AD-A05	SIFIED	NAVAL COMPU OCT 70	SURFAC TING R. 6 L E NSWC/W	E WEAPO 0.C. FO MILLER 0L/TR-7	NS CENT R QUADE	TER WHI	TE OAK	LAB SI 5.(U)	LVER SP	ETC	F/G 17	/9	/
	OF 2 AD A050 477				Tangger E		INUSCON IN INCOMENT						
			Anna Anna Anna Anna Anna Anna Anna Anna					1 (199-1)		IIII			Ū.
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\$	<u> </u>					· 望起多些而0=						
Land Land	- M 1)-44123E				Ŵ		Annual State of State				
	<text></text>	Market Market				Ź							And the second s
			A Destination of the second se			A second				Land and			
									Ī			NAME OF CONTRACTOR	

COMPUTING R.O.C. FOR QUADRATIC DETECTORS

BY L. E. MILLER

ORDNANCE SYSTEMS DEVELOPMENT DEPARTMENT

OCTOBER 1976

Approved for public release; distribution unlimited.

NAVAL SURFACE WEAPONS CENTER

Dahlgren, Virginia 22448 • Silver Spring, Maryland 20910

	UNCLASSIFIED	(12)
	SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)	
	REPORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM
(14 . REPORT NUMBER	N NO. 3. RECIPIENT'S CATALOG NUMBER
1	NSWC/WOL/TR-/6-140	partition stangage very and
. /	TITLE (and Subtitle)	TYPE OF REPORT & PERIOD COVERED
(GOMPUTING R.O.C. FOR QUADRATIC	(Renal mate)
, L	DETECTORS.	Final reprog
1		. PERFORMING ORG. REFORT NOMPER
	7. AUTHOR(a)	S. CONTRACT OR GRANT NUMBER(+)
	Dr. L. E. Miller	
	9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
	Naval Surface Weapons Center	AREA & WORK UNIT NUMBERS
	White Oak Laboratory	7F11/100/000 WU65BB
	White Oak, Silver Spring, Maryland 20910	(FII/100/000, W00/22),
	11. CONTROLLING OFFICE NAME AND ADDRESS	III II Oct - 751
		13. NUMBER OF PAGES
1.1		106 (12) 1999.
	14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Off	(ice) 15. SECURITY CLASS. (of this report)
		Unclassified
		154. DECLASSIFICATION DOWNGRADING
	16. DISTRIBUTION STATEMENT (of this Report)	(6) F11100
	Annound for public polonge Distrik	2 ZF111999999
	Approved for public release. District	Jution uniimited.
•	-	
	17. DISTRIBUTION STATEMENT (of the aberraci entered in Block 20, if direct	
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if direct	
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if direct	
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if differ	
	18. SUPPLEMENTARY NOTES	
	18. SUPPLEMENTARY NOTES	
	19. SUPPLEMENTARY NOTES	
	18. SUPPLEMENTARY NOTES	
	18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block nu detection nonlinear	umber)
	 19. KEY WORDS (Continue on reverse side if necessary and identify by block no detection nonlinear analysis quadratic 	umber)
	 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse eide if necessary and identify by block me detection nonlinear analysis quadratic correlator detector 	umber)
	 19. KEY WORDS (Continue on reverse side if necessary and identify by block needed to analysis quadratic correlator detector probability 	umber)
	 19. KEY WORDS (Continue on reverse side if necessary and identify by block nu detection nonlinear analysis quadratic correlator detector probability 20. ABSTRICT (Continue on course side if necessary and identify by block nu detector probability 	umber)
	 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse eide II necessary and identify by block mu detection nonlinear analysis quadratic correlator detector probability 20. ABSTRACT (Continue on reverse eide II necessary and identify by block mu After defining a broad class of non 	umber) nlinear detectorsthose
	 19. KEY WORDS (Continue on reverse side if necessary and identify by block number of the second state of the seco	umber) nlinear detectorsthose terms of their inputs,
	 19. KEY WORDS (Continue on reverse side if necessary and identify by block me detection nonlinear analysis quadratic correlator detector probability 20. ABSTRACT (Continue on reverse side if necessary and identify by block me After defining a broad class of non whose outputs are quadratic forms in the exact probability distributions are detector 	umber) nlinear detectorsthose terms of their inputs, erived when time samples
	 19. KEY WORDS (Continue on reverse side if necessary and identify by block and detection nonlinear analysis quadratic correlator detector probability 20. ABSTRACT (Continue on reverse side if necessary and identify by block and After defining a broad class of non whose outputs are quadratic forms in the exact probability distributions are detected are independent for three important successive independent for three important successive in the sector is a sector of the sector in the sector of the sector is a sector of the sector of	umber) nlinear detectorsthose terms of their inputs, erived when time samples ub-classes: coherent
	 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse olde 11 necessary and identify by block number of the second state of	mber) nlinear detectorsthose terms of their inputs, erived when time samples ub-classes: coherent nd incoherent power totic method is used
	 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number of the end of the e	mber) nlinear detectorsthose terms of their inputs, erived when time samples ub-classes: coherent nd incoherent power totic method is used re general class of
•	 19. KEY WORDS (Continue on reverse elde if necessary and identify by block me detection nonlinear analysis quadratic correlator detector probability 20. ABSTRACT (Continue on reverse elde if necessary and identify by block me After defining a broad class of non whose outputs are quadratic forms in the exact probability distributions are detector are independent for three important su power (sum and square), correlator, an (square and sum) detectors. An asympt to obtain the distributions of the motor. 	umber) nlinear detectorsthose terms of their inputs, erived when time samples ub-classes: coherent nd incoherent power totic method is used re general class of
	 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block mudetection nonlinear analysis quadratic correlator detector probability 20. ABSTRACT (Continue on reverse side if necessary and identify by block muse of the fining a broad class of non whose outputs are quadratic forms in the exact probability distributions are deare independent for three important su power (sum and square), correlator, and (square and sum) detectors. An asymptito obtain the distributions of the more approximation of the more statement of the distributions of the more statement of the more statement of the distributions of the more statement of the statement of the statement of the st	umber) nlinear detectorsthose terms of their inputs, erived when time samples ub-classes: coherent nd incoherent power totic method is used re general class of
•	 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse eide II necessary and identify by block and detection nonlinear analysis quadratic correlator detector probability 20. ABSTRACT (Continue on reverse eide II necessary and identify by block and Mose outputs are quadratic forms in the exact probability distributions are detectors. An asympt to obtain the distributions of the most of the mos	umber) nlinear detectorsthose terms of their inputs, erived when time samples ub-classes: coherent nd incoherent power totic method is used re general class of UNCLASSIFIED
•	 18. SUPPLEMENTARY NOTES 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number of the state of th	umber) milinear detectorsthose terms of their inputs, erived when time samples ub-classes: coherent nd incoherent power totic method is used re general class of UNCLASSIFIED Y CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED LECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) detector, including dependent time samples. Computer programs, example calculations, and many graphical results are included; the emphasis is on imparting a methodology which has been successful in computing R.O.C. for the detectors modeled, for both Gaussian and deterministic signals. Co Francis UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

10 October 1976

Preface

This report demonstrates how receiver operating characteristics may be calculated for a broad class of nonlinear detectors, those whose outputs are quadratic forms of the inputs. Of particular interest is the capability to perform these calculations for arbitrary bandwidth-integration time products and dependent time samples. The work documented by this report was performed in the Signal and Digital Processing Branch under Task No. A03S370B/001B/7F11/100-000.

Edward C. Whitman

EDWARD C. WHITMAN By direction

ADDE2519# 1# White Section RYIS Butt Section 285 D WHANNOUTPED JUSTIFICATION DISTRIBUTION PRYAIL APPLITY CODES 14 AVAIL and, IN SPLEIME tist.

and a second colones a

A MAR PROPERTY

TABLE OF CONTENTS

	Title States and State	Page
1.	Introduction	5
	PART I. SELECTED CASES INVOLVING INDEPENDENT SAMPLES	rata
2.	Coherent Power Detector	13
3.	Correlation Detector	30
4.	Incoherent Power Detector	49
	PART II. THE MORE GENERAL CASE	
5.	Approximation to the Distribution of Quadratic Forms	62
6.	ROC for General Quadratic Forms	71
Refe	erences	91
	APPENDICES	
A.	Approximation to the Noncentral χ^2 Distribution	A-1
в.	Derivation of Correlator PDF	B-1
с.	Derivation of Square-And-Sum PDF	C-1
D.	Equivalence of Lowpass and Narrowband Distributions	D-1

2

LIST OF FIGURES

	Title				Page
1-1	Detector Model ···		•••••		12
2-1 2-2 2-3 2-4 2-5 2-6 2-7	Coherent Power Dete Procedure for Compu- Program to Compute ROC for Gaussian S: ROC for Gaussian S: ROC for Determinist ROC for Determinist	ector Mode ting ROC the Chi-S ignal, α = ignal, α = tic Signal	quared Pro 10^{-2}	bability 1	14 18 Integral22
3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8	Correlation Detector Program to Compute Procedure to Compute Method for Computin ROC for Determinist ROC for Determinist ROC for Gaussian St ROC for Gaussian St	or Model Correlati te False A ng P_D tic Signa tic Signal ignal, $\alpha =$ ignal, $\alpha =$	on Detector larm Thres 1, $\alpha = 10^{-1}$ $\alpha = 10^{-1}$ 10^{-2}	or Probabil sholds	31 Lities
4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8	Incoherent Power De Program to Compute ROC for Determinist ROC for Determinist System Comparison: ROC for Gaussian S: ROC for Gaussian S: System Comparison:	etector Mo Square an tic Signal tic Signal MDS vs W ignal, α = MDS vs W	del d Sum Dete , $\alpha = 10^{-2}$, $\alpha = 10^{-4}$ T, Determi 10^{-2} 10^{-4} T, Gaussia	ctor Proba nistic Signal.	50 abilities54
6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8 6-9 6-10 6-11 6-12	Outline of Computat Program to Construct Example of Computed Program to Compute Example Correlator Example Correlator Program to Compute Example Incoherent Example Incoherent Four-Input Detector System Comparison, System Comparison,	tional Pro t Matrices Matrices Narrowban Output PD Output Pr PDF and P Power Det Power Det rs Gaussian Gaussian	cedures s d Coeffici F for M Va obability robability robability ector Prob ector Prob Signal (a	tents aried (ψ = Int. (M va / Integral . Int. (ψv . Int. (ϕv = 10^{-2}) = 10^{-4})	$\begin{array}{c} .71 \\ .73 \\ .74 \\ .76 \\ .1) \\ .80 \\ .76 \\ .1) \\ .80 \\ .76 \\ .80 \\ .76 \\ .80 \\ .80 \\ .81 \\ .83 \\ .83 \\ .83 \\ .83 \\ .83 \\ .83 \\ .83 \\ .83 \\ .83 \\ .83 \\ .83 \\ .83 \\ .83 \\ .84 \\ .85 \\ .85 \\ .87 \\ .89 \\ .90 \end{array}$

LIST OF TABLES

Page

2-1	False Alarm Thresholds, Square-Law Detector	20
2-2	Gaussian Probability Integral	26
3-1	False Alarm Thresholds, Correlation Detector	40
3-2	Normalized False Alarm Thresholds, Correlation Detector	40
3-3	Detector Performance Comparison	48
4-1	False Alarm Thresholds, Square-And-Sum Detector	55
6-1	Example Expansion Coefficients for Narrowband Correlator	77
6-2	Example Square-Law Coefficients	72

400 for Determination Signal, g = 10⁻⁴⁴³ 800 for Determination Signal, g = 10⁻⁴⁴³ 800 for Determination Signal, g = 10⁻⁴⁴⁵

BOC for Determination Signal a = 20⁷⁴ POC for Setermination Signal, a = 20⁷⁴ System Condarison (457 vs MT, Determinicate Straws) 800 for Gaussian Signal, a = 10⁷⁴ 200 for Gaussian Signal, a = 10⁷⁴ System Comparison (457 vs MT, Gaussian Signal)

4

NSWC/WOL/TR 76-148

COMPUTING R.O.C. FOR QUADRATIC DETECTORS

If there actually is no signal $(h^2 = 0)$ and z > z, then the beat

Prepared by: L. E. Miller

CHAPTER 1

COMPUTING RECEIVER OPERATING CHARACTERISTICS FOR QUADRATIC DETECTORS

1. INTRODUCTION

For comparing performances of different signal detector configurations, the functions known as receiver operating characteristics (ROC) are a standard tool. A given detector's ROC may be expressed

$$P_{\rm D} = \gamma(h^2; \alpha) \tag{1-1}$$

where

 $\gamma \equiv P_D = \text{probability of detection}$ $\alpha \equiv P_{FA} = \text{probability of false alarm}$ $h^2 = \text{input signal-to-noise ratio (SNR)}.$ (1-2)

The probabilities are computed on the assumption that the detector output undergoes a statistical test to decide between the hypotheses

> H: no signal is present H: a signal is present

The test is performed by comparing the value of the detector output z to a number τ called a threshold. If $z \ge \tau$, H₁ is accepted; if $z < \tau$, H₁ is accepted.

If there actually is no signal $(h^2 = 0)$ and $z \ge \tau$, then the test yields an error of Type I or false alarm, with the probability

$$a = \int_{T}^{\infty} dz \, p_{z}(z|h^{2}=0) \qquad (1-4)$$

where $p_{z}(z|h^{2}=0)$ is the probability density function (pdf) of the detector output subject to the condition that there is no signal. If the value of τ is chosen to keep a at a particular value, then a is known as the "level" of the test.

If there actually is a signal present but $z < \tau$, the test yields an error of Type II, with the probability

$$\beta = \int_{-\infty}^{\tau} dz \ p_z(z \mid h^2 \neq 0). \tag{1-5}$$

Conversely, if $z \ge 0$ when there is a signal present, the test result is correct with the probability

$$\gamma = 1 - \beta = \int^{\infty} dz \, p_z(z|h^2 \neq 0)$$
 (1-6)

If τ has been constrained by α so that $\tau = \tau(\alpha)$, then $\gamma = \gamma(h^2; \alpha)$ and is known as the "power function" of the test.

It is clear that to compute the ROC for a given detector requires knowledge of the probability distribution of the detector output. Often the functional form of this distribution is very difficult to obtain analytically.

The purpose of this report is to document methods for calculating the ROC of a class of detectors. Attention is first paid, in

Chapters 2-4, to cases in which samples of the detector inputs are considered independent, thus allowing direct calculation of the ROC. In Chapters 5 and 6, the more general case is treated, using an approximation method.

