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SECTION I

INTRODUCTION

The concept that spacecraft propulsion can be powered by means

external to the spacec raft has long been an att ractive but remote possibility.

The use of solar radiation to provide the energy r equired is compromised

by the low energy density of the radiation available at Earth orbit , thus

requiring gigantic focussing mirrors which could not be transported

through the atmosphere. Similarly, powering the spacecraft propulsion

system by microwave radiation requires ve ry large ground-based trans -

mitters and correspondingly large receiving antennae on the spaceur raft,

with the same attendant difficulties. Such suggestions have generalir been

relegated to the genre of science fiction.

The advent of the high -power laser forced a re -evaluation of the

exte rnally powered propulsion system. The collimated laser beam virtually

eliminates the requirement for large collectors , and the concept of stack -

ing a number of moderate powe red units in parallel allows one to achieve

the power level of 1 GW required for launching from Earth to orbit.

This repo rt covers analysis unde rtaken at Avco Everett Research

Laboratory, Inc. of the problems associated with the laser propulsion

concept. In Section II the trajecto ries of laser propelled rockets are

discussed , and it is shown that the most promising application of this

sy s tem is to laImching rockets directl y from Earth to geosynchronous orb it.

A laser providin g 10~ W would be capable of launching a br ennschluas

weight of 1 ton to synchronous orbit. in Section III the concept and

5



prope rties of the pulsed laser detonation wave engine are discussed. This

extremely important invention opens up the possibility of using pulsed

lasers , with their attendant advantages in electrical efficienc y and atrnos -

pheric beam propag ation. Its relative insensitivity to beam -thrust ang le

is an important benefit , and the potential of us ing solid or liquid propellant

greatly inc reases system flexibility. Although not strongly wavelength

dependent , we have discussed the breakdown phenomena of this engine in

the context of the CO2 lase r , our preferred embodiment. The laser

facility and equipment required is discussed in Section IV, and potentially

interestin g CW engines in Section V. hi Section VI the propagation of CO2

laser radiation through the atmosphe re and the rocket engine plume is

analysed, and it is shown that using phase corrections, a 1 GW beam at

A = 10. 6 jim is expected to propagate through the atmosphe re essentially

undistorted. The CO2 laser is considered here since it is the least expensive

high -powe r laser. Furthermore the bleaching of the CO2 absorption com-

ponent in the atmosphere is shown to be very significant for the pulsed CO 2

laser. Plume absorption in the high-altitude and mid-altitude cases turn s

out to be negligible for an H20 plume; in the low altitude case its mag -

nitud e depends upon the disputed H 20 absorptance at elevated temperatures

for 10. 6 j im radiation. In Section VII the economic considerations giving

promise to the laser propulsion concept are outlined.

6



SECTION II

POTEN TIAL PERFORMANCE OF LASER-POWERED LAUNCH VEHICLES

I. BOOST TRAJECTORY ANALYSIS

A laser-powered launch vehicle presents a set of performance

c apabilities and constraints which are quite diffe r ent to those familiar in

chemical booste r design. Because a lase’ -powered rocket engine (LPRE )

is not limited by the relatively low enthal pies per unit mass of working

fluid which are attainable in combustion , it may be possible to tailor the

specific impulse to the mission under consideration. It may also be pos -

sible to va ry the specific impulse during boost: in some engines , this may

require only variation of the mass flow rate , and in some other cases it

may even be possible to vary the specific impulse from the ground, by

control of the output characteristics (pulse repetition frequency and energy

per pulse)  of the laser.

On the other hand , boost must be accomplished while the vehicle is

within a range of the laser station which is dete rmined by the laser beam -

spread (du e to diffraction and atmosp heric effects ) and the size of the col-

lecting optics aboard the vehicle. Atmosphe ric absorption of the laser

beam may also dictate that the boost t rajectory be confined within a

specified zen ith angle , as seen from the laser station. Vehicle and engin e

design considerations may impose restrictions on the angle between the

line of sight from the laser station (i. e. , the laser beam) and the vehicle

th rust axis , or on variations in this angle durin g boost. Finally, because

the launching laser is a capital intensive system (see Section Vii) 
in7



which many of the costs are dependent on the laser output power , there

is a strong motivation to choose both the trajectory and the design param-

eters of the vehicle so as to minimize the power required to meet a given

mission objective with a payload of given mass.

At this early stage in the development of the laser launching system,

the objectives of boost trajectory analysis are:

1) To update classical analyses of the satellite launching

problems by incorpo ration of the new constraints.

2) To demonstrate the potential mission pe r formance capabilities

of a launching laser , on the assumption that efficient and

economical engines can be developed.

3) To provide inputs to engine design studies , by specific ation

of the power, mass flow rates , specific inpulse , ang les

between the laser beam and the thrust axis , etc. , which are

required to meet given mission objectives.

4) To dete rmine the performance penalties assoc iated with

various constraints which may be imposed to simplif y engin e

design.

5) To supply data needed for decisions concerning competing

approaches to system design and to allow tradeoffs between

capital and operational c ats as a function of the launch traffic.

The missions to be discussed in this section are:

a) Vertical ascent to escape velocity. This case , being relatively

simple , provides a good introduction to the power and range -

limited boost problem. As will be seen , this trajecto ry may

prove useful for some applic ati ons
.8



b)  Injection to an escape hyperbola at minimum power.

C )  Inj ection to a t ransfe r  ellipse to geosynchronous orbit (GSO).

Other possible missions for  laser  propulsion systems (e . g.

launch to low Earth orbit (LEO), orbit -to -o rbit t rans fe r , etc. ) and mission -

related issues (e . g. , techniques for  circularization of a t r ans fe r ellipse at

GSO, etc. ) are discussed briefly here and will be considered in mo re detail

in a future repo rt. Direct ascent to GSO was given prio rity for  study be -

cause ( 1 )  thi s orbital location is essential or hi ghly desirable for many

military and civilian application s, but present transportation costs are

very high ($20 , 000/kg ’); and (2)  as compared with laser-powered launch

to LEO , the specific impulse required is higher but it may be possible to

maintain collinearity of the laser beam and the thrust  axis of the vehicle.

The mission thus lends itself to the design of a s imple engine of high

pe rformance, providing suitable goal s for  laboratory demonstration in

the present  phase of engine development.

Since we are here concerned with broad pe rfo rmance objectives

rather than with precision guidance , it is unnecessary  as yet to car ry  out

trajecto ry calculations in the most painstaking detail. Nevertheless , the

question of t rajectory optimization has been addressed for each of the

above cases . Finding the optimal pe rfo rmance subject only to physical

constraints  is important not onl y in term s of the ultimate perfo rmance

of the system, but because it provides a refe rence against which the

costs of engineerin g constraints may be jud ged. Furthe rmore, optirni-

zation reduces the degrees of freedom in the gen e ral t rajectory problem

and may result in a simpler computation . When eng ineering constraints

are added (e. g . ,  constan t exhaust velocity), t ra jectory calculations often9



involve two -point boundary value problems in which the differential equa-

tions can be integrated only by numerical mean s, leading to tedious and

not necessari ly convergent iterative computations. In such cases , it is

very hel pful to have available rough values of some paramete rs , obtained

from previous analytic optimization calculations.

Unless otherwise indicated, in this section most quantities in the

equations are normalized by using the ux~its listed in Table 1. For future

reference, the values of the units for the moon as well as the Earth are

included in this table. The normalization procedure may in some cases

prevent dimensional checks of the equation s , but it avoids cluttering

them with unnecessary symbols and provides an inunediat e indication of

one relative significance of various terms.

10
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2. BASIC RELATION~~iIPS

It is assumed that the LPRE exhaust is well matched to ambient

pressure and that relatively little enthalpy is carried away from the

vehicle by the exhaust stream. In this ideal case , the exhaust power is

given by

1 . 2P = - —i- Inc ( 1)

where th is the rate of change of mass of the vehicle (so - th is the

mass flow rate through the engine) and c is the exhaust velocity.

The thrust produced is then

-. 2PF = ma = - mc = — (2 )

where  m is the instantaneous mass of the vehicle and a is the specific

thrust  (or “acceleration due to thrust ”) .

The specific exhaust power (i. e . ,  the exhaust power per unit

burnout mass) is given by Eq. (2) as

P
= 

~~ 
a 1 c 1 

(3)

where m 1, and a
1 

and c
1 
are the vehicle mass, the specific thrust and

the exhaust velocity just before burnout . An alternative expression may

be obtained by eliminating c in Eqs. ( 1)  and (2) which gives

2 22 m P = - m  a (4)

or
d i 2 (5)
dt km) 

- a

Integration gives

= 

~ ~~:o
1a

2dt (6)



where T is the duration of boost and

R = in /rn 1 (7)

is the mass ratio , with in the initial vehicle mass.
0

3. RECTILINEAR BOOST IN FREE SPACE

The specific exhaust energy (i .  e ,,  the total energy exhausted

during boost , divided by the burnout mass)  is given simply by

E/rn 1 = -
~~~~~

- r ( 8)
I

In desi gning a laser launcher , a suitable compromise must be found

between:

a) The power needed to boost a given pay load to the desired

mission velocity . In the early stages of buildup of a launch-

ing laser facility, minimizing the specific powe r will allow

• the smallest possible laser to be used to launch a given

pay load , and hence will minimize the initial capital costs.

As the facility grow s , operation at minimum specific power

maximizes the pay load which the laser can launch in a sing le

throw; this may become particularly importa nt if propagation

effects limit the ultimate laser power which can be trans-

mitted through the atmosphe re.

b) The specific impulse required of the engine. In general,

minimizing the exhaust velocity redu~:es the enthalpy per

unit mass in the thrust  chamber and xhaust stream , which

will normally simplify engine desi gn , especially with respect

to heat t r ans fe r problems.

13



c) The mass ratio of the vehicle . For probable propellant s ,

the fuel cost is likely to be a small component of overall

launch costs (cf Section VIII ) but it is nonetheless desirable

to minimiz e the fuel load because this reduces the structural

sophistication and hence the cost of the vehicle itself. When

gravity losse s are taken into account, the required mass

ratio is trajectory-dependent and henc e is not uniquely fixed

by the choice of exhaust velocity.

d) The energy consumed during boost. The direct energy costs

are expected to be quite significant in high throughput opera-

tions (cf Section VIII). Moreover, the maximum rate at which

mass can be injected into the desired orbit is clearly m1/ T ,

so that the maximum throughput of a g iven laser may be in-

creased by minimizing the quantity of Eq. (8). This perform-

ance criterion will become important only if and when the

traffic builds to a level which taxes the annual cap acity of

the launching laser, and it is, therefore, given a lower

priority in most of our present analyses.

The simplest case which can be considered is rectilinear boost

from rest to a velocity v 1 in a distance y
1 
in field-free space, with con-

stant exhaust velocity. The acceleration is then

th 2?v = a = - — c = — (9)
mc

which give s the rock et equation

( 10)
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In particula r , the mass ratio required for boost is

R = tn /m 1 = ev l /c ( 1 1 )

For this case , the specific exhaust power is found most readily by direct

integration of the equation of motion , using E q. ( 10):

0f

V

e
_ v/c vdv = c 2 

[i - ( l + ~~~~)e
_v

l~~]= 
~~~~ 

y1 
(12)

With E q. ( 10) ,  the specific exhaust power is then

3P 1 c v / c  / /— —i- — (e 1 - v 1/ c  - v 1,ic - 1)
1 1 ( 1 3)

1 v 31 (R - l n k - 1 )
- 2 ln 3R.

The specific power , normalized by dividing by ( 1/2 v~~/y 1
), is shown as

a function of the mass ration R in Figure 1. (In the curve labelled

“neg ligible tank mass ” .)

The burnout mass may be written

= m
~ 

in
2 

( 14)

where m~ is the mass of the propellant tanks and m
2 
the mass of pay load

plus engines , pumps, and other vehicle structure; these masses are

lumped together for this preliminary analysis because their relative

magnitudes differ markedly for the different types of LPRE to be dis-

cussed in lat er section s.

For pump-fed engines (i.e., tank s at relatively low pressure),

• the tankage mass may be approximated by a semi-empirical formula

i 2/3mt = A~ m,p ( 15)

‘5
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where p is the density of the propellant in the tank

rn is the mass of propellant

At is a numerical factor determined by the tank material

and tank pressure . A typical value for balloon tank is

7 (kg/n,~ )~”~

The propellant mass is

m m - m = ( R - l )rn (16)p 0 1 1
Thus ,

in
1 

= m 2/ ( 1 -  A
~

(R
~~ 1)/ p

2/’3 ( 17)

and , from E q. ( 13) ,

p i v 3 (R - l n R - l )  8
in

2 
- 2 y1 ln 3

R( 1 - At (R - 1) / P Z
~”3) 

( 1

The mass ratio dependence of this equation is also shown in

* Figure 1, for the propellants listed in Table 2. For the cryogenic

liquids , the value A
t ~~10 (kg/m ) has been used , to allow for re-

quired insulation.

TABLE 2. CANDIDATE PROPELLANTS

Density in Liquid Phase Boiling Point
Propellant (k g/rn 3) ( °K)

h ydrogen 70 20 .7
helium 122 4.6
nitrogen 808 77.4
water 1000 373 .0
oxygen 1140 9 0 ,2
argon 1402 87.5

17



While the details of these curve s depend on the tech niques used for

tank fabrication, it is clearly desirable to use a propellant which has a

hi gh density in the liqu id phase . As discussed in Section VIII, the launch

costs for this system are sufficiently low so that construction costs for

the propellant tank s can be significant , and this may require the use of

relatively unsophisticated and heavy materials and designs.

In order to minimize the exhaust power (and hence the laser output

power) which is required for a given mission, it appears that mass ratios

in the range 2 .5  to perhap s 7 (depending on the propellant) should be used .

In field- free space , the corresponding exhaust velocities range from

about the mission velocity down to about half that value*.

The energy consumed during boost may be calculated simply from

Eq. (8) . For constant exhaust velocity and constant power the mass

flow rate is
ZP

- m = —
~~

--- = constant ( 19)

from Eq. ( 1) ,  so the mass of the vehicle at time t is

2Pt n = m - — t  (20)
c

In particular, the duration of boost is

2 in mc 1 2 l . 1  2 ( R - 1 I-i-p ( n-i
0 - m 1

) = -
~~~ (R - l )c  —p-- — -~~v 

In 2R. ~~ (2 1)

from Eq. (11). Thus, from Eq. (8),

= ~J_. ~~ (R-  1) (22)
in 2 21 I n R

These figures will require modification when gravity losses
are taken into account , in the following sections.

18



The effect of propellant tankage may be taken into account by

rep lacing m1 by in 2 from Eq. (17) ,  as in the power calculation above ,

to obtain

.4. ~~~~~ ( 1 - At (R - 1) (23)

This expression , normalized by dividing by the kinetic energy

i/z  v 2 per unit mass m 2, is plotted in Figure 2 for the candidate pro-

pellant s of Table 2. Comparison with Figure 1 shows that maximizing

energy efficiency requires generally lower mass ratios than does mini-

mizing power requirements . A good compromise is a mass ratio near 3.

The implications of these  result s for engine desi gn are considered

in Section ill.

4. VERTICAL ASCENT TO ESCA.PE

The problem to be considered here  is that of vertical , rectilinear

boost from rest at the laser station to escape velocity at an altitude y 1

above the planetary surface . Aerod ynamic effects kind planetary rotation

are neglected .

Vertical ascent is not the power-optimal trajectory for escape

missions (and certainly not for insertion into lower orbits) .  It is however ,

the only t rajectory in which it is possible for both the beam/thrust ang le

to be zero and the laser beam stationary. If slewing of the beam is not

required to avoid atmospheric thermal blooming (cf Section VI) , these

characteristics of the vertical trajectory may allow simplifications in

the eng ine design and in the laser pointing and tracking systems which ,

in terms of costs , offset the slightly higher  laser power level require-

merits. One long- range application in which these trajectory may be of

19
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interest is the use of a laser station on the moon to provide power for

routine t raff i c to and from the laser surface , allowing economical ex-

ploitation of lunar resources when space industrialization is well under

way.

In any case , the vertical trajectory is the simplest case in which

it is possible to take realistic account of gravity losses during ascent .

Some usefu l conc lusions can be drawn and the analysis provides an in-.

troduction to the techniques needed in discussing t rajectories which ma~

have broader operational utility.

a. Power- Optimal Vertical Ascent

We first  consider how the thrus t  of the LIPRE should be varied so

as to minimize the peak exhaust power required to boost a given payload

to escape velocity at an altitude y 1. It should be clear that boost

should be at constant power if peak power is to be minimized , and this

condition will be assumed without further discussion (it can , of course ,

be demonstrated rigorously) .

This problem can be solved by elementary technique s of the

calculus of variations. However , having in mind more complicated

trajectories  which will be considered in later sections , optimal vertical

ascent will be set up formally as a problem of Mayer in variational

calculus. For conv enience in following the argument , a slightly simpli-

fied general formulation of the problem of Mayer and of the technique

for solution is set forth in Derivation Summary 1 -

The equations of motion for vertical ascent and the power condi-

tion (E q. (4) )  are  writ ten as f i rs t  order  differential constraints:
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y - v = 0 ( 24a)

= v -  g -  a =  0 (24b)

2 2
~~~3 - r n+  

m
2
~~—~ = 0  (24c )

where, in the units of Table 1, the gravitational field is

g = - l/(1 + y)
2 ( 25)

The initial conditions are

t 0 1  y = 0  ( 26)
V =~~~

DERIVATION SUMMARY 1: THE PROBLEM OF MAYER

Consider the class of functions

Zk(t ) k = l  

satisfying the constraints

~~.(t , Zk, Z ,)  = 0 j = 1 , p <  ii

which allow f n-p degrees of freedom. Assuming that these functions

must be consistent with the initial conditions *

~‘~r ~~~ Zk ) 0 r 1 , q (27 )

and the terminal conditions

Wr (T p Zkl
) = 0 r = q + 1 s :S 2n+ 2 (28 )

find that special set which minimizes the pay-off function

= [G(t, zk)] ( 29)

0

*The subscripts 0 and 1 refer to initial and
terminal point s, respectively.

