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APPROXIMATION TECHNIQUES AND OPTIMAL JECISION 

MAKING FOR STOCHASTIC LANCHESTER MODELS 

by 

Peter  Paul  Perla,   III 

Department of Statistics,   Carnegie-Mellon University,   Pittsburgh,   PA 

\ 
\. ABSTRACT 

This  thesis  extends   the  analysis of  stochastic  Lanchester 

models beyond the  stage  of mere modeling.     To  this  end,   a  frame- 

work  of  statistical decision  theory  is  superimposed  on a  simplified 

combat  situation.     Ths  commend er must make  decisions  about the 

amo^ .: of  force  he will  commit  to a combat  in reference  to a 

suitable  cost and reward  structure.     Problems  of both  the one- 

stage  and  the multi-stage  variety are  studied. 

The one-stage decision problem requires knowledge of  the 

probability of victory and  the  expected number  of  survivors. 

A complete solution to  this problem is given,  based  on  the  use 

of  a martingale central  limit  theorem.     The multi-stage decision 

probler. requires   the distribution of the   force   level  configuration 

as  a   function of  time.     These distributions are approximated 

through the use of diffusion approximations.     A  two-stage problem 

is   solved using  these  approximations and backward  induction. 

Some numerical  studies  are presented  to provide  empirical 

support  for the accuracy and utility of  the methods.     The results 

of  these studies are  very encouraging,   giving  strong  support 

to  the efficacy   jf   the  proposed methodologies   for  the  solution 

of decision problems.     In addition,   the diffusion approximation 

methodology provides an  important contribution  to  the  -tady of 

attrition processes of  the  Lanchester  type   in  the  continuous 

time  setting. 
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Chapter   1 

INTRODUCTION 

1.1.     Historical Background 

"War   is a matter of  vital   importance  to  the  State;   the 

province  of  life or  death;   the   road  to  survival  or   rain.      It  is 

mandatory  that  it be  thoroughly  studied."      (Griffith,   1963.) 

So begins the military classic The Art of war by Sun Tzu, 

perhaps   the most ancient of  surviving texts on  the  subject.     In 

the   twenty-four centuries   following the appearance of Sun Tzu' s 

treatise,   innumerable philosophers and soldiers hove written 

their own analyses of the  art and  science of warfare.     Many of 

these works are very specific manuals which attempt to  outline 

the   techniques necessary to  successfully practice   the   type of 

warfare prevalent at that  time.     Others  seek  to  elucidate   the 

basic principles of war.     Yet all of these works  have  one  common 

goil,   to divine the  secrets  of  waging war  as  successfully and 

cheaply as possible. 

Prior  to  the Twentieth Century,   the scientist,  mathematician 

and engineer were seldom directly  involved  in the  study of warfare. 

Although mathematics of one  form or another had always played 

a role  in military affairs,   (for example,   in estimating the time 

required  for an army to march a  certain distance or the angle 

at which  to fire an artillery piece to achieve a desired range) 

that role was a very minor one.     The two World Wars of this 

century  elevated mathematics  to a much more  important role  in 

the analysis of military problems. 



1.2.      Lanchestet:  Theory 

The World War of   1914-1918   saw  the physical  sciences begin 

to  have  an   increasingly   important  impart on military affairs. 

It was also during this period  that a  pioneering effort at  a 

mathematical analysis of warfare   first appeared. 

In a   series of articles written  for  the  journal  Engineering. 

Frederick William Lanchester discussed  the  importance  of  aircraft 

in modern war.     In the   fifth of  these  articles   (Lanchester,   1914), 

Lanchester  sought to provide more general  insights   into  the nature 

of combat,   and  to consider  the  conditions under which a   force 

which  is  numerically  inferior to  its  enemy might yet be  victorious 

in battle. 

Lanchester considered  two opposing  forces,   Red and Blue 

whose  initial  force  levels are    X      and    Y      respectively,   and o o ^ •*' 

whose  force  levels at any time     t > 0    are given by    X.     and    Y. . 

The ability of Blue  units to destroy Red units  is characterized 

by a  con&tant,  a,  known as an attrition coefficient,   and  that of 

Red  to destroy Blue by a  constant    b.     Lanchester' s models are 

of  two  types,  both in the  form of a  system of ordinary differential 

equations. 

The   first of Lanchester' s models  is described by the  system 

of equations   (1.2.1). 

^       I   -axy      x > 0,   y >  0 ^      I   -bxy       x > O,   y > 0 

I   0 otherwise 0 otherwise 

(1.2.1) 

If  the  time dependence  in these equations is eliminated,   a 



relationship, known as ehe state equation, results.  The state 

equation for this model is 

Xo " Xt = t(Yo  V- (1-2-2) 

Since   ^,2.2)   is a  linear equation.   Lanchester named model 

(1.2.1)   the  "Linear Law."     ^a.iCiieste/   looked upon  this model 

as descriptive of   i combat, situation which  is composed of many 

individual duels,  and  for  th^s  ■.reason he referred to  it as a 

model of  "ancient"   combat.     T'.ie   implications of this model may 

be  illustrated by an example   (from Taylor   (1975)).     Let  the 

initial Blue  force  level be    Y„ =   100    while  its  final  level o 

is Y- = 0.  If a » b, then for the given values of X , the 

corresponding values of Xf and X - X^ are given in the 

following table: 

Table (1.2.1) - The Linear Law 

v- 100 150 200 2 50 300 500 

Xf: 0 50 100 150 200 400 

Xo- *   Xf5 100 100 100 100 100 100 

Thus, regardless of the initial force employed by Red, its 

casualties remain the same. 

Lanchester* a second model is embodied in equations (1.2.3). a 

1 



dt 

-ay       x > 0,     y >  0 

otherwise 
&L _ / 
dt 

-bx      x > 0,   y >  0 

otherwise, 
(1.2. 3) 

The  state  equation corresponding  to  this model  is 

o too t (1.2.4) 

Equation (1.2.4) is quadratic, and this led Lanchester to name 

the model (1.2.3) the "Square Law."  Lanchester considered this 

model to be descriptive of a combat situation in which several 

individuals could concentrate their strength against a few. 

Since such concentrated effort is a characteristic of fire weapons, 

he referred to the Square Law as a model of "modern" combat. 

Under the same initial conditions as proposed for Table 

(1.2.1), the Square Law model yields Table (1.2.2). 

Table (1.2.2) - The Square Law 

V 100 150 200 250 300 500 

Xf: 0 112 173 229 28 3 490 

Xo- "   Xf: 100 38 27 21 17 10 

In this case there is a dramatic reduction in Red casualties 

as the initial force level increases, indicating that casualties 

may be minimized by deploying maximum force on the battlefield. 

The sorts of results indicated above led Lanchester to con- 
* 

elude that, while concentration  is of minor importance under 

The term concentration «s used here and in the following pages 
does not necessarily imply a close physical proximity; rather it 
means the commitment of more force to the actual combat. 

. 4 



conditions  of "ancient"   warfare,   the  nature of modern war 

requires maximum deployment of  strength on the  field of battle. 

Lanchester propounded these  results  as mathematical support  for 

the "Principle  of Concentration."     According to this principle, 

a numerically superior  force  should  seek to remain concentrated 

to take  full advantage of  its numbers.     An  inferior  force,   on 

the other hand,   must  induce  its  enemy to divide his strength  so 

that numerical advantage may be  achieved against each portion 

of the  enemy  force  in turn despite   the overall  inferiority. 



1. 3.     Limitations of  Lanchester' s Models 

As can be   seen  from the discussion above,   the Lanchester 

attrition  laws   in  their original   form are based on the premise 

that  units  on  each  side  are  homogeneous,   and  their  differences 

may be  summarized by  the attrition coefficients.     These and other 

simplistic assumptions dictate  that  Lanchester's models must 

remain crude approximationu  to  the highly complex dynamics  of 

modern combat.      There   is   little  evidence   that  Lanchester   intended 

his Linear  and  Square  Laws  to be  detailed combat models,   and   they 

have many shortcomings which  limit  their  ability to  fill  such  a 

role.     Some  of  these  shortcomings are  outlined by Taylor   (1975). 

The more   important areas  in which Lanchester' s  Laws make   simplifying 

assumptions  are: 

1. The   forces are  considered homogeneous and  the attrition 

structure  symmetric.     There are many  combat situations 

of   interest  in which neither  assumption is  valid. 

2. The  attrition rate  coefficients are  constant.     There 

is  no  provision  for  the  possibility of changes   in weapon 

or  unit effectiveness due  to a  variety of physical, 

temporal and psychological   factors. 

3. The effect of  friendly fire on suppressing that of  the 

enemy  is not explicitly taken  into account.     This 

attitude discounts a  very  important  facet of  fire 

combat. 

4. The models are deterministic rather  than stochastic. 

As  such,   they  fail to reflect the wide variability of 

._! 4 



actual combat.  For given initial conditions, the 

results of the models are always the same. 

5. There is no provision for control and decision making 

such as the choice of what force level to employ, when 

to withdraw, etc.  Because of these lacks, important 

tactical and strategic questions such as the effective- 

ness of command, control and communication systems 

cannot be studied directly. 

6. Complete information is assumed to be available about 

the enemy1s strength and combat abilities.  Typically, 

there is a fairly high degree of uncertainty about 

these topics present in actual combat and conclusions 

must be reached with these uncertainties in mind. 

fit: \**~i 
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1.4.     Literature  Survey 

In the more  than  sixty years  since  their   inception,   Lanchester's 

basic models have been combined and  extended  in many ways,   always 

with the  hope of creating more detailed and realistic models 

which could successfully address  some of the problems outlined 

above.     Brackney   (1959)   examined non-symmetric attrition structures 

which combined  elements of both Lanchester Laws.     An example of 

this  type  of attrition  is a model of  an assault on a prepared, 

concealed position.     In this model  the attacker can  find  few 

point targets and  so must spread his   fire  over  the  suspecLtd 

are?, of enemy occupation.     The defender,   on the other  hand,  may 

execute aimed  fire at  the more  exposed troops of the  advancing 

attacker.     Accepting  the Linear Law as a  reasonable model  for 

area   fire,   and the Square Law as being a  reasonable one  for 

point  fire,  Brackney's equations  for   this   type  of attrition 

structure are  of  the  form:     x' (t)   =  -ay,     y' (t)   » -bxy    with 

state equation given by 

where    X    represents the attacker and    Y    the defender. 

Deitchman   (1962)   employed the  same concept as Brackney  to 

model ambushes which might take place in a guerilla war.     Schaffer 

(1968)   developed a more general and detailed model of guerilla 

warfare.     This model allowed  for the  use of supporting fires, 

such as artillery,  and included provisions  for  losses due  to 

surrenders and desertions during combat. 



Helmbold   (1965,   1966)   introduced a  general attrition  struc- 

ture of which Lanchester's  Linear and Square   Laws   represent 

special cases.     The general  form  for  these models   is: 

x' (t)   =  -ah(x/y)y, y'(t)   =   -bg(y/x)x. 

The functions h and g which Helmbold examined in most detail 

were of the form h(u) = g(u) = u . Such a model leads to state 

equations  of  the  type: 

MXQ -   X^)   « aCYg -  Y^)     where     d =  2c. 

These types of models,   for  certain values  of    d   (such as 

d ■   1/2)   actually penalize a numerically  superior   force  if  the 

disparity between  forces  is extremely great.     This allows  the 

introduction of  economy of  force considerations. 

Rashevsky   (1949),   while  retaining  the   square   law attrition 

structure  for both  sides,   considered changes   in  losses due  to 

the  speed of retreat of one  side.     The  effects of  force  separation 

and other  spatial  variables were  considered by Weiss   (1957). 

Taylor  (1971,   1974,   1974a,   1975)     has  done  extensive work with 

time variable attrition rate coefficients  in an attempt to model 

changes  in weapon effectiveness over time. 

Schaffer   (1966),   in his models of guerilla warfare,   introduced, 

explicitly,   the  suppressive effects of supporting weapons.     He 

also discussed the effects the  length of an engagement might 

have on the actual attrition structure of a  combat,  outlining 

conditions under which area  fire,  or a   linear type model,  might 

change to point fire,  or a quadratic type model. 

■ 
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All of  the uodels discussed above are basically deterministic, 

and  the  authors  of  each attempt  to  detail physical  assumptions 

which would give  rije  to  their particular  attrition  structures. 

There have also been other  such attempts,   notably by Schreiber 

(1964);   however,   most have  suffered  from  some  arbitrariness  and 

a  general  lack of   rigorous construction.     The   same problems are 

visible   in much of   the  early work  on stochastic Lanchester 

models.     Such  stochastic models  are generally  assumed to be 

bivariate or multivariate Markov chains with  time homogeneous 

transition rates   (see Chapter 2).     The difficulty with most of 

the models prior  to Karr   (1974)   (see discussion below)   was  that 

they were  usually developed directly  from existing deterministic 

modtls,   reversing   the more  usual process  of deriving deterministic 

approximations  to   the more general  stochastic   systems.     Because 

of  this,   there was  seldom any attempt to make  a  formal derivation 

of  the mathematical models  from  underlying physical assumptions. 

Some of  the earliest   investigations   into  stochastic  versions 

of Lanchester's  Laws were made by Brown   (1955,   1963)  who developed 

expressions   for  the marginal  force   level distributions at  time     t 

and the  probability of winning   (i.e.   completely destroying the 

enemy force)   for either  side.    Although modern computing  facilities 

may allow relatively easy calculation of  these probabilities, 

the complexity of  the expressions gives  them only  limited practical 

value  in an extended analysis. 

Smith  (1965),   expanding on Brackney   (1959)   and Deitchman 

(1962),  developed probability distributions  for the number of 
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survivors of a combat action,   employing  techniques  of the calculus 

of variations  in his derivation.     Again,   his expressions proved 

somewhat cumbersome  to work with analytically.     Kisi and Hirose 

(1966)   further considered various models   from a  stochastic point 

of view,  and developed  the probability of victory  in a Deitchman- 

type ambush engagement. 

Brooks   (1965)   introduced the concept of "stochastically 

determined"   large-scale battle models.     A model  is  called 

stochastically determined  if  its overall  results,   such as the 

total casualties  to each side,   show  little variance  relative  to 

the  initial   forces employed.     The usual  stochastic versions of 

Lanchester' s Linear and Square Laws were  shown  to be  stochastically 

determined.     The  significance of stochastic determinism is  that 

it may allow the  use of a  fairly crude deterministic approximation 

to get rough estimates of overall results  in  large  scale stochastic 

models without  too serious an error. 

In more  recent developments,   Grubbs  and Shuford   (1973) 

introduced a  new and most  interesting stochastic  formulation of 

Lanchester' s tlieory.     They contended that the true random variable 

of interest  in combat models  is the "time to kill"   of either 

side.     Their approach centers around reliability theory, and they 

make heavy use of the   flexibility inherent  in the Weibull distri- 

bution.    This approach seems to have promise  in the field of 

small unic combat actions. 

Karr  (1974)   provided the  first rigorous derivations from 

sets of axioms  for many Lanchester-type models.     His paper is 
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a  compendium of models both  simple,   as with Lanchester's  Linear 

and Square- Laws,   and complex,   as with models  using non-homogeneous 

units and multiple kill  capabilities   for weapons.     In all cases. 

Karr begins with a very  specific set of assumptions  about the 

physical nature of a  combat  situation.     From these assumptions 

he  ther  derives a  time homogeneous Markov model and  extracts 

from  it  the corresponding deterministic equations.     This work 

provides a  firm foundation  for analysis and criticism of a model, 

allowing discussion to  center around the appropriateness of  the 

underlying physical assumptions  rather  than  that of  its mathe- 

matical  form. 

Another  important contribution to the analysis of  stochastic 

Lanchester-type models was  made by Watson   (1976).     Watson intro- 

duced  the  idea of employing martingale methods   to derive approxima- 

tions  for such quantities as  the probability of victory and  the 

distribution of the number  of survivors  in the  case of the 

Lanchester Square  Law.     Although this  idea   is applicable  to many 

other  cases as well,  Watson's paper  itself  is   incomplete since 

he employs an  unstated martingale central  limit theorem and  ignores 

various other difficulties which will be discussed  in more 

detail  in Chapter  3.     Despite  these weaknesses,  Watson-s results 

appear to be valid and important. 

