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NSWC/WOL/TR 76-148 10 October 1976
Preface

This report demonstrates how receiver operating characteristics
may be calculated for a broad class of nonlinear detectors, those
whose outputs are quadratic forms of the inputs. Of particular
interest is the capability to perform these calculations for
arbitrary bandwidth-integration time products and dependent
time samples. The work documented by this report was
performed in the Signal and Digital Processing Branch under
Task No. A03S370B/001B/7F11/100-000.

Closord, C. Wotaam.

EDWARD C. WHITMAN
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COMPUTING R.0.C. FOR QUADRATIC DETECTORS
Prepared by:
L. E. Miller

CHAPTER 1

COMPUTING RECEIVER OPERATING CHARACTERISTICS
FOR QUADRATIC DETECTORS

1. INTRODUCTION

For comparing performances of different signal detector configura-

tions, the functions known as recelver operating characteristics (ROC)

are a standard tool. A given detector's ROC may be expressed

Py = v(h%;a) (1-1)
where
Y = PD = probabllity of detection
@ = Pp, = probability of false alarm
h? = input signal-to-noise ratio (SNR). (1-2)

The probabilities are computed on the assumption that the detector

output undergoes a statistical test to decide between the hypotheses

HO: no signal 1is present

Hl: a signal is present

The test 1s performed by comparing the value of the detector output

z to a number 1 called a threshold. If zZ > T, Hl is accepted; if

Z < T, H° is accepted.
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2
If there actually is no signal (h =0) and z > v, then the test
yields an error of Type I or false alarm, with the probability
[
a = /dz pz(zl h2=0) (1-4)

T
where pz(z|h2=0) is the probability density function (pdf) of the

detector output subject to the condition that there 1is no signal.
If the value of t 1s chosen to keep a at a particular value, then a
is known as the "level" of the test.
If there actually is a signal present but z < v, the test yields
an error of Type II, with the probability
T
B = jr dz pz(z|h2#0). (1-5)
Conversely, if z > 0 when there 1is a signal present, the test result
i1s correct with the probability
y=1-28 =/dz pz(zlhz#o) . (1-6)
T
If v has been constrained by a so that t = 1(a), then y = y(h2;a) and
is known as the "power function" of the test.
It is clear that to compute the ROC for a given detector requires
knowledge of the probability distribution of the detector output.
Often the functional form of this distribution is very difficult to
obtaln analytically.
The purpose of this report is to document methods for calculating ;

the ROC of a class of detectors. Attention is first paid, in

6
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Chapters 2-4, to cases in which samples of the detector inputs are
considered independent, thus allowing direct calculation of the ROC.
In Chapters 5 and 6, the more general case 1is treated, using an
approximation method.

l.1 Channel Model.

It is assumed that the detector has one or more inputs xi(t),

where

xy (8) = s, (¢) + n, (t), 1=1,2,...,L. (1-7)

and the noise terms ni(t) are jointly Gaussian, stationary random

processes with zero means and LxL covarilance matrix Zn’ with elements
2 = 2

E{n, (t)n,(t)} = pyjo504, 17]. (1-8)

Two types of signals will be considered, deterministic and random.
Random signals will be conslidered to be from jointly Gaussian,
stationary random processes with zero means and LxL covarlance

matrix [ , with elements
2 gt
E{s;2(t)} = dy

E{s, (t)s (t)} = rijdidj’ 1#5. (1-9);

J

Bandwidth and spectra. Two categorles of detector bandwidth will ]

be treated, low-pass and narrowband. In either case, a (two-sided)

bandwidth of W hertz and ideal (flat) response is assumed. This
&
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bandwidth is lumped with the signal and noise models, so that,

assuming flat spectra over the bandwidth, we have
0,2 = N,W, 4,2 = P,W (1-10)
i drsiasd i
for the random waveforms. Deterministic signals are modeled as

.si(t} = 5, (t)cosluw, t-6, (t)] (1-11)

in which the envelope S1 and phase e1 are slowly varying, so that

signal power is given by

siz(t) siz, lowpass signal

siz(t) 812/2, narrowband signal. (1-12)

Thus input SNR's are taken to be

s2/02, lowpass deterministic signal
h2 = ({S2/202, narrowband deterministic signal

d2/02, random signal. (1-13)