22



To solve this  problem introduce a set of variable Lagrange multipliers

X . ( t~ and form the augmented function

P
F = ~~ X j ~~j (30)

j = 1

The extrema l arc  ( i . e . ,  the curve in - space which gives an

extren-ial value to ~,) must satisfy,  not only the constraint s (28) ,  but also

the Euler- Lagrange equations

( 8! ) 8F k = 1  , (3 !. )
&Z k k

E quations (28 ) and (3 1)  constitute n +  p equations , allowing (in principle)

the simultaneous determination of the n dependent variables Z k and the

p Lagrange  multipliers X .

If the augmented function F is formally independ ent of t , a f i rs t

integral  of the Euler- Lagrange equations is available

C = — = constant (32)
k = 1  k

The system of E qs . (28) and (3 1)  are  subjected to Z n +  2 boundary

conditions , of which s are  supp lied by Eqs . (27 ) and (28) and Z n +  2 - s

by the t ransver sali ty  condition, which (fo r F formally independent of t)

reads 
1

[do 
- Cdt + ~~ 8F dZ

k] 
0 ( 3 3 )

k = 1  8Z k 0

This condition at the initial and terminal point s is to be satisfied

identically for all infinitesimal displacements which are  consistent with

E qs.  (27 )  and (28) .
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It sometimes happens that the solution to this variational problem

involves point s along the extremal arc (called corners)  where  some of

the exhibit jump discontinuities. In such cases , the extremal arc

may be pieced together from the segments between corners (called subarcs)

by making use of the Erdrnan-Weierstrass corner conditions, which state

that the fi r st integral C should have a constant va lue throughout the ex-

tremal a rc  and that

k = 1  n (34 )
aZ k

should be continuous across each corner.

The escape velocity at the specified burnout altitude y 1 (see

Appendix A) gives the terminal conditions

y = y 1
______ 

(35)
1 2V v 1 =

The variational problem may now be formally stated as follows:

Among t the four functions y(t), v(t) ,  a(t) and m(t) which are consistant

with the three constraints (24) and with the boundary conditions (26 ) and

(35 ) ,  find the set wh ich minimizes

~~G = G  - G (36)
1 o

where

G=P/M (37)

so

= —~- - —a- = -.L fR  \~ (38)
in m in R1 o
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‘il
For a given mass ration , minimizing C is thus equivalent to mini-

mizing the specific exhaust power . Comparison with (6) sh ows that

= + f  a2dt (39)

We introduce Lagrange multipliers A 1’ 2’ A and set up the

augmented function

F = X 1 
(
~~- v) + X 2 (~~-’ g -  a) + ~3(~++ m~~~

2) 
(40)

and derive , according to (3 1), the Euler- Lagrange equations

= -A 2 ~~ (4 1a)

= -A 1 (4 1b)

2m aA 3 = X 3 (4 1c)

* ° = 

~~~2 + ~~3 p (4 ld )

Since (40) is fo rmally ind ependent of time, a first integral of these

equations is given by the formula (39) :

2 2
C = 

~ 
v + A 2 v - -5 A ~~ = constant (42 )

The transversality condition (33) reads

[ ~~~ din - Cdt + X
1dy + X 2

dv + X 3dm] = 0  (43)

Since y and v at the initial and terminal point s ar c fixed , this

reduces to 
i

[(x 3 - -;
~~

-) d i n -  Cdt] = 0  (44)
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which implies

C = 0  (45)

X 3 = 
~~

2 a t t = r a n d  t = o  (46 )

Using Eq. ( 24c) in Eq. (41c) gives

- -
~~~~~~~ (47)

whose solution , meeting the boundary condition (46 ) ,  is

PA 3 = 2 (48)
m

with this result , (4 1d) gives

X 2 = a  (49)

and (4 1b) and (4la)  then gives

a - = - X~ = X 2 f- alL  (50)

The first integral (42) now yield s

av -
‘ av = + a2 (51)

At t = o, for v = o , give s

v = - ~~ — a (52)
0 2 0

and the equation of motion (24b) reads

a - g - a  = 02 0 0 0

or

a = - Zg = 2 (53)
0 0
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The vehicle thus departs with an initial upward acceleration

which is equal in magnitude to the local acceleration of gravity .

Equation (51) may be integrated aga in, by writing it in the form

(av - áv) = -
~~~

— 
(.

~~) 

-4 (54)

with solution, meeting the initial condition v0 = o ,

v = - 4— at (55)

The equation of motion (24b) may now be written

Zvv -  -j r— = g  (56)

or

.i ~I’.L~ - _&._. (57)dt —

Numerical integration of this equation is inconvenient, because

(as may be seen from (53) and (55) ) v/t 2 is infinite at the origin. We ,

therefore, introduce a new variable q in place of a, by the relation

a 2(1 + qt) (58)

which automatically gives the correct initiated value (53). Equation (55)

then becomes

y = v = . 4 at = t + q t 2 ( 59)

and the equation of motion yield s

v - a  1 +  Zqt qt 2 - 2 - Z qt
(6 0)

qt 2 - 1 = g

‘l’he equations to be integrated are now

ci = ( 1 + g)/t 2 (6 1a)

y =  t +  qt 2 (6 lb)
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with the initia l conditions y = y = o at t = o. The initial value chosen

for q will set the altitud e at which escape velocity is rea ched .

1) Constant Gravitational Field

If the gravitational field may be taken as constant

g = g 0 = - l  (62)

the (61a) shows q is constant and

~~=t  q t 2 (6 3)

with solution

y = _4t 2 
+ —4 q~t~ (64 )

At the burnout time r, we require, from (35) and (63)

V
1 = 

~~l + y  = r +  q r 2 (65)

so that

= (v
1 - 7.)/7.2 (66)

substituting this in (64) give s

~~~ 
7.2 

+ 
~5 r ~~ 2 - y 1 0 (67)

which may be solved to give the duration of boost as a function of the

range at burnout .

The specific exhaust power Is given for this case by (6) and (58)

as
7-

P 1 R t 2
-

~~~~

- = - -

~~~ ~~~~~~~~~~ 

a d t  
*
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= R -  ~ 
(1 + q t ) 2 dt

= 4 R - 1  
~~~ 

[u+ q0’r) 3 _ l]

(6 8)
2 R r 2 f ( V 1

S~ 

~= 3 R - I v 1 - 7. \\ 7 .)  
-

1 3  3
2 R 1 

_ _ _ _ _- R - 1  r kV i - T

2 R 1 2 2
= T R - 1 T (v 1 + v17. + T

The result s are shown in Figure 3, for R 3.

2) Linear g

As a next approximation, we r etain the linear term in a Tay lor

expansion of the gravitational field (25) about the origin

g = - 1 + 2y + . . .  (69)

This case may also be handled without numerical integration.

The Eq. (50) for the optimum specific thrust program reads.

a -  Z a = O  (70)

with the solution, satisfying the initial condition (53),

a = 2 cos h .J~t + B sin h ../2 t (71)

where b is a constant, to be determined. The equation of motion may

now be writt en

y = g + a

= -1 + Zy + 2 cos h ‘~/ �t+ B sin h J�t

or 
(72)

y - 2 y = - 1 + 2 c o s h~~J~ t + B s i n h~~.J~t

with tl~e solution , meeting the initia l conditions
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y = -4 (1 - cos h ‘.12 t) + —~ t sin ‘TZt - ÷ B(sin h.f~ t - cos h ~J�t) (73)

The velocity is given by (55) or by differentiation of (2.  71) as

= t cos h ‘~f2 t + +B t sin h ~Jz t (74)

Eliminating B from these equations at t = T gives

y 1 = -4 (1 - cos h ‘. I�r) + sin h ’J ~ T - +
(sin h ~J �T- ~ f 2 7  co sh ’~J2)~~ (v

1- ‘T c o sh ’~J~ r

T sin h ~~~

= 

1 
[sin h~ ./�r - ‘~J~T -v  (_L s i n ht . [27.

2 sin h~ J2r 1 T

- ‘J� cos h .
~J �r) ]

where  v 1 = 
2 This equation may be solved numerically to givey l

the boost duration as a function of the range at burnout. We also have

2(v - T C o s h ’J�T )
B =  (76).

T si n h’~[2T

The specific exhaust power is now obtained from (71)

P/rn 1 = -4  R - 1  f  a2dt T R _ l f E 4 c o 5 h ’
~
1�r

+ 2B sin h 2 ‘~�r + B2 sin h 2 
~J2r J dt

(77 )
= 

I R [sin h 2~ � 7- + 2’.l�r +B (cos h 2~J’� T - 1)
2’J~ 

R - l

+ 
1 B2 (sin h 2’.J~ r - 2..J~~ ))
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The result s of this calculation are also plotted in Figure 3, for R 3.

3) Inverse - Square ~

Finally Eq. (61) may be integrated numerically, using the

expressions (25) for g. The range at burnout and the boost duration

corresponding to a chosen initial value of q may thus be calculated . The

corresponding specific exhua st power is found by numerical integration

from (6) :

P/rn 1 = .4 ~~ R
1 J a

Zd t =  R~~ 1 f(1+~~t)
2

dt (78)

The result s are shown in Figure 4 , for R = 3. As one would ex-

pect , the linear- g model is a more accurate approximation than the

constant- g model and will be used most frequ ently in the calculations

which follow .

For launch from the Earth , it is not expected that ranges at burn-

out in excess of about 0.25 radii (—1600  km) will be practical , because

of laser beamspread due to diffraction and atmo spheric effects . For the

baseline vehicle, with a payload of about one ton, a burnout range of

1000 km (- 153 rad ii) has in fact generally been used in studies to dat e.

For launch from the moon, however , boost out to ranges in excess of

0. 5 radii (— 870 km) is optically possible, although other limitations

may be encountered (see Sec. il.4.b.)

Multiplying the value of specific exhaust power obtained from

Figure 3 by the appropriate value of g0v~0 from Table 1 will give the

power requirements in megawatts per ton of payload . The laser output

power will then be obtained by taking into account the efficiency of the

engine and the transmission losses to the vehicle.
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The total exhaust energy expended during boost , per unit payload ,

may be calculated simply as the product of the specific exhaust power

and the boost duration. As listed in Table 1, the unit of energy used

here is equal to the surface escape energy (per unit mass) and hence the

curve in Figure 4 may be regarded as giving a direct measure of the

energy efficiency of the boost process. For a mass ratio of three, the

energy expended during power- optimal boost is at least twice the final

kinet ic energy of the payload .

From Eq. (2)

P 1
— =  — a c (79)
m 2

so that Eq. (5) may be written

d 2(ac) = a (80)

with the solution

C(t) = —i-- [ac + f  a
2
dt]

° (81)

=

~~~~ ~T~~f a2dt]

from Eq. ( 79) . Using the expression (58) and the differential Eq. (61),

the exhaust velocity program required to give a power- optimal thrust

history may now be calculated (ana lytically only in the instant - g and

linear - g approximations).

U sing Eq. (53) ,  the initia l exhaust velocity is found from Eq. (79 )

to be simply
a P 1 P

= a m Rig 1 ~~~o o o 1 ( 82)
I P

R i g 01 in
1

so that , for constant mass rat io R , it. dependence on the burnout rang e

Is simila r to that for the normalized exhaust power , shown in Figure 4.
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Wh en the calculation represented by Eq. (8 1) is carried out , it is found

that , during boost to short burnout ranges , the required exhaust velocity

starts at a high va lue , decreases to a minimum, and then rises to a final

value which is less than that at lift-off. As the burnout range is increased ,

the initia l exhaust velocity decreases , the final exhaust velocity increases ,

and the minimum shift s to an earlier time in the boost , until eventually the

exhaust velocity becomes a monotonic increasing function of time . This

behavior is summarized in Figure 5 which shows (in linear- g approxima-

tion) the initia l, final and minimum exhaust velocities as functions of the

range at burnout . The cross-hatched area gives the range of exhaust ye-

locities of which the engine must be capable , in order to allow power-

optima l vertical ascent to escape , with a mass ratio of 3. It appears that

both the maximum required exhaust velocity and the variability in the ex-

haust velocity may be m1nimi~ ed by choosing a burnout range of about 0. 22

planetary radii (for the Earth, e, 1400 km).