1.1 Channel Model.

It is assumed that the detector has one or more inputs $x_1(t)$, where

$$x_{i}(t) = s_{i}(t) + n_{i}(t), i=1,2,...,L.$$
 (1-7)

and the noise terms $n_i(t)$ are jointly Gaussian, stationary random processes with zero means and LxL covariance matrix \sum_n , with elements

$$E\{n_{i}^{2}(t)\} = \sigma_{i}^{2}$$

$$E\{n_{i}(t)n_{j}(t)\} = \rho_{ij}\sigma_{i}\sigma_{j}, i \neq j. \qquad (1-8)$$

Two types of signals will be considered, deterministic and random. Random signals will be considered to be from jointly Gaussian, stationary random processes with zero means and LxL covariance matrix \sum_{s} , with elements

$$E\{s_{i}^{2}(t)\} = d_{i}^{2}$$

$$E\{s_{i}(t)s_{j}(t)\} = r_{ij}d_{i}d_{j}, i \neq j. \qquad (1-9)$$

Bandwidth and spectra. Two categories of detector bandwidth will be treated, low-pass and narrowband. In either case, a (two-sided) bandwidth of W hertz and ideal (flat) response is assumed. This

bandwidth is lumped with the signal and noise models, so that, assuming flat spectra over the bandwidth, we have

$$\sigma_{i}^{2} = N_{i}W, d_{i}^{2} = P_{i}W$$
 (1-10)

for the random waveforms. Deterministic signals are modeled as

$$s_{i}(t) = S_{i}(t)cos[\omega_{0}t-\theta_{i}(t)] \qquad (1-11)$$

in which the envelope S_i and phase θ_i are slowly varying, so that signal power is given by

$$s_i^2(t) = s_i^2$$
, lowpass signal
 $s_i^2(t) = S_i^2/2$, narrowband signal. (1-12)

Thus input SNR's are taken to be

$$h^{2} = \begin{cases} s^{2}/\sigma^{2}, \text{ lowpass deterministic signal} \\ s^{2}/2\sigma^{2}, \text{ narrowband deterministic signal} \\ d^{2}/\sigma^{2}, \text{ random signal.} \end{cases}$$
(1-13)

An alternate form for the information represented in a detector's ROC is to write

$$h^2 = h^2(\gamma, \alpha),$$
 (1-14)

a function which answers the question, "What SNR is required to produce $P_D = \gamma$ when the false alarm probability is α ?" Often this

relationship is abbreviated by giving its value for specified $(\gamma, \alpha) = (\gamma_1 \alpha_1)$, say $(\gamma, \alpha) = (.5, 10^{-4})$, and calling it "minimum detectable signal (MDS):

MDS =
$$h^2(\gamma_1, \alpha_1)$$
. (1-15)

Also, for deterministic signals a number called "detection threshold" (DT) is often quoted and is the MDS referred to a one-hertz bandwidth:

$$DT = Wh^{2}(\gamma_{1}, \alpha_{1}) . \qquad (1-16)$$

In the case of narrowband signals and noise, the detector inputs can be written

$$x_{i}(t) = X_{i}(t)\cos[\omega_{0}t - \phi_{i}(t)]$$
$$= x_{ic}(t)\cos\omega_{0}t + x_{is}(t)\sin\omega_{0}t$$

= $(n_{ic}+s_{ic})\cos\omega_{o}t + (n_{is}+s_{is})\sin\omega_{o}t.$ (1-17)

Under this expansion, n_{ic} and n_{is} are independent and each set $\{n_{ic}\}$ and $\{n_{is}\}$ has covariance matrix \sum_{n} . A similar statement is true of the signal terms if they are Gaussian.

The envelopes of the random inputs' correlation functions have the factors

$$sin(\pi W\Delta t)/\pi W\Delta t$$
, narrowband
 $sin(2\pi W\Delta t)/\pi W\Delta t$, lowpass. (1-18)

Therefore, if samples of the inputs are taken 1/W and 1/2W seconds apart, respectively, the samples are uncorrelated and, being Gaussian, independent.

1.2 Detector Model.

Let M samples of the L detector inputs be assembled to form a vector:

$$\xi' \triangleq [x_1(t_1), \dots, x_L(t_1); x_1(t_2), \dots, x_L(t_2); \dots; x_1(t_M), \dots, x_L(t_M)],$$
(1-19)

where the prime (') indicates transpose. Detectors will be considered which produce as an output decision variable or statistic the quadratic form

$$z = \xi' Q_M \xi; Q_M LM x LM,$$
 (1-20)

and therefore termed "quadratic detectors." In Part II (Chapters 5,6), expressions will be developed at this level of generality in order to treat correlated input samples. However, in Part I (Chapters 2-4) and in calculations based on the more general cases, it will assumed that

$$z = \frac{1}{M} \sum_{j=1}^{M} \xi'_{j} Q \xi_{j}, \quad Q L xL \qquad (1-21)$$

where

$$x'_j = [x_1(t_j), x_2(t_j), \dots, x_L(t_j)].$$
 (1-22)

Effectively, this is the same as saying that Q_M is a block diagonal matrix with identical LxL diagonals Q/M.

The detector form (1-21) is illustrated in Figure 1-1. The "quadratic processor" is assumed memoryless, so that the sampling operation can be placed after the processor for convenience. This model is of interest because it is an idealized representation of the non-sampled case with post-detection integration. That is,

$$\frac{1}{M} \sum_{j=1}^{M} z(j\Delta t) \nleftrightarrow \frac{1}{T} \int_{0}^{T} dt z(t). \qquad (1-23)$$

If $\Delta t = 1/W$, then the equivalence M = WT is made, and is commonly referred to as the "time-bandwidth product" in communications theory.

392.64 21-142

CHAPTER 2 COHERENT POWER DETECTOR

In this chapter, and in the two which follow, three types of quadratic detector of frequent interest are treated for the case in which time samples $\{z_j\}$ of the processor output are independent, allowing us to compute ROC exactly.

2.1 Detector Configuration.

A great variety of practical detectors can be modeled by the configuration of Figure 2-1, in which the detector inputs $x_i(t)$ are summed and then squared. Commonly it is called the "square-law detector", and sometimes the "conventional detector."

Let the sum of inputs be

$$x(t_j) = \sum_{i=1}^{L} x_i(t_j)$$

(2-1)

so that

$$E\{x\} = \begin{cases} s = \sum s_1 & DS^* \\ 0 & RS \end{cases}$$

and

$$\operatorname{Var} \{x\} = \begin{cases} \sigma^2 = \sum \rho_{ij} \sigma_i \sigma_j & DS \\ \sigma^2 + d^2 = \sigma^2 + \sum r_{ij} d_i d_j & RS \end{cases}$$
(2-3)

(2-2)

Thus, for example, $\sigma^2 = \sigma_1^2 + 2\rho\sigma_1\sigma_2 + \sigma_2^2$ for L=2 and a deterministic signal.

In the lowpass input case, the detector output is

$$z = \frac{1}{M} \sum_{j=1}^{M} x_j^2$$
, M=2WT. (2-4)

Now, the sum of the squares of v independent Gaussian random variables with unit variances and means μ_1 is a noncentral chi-squared variable $(\chi^{\prime 2})$ with v degrees of freedom and noncentrality parameter $\lambda = \sum_{\mu_1}^{2} \Gamma$. Therefore, we have

$$\frac{2WTZ}{\sigma^2}$$
 is X'²{2WT, 2WTh²} DS

and

$$\frac{2WTz}{2+d^2}$$
 is $x^2\{2WT\}$, RS (2-5)

where χ^2 denotes a (central) chi-squared variable - one for which $\lambda=0$. *Using "DS" for deterministic signal and "RS" for random signal.

In the narrowband input case the detector output is

$$z = \frac{1}{M} \sum_{j=1}^{M} \frac{x_{cj}^{2} + x_{sj}^{2}}{2}, \quad M = WT \quad (2-6)$$

Since $E\{x_{ci}\} = S_i \cos \theta_i$ and $E\{x_{si}\} = S_i \sin \theta_i$ for deterministic signals, we have

$$\frac{2WTz}{\sigma^2} \text{ is } \chi^{2}\{2WT, 2WTh^2\} \text{ DS}$$

$$\frac{2WTz}{\sigma^2 + d^2} \text{ is } \chi^{2}\{2WT\}, \text{ RS} \qquad (2-7)$$

the same result as for the lowpass case.

2.2 Receiver Operating Characteristics

From (1-6) we have

$$P_{D} \equiv \gamma = \int_{\tau} dz p_{z}(z)$$

=
$$\int_{\tau}^{\infty} dv p_{\chi^{1}2}(v|2WT, 2WTh^{2})$$

$$2WT\tau/\sigma^{2}$$

=
$$Q(2WT\tau/\sigma^{2}|2WT, 2WTh^{2}), DS \qquad (2-8)$$

where $Q(\chi'^2|\nu,\lambda)$ is the noncentral chi-squared probability integral. Similarly, we have

$$\gamma = Q[2WT\tau/(\sigma^2+d^2)|2WT], RS$$
 (2-9)

where $Q(\chi^2|\nu)$, the chi-squared probability integral, is widely tabulated.

EXAMPLE 2-1. Problem: What is the probability that a chi-squared random variable with 18 degrees of freedom exceeds the value 30? Solution: Using Table 26.7 of [1], we find that Q(30|18) = .03745.

Setting $h^2=0$ in (2-8) or $d^2=0$ in (2-9) yields

$$P_{FA} \equiv \alpha = Q(2WT\tau/\sigma^2 | 2WT). \qquad (2-10)$$

EXAMPLE 2-2. Problem: Find the threshold value τ necessary to maintain a false alarm probability of 10^{-4} when WT = 100. Solution: In Table II of [2], the function P(a,c)=1-Q(2a/2c) is tabulated. Under P=.9999 and c=100 we find that a=141.530 or $\tau=2\sigma^2a/2WT=1.4153\sigma^2$.

The procedure for obtaining ROC is diagrammed in Figure 2-2. For either type of signal, the process begins with the selection of a false alarm probability α . Using the identity

$$\alpha \equiv Q(\chi_{1-\alpha}^2|\nu)$$
 (2-11)

and (2-10), the false alarm threshold is found to be

$$\tau_{\alpha} = \frac{\sigma^2}{2WT} \chi^2_{1-\alpha} (2WT) . \qquad (2-12)$$

We may speak also of a normalized false alarm threshold d_{α} , given by

$$d_{\alpha} = \frac{\tau_{\alpha} - E\{z\}}{\sqrt{Var\{z\}}} = \frac{\chi_{1-\alpha}^{2}(2WT) - 2WT}{2\sqrt{WT}} , \qquad (2-13)$$

EXAMPLE 2-1. Problem: What is the probability that 2 thi Sauanat random veriable with is degrees of Freedow exceeds the value 302 solution: Uping Suble 26.7 of [1], we find that 2(30(18) = .0378). Section b'=0 in (2-8) or d'=0 in (2-8) yields

FIG. 2-2. PROCEDURE FOR COMPUTING ROC

since $E\{\chi^2(v)\} = v$ and $Var\{\chi^2(v)\} = 2v$. The quantity d_{α} is interpreted as the number of detector output noise standard deviations above the mean at which the threshold τ must be set to produce a false alarm probability α .

EXAMPLE 2-3. Problem: Find d_{α} for WT=10 and α =.01.

Solution: The table on page 252 of [3] gives $P=Q(\chi^2|\nu)$. For P=.01 and $\nu=20$, we find $\chi^2_{.99}(20)=37.566$. Therefore $d_{\alpha}=(37.566-20)/2\sqrt{10}=2.777$.

For convenience, values of $\chi^2_{1-\alpha}(2WT)$ and d_{α} are given in Table 2-1 for various values of α and WT. Also d_{α} is plotted vs α for WT=1, 10, 50, ∞ in Figure 4 of [4].

Having fixed the value of τ_{α} , the ROC is a plot of $P_{D}=\gamma(h^{2})$ or, if it is more convenient, $h^{2}=h^{2}(\gamma)$. For Gaussian signals, from (2-9) and (2-12) we have

$$\gamma = Q[\chi^2_{1-x}(2WT)/(1+h^2)|2WT]$$
. RS (2-14)

One approach is to interpolate in a chi-squared table to find the value of $Q(\chi^2|\nu)$ corresponding to the number

$$\chi^{2}_{1-\gamma}(2WT) = \frac{\chi^{2}_{1-\alpha}(2WT)}{1+h^{2}}$$
 (2-15)

However, it is simpler to calculate Q, since it is given by the finite sum [1]

$$Q(\chi^{2}|2\nu) = e^{-\chi^{2}/2} \sum_{k=0}^{\nu-1} (\chi^{2}/2)^{k}/k!$$
$$= e^{-\chi^{2}/2} e_{\nu-1}(\chi^{2}/2) , \qquad (2-16)$$

store Eletaria at a mainten and the (10) and the suminity of the finerested

WT	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁴	10 ⁻⁶			
	X ² ₁₋₀ (2WT)*							
1	4.60517	9.21034	13.816	18.421	27.64			
2	7.77944	13.2767	18.467	25.513	33.38			
5	15.9871	23.2093	29.588	35.564	46.86			
10	28.4120	37.5662	45.315	52.386	65.42			
20	51.8050	63.6907	73.402	82.062	97.66			
50	118.498	135.807	149.449	161.319	182.12			
100	226.0210	249.446	267.458	283.060	309.84			
	de, NORMALIZED FALSE ALARM THRESHOLD**							
1	1.3026	3.6052	5.9080	8.2105	12.82			
2	1.3362	3.2798	5.1149	6.8989	10.3874			
5	1.3388	2.9537	4.3800	5.7163	8.2421			
10	1.3301	2.7775	4.0027	5.1207	7.1815			
20	1.3198	2.6487	3.7345	^.7027	6.4466			
50	1.3080	2.5319	3.4966	4.3359	5.8068			
100	1.3011	2.4723	3.3729	4.1530	5.4920			
80	1.28155	2.32635	3.09023	3.71902	4.7534			

NOTES:

1

*VALUES FOR WT = 100 AND/OR a = 10⁻⁶ TAKEN FROM TABLE II OF [2]; THE REMAINDER FROM TABLE 26.8 OF [1]. **COMPUTED USING VALUES OF χ^2_{1-a} (2WT) FROM TABLE II OF [2].

TABLE 2-1. FALSE ALARM THRESHOLDS.

using the program of Figure 2-3. This calculation was performed for a number of cases, and the results are plotted in Figures 2-4 and 2-5 for $\alpha = 10^{-2}$ and 10^{-4} , respectively.

EXAMPLE 2-4. Problem: - What integration time T is required to achieve 90% detection and 1% false alarm probabilities when the input SNR is zero dB, if the bandwidth is 0.25 Hz?

Solution: From Figure 2-4, γ =.9 and h^2 =0 dB correspond approximately to WT=25. Thus about 100 seconds of integration time is required. For deterministic signals, from (2-8) and (2-12) we have

$$\gamma = Q[\chi_{1-\alpha}^{2}(2WT)|2WT, 2WTh^{2}]. \qquad (2-17)$$

Here, direct calculation is not as simple since the noncentral chisquared probability integral is given by the infinite sum [1]

$$Q(\chi'^{2}|\nu,\lambda) = e^{-\lambda/2} \sum_{k=0}^{\infty} \frac{(\lambda/2)^{k}}{k!} Q(\chi'^{2}|\nu+2k).$$
 (2-18)

Tables for this function are relatively rare [5,6], of which [6] is fairly extensive for $2WT \leq 100$ and $\alpha \geq 10^{-3}$. For WT=1, Q is well known to communications engineers as Marcum's Q-function, thoroughly tabulated in [7] and given by nomograph in [8]. Urkowitz [9] uses a nomograph for the (central) chi-squared probability integral [10] and an approximation technique due to Patnaik [11].

In order to avoid both the labor of interpolating tables and the inherent inaccuracy of nomographs, an excellent Gaussian approximation

using the program of Tigure 2.1. This concertation will contained for

76/09/10. 14.22.33.