The  inherent two sided nature of most combat situations 

makes  the area rich for game theoretic investigations.     Most of 

the modelling in this  field has concentrated on a differential 

games approach  (see for example Chattopadhyay  (1969)).    Weiss 

(1959)   and Kawara   (1973)   examined the use of  supporting  fire 

1. 
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from  such a  point of  view while   Igbell and Mar low   (19 56)   studied 

overall   fire allocation policies.     More  recentlv  Taylor   ^1972) 

expanded on  the work of  Isbell  and Marlow and  further   investigated 

the  area  of  tactical differential games   (Taylor   (1974b)). 

Most of  the  existing work  on optimal  control  and  choice of 

tactical  options has derived  from the differential games  approach. 

Two papers by Taylor   (197 3,   1974)   examined optimal  control  of 

fire allocation over  two  types  of  enemy  units,  b^th  of which are 

subject   to a deterministic   linear   law attrition process.     He 

discusses an optimal  fire distribution policy with  reference  to 

the  effects  such  factors  as  combatant objectives,   battle  termination 

criteria,   attrition processes,   and variable attrition  rates may 

have on optimal choices.     He  employs control  theory  to prove his 

results,   and he also discusses  some of the  implications   in  the 

fields  of.  intelligence,   command  and  control  systems,   and human 

decision making.     Schreiber's  note   (1964)   on  the  value  of   intel- 

ligence and command control also provides  some  insights   into the 

effects of these  two critical areas on combat situations. 

Estimation of attrition parameters  for both deterministic 

and stochastic models is another  important area of  investigation. 

Bonder   (1967,   1970)   considered techniques  for estimating Lan- 

chester  coefficients  in various models by using weapons  system 

performance data.     Barfoot   (1969)   attempted to  improve on Bonder's 

original work by proposing to estimate attrition coefficients 

by the reciprocal of the average  time to kill an opposing unit. 

This average time to kill was  itself calculated using weapons 

u 
_**i 
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performance data and allowed for possible corrections in firing 

procedure based on previous results. Clark (1968) employed 

maximum likelihood estimation based on results obtained from a 

detailed combat simulation. Rustagi and Srivastava (1968) considered 

the problem of parameter estimation in a Markov dependent model 

and employed maximum likelihood techniques. In a later paper, 

Rustagi and Laitinen (1970) dealt with estimation of moments 

for the same types of models. 

The basic question of the reasonableness and applicability 

of Lanchester theory to actual combat has received attention from 

various sources. Engel (1S54} analyzed casualty data from the 

battle for Iwo Jima. He found that Lanchester's Square Law 

seemed to give a reasonably good fit, although other Lanchester 

type models may also have been applicable. Helmbold (1961} 

conside r ed several battles fought over the last two centuries 

and attempted to formulate Lanchester parameters an~ characteristics 

of each, but with mixed results. 

Weiss (1966) made an extensive study of the battles of the 

u.s. Civil War. Some of his results proved quite interesting. 

Weiss' data indicated a general equality of casualties on both 

sides with the casualty ratio showing little dependence on the 

force ratio. Such results tend to indicate that Lanchester's 

Linear Law may have been applicable in those cases. The results 

also seem to support beliefs that casualties often tend to remain 

fairly well balanced until one side begins to lose cohesion. 
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1.5.     Outline of Thesis 

The  above  survey of  the   literature briefly describes   the 

considerable body of research dealing with Lanchester-type 

attrition models.     Much of  this  research,   however,   seems   frag- 

mentary.     Although an abundance  of attrition models has been 

crer.t.sd,   a   large percentage  are deterministic.     Stochastic nodels 

which are more  realistic are  easily described,  but have  almost 

always  given rise  to mathematical  difficulties which   limit  their 

practical  use. 

There  seems  to have been  little attempt  to proceed beyond 

the modelling  stage,   with  few efforts at making a decision  theoretic 

analysis  of  combat  situations.     The bulk of  the work on  optimal 

control   (notably that done by Taylor)   uses deterministic models 

and  restricts attention  largely  to problems of allocating   fire 

among  various possible  classes of  targets.     Assignments  of costs 

to  the  employment and destruction  of  friendly units  and  rewards 

for  success are virtually non-existent.     Thus  the  important 

strategic and tactical question of when "victory"  becomes  too 

expensive  to warrant the expenditure of lives,  resources and 

time necessary to achieve it  is all but ignored. 

In an attempt to approach some of these problems,   this 

thesis  formulates certain decision problems based on an  idealized 

combat environment,  and presents some stochastic models  and 

methodology useful  in the analysis of such problems.     The most 

promising analytic techniques  involve approximations based on 

martingale central  limit theorems and diffusion processes.     A 
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numerical analysis of some hypothetical combat  situations  is 

presented,  based on the approximations develo sd.     The  theoretical 

approximation methods are  shown  to yield accurate  results and 

thus provide an  important approach to  the study of  stochastic 

Lanchester models and their  use   in a decision theoretic analysis. 

Chapter  2   introduces  the mathematical  framework of  the 

combat decision problem,   and outlines  the assumptions  generally 

made   in order  to model  combat as  a Markovian process.     One 

approximation,   for use with the  stochastic Linear Law model,   is 

presenced and employed  to  solve  a  one-stage decision problem. 

A table of  some numerical results of  this method is   included. 

Chapter   3  introduces  the martingale method of approximation 

for  use   in  the solution of  the one  stage problem.     The   theory,   in 

terms  of martingale central  limit theorems,  which underlies  this 

approach  is discussed,  and  the basic technique of how  to define 

<'i martingale  from the combat process  is outlined.     Some numerical 

results and normal plots are presented to  indicate  the  accuracy 

of the approximations.     In addition,  a   zable of results obtained 

by using  the martingale approach to the solution of  the one  stage 

decision problem is presented and compared to the corresponding 

results  from the method of Chapter 2. 

A more detailed analysis of  a multi-stage combat decision 

problem is presented in Chapter 4.     The solution of such problems 

requires estimation of the distribution of the combat process as 

a  function of time.     This distribution is approximated through 

use of diffusion models.     Again,   numerical results are presented 

■ 

JS.    4 
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to assess  the quality of  the approximation.     The diffusion model 

and  the martingale methods  of Chapter   3 are then employed  to 

solve a  two-stage decision problem,   and some tables  of results 

are  included. 

Chapter  5 discusses  some possible extensions of  the basic 

decision problem in somewhat general  terms.     The  introduction of 

modified battle termination criteria as well as a more detailed 

discussion of   uncertainty and prior probability distributions   for 

the parameters of a combat model are  included.     Finally,   it 

summarizes  the work done and discusses other  interesting  topics 

for   further  research. 

    »4 I 



18 

Chapter  2 

COMBAT DECISION   PROBLEMS 

2.1.     The One  Stage  Problem 

The  elements  of a one  stage  combat decision problem here- 

after  referred  to  as  the basic combat decision problem, are based 

on a  relatively simple military  situation.     The military decision 

maKer,   or  commander,   must decide whether  to accept a  combat 

action and,   if  so,   the amount of   force  to  employ.      (Note   that 

in  this   formulation,   the commander   is basically presumed  to be 

contemplating  an offensive  rather  than defensive combat posture.) 

The  commander' s decision is based  on his    perception cf various 

pertinent  factors,   such as  the nature of  the  combat situation, 

and  the  strengths,  both physical  and moral,   of  friendly  and 

hostile   forces.     In addition he must  consider  the  costs  associated 

with the  employment and destruction of  friendly forces,  and   the 

relative  rewards   for victory,  balancing these  factors  to  achieve 

the moat  favorable result. 

The mathematical formulation of such a decision problem may 

be constructed along the following  lines.     First,  define an under- 

lying space     o    of possible  initial conditions which are  funda- 

mental  to  the particular situation and beyond the  control of 

the commander.     Next define a space     ft    of possible battle out- 

comes and a  space    D    of decisions available to the commander. 

Present U.S.   law prohibits the employment of women  in a  combat 
role.     For  this  reason the commander  is presumed to be a man. 
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A real-valued loss function L is defined on n x D with 

L(Uü,5) representing the loss to the conunander when outcome 

UJ e 0 occurs given that he has made the decision 6 e D. 

Furthermore, if P('l*»^ is a probability distribution 

on  n for each 6 e D and  6 6® and F(') a probability 

distribution on 0, then 

P(- | 6) = ^ P(- | 6, e)dF( 9) 

3 

is a probability distribution on     d    for  each    5  e  D.     We  wMl 

also write     P('|6)   as    ?,{•). 

The  expected  loss,   or  risk,   of any decision    6  € D     is 

defined by 

p(5)   »  J L(uj,ö)dP6((u) . 

n 

The commander wishes to choose a decision    5    € D    such that 

p( ~   )   is  a  minimum. 

In order  to analyze the combat decision problem as outlined 

above,   it  is  important to understand the character and role of 

each of its components. 

The  space    0    of initial conditions  includes  those elements 

of the combat situation beyond the  immediate control or influence 

of the commander.     Important factors which might be  represented 

by elements of    @    are the numerical strength of hostile   forces 

and their combat power,  quantified by their attrition coefficients, 

as well as  the effects of terrain and weather.     (Note,   the 

jZ 

-. 
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question of how the enemy chooses his forces will not be con- 

sidered here.)  It will also be assumed that the dynamics of 

the combat, represented by the mathimatical attrition model used 

to describe it, is also beyond the commander1 s control.  All of 

these quantities, and perhaps others of interest as well, are 

considered fixed but possibly unknown.  This uncertaixity requires 

the commander to formulate a prior probability distribution 

F for the possible states in 9.  This prior distribution 

will be based on the information available to the commander 

concerning the unknown quantities and his interpretation of that 

information, as well as his own opinions about the nature of the 

enemy and situation.  Thus @ represents the underlying struc- 

tures of the combat situation which may be possible, and F 

the commander's uncertainty about that structure.  In the remainder 

of this chapter full information will be assumed; that is, the 

commander1 s prior places a probability mass of one on some 

particular element of 9.  The general case is discussed in more 

detail in Chapter 5. 

In the basic combat decision problem, battles continue 

until the force level of one side is reduced to zero.  Since 

the elements of the outcome space  fl represent the final state 

of the combat, or terminal point, they may be expressed in the 

form (X,0) or (0,Y) where X or Y  is the number of survivors 

of the victorious force. More genaral battle termination 

criteria will be discussed in Chapter 5. 

i 
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Decisions are restricted to de termination of the number of 

units to commit to the combat; all such units are then committed 

at the beginning of the battle.  The basic problem does not address 

the impact that possible reinforcement during the course of the 

combat may have on such a decision.  (The latter question will 

be discussed in Chapter 4.)  Thus the basic combat problem is 

couched in the form of a simple one stage decision problem. 

The loss function L(aj,5), and the cost and reward structure 

associated with it, are constructed in terms of a basic unit of 

value defined as the cost of the destruction uf a single friendly 

unit.  The costs for troop employment and the reward for victory 

are determined in terms of this unit of value.  Furthermore, it 

will be assumed that partial destruction of the enemy force is 

of no value:  if the friendly force is victorious, any reward 

for eliminating the enemy units is included in the value of 

victory; if, on the other harü, the friendly force level is 

reduced to zero, no value is accrued for casualties which may 

have been inflicted on the enemy.  Under these sorts of assumptions 

the loss function may be written 

L(w,6) = cX f6) + [X (<5) - X-(UJ)] - VI{uu) (2.1.1) 

where    xo(0)   is  the initial  friendly force  level chosen by 

decision    6 e D,     X-(uu)   is the surviving  friendly  force  level 

specified by outcome    wen,  and    I(iv)   «  1    if    Xf(uu)   > 0    and 

Z(uu)  » 0     if    Xf(uj)  » 0.     The constants    c    and    V    represent 

the cost of employing troops and the value of victory respectively. 

J    4 
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Note  that  in  this  case   the  value  of victory does   not depend on 

the number  of   friendly   survivors  as   long as  there  is at   least 

one.     Alternative   formulations  in which  the  surviving  force  level 

plays a  more direct rcle  in assessing  the  value  of victory will 

not be discussed here. 

Solution of   the decision problem requires  a  knowledge of 

the expected value of  the  friendly  force   level at the conclusion 

of  the  combat and  the  probability of a   friendly  victory.     These 

quantities  are  calculated  from the probability distributions 

mentioned above.     The  distribution    P(«|ö,9)   is  derived   from 

the stochastic  combat model appropriate   to  the   state     9.     The 

usual stochastic models  of the Lanchester-type  are  in the  form 

of bivariate or multivariate Markov Chains  and  these are  the 

types of models which will be employed  in  the  sequel. 

Markov chains are   characterized   first of all by a  state 

space,   the  elements of which represent the  state or condition 

of the process  at any point  in time.     In  stochastic combat 

models,   the  state  space   is generally a  cartesian product of 

the  form    N x  N  ...   x  N    where    N =   (1,2...N)   for  some  suf- 

ficiently  large   integer    N.     The dimension of  the  space  depends 

on the number of distinct types of units available on either 

side,  each component representing the number of  surviving units 

of a particular type.     In the simple case as it has been outlined 

above,   there  is only one type of unit on each side and so the 

state space,  E,   is simply    N x N.     The elements  of the state 

space represent  the surviving force  level on each side. 
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The dynamics of the combat process are considered Markovian 

in nature, that is the process will make a transition from its 

present state to another state according to probability distri- 

butions which depend only on the present state, and are independent 

of the past or future history of the process.  The number of 

states is at most countable, and so the states may be arranged 

and numbered sequentially in some rational manner.  The movement 

of the process among these states, as a function of time, is 

characterized by its transition function, (pt)t>0> 
a family of 

stochastic matrices.  The elements of these matrices are defined 

by 

Pt{i,j) = Pr(zt « j|zo - i)  V t ^ 0,  i,j € E, 

where     z       represents   the state of  the process  at time     t. 

(In the bivariate  chain,     z    ■   (X   ,Y  ).)     This  expression 

represents the probability that a   transition  is made  from 

state     i     to     j     in a   time period of   length     t. 

The  transition  function    P       is  the  solution to the  forward 

equations   (see  Feller   (1966)) 

It ' IA>       t ^ 0'        where    t: ■ dt 5.t' 

The matrix    Q =  P       is known as the  infinitesimal generator. ~  ~o 

The rows of the Q matrix sum to zero, and its elements allow 

the determination of the jump function, A(a), and the transition 

kernel ?{•,•).     The (i,j)th element of the Q matrix is given 

by 
■.,-,-K 
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Q(i,j)   = 
-\(i) if     i = j 

Mi)P(i,j) if     i ^ j. 

The  jump  function    M-)   defines  the holding  time of the 

process  in any  state     i     in the  sense  that this  holding  time  is 

exponentially distributed with mean    1/Mi),     if    Mi)   > 0. 

If    Mi)   « 0,   then     i     is an absorbing  state.     The transition 

kernel    P(',«)   defines  the one  step transitions;     P(i,j)   is 

simply  the probability  that,  given a  jump  is made  from state     i, 

that jump  is  to  state     j.     In the combat model  the transition 

kernel  represents  the probability that  the next casualty  is 

taken by the  force  represented by    X    or  that represented by    Y. 

The    Q^   matrix thus  represents  the  infinitesimal or  instantaneous 

behavior of the process  in the  sense  that 

P(zt+h ■  j|zt « i)   • Q(i,j)h  + o(h)     as    h -• 0. 

The components of the stochastic combat model as described 

above may be derived from various physical assumptions inherent 

in each state 8 e @. Several examples of such assumptions and 

the processes defined by them are given in Karr (1974). For example, 

the assumptions which generate the usual stochastic form of the 

Lanchester Linear Law are as follows: 

a. All units on each side are identical. 

b. The time required for an X unit to detect a particular 

Y unit is exponentially distributed with mean 1/s, 

where s,  is some positive constant.  Each X unit 

detects Y units independently. 



