constants

A third characterizat ion of the shock wave is the energy flux E per un i t  area of a fixed
surface normal to the directions of propagation. This is given by [Aid

E, = ~ 
3 J V

where ~n and y are constants

To use these empiric al formulas , one requires a knowl edge of the  constant s. They will
depend on the  type of explosive and the units. For example , let the explosive be TNT (densi-
ty 1.52) and the un i t s  be Engli sh: pressure in psi , dista nce in feet , wei ght  in pound s (mass ) ,
and energy density in inch-pounds of force per square inch. Then [Aid)
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1. 1 3
w ’13 lb . .

~ max = 2.16 x I0 ’~ R ft 
(units: psi ) ,

1/3 0.89
I = 1 .46 W113 ~~~~~ (units: psi ’ s)

and

1/3 2.0 5
E = 2.41 x 1O~ W”3 (units: lb — in ./ in . 2

Here the integration time is taken (somewhat arbitrarily ) as 6.70 , wh ere H is the time constant
of the init ial  high-press ure region.

To use these formulas for the case of high-energy particles we must relate the particle en-
ergy to the weight of TNT that is energetically equivalent. Only approximations are possible ,
and these depend on experience factors. Since the energy release of TNT depends on depth ,
we will  take 30 ft , or 9 m , to be the depth i n the fo liowing calculation.

We assume from experience [A2 , p. 17J that 1 lb of TNT will  release roughly 1.5 x
ft-lb of energy. (Another convenient estimate is: I g of explosive liberates 1 kilocalorie =
4.18 kJ = 2.61 x 10 22 eV , or 1.19 x 10 25 eV/l b or 1.4 x 10 6 ft lb. ) Conve rting to more con-
venie nt uni ts , we have for the conversion factor E~

E = 
1.5 x 10 6 ft. lb/ lb x 1 .3558 i/ ft. lb

453.6 g/lb 1.6 x 10 “19 J/eV
= 2.802 )( 10 22 ‘n--, or 1.271 x 10 25 eV/lb.g

For example a high-energy particle with E0 = 10 16 eV is equivalent to
i~~ I6 u .e 

= 7.87 x 10 ~~ lb of TNT
1.27 x ~ 

25 eV/lb
or

10 16 eV 
= .0356 pg of TNT.

2.802 x 10 22 eV/g
In conformity with our calculations in the section on microbubb les , we apply the above formu-
las to the case of a 4-MeV particle. The equivalent weight of TNT of sudi a particle is

= 
4 x 10 6 eV 

— = 3.15 x 10 19 lb of TNT.
1 .271 x 10 25 eV/lb

W e indicated in the main text that the conversion efficiency from particle power to acoustic
power is roughly 3% on expansion of the bubble and 1% on contraction . Let us arbi trar i ly as-
sume a 2% energy conversion. Thus the actual energy available to form a bubble is assumed to
be

W = 3.15 x 10 —1 9 x 0.02 = 6.3 x 10 —2 1 lb of TNT.
Thus , applying the formula for the peak shock pressure (at I m = 3.28 ft ) ,  we obtain
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(63 x 10 —2 1 ) 1/3 t . I 3

~nla x = 2.16 X 10 
3.28 = 1.388 x 10 ~ psi

= 9.58 dynes/cm 2 (peak).

Similarly,  we can calculate the impulse at I m:
—21 ) 1/3 0.89

/ = 1 . 4 6  x (6.3 x 10 ”2 1 ) h / ’3 . X

= 9.52 x 10 — 14 psi ‘s or 6.57 x 10 ‘~~ dynes/c m 2 .~
If the dominant frequen cy is 25 kHz , we assume the integ r a i~on time to be 1/2 5,000 = 40~cs.The average pressure radiated is then