PROGRAM CHI534

10 READ A, X, M 20 PRINT "M = "M,"A ="A,"X = "X 30 PRINT 40 PRINT "SNR(DB)", "PD" 50 FOR V=2.5 TO 3 STEP .1 60 H=10+V 60 H=10.7 70 Y=.5* X/(1+H) 90 FOR K=1 TO M-1 100 S2=S2*Y/K 110 S1=S1+S2 120 NEXT K 130 S1 = S1 * EXP(-Y)140 PRINT 10*V,S1 150 NEXT V 160 STOP 170 DATA .0001 175 DATA 23.513,2 180 END

 $H \equiv h^{2}$ $X \equiv \chi_{1-\alpha}^{2}$ $Y \equiv \chi_{1-\gamma}^{2}$ $Sl \equiv Q(\chi_{1-\gamma}^{2} | 2M)$

FIGURE 2-3

Program to Compute the Chi-Squared Integral

to the noncentral chi-squared distribution, due to Sankaran [12], was used to obtain h^2 in terms of γ . In Appendix A it is shown that

$$h^{2}(\gamma) = \frac{d_{\alpha}}{\sqrt{WT}} + \frac{d_{\gamma}^{2}+1}{2WT} - \frac{d_{\gamma}}{\sqrt{WT}}\sqrt{\frac{2d_{\alpha}}{\sqrt{WT}}} + \frac{2WT+1}{2WT} , \qquad (2-19)$$

where d, is defined by

$$\gamma \equiv Q(d_{\gamma}) = \frac{1}{2}[1 - erf(d_{\gamma}/\sqrt{2})],$$
 (2-20)

Q(x) being the Gaussian probability integral* and erf(x) the error function, both universally known and tabulated. For reference, Table 2-2 provides several values of d_{χ} .

It is interesting to note that if the value of h^2 yielding $\gamma=.5$ is taken to be the minimum detectable signal (MDS), then from (2-19) it is given simply as

$$MDS = \frac{d_{\alpha}}{\sqrt{WT}} + \frac{1}{2WT} \qquad (2-21)$$

This is to be compared with the heuristic value of $MDS=d_{\alpha}/\sqrt{WT}$ in [4], which is based on distributional properties when WT is very large (i.e., the central limit theorem).

EXAMPLE 2-5. Problem: Find the MDS for $\alpha = 10^{-4}$ and WT=50. Solution: Since no table of γ is available for this value of α , we use the approximation (2-21), yielding MDS=4.3359/ $\sqrt{50}$ +.01=.6232= -2.05 dB, where d_a was obtained from Table 2-1. If W=.1 Hz, the *One of the spinoffs from this study is the discovery that Marcum's Q-function is rather easily and accurately approximated by

$$Q(\alpha,\beta) = Q(\sqrt{\beta-1/2} - \sqrt{\alpha+1/2}).$$

7 dy 10-6 4.75342 10-5 4.26489 10-4 3.71902 3.54008 .0002 .0005 3.29053 .001 3.09023 .002 2.87816 .005 2.57583 .01 2.32635 .02 2.05375 .05 1.64485 .1 1.28155 .2 0.84162 .3 0.52440 0.25335 .4 .5 0

Y=Q(dy)

NOTES: (1) $d_{1-\gamma} = -d_{\gamma}$ (2) VALUES TAKEN FROM TABLES 26.5 AND 26.6 OF [1].

TABLE 2-2. GAUSSIAN PROBABILITY INTEGRAL.

NSWC/WOL/TR 76-148

the menetical estimated distribution, dustribution [12];

corresponding detection threshold is

DT = (.1) MDS = -12.05 dB.

Using (2-19), ROC were computed for the square-law detector with deterministic input signal, and are displayed in Figures 2-6 and 2-7 for $a = 10^{-2}$ and 10^{-4} , respectively.

BE LAR OF AR BRIDE OF LARBER TURKE

FIG. 28 RECEIVER OPERATING CHARACTERISTICS, SOUARELAN DETECTOR, FOR HEAL - 6.01 AND WE VARIED IOFTERMINISTIC SIGNAL

2.

FIG. 2-6 RECEIVER OPERATING CHARACTERISTICS, SQUARE-LAW DETECTOR, FOR PFA = 0.01 AND WT VARIED (DETERMINISTIC SIGNAL)

Ŧ

FIG. 2-7. RECEIVER OPERATING CHARACTERISTICS, SQUARE-LAW DETECTOR, FOR PFA = 0.0001 AND WT VARIED (DETERMINISTIC SIGNAL)

CHAPTER 3 CORRELATION DETECTOR

3.1 Detector Configuration

A second, broad class of practical detectors can be modeled by the configuration of Figure 3-1, in which the detector inputs $\{x_i; i=1,2,...L\}$ are first partitioned, then the partitions summed and multiplied together. Thus the output y(t) of the multiplier has the form

$$y(t) = u_{1}(t)u_{2}(t) = \begin{bmatrix} Ll \\ \sum_{i=1}^{L} x_{i}(t) \end{bmatrix} \begin{bmatrix} L \\ \sum_{i=L+1}^{L} x_{i}(t) \end{bmatrix}$$
(3-1)

Let us define for j=1,2

$$E\{u_{j}(t)\} = \begin{cases} s_{j}(t) & DS \\ 0 & RS \end{cases}$$
(3-2)

$$\operatorname{Var}\{u_{j}(t)\} = \begin{cases} \sigma_{j}^{2} & DS \\ \sigma_{j}^{2} + d_{j}^{2} & RS \end{cases}$$
(3-3)

and

$$Cov\{u_{1}(t), u_{2}(t)\} = \begin{cases} \rho \sigma_{1} \sigma_{2} & DS \\ \rho \sigma_{1} \sigma_{2} + rd_{1} d_{2} \cdot RS & (3-4) \end{cases}$$

The product can be written

$$u_{1}u_{2} = u_{3}^{2} - u_{4}^{2}$$
(3-5)
$$u_{3} = \frac{1}{2}(u_{1} + u_{2})$$

$$u_{4} = \frac{1}{2}(u_{1} - u_{2}) .$$
(3-6)

The two new Gaussian variables thus defined have the moments

$$E\{u_{3}\} = \begin{cases} s_{3} = \frac{1}{2}(s_{1}+s_{2}) & DS \\ 0 & RS \end{cases}$$

$$E\{u_{4}\} = \begin{cases} s_{4} = \frac{1}{2}(s_{1}-s_{2}) & DS \\ 0 & RS & (3-7) \end{cases}$$

$$Var\{u_{3}\} = \begin{cases} \sigma_{3}^{2} = \frac{1}{4}(\sigma_{1}^{2}+2\rho\sigma_{1}\sigma_{2}+\sigma_{2}^{2}) & DS \\ \sigma_{3}^{2}+d_{3}^{2}=\sigma_{3}^{2}+\frac{1}{4}(d_{2}^{2}-2rd_{1}d_{2}+d_{2}^{2}) & RS \end{cases}$$

$$Var\{u_{4}\} = \begin{cases} \sigma_{4}^{2}=\frac{1}{4}(\sigma_{1}^{2}+2\rho\sigma_{1}\sigma_{2}+\sigma_{2}^{2}) & DS \\ \sigma_{4}^{2}+d_{4}^{2}=\sigma_{4}^{2}+\frac{1}{4}(d_{1}^{2}-2rd_{1}d_{2}+d_{2}^{2}) & RS \end{cases}$$

$$(3-8)$$

where

$$Cov\{u_{3}, u_{4}\} = \begin{cases} n\sigma_{3}\sigma_{4} = \frac{1}{4}(\sigma_{2}^{2} - \sigma_{2}^{2}) & DS \\ n\sigma_{3}\sigma_{4} + \delta d_{3}d_{4} = \frac{1}{4}(\sigma_{2}^{2} + d_{2}^{2} - \sigma_{2}^{2} - d_{2}^{2}) & RS. \end{cases}$$
(3-9)

In the lowpass case the detector output is
$$z = \frac{1}{M} \sum_{i=1}^{M} [u_{3}^{2}(t_{i}) - u_{4}^{2}(t_{i})]$$

 $\Delta z_1 - z_2$, M=2WT (3-10)

DS

artab wel-etaupa edg to

(3-11)

where for deterministic signals

$$\begin{cases} \frac{2WTz}{\frac{1}{\sigma_3^2}} & \text{is } \chi'^2(2WT, 2WTh_3^2) \\ \frac{2WTz}{\frac{2}{\sigma_4^2}} & \text{is } \chi'^2(2WT, 2WTh_4^2) \\ \frac{\sigma_4^2}{\sigma_4^2} & \text{is } \chi'^2(2WT, 2WTh_4^2) \end{cases}$$

and for random signals

$$\frac{2WTz_{1}}{\sigma_{3}^{2} + d_{3}^{2}} \text{ and } \frac{2WTz_{2}}{\sigma_{\mu}^{2} + d_{\mu}^{2}} \text{ are } \chi^{2}(2WT). RS \qquad (3-12)$$

This form is very complex and far from being "closed

Thus the detector output is the difference of two scaled, correlated (central or noncentral) chi-squared random variables. However, from (3-9), if the input noise power is the same in each channel ($\sigma = \sigma = \sigma$), $1 = 2^{-1}$, these output variables are uncorrelated (and independent) for deterministic signals; for Gaussian signals, the same effect results if $\sigma_1^2 + d_1^2 = \sigma_2^2 + d_2^2$.

In the narrowband case the detector output is

(3.13)

where U₃ and U₄ are the envelopes of u₃ and u₄. As in the instance of the square-law detector, with an appropriate change in the interpretations of h_3^2 and h_4^2 , the "sum" and "difference" channel SNR's, the narrowband correlation detector output components z₁ and z₂ are distributed in the same way as in the lowpass case (as indicated in (3-11) and (3-12)).

When the conditions for independence of z and z are met, as described above, then the SNR's become

$$h_{3}^{2} = \frac{1}{2(1+\rho)} [h_{1}^{2} + h_{2}^{2} + 2h_{1}h_{1}\cos(\theta_{1} - \theta_{2})]$$
DS
$$h_{4}^{2} = \frac{1}{2(1-\rho)} [h_{1}^{2} + h_{2}^{2} - 2h_{1}h_{2}\cos(\theta_{1} - \theta_{2})]. \qquad (3-14)$$

3.2 Probability Distribution.

The functional form of the distribution of the correlation detector output z, in the case of no post-detection integration (M=1), has been developed in complete generality for the assumed model [13,19]. This form is very complex and far from being "closed". A great

SMCYMODYER 12-748

simplification, however, occurs if the equal input variance conditions discussed above are assumed, so that z_1 and z_2 are independent. Using those assumptions, in Appendix B it is shown that the probability density function of z becomes, for deterministic signals,

$$p(z) = \frac{M}{\sigma^{2}} \left(\frac{1-\rho^{2}}{4}\right)^{M-1} \exp\left\{-M(h_{3}^{2}+h_{4}^{2})\right\}$$

$$\times \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{1}{n!m!} \left[M(1-\rho)h_{3}^{2}/2\right]^{n} \left[M(1+\rho)h_{4}^{2}/2\right]^{m} DS \quad (3-15)$$
(M=WT)

$$\begin{cases} \exp \left\{-2Mz/\sigma^{2}(1-\rho)\right\} G_{M+n-1}^{M+m-1}[4Mz/\sigma^{2}(1-\rho^{2})], z \ge 0 \\ \exp \left\{2Mz/\sigma^{2}(1-\rho)\right\} G_{M+m-1}^{M+n-1}[-4Mz/\sigma^{2}(1-\rho^{2})], z < 0 \end{cases}$$

Thus the probability of debection for the correlation detector is snaw

(21-8) (ix),

 $G_{n}^{m}(x) \stackrel{\Delta}{=} \sum_{k=0}^{n} {\binom{n+m-k}{m}} \frac{x^{k}}{k!}$ (3-16)

are polynomials whose properties are discussed in [13]. For Gaussian signals, the pdf is obtained by setting $h_3^2 = h_4^2 = 0$ in (3-15). Using

$$\psi \equiv \rho_{n+s} = \frac{\rho \sigma_1 \sigma_2^{+rd} d_1^2}{\sigma^2 + d^2} = \frac{\rho^{+rh} h_1^2}{\sqrt{(1+h^2)(1+h^2)}}$$

$$\sigma_1^2 + d_1^2 = \sigma_2^2 + d_2^2 = \sigma^2 + d^2 = \sigma^2(1+h^2), \qquad (3-17)$$

and

(3-15) becomes

$$p(z) = \frac{M}{\sigma(1+h)} \left(\frac{1-\psi^2}{4}\right)^{M-1} G_{M-1}^{M-1} \left[\frac{4M|z|}{\sigma(1+h^2)(1-\psi)}\right]$$

RS

DS

$$\begin{cases} \exp \left\{-2Mz/\sigma^{2}(1+h^{2})(1+\psi)\right\}, & z \ge 0 \\ & (M=WT) \\ \exp \left\{2Mz/\sigma^{2}(1+h^{2})(1-\psi)\right\}, & z < 0. \end{cases}$$
(3-18)

In [15], the following integral is derived:

$$\int_{\tau}^{\infty} dx \ e^{-bx} G_{r}^{s}(x) = \frac{1}{b} e^{-b\tau} \sum_{K=0}^{s} {r+s-K \choose s} {(\frac{c}{b})}^{K} e_{K}(b\tau) , \qquad (3-19)$$

where the incomplete exponential function $e_{K}(\cdot)$ is given in (2-16). Thus the probability of detection for the correlation detector is

$$P_{D}(\tau) = \left(\frac{1+\rho}{2}\right) \left(\frac{1-\rho^{2}}{4}\right)^{M-1} \exp\{-M(h_{3}^{2}+h_{4}^{2})-2M\tau/\sigma^{2}(1+\rho)\}$$

$$\times \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{1}{n!m!} [M(1-\rho)h_{3}^{2}/2]^{n} [M(1+\rho)h_{4}^{2}/2]^{m}$$

$$\times \sum_{K=0}^{n+M-1} {\binom{2M+n+m-2-K}{m+M-1}} {\binom{2}{1-\rho}}^{K} e_{K} [2M\tau/\sigma^{2}(1+\rho)] \qquad (3-20)$$

$$(M = WT)$$

3-3 Receiver Operating Characteristics.

The computer program presented in Figure 3-2 was used to calculate a truncated version of (3-20). False alarm thresholds are first computed according to the procedure diagrammed in Figure 3-3, which illustrates the case of $\alpha = 10^{-4}$ and $\rho = 0$. A number of values of the threshold thus obtained are listed in Table 3-1 for different α and WT.

An impression of the rate of converge of the distribution of the detector output to that of a Gaussian variable can be gained from Table 3-2, in which thresholds from Table 3-1, normalized by

$$\sqrt{Var\{z\}} = \sigma^2 \sqrt{(1+\rho)/2M}$$
, (3-22)

are compared to their Gaussian counterparts taken from Table 26.6 of [1].

Having computed false alarm thresholds corresponding to various values of α , the method of Figure 3-4 was employed to compute $P_D=\gamma$ for fixed α and WT, and for input SNR varied when the signal is deterministic. For computation, the case for which there is no inter-channel noise correlation ($\rho=0$) and for which the signals are of equal phase and power ($S_1=S_2=S, \theta_1=\theta_2$) was selected. For this case, $h_3^2=2h^2$ and $h_4^2=0$, where h^2 is the input SNR in each channel. The resulting ROC are given in Figures 3-5 and 3-6 for $\alpha=10^{-2}$ and 10^{-4} , respectively.