An alternate form for the information represented in a detector's

ROC 1is to write

h2 = h2(y,a), (1-14) -é

a function which answers the question, "What SNR is required to

produce PD = y when the false alarm probability is «?" Often this
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relationship 1s abbreviated by giving its value for specified

(y,a) = (y; a;), say (y,a) = (.5,107%), and calling it "minimum
detectable signal (MDS):

MDS = h2(y;,a;). (1-15)

Also, for deterministic signals a number called "detection threshold"

(DT) 1is often quoted and is the MDS referred to a one-hertz bandwidth:

DT = th(yl,al) . (1-16)

In the case of narrowband signals and noise, the detector inputs

can be written

Xi(t)cos[mot-¢i(t)]
xic(t)coswot + xis(t)sinmot
(nic+sic)coswot + (nis+sis)sinwot. (1-17)

Under this expansion, Ny, and nye are independent and each set {nic}

and {nis} has covariance matrix Zn. A similar statement 1is true of

the signal terms if they are Gaussian.

The envelopes of the random inputs' correlation functions have

the factors

sin(wWAt)/nWAt, narrowband

sin(2rWat)/nmWat, lowpass.
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Therefore, if samples of the inputs are taken 1/W and 1/2W seconds

apart, respectively, the samples are uncorrelated and, being Gaussian,
independent.
1.2 Detector Model.

Let M samples of the L detector inputs be assembled to form

a vector:

£ R PR e ). o m Cor IR Chady o iams (B i gy hy < 52 (5],

(1-19)

where the prime (') indicates transpose. Detectors will be considered
which produce as an output decision variable or statistic the

quadratic form

z = g'QMg; QM LMxLM, (1-20)

and therefore termed "quadratic detectors." In Part II (Chapters 5,6),
expressions will be developed at this level of generality in order
to treat correlated input samples. However, in Part I (Chapters 2-4)

and in calculations based on the more general cases, it will assumed

that -
% = bl;l' ZE'JQEJ, Q LxL (1-21)
where J=1
E'J o [xl(tj)s x2(tj)""’ xL(tJ)]' (1-22) .

10
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Effectively, this is the same as saying that QM is a block diagonal
matrix with identical LxL diagonals Q/M.

The detector form (1-21) is illustrated in Figure 1-1. The
"quadratic processor" is assumed memoryless, so that the sampling
operation can be placed after thé processor for convenience.

This model is of interest because it is an idealized representation
of the non-sampled case with post-detection integration.

That is,

=+

M 1 T
L ey / at z(t). (1-23)
o

If At = 1/W, then the equivalence M = WT is made, and is

commonly referred to as the "time-bandwidth product" in communications

theory.

; : 11
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CHAPTER 2
COHERENT POWER DETECTOR

In this chapter, and in the two which follow, three types

of quadratic detector of frequent interest are treated for the
case in which time samples {23} of the processor output are
independent, allowing us to compute ROC exactly.

2.1 Detector Configuration.

A great variety of practical detectors can be modeled

by the configuration of Figure 2-1, in which the detector inputs
xi(t) are summed and then squared. Commonly it is called the

"square-law detector", and sometimes the "conventional detector."

Let the sum of inputs be

L
x(ty) = )

i=

xi(tj) (2-1)

SU———
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s0 that
E{x)} = s = 281 DS#*
0 RS (2-2)
and
Var{x} = \q2 -IZpidoicJ DS

02+d2 = g2+ IZrinid RS (2-3)

J

Thus, for example, o2=0,2+2p0,0,+0,2 for L=2 and a deterministic
signal.

In the lowpass input case, the detector output is

zZ =

==

M
Z x,2, M=2WT. (2-1)
=1

Now, the sum of the squares of v independent Gaussian random variables

with unit variances and means By is a noncentral chi-squared variable
2

(x'2) with v degrees of freedom and noncentrality parameter A = Zui 2

Therefore, we have

égga 1s X'2{2WT,2WTh2} DS

and

5%%55 is x2{2WT} , Rs (2-5)

where x? denotes a (central) chi-squared variable - one for which A=0.

*Using "DS" for deterministic signal and "RS" for random signal.