/ 6.57 x 10 “9 dy nes/cni 2 s 4 dyne= = 
—6 

— = 1 .64 10 —s- at 1 meter.L~l 40 x 10 s cm
W e note that both Pma X and p~ are of the sam ’ order o- magnitude as pr eviously calculated in
the main text. However this choice of int egration t ime is quite arbitrary. Cole [Ale , p. 2391
takes th e integration time to be I = 6.70 where 0 , is the ti me constant of exponential  decay of
th e main shock pul se (as if the pulse had the form p = p,,, exp ( - i / o )) .  A plot of reduced time
constant H / W ’/3 vs W113 / R  [Aif , p. 240 1 is out of the range of our numerical work. However
we can try an estimate. We note that 01W 1 ’3 rises 0.05 ms sec per falli ng decade of W~”3 /R .
For a 4-MeV particle whose effective TNT equival ent  is roughly 6.3 x 10 — 2 1 lb . the  value of
W’’3 / R  at R = I m is

(6.3 x 10 — 2 1 l b ) ’ 3  
= 

1 .8469 x i0 ”7 
= 5 6  x 10 —8

3.28 ft 3.28
This i s ro ughly I 0~ or 7 decades lower than W1 3/R = I .  Hence by extrapolation

= 0.05 x I0~~ + (0.05 x 10~~~)10~ =5 x 10~.
W~~

3

The time constant is therefore
0 — 5 x 10 2 W113 = S x 10 2 x (6.3 1 x 10 — 2 1)  ~~ = 92.3 ~.Ls.

Our estimated integration tim e is
I = 6.7 x (1 = 6.7 ‘< 92.3 ~zs = 0.62 ms.

The average pressure radiated in this time is estimated to be
I 6.57 x 10 9 dy nes/c m 2 ’s —5 2p ay =—  = 1 .06 x 10 dynes/c m0.62 x 10 “3 s

The characteristic frequency of the transient is (.~ t)  H _ 16 kHz.
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Appendix B
COMPARISON OF ENERGY DENSITY OF COSMIC PARTICLES
AND ENERGY DENSITY OF AMBIENT NOISE IN THE OCEAN

Ambient  noise in the ocean is reported in decibel uni ts  referenced to the intensity (or
energy density ) of a plane wave of uni t  ampli t ude in a 1-Hz band. Thus if E~ is the energy
density actually measured and Ern,- is the reference , then the number  of measured decibels is

E~,N = 10 log 10 -
~~

--— .

ret

Hence

E v = Eri~i 10 N/l 0 (units: erg/cm 3 ‘ Hz ) .

For example at 25 kHz the lowest measured ambient noise is reported as N = -82 dB ‘ re 1 dyne
/cm 2~” This means that

EN = Eret 10 —8.2 = Ert,i x 6.3 x 10 ‘~ .