25 

c. An    X     unit attacks every    Y     unit  it detects;   the 

conditional probability of a kill given attack  is    q,. 

The attack occurs  instantaneously and  contact with the 

target  is  lost immediately.     No attack may occur with- 

out detection. 

d. Y    units  satisfy assumptions    b    and    c    with parameters 

s2    and    q2. 

e. The detection and attack processes of all units present 

initially are mutually  independent. 

The process  [(X  ,Y ),t ;> 0]   has states of  the   form  (i,j), 

i = 0,1,2...X,     j  = 0,1,2...Y.     Under  the above assumptions 

a -  e,   the  infinitesimal generator  is given by 

Q((i.j),(i,j-1)) 

Q((i,j),(i,j)) » 

Q((i,j),(i-l,j)) 

Q(- ,0=0 

' ^ij 

ij(k1  + k2) 

' k2ij 

otherwise 

where 

■i<I V*V I «   1,2. 

From the elements of Q we find the jump function Ml,j) 

ij(k, -•- k.) and the transition kernel 

.■• 
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I 

P((i,j) ,(i,j-l)) = k1 + k2 

P{{i,j),(i-l,j)) = r 7^— 

P{ ( i, j) j (■t'.m)) = 0   otherwise. 

The probability distribution P(,|5,9) referred to in the 

outline of the decision problem may be derived from the transition 

function (P^.)^« appropriate to the initial conditions by 

P(uuiö,9) = P^ (e(6,9) ,Oü) 

where     x €   fi c E,     6(6,9)   6  E -   Cl.     The   state     e(ö,9)   may be 

interpreted as  the  initial state of  the process as determined 

by     9 €   6    and     i   €   D.     Thus we may derive   the probability 

distributions needed  in the decision problem  from the appropriate 

Markov model. 
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2.2.     An Example of  the Basic Combat Decision  Problem 

As an example  of  the basic combat decision model,   consider 

the  stochastic version of  the  Lanchester Linear  Law whose 

assumptions are outlined above.     The process   is of  the   form 
r (X    Y  )]   where    X      and    Y       are  the  force  levels afte.r a n    n n n 
total of    n    casualties.     If  the  initial  force  levels are    X o 
and    Y      respectively,   then    X.+Y    +n=X    +Y. o "• nn oo 

If we define    AX    =  X   ,.   -   X      and similarly define n        n+i        n 
AY    = Y  ^   -  Y       then  the   transition kernel of  the process may n n+i        n 
be  expressed  in  the  following  form: 

P((Xn,YnMXn,Yn-l)]   =   P[AXn  =  O.AYn »   "H (X^) ]   ~ J^ -  P- 

The  above holds   for    X  ,Y_ > 0.     The attrition constants    a n n 

and b are analogous to k,  and k- of the previous section, 

and p + q a 1. 

As can be seen, the transition probabilities for the model 

are state independent provided both sides have survivors. States 

in which either force level has dropped to zero are absorbing 

states and no transitions are possible.  Thus the elements 

it € 0 are of the form (X,0) or (0,Y) with X ^ Xo,  Y 1 Y0. 

In this case the combat process takes on the form of a restricted 

random walk in the plane, beginning at the point (X ,Y ^ with 

steps either to the left or downward.  (See Figure 2.2.1.) 

(Note the similarity to the Banach Matchbox problem, Feller (1968).) 
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-i 

X casualty 

n 
Y casualty 

(X   ,Y   ) v   o'   o 

Figure  2.2.1 

The     X    axis and    Y    axis  are absorbing barriers   fo:.   this 

walk,   and  the probability     P(JüI5,9)   may be written  in  terms 

of  the negative binomial distribution. 

Thus,   if     6 e   ö    specifies a  linear attrition model of this 

form,  with initial    Y    force  level    Y      and attrition parameters 

a     and    b,  and  if     5 e  D     specifies an  initial    X     force  level 

of    X  ,   then the probability of    JU e  Q,  where     uu    specifies that 

X    wins with    X-    survivors  is given by: 

P(ui|6,9)   « P[(Xf,ü) |Xo>Y0,p)   » 

x^ -   xf  "♦■ Yo  "   l o t o Y
rt   

Xo-Xf 
p  q 

Xo-  Xf 

K + Y
n - 1 

c        o 

1 ^ xf ^ Xo 

(2.2.1) 

Y     X 
p   q   . 

o i xc i 

where    X   «X    -  X. c        o f represents the    X    casualties. 
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Define  the set     CI^    c Q    by 
o 

r^   = (ou e ni jü = (x,o) ,1 i x i xo], 
o 

that  is   the points on the    X    axis  to the  left of  the   initial    X 

force  level   (excluding  the origin) .     Then  the probability of an 

X    victory under  the conditions assumed above  is 

o      f    c o 

Xo     0     0 X =0 c 

Y     X 
«  0~  c 

p   q 

Thus   for a    Y      and    p     fixed by     9 e   6,   the  risk of  decision 

5 »  X       is given by o 

p(X0)   »  cXo   + E(XciXo,Yo,p)   -   VPt^   lXo,Yo,p] 

cxo -K E^I^ ,xo.Yo,p]p[nx |XO,YO,P) (2.2.2) 

iC   i 
+ E(Xc|nX  'Xo'Yo'PlP[^  ^o^o'P1   "   VP[ax  !Xo'Yo'P] 

o o o 

Employing the correct negative binomial expressions  in equation 

(2.2.2)   we have 

V1 

p(XJ  » cx    +     I   x„ 
0 0     X -o c \ c 

^ Xc   + Yo -   h   Y    X 
p0qC 

Xc 

+ x. 1-       I |p0qC 

.        V0^ Xc 
X -1 /X^  + Yrt O       |    c o 

V      E 
X »0 c 

Y     X 
p   q 

i 



or 

X -1       i X     + Y     -   1\   4>      „ o c o \   Y     X 
p(X   )   =  CX     +      ^    X |p  0q  C 

0 0       X =0  c \ X c c 
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00 
X     + Y c o - 1 

+ X E 
0   X  =X     \ X co c 

Y     X 
p   q (2.2.3) 

V1 

V       I 

V0 

+
 Yo-M v0 

/ p   q 

The  form of expression   (2.2.3)   is somewhat awkward,   and 

provides  little  insight  into   the qualitative behavior  of  the risk 

function.     In order  to  solve  the  decision problem,   the  value of 

X      which minimizes   (2.2.3)   must be obtained.     Again,   the complexity 

of  expression  (2.2.3)   renders  this  task  somewhat difficult, 

requiring an extensive  numerical  search.     Thus  the  risk  function 

of even  this,   the simplest of  the Lanchester models,   presents 

some  serious obstacles   to   the  ready solution of  the  one-stage 

decision problem. 

In the more complex models,   such as that based on the 

Lanchester Square Law,   the mathematical difficulties are only 

compounded;  even basic probabilities such as    P[(X,,0)|X ,Y ,p] 

involve  summations^ of great complexity  (see Smith   (1965)).     One 

attempt to circumvent  the   intractibility of expression   (2.2.3) 

is presented in Section 2.4.     A more general method of attack 

suitable for a variety of Lanchester models  is presented in 

Chapter   3.     For  the moment,   however,   let us consider a 

- 



31 

P generalization of the one stage problem which may occur when 

reinforcements are available to the commander once the battle 

has oegun. 

,..- 

■_ 
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2.3.     The Multi-Staqe Decision Problem 

One possible extension of  the one  stage problem presented 

in Section 2.1  is  to consider  the effect that  the availability 

of reinforcements may have on the choice of an optimum initial 

force  level.     Prior to  the  initiation of the combat,   the commander 

must choose his  initial force   level;   however,   he  is   informed 

that at  some  time    T,   fixed and known  in advance,   after  the 

battle has begun he may call  for and receive reinforcements,   if 

he  so desires,   at some  specified cost.     Subject to  the  same 

basic  structure outlined  in Section 2.1,   the commander wishes   to 

choose  the optimal initial force  level to employ,  assuming that 

he will  choose reinforcements  in an optimal manner when the  time 

comes.     It is  thus necessary  for  the commander to  solve  a  two 

stage decision problem. 

The  solution to the  two  stage problem may be  found by the 

methods of backward induction commonly employed in dynamic program- 

ming.     The reasoning is as  follows.     For each element     6    of 

the  space    @    of initial conditions,   the choice of an initial 
Q 

force level X  induces a probability distribution Pv (X-^Y«,) c xo -r T 

on the state, (X-^Y.) , of the process at time T.  For each 

force level configuration (X-jY.) at time T, the optimal level 

of reinforcement, XR(X_,YT) may be calculated by solving a simple 

one stage problem along the same lines as that presented in 

Section 2.1.  This one stage problem is modified by the presence 

of the X_ units remaining from the original force.  It is as 

if the first X- units employed in a one stage problem had zero 

cost.  In this case, the loss function for the last stage is 
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of the   form 

Ll(XR'uu)   = C1XR +   (XT  + ^ "  Xf(Uü))   "  VI(UIJ) (2.3.1) 

where    c,      is   the  cost paid  for   reinforcing units and    X_     is 

the amount of  such reinforcements.     The quantity    )C,  + JC     can 

be considered  the "initial"   force  level  for  the new one  stage 

problem.     Note  that the  formulation also  requires  the  value  of 

XQ     to be  non-negative,   that  is,   there  is no "credit"   given at 

the   final  stage  if  the  survivors    ^    exceed  the optimal   force 

level  required by the new one  stage problem. 

The  risk  function of the modified one  stage problem  is 

obtained by  integrating expression   (2.3.1)   over the  space     Q 

with rtspect  to  the probability distribution induced on     Q    by 

the conditions   (force levels,  attrition structure,  etc.)   prevalent 

at time    T     in a manner exactly analogous to that employed  for 

the basic one  stage problem of Section 2.1.     The optimal amount 

of reinforcements for a particular configuration  (X_,Y_)   is  that 

value    X -(X_,Y_)   which satisfies 
R     ^    T 

P1(X^(XT,YT))   »       min    P1(XR) (2.3.2) 
O^X_<co 

and is, in general, a function of (X-^Y-) .  For simplicity we 

write p1(X^(XT,YT)) as  p^(XT,YT). 

We may write the risk incurred from making the decision X (c) 

as the initial (time 0) force level, arriving at configuration 

(XT,YT) at time T, and proceeding optimally at that point as 
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^2(Xo(6)) = cXo(5) + (Xo(5) ' V + PitXr'V* 

The overall risk of choosing an initial force lovel X (5) and 

choosing reinforcements at time T according to the optimal 

modified one stage procedure outlined above is thus 

P2(X0ic))   = p^(Xo(ö))dP® (X^) 
o 

(2.3.3) 

[(34.,^)} 

where the integration is performed over the set of all allowable 

(XT,YT) points. 

The commander, therefore, wishes to choose a decision 

5 e D such that expression (2.3.3) evaluated at X (5 ) is 

minimal.  That is 

p,(X (6 )) »min p0{Xlö)) 
*    0 6eD ^ 0 

The extension of  the  two-stage problem to one with    n 

stages   is  no more difficult,   conceptually,   than the extension 

from one  stage  to  two.     Such an extension does,  however,   give 

rise to ever  increasing computational complexities. 

In the     n-stage problem,  reinforcements are made available 

at each of    n    time points,  or epochs   (-'i »T?* • ^n^  where    T.   » 0 

and the "reinforcement"  available at    T,     represents the  initial 

force  level.     Again the procedure  is based on backward induction. 

Given the  state of the system at epoch    T   ,   (X-  ,Y    } ,   the optimal 
n      n 

level of reinforcements to be introduced at this  last stage may 

be calculated using the modified one  staga procedure as  introduced 

in the discussion of the two-otage problem.     Similarly,  given the 
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state of the process at epoch T  ,, the optimal level of 

reinforcements at that stage may be calculated by solving a two- 

stage problem modified in a manner analogous to that done for 

the one stage problem. 

If we define A.{X_  ,Y_  ) to be the optimal risk 
K Tn-k Tn-k 

attainable when the state of the process prior to the introduction 

of the     Kth group of reinforcements is (X_  ,¥„,  ) , then 
n-k  Vk 

) 
•k+1 n-k  n-k x     n-k    k    n-] 

(2.3.4) 
+ Pk-l^ >4. 'YT v+ ^ n-k+1  n-k+1 

where c  .  is the cost of reinforcements at epoch T , , and n— ic n— K. 
♦ 

XR  is the optimal level of such reinforcements as a function 

of (X^,  ,Y_  ) .  The expectation is taken with respect to 
n-k  n-k 

the distribution of (JL    ,YT    ) given (X-  ,Y_  ) and 
n-k+1    1n-k+l Vk    ^-k 

x- 
This,   the overall risk of choosing an initial force    X (5) 

and pro-ceding to choose reinforcements in the optimal manner at 

each stage is given by 

Pn(X0(6))   - J (CX0(6)   +  (X0(6)   -  X^) 

nx_ ,YT )] # Q 

where    X  (6)  « X_      and    P® (X_  ,Y_ )   is interpreted as in the 
0 rl xo    T2     12 

discussion of the two stage problem. 
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i' Solution of the multi-stage problem  is quite difficult due 

to the highly conditional nature of  the probability distributions 

of the  force  levels at reinforcement epochs.     In the case of a 

complicated attrition  structure,   these  difficulties are  seriously 

compounded.     An example of a  two stage problem and its  solution, 

based on an  important new technique of approximation,   is presented 

in Chapter 4.     This new technique  seems  to provide the best hope 

of addressing multi--stage problems. 

-<  * .J - 

_1 
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2.4.     One Approach to  the Approximate Solution of the One-Stage 

Problem 

The discussion of the one-stage decision problem as presented 

in Section 2.2  revealed the difficulty of  solving  for  the decision, 

X  (5),  which minimizes  the risk  function    p.     Typically,   closed 

form solutions of  these optimization problems cannot be  found 

due  to  the  complexity and mathematical  intractibility of  the 

required expressions.     This   failure of  analytic methods  leads 

to a  consideration of  techniques of approximation,   in order  to 

simplify the  expressions with which we must deal,  and also of 

numerical methods which may be employed to  solve the problem. 

One   likely approach is  to employ a  central  limit theorem  to 

approximate more  cumbersome probability distributions by the more 

familiar and well studied normal distribution.     Consider the 

Linear Law example presented  in Section 2.2.     In particular, 

consider the term 

X -1 o 
I 

X -0 

'  Xc  + Yo  -   M    Y    X 
p0qC 

X 
c c 

in expression (2.2.3).  This term represents the probability that 

the X side is victorious conditional on X . YA and p.  This o  o      r 

probability is merely the probability that a negative binomial 

random variable is less than X .  The standard central limit o 

theorems apply, allowing approximation of this sum by the 

appropriate value of the standard normal cumulative distribution 
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function  *. under the conditions that X  and Y  are large o      o 

and p is not very extreme.  In combat models, both of the latter 

assumptions are generally valid. 

In this manner, expression (2.2.3) may be written in an 

approximate form as 

P(x0) O    p 
PXo - ^o 

(qY0) 
1/2 + Xo  * " * 

PXo - *Yo 

(qY0) 
1/2 

- V*{ 
pX  - qY 

o    Q 

(2.4.1) 

(qY0) 
172 

We simplify expression (2.4.1) even further by assuming the values 

of X , Y  and p are such that we may consider the arguments 

of all three normal distribution functions in the above expression 

to be the same without serious loss in accuracy.  (Note that for 

this reason the usual continuity correction will be ignored as 

well.)  This leads to the approximation 

P(xo) (C + 1)X, # 1^- 
q* 

(qY0) 
ITT -.. 