EXAMPLE 3-1. Problem: Find the input SNR required to achieve a detection probability of .95 when α is constrained to be 1% for a correlation detector whose bandwidth is 0.1 Hz and the integration

	ter Receiver Crerating Characterdatios.
60	H3=2*H/(1+RO)
70	H4=0 Daau arw S-L surgit in beinensis argung reingnoo eff
11	IF H3>0 THEN 73
12	L2 = 0 The matrix for the state of the decision bedreated a state of the
13	IF H4>0 THEN 75
14	LI = 0 is the parametric of the procedure of a proposed before the t
12	
00	$U0=.5^{M*}(1+RU)^{H4}$
90	$V = .5^{M*} (1 - RU)^{H}$
120	
130	111 = 1
135	
140	FOR $N=0$ TO L1
150	TF N=0 THEN 180
160	Ul=Ul*UO/N
170	$CO = CO^{*}(2^{*}M + N - 2)/N + M - 1)$
180	Vi=1 vo the threaholds from Table 3-1, arrmalised by I=1V
190	CL=CO
200	FOR J=O TO L2
210	IF J=O THEN 240
220	V1=V1*VO/J
230	Cl=Cl*(2*M+N+J-2)/(M+J-1)
240	W1=W8=1
250	
200	FOR $K=0$ TO $M+J-1$
280	IF K=0 THEN 310
200	
300	$M_{T-M} = M_{T-K} / (2 * M + N + T - 1 - K)$
310	S = S + W1 * W1 * C2*(2/(1 - RO)) + K
320	NEXT K
350	NEXT J
400	NEXT N
410	S=S*EXP(-Y-M*(H3+H4))
420	S=S*(1+RO)*(1-RO+2)+(M-1)
430	S=S*2/4+M
	2Mx
	Mnemonics: RO = ρ , $Y = \frac{1}{1+\rho}$, H3 = h ² , H4 = h ² ,
	$WI = e_k(I), UI = [M(I+p)n^2/2] / N;,$
	$V1 = [M(1-\rho)h^{2}/2]^{3}/J!, C2 = (2M+N+3-2-K)$
	the " often not deg bas 241 Sample at novie and 1-5 for antiluses with
	$S = \frac{2}{4^{m}} (1+RO) (1-RO^2)^{M-1} \exp \left[-Y-M(H3+H4)\right]$
	$L_1 L_2 M+J-1$
	$\times 2 2 2 \text{ wi} \cdot \text{vi} \cdot \text{c} 2 (\frac{-}{1 - 10})$
	N=0 J=0 K=0
	ETCUDE 7 7
	Program to Compute Correlation Detector Probabilition
	riogram to compute corretation betector probabilities

and the second second

2.308.55

TABLE 3-1 False Alarm Thresholds

 $M = WT, \rho = 0$

T	1	2	2
L	1	u	

^P FA ^{≣α}	M=1	2	5	10	20	50	100
10-1	.804719	.599316	. 393138	.282004	.200966	.127726	.090467
10-2	1.956012	1.297955	.775559	.535128	.373254	.234027	.164992
10-3	3.107304	1.951070					1
10-4	4.258597	2.584154	1.407855	.924418	.623690	.381497	.266446
10 ⁻⁵	5.409889	3.205650	1	N.X.			
10 ⁻⁶	6.561182	3.819675					
(2M-2)	1	2	70	48620	3.534526 × 10 ¹⁰	2.547767 × 10 ²⁸	2.275093 × 10 ⁵⁸

TABLE 3-2 Normalized False Alarm Thresholds $M = WT, \rho = 0$

-		P	5
	T 12	M/	az

М	$\sigma = 10^{-1}$	10-2	10-4
1	1.138045	2.766219	6.022566
2	1.198632	2.595910	5.168308
5	1.243212	2.452533	4.452028
10	1.261160	2.393165	4.134123
20	1.271021	2.360664	3.944562
50	1.277260	2.340270	3.814970
100	1.279397	2.333339	3.768116
(Gaussian)	1.28155	2.32635	3.71902

FIG. 3-5 RECEIVER OPERATING CHARACTERISTICS, CORRELATION DETECTOR, FOR PFA = 0.01 AND WT VARIED (DETERMINISTIC SIGNAL)

FIG. 34. METHOD FOR COMPLETERS PB

FIG. 3-6 RECEIVER OPERATING CHARACTERISTICS, CORRELATION DETECTOR, FOR PFA = 0.0001 AND WT VARIED (DETERMINISTIC SIGNAL)

elangie galesbol dire no

time is 200 seconds. Solution: From Figure 3-5, the WT=20 curve, we find that γ =.95 corresponds to h²=-1.1 dB. Referred to one hertz bandwidth, this value gives a detection threshold of -11.1 dB. <u>EXAMPLE 3-2</u>. Problem: For a correlation detector with WT=10, what P_D can be achieved by a SNR of zero dB if α =10⁻⁴? Solution: From Figure 3-6, P_D=.56.

EXAMPLE 3-3. Problem: What integration time is required to yield P_D =.9 when $\alpha = 10^{-4}$, $h^2 = -3$ dB, and W=2Hz? Solution: From Figure 3-6, we see that the point $(\gamma, h^2) = (.9, -3)$ falls between the WT=50 and WT=100 curves, say at WT=60. Therefore, T should be set to about 30 seconds.

To compute ROC for the correlation detector when the signals are Gaussian, the procedure of Figure 3-4 is used, except that with $h_{3}=h_{4}=0$, the summation is finite (L1=L2=0 in program). The signal parameters are included by using the notation (3-17) in the program, with no noise correlation ($\rho=0$) and perfect signal correlation (r=1), or

$$\begin{cases} \rho \text{ in program} + \frac{h}{1+h^2} + \frac{h}{1+h^2} \text{ in program} \\ \sigma^2 \text{ in program} + \sigma^2(1+h^2) \text{ in program.} \end{cases}$$

(3-23)

Figures 3-7 and 3-8 give ROC for a Gaussian signal case, assuming $h_1 = h_2 = h$, when $\alpha = 10^{-2}$ and 10^{-4} . EXAMPLE 3-4. Problem: What increase in input SNR is required to maintain $P_D = .95$ for a correlation detector with Gaussian signals and noise, if P_{FA} is decreased from 10^{-2} to 10^{-4} , and WT=2?

Str. Part & Frankling OFTAM SAUDA OT LABORS TURKE

FIG. 3-8. RECEIVER OPERATING CHARACTERISTICS, CORRELATION DETECTOR, FOR PFA = 0.0001 AND WT VARIED (RANDOM SIGNAL).

Solution: From Figure 3-7, $h^2 = 9.8$ dB for WT = 2 and $\gamma = .95$, in Figure 3-8, for the same WT and γ ; $h^2 = 12.3$ dB. Thus an increase of 2.5 dB is required.

EXAMPLE 3-5. Problem: How does the detection performance of a correlator compare with that of a "sum and square" detector with two Gaussian inputs? Solution: Assuming that the signals are perfectly correlated (r=1), the noises are independent (ρ =0), and that the SNR's in the channels are equal, the SNR at the input to the square-law device is twice that in the input channels. Thus we may use Figures 2-4 and 2-5 if we subtract 3 dB from the SNR indicated. Table 3-3 summarizes the comparison to be made, using data from Figures 2-4, 2-5, 3-7, and 3-8. From the comparison, we observe that the square-law is better (requires a smaller SNR) than the correlation detector for the case modeled, but only by about 1 dB or less, typically.

TABLE 3-3

	CONTRACTOR 1250		Contract of the				-
			$P_D =$.95			
$P_{FA} = 10^{-2}$		thes and true		P _{FA} =10 ⁻⁴		o viiv	WT
h ² (correl)	h ² (SQ.L)	Δh ²	964 . i.i.	h ² (correl)	h ² (SQ.L)	∆h ²	6 odby
16.8 9.8 4.5 1.7 -0.6 -3.2 -4.9	16.5 9.5 3.8 1.0 -1.5 -4.3 -6.2	0.3 0.3 0.7 0.7 0.9 1.1 1.3	i the l sec s to h to h	19.7 12.3 6.5 3.4 0.9 -1.8 -3.6	19.5 12.1 6.1 2.8 0.2 -2.7 -4.7	0.2 0.2 0.4 0.6 0.7 0.9 1.1	1 2 5 10 20 50 100
40-85 f 35	ous of vice	SUS . 19	P _D =	.9	l totottil.	noisal	01405
13.6 8.0 3.4 0.8 -1.3 -3.8 -5.5	13.4 7.7 2.7 0.1 -2.2 -4.8 -6.7	0.2 0.3 0.7 0.7 0.9 1.0 1.2		16.6 10.5 5.4 2.6 0.3 -2.3 -4.0	16.4 10.3 5.0 2.1 -0.4 -3.2 -5.1	0.2 0.4 0.5 0.7 0.9 1.1	1 2 5 10 20 50 100
			P _D =	•5			
4.8 2.1 -0.7 -2.5 -4.2 -6.2 -7.8	4.5 1.7 -1.3 -3.2 -5.1 -7.3 -9.0	0.3 0.4 0.6 0.7 0.9 1.1 1.2		8.1 5.0 1.8 -0.2 -1.8 -4.2 -5.8	7.9 4.8 1.5 -0.7 -2.6 -5.0 -6.8	0.2 0.3 0.5 0.8 0.8 1.0	1 2 5 10 20 50 100

Detector Performance Comparison

CHAPTER 4 INCOHERENT POWER DETECTOR

4.1 Detector Configuration

A third class of quadratic detector which can be analyzed conveniently is that in which the inputs are squared and then summed, as illustrated in Figure 4-1. The output of the lowpass filter is, in the lowpass detector bandwidth case,

$$y(t) = \sum_{i=1}^{L} x_{i}^{2}(t),$$
 (4-1)

where the inputs $\{x_i\}$ are correlated and have different variances in general. If they were independent and of equal variance, the sum would be distributed $\chi^2(L)$ and the detector output, $\chi^2(LM)$.

Rather than treat this specialized case, we shall maintain the generality and restrict the number of inputs to L=2, the cases of larger dimension being encompassed by the approach given in Part II.

For L=2, then

$$y = x_{1}^{2} + x_{2}^{2}$$
$$= 2(u_{2}^{2} + u_{4}^{2}) , \qquad (4-2)$$

where u and u are the sum and difference terms defined before in (3-6), with the moments given in (3-7), (3-8), and (3-9). The detector output is

$$z = \frac{2}{M} \sum_{j=1}^{M} [u_{3}^{2}(t_{j}) + u_{4}^{2}(t_{j})]$$

$$\triangleq z_{1} + z_{2} . \qquad (4-3)$$

(4-2)

For both lowpass and narrowband detector cases,

$$\begin{cases}
\frac{WTz_{1}}{\sigma_{3}^{2}} \text{ is } \chi^{2}(2WT, 2WTh_{3}^{2}) \\
\frac{WTz_{1}}{\sigma_{4}^{2}} \text{ is } \chi^{2}(2WT, 2WTh_{4}^{2}),
\end{cases}$$
DS (4-4)

so that z is the weighted sum of correlated noncentral chi-squared random variables.

4.2 Receiver Operating Characteristics

The pdf for the output of the square and sum detector with two inputs is developed in Appendix C. From (C-14), the probability of detection is

$$P_{D} = \left(\frac{1+\rho}{1-\rho}\right)^{WT} \exp\left\{-WT\left[\frac{\tau}{\sigma^{2}(1+\rho)} + h_{3}^{2}+h_{4}^{2}\right]\right\}$$

$$DS$$

$$x \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \left[WTh_{4}^{2}\left(\frac{1+\rho}{1-\rho}\right)\right]^{n} (WTh_{3}^{2})^{m}\left(\frac{-2\rho}{1-\rho}\right)^{K} \frac{(n+WT)_{K}}{n!m!K!}e_{m+n+K+2WT-1}\left[\frac{WT\tau}{\sigma^{2}(1+\rho)}\right]$$

$$(4-5)$$

where the equal input noise variance assumption has been made. The corresponding false alarm probability is

$$P_{FA} = \left(\frac{1+\rho}{1-\rho}\right)^{WT} \exp\left\{\frac{-WT\tau}{\sigma^{2}(1+\rho)}\right\} \sum_{K=0}^{\infty} \left(\frac{-2\rho}{1-\rho}\right)^{K} \left(K+WT-1\right) e_{K+2WT-1}\left[\frac{WT\tau}{\sigma^{2}(1+\rho)}\right],$$

$$-1 < \rho < 1/3$$

$$= \left(\frac{1-\rho}{1+\rho}\right)^{WT} \exp\left\{\frac{-WT\tau}{\sigma^{2}(1-\rho)}\right\} \sum_{K=0}^{\infty} \left(\frac{2\rho}{1+\rho}\right)^{K} \left(K+WT-1\right) e_{K+2WT-1}\left[\frac{WT\tau}{\sigma^{2}(1-\rho)}\right],$$

$$-\frac{1}{3} < \rho < 1.$$

(4-6)

For deterministic signals, the computer program of Figure 4-2 was written to compute (4-5) when the input SNR's are equal and the signals are in phase. The program was used according to a strategy very analogous to that diagrammed in Figures 3-3 and 3-4. False alarm thresholds for $\alpha = 10^{-2}$ and 10^{-4} are given in Table 4-1, and ROC for the same α are shown in Figures 4-3 and 4-4 for deterministic signals.

<u>EXAMPLE 4-1</u>. Problem: How do the three types of detectors we have considered compare as to minimum detectable signal (P_D =.5, α =10⁻⁴) as WT varies, for two channels of uncorrelated noise and a deterministic signal common to the charnels? Solution: Using Figures 2-7, 3-6, and 4-4, the comparison in Figure 4-5 was constructed, showing that in this instance the coherent power or square-law detector is consistently "best" and the incoherent is consistently "worst", although the difference in MDS is at most 1.6 dB.

For the Gaussian signal case, (4-6) was computed using $\rho=h^2/(1+h^2)$ and replacing σ^2 with $\sigma^2(1+h^2)$ in the program, as done previously for the correlation detector. Figures 4-6 and 4-7 provide the ROC for the two-input sum and square detector when $\alpha=10^{-2}$ and 10^{-4} respectively.

EXAMPLE 4-2. Problem: Perform the same comparison as in Example 4-1 for Gaussian signals. Solution: Using data from Figures 2-5, 3-8, and 4-7, the comparison plotted in Figure 4-8 shows much the same result as in the deterministic signal case.