Now the energy density of a plane wave of uni t  amplitude is

EREF = 
( 1) 2 

~~~~~~~~~ 
x

pc 2 I x (1.5 x 10 5 ) 2  cm 3

f rom which

E N = 4,44 x 10 —Il  x 6.3 x i0~~ = 2.8 x 20 t 9 erg
cm 3 ’ H z

Using the same procedure we construct the following table.

Freq. (Hz) N (dli ) (E~,( e rg/c m 3 ‘ Hz )
1 -11 3.5 x 10 H2

10 -40 4.4 x 10 ‘~

100 -60 4.4 x 10 “~

1 ,000 -73 2.2 x 10 ‘~

10,000 -80 4.4 x 10 ~~
25 ,000 -82 2.8 x 10 “~

30,000 -84 1 .76 x j o —19

Let us assume that  for various reasons we are requied 10 use a 10-kIJz band for underwater
detection of these particles. The average noise energy density in a 1-Hz band between 10.000
and 25 ,000 1-l i is — 3.6 x 10 19 (erg/cm 2 Hz) . Thus in a 10 4-Hz band the average energy
density is

3.6 x 10 H9 x i0~ = 3.6 x 10 ~ erg/cm 3 .

We desire to compare this with the energy density of the cosmic-particle f lux.  To do this , we
let I~ be the particle flux density per steradian and E1,, be the average energy per particle.
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Then the total energy flux ( intensi ty )  is obtained by in t egrating over the solid angle of in-
cidence:

/,, = f  !~~~ E,, d~l (units: erg/cm 2 s).

We next assume that the particle flux is a plan e wave of li ght .  We then estimate the energy
de nsity E to be

i f ~~~~ 
E, d~.iE~ = — ~~

-- = / (units:  erg/cni 3 ) .
C L

i n which L is the speed of li ght.

As an estimate we take the case of muons and choose ‘t? = 1.83 x 10 2 /cm 2 - . sr
x cos 2 0 a nd E,, =2  x l O 9 eV = 2  x I0~ x l . 6  x i O  12 =3.2 x 10 3 erg/muo n . Over the

he m isphere of i n cide n ce

4 
~~‘ 

= 
c i 2 ~~.

0n5 

~~ 
5 cos 2 H 2~ sin H 3.2 x 10 H erg/ muon

= 1.83 x 10 2 3.2 x 10 H = 1.23 x 10 ~ erg/cm 2 ‘ s.

The energy density of the equivalent plane wave of “light ” is

E = 
1 .23 x 10 ~ erg/cm 2 s 

= 4.08 ~ 10 — ‘~
3 x 10 10 cm/s cm 3

Thus, if we listen underwater over a 10-kL-l z band , the energy density of the muon f lux is
about the same as the energy density of noise in the  ocean over the band of 10 ,000 Hz to
25 ,000 Hz. On the other hand , i f we listen over a 1-Hz band , the  n oise due to the  muous (of
energy I0~ eV) is about 10,000 times higher than the ambient noise due to all other causes.
However the presence of a muon si g nal is a random eveni in space and l ime. The p robahi l i iy
of detection is still to be calculated.
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App endix C
TOTAL NOISE OF MUONS

Assume that muons of energy 2 GeV penetrate the ocean with a total flux of
1.82 x 10 2/cm 2 . s ‘ Sr. The angular distribution of particles varies as cos 2 0, where (1 is the
an gle of the muon track with the vertical. The rate of absorption is 2 MeV/c rn , so that  th e
effective range of the track is L = 10 m. W e wish to calculate the total noise production of the
muons and compare it wi t h the noise of molecular agitation in the ocean. To do this , we use
the formulas of model Ia . For kL large the total acoustic power generated by vertically incident
particles is

= 
a ~~ (32 (1,, S) 2

4 
16p  C,~

First we assume that a = L H = (1/10) m H , Then we must replace the unifo rm intens i ty  I,,
of verticall y i ncident particles by an effective intensity to account for the cos 2 

~ depe ndency of
arrival.  As a si mple approximation we take

1~ = S 14) dos 2 
~ 2ir sin H dO = 

~~~ 
I,, .

Next  we calc ulate the input  heat power W 1 to the water caused by one muon , which  acco rding
to th e model is to be based on the  heat deposition time T1 :

2n’ 2 E
= 

~ar ~ = ~,, S = —
~~~

- —
~~~~

- (units: P%~ .