V - 
qY, 

2.4.2) 

The optimal decision, X , is obtained from expression (2.4.2) 

by differentiating this risk function as a function of X , 

setting it equal to zero, and solving for X .  If we let (p(x) 

be the normal probability density function ((p(x) = $'(x)) then 

we may write 
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pr (Xo)   =   c   +   1  -    * 
pX     -   qY 

(qY0) 
172 

P(X0   +   V)   -   qYo 

(qY0) 
1/2 «P 

PX qY, 

(9V1/2J 

(2.4.3) 

The  continued presence of   the normal  distribution  function, 

<t,   remains  something of a problem;  however,   assuming its argunent 

is  sufficiently  large,  we may approximate  it  through use of the 

Mills ratio  technique.     (See Chung   (1974),  p.   231,   Exercise 4.) 

This approximation allows  the estimation of normal tail probabilities 

by the  ratio of  the  normal pdf  to  its argument: 

for     x > 0,     1 -   *(x)   - tp(x)/x. 

two cases.     Case  1:     pX    -  qY    > 0   (the subscript    0 o    o 

The use of this approximation thus requires the consideration of 

is deleted 

in the sequel).  In this case we approximate 

1/2 
* 

PX - qY 

(qY)1/2 
~ iaxlZZ  J px - qY 
PX- ^  \(qY)1/2 

Thus 

p' (X) -c +-^a 1/2 
pX - qY «P 

c - tp px - gy 

PX - qY 

(qY) 1/' 

EX. 

pX - qY > PV 
<P 

OX - qY 

(qY) 1/2 

(qY) ̂  (qY) 

PV , . (qY)1/2 
1/2  pX - qY 

Since X and Y are assumed to be large, we consider the term 
1/2 

JL3XL 
pX -   qY to be negligible.     This gives 
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p' (X)   - c   -   <p 
if. PX -   qY ! / pX -   qY pY  

.(qY)1/2J      (qY)1/2 (qY) ^ 
> 

Defining    *—~T/7 =  ^    an<^      iTT =  a    we  have 
(qY) 

1/2 IqY) 1/2 

(2.4.4) 

p' (X)   =  f(T?)   = c -   cp(T)) (rj + a) (2.4.5) 

In order to solve   for  the optimal value of    X,  we  set    f(77) 

to zero and solve  for     17,   that  is,   find those values of    77 

such that 

cp(T7)   = 
T? + a 

(2.4.6) 

where c and  a are known constants and  17  is assumed to be 

positive by definition. 

The left-hand side of equation (2.4.6) is the density of 

the standard normal.  The right-hand side, when considered a 

function of 17, is a hyperbola.  The number of solutions to 

equation (2.4.6) is thus the number of points of intersection of 

two curves.  The intersections depend, in turn, on the relative 

positions of c/a and    as illustrated in Figure 2.4.1. 

If c/a <   , it is clear that there will be one negative 
vTF 

solution to equation (2.4.6).  However, since rj    is defined to 

be positive this solution is invalid.  It can, nowever, be shown 

that there can be at most one positive solution to (2.4.6) if 

c/a<-i=: . 

Suppose 77 v 0  is a solution to (2.4.6).  We wish to 

determine under what conditions n + e will also be a solution o 
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-a 

-a 

Figure 2.4.1 
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(where we will assume   later  that    77    + €  > 0)   for  some    € > 0. 

We assume    77    + e     satisfies   (2,4.6),   that is 

l       -1/2(V.) 

V^rf TJO + 6  + a 

1/2(TJ   +€) TJ      +   6    +   a 
/^F e 0 = —  

1/2  nl f r,^   +  1/2 
/27r e e 

2i 
77    + e   + a o (2.4.7) 

But  since    TJ      is a  solution, 

equation  (2.4.7)   may be written 

1      -1/2 < 
r?0  + a 

Thus 

T70 + a no6   +  1/2  €' % + £   + * 

TJoe  +  1/2  €' 
^o ^ e  ^ a 

TJ0 + a 
=  1 + 

'o 
(2.4.8) 

Note  that when    e  =  0,  both uides of equation   (2.4.8)   are equal 

to  1.     Also  the derivative 

.2 

de 

TIO€   + 1/2  e'l 
e -  i% + Oe 

n e   +  1/2 e' 

€-0 

- ^ < 0. 

6»0 

Thus,   if we sketch the  functions    e 
r» €  + 1/2 €' 

« g1(€)  and 

1  •♦• -—-—    « g-(€)     as  functions of    €    we have Figure 2.4.2. 
T»0 + a ^ 
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Figure 2.4.2 

The. slope of the line is 
r?0 + a 

which  is assumed  to be positive. 

The  slope of the curve  is negative at    €  = 0    but increasing. 

Thus  there can be at most one solution other  than    n      and so o 
at most one positive solution to   (2.4.6)   when    c/a <   •     In 

/27 
fact,   since only positive solutions are admissible  in this case 

(pX -  qY > 0) ,  there  is at most one admissible  solution to equation 

(2.4.6)   for    c/a < _L_ 
•5? 

Now suppose    c/a > 
f^ 

In this case, there can be no 

negative r\    solutions to equation (2.4.6).  However, the argument 

employed above is equally valid when the n  value employed 

there is positive.  Thus there can be at most two solutions to 

(2.4.6) .when pX - qY > 0.  A single solution is also possible. 

Suppose r}  is the smallest positive solution.  Suppose also 
0 , Tie + 1/2 €2 

that n > -—7— .  Then since e is convex, if its 
'o  TJ + a 

r 
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slope  at    e  = 0     is  larger   than 
T70 + a 

,   its  graph will  always 

be  above  the  line   (see Figure  2.4.3) 

r?0 + a 

Figure  2.4.3 

Thus   if  the  smallest solution    T?       is  such  that     77    > -—7 , 

it  is,   in  fact,   the  unique positive  solution  to   (2.4.6). 

In  summary,   if    pX -   qY > 0,   there are  at most two admissible 

solutions  to equation   (2.4.6);   that  is,  at most  two critical 

values  for the risk function as a  function of the    X    force 

level. 

Case 2:     pX -  qY <  0.     The  solution of  the problem  for  this 

case  follows  the same lines as that for Case  1.     In this manner 

we arrive at the equation 

*(*?) 
c •>• 1 
T? + a 

(2.4.9) 

Where    17    and    a    are defined as before but with the restriction 

that only negative solutions of  (2.4.9)   are valid.     Equation  (2.4.9) 

is of the same form as   (2.4.6)   and so it follows  that there  is at 



45 

most one valid solution to it, and such a solution can only exist 

i£ ^ü<^_. 

In this  latter case,     c/a <       (since    a    is positive). 

Thus   it  is possible  to have  critical values    X,     and     X-     for 

the  risk  function such that    pX,   -  qY < 0    and    pX-  -   qY > 0. 

Note also  that  if    c/a > -;—    then  > ——    and  so there 
/27r a y^rr 

are at most two critical    X    values  for the risk  function. 

A  further examination of  the character of  the risk  function 

reveals  that after a certain point,   the risk  is  a monotonically 

increasing  function of    X.     There  is  a point at which  the  cost 

of  the troops employed is equal to or  just greater than the value 

of victory.     As the  initial  force  increases beyond that point, 

the cost of the  large number of troops employed begins to over- 

whelm  the  value of victory and the   loss and risk  increase  to 

infinity as  the force level goes to  infinity.     Thus  if there 

are only two critical points  for the risk function,   the  larger 

of the two must represent a   local minimum or a  saddle point. 

Furthermore,   for very  large values of    c,   it is possible 

that  there are no valid solutions to equations   (2.4.6)   and   (2.4.9). 

In this case,   the risk function has no extreme values except for 

the boundary value at zero.      (That is,  the cost of employing 

troops is  so high relative to the value of victory that the combat 

is best avoided.) 

Summarizing the results of  the above analysis,   the risk 

function can have zero,   one,   or two critical values.     These 

findings coincide with intuitive conjectures of possible reasonable 
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shapes for the risk function based on the proposed loss and 

reward structure.  In general, the risk function can be expected 

to exhibit one of the qualitative type of behavior exhibited in 

Figure 2.4.3. 

P(X) 

2.4. 3a 

0(X) 

2.4.3b 

P(X) 

2.4.3c 

P(X) 

2.4.3d 

Figure 2.4.3 

The difference between functions of the  form  (2.4.3a)   and   (2.4.3b) 

has  little  impact on decision making.     In either of   these cases, 

the optimal value of the risk function occurs  for    X = 0    and no 

troops should be committed to the combat.     In the  case of   (2.4.3c) 

and   (2.4.3d),  however,   true optimal force levels exist for 

positive values. 

In order to determine the optimal value of    X    in these 

latter cases,   it is necessary to solve an equation of the  form 
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1   -1/2 ^ (2.4.6)    e       = ———  for  rj.  It has proven impossible 
/27 ^  + a 

to obtain an analytic solution to   such an equation.     However, 

standard numerical techniques such as the bisection method are 

applicable and proved to give results which are intuitively 

reasonable and appealing in a minimal amount of computing time. 

Some specific examples were considered and selected results are 

included in Table 2.4.1 at the end of the chapter. The optimal 

force levels are generally rather higher than 4he minimum force 

level required  for victory by the  deterministic model. 

Although the basic approach that has been described  in this 

section is  relatively straightforward and appears  to give  rsasonable 

results,   it does have some drawbacks.     More of a nuisance   than a 

real problem is the  fact that the Normal approximation of the 

probabilities of extreme events   (for example,  one side suffering 

only a few casualties)   tends to deviate  from the actual values to 

such an extent that large deviation theory must be applied if  such 

events are of great  interest.     More  serious,   however,   is   the   fact 

that this particular approach is not readily applicable  to other 

stochastic Lanchester type models  in which the transition 

probabilities are state dependent.     In these cases,   the  complexity 

of the expressions for the required probabilities makes an im- 

mediate application of standard central limit theorems difficult. 

One highly effective alternate  technique suggested by Watson 

(1976)  will be discussed in Chapter  3. 
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Table 2.4.1 - Numerical Results for the One Stage Decision Problem 

Lanchester Linear Law, Standard Central Limit 

Theorem Approach 

Notation: o Initial hostile force level 

p - Probability next casualty is an enemy  (p = . . , ) 

c - Cost of employing friendly troops 

V - Reward for destroying entire enemy force 

X - Optimal friendly force level, central limit approach 

p - Risk o,-:1 optimal force 

X - Minimal force required to win battle (enemy 
destroyed with at least one friend".y survivor) 
from deterministic equations. 

^ 

100 0.5 0.5 500 136.94 -328.89 101 

10OO 0.5 0.5 5000 1134.40 -3426. 12 1001 

100 0.3 0.5 500 299.14 -111.95 234.3 

1000 0.3 0.5 5000 2578.38 -1363.33 2334.3 

100 0.7 0.5 500 64.92 -423.43 43.86 

looo 0.7 0.5 5000 507.58 -4314.08 429.57 

lOO o.: 0.6 500 135.92 -318.45 101 

1000 0.5 0.6 5000 1131.67 -3312.00 1001 

lOO 0.3 0.6 500 296.90 -82.16 234.3 

lOGO 0.3 0.6 5000 2572.47 -1105.3.' 2334.3 

lOO 0.7 0.6 500 64.40 -416.94 43.86 

1000 0.7 0.6 5000 506.16 -4263.16 429.57 

4 
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Chapter  3 

MARTINGALE  SOLUTION OF  THE  ONE  STAGE  DECISION  PROBLEM 

3.1.     The Watson Martingale Approach 

The  use  of martingales  to  facilitate the analysis of 

stochastic  systems has proved  to be quite an effective  technique 

in many areas of application,   and the  same nolds  true  in the  case 

of the basic one-stage combat decision problem.     The approach 

presented  in  this chapter  is based on  the work of R.   K.   Watson 

(1976). 

Suppose   ( (X  .Y ),n > 0}   is a  discrete stochastic process 
n ü 

based on a casualty time scale, that is, X  and Y  are the * n       n 

opposing force levels after a total of n casualties have occurred. 

The usual models for a combat process of this type take the form 

of bivariate Markov chains.  The transition probabilities of 

such chains may be given in general by 

^W 
Xn.l,Yn)   with probability    f(x    v )   ^(x^Yj 

(Xn+l'W   = 
n'   n' 

f<VV 
n'  n' 

^Xn,Yn-l)   with probability    f(xn,Yn)   + g(Xn,Yn) 

for  some  suitable  functions     f    and    g.     (See Taylor   (1975).) 

A discrete  time martingale can be defined from  this chain by 

finding a  function    K(',*)   such that 

K(X,Y)   »   lK(X-l,Y)g(X,Y)   +  K(X,Y-1) f(X,Y) ]/(f (X,Y)   + g(X,Y)J. 

(3.1.1) 

_     * 
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Equation (3.1.1) can, in general, be solved inductively for the 

function K.  Let 

^w f(W *<vv " *Kv " ^'^   and ^vv-^vv = p(x^^ 
(That is,  p(X ,Y ) is the probability that the next casualty 

is a Y while q(X ,Y ) represents the probability that the 

next casualty is an X.)  The function K can then be derived 

from 

K(X-1,Y) - K(X,Y) = -p(X,Y) e(X,Y) 

K(X,Y-1) - K(X,Y) = q(X,Y)9(X,Y) 
(3.1.2) 

where  8 is some function of (X,Y) which may be chosen in a 

suitable manner.  (See Watson (1976).)  Some examples of these 

types of martingale functions are 

K1(X,Y) - pX - qY  where  p » ^-~-g , a + b 

for a  Linear Law model with attrition constants    a    and    b,   or 

K2(X,Y)   » j[bX(X +  1)   -  aY(Y +  1) ] 

for a Square Law model. 

Thus,   if a function    K    satisfies equation  (3.1.1),   the 

discrete stochastic process  f K(xn'Yn) »Bn'n ^. 0^   i» a martingale, 

where    ft    -   ß (X. ,0 ^. i ^ n)   is  the  Borel field generated by 

ix.,0 <^ 1 £. n].     (Note that  in  the casualty time scale    X    and 

Y    are  functionally related by    xn  
+ Y

n 
+ n " xo + ^o*     Thu* 

-■- wi 
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the     a-field generated by the    X,Y    pairs  is simply that generated 

by either  component.) 

The  distribution of    K(X  ,Y  )   can be approximated using a 

martingale central limit theorem.     Using this approximation,   a 

stochastic analysis of  the combat process may be made  in a manner 

somewhat  similar to  the central  limit  theorem approach of Section 

2.4,     Although this idea  is due  to Watson  (1976),   his paper does 

not go  into enough detail.     It  is necessary to explicitly  state 

the martingale  central  limit  theorem employed and  to demonstrate 

that  the martingales formed   from  a  combat process  satisfy  the 

conditions of  that theorem.   Difficulties may arise  in  employing 

an approximation of this  type  to  the distribution of a  stopped 

martingale,  and a  triangular array approach seems to be the best 

way of modelling the situation correctly.     These  ideas are 

discussed below. 

- 



52 

3.2.     Triangular Arrays and Martingale Central Limit Theorems 

In order  to develop a correct central  limit theorem type 

approximation  to   the distribution of  the martingale    K(X   ,Y  ) , 

the problem may best be  formulated  in  terms of a  triangular array. 

Each row of  the   triangular array will  correspond to a  different 

initial   (X0,Y0)   starting point as  described below. 

Recall  that  solution of the  one-stage decision problem 

requires knowledge of  the probability of  victory and the  expected 

number of  survivors  for the    X    force.     Thus  it is necessary  to 

calculate probabilities of the  form 

P{Xf ^ k,Yf =  O|X0,Y0) , 

where    X,    and    Y,    are the  final  force  levels of the opposing 

sides and    0 <^ k <^ XQ. 

Suppose  the  initial force  If.vel configuration,   (X0,Y0) , 

is    N'(^,<E)   where    N    is large and    N6    and    Nt    are  integers 

greater  than zero.     The combat process makes  transitions   from 

this  initial state  either to the   left or downward  in  integer 

steps.      (See Figure  3.2.1.)     Assume  that    Ne  <^ Hi.     After a 

total of    N€     transitions,   the  force  level configuration will 

lie on the  45°  line with equation    X -f Y >  N6   (see Figure   3.2.1). 