The principal disadvantages of power-optimal vertical ascent are

(i) the relatively high and var iable exhaust velocity which is required;

and (ii) the energy inef ficiency of the process , as shown in Figure 4. As

will be shown, the power (and hence capital cost) saving s from power

optimal vertical ascent , as compared to operation at constant exhaust

veloc ity, are insufficient to offset these disadvantages.

b. Vertical Ascent to Escape at Constant Exhaust Velocity

With c constant, Eq. (2) give s

ma = m a  -mc -~-~ - consta nt (83)
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0
So

th = - in a / c  = constant (84)
0 0

and

m n-i + tht
0

(85)
= m0 (1 - t/~ 0)

where
T = -m /m c/a (86)

Then Eq. (83) gives

m a  a
0 0  0

a =  
m 1 - t / r

The thrust program is thus determined by a and 
~~~ 

or , equiva-

lently, by choice of the exhaust velocity and the lift-off acceleration.

The mass ratio is found from Eq. (85) at burnout (t r) to be

m a
R -- - -2  - 1 

- (88rn - 1 - T / T  a1 0 0

The boost duration is thus determined if R and T
0 

are specified .

The specific exhaust power is found most simply from E q. (83) at

t = 7 as

p 1— a c
in

1 
2 1

(89)
1 2

= — R a  r2 0 0

from Eqs. (86) and (88)

The problem is to choose the parameters a and T so that (i)

escape velocity is reached at a specified burnout range y 1; and (ii) the

mass ratio has a specified value . This , of course , requ i res  integration

of the equations of motion, which are

y = g a

____ 

a0 (9 0)
= - ( 1 y ) 2 1 - t/ r 0
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Once again , we consider three approximations to the gravitation

field:

1) Constant Gravitational Field

The equation of motion is now

y = -1 + a /( l - t/i- ) (91 )

which , with the initial conditions y = y = o at t = o, integrates immediately

t o giv •~

y -t - a0~ 01n( l - t/r 0 (92 )

..- ‘~ ir t egra te ’  again to give

y - -
~~ t 2 + a T 2 [(1 - t/7 ) ( i n  ( I  - t/ T ) — 1) + 1]

(9 3)

= - -
~~ t 2 

~ a r 2 
~
( I - t/7- ) i n  ( 1 - t/T ) + t/T

]

At t r , these bec ome , using E q. (8~~,

V = 7 [a In  R - I + -~ — I1 0 1 0  R j

y l = 7- 1a (R - l n  R - 1) - 1 R -  1 ) 2] (9 5)

Eliminating a betwen these equations gives

~~ 2 (R - l) f R - l n R - 1 1 R 1o R2 L~~~~~1nR 2 -

(96 )

(R - ln R. - 1
o 1 R l n R

With the escape velocity v1 given as a function of the burnout

altitude y 1, this quadratic equation may be solved for ~~~ Equation (94)

then gives a0 and Eq. (89) the specific exhaust power. The result s are

shown in Figure 6.
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As the burnout range increases, the initia l acceleration decreases .

The curve shown terminates when a = I (lift- off limit).

2) Linear and Inverse-Square Gravitational Field

In the linear- g case , the equation of motion becomes

y - Zy = - l  + a /( 1 - t/r ) (97)

While this equation may readily be reduced to quandratures , the
e~~~t

particula r integral contains exponential integrals, of the form 
~ 

dt ,

which cannot be expressed in terms of elementary functions. Sinc e

numerical integration of the euqation of motion is required in any case

in the inverse- square case , it is simpler to write it as

= g +  a0/(l  - t/ r ) (98)

and , in the Runge-Kutta integration procedure , merely put

g = -1 + Z y (99a)

or

g = - 2 
(9 9b)

(1 + y)

to cover the two cases.

In order to meet the desired terminal conditions (achievement of

escape velocity at a specified range and mass ratio), an iterative proce-

dure is required in order  to correct assumed va lues of a0 and in the

integration of Eq. (98) . The constant - g ana lysis , above , can , however ,

provide good approximate st.~rting values for these parameters.

For the purpose of plotting the specific exhaust power as a func-

tion of burnout range , the problem may be simplif ied by choosing values

of a priori , on the baste of the constant - g calculation , since it is
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not necessary to specify in advance the exact burnout ranges at which

the data point s are obtained. The problem then reduces to choosing the

appropriate value of a0.

Onc e T is chosen the Runge-Kutta integration may be carried

out to a fixed time

T = T (
R

R
1

) ( 100)

from Eq. (88), using an assumed a0
. In general, the calculated velocity

at this  time will not be euqal to the escape velocity at the calculated

altitude ,

In order to find a correction for a , it is sufficient to use the con-
0

stant - g ana lysis . According to Eqs. (94) and (95) , the effect of a change

~~a in a on the terminal velocity and altitude is
0 0

Av = ~r ln R Aa ( l O l a )
1 o 0

= ~~Z ( R -  m R  
~~Aa ( l O i b )

At the end of the integration, the error  in the calculated velocity is

( ~ _ 4j 2 ( 102)
1

where v 1 and y 1 are the calculated values. If we change a0, the change in

E will be ,

~ E = A V
1 + 

~~~~ 
(1 4 - y 1) 3/2 

~~“l
( 103)

= [T l n R  
~j ~

- ( 1 + y j T3/2 7-0
2 (R - 1fl

~
R _ l ) .~ia ]
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In order to reduce c to zero, we, therefore, choose

~~a = (~u i +
2
~~1 

- v
i)/[r

In R —i- (i + y 1) 3/2 T
2 (R - l n R  - 1)] ( 104)

The result s of the calculations are also shown in Figure 6 , t h -  curves

again terminating when a0 = I .  It is interesting to observe that , in order

to have a positive acceleration at lift-off , the maximum burnout range which

can be used is about 0.45 planetary radii (obtained from the inverse-square

calculation) . To use longer ranges , if t h t t  were desired , it would be neces-

sary to change the exhaust velocity in the early stages of boost , or perhaps

to use a small chemical rocket to get the stage moving.

Figure 7 shows a comparison of the power curves calculated for

optimal and constant- c vertical ascent to escape , using the accurate (in-

verse square) expression for the gravitational field . The important result

which has been obtained is that th e power savings effec t ed by the powe r-

optimal thrust  program are quite negligible , at least for this mission.

It is much more important to maximize the range at burnout than to use

the power- optima l ascent profile .

The curves given can of course be converted from the normalized

units to conventional units by multiplying the abscissa by to , the planetary

radiu s , and the ordinate by g v .  Figure 8 shows the power requirement s

for vertical ascent to escape (with R = 3) as a function of the range at

burnout for the Earth , Mars and the Moon , the curves terminating at the

lift-off  limits. It is Intere st ing to observe that a launching laser for use

on the Moon , with a vehicle of constant exhaust velocity, can use a range

of only up to about 750 km. At this range , the power requirements are only
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4
about 10 MW/ton , two orders of ma gnitude less than for launch from the

Ear th with a similar burnout range .

The exhaust velocities required to achieve the performance of

Figure 9 may, of course , be calculated from and a0. The result s are

shown in Figure 9. The values obtained are always considerably less (by

20% or more) than the peak exhaust velocities required for optima l ascent ,

as shown in Figure 5. Nevertheless, for the Earth , vertical ascent to

escape, with a mass ratio of 3, requires that the engine delivers a specific

impulse in the range 1000 —1300 sec.
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5. POWER-OPTIMA L ASCENT TRAJECTORIES

This section presents an investigation of the problem of range -

limi ted , laser -powered boost from a launch site on the planetary surface ,

so as to achieve desired orbit injection conditions while minimizing exhaust

powe r (and he nce laser powe r requireme nts). The assumptions on which

the analysis is based are as follows:

I )  The launch site is immediately adjacent to the launching laser.

2) At boost initiation, the launch vehicle has zero ve locity.

3) The ascent traje ctory lie s in a vertical plane through the laser

station.

4) Because of laser propa gation limitations, the boost trajectory

must be contained within zenith angle s I e1 and range p 1 from

the laser station . Within this fan-shaped area , attenuation of

the laser beam by absorption, beamspread, etc. ,  may be ne g-

lected.

The present analysis is limited to cases in which the mission objective s

are such that it is not necessary to specif y in advance the flight path angle at

burnout . In particular , the following missions are conside red in detail:

Mission A: Injection to an Escape Parabola

The velocity required at burnout for escape is give n (in the units of

Table 1) by (see Appendix A)

V 2 
-

~~
— (105)1 r 1

where r
1 is the geocentric radius at burnout, given in turn by

= 1 + p1
2 

+ cos (106)
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Any flight path angle at burnout (at least in the range - < <

is acceptable for this mission. The optimization procedure will select that

value of for which the required specific exhaust power is minimized.

Mission B: Inj ection to a Transfe r Ellipse to Geosynchronous Orbit

For this preliminary analysis, it is assumed for simplicity that the

launch site is equatorial. Furthermore , the chosen transfer ellipse is con-

tangential with GSO at apogee - this is the simplest , but not necessarily the

optimal transfer orbit . As shown in the Appendix, the required injection

velocity is given by

V 1
2 

= 2(~ — - _ L_ ) / [ l  - 
1 sin 2(y - 

~ l~
) (107)

where

ra = 6. 625 is the radius of GSO

is the geocentric angle tra versed during boost, given by tan

p 1 sin e1/(1 + p 1 cos e~
) (108)

For the ranges at burnout considered here , the velocity give n by

Eq. (107) varies by only about 1.5% as is varied through all possible

values . As is not specified a priori , it is sufficient to start with the

approximation

V 1
2 

~~ 2(..L - 
~~~~ 

(109)r 1 a

A trajectory calculated on thi s basis will yield a value of y 1, which

can then be used to correct V 1.

Notice that Mission B reduces to Mission A if we put ra =

The optimization procedure will select that transfer ellipse for

which the required exhaust power during boost is a minimum. In prac tice ,
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it may be necessary to impose additiona l constraint s on the transfe r tra-

jectory - for examp le , it may be required that the transfe r ellipse have

an exoatmospheric peri gee , to avoid impacting t~~ Earth if in the eve nt of

a failure to circularize the orbit at geosynchronous altitud e . Such con-

straints will gene rally lead to specification in advance of the flight path

angle at burnout.

Another example of a mission in which the fli ght path angle is

specified is, of course , injection to circula r orbit at the burnout altitude .

These and other possible missions for laser propulsion systems are

d iscussed briefly, and will be conside re d in detail in a late r report .

It should also be noted that the optimization procedure for  Mission B

which is presente d here minimizes the exhaust power per unit mass at burn-

out . Whethe r or not this minimizes the laser power required to inject a

given payload into geosynchronous orbit depends on the technique used to

ci rcular ize  the t ransfe r  ellipse at apogee. If a chemical kick stage is used

for this purpose, the mass ratio for circularization depends strongly on the

velocit y at apogee , which is given by (see Appendix)

2r2 
= 

p 
(110)a r (r + r )a p a

where r is the peri gee of the transfe r ellipse . The problem of minimizing

the laser po’ver per unit payload in this case is also beyond the scope of the

present analysi s. Other technique for circularization will , however , be

briefly considered below.

a. The Optimization Problem

The problem under consideration may be stated as follows: Given

the desired range p 1 and zenith angle 01 at burnout , together with the
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injection conditions listed above for specific missions, find the thrust vector

control low (and hence the ascent trajectory) which minimizes the (constant)

exhaust powe r required for a specified burnout mass m 1 and boost mass

ratio P .

As in Section II. 4. a , the calculation may be set up as a problem of

Mayer in va r iational calculus . Choosing the Cartesian coordinate system

shown in Figure 10, with ori gin at the laser station, the x2 -axis vertical

and tht x
1 
-axis in the trajectory plane , the equations of motion are f i rs t

writ ten as f irs t-order differential constraints :

= v 1 
- * 1 0 ( l i l a )

( I l I b )

v
1 

- g 1 
- a 1 = 0 ( I l i c )

4) 4 = V
2 

- g 2 
- a 2 = 0 ( h id)

where

g 1, g2 are the compone nt s of gravitation

a 1, a 2 are the specified thrust components.

In addition , we have the power condition (4):

4)
5 

= rn 2a 2 2mP = m 2(a 1
2 a

2
2 ) 2xnP = 0 ( I l I e )

In all cases, the initial conditions are

= = v 1 = v 2 = 0 at r = 0 (112)

The final conditions depend on the specific mission. If only the burn-

out velocity ~fT (and not the flight path angle) is specified , as in Mis . ions A

and B, the n we have
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..~1

2 
~~2

2 
= .J_1~

2 (113)

at t = T , the boost duration. Variations in the velocity components at burn-

out ~ re allowed but , by Eq. (113),  they must be related by

v 1dv 1 v2dv 2 0 (t = r)  (114a , b)

Since the range and ze nith angle at burnout are specified, we also have , in

all cases

d = d = 0 (t r )  (115)x x
1

The va r iational problem may now be stated formally as follows :

Amongst the seven functions X 1(t), X 2
(t), v 1(t), v2 (t), a 1(t) , m(t) which

are consistent with the five constraints ( 111) and the boundary conditions ,

f ind the set which minimizes the payoff function

~ G = G  - G  (116)f 0

where

G = P/m ( 117)

so

~ G = P/rn1 (~~~~~
1 ) ( 118)

As in Section Ill . 3. a , we introduce variable Lagrange multipliers

(i = 1, 2, 3, 4, 5) and form the augmented function

F = X 1(v 1 
- 

*.i ) X 2(v 2 
- x 2) 

~3~”i - g 1 - a 1)

2 2 2 (11 9)
- g2 

- a 2 ) X 5(m (a 1 a 2 ) 2thP)

The Euler-Lagrange equations of the problem are obtained of the

problem are obtained by applying the formula (31), to obtain
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= A 3g~ ~ 
A4g2 ~ 

(l2Oa )

A
2 

X~ g~ 2 X4g2 2 ( 12Db)

= A~ ( 120c)

- 
A

4 ~~A2 ( 120d)

0 = - it
3 

2a 1m 2X5 ( 120e)

0 = - A~~ 2a 2m2 X5 ( l Z O f )

2PX~5 = 2rn(a1
2 a 2

2 ) A5 = 2ma 2 A 5 (120 g)

where ag1g 1, ~ 
= etc .

x 2
Since Eq. (119) is formally independe nt of time , a first integral of

these equations is give n by the formual (32):

C = - A 1v 1 
- X2v2 X3v 1 X4v2 - A5m2a 2 (121)

The transversality condition (33) give s, with Eq. (117).

- -
~~~~ dm - Cdt - A 1dx 1 - X2dx 2 X 3dv 1 A4dv2

F

ZPX 5 dm = 0 (122)

0

In all cases, this yields

C = 0  (123)

= - 2 Ct = r )  (124)
2m

L -



For missions where the burnout flight path angle is unspecified,

Eq. (1 14a , b) give s an additional boundary condition from Eq. ( 122):

A3v2 
- A4v 1 0 (t = r )  ( 125a , b~

Using Eq. (1113),  Eq. ( lZ O g) may be written

mA 5 + 2rh it 5 - 0 (126)

with solution, meeting the boundary condition (2.  120),

it
5 

= (127)
2m

Then Eqs. ( lZO e ) and (120f) give

it 3 = a 1 (128a )

)t
4 

= a2 ( lZ 8b)

This result allows Eqs. ( 120e ) thru ( 120d) to be consolidated in

tensor rotation as

= g , 1a~ (129)

where ~he suffixes take on the values 1, 2 and repeated suffixes are summed.

If the gravity gradients g~ , i may be neg lected (i . e . ,  in consta nt-g

approximation), the solution to Eq. (129) is

a. = A . + A .t (130)
1 01 11

where A01, A1. are constants.  The angle between the thrust vector and the

laser-stat ion vertical is the n give n by

A + A t
tan 4) = a 1/a2 = A + A t  (1 3 1 )

oZ 12
which is the well-known optimal thrust-steering law of L~wden.
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In the gene ral case , we ha ve now found expressions for all of the A1
in terms of the variables of the probL~m. They are collected here for

future refe re nce , followed in parentheses by the equation numbers whe re

these results were obta ined:

A 1 = ( iZO c ) ,  ( 128a) ( 132a)

it2 = a 2 ( 120d), ( lZ8b)  C 132b)

A 3 = a~ ( 12 8a) ( 132c)

A4 a 2 (12 8b) ( 132d)

2 (129) ( 132e)
2m

With Eq. (123),  the first  integra l (121) may now be written

a 1v 1 - a 1v 1 + a 2 v2 - a2v2 
- ~~ a2 

= 0 (133)

It will sometimes be useful to write this in vector notation, as

= a - v (133a )

The equations of motion (Ilic) and (h id) are , in this notation,

(134 )

Substituting this in Eq. ( 133a) yields

3 - a2 + a . a . = 0 (135)

At lift-off , when ~ = 0, this yields the important result

= _ / a  (t = 0) (136)

or 

a0 = a~g0~cos 4)
~~ 

(137)
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where is the initial thrust angle. In other words , the initial specific

thrust is equal in magnitude to twice the compone nt of gravitation along

the initia l thrust direction.

Since a 2 
= a 1

2 a 2
2 , the first integral ( 133) may also be written

a~~
2 (

~ 
(—i- ) - 3-) a2

2 
(
~~~ 

(—.
~

.) - 3-) = 0 (138)

Sufficient (but not clearly necessary) conditions for the validity of

the f irs t  integral are thus

d V
1 ~

~~ 
( 139a )

~~~ (~~~~
.) = 3- 

( 139b)

with the solutions

(3- t + c 1) a 1 
( 140a)

v 2 = (3- t + c2 ) a 2 
(140b)

where c 1, c 2 are constants .

The boundary condition (125a , b) which is specific to the present

case , in which the flight path angle at burnout is not constrained a priori

may be wr itten

a 1v2 = a 2v 1 Ct r )  (141a , 1,)

Note that thi s states that the thrust vector is parallel to the velocity

vector - i. e . ,  tangential to the trajectory - just before burnout . Inserting

Eq. (1 10) in Eq. (141) gives
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.4
(3- + c 2 ) a 1a 2 (3 T + c 1) a 1a2

or

C
1 

= C
2 

(142)

so that Eq. (140) become s

V = (3. t + c 1) a  ( 143)

At lift-off (t = 0), v = 0 , so

c 1a0 = 0 (144 )

Comparison with Eq. (137) shows that (unless the initial thrust vector

is horizontal), c 1 = 0 .  We thus obtain the optimal specific thrust program

a (145)

so that the thrust is tangential to the trajectory throu ghout boost , not just

at burnout . The trajectory is thus flown at zero angle of attack. Thi s re-

suit may be compared to the law (55) found for optimal ve rtical ascent .

