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SECTION I

INTRODUCTION

The concept that spacecraft propulsion can be powered by means
external to the spacecraft has long been an attractive but remote possibility.
The use of solar radiation to provide the energy required is compromised
by the low energy density of the radiation available at Earth orbit, thus

requiring gigantic focussing mirrors which could not be transported

through the atmosphere. Similarly, powering the spacecraft propulsion

system by microwave radiation requires very large ground-based trans -

mitters and correspondingly large receiving antennae on the spacecraft,

with the same attendant difficulties. Such suggestions have generaliy been

relegated to the genre of science fiction.

The advent of the high-power laser forced a re -evaluation of the
externally powered propulsion system. The collimated laser beam virtually
eliminates the requirement for large collectors, and the concept of stack-
ing a number of moderate powered units in parallel allows one to achieve
the power level of 1 GW required for launching from Earth to orbit.

This report covers analysis undertaken at Avco Everett Research
Laboratory, Inc. of the problems associated with the laser propulsion
concept. In Section II the trajectories of laser propelled rockets are
discussed, and it is shown that the most promising application of this
system is to launching rockets directly from Earth to geosynchronous orbit,
A laser providing 109 W would be capable of launching a brennschluss

weight of 1 ton to synchronous orbit. In Section III the concept and




properties of the pulsed laser detonation wave engine are discussed. This
extremely important invention opens up the possibility of using pulsed
lasers, with their attendant advantages in electrical efficiency and atmos -
pheric beam propagation. Its relative insensitivity to beam -thrust angle

is an important benefit, and the potential of using solid or liquid propellant
greatly increases system flexibility. Although not strongly wavelength
dependent, we have discussed the breakdown phenomena of this engine in
the context of the CO, laser, our preferred embodiment. The laser
facility and equipment required is discussed in Section IV, and potentially
interesting CW engines in Section V. In Section VI the propagation of CO,
laser radiation through the atmosphere and the rocket engine plume is
analysed, and it is shown that using phase corrections, a 1GW beam at

A = 10. 6 um is expected to propagate through the atmosphere essentially
undistorted. The CO2 laser is considered here since it is the least expensive
high -power laser. Furthermore the bleaching of the CO2 absorption com -
ponent in the atmosphere is shown to be very significant for the pulsed CO2
laser. Plume absorption in the high-altitude and mid-altitude cases turns
out to be negligible for an HZO plume; in the low altitude case its mag-
nitude depends upon the disputed HZO absorptance at elevated temperatures
for 10. 6 um radiation. In Section VII the economic considerations giving

promise to the laser propulsion concept are outlined.




SECTION I

POTENTIAL PERFORMANCE OF LASER-POWERED LAUNCH VEHICLES

i. BOOST TRAJECTORY ANALYSIS

A laser-powered launch vehicle presents a set of performance
capabilities and constraints which are quite different to those familiar in
chemical booster design. Because a lase.-powered rocket engine (LPRE)
is not limited by the relatively low enthalpies per unit mass of working
fluid which are attainable in combustion, it may be possible to tailor the
specific impulse to the mission under consideration. It may also be pos -
sible to vary the specific impulse during boost: in some engines, this may
require only variation of the mass flow rate, and in some other cases it
may even be possible to vary the specific impulse from the ground, by
control of the output characteristics (pulse repetition frequency and energy
per pulse) of the laser.

On the other hand, boost must be accomplished while the vehicle is
within a range of the laser station which is determined by the laser beam-
spread (due to diffraction and atmospheric effects) and the size of the col-
lecting optics aboard the vehicle. Atmospheric absorption of the laser
beam may also dictate that the boost trajectory be confined within a
specified zenith angle, as seen from the laser station. Vehicle and engine
design considerations may impose restrictions on the angle between the
line of sight from the laser station (i. e., the laser beam) and the vehicle
thrust axis, or on variations in this angle during boost. Finally, because
the launching laser is a capital intensive system (see Section VII) in
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which many of the costs are dependent on the laser output power, there

is a strong motivation to choose both the trajectory and the design param-
eters of the vehicle so as to minimize the power req’uired to meet a given
mission objective with a payload of given mass.

At this early stage in the development of the laser launching system,

the objectives of boost trajectory analysis are:

1) To update classical analyses of the satellite launching
problems by incorporation of the new constraints.

2) To demonstrate the potential mission performance capabilities
of a launching laser, on the assumption that efficient and
economical engines can be developed.

3) To provide inputs to engine design studies, by specification
of the power, mass flow rates, specific inpulse, angles
between the laser beam and the thrust axis, etc., which are
required to meet given mission objectives.

4) To determine the performance penalties associated with
various constraints which may be imposed to simplify engine
design,

5) To supply data needed for decisions concerning competing
approaches to system design and to allow tradeoffs between
capital and operational costs as a function of the launch traffic.

The missions to be discussed in this section are:

a) Vertical ascent to escape velocity. This case, being relatively
simple, provides a good introduction to the power and range-
limited boost problem., As will be seen, this trajectory may

prove useful for some applications.




b) Injection to an escape hyperbola at minimum power.

c) Injection to a transfer ellipse to geosynchronous orbit (GSO).

Other possible missions for laser propulsion systems (e. g.,
launch to low Earth orbit (LEO), orbit-to-orbit transfer, etc. ) and mission -
related issues (e. g., techniques for circularization of a transfer ellipse at
GSO, etc. ) are discussed briefly here and will be considered in more detail
in a future report. Direct ascent to GSO was given priority for study be -
cause (1) this orbital location is essential or highly desirable for many
military and civilian applications, but present transportation costs are
very high ($20, OOO/kgl); and (2) as compared with laser-powered launch
to LEO, the specific impulse required is higher but it may be possible to
maintain collinearity of the laser beam and the thrust axis of the vehicle,
The mission thus lends itself to the design of a simple engine of high
performance, providing suitable goals for laboratory demonstration in
the present phase of engine development.

Since we are here concerned with broad performance objectives
rather than with precision guidance, it is unnecessary as yet to carry out
trajectory calculations in the most painstaking detail. Nevertheless, the
question of trajectory optimization has been addressed for each of the
above cases. Finding the optimal performance subject only to physical
constraints is important not only in terms of the ultimate performance
of the system, but because it provides a reference against which the
costs of engineering constraints may be judged. Furthermore, optimi-
zation reduces the degrees of freedom in the general trajectory problem
and may result in a simpler computation. When engineering constraints

are added (e. g., constant exhaust velocity), trajectory calculations often




involve two -point boundary value problems in which the differential equa-
tions can be integrated only by numerical means, leading to tedious and
not necessarily convergent iterative computations. In such cases, it is
very helpful to have available rough values of some parameters, obtained
from previous analytic optimization calculations.

Unless otherwise indicated, in this section most quantities in the
equations are normalized by using the units listed in Table 1. For future
reference, the values of the units for the moon as well as the Earth are
included in this table. The normalization procedure may in some cases
prevent dimensional checks of the equations, but it avoids cluttering
them with unnecessary symbols and provides an immediate indication of

one relative significance of various terms.
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2. BASIC RELATIONSHIPS

It is assumed that the LPRE exhaust is well matched to ambient
pressure and that relatively little enthalpy is carried away from the
vehicle by the exhaust stream. In this ideal case, the exhaust power is
given by

1 w2
P:-T mec (1)

where ™ is the rate of change of mass of the vehicle (so - m is the
mass flow rate through the engine) and c¢ is the exhaust velocity.

The thrust produced is then
F=ma=- mc=z— (2)

where m is the instantaneous mass of the vehicle and a is the specific
thrust (or "acceleration due to thrust').
The specific exhaust power (i.e., the exhaust power per unit

burnout mass) is given by Eq. (2) as

(3)

where m,, and a, and c, are the vehicle mass, the specific thrust and

the exhaust velocity just before burnout. An alternative expression may

be obtained by eliminating c in Eqs. (1) and (2) which gives

2P s mTa’ (4)
or
d P ) [
Integration gives
T
P 1 R 2
-nTl . 3 -lt-i/ a“dt (6)




where T is the duration of boost and

R = mo/ml (7)
is the mass ratio, with m the initial vehicle mass,
3. RECTILINEAR BOOST IN FREE SPACE
The specific exhaust energy (i.e., the total energy exhausted
during boost, divided by the burnout mass) is given simply by
E/ml = —-M—l- T (8)
In designing a laser launcher, a suitable compromise must be found
between:

a) The power needed to boost a given payload to the desired
mission velocity. In the early stages of buildup of a launch-
ing laser facility, minimizing the specific power will allow
the smallest possible laser to be used to launch a given
payload, and hence will minimize the initial capital costs.

As the facility grows, operation at minimum specific power
maximizes the payload which the laser can launch in a single
throw; this may become particularly important if propagation
effects limit the ultimate laser power which can be trans-
mitted through the atmosphere.

b) The specific impulse required of the engine. In general,
minimizing the exhaust velocity reduces the enthalpy per
unit mass in the thrust chamber and euxhaust stream, which
will normally simplify engine design, especially with respect

to heat transfer problems.
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c) The mass ratio of the vehicle. For probable propellants,
the fuel cost is likely to be a small component of overall
launch costs (cf Section VIII) but it is nonetheless desirable
to minimize the fuel load because this reduces the structural
sophistication and hence the cost of the vehicle itself. When
gravity losses are taken into account, the required mass
ratio is trajectory-dependent and hence is not uniquely fixed
by the choice of exhaust velocity.

d) The energy consumed during boost. The direct energy costs
are expected to be quite significant in high throughput opera-
tions (cf Section VIII). Moreover, the maximum rate at which
mass can be injected into the desired orbit is clearly ml/'r,
so that the maximum throughput of a given laser may be in-
creased by minimizing the quantity of Eq. (8). This perform-
ance criterion will become important only if and when the
traffic builds to a level which taxes the annual capacity of
the launching laser, and it is, therefore, given a lower
priority in most of our present analyses.,

The simplest case which can be considered is rectilinear boost

from rest to a velocity vy in a distance Yy in field-free space, with con-

stant exhaust velocity. The acceleration is then

’ WESE TPERY
v=a = mc- (9)

which gives the rocket equation

m=m ev/c (10)
(o]
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In particular, the mass ratio required for boost is
K mo/ml = e"1/° (11)

For this case, the specific exhaust power is found most readily by direct

integration of the equation of motion, using Eq. (10):
v

v
/ e-v/c vdv:c'2 [l-(1+c—l)e'vl/c]= zP (12)
o

mc 1
[¢)

With Eq. (10), the specific exhaust power is then

3
BT T
™ = ¥ (e”1 -vl/c -vl/c-l)
(13)
1 v31 (R-1nR-1)

¢ ¥y 1n°R

The specific power, normalized by dividing by (1/2 vf /yl), is shown as
a function of the mass ration R in Figure 1. (In the curve labelled
"'negligible tank mass''.)

The burnout mass may be written

m,=m, m (14)

' SR oo -
where m, is the mass of the propellant tanks and m, the mass of payload
plus engines, pumps, and other vehicle structure; these masses are
lumped together for this preliminary analysis because their relative
magnitudes differ markedly for the different types of LPRE to be dis-
cussed in later sections.

For pump-fed engines (i.e., tanks at relatively low pressure),

the tankage mass may be approximated by a semi-empirical formula

& 2/3
m = A m /o (15)
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where pp is the density of the propellant in the tank
is the mass of propellant
At is a numerical factor determined by the tank material

and tank pressure. A typical value for balloon tank is
7 (kg/m3)%/3

The propellant mass is

mp =m°-m1:(R- l)ml

Thus,

2/3
m, =m,/ (1 - A(R - 1)/pp
and, from Eq. (13),

AR (R-1nR- 1)
m, " 2 3 273
o e | RZ[ - AR - l)/pp7 )

The mass ratio dependence of this equation is also shown in

Figure 1, for the propellants listed in Table 2. For the cryogenic

liquids, the value At ~10 (kg/m3)2/3 has been used, to allow for re-

quired insulation.

TABLE 2, CANDIDATE PROPELLANTS

Density in Liquid Phase | Boiling Point
Propellant (kg/m3) (°K)
hydrogen 70 20.7
helium 122 4.6
nitrogen 808 77.4
water 1000 373.0
oxygen 1140 90.2
argon 1402 87.5

17
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While the details of these curves depend on the techniques used for
tank fabrication, it is clearly desirable to use a propellant which has a
high density in the liquid phase. As discussed in Section VIII, the launch
costs for this system are sufficiently low so that construction costs for
the propellant tanks can be significant, and this may require the use of
relatively unsophisticated and heavy materials and designs.

In order to minimize the exhaust power (and hence the laser output
power) which is required for a given mission, it appears that mass ratios
in the range 2.5 to perhaps 7 (depending on the propellant) should be used.
In field-free space, the corresponding exhaust velocities range from
about the mission velocity down to about half that value’,

The energy consumed during boost may be calculated simply from
Eq. (8). For constant exhaust velocity and constant power the mass

flow rate is

- m = 5 = constant (19)
c

from Eq. (1), so the mass of the vehicle at time t is

m:m-——z—t (20)

In particular, the duration of boost is

2 m m
¥l e R P BE 1 T
T i - Wyl w8 Welis g NTY 7 3 (21)

from Eq. (11). Thus, from Eq. (8),

(22)

E 1
-y 1n“R

*‘I’hese figures will require modification when gravity losses
are taken into account, in the following sections,
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The effect of propellant tankage may be taken into account by
replacing m, by m, from Eq. (17), as in the power calculation above,

to obtain

P BT ey B 2/3
™ - > (I-At(R-l)pp ) (23)

2 1n" R

e
m

This expression, normalized by dividing by the kinetic energy
1/2 v2 per unit mass m,, is plotted in Figure 2 for the candidate pro-
pellants of Table 2. Comparison with Figure 1 shows that maximizing
energy efficiency requires generally lower mass ratios than does mini-
mizing power requirements. A good compromise is a mass ratio near 3.

The implications of these results for engine design are considered
in Section III.

4. VERTICAL ASCENT TO ESCAPE

The problem to be considered here is that of vertical, rectilinear
boost from rest at the laser station to escape velocity at an altitude 12}
above the planetary surface. Aerodynamic effects and planetary rotation
are neglected.

Vertical ascent is not the power-optimal trajectory for escape
missions (and certainly not for insertion into lower orbits). It is however,
the only trajectory in which it is possible for both the beam/thrust angle
to be zero and the laser beam stationary. If slewing of the bearn is not
required to avoid atmospheric thermal blooming (cf Section VI), these
characteristics of the vertical trajectory may allow simplifications in
the engine design and in the laser pointing and tracking systems which,
in terms of costs, offset the slightly higher laser power level require-

ments., One long-range application in which these trajectory may be of
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interest is the use of a laser station on the moon to provide power for
routine traffic to and from the laser surface, allowing economical ex-
ploitation of lunar resources when space industrialization is well under
way.

In any case, the vertical trajectory is the simplest case in which
it is possible to take realistic account of gravity losses during ascent.
Some useful conclusions can be drawn and the analysis provides an in~
troduction to the techniques needed in discussing trajectories which may
have broader operational utility.

a. Power-Optimal Vertical Ascent

We first consider how the thrust of the LPRE should be varied so
as to minimize the peak exhaust power required to boost a given payload
m, to escape velocity at an altitude Yy It should be clear that boost
should be at constant power if peak power is to be minimized, and this
condition will be assumed without further discussion (it can, of course,
be demonstrated rigorously).