The point   (M6,0)   is the  first point at which the actual combat 

process   (X   .Y.)   may be absorbed by  its  interception of one of 

the coordinate axes.     In general,   after N(e  + 5)   -  k    transitions, 

the state of the process will be on the  line through the points 

(0,k)   and   (k,0). 

f» 
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As seen above, however, for certain values of k it is 

possible that the actual combat process will be absorbed prior 

to the (N(€ + 5) - k)th transition.  In order to maintain a 

consistent approach, it is helpful to define an extension of 

the actual process to points in the second and fourth quadrants 

of the cartesian coordinate plane.  This extension is defined 

as follows.  If Y = 0 and X > 0, then P(AX = 0,AY = -1) = 1. n n n n 
Similarly,   if     X    =  0    and    Y    > 0,   then     PUX    = -l.AY    «  0)   =   1. n n n n 
That  is,   once  a  transition  is made onto  either axis,  all  further 

transitions  of  the  extended process are made  in the  same direction 

as  the   final  transition of  the actual  combat process.     Thus  the 

state of  the  extended process after    N(€   +  6)   -  k    transitions 

is well defined  to   lie on the   line     X + Y » k    for    0 £ k ^ N{e   ■«-  i) . 

If the  function    K(*,a)   satisfies  the condition given in 

Section   3.1  so   that    K(X  .Y  )   «  K       is a martingale,   then   it n    n n 
becomes necessary  to define    K(',*)   for   (X,Y)   points of  the extended 

process  in order  to maintain the martingale property.     This  is 

accomplished by defining 

K(X,Y)   »  K(X,0)   if    Y 1 0      and      K(X,Y)   » K(0,Y)      if    X 1 0. 

This definition of the martingale  for points in the extended  (X,Y) 

process preserves the important monotonicity property of  the 

martingale  function which  is described below. 

From equations  (3.1.2)   it can be seen that the definition 

of  the martingale  is such  that  for either a  fixed    X    value or 

a  fixed    Y    value the function    K    is mono tonic in the other 
I 
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variable.     Thus,   for  example,   if     6(X,0)   >  0,     K(X,0)   satisfies 

K(X2,0)   <  KU^O)      if     X1  >  X2. 

In  fact,   it can be  seen that  the martingale   function    K    must be 

monotonic  for  the  sequence of   (x,y)   points proceeding down a  45 

line   (see Figure   3.2.2)   from upper  left  to   lower right.     This 

property  clearly holds   for the definition of  the extended martin- 

gale as proposed  above. 

This monotonicity property of  the martingale  function 

facilitates  the  easy translation of probabilities of the   form 

P{Xf 2 fc.Yf "  0|X0,Y0) (3.2.1) 

into  terms of martingale exceedance probabilities.     The  technique 

is basically as   follows   (see Figure   3.2.2).     For each  initial 

starting  configuration   (X0,Y0) ,   the extended combat process  and 

corresponding extension of the definition of  the martingale 

function    K    define as martingale sequence    K-.,K1...K _     where 0 1* 

N  is given by N« (e + 6) when (X0,Y0) is of the form N(6,€). 

The distribution of K # allows calculation of probabilities 
N 

of the form (3.2.1) due to the monotonicity property (see Figure 

3.2.2).  For example, if the martingale function K(x,y) is an 

increasing function of x for a fixed value of y, 

P(Xf ^ k.Yj - 0 X0>Y0) - P(K # ^ K*|K0). 

Under certain regularity conditions  of a  type to be discussed 

below,   the distribution of    K #    may be approximated by a normal 
N 
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distribution  for   large  values of    N  .     However,   the problem  is 

somewhat more complex than indicated by the preceding argument. 

Each different  initial  force level configuration generates  its 

own sequence of martingale values.     Therefore,   the correct 

approach  to a  central   limit theorem argument  is based on a 

triangular array;   each martingale  sequence  corresponding  to 

different  initial configurations  forms a  row  in a  triangular 

array.     Each row  in  this array  is   indexed   in such a manner  that 

the row index number approaches  infinity as the value of    N 

(where   (X0,Y0)   = N-(i,e))   approaches   infinity.      (See Figure 

3.2.3.) 

Thus,  with  the problem stated in  the   form described above, 

a triangular array martingale central  limit theorem, given in 

Scott   (197 3)   can  then be applied.     Although Scotts'   proof  is 

based on an array with    n    elements  in the    nth row,  a 

generalization of the theorem to an array with    N      elements  in 

row    n  (where    N     -» oo     as    n  -» oo)   is  immediate.     Scotts1   full n 
theorem is  stated in terms of several   sets of equivalent sufficient 

conditions.     A condensed form of this  theorem is given as  follows. 

Theor'im 3.2.1.     (Scott) .     Let {Sjc(n) .^(n) ;0 <^ k ^ n]  be a 

martingale sequence  for all    n ;>  1    on a probability space 
k 

(n,B,P),  with    Sr.(n)   « 0    a.g.,     S. (n)  -     I X. (n)     for    1 1 k ^ n, 
2        2 J 

E(Sk(n)) « »k(n) , and  3k(n) => «^(n) , the  a-field generated 

by S0(n) ,S1(n) . . .Sjc(n) , 0 ^ k ^ n.  Take 8^(n) - 1 W.L.O.G. 

Define a sequence of random functions    TJ   (')   on   [0,1]  by 

T}ft(t)   - Sk(n)   for    0 ^ t < 1,     8k(n)   ^ t ^ 8x+l(n) ' and 

■••-•- 
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0 ^ k ^ n-1.     Let    »?nU)   =  sn^ '     Also define 

2 
m  (t)   = max(m ^. n] s   (n)   ^ t)     for    0 ^  t ^ 1,     n =  1,2.... 

Then if 

m  (t) 
n 2 P Z    xf{n)-»t     as     n-»ao,     O^t^l (3.2.2) 
k=l    K 

md 

2 P 

sup Xv(n)-»Oasn-»oo (3.2.3) 
k^n    K 

D 
then    rj    -♦ W    as     n  -» oo     where    W     is a   standard Wiener process 

D 
on   [0,1]  and    S   (n)   -»X    as    n  -♦ oo     where    X    has  the standard 

normal distribution. 

If the conditions of Theorem  3.2.1,   in a  generalized  form 

allowing  for    N       elements  in the    nth sequence,   are  satisfied. 

then the distribution of    K #    can be approximated by a normal 

distribution  for   large    N   (where    N    ■ N(€   +  o)   and 

N-(6,e)   -   (X0,Y0)). 

. 
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3.3.  An Example 

As an example of how the martingale technique can be used, 

consider the case of the Lanchester Linear Law.  As seen in 

Chapter 2, the linear law model is characterized by constant 

transition probabilities given by Pr (next casualty is a Y) 

=  k , = pj  pr (next casualty is an X) = a + , = q independent 

of the actual state of the system as long as both the X and Y 

force levels are positive.  Define the function !<(•,•) by 

K(x,y) = bx - ay  for x > 0, y > 0 (3.3.1) 

and   let    K(X  ,Y0)   =   y,.     First  it  is necessary  to  show  that 

K    =  K(X ,Y )   forms a martingale sequence.     Consider points 

(X  ,Y )   where    X    > 0    and    Y„ > 0.     Then    K(X  .Y )   = bX,, - ay  . nn n n nnnn 

K n+1 «VrW 
I K(Xn-l,Yn)      w.p.     q 

K(Xn,Yn-l)     w.p.     p 

so  that 

Thus 

K 
K b    w.p.     q 

h+1 K    + a    w.p.     p. n 

■^■WV Tb  <Kn - b'  + rH <Kn + «)  - «r 

and the sequence <K >  forms a discrete time martingale with 

mean    ^.     (Note that the extension of    K    to points on the axes 

and beyond In the manner described previously preserves the 

martingale property.) 
\i 



59 

We now wish to  show  that  the martingale    K   ,   defined above 

can be used to form a  triangular array which will  satisfy the 

conditions of Scott's  Theorem  3.2.1. 

Let each row in  the array be  inaexed by    n,   with the    nth 

row to contain    N       elements where    N    -» oo     as     n  -» ao .     Define n n 

the martingale sequence   for  the    nth row by 

bXi -   aYi       0 ^ i 1 Nn,  0 1 Xi ^ X0(n) ,  0 ^ Yi i Y0(n) 

K   (n)   =    /   bXi 0 1 i ^ Nn,   0 1 Xi 1 X0(n) ,   Yi <  0 

■aYi 0 1 i ^ Nn,   Xi <   0,   0 1 Yi ^ Y0(n) 

where    X0(n)   and    Y0(n)   represent the  initial    X    and    Y    force 

levels corresponding  to  row    n.     Also define     y.    ■  Ko(n)   ~ 

K(X0(n) ,Y0(n))   » bX0(n)   -  aY0(n) .     Finally,   let    S^n)   = 

Ki(n)   -  K0(n).     Thus 

N n <Si(n)>i:i 

forms a mean zero martingale sequence  for all    a.     Now define 

mn(t)   » roax[m ^ Nnl 8^(n)  ^ t},     O^t^l,  n«  1,2. .. 

where    s^(n)   - Var(Sm(n))   - E(S^(n)). m m m 
We wish to  show that the triangular array  formed by the 

N 
<S.(n)>.   ,     sequences satisfies 

n        2 p 
I    Xr(n)   -»t    as    n-»oo,     0<t^.l 

k-l    K 

sup Xj(n)   -» 0 as    n oo , 

(3.2.2« ) 

(3.2.3') 
k^N n 

-■- 
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where   (3.2.2')   and  (3.2.3')   are  generalizations of  expressions 

(3.2.2)   and   (3.2.3)   allowing    N      elements  in row    n.     These 

requirements can be shown by demonstrating that 

m  (t) 
-2        n 2 p 

sM  (n)     2    Xf{n)    -» t    as    n  -» oo      for     t  e   [0,1]   (3.3.2) 
Nn        k=l    K 

and 

-2 2        p 

sN   (n)   sup X^(n)   -»0    as    n  -► oo (3.3.3) 
n      klNn 

are  satisfied. 

In order  to verify   (3.3.2)   and  (3.3.3),   it  is  necessary to 
2 

determine  the order of magnitude of    sN  (n)   = Var [SN  (n)].     This 
n n 

is done  through the  following argument. 

Let    M     be the epoch at which absorption of  the actual 

combat process takes place.     If    X0(n)  and    Y0(n)   are the initial 

force   level«,   and    X0(n)   -♦ co     and    Y0(n)   -» oo     as     n  -♦ OD ,   then, 

since    M    ^ müi(Xr (n) ,Y0(n)) ,     M    -♦ oo     as    n -» oo .     Since 

K^       (n)   * IC.  (n)   for all    i > 0    it follows that 
^n+i ^n 

vartKjj (n) ]  - var (1^ (n) ]. 
n n 

t The variance oi    IC.  (n)   may be calculated in rhe following 
n 

manner:       £[10. (n) ]  « E[K0(n)]  ■  u . 
^n On 
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E[K^  (n)]  = E(E[K^   (n)1^       (n)]] 
n n n-1 

= qE[ [K^       (n)   - b)2}   + pE[(K^       (n)   + a]2} 
n-1 n-1 

= E[K?       (n) ]   + ab. 
^n-1 

And so,   iterating the above procedure,   it follows  that 

E[K^   (n) ]   =   y^ + Mnab    and  so,     Var [1^ (n) ]   = M
n
ab>   and 

n n 
Var [KJJ  (n) ]  = Mnab. 

n 
Now,   recall  that    ^(n)   in the  expressions   (3.3.2)   and 

(3.3.3)   is defined by    Sk(n)   -   S,_,(n)   and thus can only  take 
2 

on  the values    a,   -b,  and    0.     Therefore,  while    sN   (n)   = 0(M
n) » 

n 
X. (n)   = 0(1)   for all    k,   and  so  (3.3.3)   is  immediately satisfied. 

Verification of expression   (3.3.2)   is a bit more  involved.     How- 

ever,   it can be shown   (Scott   (1973))   that  (3.3.2)   will be 

satisfied  if 

N 

s'2(n)     2 X?(n)   -»1    as    n  - oo. (3.3.4) 
Nn        k»l K 

Expression  (3.3.4)   can be  verified for the Linear Law case 

without much difficulty.     Since the    X. (nps are   independent 

(independent transitions  for  the Linear Law) 

N H M 
n   2 ^ o ^2 

Var    L xr(n)   «     Z var xr(n)   »    I Var xr(n) 
k-1 K k-l K k-1 K 

(since    ^(n)   «0    for    ^ > Mn    by definition).     The    Var X^(n)  1 

2     2 max(a   ,b )   "0(1)   and so 

^ 2 2 var xr(n)  • 0(Mn). 
k-1 K n 
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Since     si  (n)   = sj  (n)   = 0{M^) , 
n n 

N 
-2 n   2 p 

Var[s„  (n)      Z XTCn) ]   - 0 
n        k=l K 

N 
2,   v      i

1^ and by Chebyshev» s  inequality and the  fact that    E{s"T   (n)     I X, (n)]   =  1 
Nn        lc=l K 

it  follows  that 

-2 N-    2 P s  ^(n)     £ Xf (n)   -* 1. 
n        k=l 

Expression (3.3.3) follows from expression (3.3.4) by the same 

bounding and limiting arguments given by Scott (197 3).  Thus the 

martingale defined above for the Lanchester Linear Law model 

satisfies the conditions (3.3.2) and (3.3.3) of Scott's theorem 
D 

and so SN (n) -> X, where X has a normal distribution, 
n 

The results obtained above allow the approximation of the 

distribution of K.. (n) by a normal distribution.  The mean of 

this distribution is given by  u » bX0(n) - aY0(n) .  The 

variance, however, is not readily calculated.  It is possible, 

however, to approximate the variance of IC. (n) and thus of 
n 

K-, (n) by assuming a large number of transitions prior to 
n 

absorption of the actual combat process.  The technique employed 

is due to Watson (1976), and is based on a continuous time 

analog to the discrete time martingale discussed above. 

Let t e (0,oo) and Kt « K(Xt,Yt) » bXt - aYt with 

K0 » bX0 - aY0 ■ ».  Then for the linear law model 
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K t+dt 

Kt  -   b 

K.   + a 

w.p. aXtYtdt  +  o(dt) 

w.p. bXtytdt  -r  o(dt) 

w.p. 1  -   (a  + b)XtYtdt  +  o{dt) . 

The  variance  of K         is approximated by    Var K      =   lim Var K.   = 
n ^       t-»oo 

lim v(t) ,  where v(t)   ■  var K. .     The  variance     v(t)   is,   in turn, 
t-»aD ^^ ♦         ♦        ♦ 
approximated by v (t) = Var K.  where K  is a martingale 

defined by 

K t+dt 

JKt-b w.p. axtytdt 

<  J   ' 
w.p. bxtytdt 

1          * ut w.p. 1 -   (a  + b)xtytdt 

where    x.     and    y.     are the deterministic approximations  for the 

stochastic    Xt    and    Y.     process of  the    K      martingale.     The 

functions    x.     and    yt    therefore satisfy the usual Lanchester 

differential equations. 

Since    K      is also a martingale,  E(Kt]  » ^-^t-^dt^' 

E[Kt^dt]   ' E(EtKtl5tlKt1}   " axtytdt{E(Kt21   "   2bElKt]   +b21 

+ bxtytdt[E[K*2]   + 2aE[K*]   -• a2} 

+  (1 -   (a + b)xtytdt]E[K*2l. 

Thus 

Var[Kt>dt]  -  var[Kt] , , 

 dt "ab xtYt+ a bxtyt 

■_•- 
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v*' (t)  = ab2xtyt + a2bxtyt =  abxtyt(a  + b)   =  dv*(t)/dt 

v*(t)   =  j  dv*(s) 

0 

(a  + b)abx y ds. 