To choose T, we assume first that the noise caused by muons is not greater than the measured
ambient  noise of the ocean at the selected frequency. As we shall see later , the smallest T1
41 ns. Thus

~~~ ~~~~~~~~~~~ < 
2 GeV x 1.6 x 10 H9 N ‘ r n / e l

3 O.4 I ns
= 1 .635 x 10 2 N ‘ ni/ s.

The iot al acoustic power “ radiated” by one muon at a frequenc y of 25 kFIz (say) is therefore

~ =1 _ _ _ _

L

I x 2 ~r x 2 5 < l0~~s ’ x — ~- - x
l O m  16 l0~ N s 2 /ni 4

( 1.4 x 10 —4 ) 2 
x (1.635 x t O _2 ) 2 N m 2 1 ’~~K 2

K 2 s 2 (4. 18 x 10 3 ) 2 ni 4

= 2.94 x 10 ~ N ni
s n ’luon

We are given that there are I .83 x t O 2 muons/s cm 2. or I 83 muons/s ni 2 so that  the  to-
tal power of N muons is
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W~ = 2.94 x 10 ~ N ‘ ni x 183 muons
- s m uon - rn-

= 5.39 x 10 17 N m
S m 2 s

We interpr et W~ as th e acoustic power (watts )  f lowing through a spatially averaged I rn 2 of
ocea n surface temporally averaged over I s. We will  go one step far ther  and assume the  acous-

— 
tic powe r so generat ed belongs to a plane wave of sound arbitrari ly oriented , the ene rgy densi ty
of which is

W 5/S
£ = , = speed of sound in water .

E = ~~~ x 10 ‘7 N ‘ in/s ‘ m 2 
~~~ x 10 -20 N m

1.5 x 10 3 m/s n13
= 3.59 x 10 t9 erg/cm ~ (ave raged over 1 s ) .

This is nearly the energy density of ambient  noise (per herz ) measured in the ocean between
iS and 25 kHz.  The equality of muon noise and ambient  noise was deliberately made to occur
by choosing T, to be 41 ns. The energy density is calculated on a I-s averaging basis as re-
quired by the specified incidence rate.

The inpu t  energy E~ is actually tak en from the spectrum of measured energy versus in-
cid ence rate. It is an arbitr ary selection. Similarly T1 ,  th e t ime factor in th e rate of deposition
of heat , is tak en to be a plau sible estimate in the absence of concrete exper imenta l  fact . Previ-
ously for vario us reasons we adopted T1 to be I ns. We will  now make a calculation based on
this  choice.

For T, = I ns the heat deposition of a single muon is

w ~~~~~~~~~~~~ 
2 x GeV x 1.6 x 10 ’9 N . m/e V

I I n s
= 0.67 N ‘ rn/s .

The acoustic power at 25 kFJz of one muon is therefore

w = 
I x 2~’ x 25 X i0 3 

x I 1 ( 1.4 X 10 —4)2
l O m  s 16 lO 3 N ‘ s/ni 4 K 2

2 2 4 2, i ~ ~~~ I S  ‘ Kx (6,7 x 1 0  ) x
s 2 (4.18 x 10 3 ) 2 rn 4

= 4,95 x 10 H6 N ‘ rn/s .
We mult iply this by the incidence rate to obtain the uni t  areal power flux:

WN = 4.95 ~ 10 — 16 N ‘ m 183 muons
s muon s ‘ ni 2

= 9.05 x 10 ,4 N ‘ m 
~ 

I
m 2 ’s
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This is then divided by the speed of sound c to obtain the space-and time-averaged energy
density of an equivalent plane wave:

E = 9.05 x 10 —1 4 N - m x ( ) x = 6.04 -
~~~

———
~~~

- x 10
S m 2 

‘ s 1.5 x iø~ rn/s m 3 S

= 6.04 x 10 ‘16 erg/c m ~ (av eraged over I s) .

This is larger than the ambient noise in a 1-Hz band by a factor of 6.04 x 10 Ho,3 59 x
10 ~9 = 1.7 x lO s. It is seen to be 10 x smaller than th e noise energy density in a l0-kH z
band.

From this calculation shows that the prediction of noise generation from muons in the
ocean is highly sensitive to the correct estimate of heat dep osition rate. Since an upper l imi t  of
th is noise (at 25 kHz) is the measured ambient noise , one can find T, fo r any choice of E,,
with t he understanding that it is the smallest possible time in the l imit  that  a/I the ambient
noise is due to muons of this energy.