This problem can be solved by elementary techniques of the
calculus of variations. However, having in mind more complicated
trajectories which will be considered in later sections, optimal vertical

ascent will be set up formally as a problem of Mayer in variational

calculus. For convenience in following the argument, a slightly simpli-
fied general formulation of the problem of Mayer and of the technique
for solution is set forth in Derivation Summary 1.

The equations of motion for vertical ascent and the power condi-

tion (Eq. (4)) are written as first order differential constraints:

z2l




¢l=}.’-v=0 (243)

¢, =Vv-g-a=0 (24b)
mzaz

¢3:Yh+_—2TD—=O (24c¢)

where, in the units of Table 1, the gravitational field is

i R (25)
The initial conditions are
t =0y y = (26)
V=

DERIVATION SUMMARY 1: THE PROBLEM OF MAYER

Consider the class of functions
Zk(t) R e - S e e
satisfying the constraints
¢j(t;zkpz:)=0j=1,-~---;P<n

which allow f = n-p degrees of freedom. Assuming that these functions

must be consistent with the initial conditions*

wr(o,Zk)=o o R (27)
and the terminal conditions

wr('r, Zk1)=0 reqgd b, v v, 852042 (28)

find that special set which minimizes the pay-off function

§ = [G(c. zk)] : (29)

*The subscripts 0 and 1 refer to initial and
terminal points, respectively,
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To solve this problem introduce a set of variable Lagrange multipliers

Xj(t) and form the augmented function

P
F=l X iids (30)
j=1

The extremal arc {(i.e., the curve in Zk -space which gives an

extremal value to y) must satisfy, not only the constraints (28), but also

the Euler- Lagrange equations

d_OF
dt " 97

oF
BZk

): k:l, ..... el {31)

Equations (28) and (31) constitute n+ p equations, allowing (in principle)
the simultaneous determination of the n dependent variables Zk and the
p Lagrange multipliers )LJ..

If the augmented function F is formally independent of t, a first

integral of the Euler-Lagrange equations is available

= )
C = Z . Zk = constant (32)
k=1 97,

The system of Egs. (28) and (31) are subjected to 2n + 2 boundary
conditions, of which s are supplied by Eqs. (27) and (28) and 2n+ 2 - s

by the transversality condition, which (for F formally independent of t)

reads 1

= B
dG - Cdt + Yy - dz, = 0 (33)
k=1 8Zp 0 |

This condition at the initial and terminal points is to be satisfied
identically for all infinitesimal displacements which are consistent with

Eqs. (27) and (28).
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It sometimes happens that the solution to this variational problem
involves points along the extremal arc (called corners) where some of
the ?k exhibit jump discontinuities. In such cases, the extremal arc
may be pieced together from the segments between corners (called subarcs)

by making use of the Erdman-Weierstrass corner conditions, wh'ich state

that the first integral C should have a constant value throughout the ex-

tremal arc and that

—_— ) e S R ! (34)

should be continuous across each corner.

The escape velocity at the specified burnout altitude Y, (see

Appendix A) gives the terminal conditions

(35)

The variational problem may now be formally stated as follows:
Among t the four functions y(t), v(t), a(t) and m(t) which are consistant
with the three constraints (24) and with the boundary conditions (26) and

(35), find the set which minimizes

AG=G, - G (36)
o
where :
G=P/M (37)
80
P P P R -1
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For a given mass ration, minimizing G is thus equivalent to mini-

mizing the specific exhaust power. Comparison with (6) shows that

T
AG = + f alat (39)
o
We introduce Lagrange multipliers A 1’ A 2 A 3 and set up the
augmented function

22

S . LT ., 1 ma
F—ll(y-V)+7t2(v-g-a)+ 7x3(m+2 p> (40)

and derive, according to (31), the Euler- Lagrange equations

oS (412)
7"2 = =) (41b)
3 . mza
Ay = 4, S (41c)
mza
0 = -k, + A, = (41d)

Since (40) is formally independent of time, a first integral of these

equations is given by the formula (39):

2.2
. 1 m a
C=x,v+A,v - 7 A3 $— = constant (42)
The transversality condition (33) reads
1
[.-P-’Z—dm-Cdt+xdy+xdv+xdm] 50 (43)
m 1 2 3
o

Since y and v at the initial and terminal points are fixed, this

reduces to

1
[(13 g —52-) dm s cac] o (44)
m
Ty
25




which implies
C=0

P

3 2
m

at t=7T and t = o

Using Eq. (24c) in Eq. (41c) gives

with this result, (41d) gives

and (41b) and (41a) then gives

5-5(2:-5& =X

1 2

The first integral (42) now yields
&% : o L .
Ve-av = =

At t = o, for v =o0, gives

0:—;—3

o o

and the equation of motion (24b) reads

[}
o

1
B o Tk B

or

-
n
]
N

o

1]

o~
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dy _ ,dg
dy

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)




The vehicle thus departs with an initial upward acceleration Y,
which is equal in magnitude to the local acceleration of gravity.

Equation (51) may be integrated again, by writing it in the form

1 & : d v 1
:2- (av- av) = T (?) - —2— (54)

with solution, meeting the initial condition Vo =0,

¢ = —=— at (55)

v - —iY- . (56)
or
e D SR
dt (tz = tZ (57)

Numerical integration of this equation is inconvenient, because
(as may be seen from (53) and (55) ) v/t2 is infinite at the origin. We,

therefore, introduce a new variable q in place of a, by the relation
a= 2(1+ qt) (58)
which automatically gives the correct initiated value (53). Equation (55)

then becomes

9=v=l2-at=t+qt2 (59)

and the equation of motion yields

1 + 2qt c',tz-z-th

Vea =
: Qtz g (60)
The equations to be integrated are now
q=(14+ ;;)/t2 (61a)
y= t+ qt? (61b)
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with the initial conditions y = y = 0o at t = 0. The initial value chosen
for q will set the altitude at which escape velocity is reached.

1) Constant Gravitational Field

If the gravitational field may be taken as constant

gag =1 (62)

y=t qt (63)

with solution

At the burnout time 7, we require, from (35) and (63)

2 2
RS e (65)

so that

q. = (vl - ‘r)/‘rZ (66)

o

substituting this in (64) gives

.2 1 2 .
v A S 3TVL1+:yl‘V1‘° (6

which may be solved to give the duration of boost as a function of the
range at burnout."
The specific exhaust power is given for this case by (6) and (58)

as
T

P R 2
-&_"TT{-_I_/ adt

o




T
2R 2
= 1 t
= w3 f ( +qo) dt
o
2 R 1 3 ]
T3 e} q, [“J'qOT) :
(68)
3 ke (1))
3 R-1 v,-1 T/
3 3
BE gt Dl T L S
on SERESETE oy i R
2 R 1 2 2
=9 N Tyt
The results are shown in Figure 3, for R = 3.
2) Linear g
As a next approximation, we retain the linear term in a Taylor
expansion of the gravitational field (25)about the origin
g=-~14+2y+ ... (69)
This case may also be handled without numerical integration.
The Eq. (50) for the optimum specific thrust program reads
id-22=0 (70)
with the solution, satisfying the initial condition (53),
a=2cos hnNZt+ B sinh \2¢ (71)
where b is a constant, to be determined. The equation of motion may
now be written
y = g+ a
=14 2y + 2 cos h N2t+ B sin h 2t
or (72)

Yy=2y = =14 2cos h A2t + B sin h 2t

with the solution, meeting the initial conditions
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Figure 3  Power Required for Optimal Vertical Ascent to Escape
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y = 5 (1-coshw2t) +712- t sin N2t - — B(sinh\2t - cos hA2t)  (73)

The velocity is given by (55) or by differentiation of (2.71) as

y=tcosh N2t + —Btsinh 2t (74)

Eliminating B from these equations at t = 7 gives

1 1 1
¥, = 5 (1 - cos h’\/ZT)+;‘/_2—Tsinh\[2‘r-'}_‘

(sin h N2T-N27 cos hN27T) (vy- 7 cos hN27T

T sinh N27T
——— [sinh NZT - 2T -v, (L sinha?
- si T = T = -  S1n T
e e L Ea
(75)
-N2 cosh N27)]
where vy = EZ}':: . This equation may be solved numerically to give
1
the boost duration as a function of the range at burnout. We also have
2(v, - T cos hn27)
_ B = (76).
g T sinhAR7T
The specific exhaust power is now obtained from (71)
T T
R S TR T . . 2
P/ml = R_lfadt = ZR_lf[4cosh N2t
o o
+ 2B sin h 2 N27 + B® sin h% A27) at
(77)

?:/_2' -ﬁ-—f‘—l- [sin h 2427 + 227 4B (cos h 2427 - 1)

+ & B% (sinh 227 - 2427)]
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The results of this calculation are also plotted in Figure 3, for R =3,

3) Inverse - Square g

Finally Eq. (61) may be integrated numerically, using the
expressions (25) for g. The range at burnout and the boost duration
correspondipg to a chosen initial value of q may thus be calculated. The
corresponding specific exhuast power is found by numerical integration

from (6):

T T
e S WG 2
P/m, = 5 mo jadt_R_l f(l+qt) dt (78)
o (o]

The results are shown in Figure 4, for R =3. As one would ex-
pect, the linear-g model is a more accurate approximation than the
constant-g model and will be used most frequently in the calculations
which follow.

For launch from the Earth, it is not expected that ranges at burn-
out in excess of about 0,25 radii (~1600 km) will be practical, because
of laser beamspread due to diffraction and atmospheric effects. For the
baseline vehicle, with a payload of about one ton, a burnout range of
1000 km (~ 153 radii) has in fact generally been used in studies to date.
For launch from the moon, however, boost out to ranges in excess of
0.5 radii (~ 870 km) is optically possible, although other limitations
may be encountered (see Sec. II.4.b.)

Multiplying the value of specific exhaust power obtained from
Figure 3 by the appropriate value of 55¥co from Table 1 will give the
power requirements in megawatts per ton of payload. The laser output
power will then be obtained by taking into account the efficiency of the

engine and the transmission loasses to the vehicle,
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The total exhaust energy expended during boost, per unit payload,
may be calculated simply as the product of the specific exhaust power

and the boost duration. As listed in Table 1, the unit of energy used

here is equal to the surface escape energy (per unit mass) and hence the
curve in Figure 4 may be regarded as giving a direct measure of the
energy efficiency of the boost process. For a mass ratio of three, the

energy expended during power-optimal boost is at least twice the final

kinetic energy of the payload.

From Eq. (2)
' R
™= 7 ac (79)
so that Eq. (5) may be written
d 2
F 3 (ac) = a (80)

with the solution

T
1 2
C(t) - [aoco+ f a dt]
(o]
(81}
T
112 » 2
a [R m, + f > dt]
o

from Eq. (79). Using the expression (58) and the differential Eq. (61),

the exhaust velocity program required to give a power-optimal thrust
history may now be calculated (analytically only in the instant - g and
linear - g approximations).

Using Eq. (53), the initial exhaust velocity is found from Eq. (79)

to be simply

g (2 N PR P
o a m_~ Rlgl m
1
o o o (82)
. 1 P
ngol m,

so that, for constant mass ratio R, its dependence on the burnout range

is similar to that for the normalized exhaust power, shown in Figure 4.
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When the calculation represented by Eq. (81) is carried out, it is found
that, during boost to short burnout ranges, the required exhaust velocity
starts at a high value, decreases to a minimum, and then rises to a final
value which is less than that at lift-off. As the burnout range is increased,
the initial exhaust velocity decreases, the final exhaust velocity increases,
and the minimum shifts to an earlier time in the boost, until eventually the
exhaust velocity becomes a monotonic increasing function of time, This
behavior is summarized in Figure 5 which shows (in linear-g approxima-
tion) the initial, final and minimum exhaust velocities as functions of the
range at burnout. The cross-hatched area gives the range of exhaust ve-
locities of which the engine must be capable, in order to allow power-
optimal vertical ascent to escape, with a mass ratio of 3. It appears that
both the maximum required exhaust velocity and the variability in the ex-
haust velocity may be minimized by choosing a burnout range of about 0. 22
planetary radii (for the Earth, e, 1400 km).

The principal disadvantages of power-optimal vertical ascent are
(i) the relatively high and variable exhaust velocity which is required;
and (ii) the energy inefficiency of the process, as shown in Figure 4. As
will be shown, the power (and hence capital cost) savings from power
optimal vertical ascent, as compared to operation at constant exhaust
velocity, are insufficient to offset these disadvantages.

b. Vertical Ascent to Escape at Constant Exhaust Velocity

With ¢ constant, Eq. (2) gives

ma=ma : -=mc = 2P = constant (83)
o o c

35




NORMALIZED EXHAUST VELOCITY

/ ks i3 o = T
/)
\
/ INITIAL .
EXHAUST
VELOCITY
2
otV
3
7/7//
MU"“ \TY
EXH p&‘%\ VELOC /
U,

— -

L A | 1 2l
| 2 .3 49 5 .6

RANGE AT BURNOUT (PLANETARY RADIi)

H2536

Figure 5 Exhaust Velocities for Optimal Vertical Ascent

36




R 5

so
L= it
m = m a /c = constant (84)
and
m= m + mt
o
(85)
= mg (1 - t/7,)
where 3
Ty = -mo/m = c/ao (86)
Then Eq. (83) gives
m a a

o O o

as= m = va (87)

The thrust program is thus determined by a and T OF, equiva-
lently, by choice of the exhaust velocity and the lift- off acceleration.

The mass ratio is found from Eq. (85) at burnout (t = 7) to be

rl'lo 1 al
R: ;}]_ = l = T T - 3— (88)
1 o o

The boost duration is thus determined if R and T, are specified.

The specific exhaust power is found most simply from Eq. (83) at

t=7T as
B S
1 b 1
(89)
1
= —Z- R a TO
from Eqgs. (86) and (88)

The problem is to choose the parameters ao and To so that (i)
escape velocity is reached at a specified burnout range Yy and (ii) the
mass ratio has a specified value. This, of course, requires integration
of the equations of motion, which are

§ =g a
1 a (90)

(o)
Ty> T-t/r,
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Once again, we consider three approximations to the gravitation
field:

1) Constant Gravitational Field

The equation of motion is now
¥ = =1+ ao/(l - t/To) (91)

which, with the initial conditions y = y = o at t =0, integrates immediately
to give

y = -t - aoToln(l - t/To (92)

and integrates again to give

"

y - %tz + aoroz [(l - t/To) (In (1 - t/‘ro) - 1)+ 1]

(93)
=224 a72 f(1-¢/r)ma-¢/7)4+ t/7
2 o'o o o o
At t = 7, these become, using Eq. (85;
13
v, =T, [aolnR-l+—R—J (94)
il Ve EW U8 2]
Y, = 7T, [_g (R-1aR-1)- = (=) (95)
R
Eliminating a, betwen these equations gives
e r 2 R=l) [R-lnR-l 3 N
0% R 1nR k= 3
{(96)
(R-1nR-1
r 'y " Rink

With the escape velocity vy given as a function of the burnout
altitude Yy» this quadratic equation may be solved for Ter Equation (94)
then gives a  and Eq. (89) the specific exhaust power. The results are

shown in Figure 6,
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As the burnout range increases, the initial acceleration decreases,
The curve shown terminates when a = 1 (lift-off limit).