15
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In the narrowband input case the detector output is

1 = X ,2+x_,2
z = g Z_EJT_S.J_, M=WT (2-6)
3=1

Since E{xci} = Sicose1 and E{xsi} = Sisine1 for deterministic signals,

we have
22 is x'2{2WT,2WTh2} DS
2WTz 2
s g is x“{2wWT} , RS (2=7)

the same result as for the lowpass case.
2.2 Recelver Operating Characteristics

From (1-6) we have

PD =y = /dzpz(z)
T

= dv px,z(VIZWT,2WTh2)

2WTt/02
= Q(2WTt/02|2WT,2WTh%?), DS (2-8)

where Q(x'2|v,1) is the noncentral chi-squared probability integral.

Similarly, we have
y = Q[2WTt/(024d2)|2WT], RS (2-9)

where Q(x2|v) the chi-squared probability integral, is widely

tabulated.

16
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EXAMPLE 2-1. Problem: What 1s the probability that a chi-squared
random variable with 18 degrees of freedom exceeds the value 30?
Solution: Using Table 26.7 of [1], we find that Q(30]|18) = .03745.
Setting h?=0 in (2-8) or d2=0 in (2-9) yields

Ppy = o = Q(2WTT/02 | 2WT). (2-10)

[EXAMPLE 2-2. Problem: Find the threshold value t necessary to main-

4 when WT = 100.

tain a false alarm probability of 10~
Solution: 1In Table II of [2], the function P(a,c)=1-Q(2a/2c) is

tabulated. Under P=.9999 and c¢=100 we find that a=141.530 or

t=202a/2WT=1.415302.

; The procedure for obtaining ROC is diagrammed in Figure 2-2.
For elther type of signal, the process begins with the selection
of a false alarm probability a. Using the identity

@ = Q(x§ [v) (2-11)

-a

and (2-10), the false alarm threshold is found to be

SR L
‘r =

o Z?NT xl—a(ZWT) ¥ Lt E

We may speak also of a normalized false alarm threshold du, given by

Tt - E{z} xf_d(ZWT)-2WT

q = -4 ; (2-13)

ar{z 2/WT

17
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PICK a
2
Fnpx 2 BT
1 a
IN TABLE
—— T a
{
PICK d? PICK ¥
2 ;
— Y 1.‘,2'WT)I _.x1_ y :
COMPUTE COMPUTE
y h2
7 (h2,a) h2(7,a)
\ /
Vv :

ONE POINT ON ROC

FIG. 2-2. PROCEDURE FOR COMPUTING ROC

18
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since E{x2?(v)} =v and Var{x2(v)} =2v. The quantity du is interpreted
as the number of detector output noise standard deviations above the
mean at which the threshold r must be set to produce a false alarm
propability a.

EXAMPLE 2-3. Problem: Find d_ for WI=10 and a=.0l.

Solution: The table on page 252 of [3] gives P=Q(x2|v). For P=.01

[pnd v=20, we find xfgg(zo)-37.566. Therefore d =(37.566-20)/2/I0=2.777.
For convenience, values of xf_°(2WT) and du are given in Table 2-1
for various values of a and WT. Also da is plotted vs o« for WT=1l, 10,
50, « in Figure 4 of [4].
Having fixed the value of t,» the ROC is a plot of PD=y(h2) or,
if it is more convenient, h?=h2(y). For Gaussian signals, from (2-9)

and (2-12) we have 3

vy = Q[x2_ (2WT)A1+h2)|2WT]. RS (2-14)

One approach 1s to interpolate in a chi-squared table to find the value

of Q(x2|v) corresponding to the number

x2__ (2wT)
2 SR e+ AETIETE -
x2_, (2wT) o e (2-15)

However, it 1s simpler to calculate Q, since it is given by the finite
sum [1]

v=1
Qlx2|2v) = eX*/2 "y (x2/2)K /1
k=0

= X2 (x/2) , (2-16)

19
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20

TABLE 2-1. FALSE ALARM THRESHOLDS.