A final calculation based on the experimentally more plausible value of T, — I u s  wil l
serve to illustrate the wide divergence in predictions. Thus

2ir 2 GeV x 1.6 x 10 ‘9 N ‘ m/eV
3 l~ ts

= 0.67 x 10 H N ‘ rn/s
Thus the “particle power ” which is considered in this model to be the analog of th e laser power
of Westervelt-Larson is 0.67 mW. The total acoustic power radiated by one muon at 25 kHz is
then

w =_ ~~ J__ x 27T X 2.5 X ~~~ x (1.4 x 10 -4)2 
x (0.67 x 10 -3)2 N

2 m 2

l O m  s K 2
1 1 2 4  i s 4 K 2

x — x — N  ‘ s / m  x
16 iø~ (4. 18 x 10 3 ) 2 rn 4

= 4.94 x 10 H2 N . rn/s .
For an incidence rate of 183 muons/s rn 2 the power generated over I rn 2 i n an averagi n g
time of I s is

WN = 4.94 x 1O 2
~ N ‘ m/s rnuon x I83 muons

— 9.04 x 10 20 w atts of acoustic power.

Considering again each square meter to be a unit  area of a plane wave , we find the energy den-
sity to be

E 9.04 x 10 20 N ‘ rn/s ‘ m~ = 6.03 x 10 —23 N ‘ m
1.5 x i0 3 rn/s rn 3

= 6.03 )( 10 —22 erg/cm ~~.

The ratio of muon noise to ambien t noise (in a 1 Hz band ) is then
L A 1  in —22

_ _ _ _  
u.uj X iu = I 7 x I O ~~

4
Eamb,eni 3.59 x 10 — 19
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The comparison with molecular agitation noise is different.  According to Mellen ( 14 1 the
thermal noise in the ocean is empirically given by

NIh = — 175 + 20 log 10 I

in units of dB re I ubar of equivalent plane wave of uni t  amplitude , with I being given in
hertz. In arithmetic units the energy density of thermal noise is therefore

E,, =E 1 
_ _ _ _ _ _  

2
I re 5.623 x 10 8

Here we take the reference energy density to be that  of a plane wave of uni t  amplitude:

Er,i = 
( 1) 2 (dyne/cm 2 ) 2 

= 4,4~~ x 1o H~ . !!L
dyne . ~2 

x (1.5 x 10 5 ) 2 !1~
__ cm 3

cm 4

Thus the thermal  energy density is
- 2

= 4.44 x 10 ‘~ __________

5.623 x 108 cm 3

At .1 2 5  kHz ,

E,,, = 4.44 x 10 ~ 23 x ~~ 
2 

= 8.78 x 10 20 ..!!L
5.623 x 10 8 cm 3

The ratio of acoustic energy density caused by muons to the noise energy density of molecular
agitation depends on the bandwidth of listening and on the choice of deposition t ime T, . Us-
ing th e results just calculated , we can construct a ratio (Table Cl ) .  Thus , to detect muon noise
abov e thermal  noise , the bandwidth of the receiver must not be appreciably more than 1 Hz.

Table Cl — Ratio of ~~~/ E th at 25 kHz

Bandwidth ~~ ~ th
(kHz) 7j = 41 p s T1 1 ns

I 3.59 X I 0’-’~/8.78 X 10~~o~~ ~ 6.04 X 10H6,8•78 X 1o~ o -, x io3
10 3.59 x 1O- ’~/8.78 X 10—1 6 4 X 10 6.04 X 10-16/8.78 X 10-16 ~

R E M A R K S  I

The procedure used in the above cal culation is to calculate the acoustic radiation from
one muon and then  use the statistics of muon incidence to calculate the power per uni t  of time
per uni l  of are a. The statistical basis of the muon count must not not be overlooked. Most
l ikely,  muon incidence corresponds to shot noise and has therefore a Poisson-type probability
distr ibution in t ime.  Over a long record (say many seconds , hours , days , etc.) the average of
the d is t r i b ution is taken , and this  is the number used in the above calcul ation. Other probabil-
ity moments  La n  be of use in developing the statistics of acoustic radiatio n developed by the
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muons. For example , by quoting the variance of th e random incidence , we can find th e van-
ance of the power crossing a square meter of the ocean surface; hence we can find th e vari-
ance of the acoustic energy density. This would be a valuable statistic in comparing th e acous-
tic radiation developed by muons to the noise of molecular agitation in the ocean .