The equation of motion (134) may now be written

v~~~~~~v = t 2
~~~~~(4 v ) = i  ( 146)

Near lift-off , where £ g0 , this equation may be solved explicitly~

= - g0t + ~~0t2 (147)

where Is a constant vector. From Eq. (145), the thrust program is then

a = - 2.g~, + 2~~0t (148)

In particular at lift-off ,

a = - 2 &0 (149)
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so that the lif t-off is vertical , with an initial net upward acceleration of

I g. Note that this is a special case of Eq. (137).

According to Eq. (145), the optimal thrust is always parallel to the

vehicle veloc ity. Since the lift-off i8 vertical, this may seem to imply that

no thrust can de velop in the x 1 - direction, but it is clear from Eq. (148)

that this is not true if has an - component.

The optimal trajectory problem is now readily solved in the consta nt-g

approximation - i. e ., if we write

= [ ] (150)

At burnout, the vehicle velocity is given by

v~ = + = q~ 1r4 + (r  q 02 T 2) 2 (151)

from Eq. (147). Integration of Eq. (147) give s

1 2 1 3
C = - ~~g~ r + ~~

- q0t (152)

or , at burnout ,

p1 sin = 3 .q01 r3 ( 153a)

p 1 cos 01 = 3- 2 
+ 3 - q02 r 3 ( 153b)

Give n the required burnout position and the magnitude of the required

burnout velocity, Eqs . (151) and (153) may be solved to yield the boost dura-

tion r and the components q01 and q02 of ~~~~~~. The required specific exhaust

power may the n be found from Eq. (6), with a 2 obtained from Eq. (148).

Instead of carry ing throug h their calculation, we turn to the liner-

gra vity approximation, which, in the vertical ascent case , was found to give

appreciably more accurate results.
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b. The Linear - Gravity Approximation

The gravitational field may be expanded in a vector Taylor series

about the ori gin:

= g~ + 
~~~~~ , 3 x~ + . . . (154)

where g? is give n by Eq. (150) and ~~~ 
is the gravity-gradient tensor ,

evaluated at the ori gin . In general , the gravitational field may also be writ-

ten

g. = - (r 2 )
_ 3

~’2 r . (155)

where

r. = [  x 1

is the geocentric position vector. Since it is clear from this that dr~ = cixl
the gravity-gradient tensor may be calculated as follows , from Eq. (155):

= - (r 2) 3
~
’2 

ö~ + ~ (r~)~~’~
’
~ r 1

-3 3 -5 a
- r 6.. + r r. 

~~~

— (rkrk )

(157)
3 -5- r 6 . . + 3 r  r r  6.1k  jk

3r  -2
= - r - 3r r j r .]

where is the two-dimensiona l krone ker delta . Eva luating this expre s-

slon at the origin (x 1 = 0) 1 we find the simp le form
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~ , j  = 1_i 01 (158)

L o  2 j

and the expansion of the gravitational Yield (2. 150) is , in components,

g 1 = x 1 + (159a. )

g2 = - 1  + 2x 2 + . . . ( 159b)

The equations of motion (2 . 142) may now be written

2x 1 - 
~~
- x 1 + x 1 = 0 (160a)

x2 - - 2x 2 - 1 ( 160b)

Instead of attempting to solve this pair of differential equations with

t ime-varying coefficie nts , it proves simp ler in this case to return to the

fundamenta l Eq. (129) for the optimal thrust program . In the linear approxi-

mation , the gravity gradients are constants, give n by Eq. (158),  so Eq. ( 129)

become s

a1 + a 1 0 ( 1 6 1a)

a2 - 2a 2 E 0 ( 161b)

The solutions of these equations, meeting the initial condition (149)

for ~~, are

a 1 ~~ B 11 sin t ( 162a)

a2 2 cos h c.J’Z t + sin h ‘~.JT t ( 162b)

This expression for a could now be used in the equations of motion

in the form (134), using (159) for g. However , having already carried out a

gene ra l first integration of the equations of motion, we may instead use (145),
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x 1 = v 1 = 3 -t a1 2 B 11 t sin t (163a)

= v2 = 
~ 

t a 2 = t cos h Af2t 
~~~ 

B21 t sin h ~,/7 t (163b)

so that

= 3- B 11 f t sin t dt = 3. B 11 (sin t - t cos t) (164a)

x2 = f  t cos ‘~f~ t dt + 2 ~~~ B21 Jt  sin h ‘sf! t dt

= 3. [~T2~ t sin h ~fT t - cog h ~~ t + i] ( 164b)

+ 
,~~~~ B21 [‘[2 t cos hi ‘..[2 t - sin h i~.f2 t]

In the linear-g approximation, Eqs. (163) replace Eq. (147), and

Eqs. (1 64) replace Eq. (152) of the constant -g case.

At bu rnout, Eq. (164) give s

11 - Sin 7. - 7. cos 7.

2~J2 2x2 - I cos h ‘f2 r - ‘if2rsin h ~f2r
B 21 (166)

~.[Z r cos h ~[Z r - sin h ~[Zr

and the burnout compone nts of velocity Eqs. (163) are the n, after some alge-

braic reduction,
x 1~v 1 ( r )  

- 
~~ 

(167a)

(2x 2 - 1) s i nh r 2 r  ‘~f2?
v2( r )  (167b)

~J7 r cos h .J7 - sin h ~f2
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Squaring and adding these equations gives the magnitude of the burn-

out velocity as

x 2 
((2x - 1) sin h ~[2r  ~~~~~

(1 - r cot r) (~[2rcos h ‘f 2r - sin h ~.J 7r)

Given the bur nout position (x 1, x2 ) and the mission velocity (105), (107) or

(109), this equation may be solved numerically for the boost duration r .

The fli ght path angle at burnout may also be found in this calculation from

the ratio of (167a ) to ( 167b) and used to correct (107) and (109), if required.

The specific exhaust power may then be calculated from Eq. (6) and Eq . (162 )

as

P/m 1 3- R -  1 / a 2 dt

3- R -  1 / [B1~ sin 2 t (—~~ B21 sin. h ..[2t 2 cos h ~J7 t) 2]dt

(169)

= R -  i [3 B1~ ( 2 7 .  - sin 2 7 . )  ( 1 3 B21
2 )

sin h 2 ~ r + ~ B21 (coB h 2 ~ r - 1) + (1 -3  B2~~) r]

With the constants B 11, B21 given by Eq. (1 71).

The calculation leading to Eq. (81) is valid in this case also: the

exhaust velocity program required to give the optimal thrust history is given

by

c(t) a ~~~~~~~~~~~~~~~~~~~ + fa
2 dt (170)

where now a Is obtained from Eqs. (162). The thrust vector steering law is
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a 1tan 4~ —a2

B11 sin t

1 (171)
2 cos h ‘[Z r + — B21 sin h ~../7 t

tan y

c. Power-Optimal Boost Trajector ies  for High Orbit or Escape

Using the mission velocities (2. 103A) and (2. 103B), the theory pres-

ente d in the previous Section was first  used to compute the specific exhau8t

powe r during power-optimal boost, in the linear-gravity approximation, as

a function of the burnout zenith ang le , for a boost mass ratio R = 3 and for

several burnout ranges . The results are shown in Figure 11 for asce nt to

an escape parabola and in Figure 12 for injection to a transfe r ellipse to

geosynchronous orbit. To fa cilitate comparison with previous result s and

(in the case of escape missions *) to allow application to extraterrestrial

bodies , the data are given in the normalized units of Table 1 . Data in con-

ventiona l units is give n later.

For both missions, the optimal exhaust power per unit burnout mass

is almost independent of the burnout zenith angle. For launch to GSO, how-

ever , the mass at burnout is that injected to the transfer ellipse: a “kick

in the apogee” is required to circularize the orbit at synchronous altitude .

It is shown in Appendix A that the ~~V for circularization is give n by

= V - V 1 (~~-) sin (
~ 

- 6) (172)

where Vc = ra is the geosynchronous circular velocity .

* The radius ra of synchronous orbit of a planet obviously depends on its
rotation rate and hence is specific to a planet , even when measured in
normalized units. The data given here thus apply to synchronous orbit
about the Earth only.

63

-J



JO I I I

9 —  p1 = .118 ( l5OKm ) -

-

z

~ 7 — p~~.I57(IOOOKm ) -

5 — p,~~.235(I5OO Km ) —

o —
~--.-

—

U,

~ 3 —  —

w
2 — MASS RATIO Rz3 -

-J

0z
0 I I I I

0 tO 20 30 40 50 60 70

112542 BURNOUT ZENITH ANGLE, DEGREES

FIgure 11 Power vs Burnout Zenith Angle for Optimum Ascent
to Escape

64



8 I I I I

p1 :75cfl(m
7 —  —

Lii

0 -

p1 
I000 Km

I.-
(I) 

—

4 5 —  —

I
‘C
Lii

4 —  p
1 ~ I5OO Km —

—

0
Liia-
U) —

Lii
NJ
-J
4 ,” MASS R A T V O R ’ 3  —

0z

0 1 I I 1
0 tO 20 30 40 50 60

112543 BURNOUT ZENITH ANGLE DEGREES

Figure 12 Exhaust Power vs Zenith Ang le

65



It may be possible to use a small laser in GSO (or perhaps a relay

mirror  in GSO, re-directing radiation from the ground based laser) to power

kick-stage of high specific impulse, so that little penalty in vehicle mass is

incurred  by the circularization maneuver. At least is the early stages of

the utilization of laser propulsion for launc h to GSO, it is , howeve r , expected

that a chemical (probably solid) kick-stage will be used for circularization.

If its exhaust velocity is ck ,  the mass ratio of the kick-stage will be

= exp (
~~
V
k/ck

) (17 3 )

To find the optimal exhaust power of the boost stage,~ per unit mass

finally injected into synchronous orbit, the specific power given by (2. 165)

must be multiplied by Rk. With a boost mass ratio of 3, and a kick stage

specific impulse

= c~~/g~ 240 sec (174)

(a value readily obtainable from current solid rocket motors), the results

shown, by the dotted curve s in Figure 13 are obtained. The data from Fig-

ure 12, in conventional units are repeated here for comparison (solid curves).

It is to be emphasized that the dotted curve s represent worst cases - the

kick-stage was assumed to have quite modest performance. Moreover, it

is probable that solution of the problem of optimizing the boost exhaust power

per unit mass in GSO would lead to larger flight path angles at burnout , re-

ducing the required kick-stage mass ratio. Ne vertheless, it is clear that ,

for launch to GSO, it is desirable to use the largest zenith angle at burnout

which is compatible with acceptable atmospheric propagation of the laser

beam.
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Using the value e1 = 600 and a mass ratio of 3, the exhaust power

pe r unit burnout mass is shown as a function of range in Figure 14 for escape

and in Fi gure 15 for injec 4ion to a transfer ellipse to GSO. As one would ex-

pect , the curves have the same general shape as in the case of vertical ascent

to escape .

Fi gure 16 compares the boost power requirements for injection of

unit mass to (1) a transfer ellipse to geosynchronous orbit; (2) an escape

pa rabola ; and (3) geosynchronous orbit, using a chemical kick stage. The

last curve is, ov course , obtained from the first by multiplying by the kick-

stage mass ratio, Eq. (173). The powe r is given in megawatts per metric

ton , and the burnout ranges shown cover these which might be used for Earth

launch .

It is interesting to observe that a given laser can boost a larger mass

to escape than it can insert into geosynchronous orbit , unless a kick stage of

quite high specific impulse (— 800 sec) is used.

The exhaust velocity during boost may be calculated from Eq. (170) .

The resulting time histories, for launch to GSO, are shown in Figure 17 ,

for = 600 and two ranges and mass ratios. Because, as will be shown,

boost at constant exhaust velocity is an acceptable technique, the range of

exhaust velocities required for optimal ascent have not been investigated

further. - -

Finally, the ang le between the laser beam and the thrust axis is

seen from Figure 10 to be

B = 4’ - o (175)
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where

tan ~ = a~ /a2 (17 6)

and is give n by Eq. (171) and

tan e = x 1 /x2 (177)

and may be calculated from Eqs . (164). The variation of the beam thrust

ang le during boost to a GSO transfer ellipse (with O~ 
= 60°) is shown in

Figure 18, for two ranges at burnout . The excursions of the thrust vector ,

relative to the laser beam, are relatively small, and could most probably

be accomodated in a single-port laser  powered rocket eng ine design.
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6. RADIAL-THRUST ASCENT AT CONS TANT EXHAUST VELOCITY

As in the discussion of vertical ascent , it is desirable to investigate

the power penalties assoc iated with boost at constant exhaust velocity, as

this mode of operation may allow simplifications in engine design. For

ascent to high orbit or escape , the relatively small beam/thrust angles

found in the previous section suggest that a further simplification may be

po ss ible , constraining the thrust axis of the vehicle so that it is always

directed radially towards the laser station (i. e . ,  so that the beam/thrust

angle rema ins zero). This mode , which is here called radial -thrust ascent ,

would pe rmit the simplest possible engine design .

W ith constant power and exhaust velocity, the relations between

specific thrust , mass ratio and boost duration are as obtained in Section

II. 4. b. The results are repeated here for convenience

a0 C
a = 

- 
= 

- 
(178)

where

= c/a (17 9)

= ( R _ 1 )7 .* (180)

The equations of motion

- a1 - g 1 = 0 t IRE )

May be integrated numerically, with the thrust ang le 4’ taken -~qual

to the instantaneous zenIgh angle 0, so as to satisf y the radial-thrust con-

dition. To facilitate comparison with the optimal ascent calculations of the

previous section , only the linear terms in the expansion (2. 115) for the

gravitational field are reta ined in this integration.
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It is desirable to plot the results of this calculation with the mass

ratio rather than the exhaust velocity as a constant parameter. Successive

values of r~’ may be chosen a priori, thereby determining the range at

burnout, but it is necessary to choose the exhaust velocity c and the initial

direction of thrust 4’ so that:
0

1) burnout occurs at the specified zenith angle Of:

2) the vehicle has the injection velocity at burnout g iven by Eq. (79)

for excape or by Eq. (80) for ascent to GSO; and

3) the mass ratio R has a specified value at burnout .

A systematic iterative procedure is essential for solving this two -

point boundary value problem. Once R and ? are spec ified , the time step

in the Runge-Kutta integration procedure may be chosen as a submultiple

of the boost duration, from Eq. (180) , ensuring that the routine terminates

at the correct time, but the parameters c and must be modified in suc-

cessive integrations. In deriving expressions for corrections to’ the param-

eters , in terms of the result s of successive integrations of the/equations

of motion, it is sufficient to use the constant approximation to /the gravita-

tional field. We write the equations of motion

- - a sin 4, = 0 (182a)

+ 1 - a cos 4, 0 (l8Zb)

where , for reasons which will appear , we have allowed for a constant com-

ponent ~ of the gravitational field in the x 1-direction . These equations may

be converted to integral expressions by introducing a pair of adjoint func-

tions X 1~, as yet unspecified except that they have continuous second deriva-

tions with respect to time . Whatever form is given to the A1, it is clear

that , along the trajectory specified by Eqs. (182), we have
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J [x 1 c~ - - a sin 4,) + A2(~ 2 + 1 - a cos 4,)] dt 0 (183)

Integration by ~~ rts of the terms in x~ gives

Jj ~ x +  12x2 - a(X 1 sin 4, A 2 cos 4 , )  - A
z]

dt

° (184)

- 1x 1 X 2v2 - X 2x
2] 

~~ 

= 0

If now we choose the A
1 
so that they satisf y the simple adj oint

equations

1. = 0 (185)

then

- X 1x1 + X2v2 - X2x
2] 

= / ~ 
sin 4, + A2 cos 4 , )  + - A2 dt]~

By choice of functions A 1, satisfying Eq. (185), we may now obta in

integral expressions for the burnout values of the components of position

and velocity of the vehicle , using the initial conditions x1 = v. = o.