2) Linear and Inverse-Square Gravitational Field

In the linear-g case, the equation of motion becomes

¥-2y = -1+a/(-t/7) ' (97)
While this equation may readily be reduced to quandratures, the
N2t
particular integral contains exponential integrals, of the form T dt,

which cannot be expressed in terms of elementary functions. Since
numerical integration of the eugation of motion is required in any case

in the inverse-square case, it is simpler to write it as
V=g+a/0l-t/r) (98)
and, in the Runge-Kutta integration proéedure, merely put

-1 & 2w (99a)

o
n

or

e ey (99b)

(1+ y)?
to cover the two cases,

In order to meet the desired terminal conditions (achievement of
escape velocity at a specified range and mass ratio), an iterative proce-
dure is required in order to correct assumed values of ag and s in the
integration of Eq. (98). The constant - g analysis, above, can, however,
provide good approximate starting values for these parameters,

For the purpose of plotting the specific exhaust power as a func-
tion of burnout range, the problem may be simplified by choosing values

of Ty 2 priori, on the basis of the constant - g calculation, since it is
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not necessary to specify in advance the exact burnout ranges at which
the data points are obtained. The problem then reduces to choosing the
appropriate value of a_.

Once L is chosen the Runge-Kutta integration may be carried

out to a fixed time

T:To( R ) (100)

from Eq. (88), using an assumed a_. In general, the calculated velocity
at this time will not be euqal to the escape velocity at the calculated
altitude,

In order to find a correction for a_, it is sufficient to use the con-
stant - g analysis, According to Eqs. (94) and (95), the effect of a change

Aao in a_on the terminal velocity and altitude is

A.v1 =T, 1n R Aao (101a)
Ay, = 12 R In R ”Aao (101b)

At the end of the integration, the error in the calculated velocity is

2
< A 102

where v and y, are the calculated values. If we change a_, the change in

E will be,

g 1 1
Ae = Av, + 7 T+y173/2 Ay,

(103)
Z(R-lnR-UAa]
(o]

1 1
[Tolh R N7 m3/z To R
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In order to reduce € to zero, we, therefore, choose
'y 2 1 1 2 (R-1nR-1)
Aa_ = (JI——J(—TT vl)/[‘roln 8 =% 1ry Y1’3/2 T, = (104)

The results of the calculations are also shown in Figure 6, the curves

again terminating when s = 1. It is interesting to observe that, in order

to have a positive acceleration at lift-off, the maximum burnout range which
can be used is about 0.45 planetary radii (obtained from the inverse-square
calculation). To use longer ranges, if that were desired, it would be neces-
sary to change the exhaust velocity in the early stages of boost, or perhaps

to use a small chemical rocket to get the stage moving.

Figure 7 shows a comparison of the power curves calculated for
optimal and constant-c vertical ascent to escape, using the accurate (in-
verse square) expression for the gravitational field. The important result
which has been obtained is that the power savings effected by the power-
optimal thrust program are quite negligible, at least for this mission.

It is much more important to maximize the range at burnout than to use
the power-optimal ascent profile.

The curves given can of course be converted from the normalized
units to conventional units by multiplying the abscissa by to, the planetary
radius, and the ordinate by 8oVeo' Figure 8 shows the power requirements
for vertical ascent to escape (with R = 3) as a function of the range at
burnout for the Earth, Mars and the Moon, the curves terminating at the
lift-off limits. It is interesting to obeerve that a launching laser for use
on the Moon, with a vehicle of constant exhaust velocity, can yse a range

of only up to about 750 km. At this range, the power requirements are only
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about 10 MW/ton, two orders of magnitude less than for launch from the
Earth with a similar burnout range,

The exhaust velocities required to achieve the performance of
Figure 9 may, of course, be calculated from < and a_. The results are
shown in Figure 9. The values obtained are always considerably less (by
20% or more) than the peak exhaust velocities required for optimal ascent,
as shown in Figure 5., Nevertheless, for the Earth, vertical ascent to
escape, with a mass ratio of 3, requires that the engine delivers a specific

impulse in the range 1000 ~1300 sec.
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5. POWER-OPTIMAL ASCENT TRAJECTORIES

This section presents an investigation of the problem of range-
limited, laser-powered boost from a launch site on the planetary surface,
so as to achieve desired orbit injection conditions while minimizing exhaust
power (and hence laser power requirements). The assumptions on which
the analysis is based are as follows:

1) The launch site is immediately adjacent to the launching laser.

2) At boost initiation, the launch vehicle has zero velocity.

3) The ascent trajectory lies in a vertical plane through the laser

station.
4) Because of laser propagation limitations, the boost trajectory

must be contained within zenith angles I ©, and range Py from

1
the laser station. Within this fan-shaped area, attenuation of
the laser beam by absorption, beamspread, etc., may be neg-
lected.
The present analysis is limited to cases in which the mission objectives
are such that it is not necessary to specify in advance the flight path angle at

burnout. In particular, the following missions are considered in detail:

Mission A: Injection to an Escape Parabola

The velocity required at burnout for escape is given (in the units of

Table 1) by (see Appendix A)

£t
Vi = > (105)

where r, is the geocentric radius at burnout, given in turn by

2 2
r, =1+p, +2p cos 6, (106)
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Any flight path angle at burnout (at least in the range - <y < z

£

2 2
is acceptable for this mission. The optimization procedure will select that
value of Y, for which the required specific exhaust power is minimized.

Mission B: Injection to a Transfer Ellipse to Geosynchronous Orbit

For this preliminary analysis, it is assumed for simplicity that the
launch site is equatorial. Furthermore, the chosen transfer ellipse is con-
tangential with GSO at apogee - this is the simplest, but not necessarily the
optimal transfer orbit. As shown in the Appendix, the required injection
velocity is given by

2
, OO, 1 ! -
v,© = 2(—--1_1 - —ra)/[l - (——ra) sin®(y, - 6,)] (107)

where
r, = 6.625 is the radius of GSO

6

1 is the geocentric angle traversed during boost, given by tan 61 =

py sin ©,/(1 +p, cos ep) (108)
For the ranges at burnout considered here, the velocity given by
Eq. (107) varies by only about 1.5% as Y, is varied through all possible
values. As Y, is not specified a priori, it is sufficient to start with the
approximation
2

1
Vl =] 2(-r— -

4. (109)

1 Ta

A trajectory calculated on this basis will yield a value of Yqp» which
can then be used to correct Vl.
Notice that Mission B reduces to Mission A if we put r, = «.

The optimization procedure will select that transfer ellipse for

which the required exhaust power during boost is a minimum. In practice,
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it may be necessary to impose additional constraints on the transfer tra-
Jectory - for example, it may be required that the transfer ellipse have
an exoatmospheric perigee, to avoid impacting the Earth if in the event of
a failure to circularize the orbit at geosynchronous altitude. Such con-
~straints will generally lead to specification in advance of the flight path
angle at burnout.

Another example of a mission in which the flight path angle is
specified is, of course, injection to circular orbit at the burnout altitude.

These and other possible missions for laser propulsion systems are
discussed briefly, and will be considered in detail in a later report.

It should also be noted that the optimization procedure for Mission B
which is presented here minimizes the exhaust power per unit mass at burn-
out. Whether or not this minimizes the laser power required to inject a
given payload into geosynchronous orbit depends on the technique used to
circularize the transfer ellipse at apogee. If a chemical kick stage is used
for this purpose, the mass ratio for circularization depends strongly on the
velocity at apogee, which is given by (see Appendix)

2r

IR LS W 1
T 1 (r_ +r) (110)
P a

where rp is the perigee of the transfer ellipse. The problem of minimizing
the laser poer per unit payload in this case is also beyond the scope of the
present analysis. Other technique for circularization will, however, be
briefly considered below.

a. The Optimization Problem

The problem under consideration may be stated as follows: Given

the desired range Py and zenith angle 6, at burnout, together with the

49




injection conditions listed above for specific missions, find the thrust vector
control low (and hence the ascent trajectory) which minimizes the (constant)
exhaust power required for a specified burnout mass m, and boost mass
ratio R.

As in Section II.4.a, the calculation may be set up as a problem of
Mayer in variational calculus. Choosing the Cartesian coordinate system
shown in Figure 10, with origin at the laser station, the X, -axis vertical
and the Xy -axis in the trajectory plane, the equations of motion are first

written as first-order differential constraints:

gy =¥y =Wy 70O (111a)
¢, =V, - X, =0 (111b)
6, =V, -8 -a, =0 (111c)
by =V, -8y -3, =0 (1114)

where
g,» 8, are the components of gravitation
a;, a,

In addition, we have the power condition (4):

are the specified thrust components.

2.2 2

¢ = m’a® 2mp = m%(a az?‘) 2rP = 0 (111e)

In all cases, the initial conditions are
x1=x2=vl=v2=0at‘r=0 (112)
The final conditions depend on the specific mission, If only the burn-

out velocity A/T (and not the flight path angle) is specified, as in Miscions A

and B, then we have
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v, = AT~ (113)

at t = T, the boost duration. Variations in the velocity components at burn-

out are allowed but, by Eq. (113), they must be related by

vldv1 vzdv2 = 0 (t = 7) (114a, b)

Since the range and zenith angle at burnout are specified, we also have, in

all cases

d = d =0 (t =17) (115)

The variational problem may now be stated formally as follows:
Amongst the seven functions xl(t), xz(t), vllt), vz(t), al(t), m(t) which
are consistent with the five constraints (111) and the boundary conditions,

find the set which minimizes the payoff function

AG = c;f -G (116)
(o]
where
G = P/m (117)
SO
_ R -1
AG = P/m, (—g—) (118)

As in Section III. 3.a, we introduce variable Lagrange multipliers
)tl (i=1, 2, 3, 4, 5) and form the augmented function
TRy s Rt gy ¢ Rt AT c ey
5 g o (119)
A4(v2 o az) As(m (al a, ) 2mP)
The Euler-Lagrange equations of the problem are obtained of the

problem are obtained by applying the formula (31), to obtain
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AT A8y 1 N8
Ny A8 2 N8
Ay = A
E 5 % A
2 2
0= a A3 Zalm 15
* 2
Qi==s l4 Zazm AS
AT 2 2 e 2
ZP)\5 = Zm(a.1 a, )).5 = Z2ma )\5
where 9
g1
81 2 =3 , etc
’ xZ

(120a)

(120b)

(120c)

(1204)

(120e)

(120f)

(120g)

Since Eq. (119) is formally independent of time, a first integral of

these equations is given by the formual (32):

3 2.2
Gm Ky ¥y = Agis Ra¥e MgV = ARL S

The transversality condition (33) gives, with Eq. (117).

2
m
F
ZP)\5 dm =10
o
In all cases, this yields
C =0
A = - —— (t = 1)
5 2
2m
53

P
— dm - Cdt - Ald.x1 - Azdx2 /\3dvl )(‘}dv2

(121)

(122)

(123)

(124)




For missions where the burnout flight path angle is unspecified,

Eq. (114a, b) gives an additional boundary condition from Eq. (122):

)\3v2 - 7\4vl =0 (t=17) (125a, b)

Using Eq. (1113), Eq. (120g) may be written
mXg + 2, = 0 (126)

with solution, meeting the boundary condition (2. 120),
A, = ——— (127)

Then Eqs. (120e) and (120f) give

A3 = a, (128a)

A4

a (128b)

2
This result allows Eqs. (120e) thru (120d) to be consolidated in
tensor rotation as

8. = g,,.a, (129)

where the suffixes take on the values 1, 2 and repeated suffixes are summed.
If the gravity gradients gj , i may be neglected (i.e., in constant-g

approximation), the solution to Eq. (129) is

a, = Aoi + Alit (130)

where Aoi ; Ali are constants. The angle between the thrust vector and the

laser-station vertical is then given by

Aol + Al lt

tan y = a,/a, = 5————a="r (131)
il Aoz + Alzt
which is the well-known optimal thrust-steering law of Lawden.
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In the general case, we have now found expressions for all of the Ai
in terms of the variables of the problem. They are collected here for
future reference, followed in parentheses by the equation numbers where

these results were obtained:

2y = & (120c), (128a) (132a)
Xg = iy (120d), (128b) (132b)
A3 =a, (128a) (132¢)
Ag = 3, (128b) (132d)
Ag = ;‘;3 (129) (132e)

With Eq. (123), the first integral (121) may now be written

v+ao-av-%a2=o (133)

B Wl S TR Y

11 1
It will sometimes be useful to write this in vector notation, as

%a‘Z:i'i'i'X (133a)

The equations of motion (111c) and (111d) are, in this notation,

v=g+a (134)

Substituting this in Eq. (133a) yields

1 2 ;
Ea .‘.i.ﬂ-&-vzo (135)

At lift-off, when y = 0, this yields the important result

a® = ./a g (t = 0) (136)
or

& = a|g°|cos ¢o (137)




where Yo is the initial thrust angle. In other words, the initial specific
thrust is equal in magnitude to twice the component of gravitation along
the initial thrust direction.

Since a.2 = 8 2 azz, the first integral (133) may also be written

1

v

2 d V1 1 3 Rty -
a, (a(a—l')-'z) a, (3{(;;)--2')—0 (138)

Sufficient (but not clearly necessary) conditions for the validity of

the first integral are thus

s TS )
I (;1-) - (139a)
C R AR
b (;—) 2 (139b)
2
with the solutions

ik

vl = (2 t + cl) al (140a)
- ;

v, = (z t + cz) a, (140b)

where <y <, are constants.
The boundary condition (125a, b) which is specific to the present
case, in which the flight path angle at burnout is not constrained a priori

may be written

a v, = a,v, (t = 7) (141a, b)

Note that this states that the thrust vector is parallel to the velocity
vector - i.e., tangential to the trajectory - just before burnout. Inserting

Eq. (140) in Eq. (141) gives
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1 e |
(f T + CZ)ala’Z = (2 T + cl)ala..2
or

¢, =¢, (142)

so that Eq. (140) becomes

v=Gt+e)a (143)

At lift-off (t = 0), v =0, so

c.a._ =0 (144)

Comparison with Eq. (137) shows that (unless the initial thrust vector

is horizontal), ¢y = 0. We thus obtain the optimal specific thrust program

a =

"’IN

v (145)

so that the thrust is tangential to the trajectory throughout boost, not just
at burnout. The trajectory is thus flown at zero angle of attack. This re-
sult may be compared to the law (55) found for optimal vertical ascent.
The equation of motion (134) may now be written
£ vatt &l oy
roryr=tglzy g (145

Near lift-off, where g o+ this equation may be solved explicitly:

v=-gttat (147)

where q, is a constant vector. From Eq. (145), the thrust program is then

- Zgo + Zgot (148)

In particular at lift-off,
a = = ZEO (149)




so that the lift-off is vertical, with an initial net upward acceleration of
1 g. Note that this is a special case of Eq. (137).

According to Eq. (145), the optimal thrust is always parallel to the
vehicle velocity. Since the lift-off is vertical, this may seem to imply that
no thrust can develop in the Xy - direction, but it is clear from Eq. (148)
that this is not true if g  has an X, - component.

The optimal trajectory problem is now readily solved in the constant-g

approximation - i.e., if we write
g . = (150)

At burnout, the vehicle velocity is given by

Vi = v

2 2
)i 1

AT 2.2
+ v, ® qOIT + {7 qozT ) (151)

from Eq. (147). Integration of Eq. (147) gives

R | o N
€ =-38,T *+34q.t (152)
or, at burnout,
p, sin © =%q, T (153a)
p, cos el =%~ & +%}-q02'r3 (153b)

Given the required burnout position and the magnitude of the required
burnout velocity, Eqs. (151) and (153) may be solved to yield the boost dura-
tion 7 and the components 9, and 92 of 9 The required specific exhaust
power may then be found from Eq. (6), with a.z obtained from Eq. (148).