We have made our calculation on the basis of a component (25 kHz ) of the power spec-
tr un i of th e radiated acoustic noise , choosing a single muon particle as our basic model. When
we dee m N muons incident in I s (as averaged over many seconds of record) , we have as-
sumed incoh erent summation by taking th e total power to be N times the power of one muon.
If the summation is coherent , there will  be a directional gain in radiation , as if the volume of
i ncidence were a volume array of sources. The energy density would then be high er in specific
directions.

We can also treat the p roblem in th e time domain rather than in the frequency domain.
Thus we can calculate th e transient power W(i ’ ) per muon , find the average power

= f W (t )  da’/~~i

for the du rati on .~~t of the transient , and th en multiply by th e statistically determin ed time and
space rate of inci dence N to find the total power for all frequencies per unit  of t ime and area.

Finally we could proceed to calculate a long tim e record of power W (t) , taken over many
seconds, and subject it to a probability analysis. This can be done by dividing th e record into
M records and making histograms of th e average , the va riance , et c. among the components of
the set . A n autocorrelation could then lead directly to th e power spectrum.

REMARKS II

The total noise energy density generated by th e flux of muons is an average over all
space. The sharp directional ity of vertically incident particles has been canceled in the averag-
i ng process. Alth oug h ill ustrative , the calculation of acoustic energy densities does not lend it-
self to experi ment al check directly. One must measure acoustic pressure and use it to calculate
energy density according to some simpl i fying assumption , say pla ne waves. The significant
directi onal power quant i ty  is the acoustic inten sity.  From Model Ia in the main text this inten-
sity is seen to depend on the angle H as

I + (kL) 2 cos 2 H ’
i n which  H is measured relative to the  vert ical. Actua l ly  muons arrive at all angles ~ (re la t ive
to the  ve rt i cal ) .  The sound radiated from a track at angle E in direction of angle ~ t roni ~ then
depe n ds on

cos 2 
~

I + UL) 2 cos 2 (E + ~ )
Thus the greatest contributions to muon noise occur in the h orizontal , fro m tracks near the
vertical (E — 0). A rough approximati on to noise generation is to average dos 2 

~ in the
nun l e ra lor over a solid angle of hemispher e and to neglect E in the denominator.
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REMARKS III: DIRECTIONAL ITY

The number of particles incident on a unit  area is proportional to cos 2 H , whe re H is th e
angle of the track of the part icle relative to the vertical. Since the radiated sound from a track
is sharp in a direction normal to th e track , we assume that the directionality of all the tracks
th rough a uni t  area is also proportional to cos 2 0, where 0 is now tak en relative to the horizon-
tal. The 3-dB points of the intensity pattern of acoustic radiation occurs at 0 values such that
cos 2 H = 1/2 , or cos 0 = 0.707 , or H — ± 45° . Hence the 3-dB be amwidth of muon noise is
90° centered on the horizontal. We compare thi s  directionality with that  of ambient  noise and
of directio nal noise. Ambient noise at low frequencies (say less than 10 kHz ) normally arrives
in a wedge ±20° centered on the horizontal (Ref. 22 , p. 282 1. High-frequency ambient noise
or iginating in surface wave action arrives at a point in a vertical cone whose vertex angle
dep ends on depth of the listening sensor. In th e range of interest (25 kHz and above) high-
frequency muon noise can be differentiated from ambient noise by th e difference of angle of
arrival: muon noise arrives horizontally, and surface noise arrives vertically. In contrast ther-
mal or molecuiar-agitation noise dominates at high frequency and is omnidir ectional.