i 10t 102 103 104 106
i X3 o (2wT)*
“ 1| a60517 | 921034 | 13816 18.421 27.64
2| 777948 | 132767 18.467 25513 33.38
T 5| 159871 | 23.2003 29.588 35.564 46.86
10| 284120 | 37.5662 45.315 52.386 65.42
20 | s1.8050 | 63.6907 73.402 82.062 97.66
50 | 118.498 | 135.807 149449 | 161319 | 182.12
100 | 226.0210 | 249.446 267.458 | 283.060 | 300.84
da, NORMALIZED FALSE ALARM THRESHOLD**
1| 1.3026 36052 | 5.9080 8.2105 12.82
2| 13362 3.2798 5.1149 6.8989 10.3874
5 | 13388 2.9537 4.3800 5.7163 8.2421
10 | 1.3301 2.7775 4.0027 5.1207 7.1815
20 | 13198 2.6487 3.7345 ».7027 6.4466
50 | 1.3080 25319 3.4966 4.3359 5.8068
100 | 1.3011 2.4723 3.3729 4.1530 5.4920
® | 128155 | 232635 | 3.09023 | 3.71902 4.7534
NOTES:

*VALUES FOR WT = 100 AND/OR @ = 10" TAKEN FROM TABLE I OF (2] ;
THE REMAINDER FROM TABLE 26.8 OF [1].
**COMPUTED USING VALUES OF X21_¢(2WT) FROM TABLE Il OF [2].

o, sy
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v

|
|
|
|

NSWC/WOL/TR 76-148

using the program of Figure 2-3. This calculation was performed for
a number of cases, and the results are plotted in Figures 2-4 and

2-5 for a=10"2 and 10‘", respectively.

|EXAMPLE 2-4. Problem: - What integration time T is required to

achieve 90% detection ahd 1% false alarm probabilities when the input
SNR is zero dB, if the bandwidth is 0.25 Hz?

)
Solution: From Figure 2-4, y=.9 and h2=0 dB correspond approximately

to WT=25. Thus about 100 seconds of integration time is required.
5

For deterministic signals, from (2-8) and (2-12) we have
Y > Q[xi_a(ZWT)IZWT,ZWThzl. (2-17)

Here, direct calculation is not as simple since the noncentral chi-

squared probability integral is given by the infinite sum [1]

Q(x 2|v,2) = arads Z

k
/2)  ary'2[vi2k). (2-18)
k k!

0

Tables for this function are relatively rare [5,6], of which [6] is
fairly extensive for 2WT < 100 and a > 1073, For WI=1l, Q 1s well
known to communications engineers as Marcum's Q-function, thoroughly
tabulated in [7] and given by nomograph in [8]. Urkowitz [9] uses a
nomograph for the (central) chi-squared probability integral [10]
and an approximation technique due to Patnaik [11].

In order to avoid both the labor of interpolating tables and the

inherent inaccuracy of nomographs, an excellent Gaussian approximation

21
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76/09/10. 14,22.33.
PROGRAM CHI534

READ A, X, M

PRINT "M = "M,"A =“A’"x = "X
PRINT

PRINT "SNR(DB)","PD"
FOR V=2.5 TO 3 STEP .1
H=104V

¥=.5% X/(1+H)

S1l=52=]

FOR K=] TO M-1
S2=S2*Y/K

S1=S1+52

NEXT K

S1=S1*EXP(-Y)

PRINT 10%*V,sSl

NEXT V

STOP

DATA .0001

DATA 23.513,2

END

FIGURE 2-3

Program to Compute the Chi-Squared Integral
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to the noncentral chi-squared distribution, due to Sankaran [12],

was used to obtain h? in terms of y. In Appendix A it 1s shown that

da d2+1 d 2d OWT+1
h2(y) = 76; + 7§EF - ;;E ;a% t Ser o (2-19)

where dY is defined by

3
Q(dv) 5[1-erf(dy/v’2')] > (2-20)

<
m

Q(X) being the Gaussian probability integral* and erf(x) the error
function, both universally known and tabulated. For reference,
Table 2-2 provides several values of dy.

It is interesting to note that if the value of h? yielding y=.5
is taken to be the minimum detectable signal (MDS), then from (2-19)
it is given simply as

MDS = —&- 4 — (2-21)

This is to be compared with the heuristic value of MDS=da/JWT in {41,
which 1s based on Aistributional properties when WT is very large
(1.e., the central 1limit theorem).

EXAMPLE 2-5. Problem: Find the MDS for a-1o'" and WT=50.