80 DO=2*M*H/(1+RO) 82 AO = -2*RO/(1-RO)85 IF DO>O THEN 100 86 L1=0 105 S=0 110 D1=1 100 Y=X*M/(1+RO) 120 FOR I=O TO L1 130 A1=B0=B1=C0=1 140 IF I=0 THEN 160 150 D1=D1*D0/I 160 FOR J=1 TO I+2*M-1 170 BO=BO*Y/J 180 B1=B1+BO 190 NEXTJ 194 S1=B1 194 SI-BI 195 IF RO>O THEN 200 200 FOR K=1 TO L2 210 Al=Al*AO/K 210 AL=AL-AO/A 230 BO=BO*Y/(K+2*M-1+I) 245 CO=CO*(M+K-1) 250 S1=S1+A1*CO*B1 260 NEXT K 265 S=S+S1*D1 270 NEXT I 275 S=S*EXP(-Y-DO)*((1+RO)/(1-RO)) + M

 $H \equiv h^{2}$ $RO \equiv \rho$ $X \equiv \tau / \sigma^{2}$ $M \equiv WT$

FIGURE 4-2

Program to Compute Square-And-Sum Detector Probabilities

	Threshold,	/σ ²	Normalized threshold (τ/σ^2-2)		
WT	$\alpha = 10^{-2}$	10-4	10-2	10-4	
1	6.638352	11.756371	3.2798	6.8988	
2	5.02256	7.95691	3.0226	5.9569	
5	3.75662	5.23860	2.7775	5.1207	
10	3.18454	4.10311	2.6487	4.7027	
20	2.80822	3.39456	2.5558	4.4100	
50	2.49445	2.83060	2.4723	4.1530	
100	2.34362	2.56828	2.4298	4.0254	
Gaussian			2.3264	3.7190	

TABLE 4-1

False Alarm Thresholds, Square and Sum Detector

BETECTABLE SIGNAL, dB

CHAPTER 5

APPROXIMATION TO THE DISTRIBUTION OF QUADRATIC FORMS

Having treated in the previous three chapters selected cases of quadratic detectors, we now turn to the more general case in which the detector output is an arbitrary quadratic form of the input samples. Whereas before the assumption that the samples are independent permitted direct calculation of probabilities, the removal of that assumption now will dictate resorting to an approximation technique. However, the approximation used involves an asymptotic series, in which any desired accuracy can be obtained by controlling the number of terms.

In this chapter, the theory behind the approximation technique known as Edgeworth's series is developed for quadratic detectors. Specific computational procedures and examples of receiver operating characteristics obtained by this technique are given in Chapter 6.

5.1 Characteristic Function

Let M samples of the L detector inputs be assembled to form a vector:

 $\xi' \triangleq [x_{11}, x_{21}, \dots, x_{L1}; x_{22}, \dots, x_{L2}; \dots; x_{1M}, x_{2M}, \dots, x_{LM}]$ (5-1)

where

$$x_{ij} \equiv x_i(t_j)$$
. (5-2)

The covariance matrix is then

 $E\{\xi\xi'\} = \begin{bmatrix} \Sigma_{0} & \Sigma_{1} & \Sigma_{2} & \cdots & \Sigma_{M-1} \\ \Sigma_{1} & \Sigma_{0} & \Sigma_{1} & \cdots & \Sigma_{M-2} \\ \vdots & \vdots & \vdots & \vdots \\ \Sigma_{M-1} & \Sigma_{M-2} & \Sigma_{M-3} & \Sigma_{0} \end{bmatrix} = \begin{bmatrix} \Sigma_{1} \\ \vdots \\ \vdots \\ \Sigma_{0} \end{bmatrix}$

nadi bas dia dua dua dua dua da (5-3)

where each sub-matrix is LxL and

$$\sum_{K} = ||E\{x_{i}(t)x_{j}(t+K\Delta t)\}||$$

= ||R_{ij}(K\Delta t)|| , (5-4)

 $R_{ij}(\tau)$ being the cross-correlation function between input channels i and j. If a deterministic signal vector μ is defined analogous to ξ in (5-1), the joint probability density function for the components of ξ is given by

$$p(\xi) = [(2\pi)^{LM} det []^{-\frac{1}{2}} exp\{-\frac{1}{2}(\xi-\mu)'[-\frac{1}{2}(\xi-\mu)]\}$$
(5-5)

in the lowpass detector case, and by

$$p(\xi) = \left[(2\pi)^{LM} det \sum_{n=1}^{\infty} \frac{1}{2} (\xi_{c} - \mu_{c}) \sum_{n=1}^{\infty} (\xi_{c} - \mu_{c}) - \frac{1}{2} (\xi_{s} - \mu_{s}) \sum_{n=1}^{\infty} (\xi_{s} - \mu_{s}) \right]$$
(5-6)

in the narrowband case.

Adopting the detector model of Figure 1-1, we postulate a detector output of the form

$$z = \frac{1}{M} \sum_{i=1}^{M} \xi' Q\xi$$
, (Q LxL) (5-7)

with

$$\xi'_{1} = (x_{11}, x_{21}, \dots, x_{L1})$$
 (5-8)

Alternately, this output can be written

$$z = \xi' Q_M \xi$$
 or $\frac{1}{2} \xi'_c Q_m \xi_c + \frac{1}{2} \xi'_s Q_m \xi_s$ (5-9)

(5-10)

(lowpass) (narrowband)

in which

an LMxLM block diagonal matrix. (O_L denotes an LxL null matrix.) The characteristic function for the distribution of the detector output z is given by

$$\Phi_{z}(ip) = E\{ipz\} = E\{ip\xi'Q_{m}\xi\} \quad (lowpass)$$
$$= E\{\frac{ip}{2}\xi'_{c}Q_{m}\xi_{c}\}E\{\frac{ip}{2}\xi'_{s}Q_{m}\xi_{s}\} \quad (narrowband) \quad (5-11)$$

Using the results of Middleton [18, Chapter 17], who likes to refer to this distribution "generalized χ^2 ," we have

$$\Phi_{z}(ip) = (\det A)^{-1/2} \exp\{-\frac{1}{2}\mu'\Sigma^{-1}(I_{LM}^{-A^{-1}})\mu\}$$
(5-12)

in the lowpass case, and

$$\Phi_{z}(ip) = (\det A)^{-1} \exp\{-\frac{1}{2}\mu_{c}^{'}\Sigma^{-1}(I_{LM}^{-A^{-1}})\mu_{c}^{-1}-\frac{1}{2}\mu_{s}^{'}\Sigma^{-1}(I_{LM}^{-A^{-1}})\mu_{s}\}$$
(5-13)

in the narrowband case, using

A

$$= \begin{cases} I_{LM}^{-2ip\Sigma Q_{m}}, \text{ lowpass} \\ I_{LM}^{-ip\Sigma Q_{m}}, \text{ narrowband} \end{cases}$$
(5-14)

Now, although these expressions are exact, the corresponding probability density functions

$$p_{z}(z) = \frac{1}{2\pi} \int dp \phi_{z}(ip) e^{-ipz}$$
(5-15)

are "intractable" except for LM = 1, 2 and the degenerate case where $\sum Q_{\rm M} = \sigma^2 I_{\rm LM}$, according to [18]. Thus another approach is taken.

is protocoles the women withrequeres of the deal of the memour and detector it

5.2 Asymptotic expansion for the pdf. We use Middleton's formula,

$$I_{LM} - A^{-1} = -\sum_{m=1}^{\infty} (21p)^m (\sum_{M} Q_M)^m$$
 (5-16)
(lowpass)

and the relation

det A = exp {
$$\sum_{m=1}^{\infty} \frac{(2ip)^m}{m} tr[(\sum_{M} Q_M)^m]$$
} (5-17) (lowpass)

where

$$tr[C] = \sum_{i} c_{ii}$$
(5-18)

is the trace of the matrix C. Thus we can write the characteristic function as

$$\phi_{z}(ip) = \exp \{\sum_{m=1}^{\infty} a_{m}(ip)^{m}\}$$
 (5-19)

with

$$a_{m} = 2^{m-1} \{ \mu' \sum^{-1} (\sum Q_{M})^{m} \mu + \frac{1}{m} tr[(\sum Q_{M})^{m}] \}$$
 (5-20)

for a lowpass detector, and

$$a_{m} = \frac{1}{2} \{ \mu_{c} \sum^{-1} (\sum_{M} q_{M})^{m} \mu_{c} + \mu_{s}^{\prime} \sum^{-1} (\sum_{M} q_{M})^{m} \mu_{s} + \frac{2}{m} tr[(\sum_{M} q_{M})^{m}] \}$$

for a narrowband detector.

For small correlation between time samples ($\psi^{M} <<1$) and a lowpass sampling rate twice that of the corresponding narrowband detector, it is shown in Appendix D that (5-20) and (5-21) are equivalent.

Putting together (5-15) and 5-19), we have the asymptotic expansion with respect to the number of variables LM

$$p_{z}(z) \approx \frac{1}{2\pi} \int_{-\infty}^{\infty} dp \exp \{-ipz + \sum_{m=1}^{\infty} a_{m}(ip)^{m}\} \\ = \frac{1}{2\pi} \int_{-\infty}^{\infty} dp \exp\{-ip(z - a_{1}) - p^{2}a_{2}\} \exp\{\{\sum_{m=3}^{\infty} a_{m}(ip)^{m}\} \\ - \infty \\ = \frac{1}{2\pi\sqrt{2a_{2}}} \int_{-\infty}^{\infty} dp \exp\{-ip\left(\frac{z - a_{1}}{\sqrt{2a_{2}}}\right) - p^{2}/2\}\exp\{\{\sum_{m=3}^{\infty} b_{m}(ip)^{m}\}$$
(5-22)

where

$$b_m = a_m / (2a_2)^{m/2}$$
. (5-23)

Now, the first term in the integrand by itself would yield

$$\frac{1}{2\pi\sqrt{2}a_2} \int_{-\infty}^{\infty} dp \exp\{-ip\left(\frac{z-a_1}{\sqrt{2}a_2}\right) - p^2/2\} = (2\sqrt{\pi}a_2)^{-1} \exp\{-\frac{(z-a_1)^2}{4a_2}\}$$
$$= \frac{1}{\sqrt{2}a_2} \phi\left(\frac{z-a_1}{\sqrt{2}a_2}\right), \qquad (5-24)$$

in which $\phi(\mathbf{x})$ is the pdf of a Gaussian variable with zero mean and unit variance. The second factor in the integrand of (5-22) can be recognized as a power series:

$$\exp\{\sum_{m=3}^{\infty} b_{m}(ip)^{m}\} = \sum_{k=0}^{\infty} \frac{1}{k!} \left[\sum_{m=3}^{\infty} b_{m}(ip)^{m}\right]^{k}$$
$$= 1 + \sum_{m=3}^{\infty} b_{m}(ip)^{m} + \frac{1}{2} \sum_{m=3}^{\infty} \sum_{n=3}^{\infty} b_{m}b_{n}(ip)^{m+n}$$
$$+ \dots$$

=
$$1 + \sum_{m=3}^{\infty} c_m (ip)^m$$
. (5-25)

Since the integral (5-22) is actually a Fourier transform, we recall that

$$F^{-1}{(ip)^{k} F[g(z)]} = (-1)^{k} g^{[k]}(z).$$
 (5-26)

Thus we find that

$$p_{z}(z) \approx \frac{1}{\sqrt{2a_{2}}} \left\{ \phi\left(\frac{z-a_{1}}{\sqrt{2a_{2}}}\right) + \sum_{m=3}^{\infty} (-1)^{m} c_{m} \phi^{[m]}\left(\frac{z-a_{1}}{\sqrt{2a_{2}}}\right) \right\}$$
$$= \frac{1}{\sqrt{2a_{2}}} \phi\left(\frac{z-a_{1}}{\sqrt{2a_{2}}}\right) \left\{ 1 + \sum_{m=3}^{\infty} c_{m} He_{m}\left(\frac{z-a_{1}}{\sqrt{2a_{2}}}\right) \right\}, \quad (5-27)$$

 $He_m(\cdot)$ being the Hermite polynomial.

Accurate representation of the density function by means of the asymptotic expansion (5-27) requires that terms be arranged in order of magnitude with respect to dimension LM. Truncation of the series then yields an error no larger than the absolute value of the first discarded term [16, § 0.33].

A truncation of (5-27) accurate to $0\left[\frac{1}{(LM)} 6.5\right]$ is the finite series,

$$p_{z}(z) = \frac{1}{\sqrt{2a}_{2}} \phi(z') \left\{ 1 + b_{3}He_{3}(z') + \left[b_{4}He_{4}(z') + \frac{1}{2}b_{3}^{2}He_{6}(z') \right] \right. \\ \left. + \left[b_{5}He_{5}(z') + b_{3}b_{4}He_{7}(z') + \frac{1}{6}b_{3}^{3}He_{9}(z') \right] (5-28) \right. \\ \left. + \left[b_{6}He_{6}(z') + \left(\frac{1}{2}b_{4}^{2} + b_{3}b_{5}\right) He_{8}(z') + \frac{1}{2}b_{3}^{2}b_{4}He_{10}(z') \right. \\ \left. + \frac{1}{24}b_{3}^{4}He_{12}(z') \right], \right.$$
where bracketed terms are of the same order of magnitude, and

$$z' \equiv (z/-a_1)/\sqrt{2a_2}$$
. (5-29)

5.3 Asymptotic expansion for the probability integral.

The probability integral (or complementary cumulative distribution function) for the output of the quadratic detector is

$$P(\tau) = Pr\{z > \tau\}$$
$$= \int_{-\infty}^{\infty} dz \ p_{z}(z)$$

or

$$P(\tau) = \sqrt{2a} \int_{2}^{\infty} dx P_{z}(x\sqrt{2a} + a_{1})$$
$$\frac{\tau - a_{1}}{\sqrt{2a}}$$

 $= Q(\tau') + \phi(\tau') \{b_{3}He_{2}(\tau') + [b_{4}He_{3}(\tau') + \frac{1}{2}b_{3}^{2}He_{5}(\tau')] \\ + [b_{5}He_{4}(\tau') + b_{3}b_{4}He_{6}(\tau') + \frac{1}{6}b_{3}^{3}He_{8}(\tau')] \\ + [b_{6}He_{5}(\tau') + (\frac{1}{2}b_{4}^{2} + b_{3}b_{5})He_{7}(\tau') + \frac{1}{2}b_{3}^{2}b_{4}He_{9}(\tau')]$

+
$$\frac{1}{24}$$
 b⁴₃ He (τ')]}, (5-30)

again for convenience using

$$\tau' = (\tau - a_1) / \sqrt{2a_2}.$$
 (5-31)

CHAPTER 6

COMPUTING R.O.C. FOR GENERAL QUADRATIC FORMS

Although sufficient information is provided in the previous chapter to compute receiver operating characteristics for the more general cases of quadratic detectors, it is appropriate to document some of computational techniques which have been used with success. In this chapter these techniques are described and illustrated with example calculations, and results similar to those in Chapters 2-4 are given also.

6.1 Generation of Expansion Coefficients

A general outline of the procedures followed in this chapter is diagrammed in Figure 6-1. As indicated in the figure, the first task is compute the expansion coefficients used in (5-28) and (5-30), based on signal, noise, and detector parameters. The remainder of the procedures are useful for computing any distribution for which these coefficients have been generated.

From (5-21) and (5-23), expansion coefficients for narrowband detectors are given by

$$a_{m} = 2^{m-1} \{ \mu_{c}^{*} Q_{M} ([Q_{M}])^{m-1} \mu_{c} + \mu_{s}^{*} Q_{M} ([Q_{M}])^{m-1} \mu_{s} + \frac{2}{m} tr[([Q_{M}])^{m}] \}$$
(6-1)

GENERAL – GOOD FOR ALL TYPES OF DISTRIBUTIONS

en al aguan dalde

FIG. 6-1. OUTLINE OF COMPUTATION PROCEDURES.