REMARK IV: RELATION BETWEEN ENERG Y DENSITY AND INTENSITY 14, p. 5771

We imagine the total acoustic effect of cosmic particles in the ocean to be analogous to
the assemblage of randomly distributed standing plane waves in a room , each wave traveling in
some direction ~~~, 0. Let each plane wave have amplitude A (r , 4 ,  0) . The power incident on
a uni t  area normal to 4.i , H is the intenstiy I:

/ ( r )  =
~~~~~ 5 d~ f  IA ( r ,& 0) 1  2 cos 0 sin 0 dH.

Similarly the energy density w (r) is ,

W ( r )  = __ !_
2- 5 d4 f  I A ( r , &0) I 2 sin 0 dO.

At high enough frequency we can take the sound field in the room to be isotropic , m eani n g
that A (r , d~, H)  is independent of r, ~~~, H. This is the frequency range of geometrical acoustics.
Upon integrating in this region , one obtains

A 2 ir 4ii’- A 2
1=  , w =

PC pc 2

Hence the relation of Ito w is ,

C

In the above numerical calculation of muon noise we have omitted the factor 4 and written w
= I/ c . This omission was done because an integration over the hemisphere of particle in-
cidence had already converted angular incidence to vetical incidence.

STATISTICS OF NOISE IN THE OCEAN

The power spectrum level of noise in the ocean has been complied by Wenz [131 and is
reproduced as Fig. CI for convenience. The ordinate of this chart represents the noise level
(N L ) ,  defined as
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NL = 10 log10 p 2 (J) 
,~~~~ 

= frequency (II: )
p0., (I)

in which the reference is the quant i ty  p 2 of a plane wave of un i t  amplitud e at the frequency t:
All cu rves shown (except the one labeled molecular ag itation ) represent measured values of
ambient  noise. The curve for molecular agitation is a straight l ine extending to the  right  wi th
th e slope shown. All quantit ies are based on noise power in a 1-Hz band. The lower l imi t  of
ambient  noise in the ocean at 25 kHz is —8 —74 = —82 dB re I dyne/c m 2 (spectrum level ) ,
and the noise of molecular agitation is —13 —74 = —87 dB re I dyne/ cm 2 

~~ use of the
Mellen formula [141 one can extend this  latter curve upward as desired.

Signal Processing of Muon Noise When the Time of Arrival is Random

We form a conceptual analog: let the uni t  area of the ocean surface be likened to an
anode in a vacuum tube , and let the cosmic particl es incident  on it be likened to electrons ar-
riving randomly. Also let each particle generate the same heat source /i(r , I )  in the water and
hence the same acoustic pressure p(r , t ) .  Assume all effects of a un i t  area of incidence are ad-
dit iv e, taki ng r the same for all. The total effect at t ime t due to all th e particles of a small
enough uni t  area is

p ( r , ‘) = ~~ p ( r , t — 1A )~~

Si nce the individual p occurs at ran dom time the total P is a random functi on of t ime.

Choose an interval Tand let exactly K cosmic particles arrive on the un i t  area in th i s  in-
te rval at random times 1K~ 

Th en the contribution of these K particles to the total t ime history
of acoustic p ressure is called P K,  whe re

A
PK ( I )  = 

~~ 
p ( r , t —

A ~~I

If r is dropped for convenience , th e autocorre lation çb ( r )  of the total acoustic pressure will  be

Il ’ (r ) P ( t )  p ( t  + T )  = ~~ g(K)  J)~ (1) PA- ( l + 7 ~).

i n which g ( K )  is the probability that exactly K muons arrive in the interval  0, T. If one
chooses g ( K)  to be a Poisson distributi on corresponding to shot (or impulse ) noise , then one