With

1 (187)
0

we obtain
- 

x1(r ) = ~~. T
2 

+ f  a(~ - t) sin 4’ dt (188a)

With A = 01 (189)
X 2 = i - t
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x2 (T ) = -~~r
2 + J a(~r - t) cos 4, dt (188b)

With

A 1 = 1
(190)

A
2 

= 0

= + a sin 4, dt ( 191a)

W ith

= 0
(192)

1

v2 1(r) = -r + f  a cos 4, dt (19 1b)

The Eqs. (191) for the velOcity components at bu rnout may also be

obtained by differentiation of Eq. (188) with respe .t to r, or by direct fo rmal

integration of the equations of motion (182).

These integral expressions are , of course, valid for any thrust

steering law 4, (t). For radial th rust ascent , with given values of c , ‘r ’~ and

and with ~ = o, we have

x1( r )  = J a(T - t) sin dt ( 193a)

• - ~ + J
tm 

A(T - t) cos dt ( 193b)

= f  a sin O dt (l94a)





The changes in the velocity components at burnout may similar1.y

be calculated as

A4’v1(’r ) = ~~~ [ ‘i
~ 

+ j  a cos e dt]

(197a)
= ~ 4l 0[ 2 ~’r + v2 (r )]

~ 4’
v2 (~~) = - MOf 

a sin O dt

(l97b)
=

The changes in the terminal conditions due to a change ~~C in the

exhaust velocity may be calculated simply from E qs. (193) and (194). For

example, sin using Eq. (178) in Eq. ( 193a), we have immediately

= tLcJ  ~ sin O dt

= -

~~~

- J a (T - t) sin O dt ( 198a)

X
l 

(r)

Similarly

= -~~~~~~- ~ r 2 + x2(’r) (l98b)

âcv 1(~~) ~~ V
1 

(r ) (199a)

~~ v i (t )  = 4~- (‘r + v2 (r ))  (199b)

Addin g together the changes in the components of terminal position

~nd velocity due to changes in the initial thrust angle 4’~ 
and the exhaust

veloci ty c , we find
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A x 1(r) = ~~~ (~~2 
+ x2 (11) + .~&E x1 (r) (ZOO a)

Ax2(r) = - 

~~~ x 1 (‘r) + 4~- (
~~~ r2 + x~(’r)) (200b)

~ v1(r) ~~~ (Zr + v2(r)) + 
.~~.E_ v111 (200c)

= -A 4
0 

v1(~ ) + .Ai. (r + v2 (r)) ( 200d)

In order to find an iteration procedure to ensure that , at the burnout

time T (given by Eq. (180)) the vehicle is at the specified zenith angle 0,

and has the specified velocity V 1, we must find expressions for the changes

in these quantities with changes in the components of position and veloc ity

at burnout.

Since

tan 0 (r) = x1(’r)/ x2 (‘r) (201)

~e( r) = p(r)  [cos e ~ x1 - sin e t~x
2]

cos e1 x2 cos e1 x1 sin 0
= 

~
4,°L p1 p1

(202)
A~~ 1 2 x2 sin O

-~ --- I— cos O - — -i--- s i n e  -
LPI 2 p1 p1

r ~
2cos 0 1 2

~4, 1 1+  1 gin O
°L P1 J Zc p1 1

since

x 1 (‘r ) p1 sin G 1, etc.

since (20 3)

2 2 2V~ ~~ = v 1 (r) + V2 (‘r )
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~V(’r) = ~ v1(r )  sin ~(r) + ~ v2 (r) cos y(r )

= (Zr sin + v2 sin 
~ 

- v 1 cos
(204)

•~ -~- (v 1 5~~~ 1 + i• cos ‘
~
‘ 1 - V

2 
cos ‘

~ 0
= (Zr sin ‘y 0 + .

~~~~
- (V 1 - cos 

~
‘ 0

since

v 1(r) = V(T) sin ~ (rh  etc.

We have thus finally found the changes in the burnout zenith angle

and velocity, which may be sum*iarized in the equation

~e (~ ) 1 + cos 0 sin O
(205 )

= Zr sin 
~
y ~~

. (V + ‘~ 
cos -y

The integration of the equations of motion now proceeds as follows:

1) The value of R and the burnout zenith angle 0, are specified.

2) A value of r’~ is chosen. This will fix the range at burnout,

which is not know a priori.

3) The boost dur ation r is calculated from Eq. (1 80).

4) A preliminary guess is made for the values of c and

5) The equations of motion

x1 = a sin
(206a)

= a cos 0 -l

are integrated by the 4th order Runge -Kutta method, using a

fairly large step size h which is a submultiple of ‘r; the integra-

tion terminates when t r.
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6) The values of range and flight path angle found at the termination

of the integration are used to calculate an estimate of the desired

mission velocity V1, using Eq. (105) or Eq. (106). The difference

between this and the actual velocity computed in the integration

gives ~~V, on the left hand s ide of Eq. (205), and the difference

between the chosen e 1 and the terminal zenith angle found in the

integration gives A0.

7) The matrix of coefficients in Eq. (205) is calculated using the

desired value of e, the boost duration found in step 3), the

estimate of the mission velocity V
1 

from step 6), and the values

of p and y found in the integration.

8) The Eqs. (205) are inverted to give corrections to c and

9) The process is repeated until the errors in e1 and V 1 are as

small as desired. The step-size in the Runge-Kutta integration

is reduced in later iterations to give increasing accuracy, while

keeping it a submultiple of r.

This iteration process has generally been found to be convergent.

In cases where it is not, the initial guesses for c and can

usually be improved by inspection of the integration results,

sufficiently to reach estimates from which the calculation con-

verges.

a. Radial-Thrust Ascent to a Transfe r Ellipse to GSO

Once the equations of motion have been integrated , the specific cx-

haust powe r is found most readily from Eqs. (3) and ( 178) as

P/rn =~~~ a c1 1 
2 (2 07)

1 C

2 (r~ - t )
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The integration program has to date only been carried through for

the case of launch to a transfer ellipse to GSO. Wi th a mass ratio of 3 and

a burnout zenith angle of 600, the calculated exhaust power per unit burnout

mass for this case varies with range at burnout as shown in Figure 19. Also

shown in the figure is the optimal specific exhaust power , fr om Figur e 16.

It appears that radial thrust ascent to a transfer ellipse to GSO ex-

acts quite ins ignificant laser power penalties, compared to the power optimal

case. This result may have very significant implications for the simplified

design of laser-powered rocket engines for this class of mission.

The power penalties arising from the need to boost a kick-stage for

circularization at geosynchronous altitude will of course, be the same for

radial-thrust ascent as for the power optimal case, so the di scussion leading

to Figure t6 is not repeated here.

The exhaust velocity required to give a specified mass ratio , as a

function of the range at burnout, is also obtained in the integration routine.

The results are shown in Figure 20 , for mass ratios of 3 and 5.

It was shown in Section II. 3 that , when the mass of propellant tankage

is taken into account , the exhaust power per unit payload is minimized by

using a mass ratio in the range 3 to 5, at least for acceleration in field-free

space (Figure 1). Minimization of the boost energy requirement s (Figure 2)

requires slightly lower mass ratios. It appears that a mass ratio of 3 is a

good compromise.

It would be useful to compute curve s of specific exhaust power vs

mass ratio (including the tankage effects) for specific missions, taking into

account gravity losses. An example would be a set of curves analogous to

F igure 1 for launch to a transfe r ellipse to OSO, with a burnout range of
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p

of 1000 km and zenith angle of 60°. However, it is not expected that the

conclusion regarding the optimal mass ratio would vary very much fr om

the field-free case.

It is clear from Figure 19 that the range at burnout should be maxi-

mized. For vehicles with payloads , of order one ton , it is probably that a

practical uppe r limit to the range at burnout will be around 1000 km (because

of the laser beamspread which may be achieved and the probably physical

s ize of vehicles in this payload èlass). About 400 MW of exhaust power will

be required for every ton injected to the transfer ellipse. After taking into

account for the expected engine efficiency and absorption of the laser beam

in the atmosphere , about 900 MW of laser output power may be required for

each injected ton. The laser output power required for each ton finally in

GSO may be up to a factor of two higher, depending on the circularization

technique which is used. W ith a burnout range of 1000 kin, in order to give -

a boost mass ratio of 3, Figure 20 suggest a design specific impulse for the

engine of abou t 850 sec.

7. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

The curve s showing specific exhaust power requirements for laser-

powered launch to high orbit or escape which have been derived in this study

provide data needed both in the preliminary technical design of a launching

laser and in formulation of economic estimates for the system. These data

can be used directly in further tradeoff studies, aimed at determining, for

example , the cost-optimum vehicle size in terms of a spec ified traffi c

model.

Perhaps the most significant result which has been obtained is the -

discovery that operation of laser-powered launch vehicles at constant specific
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impulse imposes quite small power penalties compared to the power-optimal

ascent profile - at least , for the mis sions which have been examined so far.

Furthermore, for these missions, operation at zero beam-thrust angle

appears to be feasible .

The particular values obtained of the required specific impulse for

these missions (especially launch to GSO) are of immediate importance, pro-

viding design goals for near-term laboratory-scale experiments. It is ex-

pected that , when radial-thrust launch to escape has been evaluated, it will

be found that the specific impulse objective will be below 1000 secs for any

reasonable Earth launch mission.

The solution to the power-optimal ascent trajectory problem which

has been developed here may readily be extended to other missions , some

of which will be described in a later report. It is clear that there are a

great many interesting and potentially significant missions for launching

lasers which need analys is of the type presented here , in order to evaluate

the overall utility of this propulsion technique and to pr ovide priorities

amongst goals for laboratory expe r iments. Some areas of current and

fu ture work in mission analysis for launching lasers are the following :

1) More detailed analysis of radial -thrust constant-Isp ascent to

a transfer ell ipse to GSO, including evaluation of atmospheric

drag effects and calculation of angle of attack, aerodynamic

stagnation pressure, and laser-beam slew rate histories.

2) Extension of the results obta ined so far to radial-thrust launch

to escape, in particular to allow calculation of specific impulse

vs burnout zenith angle.

3) For ascent to GSO, solution of the problem of choosing the thrust

h istory dur ing boost (and hence the la~nch trajectory) so as to
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minimize the boost exhaust power per unit mass finally estab-

• lished in GSO, as a func tion of the specific impulse of the

circularization kick stage .

4) Comparative evaluation of several techniques for circularization

of a transfer ellipse at geosynchronou s altitude, including con-

ventional chemical or electric propulsion kick stages , laser-

powered kick stages with either the laser or a redirecting mirror

in GSO, and the use of small (laser or conventionally powered)

tugs which depart GSO to rendezvous and dock with payloads on

ascent trajectories.

5) Power-optimal and constant-Isp boost trajectorie s leading to

transfer ellipses to GSO having exoatmospheric perigees, to

avoid impacting the EARTH in the event of a failure to circularize

at apogee.

6) Extension of these results to derive the minimuin specific ex-

hau st power (for given burnout range and zenith angle) required

for injection to an elliptical orbit with exoatmospheric peri gee ,

as a function of the apogee radius of the orbit.

7) Power-opt imal and constant-Isp, constant beam-thrust ang le

trajectories for injection to low Earth orbit at the burnout

altitude. Effects on such trajectories of -aerodynamic constraints

such as limit s to allowable angles of attack.

8) Energy-optimal rather than power-optimal ascent trajectories.

As noted in Section II. 3, energy-optimal trajectories , in addition

to minimizing operational costs , also minimize the laser power

requirements (and hence capital cost) for a given throu ghput to

orbi t , in the high utilization limit.
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9) Laser propulsion for transfer from LEO to 050, with variations

depending on whether the laser is located on Earth or in low, in-

termediate or high orbit, and on whether mirrors in orbit may

be used to redirect the laser radiation.

10) Evaluation of laser propulsion for more advanced missions - for

example, to power a ferry operating between the lunar surface

and lunar orbit.

11) Studies of laser launchers in the context of particular mission

models concerned with large-scale military or industrial uses

of space.
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SECTION III

LASER DRIVEN DETONATION WAVE ROCKE T ENGINE

1. INTRODUC TION

A hi gh specific impulse laser propulsion eng ine must meet a number

of stringent conditions. The propellant must absorb the laser energy directly

and essentially completely at temperatures that are above the dissociation

energy of most molecular absorbers. The hot propellant gas must be effi-

ciently expanded to roughly uniform velocity in a manner that does not exceed

the thermal limits of materials. The incident flux needs to be compatible with

atmospheric transmission limitations imposed by thermal blooming and aero-

sol induced plasma breakdown. In addition it is hi ghly desirable that the

eng ine be characterized by economical simplicity and flexibility. The latter

virtue would include the ability to ope rate over a range of specific impulses

and power levels , at a variety of beam thrust ang les , and with back pressur e

ranging between atmospheric at launch to hard vacuum at burnout.

This section describes a new repetitively pulsed laser propulsion

concept that promises to meet the above requirements. Absorption of the

laser radiation is based on the inverse Bremsstrahlung process that occurs

in a laser driven detonation wave (LSD). A wide variety of propellant mate-

rials may be used without the addition of special absorber seedants. It will

be shown that the atomic or molecular weight of the propellant is , to the

fi r st order , immaterial to the absorption and subsequent expansion processes

and does not affect the resultant specific impulse and efficiency figures. The

expansion of the hot gases take s place without ben efi t of a throat , which is the
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point of the most severe thermal loads in conventional rockets. Indeed suf-

ficient data exists from pulsed laser effects studies to predict that thermal

loads will pose few problems for this engine .

2. PRINCIPLE OF OPERATION

The basic throatless detonation rocket eng ine is comprised of a cir-

cular thrust disk or base situated at one end of a cylindrical surface which

will be termed the ‘1~~D skirt. ” The thrust disk is suitably perforated to

allow the introduction of propellant , or else is formed by the surface of a

solid propellant that may be ablated to release propellant gas.