Solution: Since no table of y 1s available for this value of a,

we use the approximation (2-21), yielding MDS=4.3359//50+.01=.6232=

-2.05 dB, where da was obtained from Table 2-1. If W=.1l Hz, the

¥One of the spinoffs from this study is the discovery that Marcum's
Q-function 1is rather easily and accurately approximated by

Q(a,B) = Q(VB-1/2 - /a¥1/2).
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4 dy rY=Q (dr )
100 4.75342 NOTES:
105 4.26489 (1) dy,, =dy
104 3.71902 4
; (2) VALUES TAKEN FROM TABLES 26.5
-oaez e AND 26.6 OF [1].
.0005 3.29053
.001 3.08023
.002 2.87816
.005 2.57583
01 2.32635
02 2.05375
.05 1.64485
a 1.28156
2 0.84162
, 3 0.52440
‘, 4 0.25335
5 0

TABLE 2-2. GAUSSIAN PROBABILITY INTEGRAL.
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corresponding detection threshold is

Using (2-19), ROC were computed for the square-law detector
with deterministic input signal, and are displayed in Figures 2-6

and 2-7 for a = 102 and 10™ %, respectively.
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CHAPTER 3
CORRELATION DETECTOR

3.1 Detector Configuration

A second, broad class of practical detectors can be modeled
by the configuration of Figure 3-1, in which the detector inputs
{“1; i=1,2,...L)} are first partitioned, then the partitions summed
and multiplied together. Thus the output y(t) of the multiplier

has the form

Ll L
y(t) = u (t)u (t) = x, (t) £ - |
g 121 1 1=£1+1 & 5
Let us define for j=1,2
E{ua(t)} = {sj(t) DS
0 RS (3-2)
Var{uj(t)} = {0J2 DS
032 + sz RS (3-3) ‘
and
COV{ux(t)’uz(t)} = {polaz DS s
pclaz+rdld2.RS (3-4)
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The product can be written

uu =u? - y?

where
1
u = 5(u +u
3 2 1 z)
1
u =3(u -u).
y 2

1

The two new Gaussian variables thus defined have the moments

1
E (s +s D
{us} = {33 2 ( 3 2) S
0 RS
1
E{u } = (s = S1-S DS
{ . { ; 2(sy1-83)
0 RS
Var{u } = |o2 =%(02+290 o +02) DS
3 3 1 2% 2

02+d2=g2+E(d2-2rd d +d2) RS
3 3 3 1 12 2

Var{u } = 02=l(02+290 o +02) DS
y Ny yIL B A
02+d2=0g2+3(d2-2rd d +d2) RS
" 1 1 119 %
and
1
Covi{u ,u } =fno o =5(02-02 DS
{ 3’ s il 5 5 1 z)

0 0 +6d d =t(02+d2-¢2-4d2 | RS.
o 3 4 3 4 *( 1 1 o2 2)

In the lowpass case the detector output is

32
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=1 % Pud (s, ) 2
z M aky u3 i e u“(ti)]

bz -2, , Me2yT (3-10)

where for deterministic signals

2WTz
is x'2(2WT,2WTh?)
o2 3 :
3 |
DS ?
2WTz * :
is x'2(2WT,2WTh?) 3-133 I8
o2 4 | o
“ {
and for random signals
2WTz1 2WTz2
——— and —— are x2(2WT). RS (3-12)

Thus the detector output 1s the differehée of two scaled, correlated
(central or noncentral) chi-squared random variables. However, from
(3-9), if the input noise power is the same in each channel (olsoz=c),
these output variables are uncorrelated (and independent) for determinis-

tic signals; for Gaussian signals, the same effect results if o: + di =
3 v

2
c +4°. | &
2 2

In the narrowband case the detector output is

33
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2 2 2 2
+ +
M usci Y381 Yue1 uusi]
“§ Ljewese —‘z——J
i=1
M
p 3 2 2
= 5w (0" = U3
gl DL
4 z -z, M=WT, (3-13)

where U3 and U“ are the envelopes of us and u“. As in the instance
of the square-law detector, with an appropriate change in the
interpretations of hz and hi, the "sum" and "difference" channel
SNR's, the narrowband correlation detector output components z1 and
z2 are distributed in the same way as in the lowpass case (as indicated
in (3-11) and (3-12)).

When the conditions for independence of z1 and 22 are met, as

described above, then the SNR's become

hi » ng%FT[h:+h:+2hlhlcos(el-ez)]
DS
2 1 - i) '
h“ = m[hl+h2-2hlh2008(01-92)]. (3—1“)

3.2 Probability Distribution.

The functional form of the distribution of the correlation
detector output z, in the case of no post-detection integration (M=1),
has been developed in complete generality for the assumed model [13,19].

