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ABSTRACT

Several properties and capabilities of non-
deterministic bottom-up pyramid cellular accep-
tors (NBPA's) are presented. NBPA's are a
special case of the pyramid cellular acceptors
proposed by Dyer and Rosenfeld. The main result
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i Introduction

In [1, 2], Dyer and Rosenfeld introduced cellular pyra-
mid acceptors, which are multilayer stacks of cellular
arrays. The stack consists of a bottom array of ax by ¥
cells in which an input pattern is given;the next lowest
layer of 2r-l by 2‘r_l cells; and so on, until the top layer
is a singie cell. Dyer and Rosenfeld have shown that many
useful recognition tasks are executed by this acceptor in
time proportional to the logarithmof the diameter of the in-
put. They also introduced a bottom-up pyramid acceptor (BPA),
which is a simplified version of the pyramid acceptor (PA),
and proposed a number of interesting open problems about BPA's.
One of the problems is as follows: Can a BPA simulate a 2-
dimensional finite-state acceptor? Another one is: Can a
BPA recognize the connectedness of a set of 1's in its input?
- In this paper we shall show that the class of languages

éccepted by bounded cellular array acceptors (CA's) is also

accepted by nondeterministic bottom-up pyramid acceptors

 (NBPA's). Using this result we also show that:

(1) The class of languages accepted by NBPA's is pre-
cisely the class accepted by iiCA's.

(2) The class of languages accepted by rectangular
array oounded acceptors (RABA's) is also accepted
oy WBPA's. In particular, the two-dimensional
finite-state languages are accepted by NBPA's.

(3) The emptiness problem for NBPA's is unsolvable.

(4) An NBPA can recognize the connectedness of the




set of 1's in its input pattern (of 1's and 0's). | §

(5) The class of languages accepted by nondeterministic ii
l two-dimensiﬁnal multi-pass on-line tessellation
acceptors (NMPOTA's) [3, 4] is also accepted by

NBPA's. = |

~ The idea used in proving the main result is to consider

the sequence of configurations (i.e., the states of all the

cells in a cellular automaton). The base array of cells in

SIS

t i an NBPA can npndeterministically guess at each step of the
simulatjon the next states of their corresponding cells in
E | the CA., The non-base cells can then verify whether or not

the succession of configurations is a legal sequence for the

CA.
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2. Bottom-up pyramid acceptors

In this section we review some basic concepts about

pyramid acceptors (PA's). A bounded cellular array écceptor

(CA) is a finite, rectangular affay of identical finite state
machines (FSM's), or cells. Each of these cells is a gquadruple
M = (QN,QT,é,A), where QN is a nonempty, finite set of states,
Qp € Qq is a finite set of input states, A < Q is the set of
accepting states, and §: Qg'+ Q. is the state transition °
function, mapping the ‘current state of M and its four ‘nearest
neighbors into M's next state. If the mapping is into sets -

Q : ‘ ;
N,'then M is nondeterministic: In

of states, i.e., §: Qg > 2
addition, there exists a special boundary state #¢0O. The
state ‘transition function is restricted so that the boundary
state can never be exited from or entered. Consequently,
only those cells initially in a non-# state can ever be in a
non-# state. A configuration of a CA and acceptability by a

CA are defined in the standard way.

A pyramid cellular acceptor is a pyramidal stack of 2-

dimensional CA's, where the bottom array has size - o by 2r,

r-1 2r-l

the next lowest 2 by , and so forth, the (r+l)st layer
consisting of a single cell, called the root. Each cell is
defined as an identical FSM,!W==(QN,QT,6,A). QN' QT and A
are defined as before. Each cell now has nine neighbors --
four son cells in a 2-by-2 block in the level below, four
brother cells in the current level, and one father cell in

the level above. The nine neighbors are shown in Figure 1.
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The transition function § maés 10-tuplesof states into states
-- or sets of states, in the nondeterministic case. The in-
put pattern is stored as the initial states of the bottom
array, henceforth called the base array: The root is the
accepting cell. The whole pyramid is surrounded by the
boupdary state # as before. A configuration of a PA is de-
fined in the standard way and acceptability of an input
pattern (configuration) by a PA is also defined in the usual
way. .