The eng ine cycle may be divided into two basic phases illustrated in

Figure 21. Firstly, propellant is introduced at the thrust disk in a manner

such that , at the end of Phase I, a distribution of gaseou s propellant extends

to a characteristic distance, 
~~~~, 

from the disk. There are a number of

possible methods for introducing the propellant. For instance, a laser pulse

could be used to ablate a solid propellant, one end of which forms the thrust

disk; or the pulse could evaporate a liquid film introduced through a porous

disk. Because of its simplicity and flexibility, laser metering of the pro-

pellant will be examined in some detail in Section 11L4. Other possible

methods of injection not involving a laser pulse include injection of an aero-

sol , which is organized in Appendix B and self regulating gas phase feed

discussed in Section 1115.

The distributed propellant gas is heated to high temperature during

the thrust pulse of Phase IL A ground or space based laser beam is aimed

at the thrust disk. It is assumed that the propellant gas is initially trans -

parent to the incident pulse so that it strikes the th rust disk before signifi-

cant absorption occurs in the gas. Experiments have shown that a number
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of candidate propellants , such as N2, will meet this requirement if the

incident flux is below the th reshold for plasma ignition triggered by partic - *
ulates in the gas. For example, if particulatee are below 5 g.Lm in diamete r ,

normal density nitrogen will transmit up to io 8 W/cm 2 of 10. 6 Mm

radiation.

If the thrust plate i~ constructed of metal, a 10. 6 p~n pulse at 1O7

W/cm 2 will ignite a laser sustained plasma at the surface in a time of less

than 1 ~isec. An ablative surface will require a somewhat higher flux. The

threshold for plasma ignition generally increases weakly with increased gas

pressure and decreasing wavelength.

The resulti ng plasma front will propagate through the gas away from

plate toward the laser beam source. If the incident flux is above the appro-

pr iate threshold value , the plasma is propagated as a Laser Sustained Deto-

nation Wave (LSD) which was first described by Raize r. (1) In such a wave a

region of essentially complete inverse Bremsstrahlung ab8orption travels up

the beam at a velocity given by 
~ D

2 ~ 1/3
= [2~~ -1) (208 )

with ~ denoting the laser flux, p the gas density, and y the eff ect ive adiabatic

constant [w hich proves to be — 1. 2 for the high temperature gases of interest).

In terms of parameter values that will be useful in latter discussions, Eq. (208)

is 1/3
VD = 4. 0 x 10~ (~

.
~
;-) cm/.ec (209)

( 1) Raizer , Y. P., ‘Heating of a Gas by a Powerful Light Pulse , ” Soy.
Phy.. JETP~~JJ 1009 (1965) .

H 
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with~~7 denoting th~~flux unite of ~~~ W/cm2 and pN the densi ty in terms of

normal densi ty, 1. 2 x 10~~ g/cm3. The value y = 1. 18, appropriate for

normal density nitrogen , has been used.

For one dimensional laser beams , the threshold for maintenance of a

detonation wave at 10. 6 jA wavelength has been calculated~
2
~ to be 5 x 106 W/crn2

at standard density. At 1/10 standard density the threshold is below I0 7

W/crn 2. A standard density threshold of z x io 8 W/cm2 is predicted at

1. 06 ~m wavelength , and verified by experiment. If the incident flux is

below threshold, a partially absorbing wave may still be propagated , but

undesirable strong thermal coupling to the ba8e will occur.

For finite diameter beams, these thresholds are increased to flux

levels that give an absorption length on the o rde r of the beam diameter.

However , the plasma is contained within the 1 -D skirt in this rocket concept ,

and the fluid dynamics should thu s behave as though the beam was of infinite

diameter. A more stringent requirement of the flux level demands that the

absorption length within the plasma be small compared to the total distance

travelled by the detonation wave through the predis persed propellant . Thi s

assures not only that the time Independent detonation wave is appropriat e,

but also guards against significant amounts of the laser ene rgy being

deposited directly on the rocket base materiaL A scaling law for the

absorption length, L, has been given in Refe rence 3,

_ _  

/ p  \
2

L =  ~~~~~ 
N (210)

4 7 ~ 10.6/

( 2) Edwards, A. ,  Ferriter , N.,  Fleck, Jr .  J. A.,  and Winslow, A. M.,
‘A Theoretical Description of the Interaction of a Pulsed Lace , and a
Target in an Air Environment, 1~ Lawrence Livermore Laboratory,
Rept. UCflL - 51489 (1973 1.

(3) Boni , A. A. and Su, F. Y ., “Theoretical Study of Laser Target Inter-
action., ” Science Application. Inc. Rept. SAI77-567LJ (1977) .
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for

0. 4 � 
~ 7”~N ç 20 (211)

where L is in cm and x 
~o. 6 is the wavelength normalized to 10. 6 g.L.

If the incident flux is well above threshold, such that the plasma

absorption length is much less than the total detonation wave travel only a

small fra ction of the incident pulse energy will be absorbed by the thrust

plate due to either direct absorption of the flux , reradiation from the plasma,

or contact with the hot gas. Expe rimental measurements using aluminum

plates that abso rbed 2. 5% of a 25 Mccc , 10. 6 g.L beam at low powe r showed

that the thermal coupling drops to 0. 7% upon the initiation of a detonation

wave in normal air at 2 x IO~ W/cm 2. For a rocket operating at 10~ W and

with a 2 m diametc r thrust plate , this represents an averag e thermal load-

ing of 223 W/cm2 which can readily be handled with feed of propellant through

a po rous plate. The the rmal coupling to ablative plates is expected to be as

small. Figu re 22 shows a lucite plate that has been irradiated at — 2  x

W/cm 2 for 15 Meec at 10. 6 g.L giving a f].uence of — 330 J/cm 2. The unablated

areas are sites of detonation wave ignition which were first shielded from

the in coming flux. Since the known threshold for ablation at this pulse

length is 3 -4 J/crn2 only 1% of the incident fluence was coupled at the

ignition sites. The cracks were caused by the pressure impulse. Proper

shielding demands a high density of Ignition sites which perhaps could be

provided by dispe rsion of a fine metallic powder throughout the solid.

Afte r a time when the absorption front has traveled a distance

through the propellant gas , the laser pulse is tu rned off. This leaves a

mass of extremely hot gas heated under well controUed and well understood
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p
conc~~ions. Since the power absorbed per unit area is 

~~~
, which is propor-

tional to pV~~ by Eq. (209), and the mass overrun per unit area-time is

PV D, then the total energy per unit mass initially imparted to the fluid is

proportional to V~~. This is independent of the atomic mass and other de-

tailed properties of the propc llant. Not surprising ly, the effect ive exhaust

veloci ties will be shown to be on the order of V D, which is practically ob-

tainable in the 10 km/sec range.

Pressure is exerted on the thrust plate while the laser pulse is on

and during the subsequent expansion. The 1-D skirt serves to partially

confine the expansion to one dimension , maintaining the pressure for longer

times and thu s improving the specific impulse and efficiency over what

would be obtained in its absence. The velocity of the exhaust products is

not constant with time and this is a basic source of inefficiency in comparison

with a conventional cw rocket. It will be shown, however , that the dominant

source of inefficiency is due to the fini te propeUant expansion that can be

achieved with 1-D skirts of reasonable lengths.

A coasting period follows the expansion. For typical desi gns this

phase is an order of magnitude longer than the sum of the other two phases.

The exhaust products are largely dissipated or displaced during thi s period ,

ailowing for incidence of the next laser pulse without undue absorption in

the plume. - -

3. ANALYSLS OF PERFOR MANCE

This section will examine in detail the laser ablation method of pro-

viding gaseous atmosphere of propellant at the base of the vehicle. The

principle advantage of this technique is that no onboard values, nozzles etc.

are required, which results In obvious weight and cost savings. In addition ,
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the method is quite flexible in that the amount of propellant released, as

well as its spatial distribution is simple, varied by changing the character-

istics of the ground based laser pulse.

An analysis of the Laser Driven Detonation Rocket may be given

with various degrees of sophistication up to large scale flui d codes. In

this section a first  order approach to the problem is presented. Employing

a number of simplif ying assumptions, an analytic prediction of pe rfo rmance

is given in terms of a nondirnensional impulse parameter , f. A numerical

calculation based on the method of characteristics for unsteady flow in one

dimension is then used to determine the impulse parameter as a function of

the l -D  skirt length.

Only operation in vacuum will be described in this section. For

earth launch to orbit , typically greater than 90% of the laser thrusting will

be effectivel y under this condition. For simplicity, the initial density will

be taken as a constant , p ,  across the disk out to a distance, 
~~~ 

from the

base and zero beyond that. Section UI. 4 will show that reasonable approxi-

mations to this distribution can be achieved.

The laser thrust pulse will be turned on for a time ‘
~~ I) illuminating

the rocket base uniformly in space and time at a flux level 4~,
. A detonat ion

wave is assumed to ignite instantaneously at the thrust plate the moment the

laser is turned on. The detonation velocity is constant since p and 4 are

constant. The laser is turned off when the wave travels distance = VDT L~
Initially, the 1-D skirt length will be taken as much longer than so that

all the hydrodynamic processes may be treated as one dimensional.

Immediately behind the detonation fr ont the pressure, 
~ D’ and

density, 
~ D’ according to Raizer , are given by
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P 0 2
PD Y + 1 V D

(212)
- y +  1

y

Since the thrust plate is neither a source nor sink for gas during the pulse,

the fluid velocity must be zero there. It was shown by Pirri, in a study of

impulsive laser target effects , that the ze ro velocity condition irnplie s an

expansion fan behind the detonation wave and a reduction in pressure by a

factor ~

= ( v ÷ i ) ~~~ ( 213)

This result will be rederived in the next section where a detailed examination

of the pressure time history on the base is made . For ~ ‘ = 1. 18, the value

of ~ is 0. 35 , and the pressure experienced by the thrust plate, 
~1D’ is given

in terms of pr actical unit s by

~ 1D = 
~~~~ 

(214 )

= 31.6 ~~/3 ~~ /3 bar (215)

T~.e pressure on the base is constant at ~lD 
during the laser pulse

and remains so until information that the laser has turned off is propagated

over a distance from the furthest point of the detonation wave back to the

thrust plate. The speed of soun d behind the detonat ion wave is V D/2, ~~

the pressure remains at for a total time of the order 3’TL• One dimen-

sional expansion subsequently causes a decay in base pressure. The im-

pulse per unit area, I/A, can be expressed as

I/A = I p dt (216)

~lD TL f (217)

100



where f is a nondimensional measure of impulse to be determined. The time

integral will be carried over an interpulse time or to whenever effects due

a finite 1-D skirt length cause the base pressure to drop to a negli gible value.

The mass per unit area of propellant heated by the pulse is simply

rn/A = PO V D T L 
(218)

Hence the impulse per unit mass or effective exhaust velocity, c, is f rom

Eqs. (218), (217), (214), (212) and (209).

I/rn = (2 19)

c (22 0)

Impulse can be written as the product of time averaged thrust times the cycle

period , and mass as the product of time averaged mass flow times the cycle

period. Thu s the time averaged thrust per unit average mass flow is also

represented by Eq. (219). As used in the conventional terminology of rocketry

eng ineering, specific impulse is this fi gure divided by g, the gravitational

acceleration.

The energy per unit area deposited in the propellant is

E/A = 4~o ~ i. (221)

and, with Eqs. ( 218) and (209) the deposited energy per unit propellant mass

is

V 2

E/m = 
D (222)

Z(y - 1)

Equations (221) and (222) may be combined to obtain the impulse per

unit energy or , equivalently, the time average thrust, T, per time averaged

incident power , P.
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T/P = l/E (223)

= 
2(y 2 - 1) 

~~~ (224)VD

There are a number of possible definitions describing a rocket’s efficiency,

~j . In this paper i represents the power efficiency which is the ratio of the

effective exhaust energy mc2
/2 to the incident pulse energy

rnc 2/2E (225 )

= (~2 - fl 
~~~ 

)2 (226)

The impulse per unit energy or thrust per unit power may be ex-

pressed in terms of ~.

(227)E c

Note that for a given efficiency, the so called coupling coefficient,

l/E , necessari ly decreases with specific impulse. As an example , in Eq.

(227 ) a 1000 sec I at 100% efficiency implies a coupling coefficien t of

20 dyne sec/J or , equivalently, 20 metric ton/GW . With y = 1. 2 a 100%

efficient rocket would have a normalized impulse f = f = 9. 86 derivedmax
from setting the left side of Eq. (227) to unity. The efficiency is sensitive

to I in that it depends on the square.

f = 
_ _ _  

(228)max 
~~J~2 _ i

/ 2
1 =

The laser power. required to perform a given mission must be divided

by 1 to obtain the actual power necessary when real imperfect rockets are

employed.
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It Is also interesting to compare the effect ive exhaust velocity c to

the ideal exhaust velocity ’~ With the ideal rocket all the exhaust gas mole-

cules are given the same exhaust velocity ’2’, and no energy is lost in terms

of f rozen chemistry.

‘2~~ ‘~J2 E/m (229) ‘

~

V
= 

D (230)
1 2

- 1

The last line makes use of Eq. (222). The ratio of effective to ideal

velocity is

c~~~~~f\’~,i
2 - l  1)

~e 
(23

and this ratio is unity if f is again 9. 86 , the maximum possible value.

All of the important performance fi gures are now specified in terms

of a single unknown parameter, tbe normalized impulse, f. A numerical

determination of this quantity will be given by application of the method of

characteristics in one dimension for unsteady flow . In the discussion to

follow it will be assumed that the reader is generally familiar with the ‘ech-

nique and only the specific s as applied to this problem will be treated.

Construction of an x-t diagram of the propellant heating and subse-

quent expansion will employ the laser pulse length, r as the unit of time,

velocity will be measured in terms of the detonation velocity, V D~ 
and

distance in the natural units V Dr L Thu s the detonation wave propagating

throu gh the cold propellant is represented in these coordinate s by a line

with slope of unity for 0 S X/V DT L ~ 1, as shown in Figure 23.

All the gas dynamic processes taking place behind the detonation wave

for t/r  L < 1 and over all space for t/T L > 1 will, by the absence of derived
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shock waves , prove to.be isentropic. This is a direct result of the assumption

of uniform cold propellant density, uni form laser flux , and the heating of all

the propellant by the detonation wave. By avoiding shock waves with strength

dependent jump conditions , a single x-t diagram at a given value of y will

serve to describe any physically realistic combination of p0, 
~~~~~

, and

The local flow velocity in the gas will be given by u, and the local

sound speed by a. Two characteristic quantities , P and Q, defined by

~ 
2 a + u] 

_
~L (232)

y - l  D

~~ =[ 
2 a - U] —~-— (233)

D

are propagated without change in isentropic flow along x-t t ra jector ies  with

slope u + a and u - a respectively. Once the values of u and a are known

along suitable boundaries , the values of P and Q can be found along that

boundary and the trajectories of constant P and Q may be plotted to any de-

sired accuracy.

Immediately behind the detonation wave , the so called Chapman-

Jouget conditions hold , and the flow velocity in the detonation wave fram e of

r e f e r ence  is sonic at the value

aD = 
V 1 V D (234)

In the rocket re fe rence  frame , the gas velocity is

U D = V D 
- aD (235)

V
= 

V 
D (236)

The value of Q directly behind the front is obtained from Eqs. (233), (234),

and (236),

105



p 
_ _0D y~~~I (237)

and it is con stant all along the front. By virtue of the Chapman -Jouget con -

dition, u - a - VD( V  - l )/ (y + 1) at the front , and lines of constant Q

are propagated from the front towards the base at all points along the front.

The entire region behind the detonation is filled with characteristics at con -

stant Q making for a “ simple wave” process. The fluid velocity must be

zero at the base , which implies that the Q characteristics have a slope

~VD/5~ ase • Setting Eq. (237) equal. to Eq. (233) with u = 0 and a abase
yields abase = VD/2. Hence the characteristics bend over to the left in

a manner to be determined.

The P characteristics form a centered rarefraction fan behind the

detonation front. Lines of constant P emanate from the ori gin and follow

strai ght trajectories given by

a + u  (238)

The trajectories are straight sin ce a = a(P, Q) and u = u(P, Q) by Eqs. (232)

and (233), Q is a constant, 
~~D’ to the left of the detonation , and P is a con-

stant by definition along a trajectory of constant P.

Elimination of the sound speed between Eqs. (233 ), (237),  and (238)

gives the flow velocity in terms • f  position and time .

2v ID x 1
_ _ _ _  — (239)
y + l \ V Dt 2

with limits
V

= 
~ 

, x = V Dt (240)

V t
UT 0 , x = ~~~~~ (241)
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That is , the “tail” of the expansion fan moves at one half the detonation

• velocity. Similarly, elimination of the flow velocity gives the sound speed

a = 
V D [1 + (y - 1)~~~~~J ( 242)

with limits

aD = 
~ ~ 

V~~~, x = V Dt (243 )

V Dt
= -r- ’ x — 2-- (244)

The values of P in the fan are then

P -  + .L.. (245)- 

(y - l) (y  + 1) y + 1 V Dt

with limits

= 1) x VDt (246 )

V V t
= 

~ 
D 

~ D ’  x = —p- (247)

To the left of the tail P is a constant , 
~ T’ equal to 

~ D’ and the

velocity U is zero.

In Figure 23 only the 
~~D characteristic emanating from the t/r L =

x/V Dr L = 1 poInt is drawn. The space between this curve, the time axis ,

and the detonation trajectory is filled with parallel 
~~D waves. Similarly the

space to the left of the “tail” characteristic is filled with parallel 
~~T

waver up to the point where the drawn characteristic intersects the time

axis.

For i.entrop ic flow, the pressur e at any two points is related in

terms of the corresponding soun d speeds by
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2y
i ”.Y — l

2-. = (±...j (248)p ~a ,

where one of the points has been denoted by a prime. Substituting the sound

speed behind the detonation wave from Eq. (234) and the sound speed at the

tail of the expansion fan from Eq. (244), Pirri ’ s result, Eqs. (213) and (214),

for the initial base pressure is recovered.

When the laser is suddenly turned off at t = T that information is

propagated from the site of disturbance as a Q wave centered expansion fan.

To the ri ght, i. e. , the vacuum side of Figure 23 , the maximum expansion

velocity will take place at the hydrodynamic limiting value . The density and

sound speed are both zero at the vacuum fluid boundary and by Eqs . (232) and

~~~3 )  
~~ 

= - where the subscript V refers  to that boundary. The bound-

ary ~~ characteristic has the same value as 
~ D Thu s the vacuum expansion

velocity , by E qs. (232) and (244), is

3y - 1UV (y - l)( y + 1) VD (249)

Within the fan , the value of Q varies continuously between and

The one remaining boundary condition on the problem is that the fluid

velocity is always zero at the base , which implies that P and Q be equal

there.