Once the signal components a and y are specified.

committetion of the excession coefficients is straightforward

nte ", as performed by the

)

$$b_{\rm m} = a_{\rm m} / (2a_2)^{{\rm m}/2}, {\rm m} \ge 3,$$
 (6-2)

where \sum and Q_M take the form shown in (5-3) and (5-10), respectively.

To begin, the user chooses values for L, M, \sum , and Q. The L × L matrix Q is chosen to reflect the detector configuration. For example, for a (two-input) correlator,

$$Q = \begin{bmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{bmatrix}$$

Construction of the LM \times LM covariance matrix involves assuming the form of the submatrices \sum_k . Here we shall assume "pink noise," or

$$Rij(k\Delta t) = \rho_{ij}\sigma_{i}\sigma_{j}\psi^{k}, \quad |\psi| < 1, \quad (6-4)$$

(6-3)

where correlation between time samples decreases geometrically with the time separation of the samples. With this given, the sub-matrices take the form

 $\sum_{k} = \psi^{k} \sum_{0}, \qquad (6-5)$

which makes it rather simple to generate \sum , as performed by the program in Figure 6-2, which computes \sum , Q_M , and $\sum Q_M$, given L, M, Q, \sum_O , and ψ . Figure 6-3 illustrates the output of the program for L = M = 2, Q as in (6-3), ψ = .1, and

$$\Sigma_{0} = \begin{bmatrix} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{bmatrix} .$$
 (6-6)

Once the signal components μ_c and μ_s are specified, computation of the expansion coefficients is straightforward. For the stationary signal case, which was assumed throughout

5 10 15 20 30 40 60 80 90 100 105	BASE1 DIM Q(40,40),Z(40,40) DIM R(40,40) M=2 L=2 W(1,1)=W(2,2)=1 W(1,2)=W(2,1)=.5 P=.1 V(1,1)=V(2,2)=0 V(1,2)=V(2,1)=.5 MAT Z=ZER(L*M,L*M) MAT Q=ZER(L*M,L*M) MAT R=ZER(L*M,L*M)	40),V(10,10),W(1 Σ _ο Q	0,10)	
110	FOR I=0 TO M-1			
120	FOR J=1 TO L			
130	FOR K=1 TO L		A ALL STOR	
140	Jl=J+I*L			
150	Kl=K+I*L			
160	Z(J1,K1)=W(J,K)			
170	Q(J1,K1)=V(J,K)/M			
180	FOR I1=1 TO M-1-I			
190	K2=K1+I1*L			
200	Z(J1, K2) = (P+I1) * Z(.	J,K)		
210	Z(K2,J1)=Z(J1,K2)			
220	NEXT II			
230	NEXT K			
240	NEXT J			
250	DDTNT "	MATTRY 7"		
270	PRINT	MAINIA 2		
280	MAT PRINT Z			
290	PRINT"	MATRIX Q"		
300	PRINT			
310	MAT PRINT Q			
320	MAT R=Z*Q			
330	PRINT"	MATRIX Z*Q"		
340	PRINT			
350	MAT TRINT R			
500	STOP			
600	END			

FIGURE 6-2

Program to Construct Matrices

3

(02,01)%,(01,01)V,(04,00)3,(04,0440 M13

F 1	MATRIX Z	1 .1	.05 🗍	
.5	1	.05	.1	(北. 6单)
.1	.05	1	5	Σ
L .05	.1	.5	1	10 051 170 051
	MATRIX Q	(2,513*/10		
0	.25	0	0	
.25	0	0	0	0
0	0	0	.25	
Lo	0	.25	• _	
	MATRIX Z*Q			
.125	.25	.0125	.025	
.25	.125	.025	.0125	Σο.,
.0125	.025	.125	.25	M
L .025	.0125	.25	.125	

FIG. 6-3 EXAMPLE OF COMPUTED MATRICES.

serares aphasion of surport

FIGURE 642

chapters 2-4,

$$\begin{array}{c} \mu_{ci} = S_{j} \cos \theta_{j} \\ \mu_{si} = S_{j} \sin \theta_{j} \end{array} \begin{array}{c} i = j + nL \\ j = 1, 2, ...L \\ n = 0, 1, 2, ..., M-1 \end{array}$$
(6-7)

If, as a reference case, we suppose that

$$S_{j} = S_{j}$$
 all j, (6-8)
$$\theta_{j} = \theta$$

then (6-1) takes the simple form

$$a_{m} = 2^{m-1} \{ S^{2} \mu' Q_{m} ([Q_{m}]_{\mu}^{m-1} + \frac{2}{m} tr [([Q_{M}]_{\mu}^{m}] \}$$
(6-9)

with

 $\mu' = (1, 1, ..., 1).$ (LM elements) (6-10)

The program of Figure 6-4 implements the expressions (6-9) and (6-2), and for the simple matrices of Figure 6-3, gives the expansion coefficients listed in Table 6-1.

EXAMPLE 6-1. Problem: Find the expansion coefficients for a sumand-square detector with four inputs and WT = 10, assuming no signal, an intersample correlation factor of ψ = .12, and an input covariance matrix

	[1	.24	.05	.01]	10 MAT 2*(1) %
A.A. 1913 A.C.	.24	1.5	•3	.05	(6-11)
2 ₀ =	. 05	.3	1.5	.24	. 1990 we wan 0
	.01	.05	.24	1	

Solution: For this configuration,

	1	1	l	1	N(2) 8934(1.		
Q =	1	1	1	1			
	1	1	1	1		(6-12)
	1	1	1	1_	o es lastitos		

and the second se

5	BASEL	A DEC DE ALTRADA
10	DIM 0(40,40),Z(40,40),V(10	,10),W(10,10)
15	DIM R(40,40),U(40,1),Y(40,	l),F(l,40),A(l2)
16	DIM I(1,1)	E a F FRANK & A
20	M=2	
30	L=2	
35	Ll=L*M	
40	W(1,1)=W(2,2)=1	
60	W(1,2)=W(2,1)=.5	to de a safarante sera que suprate t
80	P=.1	
85	S=1	
90	V(1,1)=V(2,2)=0	
100	V(1,2)=V(2,1)=.5	
105	MAT $Z=ZER(L*M,L*M)$	
106	MAT $Q=ZER(L^*M, L^*M)$	
107	MAT $R=ZER(L*M,L*M)$	
110	FOR I=O TO M-1	
120	FOR J=1 TO L	
130	FOR K=1 TO L	
140	J1=J+I*L	
150		
100	Z(JI,KI) = W(J,K)	and the second and the first second sec
170	Q(JI,KI) = V(J,K)/M	
100	FOR II=I TO M-I-I	
190	$K = K \pm $	
200	$2(J_{R2}) = (F_{T1})^{-2}(J_{R})$	
220	$\Delta(RZ, JI) = \Delta(JI, RZ)$	
230	NEXT II	
240	NEXT A	
250	NEXT T	
260	MAT R=Z#O	
270	MAT U=CON(LI.I)	
280	MAT Y=CON(LT.I	405 A(K) = A(K)/2
290		410 IF <k 3="" 430<="" th="" then=""></k>
300	MAT F=COV(1,L1)	420 $A(K)=A(K)/(2*A(2))+(K/2)$
305	MAT F=TRN(Y)	430 MAT Q=(1)*Z
310	MAT $Z=(1)$ *R	440 MAT Z=Q*R
320	MAT Q=IDN(L1,L1)	450 PRINT K.A(K)
330	FOR K=1 TO 12	460 NEXT K
340	MAT Y=Q*U	500 STOP
350	MAT T=F*Y	600 END
360	A(K)=0	
370	FOR J=1 to L1	
380	A(K)=A(K)+Z(J,J)	
390	NEXT J	
400	A(K)=S*I(1,1)+2*A(K)/K	+ + +
	기가 가장 것 같아요. 이 것 같아요. 이 집에 있는 것 같아요. 이 것 것 같아요. 이 것 것 같아요. 이 있 않아요. 이 것 같아요. 이 것 같아요. 이 있 않아요. 이 것 같아요. 이 것 ? 이 있 ? 이 이 있 ?	

FIGURE 6-4

Program to Compute Narrowband Coefficients

TABLE 6-1

EXAMPLE NARROWBAND CORRELATOR COEFFICIENTS

 $\sigma_{1}^{2} = \sigma_{2}^{2} = 1$, $\rho = .5$, $\psi = .1$, $S_{1} = S_{2} = 1$, $\theta = \theta_{2}$; L=M=2

m		a _m or b _m
1		1
2	20.	.364062 ^{3 a}
3		.193056
-ŭ	15.	8.62109E-2
5		3.91863E-2
6	E, F	1.82383E-2
7		8.57530E-3
8	ous fien	4.06278E-3
9		1.93408E-3
10		9.23871E-4
11		4.42390E-4
12		2.12217E-4

2

TABLE 6-2

EXAMPLE SQUARE-LAW COEFFICIENTS COVARIANCE MATRIX GIVEN BY $(6-11); \psi=.12, L=4, M=10$

a st. m lovedlav a	a _m or b _m
	6.78 2.35877 [}] a ₁ , 2
1 Boy and the set	2.75998E-2
2	7.57808E-3
7	6.71795E-4
8	2.11502E-4 6.83994E-5
10	2.26049E-5
12	2.59604E-6

and in the program of Figure 6-3 is defined by the statements

90 MAT V = CON(4, 4)

100 (deleted).

The covariance matrix is entered by the statements

40 MAT W = ZER(4,4) 60 MAT READ W 510 DATA 1, .24, .05, .01 520 DATA .24, 15, .3, .05 530 DATA .05, .3, 1.5, .24 540 DATA .01, .05, .24, 1

Other changes to the program required are

20 M = 10 30 L = 4 80 P = .1285 S = 0.

The coefficients, as computed by the program, are given in Table 6-2. As a quick check, note that the mean value of the detector output, given by a, agrees with the correct value, which in this case can easily be calculated by summing all the elements of \sum_{0} . Finally, since $\psi^{M} \ll 1$, these results apply for both lowpass and narrowband detectors.

6.2 Computation of PDF and CDF

After obtaining the coefficients for the asymptotic expansion (5-19) for the characteristic function of the detector output's probability distribution, it is straightforward to compute either the probability density function, using (5-28) or the cumulative distribution function using (5-30). Common to both of these expressions are the Hermite polynomials, which are given by

$$He_{n}(x) = (-1)^{n} \left[\frac{d^{n}}{dx^{n}} \phi(x) \right] / \phi(x)$$

= $xHe_{n-1}(x) - (n-1) He_{n-2}(x)$,
with $He_{0}(x) = 1$, $He_{1}(x) = x$. (6-13)

Continuing the example of the correlator with \sum_0 given by (6-6) and Q by (6-3) and with $h_1^2 = h_2^2 = 1$ (S = $\sqrt{2}$ in (6-8)) and ψ = .1, Figure 6-5 shows the detector output PDF for different values of M, the number of samples. Two effects are evident in the figure as M increases: the variance of the distribution decreases (the peak becomes narrower), and the distribution begins to approach symmetry about the mean value (= 1.5), indicating a slow convergence to a Gaussian distribution. These effects are perhaps more obvious in Figure 6-6, in which the probability integral (5-30) is plotted, using the following approximation [1] for the Gaussian probability integral:

 $Q(x) \begin{cases} \phi(x) [d_1y + d_2y^2 + d_3y^3], x \ge 0 \quad (6-14) \\ 1 - Q(-x), x < 0 \end{cases}$

with

y = 1/(1 + .33267x)d = .4361836 d¹ = -.1201676 d² = .9372980.

FIG. 6-5. CORRELATOR PROBABILITY DENSITY FUNCTION.

FIG. 6-6. CORRELATOR PROBABILITY INTEGRAL

EXAMPLE 6-2. Problem: What effect do inter-sample and inter-channel correlation have on the distribution of an incoherent power detector with five inputs and M = 6? Solution: In terms of the notation we have adopted, L = 5 and Q = I_s. The effect of the inter-sample correlation is found by varying the parameter ψ . Inter-channel correlation is modeled by the covariance matrix \sum_{o} . Let us assume that the sensors feeding the five channels are so oriented, and the noise field is such that the elements of \sum_{o} are given by

$$E(n_{i}n_{j}) = \begin{cases} 1, & i = j \\ \rho, & i \neq j \end{cases}$$
(6-16)

With these parameters specified, the computation of the pdf and probability integral is accomplished by modifying the program of Figure 6-3 and by the addition of the statements listed in Figure 6-7. The probability integral for this case is shown in Figures 6-8 and 6-9 for ψ varied and ρ varied, respectively. It is shown in these figures that positive correlation increases the dispersion (variance) of the distribution and that negative inter-sample correlation(ψ <0) can decrease the variance for small values, but has a degrading effect in the sense that convergence to a Gaussian distribution is retarded (as evidenced by an increase in curvature in Figure 6-8 for ψ <0).

6.3 Computation of ROC

Given the ability to compute the probability integral for the types of quadratic detectors we have been considering, it is relatively simple to obtain receiver operating characteristics

440 MAT Z=Q*R 450 NEXT K COMPUTE PDF, PROB INTEGRAL 460 REM 465 PRINT "X", "P(X)", "Q(X)" 470 X1=0 480 X2=4 490 X3=.5 500 FOR X=X1 TO X2 STEP X3 510 X4=(X-A(1))/SOR(2*A(2))520 H(2)=X4+2-1 530 H(1)=X4 540 FOR K=3 TO 12 550 H(K)=X4*H(K-1)-(K-1)*H(K-2) 560 NEXT K 570 GOSUB 1000 590 GOSUB 1200 600 PRINT X, P2, P3 605 NEXT X 610 STOP 1000 REM PDF SUBROUTINE 1010 P2=1+A(3)*H(3)+A(4)*H(4)+A(3)+2*H(6)/2+A(5)*H(5)1020 P2=P2+A(3)*A(4)*H(7)+A(3)+3*H(9)/6+A(6)*H(6)1030 P2=P2+(A(4)+2/2+A(3)*A(5))*H(8)+A(3)+2*A(4)*H(10)/21040 P2=P2+A(3)+4*H(12)/24 1050 P2=P2*EXP(+X4+2/2)/(2*SQR(P1*A(2))) 1060 RETURN PROB INTEGRAL SUBROUTINE 1200 REM 1210 P3=A(3)*H(2)+A(4)*H(3)+A(3)+2*H(5)/2+A(5)*H(4)+A(3)*A(4)*H(6)1220 P3=P3+A(3)+3*H(8)/6+A(6)*H(5)+(A(4)+2/2+A(3)*A(5))*H(7)1230 P3=P3+A(3)+2*A(4)*H(9)/2+A(3)+4*H(11)/24 1235 IF X4<OTHEN 1244 1240 T1=1/(1+.33267*X4) 1242 GO TO 1250 1244 T1=1/(1-.33267*X4) 1250 P5=.4361836*T1-.1201676*T1+2+.937298*T1+3 1252 IF X4>0 THEN 1256 1254 P5=EXP(X4+2/2)*SQR(2*P1)-P5 1256 P3=P5+P3 1260 P3 = P3 * EXP(-X4 + 2/2)/SQR(2*P1)1270 RETURN 2000 END

FIGURE 6-7

Program to Compute PDF and Probability Integral

FIG. 6-8. INCOHERENT DETECTOR PROBABILITY INTEGRAL, # VARIED

for them. As in chapters 2-4, the first step is to calculate false alarm thresholds. The probability integral is then evaluated at these thresholds for various signal-to-noise ratios.