Instead of carrying through their calculation, we turn to the liner-
gravity approximation, which, in the vertical ascent case, was found to give

appreciably more accurate results.

58




b. The Linear-Gravity Approximation

The gravitational field may be expanded in a vector Taylor series

about the origin:

g < g + gi-jxj L R (154)

where gio is given by Eq. (150) and g? j is the gravity-gradient tensor,

evaluated at the origin. In general, the gravitational field may also be writ-

ten
g = - (D2 (155)
where
v 3 X3
1 + X2

is the geocentric position vector. Since it is clear from this that dr, = d

X4

the gravity-gradient tensor may be calculated as follows, from Eq. (155):

2r2
2r.
)

) 2,-3/2 3, .2.45/2
gi'j-'(r) Gij+2(r) ri

» - RS R =
2 =% 8, % 5T T T (rkrk)
(157)

)

H
'
e ]
+
w
e ]
-
e

jk
3 -2
= -r [Gij - 3r rirj]

where Oij is the two-dimensional kronecker delta, Evaluating this expres-

sion at the origin (Xy = Xz = 0)) we find the simple form
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i, j (158)

g =X, " i AT S (159a)
£, = -1 224 L (159b)
The equations of motion (2. 142) may now be written
Xy - £ Xtk =0 (160a)
1 t 1 1
I RS (160b)
2 t T2 2

Instead of attempting to solve this pair of differential equations with
time -varying coefficients, it proves simpler in this case to return to the
fundamental Eq. (129) for the optimal thrust program. In the linear approxi-
mation, the gravity gradients are constants, given by Eq. (158), so Eq. (129)

becomes

a,l +:=1.l =0 (161a)

5 - 2a, =0 (161b)

a

The solutions of these equations, meeting the initial condition (149)
for a, are

a, E--Bll sin t (162a)

a, = 2cosh NZt +_l'~f2'321 sinh NTt (162b)

This expression for a could now be used in the equations of motion
in the form (134), using (159) for g. However, having already carried out a

general first integration of the equations of motion, we may instead use (145),
which now gives
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Suk - :
X, = v, =3ta =, B11 t sint (163a)

1 -
X, = v, -Ztaz—tcoshﬂtz—ﬁBZIt sin h A2 t (163b)
so that
T
X ; o i :
X, =3 Bllft sin t dt =3 Bll(smt t cos t) (164a)
o

T

-
1 )
x2=ftcos NZ tdt +-{-—ﬁB21ftsxththt
[o}

[e]

=—;—[~[2'tsinh NZt-cosh N2t + 1] (164b)

+4_:[—7_BZI [ﬂtcosh\/'zt-ﬂinh '\/Tt]

In the linear-g approximation, Eqs. (163) replace Eq. (147), and
Eqs. (164) replace Eq. (152) of the constant -g case.

At burnout, Eq. (164) gives
le
Bll “SinT - Tcos T {16%)

ZV'Zsz -1cosh NZ7T - N27sinh N2 7T

B21 = (166)
NZT cosh 27 - sinh N2 7T

and the burnout components of velocity Eqs. (163) are then, after some alge-

braic reduction,

xlT
vl(T) al T cos T (167a)
T (2x, - 1) sinh 727 NZ T
vz(‘r) = (167b)
NZTcosh NZ - sinh A2
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Squaring and adding these equations gives the magnitude of the burn-
out velocity as
: x,° (2%, - 1) sinh NZT NZ D}

(1 - T cot ‘r)2 (NZ2Tcosh NJ27 - sinh N2 7)

Ve w (168)

1 2

Given the burnout position (xl, xz) and the mission velocity (105), (107) or
(109), this equation may be solved numerically for the boost duration 7.

The flight path angle at burnout may also be found in this calculation from

the ratio of (167a) to (167b) and used to correct (107) and (109), if required.
The specific exhaust power may then be calculated from Eq. (6) and Eq. (162)

as

P/m1 = o o a” dt

) o e e B : 2
='§R-l[[Bll sin t(\fZ Blemh »J'Zthosh\l'Z't)]dt

(169)
1 2

Mg T & : ey L
= R-I[B Bll(ZT-BInZT)ZﬂHBBZI)

4 1 1w
sthrJ'Z'T+4B21 (cos h2a2T-1) + (1 -8B21)T]

With the constants B 321 given by Eq. (171).

i 5
The calculation leading to Eq. (81) is valid in this case also: the
exhaust velocity program required to give the optimal thrust history is given

by

Y
L3 2 2
c(t) = T R ml +fa dt (170)
where now a is obtained from Eqs, (162). The thrust vector steering law is
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o |

tan y = %
2
B“smt

B - (171)
2 cos h JZT+EB21 sinh NZ ¢t

il

tan y

c. Power-Optimal Boost Trajectories for High Orbit or Escape

Using the mission velocities (2.103A) and (2. 103B), the theory pres-
ented in the previous Section was first used to compute the specific exhaust
power during power-optimal boost, in the linear-gravity approximation, as
a function of the burnout zenith angle, for a boost mass ratio R = 3 and for
several burnout ranges. The results are shown in Figure 11 for ascent to
an escape parabola and in Figure 12 for injection to a transfer ellipse to
geosynchronous orbit. To facilitate comparison with previous results and
(in the case of escape missions*) to allow application to extraterrestrial
bodies, the data are given in the normalized units of Table 1. Data in con-
ventional units is given later.

For both missions, the optimal exhaust power per unit burnout mass
is almost independent of the burnout zenith angle. For launch to GSO, how-
ever, the mass at burnout is that injected to the transfer ellipse: a '"kick
in the apogee'' is required to circularize the orbit at synchronous altitude.

It is shown in Appendix A that the AV for circularization is given by

r
i  Fog
AVk e Vc - V1 (—ra) sin (Yl - 6) (172)

where V. = r, -1/2 is the geosynchronous circular velocity.

* The radius r, of synchronous orbit of a planet obviously depends on its
rotation rate and hence is specific to a planet, even when measured in
normalized units. The data given here thus apply to synchronous orbit
about the Earth only. iy
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It may be possible to use a small laser in GSO (or perhaps a relay
mirror in GSO, re-directing radiation from the ground based laser) to power
kick-stage of high specific impulse, so that little penalty in vehicle mass is
incurred by the circularization maneuver. At least is the early stages of
the utilization of laser propulsion for launch to GSO, it is, however, expected
that a chemical (probably solid) kick-stage will be used for circularization.

If its exhaust velocity is ¢, , the mass ratio of the kick-stage will be

k'
R, = exp(AVk/ck) (173)

To find the optimal exhaust power of the boost stage, per unit mass

finally injected into synchronous orbit, the specific power given by (2.165)

must be multiplied by Rk With a boost mass ratio of 3, and a kick stage
specific impulse

L = <:k/g0 ~ 240 sec (174)

(a value readily obtainable from current solid rocket motors), the results
shown, by the dotted curves in Figure 13 are obtained. The data from Fig-
ure 12, in conventional units are repeated here for comparison (solid curves).
It is to be emphasized that the dotted curves represent worst cases - the
kick-stage was assumed to have quite modest performance. Moreover, it

18 probable that solution of the problem of optimizing the boost exhaust power
per unit mass in GSO would lead to larger flight path angles at burnout, re-
ducing the required kick-stage mass ratio. Nevertheless, it is clear that,
for launch to GSO, it is desirable to use the largest zenith angle at burnout
which is compatible with acceptable atmospheric propagation of the laser

beam.
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Using the value 0, * 60° and a mass ratio of 3, the exhaust power
per unit burnout mass is shown as a function of range in Figure 14 for escape
and in Figure 15 for injection to a transfer ellipse to GSO. As one would ex-
pect, the curves have the same general shape as in the case of vertical ascent
to escape.

Figure 16 compares the boost power requirements for injection of
unit mass to (1) a transfer ellipse to geosynchronous orbit; (2) an escape
parabola; and (3) geosynchronous orbit, using a chemical kick stage. The
last curve is, ov course, obtained from the first by multiplying by the kick-
stage mass ratio, Eq. (173). The power is given in megawatts per metric
ton, and the burnout ranges shown cover these which might be used for Earth
launch.

It is interesting to observe that a given laser can boost a larger mass
to escape than it can insert into geosynchronous orbit, unless a kick stage of
quite high specific impulse (~ 800 sec) is used.

The exhaust velocity during boost may be calculated from Eq. (170).
The resulting time histories, for launch to GSO, are shown in Figure 17,
for 91 = 60° and two ranges and mass ratios. Because, as will be shown,
boost at constant exhaust velocity is an acceptable technique, the range of
exhaust velocities required for optimal ascent have not been investigated
further.

Finally, the angle between the laser beam and the thrust axis is

seen from Figure 10 to be

B=9y -0 (175)
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where
tan y = z').l/a.2 (176)

and is given by Eq. (171) and
tan © = xl/x2 (177)

and may be calculated from Eqs. (164). The variation of the beam thrust
angle during boost to a GSO transfer ellipse (with 6, = 60°) is shown in
Figure 18, for two ranges at burnout. The excursions of the thrust vector,
relative to the laser beam, are relatively small, and could most probably

be accomodated in a single-port laser powered rocket engine design.
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6. RADIAL-THRUST ASCENT AT CONSTANT EXHAUST VELOCITY

As in the discussion of vertical ascent, it is desirable to investigate
the power penalties associated with boost at constant exhaust velocity, as
this mode of operation may allow simplifications in engine design. For
ascent to high orbit or escape, the relatively small beam/thrust angles
found in the previous section suggest that a further simplification may be
possible, constraining the thrust axis of the vehicle so that it is always
directed radially towards the laser station (i. e., so that the beam/thrust
angle remains zero). This moce, which is here called radial-thrust ascent,
would permit the simplest possible engine design.

With constant power and exhaust velocity, the relations between
specific thrust, mass ratio and boost duration are as obtained in Section

11.4.b. The results are repeated here for convenience

a

e 0 1 C
a = e W = TW Tt (178)
where
™ = ¢/a (179)
PR *
7= R )T (180)

The equations of motion
¥ -a, -g =0 (181)
May be integrated numerically, with the thrust angle ¥ taken 2qual
to the instantaneous zenigh angle ©, so as to satisfy the radial-thrust con-
dition. To facilitate comparison with the optimal ascent calculations of the

previous section, only the linear terms in the expansion (2. 115) for the

gravitational field are retained in this integration.
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It is desirable to plot the results of this calculation with the mass
ratio rather than the exhaust velocity as a constant parameter. Successive
values of T may be chosen a priori, thereby determining the range at
burnout, but it is necessary to choose the exhaust velocity c and the initial
direction of thrust d)o so that:

1) burnout occurs at the specified zenith angle Gf:

2) the vehicle has the injection velocity at burnout given by Eq. (79)

for excape or by Eq. (80) for ascent to GSO; and

3) the mass ratio R has a specified value at burnout.

A systematic iterative procedure is essential for solving this two-
point boundary value problem. Once R and T* are specified, the time step
in the Runge-Kutta integration procedure may be chosen as a submultiple
of the boost duration, from Eq. (180), ensuring that the routine terminates
at the correct time, but the parameters c and ¢° must be modified in suc-
cessive integrations. In deriving expressions for corrections to the param-
eters, in terms of the results of successive integrations of the‘,’,equations
of motion, it is sufficient to use the constant approximation to !ﬁ:he gravita-

!

tional field. We write the equations of motion

Jil-b-asinw=0 (182a)

x'2 + 1 -acosyp = 0 (182b)

where, for reasons which will appear, we have allowed for a constant com-
ponent § of the gravitational field in the xl-direction. These equations may
be converted to integral expressions by introducing a pair of adjoint func-
tions ), as yet unspecified except that they have continuous second deriva-
tions with respect to time. Whatever form is given to the A it is clear
that, along the trajectory specified by Eqs. (182), we have
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-
/ ["1(3‘1 -6 -asiny) + A0, + 1 -acos ¢)] dt = 0 (183)

(o]

Integration by parts of the terms in ':&i gives

'/[)(1 x"r+')(2x2 -a()\l sin ¥ )\2 cos ¥) -7(16 xz]dt

» (184)
T
[" T et h T B 4 Y "zxz] !
o
If now we choose the Ay 8o that they satisfy the simple adjoint
equations
xl = 0 (185)
then
T T
[Xivl - )llxl + AV, - xzxz] = j [a()\1 sin Y + A, cos P) + A0 -, d%](
o o 186)

By choice of functions Xi' satisfying Eq. (185), we may now obtain

integral expressions for the burnout values of the components of position

and velocity of the vehicle, using the initial conditions X, = ¥, = 0,
With
Ay B35 =t
(187)
Xz = 0
we obtain
T
xl('r) = %— 1’2 + f a(t - t) sin ¥ dt (188a)
o
With xl = 0
(189)
RZ = 7 = t
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-~

T
xz(‘r) = --;-'rz + / a(T -t) cos ¢ dt (188b)
°
With
ol |
} (190)
7\2 = 0
T
vl('r) = 67 + f a sin ¢ dt (191a)
(o}
With
X, = 0
. (192)
Ay = 1
T
vy ) = -7 + / a cos ¥ dt (191b)
°

The Eqs. (191) for the velocity components at burnout may also be
obtained by differentiation of Eq. (188) with respect to 7, or by direct formal
integration of the equations of motion (182).

These integral expressions are, of course, valid for any thrust

sk
steering law ¥ (t). For radial thrust ascent, with given values of ¢, T and

wo' and with § = o, we have
xl('r) =j A('r * t) sin dt (193a)
(e}
T
xz('r) = -%1‘2 + f A(T -t)cos dt (193b)
(o)
T
vl('r) = f a sin © dt (194a)
(e)
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T,
vz("r) = -T 4+ facosﬂ dt (194b)
o

Let us first consider the effect on these terminal quantities of an
increase Awo in the initial thrust angle. If we also rotate the coordinate
system about the origin by an angle Ad,, the new trajectory problem, in
the new coordinate system, will be physically equivalent to that in the orig-

inal problem, except that the gravitational field will be transferred to

g = Awo (195)
-1

to first order in Awo. To obtain the first order effect, we may thus write,

in Eqs. (188) and (191), ¥ = © + Awo, to account for the geometric rotation

of the trajectory, and § = Awo, to account for the change in the orientation

of the trajectory with respect to the gravitational field. The changes in the

terminal position are thus found to be

T
ByX)(T) = %M’o”z + f a(r - t) [sin(® + AY ) - sin 6] at
o
T
= Aillo(%‘rzinfa(‘r - t) cos 6 dt) (196a)
o
2
=AY, (17 + x,(7))
waz('r) = j a(r -t [cos 6 + A¢°) - cos e]dt
)
T
= -A*"f a(r -t)sin© dt (196b)
o
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The changes in the velocity components at burnout may similarly

be calculated as

T
Aval(T) = Awo [‘r +/ a cos © dt]
(o]
(197a)
= AY, [Z'r * vz('r)]
T
Azva(T) = - Az,bof a sin © dt
()
(197b)

- Ay v, (T)

The changes in the terminal conditions due to a change AC in the
exhaust velocity may be calculated simply from Eqgs. (193) and (194). For
example, sin using Eq. (178) in Eq. (193a), we have immediately
T

Acf—-;;-————ff =% sin6 at
o

Acxl('r)

*
Ac / a(r -t)sin® dt (198a)

(o]
[

Ac
c

x, (1)

Similarly

A1) = AS L 7%y x(r) (198b)

Acv,(r) AC_C_ v, (1) (199a)

Av () = BS (7 4 vy(1) (199b)

Adding together the changes in the components of terminal position

and velocity due to changes in the initial thrust angle wo and the exhaust

velocity ¢, we find
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Axl(‘r)

Ax,(T)

Avl(‘r)

Av,(T) =

Ac

= A%, (% + x, (1) + 5= x, (1) (200a)
= - Ay, x; (1) + AS (5 1P 4 () (200b)
= A 2T + vym) + BS v 1y (200¢)

- vy(T) + %c— (T + v,(T)) (2004)

In order to find an iteration procedure to ensure that, at the burnout

time T (given by Eq. (180)) the vehicle is at the specified zenith angle O,

and has the specified velocity Vl, we must find expressions for the changes

in these quantities with changes in the components of position and velocity

at burnout.

since

since

Since

A©O (T)

tan (1) = xl('r)/xz (1) (201)
p(l'r) [cos (3] Ax1 - 8in © sz]
r'rz cos 91 x, cos 91 X sin ©
AY
i SRS Py Py ]
(202)
- X 2 X, sin ©
M| i cos O -%T—- sinO-—z---—]
b B Py Py
2
T cos © 2
Ll As 25 .
X, {T) = Py sin 91, etc.
(203)

Vf (1) + vg (7)

<
PR
3
1
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AV(T) Avl('r) sin y(T) + sz('r) cos y(T)

Awo (27 siny, + v, siny1 - v, cos yl)

(204)

Ac-c—- (v1 sinyl+ Tcos y, -V, cos yl)

Azpo (27 sin yl) + —éEE- (V’1 - cos yl)

since
v (1) = V(7) siny (7), etc.