0 

Now since    ax y    = -dx      and    bx y    =  -dy there are  two sJs             s                    sJ s           -'s 

approaches  to  the solution of   the  integral: 

t                                                           t t 
r                                                      r i* 

(a  + b)abx v ds ■ b(a  + b) i  ax_y„ds = b(a + b) ;   -dxs 
J                                      S   5                                            J           S    S %> 

0                                                                      0 0 

- b(a  + b) (xo -   xt) 

or 

;(a  + b)abx y ds = a(a  + b) [ bx y ds » a(a  + b) '   -dys 
J S    S J S    S tl 

0 0 0 

a(a  + b) (y0 -  yt) 

Thus    v  (t)   » b(a + b)(x0 -   xt)   « a(a  + b) (y0 -  yt) .      (Note that 

for  the  linear law, MXQ -  xt)   ■ MyQ - yt) •) 

If    X      and    Y0    are assumed to be large  (and  therefore    x- 

and    y-    as well) ,   the number of transitions which occur prior 

to absorption is also large,   (that is,  a very large number of 

transitions cannot occur  in a  short period of time)   and therefore 

the time of absorption,   t,   is considered to be large.     The 

variance of the discrete time martingale at absorption is 
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approximated by 

lim v(t) = lim v (t) 
t-»ao      t-»ao 

The definition of v (t) is such that if  u, = bx- - qy0  is 

negative, x   is zero while if u is positive,  \r   is zero. 3        oo OD 

Thus 

b(a + b)xn if  i« < 0 
v'(oo) = lim v (t) = J 

t-*oo       1 a(a + b)y0 if  M. > 0 

b(a + b)X0 if bX0 - aY0< 0 

a(a + b)Y0 if bX0 - aY0 > 0. 

Thus the distribution of IC. (n) is approximated by a normal 
n 

distribution with mean and variance as given above. We use this 

d istribution to approximate    P [Xf £, k,Yf = 0] = P [h( *n, aN )   > k ] 
» 2 ' ^ n 

re    k    » K(k,0)   and    ojl       is  the approximate variance of whe 

K    (n) .     Both    »      and    OL,      depend only on the  initial  force 
n n 

levels and the attrition parameters of the model.     It is thus 

possible  to employ this normal approximation to  solve the 

one-stage decision problem,  and also to provide some  insight 

into the combat process without resorting to large scale numerical 

computation of probabilities. 
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3.4.  Some Numerical Results for the Linear Law Martingale 

Several numerical studies were done to assess the accuracy 

of the normal approximation to the distribution of the  K^ 
n 

martingale.  Results for two selected cases are presented in 

this section.  The technique employed calculated the probability 

of each possible terminal point on the X and Y axes, given 

an initial starting configuration and fixed transition probabilities, 

through iterative procedure.  The value of  !<(•,•) was calculated 

at each of these points and the induced distribution of  KN 
n 

determined.  The percentiles of this distribution were then 

plotted against the normal percentiles.  The results are pre- 

sented in Figures 3.4.1 and 3.4.2. 

Figure 3.4.1 represents a case in which the probability of 

either side taking the next casualty is 0.5.  The initial starting 

values are moderate (100 and 12 5) with the X side having a 

numerical superiority.  The normal plot is made from the 1st 

to the 97th percentile and shows quite good agreement with the 

straight line graph to be expected from a normal distribution. 

Figure 3.4.2 represents a somewhat more unbalanced case in 

which the initial numerical superiority of the X side is more 

than balanced by the superior effectiveness (higher attrition 

coefficient a) of the Y side.  Once again, the linear nature 

of the plot indicates that the normal approximation is a reasonable 

2 
one for initial forces on the order of 10 .  Although the approxi- 

mation seems to remain fairly good for somewhat smaller forces, 

it is best to require the higher order for best results. 
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With the encouraging results from this numerical study 

completed, it remains to make use of the martingale methods to 

solve a one stage decision problem.  The implementation of the 

method and some selected results are included in the next 

section. 

i 
I 
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3.5.     Martingale Solution of  the One Stage Decision Problem  for 

the Linear Law Model 

The martingale techniques of the previous sections may be 

used to obtain an approximate solution to a one stage decision 

problem. Once again, the stochastic model employed will be of 

the Linear Law type. 

Let the  initial   force configuration be   (X0,Y0)   for    xo»Yo 

large.     Define    K(x,y)   = px -  qy    where    p =       + , 

a q =* 
a   + b   •      Let     ^ =  PX0  -   qY0' 

and 

The  distribution of    IC. +Y    "  Kf 0    0 L 

is approximated by a  normal distribution with mean    »    and variance 

2 a      given by 

f 

I 

pX0 if    ki < 0 

qYn if    ^ > 0, 

Since the value of    K,     is positive  if and only if    X, > 0 

and    Yf »0,  P(X win)   - P(Kf > 0)  »  <Kn/a)  where    «(x)   is the 

standard normal distribution function at the point    x.     The 

expected value of    X.     is obtained by the  same  type of argument. 

If    K. > 0,   then    Yf - 0    and    Xf - Kj/p.     Thus 

E[xflx wins] - ^ E(K£lKf > 0)  « ^[y. ♦ a«p(M/a)/«(n/(T)], 

where    cp    is the standard normal density function.     So 
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E[X0 - Xf|x wins]   = E[Xc|Xwins]  = X0 - ^[^ + acpl u/a)/*< ^a) ] 

The risk  function,   p(X0) ,   then takes  on the approximate  form 

p(X0)   =   (c  +   1)X0 -   ♦<*/(?) [V + X0 -  ^ Y0]   -  | v{*/<s).    (3.5.1) 

The solution of the one stage problem requires the minimization 

of (3.5.1) as a function of X-. 

It seems clear from the discussion of the shape of the one 

stage risk function in Section 2.4, as well as from intuitive 

considerations, that the optimal value of X0 must lie to the 

right of the point * YQ.  In this case  n = (pXQ -  qY0) > 0 and 
2 

so  a = ^o*  Replacing these values in equation (3.5.1) we have 

p(Xn) (C 
/PX0 - qY 

[v + xn - ^ Y 1 p W 

*\ 
/P
X
O - ^o\ (3.5.2) 

Under the same sorts of assumptions employed in Section 2.4, 

this risk function may be differentiated, and the optimal X. 

value obtained numerically.  This approach was employed for the 

same cases examined in light of the standard central limit theorem 

approach of Section 2.4.  The results are presented in Table 3.5.1. 

Table 3.5.2 presents a comparison of the results obtained from 

these two methods.  As can be seen, the agreement of the methods, 

both in terms of optimal force level and optimal risk, ia quite 

good. 

--1 
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Table 3.5.1 - Numerical Results for the One Stage Decision Problem 

Martingale Method 

Notation: 

Yo- 

P - 

c  - 

V  - 

P(X0) 

Initial  enemy  force  level 

Probability next casualty  is enemy 

Cost of employing friendly  troops 

Reward  for victory   (totally destroying enemy force) 

Optimal  initial force  level 

Risk of  optimal  force  level 

V p(x0) 

100 0.5 0.5 500 136.55 -329.31 

1000 0.5 0.5 5000 1134.03 -3426.19 

100 0.3 0.5 500 297.66 -112.67 

1000 0.3 0.5 5000 2576.84 -1363.92 

100 0.7 0.5 500 64.80 -423.49 

1000 0.7 0.5 5000 507.46 -4314.12 

100 0.5 0.6 500 135.54 -315.71 

1000 0.5 0.6 5000 1131.28 -3312.93 

100 0.3 0.6 500 295.42 -83.04 

1000 0.3 0.6 5000 2 570.94 -1106.56 

100 0.7 0.6 500 64.28 -417.04 

1000 0.7 0.6 5000 506.03 -4263.45 

- 
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Table   3.5.2  -  Numerical Resul*.-   for  the One-Stage  Problem 

Comparison of Martingale and Standard 

Central Limit Theorem 

Case 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Standard   (X0,p(X0)) 

(136.94,-328.89) 

(1134.40,-3426.12) 

(299.14,-111.95) 

(2578. 36,-1363. 33) 

(64.92,-423.43) 

(507.58,-4 314.08) 

(135.92,-318.45) 

(1131.67,-3312.00) 

(296.90,-82.16) 

(2572.47,-1105.37) 

(64.40,-416.94) 

(506.16,-4263.16) 

Martingale   (X0,p(X0)) 

(136.55,-329.31) 

(1134.03,-3426.19) 

(297.66,-112.67) 

(2576.84,-1363.92) 

(64.80,-423.49) 

(507.46,-4314.12) 

(135.54,-315.71) 

(1131.28,-3312.93) 

(295.42,-83.04) 

(2570.94,-1106.56) 

(64.28,-417.04) 

(506.03,-4263.45) 

«• 
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3.6.     Summary 

The martingale  techniques,  based on the work of Watson 

(1976),   have been presented  in detail  for  the  case of a  Lanchester 

Linear  Law type model.     The methods are,   however,   easily applicable 

to other  stochastic combat models.     Watson presents  an example 

of a martingale  for   -he  Square Law case.     This martingale  satisfies 

the  Scott martingale   :entral  limit theorem as presented  in 

Section  3.2.     (The demonstration of this  fact  is  somewhat 

extensive and tedious.     It has been included  in the Appendix.) 

The martingale  technique   thus provides a  unified and complete 

solution,  at least approximately,   to the one  stage  combat 

decision problem.     The multi-stage problem will be  considered 

in Chapter 4. 
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Chapter 4 

THE   SEQUENTIAL  COMBAT  DECISION   PROBLEM AND  DIFFUSION  MODELS 

4.1.     Force Level Distributions   in Time 

The martingale methods presented in Chapter  3 provide  use- 

ful  approximations  for the   force   level distributions   upon 

termination of a battle   (that  is,   when one  side  is  completely 

eliminated).     These methods  allow the calculation of  approximate 

solutions  to  the  simple one   stage decision problem.      Unfortunately, 

such  techniques are not sufficient   to solve  the multi-stage 

decision problems presented  in Section  2.3.     Solution of the 

latter  type of problem requires a  knowledge of  the distributions 

of   force  levels as explicit  functions of continuous   time. 

Time dependent  force   level distributions  for   the  vast 

majority of Lanchester  type  stochastic attrition models are 

unknown.     One  expression which does  exist  is  that developed by 

Clark  (1968)   for a stochastic version of the Lanchester Linear 

Law: 

Let 

P(t,m,n)  ■» Prob[X(t)   - m,Y(t)   « n|X(0)  » mr.,Y(0)   • nj , 

then  for    m,n > 0: 
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mo   no 
P(t,!ti,n)   = 

(-1) "     a        b (m0) '. (n0)'. 

3=in k=n     (a+b)   0 0 ai'.nl (k-n)', (j-m)'. (m0-j)'. (n0-k) • 

3-m m0"j     (nn-j+^) 
n exp[-(a+b) jkt] , 

where     a    and    b    are  the usual Lanchester attrition coefficients. 

Clearly,   such an expression  is  difficult,   at best,   to work with, 

especially  in  the  solution of  a multi-stage decision problem. 

Once  again,   a   technique  for approximating the actual probability 

distribution  is necessary. 
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4.2.     The Diffusion Approximation.     Background 

A promising new approach to   the approximation   of the distri- 

bution of  force  levels as  a   function of time  is based on  the 

construction of a diffusion approximation to the actual combat 

process.     The utility and accuracy of such approximations  has 

been demonstrated  for a  variety of  stochastic processes   (for 

example,   see Gaver and Lehoczky   (1S>75,   1976)).     In addition,   the 

diffusion  technique provides a well studied,   unified,  and coherent 

approach  to stochastic Lanchester models  from which the deterministic 

equations arise naturally as  first order approximations  or means 

of  the   stochastic processes. 

The  rationale behind the diffusion approximation is based 

on the  following type of argument.    Assume    X-    and    Y0    are 

large,   i.e.    Y0 = N,    X0 » kN    for some constant    k.     The combat 

process can now be studied as    N  -» oo . 

Let    X.    and    Y.     be the force levels at time    t ^ 0. 

Assume  that {(Xt,Yt),t ^.0}   is a  time homogeneous Markov process 

with transition probabilities given by 

P((dXt,dYt)   »   (-1,0) | (Xt,Yt))   -  f(Xt,Yt)dt + o(dt) 

P{(dXt,dYt)   »   (0,-l)| (Xt,Yt)}   - g(Xt,Yt)dt + o(dt) (4.2.1) 

P[(dXt,dYt)   -   (0,0)1 (XtfYt)}   -   i "   lf(Xt,Yt)   + g(Xt,Yt)]dt +  o(dt) 

where dX. =■ X.^,. - X.  and dY. ■ Y. _,.. - Y. .  Further, assume t   t+at   t        t   t+dt   t 

that f and g are smooth, positive functions and that they are 

of order at least N when X  and Y.  are of order N (that 

la, if X ■ kjN and Y. » k-N  for some positive k.  and k-, 



78 

f(X  ,Y )   ;> k3Na    for some    a ^ 1,   and    k3 > 0.)     Examples of 

such  functions are: 

f(X,Y)   = aXY,  g(X,Y)   = bXY    as   in the Linear  Law case,   and 

f(X,Y)   = aY,  g(X,Y)   = bX    as   in the Square Law case. 

Under  the abov   conditions,   the holding  time   in any state 

is  of order     1/N    and  thus a   short  interval of  time will see the 

occurrence  of a  large number of   transitions.     As can be  seen 

from equations  (4.2.1),   these  transitions are  of a Bernoulli 

nature   (that is,  a change of either  zero or one unit).     The 

total  change over any  time period   is  therefore a   sum of many 

Bernoulli-type random variables.     The distribution of  this  total 

change may  then be approximated by a normal distribution according 

to the central limit theorem.     The moments of the approximating 

normal distribution are derived  from the corresponding moments 

of the Bernoulli distribution .    The means of    dx.     and    dY 

may be easily claculated,  based en equations   (4.2.1).     Upon 
2 

elimination of terms of order   (dt)    ,   the means are given by 

-f(Xt.,Y )dt    and    -g(Xt,Yt)dt    respectively.     In a  similar manner 

i "■  can be  shown that the variances are    f(Xt,Yt)dt    and    g(X ,Y )dt. 

The distributions of    dX.     and    dYt    can be treated as 

approximately normal with the means and variances given above. 

This naturally suggests  that    dX      and    dY      may be modeled 

in terms of the increments of a Wiener process.     If  (W. ,t ^> 0) 

is a  standard Wiener process,   then    dW.   « wt+dt ~ Wt    ha8 a 

N(0,dt)   distribution.    We can then describe the evolution of   the 

& 
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((X.jY  ),t ^ 0]  process  in  terms  of  two  independent Wiener 

processes    W.     and    W2    by 

dXt = -f(Xt,Yt)dt +/£(Xt,Yt)dW1(t) 
(4.2.2) 

dYt =  -g(Xt,Yt)dt  +/g(Xt,Yt)dW2(t). 

The  system   (4.2.2)   is a  stochastic  differential equation of  the 

Ito  type.      (See Arnold   (1973)   or Gihman and Skorokhod   (1972) 

for a  description of  these  types  of  equations.) 

We can now expand X. and Y. in powers of N in a manner 

similar to that employed in central limit theorems. Specifically 

we   let 

(Xt,Yt)   = N(xt,yt)   +  ^ (Z1(t),Z2(t)) (4.2.3) 

for some large N, where it can be shown (see Kurtz (1971) and 

Barbour (1974)) that x. and y. are deterministic functions 

satisfying  the usual  Lanchester-type  equations 

xt =  -f(xt,yt) , yt « -g(xt,yt) . (4.2.4) 

The  systnm  ( (Z, (t) ,Z2( t)) , t ^.0}   is a  stochastic process.     By 

the   use of  Ito's  lemma   (Arnold   (1973,  p.   90)   or Gihman and 

Skorokhod   (1972, p.   24)   it can be shown that this process 

satisfies  the stochastic differential equation 

dZ1(t)   » -f(Z1(t),Z2(t))   + /f(xt,yt)   dW1(t) 
  (4.2.5) 

dZ2(t)   » -g(Z1(t) ,Z2(t))   + /g(xt,yt)   dW2(t), 

where    dZi(t)  - Zi(t + dt)   -   zi(t) ,     i »  1,2. 