Now, alternative neighborhood definitions can be made
which restrict information transmission through a PA. 1In
particular, we now define a simplification in which the only

neighbors of a cell are its sons, so that state information

can move only one way up the pyramid. A bottom-up pyramid

acceptor (BPA) is a PA whose state transition function is
modified to be §: Qg > QN' In this case, the next state of a
cell depends only on the current states of that cell and its

four sons. As in the case of the PA, the input defines the




start states of the base array, the other cells being
initialized to a quiescent state. The input is accepted if
the root ever enters an accept state. This BPA is called

deterministic. A nondeterministic bottom-up pyramid acceptor
, 3
N

(NPBA) is defined as a BPA using §: Qg + 2 “instead of the

state transition function of the deterministic BPA. (Generally,
we use the notation N in front of the names of acceptors to
specify nondeterminism. The absence of this letter implies

that the machine is deterministic.’




Be NBPA's and CA's

In this section we prove that an NBPA can simulate
deterministic and nondeterministic BCA's in almost real time.
Using this result we also compare the language recognition

capability of NBPA's with that of other automata.

Theorem 1. For an arbitrary deterministic or nondeterministic
CA, there is an NBPA which simulates it in real time follow-

ing a log diameter time startup delay.

Proof: Given é CA whose FSM is M = (QN,QT,G,A), each input
pattern determines a sequence of array configurations, defined
by the repeated application of the state transition function
§ simultaneously at every cell. Input arrays which are not
square and whose side lengths are not powers of two can be
padded with #'s at their fight and bottom sides.

Each base cell in the NBPA nondeterministically chooses
at each step a state from QN, while also remembering its pre-
vious state. Thus at the end of time t each cell c stores a
pair of states (p,q) from QN' where p and g are the states
chosen by c at timeslt and t-1, respectively. To check
whether or not the new configuration legally follows from the
previous one, we verify that the new state of each cell c is
in the range of § given the previous states of c¢ and of its
four nearest neighbors. This is accomplished by the non-base

cells which check that each 3x3 block of state pairs is legal.

That is, if

pan




is a 3x3 block of state pairs at time t, then a legal transi-
tion occurred at cell 5 at time t if s; (< 5(sj 7
5 5

In [2] it was shown how a deterministic BPA can detect
arbitrary local patterns in log diameter time steps. That
algorithm is easily modified to verify that each 3x3 block of
base cell states is one of a finite number of local patterns.
Hence at each time t >log diameter, the root can decidé
whether the base's configuration at time t - log diameter was
a legal successor to the base configuration at time (t - log
diameter) - 1.

In addition, the root can simultaneously check at each
step whether or not the upper-left corner base cell was in
an accept state. Hence if the CA goes through a sequence of
configurations leading to acceptance, the NBPA can non-
deterministically guess the sequence, check its validity, and
determine that an accepting state was entered. Note that it

does not matter whether the CA is deterministic or nondeter-

ministic.
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Corollary 1.1 The class of languages accepted by NBPA's is

precisely the class accepted by NCA's.

Proof: 1In [1] it was shown how a one-dimensional deterministic
CA can simulate a one-dimensional deterministic PA. That
construction is readily modified for BPA's, and for the case

in which both acceptors are nondeterministic. From this re-

sult and Theorem 1 the corollary follows immediately.

Corollary 1.2 The class of languages accepted by rectangular

array bounded acceptors is also accepted by NBPA's. In parti-
cular, the two-dimensional finite-state languages are accepted
by NBPA's.

Proof: It has been shown [5] that the CA (NCA) languages are

precisely the ABA (NABA) languages.

Corollary 1.3 An NBPA can recognize the connectedness of a set

of 1's on a rectangular background of 0's.
Proof: Beyer [6] and Levialdi [7] defined a CA which recog-

nizes this language.

Corollary 1.4 The class of languages accepted by nondeterminis-

tic two~dimensional multi-pass on-line tessellation acceptors
is also accepted by NBPA's.

Proof: In [4] it was shown that L (NMPOTA) = L (NABA).

Corollary 1.5 The emptiness problem for NBPA's is unsolvable.

Proof: In [8] it was shown that the emptiness problem for
two-dimensional finite~state languages is unsolvable; thus

the corollary follows from Corollary 1.2.
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