This form is very complex and far from being "closed". A great
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simplification, however, occurs if the equal input variance conditions

—————

E E discussed above are assumed, so that z1 and zz are independent.
Using those assumptions, in Appendix B it 1is shown that the

probability density function of z becomes, for deterministic signals,

ik Ped o
p(z) = 0—2-(—;%-) exp {-M(h3+h“)}

« I 1 siriM(i-pdn /21°(M(14p)n /21" DS (3-15)

n=0 m=0n!

(M=WT)
f 2 = 2 2 1
| exp i—2Mz/o (l—p)t Gﬁiﬁ_i[uMz/o (1-p )], z> 0 ]
| .
3 » ’
1 2 iy 2 2 3
. exp 32Mz/o (l—p)g Ggiﬁ_i[-ﬂMz/o (1-p )], 2z<0 i
i
where ;
m &= n+m-k xk %
G S » |
L) = B €705 (3-16) |

are polynomials whose properties are discussed in [13]. For Gaussian

2 2
signals, the pdf is obtained by setting h3=hu=0 in (3-15). Using

|

l po o +rd d p+rh h

' | 1.2 1 2 1 2

; | y = Pres ™ - T R :

F | - g e /?i+h§)(1+h§)

i é and

E |

l :

T af + df = c: + d: = g2 + a2 = ¢2(1+h2), (3-17)
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(3-15) becomes

o2 M-1 Ma
M . Ao’ s UM| z |

2 4 M—lz 2 2
o (1+h ) (1+h ) (1-y )

p(z) =

exp {-2Mz/02(1+h2)(1+W)}

X
" e
exp {2Mz/¢ (1+h )(1-y)} ,

In [15], the following integral is derived:

@ S
| ax e™anex) = g L@ 00, 1)

where the incomplete exponential function eK(-) is given in (2-16).
Thus the probability of detection for the correlation detector is

%

2 M-
Pp(r) = (lgﬂ)(l%%—) exp{-M(h:+hi)-2Mt/02(1+p)}

DS

1 2 n 2 m
x nzo mzo ATaTiM(1=p)n /217 [M(14p)h /2]

n+?-l (2M+n+m- K

el 2 (129 [2Mt/62(1+p)]
K=0 m - (] eK o P

x

(M = WT)
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3-3 Receiver Operating Characteristics.

The computer program presented in Figure 3-2 was used to

e e R e T Y P A

calculate a truncated version of (3-20). False alarm thresholds are
first computed according to the procedure diagrammed in Figure 3-3,
which illustrates the case of u-lo'" and p=0. A number of values
of the threshold thus obtained are listed in Table 3-1 for
different o and WT.

An impression of the rate of converge of the distribution of the
detector output to that of a Gaussian variable can be gained from

Table 3-2, in which thresholds from Table 3-1, normalized by

/Var{z} = 02/(1+p)/2M 3

are compared to their Gaussian counterparts taken from Table 26.6
of [11.

Having computed false alarm thresholds corresponding to various
values of a, the method of Figure 3-4 was employed to compute PD=Y
for fixed a and WT, and for input SNR varied when the signal is
deterministic. For computation, the case for which there is no
inter-channel noise correlation (p=0) and for which the signals are

of equal phase and power (Sl=SZ=S, el=92) was selected. For this

z 2 2
case, h:=2h and hu=0’ where h? is the input SNR 1n each channel.

The resulting ROC are given in Figures 3-5 and 3-6 for a=10-2 and 10'",

respectively.