■- 
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The term N(xt,yt) in equation (4.2.3) is known as the 

deterministic approximation of (Xt,Y ).  The process yS   (Z,{t)»Z-ft)) 

of the same equation is a stochastic "noise" process which is 

superimposed on the deterministic term to give the actual 

stochastic process (Xt,Y ).  In this way, the usual Lanchester 

equations (4.2.4) can be seen to arise from the stochastic model 

as a first order approximation. 

In order for this diffusion model to be useful in an analysis 

of a combat system, the distribution of (Z, (t) ^-f t)) must be 

derived.  If the initial values  Z,(0), Z2(0) are constants or 

normally distributed random variables, this distribution is bi- 

variate normal and the mean vector and covariance matrix may be 

calculated based un ftie actual form of the stochastic differential 

equation (4.2.5).  Examples of diffusion models for the Lanchester 

Linear and Square Laws are presented in the following section. 

4 
■ 

... 
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■ 

4. 3.  Diffusion Model Examples 

Consider first the case of the Lanchester Square Law.  In 

this case  f(x,y) * ay and g(x,y) = bx.  Employing these in 

equations (4.2.2) we have 

dXt = -aYtdt + /aYt dW^t) 

dYt = -bXtdt + /bXt dW2(t). 
(4.3.1) 

Similarly, equations (4.2.4) become 

*t = -ayt,    yt = -bxt (4.3.2) 

and the stochastic differential equations (4.2.5) become 

dZ1(t) = -a22(t) + /a^ dW1(t) 

dZ2(t) - -bZ1(t) + /bxt dW2(t). 
(4.3.3) 

Writing the above equations in matrix notation we have 

d2(t) = AZ(t)dt + B4.dW(t) (4.3.4) 

where 

Z(t) = (Z1(t),Z2(t))' ,  dZ(t) - (dz1(t),dz2(t)) 

dW(t) - (dw1(t),dw2(t))', 

0 -a 

i-b  0, 
and   B. 

^y4 

i 0   /bx^ 

The equation (4.3.4) ia a bivariate, nonstationary linear stochastic 
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differential equation  from which the  characteristics of the noise 

process   (Z,(t)»Z^Ct))   maybe derived   (see Arnold  (1973),  Chapter 8). 

Assuming    Z1(0)   = ZjfO)   » 0,   then  the distribution of 

(Z, (t) ,Z2(t)) '    is bivariate normal.     The mean vector of the 

distribution  is    0    and its covariance matrix    Z. .   is  the  unique 

non-negative definite solution to  the  equation 

L.   = AZ.    r Z.A'    + B.B' 5o = o (4.3.5) 

where     t^ =   (^.(t))   and    ^.(t)   = ~  ^.(t).     Since    CT12(t)   3  C721(t), 

equation   (4.3.5)   may be rewritten as 

or 

where 

r11(t)   =  -2aai:)(t)   + ay(t) 

a12(t) 

a22(t) 

12 

-ba11(t)   -  aa22(t) 

-2bai2(t)   + bx(t) 

a(t)  = A^CTU)   + K(t),    a(0)  = o,   (4.3.6) 

it 
/0 

-b 

0 V 

-2a 

0 

-2b 

K(t) 

and 

a(t) »  (a11(t)>a12(t),a22(t)), . 

Equation   (4.3.6)  may be solved by standard methods due  to  the 

fact that    A.     is not a  function of    t.     The solution is \ 
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t 

a(t)   = exp(-A,t)       exp(-A1s)K(s)ds (4.3.7) 

o 

where    exp(M)   is defined by the power series 

M2        M3 

exp(M)   =  I  + M + — + -=7- +  

The Lanchester equations   (4.2,4)   can be easily solved  for 

the deterministic system  (x   .y^.) ,   and give y t 

x. = xn cosh td - cyn sinh td 
t   0 ° (4.3.8) 

y. = y0 cosh td - c~ x sinh td 

where c = >/a/b and d = ',^ib.  These results, combined with those 

obtained from the analysis of the stochastic term, yield the 

diffusion approximation 

(Xt,Yt) ~ n(N{xt,yt),N£t) 

for  the  force  level distribution as a  function of time. 

The development of the diffusion approximation for the 

Lanchester Linear Law follows the same basic principle, but 

has a slightly modified form.    We write 

dXt - ^ XtYtdt  H-N/I XtYt dW^t) 

dYt ' f XtYtdt  +   /IVt ^2^ 
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Note that  the attrition  terms are  rescaled by dividing out by 

a  factor of    N,     This allows  the changes  to  remain of order    N 

for    X    and    Y    of order    N    and prevents   the  system from de- 
2 

generating too rapidly due to changes of order    N    (that is, 

casualties occurring at an unreasonably rapid rate).     Proceeding 

along  the  same  lines as before we have  the  deterministic system 

xt = -ax
tyt' ^t = ~bxtyt (4.3.10) 

and the  stochastic equation 

dZ(t)   = A(t)Z(t)dt + B(t)dW(t) (4.3.11) 

where 

Z(t)   =   (Z^t^Z^t))',      dZ(t)   =   (dz1(t),dz2(t))1 

A(t)   = A. 
-ayt      -axt 

-byt       -bxt 

and 

Equation (4.3.11) is once again a linear equation. Once 

again, therefore, for Z(0) * 0, the distribution of Z(t) is 

bivariate normal with 0 mean and covarlance matrix Z , the 

unique non-negative definite solution to 

.JL.    * 
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^^      cwt '^'t      ^t '"*t      'wt «rft '^O 
(4.3.12) 

Rewriting equation (4.3.12) in terms of variance components 

a11(t), cr22(t), CT12(t), we have 

a12(t) 

va22(t) 

^-2ayt 

-byt 

V 0 

-2axJ CTll(t) 't      ~ \ / "ll^' \   / axtyt 

(ayt + bxt) -axt\ ( ^2^) 1 + I   0 

2by4 -2bxJ a22(t) bxty1 

or 

»»t   '«»t'^'t   '«4" 2o = 0- (4.3.13) 

In this case, however  a,2 is a linear function of a,,  and 

'22 

al2{t)   '21 ^l^^ + I I CT22(t) + 2<xt - X0) 

+ 2(yt - V- 

Thus we must solve a  reduced problem,   seek.ng  the solutions 

a,,(t)   and    •■>22(t)   to 

*ll(t) 

ä22(t) 

f-(2ay.   + bx.) -r- x. an(t) 

"i^t (2bx4. + ay,.) ]   \ a22(t) 

axt(x0 + ^   '  axt 

byt(x0 + y0) - by* 
(4.3.14) 

The solution of equation (4.3.14) depends on the solution 

of the deterministic equations (4.3.10).  The solution to these 
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latter equations depends  in  turn on  the  sign of   (ay0 - bx.) . 

The  solutions  to equation   (4.3.10)   are given by the  following. 

Case   1:      (ay0  -  bx0)   <  0 

(bx0  -   ay0)y0  exp[(ayo  -  bx0)t] 
Xt '   X0  "  b(y0  '   yt, ' yt " bx0  -   ay0  exp[(ay0  -  bx0) t]    ' 

(4.3.15) 

Case  2:      (ay0  -  bx0)   > 0 

x^. = 
(ayQ -  bx0)x0 exp[(bx0 -   ay0)t] 

ay0 -  bx0 exp[(bx0 -   ay0)t] 

yt = yO  -  I(X0 "  xt) ' 

In the very special  case    ay0 = t)X0,  we have 

-   ayo a2yo 
yt '"  y0t  + a   ' xt " b(y0t  + a)    ' 

The  solution  of equation  (4.3.14)   is,   unfortunately,   not 

as  straightforward  as  the  solution of  equation   (4.3.6)   due  to 

the  time dependence of  the    A    matrix in   (4.3.14).     However, 

simple computing routines  exist   (see Dahlquist and Bjorck  (1974)) 

which allow numerical solution to such equations by such classical 

methods as the Runge-Kutta technique. 

Section 4.4 presents some numerical results  for the diffusion 

models,   comparing the diffusion approximation  to results  from a 

computer simulation of the combat system. 
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4.4.  Numerical Results 

This section presents the results of some numerical studies 

made in an attempt to assess the accuracy of the diffusion approxi- 

mation at various force level sizes and configurations.  The 

theory presented in Section 4.2 indicate that the diffusion 

approximation should be a good one for "large" force levels due 

to the fact that a large number of transitions will take place in 

a time period of length  t.  This section presents some selected 

results to serve as an empirical verification of these theoretical 

expectations and to answer, albeit in a rather heuristic manner, 

the question of how " large" is large enough.  Results are given 

first for the Linear Law model and then for the Square Law. 

The mean vector for both models are obatined by solving the 

usual Lanchester equation.  Calculation of the covariance matrix 

for the Square Law requires solution of equations (4.3.6), while 

that of the Linear Law requires solution of equation (4.3.13). 

These equations cannot be solved in closed form other than the 

integral form (4.3.7) for the Square Law.  However, the existence 

of standard, packaged routines allows numerical solutions to be 

obtained with relative ease.  The procedure employed here is 

based on a modified form of the classical Runge-Kutta method. 

In general, the truncation error of this fourth-order technique 
5 

is of order h  where h is the interval length employed in 

the routine.  Further discussion of the errors of this method 

is given in Gill (1951),  Various sizes of h were considered 
■ 

The actual routine used is subroutine RKDE in the Univac 1108 
Math-Pack, with a minor addition.  See the documentation for more 
details. 
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and  the  value 0.001 proved to give results equivalent  to those 

obtained from a much  finer mesh in the case of the  Linear Law 

and  the Square Law. 

Standard Monte Carlo techniques were  employed  to construct 

a  simulation of combats based on both the  Linear  and Square Law 

dynamics.     The outcomes of these experiments were given  in terms 

of the survivors on either  side at some specified  time    T.     Samples 

of  size 2000 were obtained  for  the Linear Law and  3000  for the 

Square Law.     The  sample mean vector and covariance matrix were 

calculated for each case and compared  to  the  result obtained  from 

the  solutions  to  the  diffusion equations.     As a   further empirical 

display,   the marginal distribution of the    X    and    Y    survivors 

was plotted against the  normal percentiles.     Plots of  this type 

were also made  for  a 45     rotation of the coordinate axes.     Sum- 

maries of the moment comparisons and the normal plots  for the 

cases  considered are  given on the following pages.     These provide 

empirical evidence of the quality of the normal approximations. 

Comments on the results   for each model are made at the end 

of the appropriate  tables and  figures. 

:*V 
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Table 4.4.1a -  Comparison of Simulation and Diffusion Approximation 

Linear Law Case 

Parameter Values: a = 0.0005 b =  0.0005 

X0 =   125.0 Y0 =   100.0 

T =   15.0 

Simulation Diffusion 

X Mean 74.381 74.233 

X Standard 6.110 6.161 
Deviation 

Relative Difference  of Standard Deviation 

,SD Sig - .SB Dif,   .  .^ 

Simulation Diffusion 

Y Mean 49.112 49.233 

Y Standard 5.404 5.463 
Deviation 

Relative Difference of Standard Deviation » -0.012 

Simulation  Diffusion  Rel. Difference 

Covariance        -16.363    -16.839      -0.029 

Correlation        -0.496     -0.499      -0.009 



Table 4.4. lb 

Parameter Values; a = 0.0007 

X    =   300.0 

90 

b  =  0.0003 

Y0 =   100.0 

T =   15.0 

X Mean 

X Standard 
Deviation 

Simulation 

157. 568 

11.676 

Diffusion 

157.304 

11.497 

Relative Difference of  Standard Deviation =  0.015 

Simulation Diffusion 

Y Mean 38.94 3 38.84 5 

Y Standard 5.555 5.415 
Deviation 

Relative Difference of Standard Deviation ■ 0.02 5 

Simulation      Diffusion      Rel.   Difference 

Covariance -41.386 -39.393 0.048 

Correlation -0.638 -0.633 0.008 
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Comments:  As can be seen from Tables 4.4.1a and 4.4.1b, the 

mean vector and covariance matrix calculated from the diffusion 

model agree quite closely with the corresponding sample moments 

of the simulation experiments.  These results are typical.  Also, 

the plots of the marginal distributions and their rotations show 

a rather good normal fit for the center 98^ of the distributions 

obtained from the simulation samples.  The tails, which are not 

included in the plot, tended to show somewhat more pronounced 

deviation from the normal, indicating the advisability of a more 

careful and refined analysis, perhaps including the use of large 

deviation theory, if the probability of extreme events is of some 

importance.  Otherwise, the diffusion based normal approximation 

seems quite adequate for force levels of this size and larger. 
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Table 4.4.2a - Comparison of Simulation and Diffusion Approximation 

Square Law Case 

Parameter Values: a = 0.05 b = 0 .05 

x0 = 3oo Y0 = 3oo 

T = 15.0 

X Mean 

X Standard 
Deviation 

Simulation 

141. 579 

15.532 

Relative Difference of Standard Deviation 

Y Mean 

Y Standard 
Deviation 

Simulation 

141.860 

15.163 

Diffusion 

141.710 

15.422 

Diffusion 

141.710 

15.422 

Relative Difference of Standard Deviation = -0.017 

Sirnula tion Diffusion Rel. Difference 

Covariance -163.746 -163.079 0.004 

Correlation -0. 695 -0.686 0.014 



Table 4.4.2b 

Parameter Values: 

X Mean 

X Standard 
Deviation 

Simulation 

408.366 

11.096 

a = 0.07 b = 0.03 

xo = 500.0 y
0 

= 2oo.o 

T = 10.0 

Diffusion 

408.473 

11. 135 

Relative Difference of Stand rd Dev~ation- -0.003 

Y Mean 

Y Standard 
Deviation 

Simulation 

66.231 

12. 235 

Diffusion 

66.065 

12.159 

Relative Difference of Standard Deviation = 0.006 

97 

Simulation Diffusion Rel. Difference 

Covariance -68. 784 -69.429 -0.009 

Correlation -0.507 -0.513 -0.012 
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Conunents:     Once again.  Tables 4.4.2a  and 4.4.2b  indicate  the 

excellent agreement of  the moments  calculated  from  the  diffusion 

model and  the   sample moments of  the  simulation.     The normal 

plots also  have  the  same general quality  in  the Square Law case 

as  they do  in  that  of the Linear  Law,   indicating a  reasonably 

good normal   fit  in the center with  some  slightly more pronounced 

deviation  in   the  tails.     On  the whole,   the normal approximation 

seems  to be  rather a  good one  in  the Square  Law case as well. 

The  use  of  these normal approximations   in the solution of 

a  two  stage decision problem is discussed in Section 4.5. 
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4.5.     Solution  of a Two Stage Decision  Problem 

The basic mathematical  elements  of a  two  stage  combat 

decision problem 3»re presented  in Section 2.3.     As  stated  there, 

the  solution of  such a problem requires  knowledge of  the  force 

level distribution as an explicit function of  time.     The dif- 

ficulties of deriving  such distributions and  the intractibility 

of existing expressions has  led to their approximation by the 

diffusion methods of Sections 4.2 and 4.3.     These diffusion 

models,  when combined with the martingale methods of Chapter   3, 

provide a r.eans   for  solving  the  two  stage problem. 

Unfortunately,   however,   the nature  of  the  expressions 

involved precludes an analytical solution and once again numerical 

techniques are  required.    This section will outline  the elements 

of  the numerical solution of  the problem and present some  selected 

results which were obtained  using these  techniques  in the case 

of   i Line'     Law model. 