can show that

i Ii (r ) = N f  p ( t )  p ( t  + r ) d i  + p ( , ) 2 .

i n which Nis  the average number  of muons arriving per second and P ( i )  is th e average value
of P ( t) .  na mely,

p(’ )  = N f  p ( 1) di.

The ensemble averaged power spectrum ~ ( f)  ca n now be calculated from the standard relation

= 2 f  I J , ( T)  cos 2ir f t  dt

= 2 N 1 s ( f ) I  2 + 2 ~~P~~ f)
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in which

s (J ) f  p( t)  e —2in/i di.

Thus , to find the power spectrum , one must Fouri er transform the impulse acoustic pressure of
one muon to obtain the amplit ude spectrum s (J ’) . Then one must take 2N t imes  the absolute
value squared of s (f )  and finally add to it twice the square of the mean value of the total pres-
sure P (t )  as a “DC” component.

When ~i(j) is available over the frequency range of interest , we can estimate the statisti-
cal behavior of P ( r ) .  A convenient reference is S. 0. Rice (‘Mathem atical Analysis of Random
Noise ,’ in Se/erected Papers on Noise, N. Wax , editor , Dover Publications , 1954) . As a special
case we list the applicabl e formulas for narrowband noise , assuming the total muon noise P ( ,)
will be processed through a narrowband filter to obtain spectral information at (say ) 25 kIlz.

Thus assume the autocorrela tion is of the for m I4 ( r )  = A cos I J r ;  then , if P (t )  an d
are both Gaussian , the expected number of zero crossings per second is

1/2

— 
I/ i (0) 1/2 

— 

f  ~‘2 w (f) df
ZN — 

II,(0) — 2  _f  w1J ) dl,

where

= _4.n.25f 2 w (f) dJ

The probability that the time interval between successive zeros lies between and t + dr is
approximately

dr a
2 [1 + a 2 (r — T t ) 2 ) 312

where

(fb + fa ) 2 
1a- — .,JJ ,. ~. and r~ =

Jb ‘a -‘b .a

in which ~~ —f e is the passband.

Writing P ( i)  — P~ cos w ,,11 — 

~~ 
sin w ,,,t, where w ,,1 = 2ir,/ ,,, is the midfr equency of th e

filter and P~ and P 5 are quadrature components , we tak e P~ and P~ as n ormally distributed wi th
the same standard deviation. The Statistics of the pair P~ and P 1. and of the envelope R ( t )  =

~~ + P~ are the following:

• the probability that the point (P r ,  P 5 ) lies in the elementary rectang le dP 1 dP 1 is

dP~ dP5 +

2inI’(O) 
exp 2 q , (0 )
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• the number of maxima of the envelope R (1) expected in I s is 0.6 (1,, —

• the probability that a maximum selected at random lies between R and R + dR , when
the envelope R > 2.5 ~~/~~~~(OT, is

113 (y 2 _ I ) e~~~
212 dR 

= 
R

• the expected number of maxima per second is

1/2

fJ
4wV) df

MN =

S f 2 wV) dl
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Appendix D
MAGNITUDE OF CONSTANTS USED IN THE

NUMERICAL CALCULATIONS

= 1.4 x 10 ~ °K 1 , coefficient of thermal expansion of water

C,, = 4.18 x ~~ 
joules or - M 2 

,specific heat of water at constant pressure
Ag K sec 2 °K

eI” = I.6 x 10 t 9 j oules = 1 .6 x 10 “
~~~

2 erg, energy

D = 1 .43 x 10 ‘~~ ~~~~~~— = 1. 43 x 10 ~ -
~~~

--- , heat di ffusion constant of water
sec sec

= 1.5 x ~~ —
~~~

—, speed of sound in water
sec

I atmosphere = ~~~~ ~~~~~~ = I0~ 
dyn es

In cm

reference pressure on dB scale:

( 1) dB re 1 dyne/cm 2

(2) dB re 0.0002 dyne/cm 2 subtract 74 dB to convert to dB re I dyne/c m 2

(3) dB re I micropascal , subt ract 100 dB to conver t to dB re 1 dyne/c m 2

I calorie = 4.18 joules = 4.18 x ergs = 2 .6 x 10 19 eV
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