EXAMPLE 3-1. Problem: Find the input SNR required to achieve a

etection probability of .95 when o is constrained to be 1% for a

orrelation detector whose bandwidth is 0.1 Hz and the integration
- 4
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60 H3=2%H/(1+R0O)
70 H4=0
71 IF H3>0 THEN 73
P25 Bawr
73 IF HU4>0 THEN 75
74 11 =0
75 €9=€0
80 UO=.5%M¥(1+R0O)*H4
90 VO=.5%*M*(1-RO)*H3
110 Y=2¥M¥X/(1+RO)
120 S=0 E
3OS nl= : A
135 Co0=C9
140 FOR N=0 TO L1
150 IF N=0 THEN 180
160 U1l=Ul1*%UO/N
170 CO=CO¥*(2*M+N-2)/N+M-1)
180 vi1=1
190 CL=CO
200 FOR J=0 TO L2
210 IF J=0 THEN 240
220 V1=V1¥V0/J
230 C1=Cl¥*(2*M+N+J- 2)/(M+J 1)
240 wW1=Ww8=1
250 c2=C1
260  FOR K=0 TO M+J-1
270 IF K=0 THEN 310
280 W8=W8*¥Y/K
290 W1l=w1l+W8
300 C2=C2*(M+J-K)/(2*M+N+J-1-K)
310 S=S+W1¥Ul*V1*C2¥(2/(1-R0O))+K
320 NEXT K
350 NEXT J
400 NEXT N
410 sS=S*EXP(- Y-M*(H3+Hu))
420 S=S*(1+RO)¥*(1-RO+2)4(M-1)
430 S=S¥2/4+M

?Wx
Py oY = l+p ’

Mnemonics: RO H3 = g, H4 = :9

Wl = e (Y), Ul [M(1+p)h2/2] /N!,
V1= M(1-p)h2/217/5t, C2 - &2M§§§J12 )
S = -E'(1+RO)(1-R02) "% exp [-Y-M(H3+H4)]
4 v
Ll L2 M#J-1 N
xJ § ] wi-ul.vi-c2 (-—-—]
N=0 J=0 K=0 19t : :
FIGURE 3-2

Program to Compute Correlation Detector Probabilities
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SPECIFY PARAMETERS
1 | Mva hazl h‘z
E _ Co= zm-z)
' ’ M-1

.- L1=L2=0

SPECIFY ARGUMEN™
"/’2 =X

CHANGE X - | COMPUTES =P, } PROGRAM OF FIG. 3-2

NO

s=10%

YES

THRESHOLD = ¢ 2X

FIG. 3-3. PROCEDURE TO COMPUTE FALSE ALARM THRESHOLDS.
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TABLE 3-1
False Alarm Thresholds

M=Wl, p =0

t/a? -

[PF ASS M=1 2 5 10 20 50 100

107! | .804719 | .599316 | .393138 |.282004 | .200966 | .127726 .090467

1072 |[1.956012 |1.297955 | .775559 |.535128 | .373254 | .234027 .164992
1073 |3.107304 {1.951070

107" 14.258597 |2.584154 {1.407855 |.924418 | .623690 | .381497 .266446

|
1075 |5.409889 |3.205650 ! g

106 |6.561182 |3.819675 i J

Q,f) 3.534526 |2.547767 2.275093

1 2 70 48620 | x 1010 | x 1028 x 1058

TABLE 3-2
Normalized False Alarm Thresholds

M=WT, p =0

t/2M/aZ
M g =101 1072 1074
1 1.138045 2.766219 | 6.022566
2 1.198632 2.505010 | 5.168308 |
5 ~1.243212 | 2.452533| 4.452028 |
10 1.261160 2.303165 | 4.134123 |
20 1.271021 2.3606064 | 3.944562 |
50 T.277260 2.380270 | 3.814970 |
100 1. 279397 2. 333330 | 3.768116
’ ® 1.28155 °  2.32635 3.71902
(Gaussian)

4o
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|
|
|
|
|
|
|

SPECIFY PARAMETERS

M.p, C, -(zM-z )
M-,

T
X(Pea) = /o2

SPECIFY SNR
h32, hg?

SET NUMBER OF TERMS
L1=L2=20

INCREASE L1, L2

COMPUTE S =P,

NO

CHANGE SNR

ENOUGH
POINTS ?

FIG. 3-4. METHOD FOR COMPUTING Pp,.
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FIG. 3-5 RECEIVER OPERATING CHARACTERISTICS, CORRELATION DETECTOR,
FOR PFA = 0.01 AND WT VARIED (DETERMINISTIC SIGNAL)
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time is 200 seconds. Solution: From Figure 3-5, the WI=20 curve,

i ,
we find that y=.95 corresponds to h =-1.1 dB. Referred to one hertz 3 4

Bgndwidth, this value gives a detection threshold of -11.1 dB.