~base . ~base 
(250)

Construction of Figure 23 was carried out by calculating the values

of a and u from Eqs. (232) and (233) at the intersection of each P and Q

characteristic and extending each charac teristic at the new slope (u + a) 1

or (u - al’ respectively without Iterative or interpolative corrections.

Sample higher order corrections showed that the characteristics net was

fine enough to give accuracy sufficient for present purposes.
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The pressure time history at the base is obtained by not ing the time

of intersection of a characteristic with the base and the relationship

2\i

~base 
= [(V - 1) 0base1 

~1D 
(251)

which is derived from Eqs. (250), (248), and (233). The base pressures

are shown at the left edge of Figure 23.

The effect of finite 1-D skirt length may be approximated on the con-

servative side by assuming that the base pressure drops to zero immediately

upon arrival at the base of expansion waves due to the skirt cut off . These

waves can only propagate upstream against subsonic flow. In the x-t diagram ,

the flow is supersonic everywhere that the slope of the Q waves is positive.

For a given 1-D skirt length, the flow at the lip does not become sonic until

the first Q wave , Q5, becomes vertical at that point. The information is

then transmitted to the base when that same Q wave reaches the base.

For example, if the l-D skirt length was 1.3 V Dr L~ the flow at the

lip becomes sonic at t 3 r L and the Q = 4. 127 characteristic carries

the expansion to the base by time t 11. 5 
~r L The base pressure is then

0. 1 
~ 1D 

and the normalized impulse f , from numerical integration of the

pressure up to that time, is 5. 6.

Contributions to the base impulse after the arrival at the base of the

characteristic are of relatively greater importance if the 1 -D skirt length

is short. A more accurate procedure imposes sonic flow boundary conditions

at the 1-D skirt exit for all times greater than the time, t 5, at which the

characteristic reached the end of the skirt. Application of Eqs. (232) and

(233) with a u yields

(252)
V + 1
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Every P characteristic reaching the end of the skirt at times t > t5 reflects

as a Q wave with value given by Eq. (252 ). The subsequent propagation of

these Q waves to the base and their reflection there as P waves is followed

as before.

The boundary condition imposed here is only accurate in the limit of

the 1 -D skirt length much greater than the diameter of the base. In that

limit the flow in the tube is indeed one dimensional and the sonic surface

effectively will be at the end of the skirt. The sonic surface will be roughly

located at the end of the skirt around the periphery, but it will extend well

beyond the end of the skirt at the axial position. These two dimensional

phenomena are such as to make the one dimensional calculations of impulse

an underestimate.

A computer program has been constructed to carry out these charac-

teristic calculations. A given characteristic is propagated forward in time

at a slope VD/(u ± a) that is derived from the average of the properties at
the last intersection point and the next intersection point . This leads to

noticeable greater accuracy than obtained in the computation of Figure 23.

The behavior of base pressure with time for a number of 1-D skirt lengths

is presented in Figure 24. As anticipated, the pr essur e remains at a con-

stant value, P1 D’ for t 3r before decaying initially at a rate faster than

and later as t~~ until the effects of finite I -D skirt length are felt.

The areas under the pressure curves have been Integrated numerically

to give the normalized impulse f. Calculations were done for s~ = 1. 18 and

1. 2 and they show, Figure 25 , little sensitivity to this par ameter. The

efficiencies are also shown. Although both values of y give the same effi-

ciency for an infinite length skirt , there are noticeable differences for finite
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ski rts. it is to be expected physically that for fixed degree of expansion , a

gas with a lowe r y will have more energy tied up in internal modes and will

hence have less efficiency.

When the 1 -D skirt is infinite in length, the expansion of the gas is

complete and the 31% departures from 100% efficiency represents the loss

due to inhomogeneity in the exhaust velocity distribution. For finite length

skirts the decreased efficiency result s from ejection of the gas at non zero

enthalpy with contributions from ionizat ion , dissociation , and random motion.

A constant y calculation does not directly identif y the components of internal

energy, but their effects on isentrop ic gas dynamics are roughly included as

long as the expansion rates are not so fast as to result in frozen flow. Pre-

liminary calculations show that over a range of parameters of interest

nitrogen propellant would not be ionized, but would st ill be significantly

dissociated and that the ionization and dissociation recombination rate s are

fast enough to preclude frozen flow. Further work on possible losses due

to real gas effects and phenomenal such as radiative and wall friction losses

is in order.

As a specific example of the parameters that result from the pre-

ceding calculations , consider the example of a rocket desi gned to operate

at a specifi c impulse of 800 sec with a 1-D skirt length of 10 V DT L. From

Fi gure 25 the efficiency and normalized impulse would be , respectively,

5= 44% and f = 6. 5. The effective exhaust velocity is 7. 8 x 10 cm/sec and

(219) gives VD = 7.4 x io6 cm/sec, slightly less than c. A 10 ~.Lsec pulse

would give 7 cm of detonation wave travel and the 1-D skirt would be 74 cm

in length. The energy per unit mass is 70 kJ/gm and the coupling coefficient

is II dyne sec/I or , I I  metric ton/GW .

113



4. PROPELLANT METERING PULSE

The propellant surface is assumed to be perfe ctly absorbing to the

incid nt radiation, over an absorption length short compared to any other

scale of interest to the problem. On the other hand , the evolving vapor is

taken as being perfectly transparent to the radiation. As an example of

these conditions , a film of water absorbs 10. 6 ~ radiation in a scale of

1 wavelength, yet steam, at — 100°C and l0~~ g/cm3 has an absorption

length of .— 600 cm. The incident flux will be taken as uniform ove r the base

of the vehicle and constant in time at the level ~ a for a time T a~ 
Before the

pulse is turned on vacuum conditions are assumed. The degree to which

this i~ realized in practice will depend on the repetition rate and the altitude

of the rocket.

The effective energy per unit mass necessary to ablate the propellant

in the absence of heat conduction losses is taken as a constant , The

ablation velocity , u , is given In terms of the incident flux, 
~ a’ 

and th con-

densed phase density, p~,

u = 
a (253)

c *

For times longer than x/u~ , where x is the material thermal diffusivity,

the ablation depth exceeds the thermal penetration depth. In practical cases

of interest this time will prove short compared to the evaporation pulse

length , and heat conduction in the condensed phase can be ignored. Also ,

the ablation velocity will proved to be small compared to molecular velocity

of particles leaving the surface, and the effects of finite surface recession

velocity can be neglected. Under these assumptions the surface jumps to

a constant temperature T
~ 

when the metering pulse is turned on , since an

energy  balance is established between incoming radiation and ablation.
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In the free molecular limit , for which there is no backscattering to

the surface , the mass and energy flux are computed from a half Maxwellian

characterized by the temperature, T
~~

, of the condensed phase and the corre-

sponding saturated vapor density, p 5. This gives a mass flux of p 5u 8 and

a kinetic energy flux of 2 RT~p u 5, where u 
~/RT c/Z~

r , and R is the gas

constant per unit vapor mass.

Backacattering due to collisions will reduce this mass flux if par ticles

are readsorbed. Even if all backscattered particles reflect from the surface ,

the energy f lux could be altered if the reflected par ticle s accommodate to the

surface temperature. In the interest of simplicity it will be assumed that

perfect reflection with no accommodation take s place. That is , the f re

molecular limit for energy and mass flux will be used. Most of the proposed

propellant materials are molecular and , in contrast to the situation with

monatomic metal vapor , there is some justification in assuming no readsorp-

tion.

The flow at the surface will generally be subsonic, but , with surface

press ures much greater than ambient , the flow will accelerate to supersonic

values within a few mean free paths. This can occur without area change and

without heat addition due to either conduction or direct absorption of the

laser flux. The process is driven by the entropy production which results

from collisional relaxation of the original nonequllibrium velocity distribu-

tion. The flow velocity, u~,, and density, p~
, at the sonic surface, as will

be shown, are the only parameters necessary to characterize the hydra-

dynamics beyond that surface. However, they must be related to conditions

at the surface for a complete solution.
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At the sonic surface complete thermal equilibrium is assumed. That

is, the velocity distribution is Maxwellized at temperature T~ which will also

be the temperature of the internal degrees of freedom. If the energy flux at

the sonic surface is equated to the energy flux at the condensed phase surface ,

the following equation results ,

2

[V ~ ~ 
RT~ + p~1,u~ + 2] RT

~p u  (254)

On the rig ht hand side the energy t ransport due to internal molecular er ~ergy

in equilibrium with the surface, nRT
~ /2, has been added to the kinetic

energy contribution. The number of degrees of freedom can be expressed

as n (~~-3y )/ (V - -  1). In the interest of simplicity, the spe cific heat ratio

at the surface has been taken equal to that at the sonic station. When more

accurate results are desired the assumption should be dropped. Making

use of mass conservation, p~ u~ = p 5u5 and the sonic condition u~ = ~JVRT~
the sonic parameters are related to the surface conditions.

T~ = T / y  (254a)

u = ‘iI~T (254b )
* c

= ~~~

P* p8/~.J~j :~ (254c )

The method of chara cteristics will be used to deduce the flowfie].d

beyond the sonic surface. Since the initial mean free pa th is generally short

compa red to other dimension, of interest, the sonic surface is taken as

coincident with conden sed propellant surface at x 0. In constructing the

x-t diagram, Figure 26, time will be normalized to and distance to

a*r a whe re a
* 

= u ,~, is the soun d speed at the sonic surface. By assuming

the ablation takes place Into a perf ect vacuum, shock waves are avoided.
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This , together with the fact that the vapor is transparent to the metering

pulse , mean s that the flow is isentropic , and the charac teristic quantities P

and Q propagate without change. The sonic sound speed, a*, will be used to

normalize these quantities in contrast to the no rmalization used for the

thrust pulse analysis.

2 a + u l -~-- (255)
L~~~’ 

J a ~

Q _ [
2 

a _ u ] ~~
_ (256)

During the entire length of the metering pulse , i . e . ,  for •T / T a < [~

P characteristics of value ,

= (257)

propagate from the time axis with initial slope 1/2 a~ , or 1/2 in normalized

units . Along the time axis for ‘T/ T a < I , Q has the value

= (258)

and that characteristic propagates parallel to the time axis since u - a = 0

there.

Emanating from the orig in , a centered expansion fan of Q character-

istics propagates to the ri ght in the supersonic flow region. The trajectories

are straight lines since they t raverse a reg ion of constant P.

The sound speed decreases through this “ starting fan , ” reaching a

minimum of zero at the hydrodynamic limit of the vacuum fluid interface.

By definition , P has the value

= u / a * 
(25 9)

along the interface, where u,~. is the velocity of the Interface (an d the ze ro

density fluid there). However , it has been argued that P is a constant , P4 .

This g ives the bou ndary velocity as a constant ,
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u = a (260)
v y - l  *

The value of Q varies through the starting fan , decreasing from

to Qv 
(2 61)

which is equal to - 

~~v’ and the slope is l/u~ . The P characteristic that

emanates from the ori gin is coincident with the Q characterist ic, and those

emanating at later times tend to become parallel at large x. Only the

characteristic emanating from the t/r a = 1 point is explicitly drawn on

Fi gure 26.

When the metering pulse is suddenly terminated at t/r a = 1, that

information is propagated into flowfield by another expansion fan , the

“termination” fan. This fan is comprised of P characteristics since the flow

in the fan is subsonic. The trajectories are not strai ght lines since they

interact with vary ing Q characteriatics of the starting fan. The limiting

characteristic to the ri ght is the previously discussed P~, trajectory from

t/T a = 1. At the termination point the flow velocity decreases from u,~, to

zero since the condensed phase is no longer a source for particles and it is

assumed that the surface reflection coefficient is unity. Hence the value of

P decreases through the fan to the limiting value of

2 a~P ~~~~~ . .  (262)
*

and that characteristic propagates initially at a slope of a
*/at . The sound

speed at the termination point is obtained from noting that Q = still has

the value and, by Eq. (255) with u = 0, that = P~. The sound speed is

then given by
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For values of y greater than unity this represents a sudden decrease from

a .

The densities at two points in isentropic flow are related to the cor-

responding sound speeds by

2
‘ ‘V — 1

Q.. = ( .~_:~ (263)
p

Thu s tb~ density at the termination point must undergo a sudden drop of

2
I ‘V ’

= 
- v j  (264)
2 /

which varies between 0. 30 at y = 5/3 and e~~ = 0. 37 at limit of V 1.

For times greater than t/T a = 1 the surface velocity remains zero

and P = Q at x = 0. The values of Q are, of course , determined from the

intersection of Q characteristics with the surface after “ refraction” in the

termination fan.

This completes the discussion of boundary conditions. The charac-

teristic trajectories in the reg ion x, t ~ 0 were deter mined by the same

method as described in the section on the thrust pulse analysis. The x-t

diagram presented in Figure 26 uses v = 1. 32, the value for water vapor at

100°C. The general features are not expected to be a sensitive function

of y.

Density profiles at various times may be obta ined by substituting

(P+ Q) (265)
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from Eqs. (2 55) and (256) into Eq. (263). Values of P and Q along a line of

constant time are interpolated between the plotted characteristics. These

results are presented in Figure 27 for ~ = 1. 32. Not e the constant surface

density and self similar profile while the metering laser is on. The drop in

surface density when the laser is turned off is readily apparent at t/T a = 1. 5,

and it results in a density peak that moves away at roughly twice the sonic

speed a4. The relative magnitude of thi s peak decreases with time.

The results shown in Figure 27 have been replotted in Figure 28 with

the density normalized to the peak density and distance normalized to a4t

rather than a
~ T a . This allows easy comparison of the general features of

the profiles at different times. Note that by t ime t/T a = 5 a relatively

rectangular distribution has developed despite the fast expansion of the tail.

it is on the basis of this distributi on that the constant density assumption

was made for the thrust pulse analysis.

The foregoing material may be applied to the determination of the

required metering pulse characteristics necessary for setting up a “r ec-

tangular ” distribution of density p0 and length f = V~~ T L for the thrust

pulse. The desired density, p0, is a fraction of E of the sonic plane

density p,~,. The value of € is somewhat arbitrary and depends on the

chosen mass distribution. If the distribution with t/T a 3 is taken,

~ 0. 15 from Figure 27. With t/T 1 ~ 5 , € ~ 0. 09. The saturation

density is , from Eq. (254c) :

p = p0 (266)

Using p,, the material surface temperature can be determined by

reference to thermodynamic tables relating temperature to saturation
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pro pe rties. And given T , u can be calculated. The pulse time is then

obta ined from conservation of mass

P0,0
= 

p u (267)
5 8

with ~~~ as before , the distance ove r which the propellant is distributed.

The incident flux derives from the energy balance

= P5 u5 Q (268)

The effective ablation energy, Q*, will be approximated as the sum .of the

heat of vaporization L and the energy, ~~H, required to reach temperature

T~
. This neglects nonequilib r ium terms due vapor motion.

As an example of these relations , cons ide r water as the propellant

star ting from ice at 0°C. Assume that p 0 equals normal density, 1 .2  x l0~~

g/cm 3
, is required. For water at the normal boiling point , V = 1. 32 is

-3 3appropriate. Using € = 0. 09, this gives p5 33 x 10 g/cm . The

temperature corresponding to this density is 553°K which gives u5 = 2 . 0

x 10~ cm/sec . Hence the evaporation pulse has the duration T a = ~~

x 
~~ 

p8cc , with in units of cm. Since the chosen distribution with

€ = 0. 09 is obtained at time t/T ~ 5 , the thrust pulse should start at

x f~ psec after the start of the metering pulse. At 553°K the heat of

vaporization is 1544 J/g and the energy to reach that temperature is 1569

J/g. Kinetic energy ~ u~/2 = 20 J/g is small and its neglect is justified.