This report is concluded with an illustrative system comparison problem.

EXAMPLE 6-3. Problem: Compare the detection performance of the quadratic detectors shown in Figure 6-10, when a Gaussian signal is common to the four channels, and the inter-channel noise and inter-sample correlations are zero.

Solution: Under the conditions stated, L = 4, M = 10, $\psi = 0$, and

$$\Sigma_{0} = \begin{bmatrix} 1 + h^{2} & h^{2} & h^{2} \\ h^{2} & 1 + h^{2} & h^{2} \\ h^{2} & 1 + h^{2} & h^{2} \\ h^{2} & h^{2} & 1 + h^{2} \\ h^{2} & h^{2} & h^{2} & 1 + h^{2} \end{bmatrix}$$
(6-17)

For the three detectors, the quadratic forms they implement are characterized by the matrices

CORRELATE-AND-SUM.

CONVENTIONAL SQUARE-LAW

INCOHERENT POWER DETECTOR

FIG. 6-10. FOUR-INPUT DETECTORS

$$Q = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (incoherent)
(6-20)

After varying the argument of the probability integral with $h^2=0$ to determine the false alarm thresholds for $\alpha = 10^{-2}$ and 10^{-4} for the three detectors; These values of argument were fixed while h^2 was varied, producing the ROC's of Figure 6-11 and 6-12. From these curves it is evident that, for the signal and noise correlations stipulated, the square-law configuration requires about 2 dB less for detection than the correlator, which in turn requires about .5 dB less than the incoherent power detector.

用口口的337月后,此当前的月下世界的当时自己的问题。

and case poundant dealers and

REFERENCES

1. M. Abramowitz and I. Stegun, eds., <u>Handbook of Mathematical</u> <u>Functions</u>, National Bureau of Standards Applied Mathematics Series, #55, Government Printing Office, Washington, 1970.

2. G. A. Campbell "Probability Curves Showing Poisson's Exponential Summations," <u>Bell System Technical Journal</u>, <u>Vol. 2</u> (1923), pp. 95-113.

3. C. Hodgman, ed., C.R.C. <u>Standard Mathematical Tables</u>, twelfth edition, Chemical Rubber Publishing Company, Cleveland, 1959.

4. C. N. Pryor, "Calculation of the Minimum Detectable Signal for Practical Spectrum Analyzers, "Naval Ordnance Laboratory Technical Report TR 71-92, 2 August 1971.

5. E. Fix, "Tables of Noncentral χ^2 ," <u>Publications in Statistics</u>, Vol. 1(1949), University of California Press, Berkeley, pp. 15-19.

6. G. E. Haynam et. al., "Tables of the Cumulative Non-Central Chi-Square Distribution," in <u>Selected Tables in Mathematical</u> Statistics, American Mathematical Society, Providence, Rhode Island, 1973 (2nd printing), pp. 1-78.

7. J. I. Marcum, "Table of Q Functions," Project Rand Research Memorandum RM-338, The Rand Corporation, Santa Monica, CA 1950.

8. D. E. Bailey and N. C. Randall, "Nomograph Determines Probability of Detecting Signals in Noise," <u>Electronics</u>, March 17, 1961.

9. H. Urkowitz, "Energy Detection of Unknown Deterministic Signals," Proceedings of the IEEE, Vol. 55 (April, 1967), pp. 523-531.

.10. S. V. Smirnov and M. K. Potapov, "Nomogram for the χ^2 Probability and Function," <u>Theory of Probability</u>, <u>Vol. VI</u> (1961), Society for Industrial and Applied Math (Translation of Russian Journal).

11. P. B. Patnaik, "The Noncentral χ^2 and F Distributions and Their Applications," <u>Biometrika</u>, <u>Vol. 36</u> (1949), pp. 202-232.

12. M. Sankaran, "Approximations to the Non-Central Chi-Square Distribution," <u>Biometrika</u>, <u>Vol. 50</u> (1963), pp. 199-204.

13. L. E. Miller and J. S. Lee, "The Probability Density Function for the Output of an Analog Cross-Correlator with Correlated Bandpass Inputs," <u>IEEE Transactions on Information Theory</u>, <u>IT-20</u>, July, 1974, pp. 433-440.

14. T. Jayachandran and D. R. Barr, "On the Distribution of a Difference of Two Scaled Chi-Square Random Variables," <u>American</u> <u>Statistician</u>, pp. 29-30, December, 1970.

15. L. E. Miller, "Signal Detection and Bearing Estimation Capabilities of Multiplicative Array Processors," Ph.D. dissertation, The Catholic University of America, Washington, DC 1973 (University Microfilms #73-21, 104).

16. I. S. Gradshteyn and I. M. Ryzhik, <u>Table of Integrals Series</u> and Products, Fourth edition, Academic Press, New York, 1965.

17. K. S. Miller, <u>Multidimensional Gaussian Distributions</u>, Wiley, New York, 1964.

18. D. Middleton, Introduction to Statistical Communication Theory, McGraw-Hill, New York, 1960.

19. L. C. Andrews, "The Probability Density Function for the Output of a Cross-Correlator With Bandpass Inputs," <u>IEEE Transactions on Information Theory</u>, Vol. <u>IT-19</u>, pp 13-19, (January, 1973).

表 心理

APPENDIX A

APPROXIMATION TO THE NONCENTRAL χ^2 DISTRIBUTION

In [12] it is shown that when the noncentral chi-squared random variable X, with v degrees of freedom and noncentrality parameter λ , is transformed into the variable Y by the relation

$$Y = \sqrt{X - \frac{1}{2}(v - 1)},$$
 (A-1)

the variable Y very closely approximates a Gaussian variable with unit variance and mean equal to

$$E(Y) = \sqrt{\lambda + \frac{1}{2}(\nu - 1)}.$$
 (A-2)

Thus, the probability integral for X is approximately

$$Q(x | \nu, \lambda) \simeq Q(\sqrt{x - \frac{2}{2}}(\nu - 1) - \sqrt{\lambda + \frac{1}{2}}(\lambda - 1)), \qquad (A-3)$$

where Q(x) is the Gaussian probability integral. Defining a normalized detection threshold d_{γ} analogous to the false alarm threshold d_{γ} , we have

$$d_{\gamma} = \sqrt{\chi_{1-\alpha}^2 - \frac{1}{2}(2WT - 1)} - \sqrt{2WTh^2 + \frac{1}{2}(2WT - 1)}$$
 (A-4)

or

$$h^{2} = \frac{2WT - 1}{4WT} + \frac{1}{2WT} \left[\sqrt{\chi_{1-\alpha}^{2} - WT + \frac{1}{2}} - d_{\gamma} \right]^{2}.$$
 (A-5)

From (2-13),

$$\chi^2_{1-\alpha} = 2\sqrt{WTd}_{\alpha} + 2WT$$
, and

$$h^{2}(\gamma, \alpha, WT) = \frac{d_{\alpha}}{\sqrt{WT}} + \frac{d_{\gamma}^{2}+1}{2WT} + \frac{d_{\gamma}}{\sqrt{WT}} \sqrt{\frac{2d_{\alpha}}{WT}} + 1 + \frac{1}{2WT}$$
(A-6)

The accuracy of this approximation to the noncentral chisquared distribution was checked against the table of [6] for $a = 10^{-2}$, with the result

> Y %dev. νλ yapprox. .5 -.28 .4986 2 8.190 -.02 13.881 27.415 .7998 +.02 .99 .9902 .4974 -.52 4 10.232 .5 -. 04 16.749 .7997 +.04 .99 .9904 31.794 -.77 .5 .4961 14.126 10 -.07 .7995 22.177 +.05 .99 .9905 40.021 -.87 .5 .4957 18.451 20 -.08 .7994 28.162 .9907 +.07 49.027 .99 -.90 .5 .4955 24.542 40 -.08 .7993 36.550 +.08 .9908 61.572 .99 .4958 -.83 .5 36.614 100 -.08 .7994 53.103 +.08 86.175 .9908 .99

alway and

A-2

(vatage à (x calan), à

APPENDIX B

DERIVATION OF CORRELATOR PDF

Therefore, the obsceptieble function for the distribution of

As indicated in the text, the output of the correlation detector with deterministic signal input is the difference of two scaled noncentral chi-squared variables:

$$z = z_1 - z_2$$
 (B-1)

Lige - Children -

where, using M = WT

1

$$\frac{2Mz}{\sigma_{3}^{2}} \text{ is } \chi^{12}(2M, 2Mh_{3}^{2})$$

$$\frac{2Mz}{\sigma_{4}^{2}} \text{ is } \chi^{12}(2M, 2Mh_{4}^{2}).$$
(B-2)

Under the simplifying assumption of equal input noise power $\sigma_1 = \sigma_2 = \sigma$, z_1 and z_2 are independent, and

$$\frac{4Mz}{\sigma^2} = (1 + \rho) \left(\frac{2Mz}{\sigma^2}\right) - (1 - \rho) \left(\frac{2Mz}{\sigma^2}\right)$$

$$\stackrel{\Delta}{=} (1 + \rho)v_1 - (1 - \rho)v_2 .$$
(B-3)

The characteristic function for the distribution of a noncentral chi-squared variable V with 2ν degrees of freedom and noncentrality parameter λ is, from [11],

B-1

$$\Phi_{\mathbf{v}}(\mathbf{ip} | \mathbf{v}, \lambda) \stackrel{\Delta}{=} \mathbb{E}\{e^{\mathbf{ip}\mathbf{v}}\}$$

$$= \frac{\exp[\mathbf{ip}\lambda/(1 - 2\mathbf{ip})]}{(1 - 2\mathbf{ip})^{\mathbf{v}}}$$

$$= e^{-\lambda/2} \sum_{n=0}^{\infty} \frac{(\lambda/2)^n}{n!} \frac{1}{(1 - 2\mathbf{ip})\mathbf{v}+n}$$

Therefore, the characteristic function for the distribution of

is

 $v = 4Mz/\sigma^2$

>

$$\Phi_{v}(ip) = E\{e^{ip(1+\rho)v_{1}}\} E\{e^{-ip(1-\rho)v_{2}}\}$$
(B-5)
= $exp\{-M(h_{3}^{2}+h_{4}^{2})\}\sum_{n=0}^{\infty}\sum_{n=0}^{\infty}\frac{(Mh_{3}^{2})^{n}}{n!}\frac{(Mh_{4}^{2})^{m}}{m!}$ (B-6)

$$\frac{1}{[1-2ip(1+\rho)]^{M+n}} \frac{1}{[1+2ip(1-\rho)]^{M+m}}$$

Making use of an expression in [14], we may write

$$\begin{bmatrix} 1 - 2ip(1 + \rho) \end{bmatrix}^{-M-n} \begin{bmatrix} 1 + 2ip(1 - \rho) \end{bmatrix}^{M-m} \\ = \sum_{j=1}^{n+M} \binom{2M+m+n-1-j}{M+m-1} \frac{\binom{1+\rho}{2}^{M+m}}{\binom{1-\rho}{2}^{M+n-j}} \frac{1}{\lfloor 1 - 2ip(1 + \rho) \rfloor j}$$

(B-7)

•

$$+ \sum_{k=1}^{m+M} \binom{2M+m+n-1-k}{M+n-1} \left(\frac{1-\rho}{2}\right)^{M+n} \left(\frac{1+\rho}{2}\right)^{M+m-k} \frac{1}{\left[1+2ip(1-\rho)\right]k}$$

This expression allows a representation of the pdf of v in terms of chi-squared pdf's:

$$p_{v}(v) = \frac{1}{2} \left(\frac{1-\rho^{2}}{4}\right)^{M-1} \exp\{-M(h_{3}^{2} + h_{4}^{2} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{[M(1-\rho)h_{3}^{2}/2]^{n} [M(1-\rho)h_{4}^{2}/2]^{m}}{n!}$$

$$\left\{ \begin{array}{l} \sum_{j=0}^{n+m-1} {\binom{2M+m+n-2-j}{2}\binom{2}{1-\rho}^{j} p\chi^{2} \left(\frac{v}{1+\rho}\right)^{2+2j}, v \ge 0} \\ {m+M-1} \\ \sum_{k=0}^{m+M-1} {\binom{2M+m+n-2-k}{M+m-1}\binom{2}{1-\rho}^{k} p\chi^{2} \left(\frac{-v}{1-\rho}\right)^{2+2k}, v < 0,} \end{array} \right.$$
(B-8)

where

3

$$p_{\chi^{2}}(\mathbf{x}|_{2\nu}) \equiv e^{-\mathbf{x}/2} \frac{(\mathbf{x}/2)^{\nu-1}}{2\Gamma(\nu)}, \mathbf{x} \geq 0.$$
 (B-9)

Alternately, to get the double infinite series into a more recognizable form, such as

$$\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{a^{n} b^{m}}{n!m!} f_{mn}(v), \qquad (B-10)$$

B-3

we define the polynomials

×

$$G_r^s(x) \triangleq \sum_{k=0}^r {r+s-k \choose s} \frac{x^k}{k!}$$
 (B-11)

whose properties are summarized in [13]. This allows the pdf of the detector output to be written as

$$p_{z}(z) = \frac{4M}{\sigma^{2}} p_{v} \left(\frac{4Mz}{\sigma^{2}}\right)$$

$$= \frac{M}{\sigma^{2}} \left(\frac{1-\rho^{2}}{4}\right)^{M-1} \exp\{-M(h_{3}^{2} + h_{4}^{2})\}$$

$$\times \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{[M(1-\rho)h_{3}^{2}/2]^{n}}{n!} \frac{[M(1+\rho)h_{4}^{2}/2]^{m}}{m!} \qquad (B-12)$$

 $\begin{cases} \exp\{-2Mz/\sigma^{2}(1+\rho)\} & G_{M+n-1}^{M+m-1} \left[4Mz/\sigma^{2}(1-\rho^{2})\right], z \ge 0 \\\\ \exp\{2Mz/\sigma^{2}(1-\rho)\} & G_{M+m-1}^{M+n-1} \left[-4Mz/\sigma^{2}(1-\rho^{2})\right], z < 0. \end{cases}$

APPENDIX C

THE LAND LOUT (THE STORE STOR

st v une v ie ing saidt, and

(C-1)

(C-2)

Ples the pat of a sud y ta

DERIVATION OF SQUARE-AND-SUM PDF

As shown in the text, the output of the incoherent or squareand-sum detector with two deterministic signal inputs can be considered the sum of two scaled noncentral chi-squared variables:

 $z = z + z_1$

where, using M = WT, and the notice of leased bellions and at (c).

0

(Hall) -

$$\frac{Mz}{\sigma_{3}^{2}} \text{ is } \chi^{12}(2M, 2Mh_{3}^{2})$$

$$\frac{Mz}{\sigma^2}$$
 is $\chi'^2(2M, 2Mh_4^2)$.