We have thus finally found the changes in the burnout zenith angle

and velocity, which may be sum#harized in the equation

2 2
= b =T ;
AO (T)| = 1+ 5 cos © 2p¢ sin 6 Az,bo
(205)
AViT)} = 27 sinvy % (V+7T cosy Ac

The integration of the equations of motion now proceeds as follows:

1) The value of R and the burnout zenith angle ©, are specified.

2) A value of 7% is chosen. This will fix the range at burnout,
which is not know a priori.

3) The boost duration 7 is calculated from Eq. (180).

4) A preliminary guess is made for the values of ¢ and zpo.

5) The equations of motion

asin©

y
(206a)
acos 6 -1

"
are integrated by the 4th order Runge -Kutta method, using a
fairly large step size h which is a submultiple of T; the integra-

tion terminates when t = 7.
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6) The values of range and flight path angle found at the termination
of the integration are used to calculate an estimate of the desired
mission velocity Vl, using Eq. (105) or Eq. (106). The difference
between this and the actual velocity computed in the integration
gives AV, on the left hand side of Eq. (205), and the difference
between the chosen 91 and the terminal zenith angle found in the
integration gives A©.

7) The matrix of coefficients in Eq. (205) is calculated using the
desired value of ©, the boost duration found in step 3), the
estimate of the mission velocity V1 from step 6), and the values
of p and y found in the integration.

8) The Eqgs. (205) are inverted to give corrections to c and wo.

9) The process is repeated until the errors in 61 and V1 are as
small as desired. The step-size in the Runge-Kutta integration
is reduced in later iterations to give increasing accuracy, while
keeping it a submultiple of 7.

This iteration process has generally been found to be convergent.
In cases where it is not, the initial guesses for c and zpo can
usually be improved by inspection of the integration results,
sufficiently to reach estimates from which the calculation con-
verges.

a. Radial-Thrust Ascent to a Transfer Ellipse to GSO

Once the equations of motion have been integrated, the specific ex-

haust power is found most readily from Eqs. (3) and (178) as

1
P/m, = sa,c
il e (207)
b i
2 (17 -t
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The integration program has to date only been carried through for
the case of launch to a transfer ellipse to GSO. With a mass ratio of 3 and
a burnout zenith angle of 60°, the calculated exhaust power per unit burnout
mass for this case varies with range at burnout as shown in Figure 19. Also
shown in the figure is the optimal specific exhaust power, from Figure 16.

It appears that radial thrust ascent to a transfer ellipse to GSO ex-
acts quite insignificant laser power penalties, compared to the power optimal
case. This result may have very significant implications for the simplified
design of laser-powered rocket engines for this class of mission.

The power penalties arising from the need to boost a kick-stage for
circularization at geosynchronous altitude will of course, be the same for
radial-thrust ascent as for the powér optimal case, so the discussion leading
to Figure 16 is not repeated here.

The exhaust velocity required to give a specified mass ratio, as a
function of the range at burnout, is also obtained in the integration routine.
The results are shown in Figure 20, for mass ratios of 3 and 5.

It was shown in Section I 3 that, when the mass of propellant tankage
is taken into'account, the exhaust power per unit payload is minimized by
using a mass ratio in the range 3 to 5, at least for acceleration in field-free
space (Figure 1). Minimization of the boost energy requirements (Figure 2)
requires slightly lower mass ratios. It appears that a mass ratio of 3 is a
good compromise.

It would be useful to compute curves of specific exhaust power vs
mass ratio (including the tankage effects) for specific missions, taking into
account gravity losses. An example would be a set of curves analogous to

Figure 1 for launch to a transfer ellipse to GSO, with a burnout range of
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of 1000 km and zenith angle of 60°. However, it is not expected that the
conclusion regarding the optimal mass ratio would vary very much from
the field-free case.

It is clear from Figure 19 that the range at burnout should be maxi-
mized. For vehicles with payloads, of order one ton, it is probably that a
practical upper limit to the range at burnout will be around 1000 km (because
of the laser beamspread which may be achieved and the probably physical
size of vehicles in this payload tlass). About 400 MW of exhaust power will
be required for every ton injected to the transfer ellipse. After taking inte
account for the expected engine efficiency and absorption of the laser beam
in the atmosphere, about 900 MW of laser output power may be required for
each injected ton. The laser output power required for each ton finally in
GSO may be up to a factor of two higher, depending on the circularization
technique which is used. With a burnout range of 1000 km, in order to give .
a boost mass ratio of 3, Figure 20 suggest a design specific impulse for the
engine of about 850 sec.
7. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

The curves showing specific exhaust power requirements for laser-
powered launch to high orbit or escape which have been derived in this study
provide data needed both in the preliminary technical design of a launching
laser and in formulation of economic estimates for the system. These data
can be used directly in further tradeoff studies, aimed at determining, for
example, the cost-optimum vehicle size in terms of a specified traffic
model.

Perhaps the most significant result which has been obtained is the

discovery that operation of laser-powered launch vehicles at constant specific
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impulse imposes quite small power penalties compared to the power-optimal
ascent profile - at least, for the missions which have been examined so far.
Furthermore, for these missions, operation at zero beam-thrust angle
appears to be feasible.

The particular values obtained of the required specific impulse for
these missions (especially launch to GSO) are of immediate importance, pro-
viding design goals for near-term laboratory-scale experiments. It is ex-
pected that, when radial-thrust launch to escape has been evaluated, it will
be found that the specific impulse objective will be below 1000 secs for any
reasonable Earth launch mission.

The solution to the power-optimal ascent trajectory problem which
has been developed here may readily be extended to other missions, some
of which will be described in a later report. It is clear that there are a
great many interesting and potentially significant missions for launching
lasers which need analysis of the type presented here, in order to evaluate
the overall utility of this propulsion technique and to provide priorities
amongst goals for laboratory experiments. Some areas of current and
future work in mission analysis for launching lasers are the following:

1) More detailed analysis of radial-thrust constant-Isp ascent to

a transfer ellipse to GSO, including evaluation of atmospheric
drag effects and calculation of angle of attack, aerodynamic
stagnation pressure, and laser-beam slew rate histories.

2) Extension of the results obtained so far to radial-thrust launch
to escape, in particular to allow calculation of specific impulse
vs8 burnout zenith angle.

3) For ascent to GSO, solution of the problem of choosing the thrust

history during boost (and hence the launch trajectory) so as to
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4)

5)

6)

7)

8)

minimize the boost exhaust power per unit mass finally estab-
lished in GSO, as a function of the specific impulse of the
circularization kick stage.

Comparative evaluation of several techniques for circularization
of a transfer ellipse at geosynchronous altitude, including con-
ventional chemical or electric propulsion kick stages, laser-
powered kick stages with either the laser or a redirecting mirror
in GSO, and the use of small (laser or conventionally powered)
tugs which depart GSO to rendezvous and dock with payloads on
ascent trajectories.

Power-optimal and constant-Isp boost trajectories leading to
transfer ellipses to GSO having exoatmospheric perigees, to
avoid impacting the EARTH in the event of a failure to circularize
at apogee.

Extension of these results to derive the minimum specific ex-
haust power (for given burnout range and zenith angle) required
for injection to an elliptical orbit with exoatmospheric perigee,
as a function of the apogee radius of the orbit.

Power-optimal and constant-Isp, constant beam-thrust angle
trajectories for injection to low Earth orbit at the burnout
altitude. Effects on such trajectories of aerodynamic constraints
such as limits to allowable angles of attack.

Energy-optimal rather than power-optimal ascent trajectories.
As noted in Section II. 3, energy-optimal trajectories, in addition
to minimizing operational costs, also minimize the laser power
requirements (and hence capital cost) for a given throughput to

orbit, in the high utilization limit.
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9)

10)

11)

Laser propulsion for transfer from LEO to GSO, with variations
depending on whether the laser is located on Earth or in low, in-
termediate or high orbit, and on whether mirrors in orbit may
be used to redirect the laser radiation.

Evaluation of laser propulsion for more advanced missions - for
example, to power a ferry operating between the lunar surface
and lunar orbit.

Studies of laser launchers in the context of particular mission
models concerned with large-scale military or industrial uses

of space.
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SECTION III

LASER DRIVEN DETONATION WAVE ROCKET ENGINE

1. INTRODUCTION

A high specific impulse laser propulsion engine must meet a number
of stringent conditions. The propellant must absorb the laser energy directly
and essentially completely at temperatures that are above the dissociation
energy of most molecular absorbers. The hot propellant gas must be effi-
ciently expanded to roughly uniform velocity in a manner that does not exceed
the thermal limits of materials. The incident flux needs to be compatible with
atmospheric transmission limitations imposed by thermal blooming and aero-
sol induced plasma breakdown. In addition it is highly desirable that the
engine be characterized by economical simplicity and flexibility. The latter
virtue would include the ability to operate over a range of specific impulses
and power levels, at a variety of beam thrust angles, and with back pressure
ranging between atmospheric at launch to hard vacuum at burnout.

This section describes a new repetitively pulsed laser propulsion
concept that promises to meet the above requirements. Absorption of the
laser radiation is based on the inverse Bremsstrahlung process that occurs
in a laser driven detonation wave (LSD). A wide variety of propellant mate-
rials may be used without the addition of special absorber seedants. It will
be shown that the atomic or molecular weight of the propellant is, to the
first order, immaterial to the absorption and subsequent expansion processes
and does not affect the resultant specific impulse and efficiency figures. The

expansion of the hot gases takes place without benefit of a throat, which is the
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point of the most severe thermal loads in conventional rockets. Indeed suf-
ficient data exists from pulsed laser effects studies to predict that thermal
loads will pose few problems for this engine.

2. PRINCIPLE OF OPERATION

The basic throatless detonation rocket engine is comprised of a cir-
cular thrust disk or base situated at one end of a cylindrical surface which
will be termed the '"1-D skirt.'" The thrust disk is suitably perforated to
allow the introduction of propellant, or else is formed by the surface of a
solid propellant that may be ablated to release propellant gas.

The engine cycle may be divided into two basic phases illustrated in
Figure 21. Firstly, propellant is introduced at the thrust disk in a manner
such that, at the end of Phase I, a distribution of gaseous propellant extends
to a characteristic distance, 10, from the disk. There are a number of
possible methods for introducing the propellant. For instance, a laser pulse
could be used to ablate a solid propellant, one end of which forms the thrust
disk; or the pulse could evaporate a liquid film introduced through a porous
disk, Because of its simplicity and flexibility, laser metering of the pro-
pellant will be examined in some detail in Section IIL4. Other possible
methods of injection not involving a laser pulse include injection of an aero-
sol, which is organized in Appendix B and self regulating gas phase feed
discussed in Section IILS5.

The distributed propellant gas is heated to high temperature during
the thrust pulse of Phase II. A ground or space based laser beam is aimed
at the thrust disk. It is assumed that the propellant gas is initially trans-
parent to the incident pulse so that it strikes the thrust disk before signiﬁ-

cant absorption occurs in the gas. Experiments have shown that a number
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Laser Sustained Detonation Wave Rocket Engine
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of candidate propellants, such as NZ' will meet this requirement if the
incident flux is below the threshold for plasma ignition triggered by partic ~
ulates in the gas. For example, if particulates are below 5 um in diameter,
normal density nitrogen will transmit up to ~ 108 W/c:m2 of 10,6 um
radiation.

If the thrust plate i constructed of metal, a 10. 6 ym pulse at 107
W/cm2 will ignite a laser sustained plasma at the surface in a time of less
than 1 ysec. An ablative surface will require a somewhat higher flux. The
threshold for plasma ignition generally increases weakly with increased gas
pressure and decreasing wavelength.

The resulting plasma front will propagate through the gas away from
plate toward the laser beam source. If the incident flux is above the appro-
priate threshold value, the plasma is propagated as a Laser Sustained Deto-
nation Wave (LSD) which was first described by Raizer. (1) In such a wave a
region of essentially complete inverse Bremsstrahlung absorption travels up

the beam at a velocity given by VD

1/3
vy = [2(y2-l) %] (208)

with ¢ denoting the laser flux, p the gas density, and y the effective adiabatic
constant [which proves to be ~ 1. 2 for the high temperature gases of interest].

In terms of parameter values that will be useful in latter discussions, Eq. (208)

is 1/3
V. = 4.0x10° iz— cm/sec (209)
D = . X pN

(1) Raizer, Y. P., '"Heating of a Gas by a Powerful Light Pulse, " Sov.
Phys. JETP 21, 1009 (1965).
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with ¢7 denoting the4flux units of lO7 W/cmZ and PN the density in terms of
normal density, 1.2 x W g/cm3. The value y = 1. 18, appropriate for
normal density nitrogen, has been used.

For one dimensional laser beams, the threshold for maintenance of a
detonation wave at 10. 6 | wavelength has been calculated(z) to be ~5x 106 W/cm2
at standard density. At 1/10 standard density thé threshold is below 107
W/cmz. A standard density threshold of 2 x 108 W/cmZ is predicted at
1. 06 ym wavelength, and verified by experiment. If the incident flux is
below threshold, a partially absorbing wave may still be propagated, but
undesirable strong thermal coupling to the base will occur.

For finite diameter beams, these thresholds are increased to flux
levels that give an absorption length on the order of the beam diameter.
However, the plasma is contained within the 1-D skirt in this rocket concept,
and the fluid dynamics should thus behave as though the beam was of infinite
diameter. A more stringent requirement of the flux level demands that the
absorption length within the plasma be small compared to the total distance
travelled by the detonation wave through the predispersed propellant. This
assures not only that the time independent detonation wave is appropriate,
but also guards against significant amounts of the laser energy being
deposited directly on the rocket base material. A scaling law for the
absorption length, L, has been given in Reference 3,

2

p
L= _é.z (I'L) (210)
¢, 10. 6

(2) Edwards, A., Ferriter, N., Fleck, Jr. J. A., and Winslow, A. M.,
"A Theoretical Description of the Interaction of a Pulsed Lase, and a

Target in an Air Environment, ' Lawrence Livermore Laboratory,
Rept. UCRL - 51489 (1973).