The incident flux necessary to maintain the 660 g/cm2 .sec rate of ablation

is •a 2 x 106 W/crn 2 . Neglect of surface recession velocity and thermal

conductivity is shown to be appr opriate s ince u~ • 680 cm/sec ~ u5 and

~ 20 nsec <<
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5. FLUX CONCENTRATORS

A roughly conical reflector can be affixed to the base of the rocket

to collect laser flux from an area greatv r than the base itself. There are a

number of advantages and disadvantages to using such a scheme. Some of

these will be listed he re but no attempt will be made at a systems tradeoff.

It will also be demonstrated that practical optical solutions exist.

For a given incident beam (fixed beam divergence , pulse power ,

ave rage power) and fixed rocket base diameter and flux , it is obvious th4

a collector allows a vehicle to go to a greate r range before power is lost

due to diffraction spreading. One payoff is greater final mass per unit

laser power. For fixed flux on the base , the flux incident at the collector

ape rtu re decreases as the square of the base to collecto r diameter ratio.

Hence , modest concentration ratios can insure that nowhere in the atmos -

phere outside the engine does the flux exceed known particle breakdown fluxes,

even when base fluxes are well above the detonation wave ignition flux. For

example , a base flux of 4 x iOl derived from a 16/1 concentrator would re-

quire 2. 5 x io 6 at the aperture , below the 3 x io6 W/cm 2 large particle

threshold.

Alternately, for fixed beam dive rgence, pulse time, average power ,

and flux collection area (I. e., fixed maximum range) a concentrator allows

the base diameter to be decreased at constant base flux . This gives a

decrease in the required pulse energy, an advantage with some laser systems.

Average power would be maintained by an Inc rease in the repetition rate.

As before , the advantage of low peak fluxes In the atmosphere is maintilned.

The mass of the 1 -D skirt and the thrust plate (for nonuolid propellant sys -

tems) would reduce as the square of the reduced base diameter. The peak

accele ration of the system would be reduced by the same facto r giving
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savings in structure weight and shock absorber mass. In addition , suffi-

ciently high repetition rates could be achieved to allow self regulating gas

phase propellant feeding, in which gaseou s propellant is admitted from a

plenum through holes in the base plate when the base pressure drops below

a given level.

Anothe r advantage of the system is that nonuniform incident flux pro -

files may be transformed into uniform flux profile s at the base. It is

expected that the highest powe r efficiencies will be obtained with uniform

flux profiles such as we re assumed in the one dimensional thrust pulse

analysis. It is clear that an adaptive optics system that has a 1 rn Airy disk

diameter at 1000 km can give a good representation of unifo rm flux over a

2 m base diamete r at close range and only a fair one at 1000 km. Assume

instead that the adoptive optics were continually adjusted during ascent to

give the same flux profile as the best one obtainable at 1000 1cm. Then a

fixed concent rator optical design could maintain an excellent approximation

to constant base flux throughout the range.

The optical concentrators to be described preserve the ability to va ry

the flux profile ac ross the bas e in the metering and/or th rust pulse and

hence develop control to rques without onboard variable thrusters. If the

flux collection are a is maintained constant, the control torque moment arm

decreases , as the base diameter is decreased.

Finally, the efficiency of the rocket engine is improved if the reflec -

tor also serves as an expansion nozzle. This will occur as long as the

turning angle of gas flow is not too large. Compute r calculations with the

methods of characteristics code were performed for the cases with exit area

equal to ten and one hundred times the base area. The length was held fixed
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at ten times the detonation wave travel and y was 1. 18. The efficiency as

a function of exit area to base area is given in Figure 29. The results are

fitted by a power law. ~ cz [ area ratio] ° ~~ This is a slow dependence,

but practical benefits still are to be attained. For in stance, a sixteen to one

area ratio improve s the efficiency from 44% to 60%.

On the negative side, the concentrator introduces a numbe r of com-

plexities that are solved either directly at cost or through weight, which

ultimately reflec ts in cost. The re is also a loss of flexibility, in that fixed

off axis operation (th rust axis not pa rallel to laser axis) is difficult, and

variable off axis ope ration is probably impractical. The choice of possible

propellant materials will also be limited.

As will be shown the surface area is larger than the aperture area.

This structure must be supported against forces due to aerodynamic drag,

average accelerations to 10 g’s and highe r peak accelerations , and impul-

sive internal pressures.

The surface must be highly reflective . Optical coatings that survive

the exhaust envi ronment may be impossible from an engineering standpoint

or prohibitively expensive. Metallic surfaces, such as copper for 10. 6 p.

radiation, have the advantage of not being susceptible to catastrophic dam-

age resultin g from pin h o e  defect.. However, the resulting 1% absorption

of ~~~ watts incident flux cannot be dissipated by reradiation at realistic

temperatures. Hence , active cooling is required, which increases the weight

of the reflector , support s, and all the auxiliary pumping systems. This

• also rules out the use of solid propellant. which cannot be circulated.

The Incident ene rgy per unit propellant mass for a. 50% efficient

800 sec 
~~~ 

rocket is, — 61 kT/g. If 1% of this energy is absorbed by the
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I
reflector , the propellant coolant must carry away 615 J/g. Wate r propellant

stored as ice at 0°C, has 753 J/g available for cooling without a gas phase

transition. Propellants such as liquid nit rogen or argon would of necessity

be vaporized, and a gaseou s propellant injection system would be necessary.

The basic optical fuaction of the flux concentrator is to transform an

axially symmetric flux distribution 4~ 
(R), at the entrance aperture into a

uniform flux , 
~ ~ 

greater than the average value of ~ (R). Referrin g to

Figure 30, let R be the radius at which a ray strikes the reflective surface

at distance x from the base. The radius at which that same ray strikes the

base on the opposite side of the axis will be designated as r. By convention,

r is negative if the ray strikes the base on the same side of the axis. The

angle between the ray and the axis is a.

a = tan 1 r +  R (269)

The required shape of the concentrator is obtained by simultaneous integra -

tion of the equation s

~~
- 

~ (R) R

dx = 
dR (271)tan a/Z

The first equation simply conserves flux lines and the second equation is

determined by equality of the angle Qf incidence and the angle of reflection.

There are several classes of solution , some of which are illustrated

in Figure 31 for a fixed 2 m diamete r opening and a l6x concentration ratio.

In what will be called type I, the ray from the maximum R crosses the axis

to the maximum r. Rays from the minimum R meet the base at the axis.
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See Figure 31 (a) and (b). With type II, roles are reve r sed and the ray from

the maximum R goes to r = 0 and the ray from the minimum R crosses the

axis to the maximum r as in Figure 3 1(c). A third type, shown in Figure

3 1(d) has rays from the maximum R strike the base at the axis and ray s

from the minimum R strike the base directly.

Solutions for type I concentrators with two different aspect ratios

are illustrated in Figure 3 1(a) and (b). The aspect ratio is defined as the

length of the straight (1 -D skirt) segment divided by the base diameter. The

concentrator become s more compact as the aspect ratio is reduc~ d.

Unlimited reduction of the aspect ratio to zero would result in the undesir-

able ef fect of the detonation wave vignetting the ray that goe s from the edge

of ~he base to the axis. The sharp edge of I-D skirt meeting the reflector

surfac e could cause sepa rated flow problems that would reduce the efficiency

of the skirt as an expansion nozzle. On the other hand, this could also act

as protection for this surface against erosion by the exhaust. The type Ill

concentrato r always has 0:1 aspect ratio.

The type I concentrators suffer from a line focus along the axis.

This could cause breakdown difficulties du ring atmosphe ric operation. It

may be possible to b reak up the line focus with small azimuthal variations

in the surface. The type II concentrators have a cusp like region of high

flux which could also be a problem. The type Ill concentrator appears to

be free from high flux regions. The price is considerably greate r bulk .

The length i. 7. 5 tImes the opening.

All of the solutions were constructed for uniform base flux , giv~m

uniform flux at the entrance. If the incoming flux tapers off with radius,

the sha pe of the concentrators will be changed. Since the type fl and LU
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concentrators take rays from large R and displace them to small r, their

shapes will be relatively insensitive to an incident profile that decreases

with R.

There undoubtedly remains a good deal of room for innovation with

regard to these concentrators. For instance a more compact design with

many of the advantages of the type III con centrator may be achieved by

sta rtin g from the base with the type LU concept and then switching to a type

I or type U design . More sophisticated computation of their hydrodynamic

performance will demand 2-D numerical methods.
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SECTION IV

LASER AND INITIAL LA UNCH FACILITY

1. LASER

Initial design studies of the laser driven detonation wave rocket

have identified the factors determining the required pulsed laser charac-

teristics. The longer IR wavelengths are favored because of their short

inverse bremsstrahlun g absorption length s at moderate fluxes. The pulse

length i~ bounded on the short side by thermal transfer  to the ba8e during

wave ignition and on the long sid e by the size of the structure necessary

to maintain one dimensional perfo rmance . A lower limit on peak pulse

power is determined from the dc sired specific impulse , the lowest pro-

pellant density giving adequate absorption, and the smallest base area

compatible with range and flux concentrator design limitation .

A detailed description of possible laser facilities would be premature

at this stage of laser propulsion studies. However it will be useful to show

that any of a number of requirements can be met using a design based on

modular laser amplifiers . Indeed it would be practical to construct a

10~ watt average power laser using some existing repetitively pulsed lasers

as the basic building block.

The beam from a master oscillator laser can be split so as to drive

a number of amplifier lasers coherently. Each amplifier output can in turn

drive another group of amplifiers and so on until the total power output of

the amplifiers is the requisite value. Precautions must be taken against

the spontaneous emission from an amplifier feeding back to the previous

stages. Geometric flux falloff with element separation and saturable
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p
absorbers have been applied to this end . If the ray path s from oscillator

to the various output amplifiers are maintained within a coherence length

of each other the phases at the outputs will have a fixed relationship to

each other.

The amplifier output apertures, which in general will be separated

from each other for mechanical reasons, may be arranged in a number of

ways such that their beams fall on an array of contiguous flat mirror facets .

The facets in turn are oriented so that the reflected beams are parallel and

contiguous . (A familia r reverse analogy of this was found in an old time

ballroom decoration. A spot light beam was reflected from a chandelier

in the form of a ball covered with small mirrors .)  The reflected beam

proceeds from the “Chandel” beam combines to a beam director whose

variable orientation allows gross tracking of the rocket vehicle .

One possible layout for such a large scale laser launch facility is

illustrated in Figure 32. The lasers are stacked in bays and their beams

are direc ted horizontally through the open sid e of the building to the cor-

responding elements of the Chandel.

Only in the near field , wh ere geometr ic optics dominates , do the

phase relations between the individual segment s remain unimportant. For

rocket burnout ranges on the order of l0~ km and spot sizes on the order

of 1 meter , i.e. — l g.Lm radian beam divergence , diffraction limited per-

formance Is called for. Thu not only minimizes the physical size of the

output aperture , — 25m at 10.6 g.im, but it also maximizes the near field

peak flux . The latter is an advantage from the standpoint of reducing

atmospheric C02, absorption at 10.6 g~m.
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tube (not shown)
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Decent diffraction limited capability demand s control of the phase

across the output aperture with respect to an ideal profile to within some

fraction of 2w. The ideal profile in a given situation will depend from pulse

to pulse on the desired energy distribution across the rocket base , the

thermal blooming of the atmosphere caused by previous pulses and the range

to target . There are several methods of constructing the desired phase

front . Electro- optical devices could retard or advance the phase of each

beam after the final branching in the amplifier chain. Alternately, and

more in line with the adaptive optics approaches that have received much

attention recently, the individual mirror elements of the “Chandel” could

be advanced- retarded over small distances as well as tilted using piezo-

electric drivers . All such adjustments would , of course , be under com-

puter control.

The ability to phase shift each beam significantly decreases mech-

anical accuracies required of the system. Initial mechanical differences

and thermal drift s between one oscillator-output amplifier path and

anothe r can be corrected from shot to shot. Similarly, the initial accuracy

of the large beam director mirror can be relaxed . Indeed it can be made

of segments. Thermal and gravitational (due to changing orientation) dis-

tortions can be corrected . This control also allows the beam director to

be a gross pointing device with the accurate directional pointing trimmed

from shot to shot by element phase adjustment.

It has been suggested that the beam director be dispensed with by

mounting each element of the Chandel on its own large excursion beam

director. The difficulty is that beam super positive then result s in certain

orientations; to avoid this the element s must be separated , which increases

diffraction losses . 138



With respect to this latter point , it is well known that resolution

increases if elements of an aperture are separated . Radio ast ronomy

frequently takes advantage of this with long baselines between dish receiv-

ing antennae . This is fine for receivers , but an array of separated sending

element s can never give a greater intensity at the far field than a sing le

circula r element of area equal to the sum of the element areas. At equal

power the array can at most put the same peak intensity as the circular

aperture on a central order disk; but t h e  diameter is smaller , and the res t

of the power is wasted in side orders.

Two strong advantages of the C}iandel laser concept are its redund-

ancy and flexibility. Given hundreds or more laser unit s , failure of a few

during a launch would not seriously degrade system perfo rmance. Or ,

spares could be brought on line with proper phase correction to account

for their different location.

The facility allows a range of repetition rates and pulse t imes at

constant power that is well beyond the range of the individual elements.

For instance , by dividing the back into nine groups with each group having

a compact contiguou s grouping of reflectors at the Chandel , the repetition

rate can be increased by a factor of nine if separate oscillators are provi-

ded . The range at which a given spot size can be achieved will, of course ,

decrease a factor of three in the example. As discussed in the section on

launch phase , the higher repetition rate may be an advantage early in the

launch when loss of resolution is no problem .

2. LAUNCH

The initia l insertion of the rocket engine and load into a position

suitable for laser propulsion may be accomplished in a number of ways.
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The initial trajectory problem is that the rocket plume will degrade the

surface of the mirror , leading to surface breakdown and catastrophic beam

loss . The rocket engine must therefore be introduced into the laser beam

at a sufficiently large distance from the mirror system. It has been sug-

ges ted that a large gantry should be used with the rocket at the top and the

laser mirror-director und erneath . Such an arrangement would need to be

taller than the average near-sea-level plume length in order to avoid beam

interference. For the typical rocket engine discu ssed in Section III , the

plume at sea level would be —1 00 meters long (see Section VI). The rocket

vehicle should therefore be introduced into the beam at least this distance

from the mirror , v.hich requires an extremely large gantry, and high repet-

itive rates will introduce considerable complexities.

A second method is to use a recoverable chemical booster to initialize

launch . The rocket would be launched some distance away from the laser

site, and maneuvered into the beam. The chemical booster would then drop

off and be parachuted to safety, cnd laser propulsion would take over.

Problems with this approach include desi gn of a truly recoverable booster ,

and the added complexity of the launching control system.

A third method consists of using a pneumatic launch system, simi-

lar to that designed for missile launch . The rocket would be contained in

a pneumatic gun, which would project it to an altitud e of , say, 1/2 km. At

this point the laser would acquire the engine and laser propulsion would take

over. In principle this system could be very simple, providing a rapid

rocket handling capacity more easily envisaged than in the oth er cases .
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The equation of motion of an unpowered rocket of cross- sectional

* area A and mass m travelling vertically upward through air of density p is

m x = - p CD *
2 A - mg. (272)

p C A
Ignor ing changes of p with x and writing a = r~ 

the position of

the rocket will be

x = 
cos C - (273)a coe C

where

t a n C = V ~~~~’; (274)

and we obtain the maximum height attained as:

2
X = t n  (1 + a V )  (275)

where V0 is initial velocity.

Thus the initial velocity required to reach altitud e Xmax will be

= 
~~~CD

A [e 
Zp CD AX ax1’tfl 111/2 (2 76)

Taking typical values , A = 4 x  lO 4cm 2, p = l . 3 x  ~~~~~ CD — m —
5 x lO 6g, for XmaX = 1/2 km we obtain V0 — 1 .  3 x 1 ~~ cm/sec , which

indicates that the effect of air resistance is to increase the vacuum value

of V0 by 30%.

In orde r to attain this initial velocity , and accepting accelerations of

Gg on the vehicle , the length of the pneumatic gun is rn . For a vehicle

lOm long , an acceleration of G = 20 gives a gun 43 meters long . The gas

pr essure r.quired will be -mg + P A = m G g, or~~~= ~~~ (G +  1) .  The case

above required ~ 2.6 atm. on the rocket engine base. This appears to be

a relatively simpl, requirement
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