FXAMPLE 3-2. Problem: For a correlation detector with WT=10, what
; P, can be achieved by a SNR of zero dB if a=10"72 Solution: PFrom
Figure 3"6’ PD-.56.

EiAMPLE 3-3. Problem: What integration time is required to yield
PD-.9 when aslo'u, h2--3 dB, and W=2Hz? Solution: From Figure 3-6,
we see that the point (y,hz) = (.9,-3) falls between the WT=50 and
WT'=100 curves, say at WI'=60. Therefore, T should be set to about

30 seconds.

To compute ROC for the correlation detector when the signals
are Gaussian, the procedure of Figure 3-4 is used, except that with
hs.hu.o’ the summation is finite (L1=L2=0 in program). The signal
parameters are included by using the notation (3-17) in the program,
with no noise correlation (p=0) and perfect signal correlation (r=1),

or

h h
i &
p in program - 2 1in program
l+h
2 2 2
¢ 1in program + o (l+h )in program. (3-23)

Figures 3-7 and 3-8 give ROC for a Gaussian signal case, assuming

2 4

hx-hz-h’ when a=10"° and 10 .

EiAMPLE 3-4. Problem: What increase in input SNR is required to

jmaintain PD-.95 for a correlation detector with Gaussian signals

2 4

and noise, if Py, 1s decreased from 10°° to 10" ', and WT=2?

L
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FIG. 3-7 RECEIVER OPERATING CHARACTERISTICS, CORRELATION DETECTOR,
FOR PFA = 0.01 AND WT VARIED (RANDOM SIGNAL)
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Solution: From Figure 3-7, h? = 9.8 dB for WI' = 2 and y = .95, in
Figure 3-8, for the same WT and y; h? = 12.3 dB. Thus an increase
_9f 2.5 dB 1is required.

EXAMPLE 3-5. Problem: How does the detectlon performance of a
correlator compare with that of a "sum and square" detector with
two Gaussian inputs? Solution: Assuming that the signals are
perfectly correlated (r=1), the noilses are independent (p=0), and that
che SNR's in the channels are equal, the SNR at the input to the
square-law device 1s twice that in the input channels. Thus we may
use Figures 2-4 and 2-5 if we subtract 3 dB from the SNR indicated.
Table 3-3 summarizes the comparison to be made, using data from
Figures 2-4, 2-5, 3-7, and 3-8. From the comparison, we observe

that the square-law 1is better (requires a smaller SNR) than the

correlation detector for the case modeled, but only by about 1 dB or

less, typilcally.
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TABLE 3-3

Detector Performance Comparison
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CHAPTER 4
INCOHERENT POWER DETECTOR

4.1 Detector Configuration

A third class of quadratic detector which can be analyzed
conveniently is that in which the inputs are squared and then summed,
as illustrated in Figure 4-1. The output of the lowpass filter

is, in the lowpass detector bandwidth case,

L
y(e) = ] xi(e), (4-1)
1=1

where the inputs {xi} are correlated and have different variances

in general. If they were independent and of equal variance,

the sum would be distributed x2(L) and the detector output, x2(LM).
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X
1
w ()2
w =] r =
z LPF G L 2 z T
T y(t) V] H
1 Z
XL
w ( )2.
SQUARERS SUMMER ZONAL INTEGRATOR  DECISION
LOWPASS
FILTER

FIG. 4-1. DETECTOR CONFIGURATION
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Rather than treat this specialized case, we shall maintain the genera-
lity and restrict the number of inputs to L=2, the cases of larger
dimension being encompassed by the approach given in Part II.

For L=2, then

2 o 2
=X X
y 1 2

“iga gty (4-2)
3

where u3 and u are the sum and difference terms defined before in
u
(3-6), with the moments given in (37), (2>8), and (3-9). The

detector output is

M
2 2 2
Z = = u e (6
B LT i )]
b, +z2 . (4-3)
1 2
For both lowpass and narrowband detector cases,
WTz
1 f2 2
. is x (2WT,2WTh3)
o
3
DS (4-4)
WT'z
1 v 2 2
is x (2WT,2WTh ),
2 b
oy
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so that 2z 1s the weighted sum of correlated noncentral chi-squared
random variables.
4.2 Receiver Operating Characteristics

The pdf for the output of the square and sum detector with two
inputs 1s developed in Appendix C. From (C-14), the probability
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