(3) Boni, A.A. and Su, F. Y., "Theoretical Study of Laser Target Inter-
actions, "' Science Applications Inc. Rept. SA177-567LJ (1977).
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for
0.4< ¢7/pNgZO (211)

where L is in cm and A 10. 6 is the wavelength normalized to 10. 6 L.

If the incident flux is well above threshold, such that the plasma
absorption length is much less than the total detonation wave travel only a
small fraction of the incident pulse energy will be absorbed by the thrust
plate due to either direct absorption of the flux, reradiation from the plasma,
or contact with the hot gas. Experimental measurements using aluminum
plates that absorbed 2. 5% of a 25 usec, 10.6 UL beam at low power showed
that the thermal coupling drops to 0. 7% upon the initiation of a detonation

: W/cmz.

wave in normal air at 2 x 10 For a rocket operating at 109 W and
with a 2 m diameter thrust plate, this represents an average thermal load-
ing of 223 W/cm2 which can readily be handled with feed of propellant through
a porous plate. The thermal coupling to ablative plates is expected to be as
small, Figure 22 gshows a lucite plate that has been irradiated at ~2 x lO7
W/cmZ for 15 pusec at 10.6 p giving a fluence of ~330 J/cmz. The unablated
areas are sites of detonation wave ignition which were first shielded from
the incoming flux. Since the known threshold for ablation at this pulse
length is 3 -4 J’/cm2 only ~ 1% of the incident fluence was coupled at the
ignition sites. The cracks were caused by the pressure impulse. Proper
shielding demands a high deneity of ignition sites which perhaps could be
provided by dispersion of a fine metallic powder throughout the solid.

After a time Tp' when the absorption front has traveled a distance

£ 2 through the propellant gas, the laser pulse is turned off. This leaves a

mass of extremely hot gas heated under well controlled and well understood
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Figure 22 Plasma Shielded Ignition Sites on Lucite Target
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conditions. Since the power absorbed per unit area is ¢, which is propor-
tional to pv% by Eq. (209), and the mass overrun per unit area-time is
pVD, then the total energy per unit mass initially imparted to the fluid is
proportional to Vf). This is independent of the atomic mass and other de-
tailed properties of the propellant. Not surprisingly, the effective exhaust
velocities will be shown to be on the order of Vo which is practically ob-
tainable in the 10 km/sec range.

Pressure is exerted on the thrust plate while the laser pulse is on
and during the subsequent expansion. The 1-D skirt serves to partially
confine the expansion to one dimension, maintaining the pressure for longer
times and thus improving the specific impulse and efficiency over what
would be obtained in its absence. The velocity of the exhaust products is
not constant with time and this is a basic source of inefficiency in ;omparison
with a conventional cw rocket. It will be shown, however, that the dominant
source of inefficiency is due to the finite propellant expansion that can be
achieved with 1-D skirts of reasonable length;.

A coasting period follows the expansion. For typical designs this
phase is an order of magnitude longer than the sum of the other two phases.
The exhaust products are largely dissipated or displaced during this period,
allowing for incidence of the next laser pulse without undue absorption in
the plume.

3. ANALYSIS OF PERFORMANCE

This section will examine in detail the laser ablation method of pro-
viding gaseous atmosphere of propellant at the base of the vehicle. The
principle advantage of this technique is that no onboard values, nozzles etc.

are required, which results in obvious weight and cost savings. In addition,
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the method is quite flexible in that the amount of propellant released, as
well as its spatial distribution is simple, varied by changing the character -
istics of the ground based laser pulse.

An analysis of the Laser Driven Detonation Rocket may be given
with various degrees of sophistication up to large scale fluid codes. In
this section a first order approach to the problem is presented. Employing
a number of simplifying assumptions, an analytic prediction of performance
is given in terms of a nondimensional impulse parameter, f. A numerical
calculation based on the method of characteristics for unsteady flow in one
dimension is then used to determine the impulse parameter as a function of
the 1-D skirt length.

Only operation in vacuum will be described in this section. For
earth launch to orbit, typically greater than 90% of the laser thrusting will
be effectively under this condition. For simplicity, the initial density will
be taken as a constant, po, across the disk out to a distance, 20, from the
base and zero beyond that. Section IIIL 4 will show that reasonable approxi-
mations to this distribution can be achieved.

The laser thrust pulse will be turned on for a time T illuminating
the rocket base uniformly in space and time at a flux level ¢°. A detonation
wave is assumed to ignite instantaneously at the thrust plate the moment the
laser is turned on. The detonation velocity is constant since p and ¢ are
constant. The laser is turned off when the wave travels distance lo = VDT L'
Initially, the 1-D skirt length will be taken as much longer than 20 so that
all the hydrodynamic processes may be treated as one dimensional.

Immediately behind the detonation front the pressure, Pp and

density, Pp according to Raizer, are given by
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Po 2
5 S s

: (212)
y+1
Yy Po

Pp
Since the thrust plate is neither a source nor sink for gas during the pulse,
the fluid velocity must be zero there. It was shown by Pirri, in a study of
impulsive laser target effects, that the zero velocity condition implies an
expansion fan behind the detonation wave and a reduction in pressure by a
factor B

2y
B = (XLL)Y'I (213)
2y

This result will be rederived in the next section where a detailed examination
of the pressure time history on the base is made. For y = 1.18, the value
of B is 0. 35, and the pressure experienced by the thrust plate, Pip’ is given

in terms of practical units by
P;p = BPp (214)

31.6p11\1/3 ¢$/3 bar (215)

The pressure on the base is constant at p, during the laser pulse
and remains so until information that the laser has turned off is propagated
over a distance lo from the furthest point of the detonation wave back to the
thrust plate. The speed of sound beh‘ind the detonation wave is ~VD/2, 80
the pressure remains at Pi1p for a total time of the order 37 L One dimen-
sional expansion subsequently causes a decay in base pressure. The im-

pulse per unit area, I/A, can be expressed as

I/A = [pat (216)
=PipTL f (217)
100




where f is a nondimensional measure of impulse to be determined. The time
integral will be carried over an interpulse time or to whenever effects due

a finite 1-D skirt length cause the base pressure to drop to a negligible value.
The mass per unit area of propellant heated by the pulse is simply

m/A = P VDL (218)
Hence the impulse per unit mass or effective exhaust velocity, c, is from

Eqgs. (218), (217), (214), (212) and (209).

-
I/m = Tod (219)
= ¢ (220)

Impulse can be written as the product of time averaged thrust times the cycle
period, and mass as the product of time averaged mass flow times the cycle
period. Thus the time averaged thrust per unit average mass flow is also
represented by Eq. (219). As used in the conventional terminology of rocketry
engineering, specific impulse is this figure divided by g, the gravitational
acceleration.

The energy per unit area deposited in the propellant is

E/A =¢_T (221)

L
and, with Eqs. (218) and (209) the deposited energy per unit propellant mass
is
£
E/m = —s2— (222)
2(y" - 1)
Equations (221) and (222) may be combined to obtain the impulse per

unit energy or, equivalently, the time average thrust, T, per time averaged

incident power, P.
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T/P = 1/E (223)
J2t o) pr (224)
G | Vb

There are a number of possible definitions describing a rocket's efficiency,
n. In this paper n represents the power efficiency which is the ratio of the

effective exhaust energy mcz/z to the incident pulse energy

mec?/2E (225)

2
e £
=" -1 (;%—l) (226)

n

The impulse per unit energy or thrust per unit power may be ex-
pressed in terms of n.

Lz &
i (227)

Note that for a given efficiency, the so called coupling coefficient,
I/E, necessarily decreases with specific impulse. As an example, in Eq.
(227) a 1000 sec Isp at 100% efficiency implies a coupling coefficient of
20 dyne sec/J or, equivalently, 20 metric ton/GW. Withy=1.2a 100%
efficient rocket would have a normalized impulse f = fmax = 9.86 derived
from setting the left side of Eq. (227) to unity. The efficiency is sensitive

to f in that it depends on the square.

foay = (228)
BVy2-1
i 2
- g (f/fmax)

The laser powers required to perform a given mission must be divided
by n to obtain the actual power necessary when real imperfect rockets are

employed.
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It is also interesting to compare the effective exhaust velocity c to
the ideal exhaust velocity®® With the ideal rocket all the exhaust gas mole-
cules are given the same exhaust velocity <, and no energy is lost in terms

of frozen chemistry.

= NZE/m (229)
Vv
. NEphaits) - A (230)

The last line makes use of Eq. (222). The ratio of effective to ideal
velocity is

c pf Xz-l

- Sl | (231)
and this ratio is unity if f is again 9. 86, the maximum possible value.

All of the important performance figures are now specified in terms
of a single unknown parameter, the normalized impulse, f. A numerical
determination of this quantity will be given by application of the method of
characteristics in one dimension for unsteady flow. In the discussion to
follow it will be assumed that the reader is generally familiar with the tech-
nique and only the specifics as applied to this problem will be treated.

Construction of an x-t diagram of the propellant heating and subse-
quent expansion will employ the laser pulse length, T L 2s the unit of time,
velocity will be measured in terms of the-detonation velocity, VD' and

distance in the natural units VDT Thus the detonation wave propagating

L
through the cold propellant is represented in these coordinates by a line
with slope of unity for 0 < x/VD'rL < 1, as shown in Figure 23.

All the gas dynamic processes taking place behind the detonation wave

for t/T L < 1 and over all space for t/TL > 1 will, by the absence of derived
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shock waves, prove to,be isentropic. This is a direct result of the assumption
of uniform cold propellant density, uniform laser flux, and the heating of all
the propellant by the detonation wave. By avoiding shock waves with strength
dependent jump conditions, a single x-t diagram at a given value of y will
serve to describe any physically realistic combination of [ ¢°, and T

The local flow velocity in the gas will be given by u, and the local

sound speed by a. Two characteristic quantities, P and Q, defined by

2 1
P =[ a + u] - (232)
y -1 VD
2 1
Q =[ o u] ek (233)
= ] VD

are propagated without change in isentropic flow along x-t trajectories with
slope u + a and u - a respectively. Once thé values of u and a are known
along suitable boundaries, the values of P and Q can be found along that
boundary and the trajectories of constant P and Q may be plotted to any de-
sired accuracy.

Immediately behind the detonation wave, the so called Chapman-

Jouget conditions hold, and the flow velocity in the detonation wave frame of

reference is sonic at the value

PRRIEIS,
an e Vp (234)

In the rocket reference frame, the gas velocity is

uD = VD 5 aD (235\
v
2 L (236)

The value of Q directly behind the front is obtained from Eqs. (233), (234),
and (236),
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Qp = Y—];'i' (237)
and it is constant all along the front. By virtue of the Chapman -Jouget con -
dition, u - a = -VD(Y - l)/(y + 1) at the front, and lines of constant Q = QD
are propagated from the front towards the base at all points along the front.
The entire region behind the detonation is filled with characteristics at con-
stant Q making for a '""simple wave'" process. The fluid velocity must be
zero at the base, which implies that the Q characteristics have a slope
-vD/ahase‘ Setting Eq. (237) equal to Eq. (233) withu =0 anda = a
yields L VD/Z. Hence the QD characteristics bend over to the left in
a manner to be determined.

The P characteristics form a centered rarefraction fan behind the
detonation front. Lines of constant P emanate from the origin and follow
straight trajectories given by

= a+u (238)

The trajectories are straight since a = a(P, Q) and u = u(P, Q) by Eqgs. (232)
and (233), Q is a constant, QD’ to the left of the detonation, and P is a con-
stant by definition along a trajectory of constant P.

Elimination of the sound speed between Eqs. (233), (237), and (238)

gives the flow velocity in terms of position and time.

2V
S i I
bl (th z) §239)
with limits
u. = VD x = V.t (240)
R A D
V.t
i PRt )
uT = 0, x = _Z (241)
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That is, the ''tail" of the expansion fan moves at one half the detonation

velocity. Similarly, elimination of the flow velocity gives the sound speed

vD X
a=—_Y+l [l+(Y-l)——th] : (242)
with limits
£ =
ap 3+T Yoo x VDt (243)
v V.t
The values of P in the fan are then
3 -y 4 X
= + 245
PER-Da+D P Y+1VE ;i
with limits
L ’
Po*m-lig+D **= Vo L
A" VAt
- i, I
pT-Y"l-QD' X = 2 (247)
To the left of the tail P is a constant, PT' equal to QD' and the
velocity u is zero.
In Figure 23 only the QD characteristic emanating from the t/r T $ 5

x/VD‘J’L = 1 point is drawn. The space between this curve, the time axis,
and the detonation trajectory is filled with parallel QD waves. Similarly the
space to the left of the '"tail" PT characteristic is filled with parallel PT
wavee up to the point where the drawn QD characteristic intersects the time
axis.

For isentropic flow, the pressure at any two points is related in

terms of the corresponding sound speeds by
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2y

&l (av)y -1
= (2 (248)
P a

where one of the points has been denoted by a prime. Substituting the sound
speed behind the detonation wave from Eq. (234) and the sound speed at the
tail of the expansion fan from Eq. (244), Pirri's result, Eqs. (213) and (214),
for the initial base pressure is recovered.

When the laser is suddenly turned off at t = T L’ that information is
propagated from the site of disturbance as a Q wave centered expansion fan.
To the right, i.e., the vacuum side of Figure 23, the maximum expansion
velocity will take place at the hydrodynamic limiting value. The density and
sound speed are both zero at the vacuum fluid boundary and by Eqs. (232) and
233) Qv = - PV, where the subscript V refers to that boundary. The bound-
ary Pv characteristic has the same value as PD. Thus the vacuum expansion
velocity, by Eqs. (232) and (244), is

S g e )
WER-DG+D 'D (249)

Within the fan, the value of Q varies continuously between QD and Qy-
The one remaining boundary condition on the problem is that the fluid
velocity is always zero at the base, which implies that P and Q be equal

there.

Qbaae.z. ..I.Dbaae (250)
Construction of Figure 23 was carried out by calculating the values
of a and u from Eqs. (232) and (233) at the intersection of each P and Q
characteristic and extending each characteristic at the new slope (u + a)-l
or (u - a)'l respectively without iterative or interpolative corrections.
Sample higher order corrections showed that the characteristics net was

fine enough to give accuracy sufficient for present purposes.
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The pressure time history at the base is obtained by noting the time

of intersection of a characteristic with the base and the relationship

2y
™ Yy-1
pbase it L3 Bl Qbase]

Pi1p (251)
which is derived from Eqgs. (250), (248), and (233). The base pressures
are shown at the left edge of Figure 23.

The effect of finite 1-D skirt length may be approximated on the con~
servative side by assuming that the base pressure drops to zero immediately
upon arrival at the base of expansion waves due to the skirt cut off. These
waves can only propagate upstream against subsonic flow. In the x-t diagram,
the flow is supersonic everywhere that the slope of the Q waves is positive.
For a given 1-D skirt length, the flow at the lip does not become sonic until
the first Q wave, QS' becomes vertical at that point. The information is
then transmitted to the base when that same Q wave reaches the base.