Under the simplifying assumption of equal input noise power, $\sigma_1 = \sigma_1$, z_1 and z_2 are independent, and

$$\frac{2Mz}{\sigma^2} = (1 + \rho) \frac{Mz_1}{\sigma_s^2} + (1 - \rho) \frac{Mz_2}{\sigma_4^2}$$
(C-3)
$$\frac{4}{2} (1 + \rho)v_1 + (1 - \rho)v_2.$$

C-1

The joint pdf of v_1 and v_2 is

$$p_{1}(v_{1}, v_{2}) = \frac{1}{4} e^{-(\lambda_{1} + \lambda_{2} + v_{1} + v_{2})/2} \left[\frac{v_{1}v_{2}}{\frac{\lambda_{1}\lambda_{2}}{\lambda_{1}\lambda_{2}}} \right]^{\frac{M-1}{2}}$$

$$I_{M-1} \left(\sqrt{\lambda_{1} v_{1}} \right) I_{M-1} \left(\sqrt{\lambda_{2} v_{2}} \right), v_{1}, v_{2} > 0$$
 (C-4)

where

×

$$\lambda_{1} = 2Mh_{3}^{2}$$

$$\lambda_{2} = 2Mh_{4}^{2}$$
(C-5)

IK(x) is the modified Bessel function of the first kind, of order K. Consider the following change of variables:

$$v_{1} = \frac{x}{1+\rho} + \frac{(1-\rho)y}{2} \qquad x = (1+\rho)v_{1} + (1-\rho)v_{2} \ge 0$$

$$v_{2} = -\frac{(1+\rho)y}{2} \qquad y = \frac{-2v}{1+\rho}, \quad \frac{-2x}{1-\rho^{2}} \le y \le 0.$$
(C-6)

Then the pdf of x and y is

$$p_{2}(x, y) = \frac{1}{2} p_{1} \left[\frac{x}{1+\rho} + \frac{(1-\rho)y}{2}, -\frac{(1+\rho)y}{2} \right]$$

$$= (1/8) \exp\{-\frac{1}{2} \left[\lambda_{1} + \lambda_{2} + \rho y - \frac{x}{1+\rho}\right]\} \left\{ \frac{-y\left[(1-\rho^{2})y+2x\right]}{4\lambda_{1}\lambda_{2}} \right\}^{\frac{M-1}{2}}$$

$$\times I_{M-1} \left\{ \sqrt{\lambda_{1} \left[\frac{x}{1+\rho} + \frac{(1-\rho)}{2}y\right]} \right\} I_{M-1} \left\{ \sqrt{-\frac{(1+\rho)y\lambda_{2}}{2}} \right\}$$
(C-7)

for $x \ge 0$ and $-\frac{2x}{1-\rho^2} \le y \le 0$.

2+

Since $x \equiv \frac{2Mz}{\sigma^2}$ is the variable of interest, we obtain its pdf by integrating out y:

$$p_{3}(x) = \int_{-2x}^{0} dy p_{2}(x, y) = \int_{0}^{1-\rho^{2}} dy p_{2}(x, -y)$$

$$\frac{-2x}{1-\rho^{2}}$$

=
$$f_1(x) \int_0^{\alpha} dy \ e^{-\rho y} \left[y(y - \alpha) \right] \frac{M-1}{2}$$
 (C-8)

×
$$I_{M-1} \{ \sqrt{\lambda_1 \frac{(1-\rho)}{2}} [\alpha - y] \} I_{M-1} \{ \sqrt{\frac{(1+\rho)\lambda_2}{2}} y \}$$

using $\alpha = \frac{2x}{1-\rho^2}$ and

$$f_{1}(x) = \frac{1}{8} \left[\frac{-(1-\rho^{2})}{4\lambda_{1}\lambda_{2}} \right]^{\frac{M-1}{2}} \exp\{-\frac{1}{2} \left[\lambda_{1}\lambda_{2} + \frac{x}{1+\rho} \right] \} \quad (C-9)$$

By expanding the Bessel functions into their series representations, we have

$$p_{g}(x) = f_{2}(x) \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{[(1-\rho)\lambda_{1}/8]^{n}}{n!(n+M-1)!} \frac{[(1+\rho)\lambda_{2}/8]^{m}}{m!(m+M-1)!}$$

$$\times \int_{0}^{\alpha} dy \ e^{-\rho y/2} \ y^{m+M-1}(\alpha - y)^{n+M-1}, \qquad (0)$$

(C-10)

with

5 J 4 G

$$f_{2}(x) = \left[\frac{-\lambda_{1}\lambda_{2}(1-\rho^{2})}{256}\right]^{\frac{M-1}{2}} f_{1}(x). \qquad (C-11)$$

([d +] d + [at) =] - 1920 (201) - 30(a) + (a) + (

From [16], formula 3.383.1, we learn that

$$\int_{0}^{\alpha} dy \ e^{-\rho y/2} \ y^{m+M-1} \ (\alpha - y)^{n+M-1}$$

$$= \frac{(m+M-1)! (n+M-1)!}{(m+n+2M-1)!} \ \alpha^{m+n+2M-1} F_{1}[m+M;m+n+2M;-\rho\alpha/2],$$
(C-12)

where F_1 () is the confluent hypergeometric function. After substituting into (C-10), we obtain the pdf of the detector output Z:

$$p_{z}(z) = \frac{2M}{\sigma^{z}} P_{z}\left(\frac{2Mz}{\sigma^{z}}\right)$$

$$= \frac{M}{\sigma^{2}(1+\rho)} \frac{Mz}{\sigma^{2}(1+\rho)} \frac{1+\rho}{1-\rho} \exp\{-M \frac{z}{\sigma^{2}(1+\rho)} + h_{3}+h_{4}\}\}$$

$$= \frac{\tilde{\Sigma}}{\tilde{\Sigma}} \sum_{n=0}^{\infty} \frac{[Mh_{4}^{2}(1+\rho)/(1-\rho)]^{n}}{n!} \frac{(Mh_{3}^{2})^{m}}{m!} \frac{[Mz/\sigma^{2}(1+\rho)]^{n+m}}{(n+m+2M-1)!}$$

$$(C-13)$$

$$\times \sum_{n=0}^{\infty} [M+n; 2M+m+n; -2\rho Mz/\sigma^{2}(1-\rho^{2})], z \geq 0.$$

And terminal

This expression can be shown to be a special case of that given in [17], page 59.

By expanding the hypergeometric function, the probability integral is found to be

$$P(\tau) = \int_{\tau}^{\infty} p_{z}(z) dZ = \left(\frac{1+\rho}{1-\rho}\right)^{M} \exp\{-M[\frac{\tau}{\sigma^{2}(1+\rho)} + h_{3}^{2} + h_{4}^{2}]\}$$

(expression continued)

C-4

$$\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{1}{k=0} \frac{1}{n!m!k!} \left[Mh_{4}^{2} \left(\frac{1+\rho}{1-\rho} \right) \right] (Mh_{3}^{2})^{m} \left(\frac{-2\rho}{1-\rho} \right)^{k} (n+M)_{k}$$
(C-14)

×
$$e_{m+n+k+2M-1}$$
 { $M\tau/\sigma^2(1+\rho)$ }, $\tau \ge 0$.

<u>Special cases</u>. (1) For $h_3^2 = h_4^2 = 0$,

$$P(\tau) = \left(\frac{1+\rho}{1-\rho}\right)^{M} e^{-M\tau/\sigma^{2}(1+\rho)} \sum_{k=0}^{\infty} \left(\frac{-2\rho}{1-\rho}\right)^{k} e_{k+2M-1}\left\{M_{\tau} \sigma^{2}(1+\rho)\right\}, \\ -1 < \rho < \frac{1}{3}$$

or

$$P(\tau) = \left(\frac{1-\rho}{1+\rho}\right)^{M} e^{-M\tau/\sigma^{2}(1-\rho)} \sum_{k=0}^{\infty} \left(\frac{2\rho}{1+\rho}\right)^{k} e_{k+2M-1} \{M\tau/\sigma^{2}(1-\rho)\} - \frac{1}{3} < \rho < 1.$$

(2) For $\rho = 0$ (input noise uncorrelated),

$$P(\tau) = \exp\{-M(\frac{\tau}{\sigma^2} + h_3^2 + h_4^2)\} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(Mh_3^2)}{n!} \frac{(Mh_4^2)}{m!} e_{m+n+2M-1} M\tau/\sigma^2\}$$
(C-17)
APPENDIX D

1-11 1 18

EQUIVALENCE OF LOWPASS AND NARROWBAND DISTRIBUTIONS

Given a narrowband detector sampling rate of B samples per second and a lowpass detector sampling rate of 2B samples per second. For T seconds, the number of samples M in the expression for the narrowband expansion coefficients (5-21) is M = BT, and for the lowpass coefficients M = 2BT in (5-20).

For M = 2BT, from (5-3) and (5-10),

and

1

 $Q_{2BT} = \frac{1}{2} \begin{bmatrix} Q_{BT} & Q_{(BT)} \\ \hline & & \\ Q_{(BT)} & Q_{BT} \end{bmatrix}$ (D-2)

Now, if we write

$$\left(\sum_{(2BT)} Q_{2BT}\right)^{m} = \frac{1}{2^{m}} \left[\frac{e_{m}^{(\sum_{(BT)} Q_{DT})^{m}} f_{m}^{(\sum_{(BT)} Q_{DT})^{m}}}{f_{m}^{(\sum_{(BT)} Q_{DT})^{m}} e_{m}^{(\sum_{(BT)} Q_{DT})^{m}}} \right]^{(D-3)}$$

D-1

it is true that

since $e_1 = 1$ and $f_1 = \psi^{BT}$. Thus e_m is of the order $1 + O(\psi^{BT})$, and f_m is $O(\psi^{BT})$, with the consequence

$$\operatorname{tr}\left[\left(\Sigma_{(2BT)} Q_{2BT}\right)^{m}\right] = \frac{1}{2^{m-1}} \operatorname{tr}\left[\left(\Sigma_{(B)} Q_{BT}\right)^{m}\right] \times [1+0(\psi^{BT})]. \quad (D-5)$$

Therefore, under the assumptions made here, the noise power terms in (5-20) and (5-21) are equivalent for $\psi^{\rm BT}$ <<1.

Equal signal power for the two cases of bandwidth is represented by

$$\mu_{i}(t_{j}) = A_{i}(t_{j}) \cos[wt_{j} + \theta_{i}(t_{j})] \quad (narrowband)$$

$$\mu_{i}(t_{j}) = \frac{1}{\sqrt{2}} \quad A_{i}(t_{j}). \quad (lowpass)$$

If the signals are stationary over the entire integration period, then

$$^{\mu}(2BT) \qquad \begin{bmatrix} ^{\mu}(BT) \\ - \\ ^{\mu}(BT) \end{bmatrix}, \qquad (D-7)$$

D-2

and also

3

1

Thus, in the sense of (D-6) the signal terms in (5-20) and (5-21) are equivalent to order $O(\psi^{BT})$ for the assumptions which have been made.

University of Rhode Island Frovidence, NI 02903 Dr. D. Tufte

DISTRIBUTION LIST

Commander Naval Ocean Systems Center San Diego, CA 92132 303 (Hanna, Marsh) 2522 (Hodgkiss) Library

6

Commanding Officer ARPA Research Center Unit 1 Moffett Field, CA 94035 Richard Trueblood Library

Commander Naval Underwater Systems Center Library

Dr. C. Nicholas Pryor Technical Director Newport, Rhode Island 02840 Library

Commanding Officer Washington, DC 20390 Library

Commanding Officer Naval Air Development Center Warminster, PA 18974 Library J. Howard, Code 205

Page

redfold mailaly . .

1

Director i apriled Research Lappretory F. C. Box 30

Career Ackerban 1 California Institute of Pathalogy resident, (A 91109

New London, CT 06320 G. C. Carter Downey, Cr 90241 Ching-Use Ho (SF12)

Naval Underwater Systems Center Dr. T.SSMits (BE).

Naval Research Laboratory D. A. Churchanan

Delveralty of Texas at Austin

sell Labar Velppary, New Jersey 07981

1

University of Rhode Island Providence, RI 02903 1 Dr. D. Tufts Chief Office of Naval Research 800 N. Quincy Street Arlington, VA 22217 1 A. Sykes (222) TRW Washington Operations Division 7600 Colshire Drive McLean, VA 22101 Dr. William Richter San Disco, CA 98152 903 **L**ina, Marath Director Applied Research Laboratory Commanding Difloar ARMA Resamble Center Unit 1 1 Moffett Feld, CA 94035 P. O. Box 30 State College, PA 16801 Paul Kurtz Carter Ackerman California Institute of Technology Pasadena, CA 91109 Information Science 286-80 (Sheby) 1: obnamo Rockwell International, Space Division 12214 Lakewood Boulevard Downey, CA 90241 Tishill. Ching-Quo Ho (SF12) The Catholic University of America Washington, DC 20017 Dr. T. Smits (EE) 1 Dr. T. Smits (EE) Lincoln Laboratory Massachusetts Institute of Technology Lexington, MA 02173 Washingtoon IF 20380 D. A. Shnidman University of Texas at Austin Austin, TX 78712 Prof. C. W. Horton Naval Air Development Center Whom hear t, PA 18974 Bell Labs Whippany, New Jersey 07981 G. H. Robertson 1 2

Page

1

Technology Service Corp. Santa Monica, CA 90401 R. L. Mitchell

4

0

Institute for Defense Analysis 400 Army-Navy Drive Arlington, VA 22202 Library

The Energystics Corporation 4410 Executive Boulevard Ft. Wayne, Indiana 46808

Magnavox Corporation 4624 Executive Boulevard Ft. Wayne, Indiana 46808 R. Wagar

Purdue University West Lafayette, Indiana 47906 Engineering Library

Rensselaer Polytechnic Institute Troy, New York 12190 Library

Florida Technological University Orlando, Florida 32716 L. C. Andrews

The Mitre Corporation 1820 Dolley Madison Boulevard McLean, VA 22101

J. S. Lee Associates 11111 South Glen Road Potomac, MD 20854

Naval Postgraduate School Monterey, CA 93940 Library

Systems Control, Inc. Palo Alto, CA 94306 J. LaPointe, Jr.

General Electric Co. Aircraft Equipment Division Utica, NY 13503 J. J. Gusselin Tracor, Inc. 6906 Tracor Lane Alecia, TX **1** X8721 F. Weicmann

Manager, ASW Systems Project Office Regarizent of the Navy Washington 1 DC 20360 R. Bryant (ASW-132) R. Delamey (ASW-138)

> Commander **1** Nevel Atr Systems Command Vashington, DC 20361 El Benson (AIR 53302F)

7309 Mass-Park Istve Salas 507 Pelerat, VA 22101 Rttr: Mrt Spocher

Flanding Systems, Inc.

Seranse Dockmentation Cameron Station Alexandria Virginia 22314

1

1

1

1

3

Tracor, Inc. 6500 Tracor Lane Austin, TX 78721 F. Weidmann

Institute for Defence Analysis -400 crayAdavy Write Arlington, VA 20202-Manager, ASW Systems Project Office Department of the Navy Washington, DC 20360 R. W. Bryant (ASW-132) R. Delaney (ASW-138)

Commander Naval Air Systems Command Washington, DC 20361 E. Benson (AIR 53302F)

Planning Systems, Inc. 7900 West-Park Drive Suite 507 McLean, VA 22101 Attn: Mr. Spooner

Defense Documentation Center Cameron Station Alexandria, Virginia 22314

12

Tachnolican Service Prop Sentechte See, Ge Speri R. L. Misshell

1

1 nelterers file Corporation

44 Constitute acaleverd At. Mayne, Garberg #5003

briese and evil propagation

Real Lateronce, ingrame \$205 Legimerring _____

£