For example, if the 1-D skirt length was ~ 1.3 VDT L’ the flow at the
lip becomes sonic att ~3 7 L and the Q = QS = 4. 127 characteristic carries
the expansion to the base by time t ~ 11, STL. The base pressure is then
0.1 plD and the normalized impulse f, from numerical integration of the
pressure up to that time, is ~ 5. 6.

Contributions to the base impulse after the arrival at the base of the
QS characteristic are of relatively greater importance if the 1-D skirt length
is short. A more accurate procedure imposes sonic flow boundary conditions
at the 1-D skirt exit for all times greater than the time, t,, at which the Qs
characteristic reached the end of the skirt. Application of Eqs. (232) and
(233) with a = u yields

. 3=
Q_Y_;_}p (252)
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Every P characteristic reaching the end of the skirt at times t > t, reflects
as a Q wave with value given by Eq. (252). The subsequent propagation of
these Q waves to the base and their reflection there as P waves is followed
as before.

The boundary condition imposed here is only accurate in the limit of
the 1-D skirt length much greater than the diameter of the base. In that
limit the flow in the tube is indeed one dimensional and the sonic surface
effectively will be at the end of the skirt. The sonic surface will be roughly
located at the end of the skirt around the periphery, but it will extend well
beyond the end of the skirt at the axial position. These two dimensional
phenomena are such as to make the one dimensional calculations of impulse
an underestimate.

A computer program has been constructed to carry out these charac-
teristic calculations. A given characteristic is propagated forward in time
at a slope VD/(u 4+ a) that is derived from the average of the properties at
the last intersection point and the next intersection point. This leads to
noticeable greater accuracy than obtained in the computation of Figure 23.
The behavior of base pressure with time for a number of 1-D skirt lengths
is presented in Figure 24. As anticipated, the pressure remains at a con-
stant value, Pl D’ for t ~ 3‘rL before decaying initially at a rate faster than
~t'z, and later as ~ tY until the effects of finite 1-D skirt length are felt.

The areas under the pressure curves have been integrated numerically
to give the normalized impulse f. Calculations were done for y = 1.18 and
y = 1.2 and they show, Figure 25, little sensitivity to this parameter. The

efficiencies are also shown. Although both values of y give the same effi-

ciency for an infinite length skirt, there are noticeable differences for finite
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skirts. It is to be expected physically that for fixed degree of expansion, a
gas with a lower y will have more energy tied up in internal modes and will
hence have less efficiency.

When the 1-D skirt is infinite in length, the expansion of the gas is
complete and the 31% departures from 100% efficiency represents the loss
due to inhomogeneity in the exhaust velocity distribution. For finite length
skirts the decreased efficiency results from ejection of the gas at non zero
enthalpy with contributions from ionization, dissociation, and random motion.
A constant y calculation does not directly identify the components of internal
energy, but their effects on isentropic gas dynamics are roughly included as
long as the expansion rates are not so fast as to result in frozen flow. Pre-
liminary calculations show that over a range of parameters of interest
nitrogen propellant would not be ionized, but would still be significantly
dissociated and that the ionization and dissociation recombination rates are
fast enough to preclude frozen flow. Further work on possible losses due
to real gas effects and phenomenal such as radiative and wall friction losses
is in order.

As a specific example of the parameters that result from the pre-
ceding calculations, consider the example of a rocket designed to operate

at a specific impulse of 800 sec with a 1-D skirt length of 10 V From

B
Figure 25 the efficiency and normalized impulse would be, respectively,

n = 44% and f = 6. 5. The effective exhaust velocity is 7.8 x 105 cm/sec and
(219) gives VD = 7.4x 106 cm/sec, slightly less than c. A 10 pusec pulse
would give 7 cm of detonation wave travel and the 1-D skirt would be 74 cm

in length. The energy per unit mass is 70 kJ/gm and the coupling coefficient

is 11 dyne sec/J or, 11 metric ton/GW.
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4, PROPELLANT METERING PULSE

The propellant surface is assumed to be perfectly absorbing to the
incident radiation, over an absorption length short compared to any other
scale of interest to the problem. On the other hand, the evolving vapor is
taken as being perfectly transparent to the radiation. As an example of
these conditions, a film of water absorbs 10. 6 y radiation in a scale of
~ 1 wavelength, yet steam, at ~100°C and 10-3 g/cm3 has an absorption
length of ~600 cm. The incident flux will be taken as uniform over the base
of the vehicle and constant in time at the level ¢ x for a time T, Before the
pulse is turned on vacuum conditions are assumed. The degree to which
this is realized in practice will depend on the repetition rate and the altitude
of the rocket.

The effective energy per unit mass necessary to ablate the propellant
in the absence of heat conduction losses is taken as a constant, Q*. The
ablation velocity, u, is given in terms of the incident flux, ¢ a’ and the con-~

densed phase density, Per

u_ = .

P Q

(253)

For times longer than x/u‘z:, where y is the material thermal diffusivity,

the ablation depth exceeds the thermal penetration depth. In practical cases
of interest this time will prove short compared to the evaporation pulse
length, and heat conduction in the condensed phase can be ignored. Also,
the ablation velocity will proved to be small compared to molecular velocity
of particles leaving the surface, and the effects of finite surface recession
velocity can be neglected. Under these assumptions the surface jumps to

a constant temperature Tc when the metering pulse is turned on, since an

energy balance is established between incoming radiation and ablation.
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In the free molecular limit, for which there is no backscattering to
the surface, the mass and energy flux are computed from a half Maxwellian
characterized by the temperature, Tc. of the condensed phase and the corre-
sponding saturated vapor density, Py This gives a mass flux of Pl and
a kinetic energy flux of 2 RTcpsus, where B W, and R is the gas
constant per unit vapor mass.

Backscattering due to collisions will reduce this mass flux if particles
are readsorbed. Even if all backscattered particles reflect from the surface,
the energy flux could be altered if the reflected particles accommodate to the
surface temperature. In the interest of simplicity it will be assumed that
perfect reflection with no accommodation takes place. That is, the free
molecular limit for energy and mass flux will be used. Most of the proposed
propellant materials are molecular and, in contrast to the situation with
monatomic metal vapor, there is some justification in assuming no readsorp-
tion.

The flow at the surﬁce will generally be subsonic, but, with surface
pressures much greater than ambient, the flow will accelerate to supersonic
values within a few mean free paths. This can occur without area change and
without heat addition due to either conduction or direct absorption of the
laser flux. The process is driven by the entropy production which results
from collisional relaxation of the original nonequilibrium velocity distribu-
tion. The flow velocity, u,, and density, Py, at the sonic surface, as will
be shown, are the only parameters necessary to characterize the hydro-
dynamics beyond that surface. However, they must be related to conditions

at the surface for a complete solution.
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At the sonic surface complete thermal equilibrium is assumed. That
is, the velocity distribution is Maxwellized at temperature T, which will also
be the temperature of the internal degrees of freedom. If the energy flux at
the sonic surface is equated to the energy flux at the condensed phase surface,

the following equation results,

[T!'T RT, + :;_*i] Pyl = [% + 2] RT p u_ (254)
On the right hand side the energy transport due to internal molecular energy
in equilibrium with the surface, nRTc/Z, has been added to the kinetic
energy contribution. The number of degrees of freedom can be expressed
as n = (5-3y)/(y- 1). Inthe interest of simplicity, the specific heat ratio
at the surface has been taken equal to that at the sonic station. When more
accurate results are desired the assumption should be dropped. Making
use of mass conservation, p,u, =p u, and the sonic condition u, = WﬁT_*

the sonic parameters are related to the surface conditions.

T, = Tc/y (254a)

u, = NRT_ (254b)
= W27 u

P = P /N2T (254c)

The method of characteristics will be used to deduce the flowfield
beyond the sonic surface. Since the initial mean free path is generally short
compared to other dimensions of interest, the sonic surface is taken as
coincident with condensed propellant surface at x = 0. In constructing the
x -t diagram, Figure 26, time will be normalized to Ta and distance to
a,T, where a, = u_ is the sound speed at the sonic surface. By assuming

the ablation takes place into a perfect vacuum, shock waves are avoided.
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This, together with the fact that the vapor is transparent to the metering
pulse, means that the flow is isentropic, and the characteristic quantities P
and Q propagate without change. The sonic sound speed, a,, will be used to
normalize these quantities in contrast to the VD normalization used for the

thrust pulse analysis.

o 3
P-[Y_la+u]a* (255)

- [ —-2 Lo
Q"[Y_la'u]a* (256)

During the entire length of the metering pulse, i.e., for ‘r/‘ra e

P characteristics of value,

P, = yt1 (257)

propagate from the time axis with initial slope 1/2 a,, or 1/2 in normalized

units. Along the time axis for 'r/'ra < 1, Q has the value Q,

Q, = 3_:__‘1L (258)

and that characteristic propagates parallel to the time axis since u - a = 0
there.

Emanating from the origin, a centered expansion fan of Q character-
istics propagates to the right in the supersonic flow region. The trajectories
are straight lines since they traverse a region of constant P.

The sound speed decreases through this '"starting fan,' reaching a
minimum of zero at the hydrodynamic limit of the vacuum fluid interface.

By definition, P has the value

P, * uv/a* (259)

along the interface, where u, is the velocity of the interface (and the zero
density fluid there). However, it has been argued that P is a constant, P_.
This gives the boundary velocity as a constant,
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(260)
v y -1

3

The value of Q varies through the starting fan, decreasing from Q,

to Qv.
o PR | (261)
v y -1

which is equal to - P, and the slope is l/uv. The P characteristic that
emanates from the origin is coincident with the Qv characteristic, and those
emanating at later times tend to become parallel at large x. Only the P,
characteristic emanating from the t/'ra = 1 point is explicitly drawn on
Figure 26.

When the metering pulse is suddenly terminated at t/‘ra = 1, that
information is propagated into flowfield by another expansion fan, the
"termination' fan. This fan is comprised of P characteristics since the flow
in the fan is subsonic. The trajectories are not straight lines since they
interact with varying Q characteristics of the starting fan. The limiting
characteristic to the right is the previously discussed P, trajectory from
t/‘ra = 1. At the termination point the flow velocity decreases from u, to
zero since the condensed phase is no longer a source for particles and it is
assumed that the surface reflection coefficient is unity. Hence the value of

P decreases through the fan to the limiting value of

a
2 t

el

and that characteristic propagates initially at a slope of a*/at. The sound
speed at the termination point is obtained from noting that Q = Qt still has

the value Q" and, by Eq. (255) withu = 0, that Q = P,. The sound speed is

¢
then given by
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For values of y greater than unity this represents a sudden decrease from

as
b3

The densities at two points in isentropic flow are related to the cor-
responding sound speeds by

2

¥y =1
g (a_) (263)
pl al

Thus the density at the termination point must undergo a sudden drop of

2
%
G (3 - x)Y (264)
P 2

which varies between 0.30 at y = 5/3 and " ! = 0. 37 at limit of y = 1.

For times greater than t/‘ra = 1 the surface velocity remains zero
and P = Q at x = 0. The values of Q are, of course, determined from the
intersection of Q characteristics with the surface after '"refraction" in the
termination fan.

This completes the discussion of boundary conditions. The charac-
teristic trajectories in the region x, t # 0 were determined by the same
method as described in the section on the thrust pulse analysis. The x-t
diagram presented in Figure 26 uses y = 1. 32, the value for water vapor at
100°C. The general features are not éxpected to be a sensitive function
of y.

Density profiles at various times may be obtained by substituting

;O X
== (P+Q) (265)
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from Eqs. (255) and (256) into Eq. (263). Values of P and Q along a line of
constant time are interpolated between the plotted charact;ristics. These
results are presented in Figure 27 for y = 1.32. Note the constant surface
density and self similar profile while the metering laser is on. The drop in
surface density when the laser is turned off is readily apparent at t/‘ra 1.5,
and it results in a density peak that moves away at roughly twice the sonic
speed a,. The relative magnitude of this peak decreases with time.

The results shown in Figure 27 have been replotted in Figure 28 with
the density normalized to the peak density and distance normalized to a_t
rather than a,T, This allows easy comparison of the general features of
the profiles at different times. Note that by time t/Ta = 5 a relatively
rectangular distribution has developed despite the fast expansion of the tail.
It is on the basis of this distribution that the constant density assumption
was made for the thrust pulse analysis.

The foregoing material may be applied to the determination of the
required metering pulse characteristics necessary for setting up a ''rec-

tangular' distribution of density Po and length { ar for the thrust

Yo Ty
pulse. The desired density, Po is a fraction of ¢ of the sonic plane
density p,. The value of ¢ is somewhat arbitrary and depends on the
chosen mass distribution. If the distribution with t/'ra = 3 is taken,

€ =~ 0.15 from Figure 27. With t/-ré.s 5, € ~ 0.09. The saturation

density is, from Eq. (254c):

Pg = € Py (266)
Using Pg the material surface temperature can be determined by

reference to thermodynamic tables relating temperature to saturation
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properties. And given TC, u_ can be calculated. The pulse time is then

obtained from conservation of mass

. Pt

re P, U, (267)
with lo, as before, the distance over which the propellant is distributed.

The incident flux derives from the energy balance

b, = Pgug Q (268)
The effective ablation energy, Q*, will be approximated as the sum of the
heat of vaporization L. and the energy, AH, required to reach temperature
T.. This neglects nonequilibrium terms due vapor motion.

As an example of these relations, consider water as the propellant
starting from ice at 0°C. Assume that Po equals normal density, 1.2 x 10'3
g/cm3, is required. For water at the normal boiling point, y = 1.32 is
appropriate. Using ¢ = 0.09, this gives i, » 33 x 10'3 g/cm3. The
temperature corresponding to this density is 553°K which gives u, = 2.0
x 104 cm/sec. Hence the evaporation pulse has the duration i ™ 1:3
x Qo psec, with Qo in units of cm. Since the chosen distribution with
€ = 0.09 is obtained at time 'r/'ra ~ 5, the thrust pulse should start at
~9 x !o psec after the start of the metering pulse. At 553°K the heat of
vaporization is 1544 J/g and the energy to reach that temperature is 1569
J/g. Kinetic energy ~u§/2 = 20 J/g is small and its neglect is justified.
The incident flux necessary to maintain the 660 g/cmz-lec rate of ablation
is ¢, " 2 x 106 W/cmz. Neglect of surface recession velocity and thermal
conductivity is shown to be appropriate since u, = 680 cm/sec « u, and

2
x/\.\C ~ 20 nsec « T_.
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5. FLUX CONCENTRATORS

A roughly conical reflector can be affixed to the base of the rocket
to collect laser flux from an area greater than the base itself. There are a
number of advantages and disadvantages to using such a scheme. Some of
these will be listed here but no attempt will be made at a systems tradeoff.
It will also be demonstrated that practical optical solutions exist.

For a given incident heam (fixed beam divergence, pulse power,
average power) and fixed rocket base diameter and flux, it is obvious that
a collector 'allows a vehicle to go to a greater range before power is lost
due to diffraction spreading. One payoff is greater final mass per unit
laser power. For fixed flux on the base, the flux incident at the collector
aperture decreases as the square of the base to collector diameter ratio.
Hence, modest concentration ratios can insure that nowhere in the atmos -
phere outside the engine does the flux exceed known particle breakdown fluxes,
even when base fluxes are well above the detonation wave ignition flux. For

example, a base flux of 4 x 107 derived from a 16/1 concentrator would re-

6

quire 2.5 x 10" at the aperture, below the 3 x 106 W/cm2 large particle

threshold.

Alternately, for fixed beam divergence, pulse time, average power,
and flux collection area (i. e., fixed maximum range) a concentrator allows
the base diameter to be decreased at constant base flux. This gives a
decrease in the required pulse energy, an advantage with some laser systems.
Average power would be maintained by an increase in the repetition rate.

As before, the advantage of low peak fluxes in the atmosphere is maintained.
The mass of the 1-D skirt and the thrust plate (for nonsolid propellant sys -
tems) would reduce as the square of the reduced base diameter. The peak
acceleration of the system would be reduced by the same factor giving
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savings in structure weight and shock absorber mass. In addition, suffi-
ciently high repetition rates could be achieved to allow self regulating gas
phase propellant feeding, in which gaseous propellant is admitted from a
plenum through holes in the base plate when the base pressure drops below
a given level.

Another advantage of the system is that nonuniform incident flux pro-
files may be transformed into uniform flux profiles at the base. It is
expected that the highest power efficiencies will be obtained with uniform
flux profiles such as were assumed in the one dimensional thrust pulse
analysis. It is clear that an adaptive optics system that has a 1 m Airy disk
diameter at 1000 km can give a good representation of uniform flux over a
2 m base diameter at close range and only a fair one at 1000 km. Assume
instead that the adoptive optics were continually adjusted during ascent to
give the same flux profile as the best one obtainable at 1000 km. Then a
fixed concentrator optical design could maintain an excellent approximation
to constant base flux throughout the range.

The optical concentrators to be described preserve the ability to vary
the flux profile across the base in the metering and/or thrust pulse and
hence develop control torques without onboard variable thrusters. If the
flux collection area is maintained constant, the control torque moment arm
decreases, as the base diameter is decreased.

Finally, the efficiency of the rocket engine is improved if the reflec -
tor also serves as an expansion nozzle. This will occur as long as the
turning angle of gas flow is not too large. Computer calculations with the
methods of characteristics code were performed for the cases with exit area

equal to ten and one hundred times the base area. The length was held fixed
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at ten times the detonation wave travel and y was 1. 18. The efficiency as

a function of exit area to base area is given in Figure 29. The results are
fitted by a power law.  « [ area ratio]o‘ “. This is a slow dependence,
but practical benefits still are to be attained. For instance, a sixteen to one
area ratio improves the efficiency from 44% to 60%.

On the negative side, the concentrator introduces a number of com-
plexities that are solved either directly at cost or through weight, which
ultimately reflects in cost. There is also a loss of flexibility, in that fixed
off axis operation (thrust axis not parallel to laser axis) is difficult, and
variable off axis operation is probably impractical. The choice of possible
propellant materials will also be limited.

As will be shown the surface area is larger than the aperture area.
This structure must be supported against forces due to aerodynamic drag,
average accelerations to ~ 10 g's and higher peak accelerations, and impul-
sive internal pressures.

The surface must be highly reflective. Optical coatings that survive
the exhaust environment may be impossible from an engineering standpoint
or prohibitively expensive. Metallic surfaces, such as copper for 10.6 pu
radiation, have the advantage of not being susceptible to catastrophic dam-
age resulting from pin hole defects. However, the resulting ~1% absorption

of 10°

watts incident flux cannot be dissipated by reradiation at realistic
temperatures. Hence, active cooling is required, which increases the weight
of the reflector, supports, and all the auxiliary pumping systems. This

also rules out the use of solid propellants which cannot be circulated.

The incident energy per unit propellant mass for a 50% efficient

800 sec I'p rocket is, ~ 61 kJ/g. If 1% of this energy is absorbed by the
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reflector, the propellant coolant must carry away 615 J/g. Water propellant
stored as ice at 0°C, has 753 J/g available for cooling without a gas phase
transition. Propellants such as liquid nitrogen or argon would of necessity
be vaporized, and a gaseous propellant injection system would be necessary.

The basic optical fuaction of the flux concentrator is to transform an
axially symmetric flux distribution ¢ (R), at the entrance aperture into a
uniform flux, ¢ o’ greater than the average value of ¢ (R). Referring to
Figure 30, let R be the radius at which a ray strikes the reflective surface
at distance x from the base. The radius at which that same ray strikes the
base on the opposite side of the axis will be designated as r. By convention,
r is negative if the ray strikes the base on the same side of the axis. The
angle between the ray and the axis is a.

-1 r+ R

(269)

a = tan

The required shape of the concentrator is obtained by simultaneous integra -

tion of the equations

¢, -9(r)
dR = -————-—-¢ ®) i dr (270)

&% = Exd%'z' (271)
The first equation simply conserves flux lines and the second equation is
determined by equality of the angle of incidence and the angle of reflection.
There are several classes of solution, some of which are illustrated
in Figure 31 for a fixed 2 m diameter opening and a 16x concentration ratio.
In what will be called type I, the ray from the maximum R crosses the axis

to the maximum r. Rays from the minimum R meet the base at the axis.

129

A e ST




G7652

Figure 30

Flux Concentrator Geometry

130




o ST DR YR Y T A e 5

(o)

TYPE I
111 ASPECT RATIO
5.3m LONG

1.III 75

T TYPE I

0431 ASPECT RATIO
1.8m LONG

{c)

TYPE I
11 ASPECT RATIO
4m LONG

fasa — ——
TYPE II
E 0:1 ASPEC RATIO
ISm LONG
—
Im
67683
Figure 31 16X Concentrator Designs with 16 to 1 Concentration
Ratio
131




See Figure 31 (a) and (b). With type II, roles are reversed and the ray from
the maximum R goes to r = 0 and the ray from the minimum R crosses the
axis to the maximum r as in Figure 31(c). A third type, shown in Figure
31(d) has rays from the maximum R strike the base at the axis and rays
from the minimum R strike the base directly.

Solutions for type I concentrators with two different aspect ratios
are illustrated in Figure 31(a) and (b). The aspect ratio is defined as the
length of the straight (1-D skirt) ;xegment divided by the base diameter. The
concentrator becomes more compact as the aspect ratio is reducad.
Unlimited reduction of the aspect ratio to zero would result in the undesir-
able effect of the detonation wave vignetting the ray that goes from the edge
of the base to the axis. The sharp edge of I-D skirt meeting the reflector
surface could cause separated flow problems that would reduce the efficiency
of the skirt as an expansion nozzle. On the other hand, this could also act
as protection for this surface against erosion by the exhaust. The type III
concentrator always has 0:1 aspect ratio.

The type I concentrators suffer from a line focus along the axis.

This could cause breakdown difficulti;s during atmospheric operation. It
may be possible to break up the line focus with small azimuthal variations
in the surface. The type II concentrators have a cusp like region of high
flux which could also be a problem. The type III concentrator appears to
be free from high flux regions, The price is considerably greater bulk.
The length is 7. 5 times the opening.

All of the solutions were constructed for uniform base flux, given
uniform flux at the entrance. If the incoming flux tapers off with radius,

the shape of the concentrators will be changed. Since the type II and III
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concentrators take rays from large R and displace them to small r, their
shapes will be relatively insensitive to an incident profile that decreases
with R.

There undoubtedly remains a good deal of room for innovation with
regard to these concentrators. For instance a more compact design with
many of the advantages of the type III concentrator may be achieved by
starting from the base with the type III concept and then switching to a type
Ior type II design. More sophisticated computation of their hydrodynamic

performance will demand 2 -D numerical methods.
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SECTION 1V

LASER AND INITIAL LAUNCH FACILITY

1. LASER

Initial design studies of the laser driven detonation wave rocket
have identified the factors determining the required pulsed laser charac-
teristics. The longer IR wavelengths are favored because of their short
inverse bremsstrahlung absorption lengths at moderate fluxes. The pulse
length is bounded on the short side by thermal transfer to the base during
wave ignition and on the long side by the size of the structure necessary
to maintain one dimensional performance. A lower limit on peak pulse
power is determined from the desired specific impulse, the lowest pro-
pellant density giving adequate absorption, and the smallest base area
compatible with range and flux concentrator design limitation,

A detailed description of possible laser facilities would be premature
at this stage of laser propulsion studies. However it will be useful to show
that any of a number of requirements can be met using a design based on
modular laser amplifiers., Indeed it would be practical to construct a
109 watt average power laser using some existing repetitively pulsed lasers
as the basic building block.

The beam from a master oscillator laser can be split so as to drive
a number of amplifier lasers coheréntiy.' Each amplifier output can in turn
drive another group of amplifiers and so on until the total power output of
the amplifiers is the requisite value. Precautions must be taken against
the spontaneous emission from an amplifier feeding back to the previous

stages. Geometric flux falloff with element separation and saturable
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absorbers have been applied to this end. If the ray paths from oscillator
to the various output amplifiers are maintained within a coherence length
of each other the phases at the outputs will have a fixed relationship to
each other,

The amplifier output apertures, which in general will be separated
from each other for mechanical reasons, may be arranged in a number of
ways such that their beams fall on an array of contiguous flat mirror facets.
The facets in turn are oriented so that the reflected beams are parallel and
contiguous, (A familiar reverse analogy of this was found in an old time
ballroom decoration. A spot light beam was reflected from a chandelier
in the form of a ball covered with small mirrors.) The reflected beam
proceeds from the '"Chandel'' beam combines to a beam director whose
variable orientation allows gross tracking of the rocket vehicle,

One possible layout for such a large scale laser launch facility is
illustrated in Figure 32. The lasers are stacked in bays and their beams
are directed horizontally through the open side of the building to the cor-
responding elements of the Chandel.

Only in the near field, where geometric optics dominates, do the
phase relations between the individual segments remain unimportant. For
rocket burnout ranges on the order of 103 km and spot sizes on the order
of 1 meter, i.e. ~lum radian beam divergence, diffraction limited per-
formance is called for. This not only minimizes the physical size of the
output aperture, ~ 25m at 10.6 um, but it also maximizes the near field
peak flux, The latter is an advantage from the standpoint of reducing

atmospheric CO,, absorption at 10.6 ym.
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Figure 32 Conceptual Layout of Laser Propulsion Launch Site.

Rocket would be introduced into the beam at a few
hundred meters altitude by means of a pneumatic
tube (not shown)
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Decent diffraction limited capability demands control of the phase
across the output aperture with respect to an ideal profile to within some
fraction of 27. The ideal profile in a given situation will depend from pulse
to pulse on the desired energy distribution across the rocket base, the
thermal blooming of the atmosphere caused by previous pulses and the range
to target. There are several methods of constructing the desired phase
front. Electro-optical devices could retard or advance the phase of each
beam after the final branching in the amplifier chain. Alternately, and
more in line with the adaptive optics approaches that have received much
attention recently, the individual mirror elements of the '"Chandel' could
be advanced-retarded over small distances as well as tilted using piezo-
electric drivers. All such adjustments would, of course, be under com-
puter control.

The ability to phase shift each beam significantly decreases mech-
anical accuracies required of the system. Initial mechanical differences
and thermal drifts between one oscillator-output amplifier path and
another can be corrected from shot to shot. Similarly, the initial accuracy
of the large beam director mirror can be relaxed. Indeed it can be made
of segments. Thermal and gravitational (due to changing orientation) dis-
tortions can be corrected, This control also allows the beam director to
be a gross pointing device with the accurate directional pointing trimmed
from shot to shot by element phase adjustment.

It has been suggested that the beam director be dispensed with by
mounting each element of the Chandel on its own large excursion beam
director. The difficulty is that beam super positive then results in certain
orientations; to avoid this the elements must be separated, which increases

diffraction losses, 138
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With respect to this latter point, it is well known that resolution
increases if elements of an aperture are separated. Radio astronomy
frequently takes advantage of this with long baselines between dish receiv-
ing antennae. This is fine for receivers, but an array of separated sending
elements can never give a greater intensity at the far field than a single
circular element of area equal to the sum of the element areas., At equal
power the array can at most put the same peak intensity as the circular
aperture on a central order disk; but the diameter is smaller, and the rest
of the power is wasted in side orders,

Two strong advantages of the Chandel laser concept are its redund-
ancy and flexibility. Given hundreds or more laser units, failure of a few
during a launch would not seriously degrade system performance. Or,
spares could be brought on line with proper phase correction to account
for their different location,

The facility allows a range of repetition rates and pulse times at
constant power that is well beyond the range of the individual elements.
For instance, by dividing the back into nine groups with each group having
a compact contiguous grouping of reflectors at the Chandel, the repetition
rate can be increased by a factor of nine if separate oscillators are provi-
ded. The range.at which a given spot size can be achieved will, of course,
decrease a factor of three in the example. As discussed in the section on
launch phase, the higher repetition rate may be an advantage early in the
launch when loss of resolution is no problem.

2. LAUNCH
The initial insertion of the rocket engine and load into a position

suitable for laser propulsion may be accomplished in a number of ways.
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The initial trajectory problem is that the rocket plume will degrade the
surface of the mirror, leading to surface breakdown and catastrophic beam
loss. The rocket engine must therefore be introduced into the laser beam
at a sufficiently large distance from the mirror system. It has been sug-
gested that a large gantry should be used with the rocket at the top and the
laser mirror-director underneath. Such an arrangement would need to be
taller than the average near-sea-level plume length in order to avoid beam
interference. For the typical rocket engine discussed in Section III, the
plume at sea level would be ~100 meters long (see Section VI). The rocket
vehicle should therefore be introduced into the beam at least this distance
from the mirror, which requires an extremely large gantry, and high repet-
itive rates will introduce considerablz complexities.

A second method is to use a recoverable chemical booster to initialize
launch. The rocket would be launched some distance away from the laser
site, and maneuvered into the beam. The chemical booster would then drop
off and be parachuted to safety, and laser propulsion would take over.
Problems with this approach include design of a truly recoverable booster,
and the added complexity of the launching control system.

A third method consists of using a pneumatic launch system, simi-
lar to that designed for missile launch. The rocket would be contained in
a pneumatic gun, which would project it to an altitude of, say, 1/2 km. At
this point the laser would acquire the engine and laser propulsion would take
over, In principle this system could be very simple, providing a rapid

rocket handling capacity more easily envisaged than in the other caseas,
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The equation of motion of an unpowered rocket of cross-sectional

area A and mass m travelling vertically upward through air of density p is

mi¥ = -p Cpx* A - mg. (272)
p CDA
Ignoring changes of p with x and writing a = Aoprre e the position of
the rocket will be
N o cos C - Nagt
IR, ’ cos C (' i

where

tanC =V o —=>; (274)
0{ g

and we obtain the maximum height attained as:

1 av?
R 3 £n {1 + 2 v (275)

where Vo is initial velocity.

Thus the initial velocity required to reach altitude X ax will be

1/2
Vo= FER: [e 2p Cp Axmax/m-l] (276)
p D

2

Taking typical values, A =4 x 104cm » ' p=l.3x 10'3 C, ~1, m ~

s

5 x 10%g, for x « = 1/2km we obtain V_ ~1.3 x 10* cm/sec, which

ma.

indicates that the effect of air resistance is to increase the vacuum value
of Vo by 30%.

In order to attain this initial velocity, and accepting accelerations of

Gg on the vehicle, the length of the pneumatic gun is _Q?TO m. For a vehicle

10m long, an acceleration of G = 20 gives a gun 43 meters long. The gas
pressure required will be -mg + IPA =m Gg, orIP = %B (G+ 1). The case
above required IP = 2,6 atm. on the rocket engine base, This appears to be

a relatively simple requirement
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