The essence of the problem is  to  calculate the optimal 

initial  force   level,   that  Is,   the value of    X0    which makes  the 

risk a minimum.     The risk    P^^   ^s defined by equation  (2.3.3) 

and  is given by 

P^V "        J       4<xo)dPx (W- 
{(XT.YT)) 0 

Th»  function     PO^XQ)   i8  the  risk incurred from making a  force 

lev. 1 decision    X0    at time    0,  arriving at configuration   (XT,YT) 

at time    T    and proceeding optimally.     Thxs  function  is defined 

in turn by i 

pij 
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^(X0)   =  CX0  +   (X0  -   XT)   +  P1(XT,YT) 

where    c     is  the  cost  of the   initial  forces and     p1(X_,Y_)   is 

the optimal risk  attainable  in a one  stage problem with  force 

configuration   (X_,Y_).      (See Section 2.3.)     The   integration of 
T p2(X )   is performed with respect  to  the  correct probability 

distribution of  the  force level configuration   (X_,YT) . 

Since  it  is  not possible  to solve  for  the  critical points 

of  the     Po^rO    function  in the  usual way   (by taking its derivative 

and solving  for  roots),   it becomes  necessary to  search over  the 

admissible  values of     XQ    in order  to  find  the  optimum.     A basic 

requirement,   then,   is  the ability to evaluate  the risk  function 

p2(X0)   for any possible value of    X-. 

The value  of    ßo^Q^  depends on  the  distribution of the 

force  level configuration at time    T.     The diffusion models 

allow approximation of such distributions by a bivariate normal 

distribution.     The method of obtaining the correct moments  for 

this normal approximation is discussed  in  some detail   in Section 4. 3. 

Given  the  correct approximate bivariate normal distribution 

for   (X-,Y-) ,   it  remains only to calculate the  integral of equation 

(2.3.3).     This  integral cannot be solved analytically and once 

again numerical  techniques are employed.     In this case,   since 

the  integral  ia  a double integral,   standard techniques of solution 

are  somewhat limited.     Perhaps  the  simplest and most practical 

method  is  that of Monte Carlo integration,  a  technique which, 

in this case,  amounts  to the estimation of the  expected value of 

a random  function by  the arithmetic mean of a  large random sample. 
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This  technique was  employed,   using a pseudo-random normal generator 

developed by Kinderman and Ramage   (1976),   and a uniform generator 

developed by Lewis  and Payne   (197 3). 

A random sample of 500 (X_,,Y_) points was taken for each 

initial X- value considered. A one stage problem, modified 

to take   into account the presence of  the    X-,     force  in the manner 

discussed  in Section  2.3,   was then solved  for each  such point and 
Ti thus    pj   (X-)   was  calculated  for     i     running   from  1  to  500. 

Finally an estimate  of     Po^r^   was obtained by using the  sample 

mean 

,        500 T. 
~ i 

^V   ^500     J^^V- 

The accuracy of this estimate can be given  in terms of its estimated 

standard deviation.   Table 4.5.1 presents some sample values  from 

these calculations. 

Thus the optimal risk could be approximated for any value 

of X . The optimal value of X was then found by searching 

over those values of X which were admissible solutions. In 

the Linear Law cases considered, the risk function for the two 

stage problem, as calculated by the above methods, proved to have 

relatively flat peaks and valleys. For this reason, there were 

sometimes several  force levels with virtually the  same risk. 

Table 4.5.2 exhibits  the results of  the  two stage procedure 

for some selected  cases.     Although only the actual optimal 

force  level  is  listed,   it should be kept in mind that in most 

cases these optimal values were not sharply defined. 

4 
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A study of Table 4.5.2  and a  comparison   to  the  one stage 

results of Table 2.4.1 and Table   3.5.1 reveal  some  interesting 

points.     First,  as   is  to be expected,   the risk of  the  two stage 

procedure  is  somewhat  less   than  that of  the  one stage procedure. 

Also,   the  initial  force  levels tend to be   less  in   the  two-stage 

problem than  the corresponding optimal  levels   for  the one stage 

problem.     Note  that,   in general,   the actual  values of the attrition 

constants    a     and    b     seem  to have  little effect on  the optimal 

decision.     An exception  to   this  is   the  first group of cases  in 

which the optimal  level  seems to decrease as   the value of    a 

and    b     increases.      This  same phenomenon occurs  to a   lesser 

degree in other cases as well.     The  lack of a   sharp minimum makes 

such a result difficult to assess at this  time.     However,   the 

question of whether  some  such effects are present is an intriguing 

one deserving  of  further  investigation. 

It can be  seen  from  the above  results  that the diffusion 

approximation together with the martingale methods of Chapter  3 

present a  complete approach to the  solution  of  the complex 

decision problems presented in Chapter 2.     Extension of the 

methods of the  two  stage problem to solution of multi-stage ones 

is  theoretically straightforward.     Unfortunately,   some rather 

serious problems  in terms of actual computational complexity arise 

which require more  efficient numerical  techniques  if  larger 

problems are  to be  solved  in a reasonable amount of  computer  time. 

• 
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Table 4.5.1 -  Sample Results of Two-Stage Optimization 

Parameters:       Y0 =   100, 
a = 0.0001 
b «  0.0001 

Cost of  Initial Forces =0.5 
Cost of Reinforcements = 0.6, 

Value of Victory ■   500 

T «   30 
Initial Force Estimated Risk       Est.   Standard Deviation of Estimate 

110 -329.167 0.823 

111 -330.679 0.8^4 

112 -329.950 0.838 

113 -330.871 0.824 

114 -329.797 0.775 

115 -330.106 0.824 

116 -331.232 0.795 

117 -330.897 0.771 

118 -329.699 0.808 

119 -331.339 0.758 

120 -331.137 0.771 

121 -331.187 0.776 

122 -331.569 0.708 

12 3 -330.771 0.715 

124 -331.760 0.707 

125 -331.373 0.706 

126 -331.780 0.710 

127 -330.822 0.694 

128 -330.758 0.698 

129 -331.210 0.644 

130 -330.471 0.642 
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Table 4.5.2 -  Some Numerical Results for the Two-Stage Decision 

Problem 

Cost of Initial Forces - 0.5 

Cost of Reinforcements - 0.6 

Time before  Reinforcement -   30.0 

Yo a b P *'  a + b V X p(V 

100 0.0001 0.0001 0.5 500 120.0 -331.78 

100 0.0005 0.0005 0.5 500 122.0 -336.18 

100 0.0008 0.0008 0.5 500 108.0 -338,10 

loco 0.00001 0.00001 0.5 5000 1105.0 -3434.72 

1000 0.00005 0.00005 0.5 5000 1103.0 -3445.87 

1000 o.ooooe 0.00008 0.5 5000 1104.0 -3447.4 3 

100 0.00035 0.00015 0.3 500 282.0 -121.80 

100 0.0007 0.0003 0.3 500 276.0 -125.27 

lOOO 0.000035 0.000015 0.3 5000 2551.0 -1386.67 

100O 0.00007 0.00003 0.3 5000 2552.0 -1393.19 

100 0.0CO15 0.00035 0.7 500 55.0 -425.66 

100 0.0003 0.0007 0.7 500 52.0 -427.10 

1000 0.000015 0.000035 0.7 5000 488.0 -4321.47 

1000 0.00003 0.00007 0.7 5000 476.0 -4325.66 
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Chapter   c 

EXTENSIONS   AND   CONCLUSIONS 

5.1.     General Battle Termination Criteria 

In the basic combat decision problem discussed  in Section 

2.1,   the battle  is assumed  to  continue until one  side  or  the other 

is  totally eliminated   (that  is,   a  "fight to  the   finish"   criterion). 

Such an approach  is,   admittedly,   a  simplistic approximation  to 

what  is,   in  fact,   a very complex process.     The question of what 

alternate modeling techniques  are better  than  the "fight  to the 

finish"   is  a relatively open  one.     This  section does  not attempt 

to produce or endorse any specific criteria,  rather  it presents 

some  intuitively reasonable  characteristics of such criteria 

which would allow the martingale  techniques of Chapter   3  to be 

employed with  the  same  effectiveness  as  that found  in  the  "fight 

to  the   finish"   case. 

In general,  battle  termination may be modelled by  some 

bivariate  function    B(•,•)•     Assume  that    B(-f-)   is continuous 

over  the  first quadrant of  the Cartesian coordinate plane.     The 

combat  is considered to  terminate when the  trajectory of  the 

(X,Y)    (force  level)   combat process  first crosses  the  curve 

described by    B(x,y)   * 0.     (See Figure  5.1.1.)     (Note  that 

since   (X,Y)   is,   strictly speaking,  a discrete process,   it is 

possible  that the actual  force   levels upon termination of the 

combat process will not,   in  fact,  be an element of  the  set 

describing the curve.)     For  simplicity,  we  shall assume,   in 
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in addition, that B(x,y) = 0 defines y as a convex function 

of x. 

Under the above conditions we can define three regions on 

the curve in a reasonable and intuitively satisfying manner. 

(See Figure 5.1.1.)  The branch to the left of ehe point a, 

labeled Y WIN, represents the set of all force level configurations 

resulting in a termination of the battle with the side represented 

by the Y  force level being victorious.  Similarly, that branch 

of the curve to the right of the point b represents those force 

level configurations resulting in an X victory.  The region 

between the two points a and b, labeled NO WIN, represents 

those force level configurations for which the combat terminates, 

but without a victor.  (The possibility of such an occurrence 

will be considered no further here.  It is included only for the 

sake of completeness.) 

The general type of battle termination criteria described 

above allows full use of the martingale techniques of Chapter 3. 

Recall that the martingale methods are based on the following 

consideration.  If the initial force levels X- and Y0 are 

M and N respectively, then after a total of n transitions 

(n total casualties' the force levels X_ and Y  must n n 

satisfy 

X    +Y    -t-n-M+N. n n 

Thus  the martingale    K    ■ K(X  .Y  )   is a function of    X„    alone ' n n    n n 

(and  implicitly of    M,   N,  and    n). 

_ 4. 
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As  demonstrated  in Chapter   3,   the distribution  of     K«.« 

can be well approximated by a  normal distribution.     It was also 

shown  that  if either one of    x    or    y     is held  fixed,   the    K{x,y) 

function  is roonotonic in  the  other  variable.      (For example,   if 

K{x,y)   = bx -  ay,   for  fixed     y,     K     is an increasing  function 

of    x.)     Due  to this monotonicity property,   it proved a  relatively 

simple matter to use the normal approximation to  the distribution 

of    Kvi to approximate probabilities  of the  form 

P(Xf > x' ! X wins) 

where X-  represents the X  force level upon the termination 

o f the comba t. 

In order to implement the same type of procedure in the case 

of the more general battle termination criteria, we define the 

following sets: 

T « [(x,y) lB(x,y) =» 0) 

Tx - ((x,y) |B{x,y) - 0, X wins)        (5.1.1) 

Tj^x' ) - ( (x,y) | B(x,y) » 0, X wins, x ^ x' ]. 

Note that Tj-Cx' ) c T.x c T.  The set T represents what will be 

called the terminal points of the process.  (As mentioned pre- 

viously, it is possible that actual force levels at which the 

combat terminates, which are integer valued, may not satisfy 

B(x,y) > 0.  However, the shorthand notation of (5.1.1) will be 

used for convenience.)  The set T  represents those terminal 

points for which X is victorious.  Finally, T^tx') is the set 
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of terminal points for which a victorious X side has at least 

x1  survivors. 

Each of the sets of (5.1.1) induce a set of corresponding 

values of the function K.  These sets may be defined as: 

S - [Kj^x.y) | (x,y) € T) 

SX = fKM+N(x,y)'(x,y) € TX^ 

Sx(x) = {^^(x.y) i (Xjy) e Tx(x') ] 

(5.1.2) 

Now  if    Kjd+jj^jy)   £  Sx^x, ^   (that   is   (x,y)   ^  ^(x1 ))   then we  can 

calculate 

PdVU' ) | TY)   = P(X- ^ x' j X wins)   =  P(Sv(x, ) | Sv) . (5.1.3) 

Therefore, in order for the martingale methods to be of use 

in the case of general battle termination criteria, the probability 

(5.1 3) must be readily calculable from the approximate normal 

distribution of KM+M»  
In th* " fight to the finish" criterion, 

this calculation is easy since the function K(*>') is monotonic 

as one proceeds in a counter- clockwise direction around the 

boundary (the Y and X axes).  This monotonicity property 

may well be lacking in the case of a boundary function which, 

when considered as defining Y as a function of X, is not 

monotonic (Figure 5.1.1b).  In such cases, calculation of 

P^Sx^x ^'Sx^ may be difficult-  Th« ^«Y points, however, are 

that calculation of that probability must be possible, and that 

P(Sx(x
l)|Sx) must be the required quantity (that is 

- 
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Kj^U.y)   e   Sx(x')   must be  equivalent  to   (x,y)   e   Tx(x') ) . 

The most  immediate weakening  of  the  "fight to  the   finish" 

requirement  satisfies  the above  conditions.     Suppose  the  combat 

terminates when  the  trajectory crosses  either one of  two  straight 

lines parallel  to  the coordinate axes   (X =  aX0,     Y =   ßY0     for 

some    0 <1 a,9 <   1.     See Figure   5.1.2).       In  this  case,   the 

methods  employed are almost  identical  to those of Chapter   3. 

Indeed,   in  the  Linear Law case,   the problem can be  transformed 

immediately  into a  "fight to  the   finish"   type problem by  simply 

adjusting  the   initial  starting  configuration  from   (X0,Y0)   to 

(X0(l -   a),Y0(l -   S)).     The  case of  the Square Law requires a 

more delicate analysis,  but  the methods  used  in this case  can 

also be easily modified to  take  the  new set of terminal points 

into account. 

The  efficacy  of the martingale methods of Chapter   3  in the 

analysis  of  the  combat models with various battle  termination 

dynamics  is  thus  seen to be  somewhat dependent on the specific 

model of  termination employed.     Terminal curves similar  to  the 

coordinate axes can be employed with a minimal modification  to 

the methods  of Chaptars   3 and 4.     More exotic curves,   however, 

may render  the martingale  technique more difficult,   if not 

impossible,   to employ.     These problems of analysis  should,   there- 

fore,  be considered when attempting  to model battle termination. 

♦ 
This  is the  type of battle  termination criteria employed  in U.S. 

Army Field Manual   105-5,  Maneuver  Control. 
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5.2.  Non-Trivial Prior Distributions and Uncertainty in Combat 

One of the criticisms leveled at Lanchester' s original 

models is that they assume full information to be available about 

the numerical strength and effectiveness of the enemy force as 

well as the friendly force.  (See Section 1.2.)  Although the 

decision theoretic framework introduced in Chapter 2 made provision 

for uncertainty about these, as well as other variables, the 

models and results presented in Chapters 3 and 4 have made use of 

trivial, or point, probability distributions which merely represent 

full information (or at least the belief that one has full 

information'.).  An investigation of non-trivial distributions is, 

therefore in order. 

Military commanders in combat situations are plagued with 

myriad uncertainties.  The most pronounced are generally concerned 

with the capabilities and intentions of the enemy, the strength 

of the enemy force, its morale, its dispositions.  He will also 

be unsure, though usually to a lesser extent, of his own forces, 

their morale, their determination, and his ability to control 

them and accomplish his objectives once the fight:.ng begins. 

A conscientious commander will do all in his oower to obtain 

the most recent and most reliable information about all aspects 

of a forthcoming engagement.  He will consult his subordinate 

officers about the condition of his own units and insper*-. the 

troops as much as possible.  He will attempt to pierce the so- 

called "fog of war" surrounding the enemy, with any means at his 

disposal.  Aerial reconnaisance, radio monitoring, foot patrols 
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and other methods will be employed to gather as much information 

as possible about the strength, location and intention of the 

enemy force. 

Yet, even the most elaborato intelligence gathering efforts 

will often provide only very limited information and are certainly 

not available without some cost:  men, materiel and time may be 

lost, the element of surprise, often so important in combat, 

may be given up if the level of intelligence activity becomes 

too high.  In circumstances when time is limited or other 

conditions prohibit the extensive gathering and processing of 

information, the commander must act according to his best estimate 

of the true state of affairs, based on what limited hard .'acts 

are available and on hii own past experience and beliefs. 

In such situations, the beliefs and opinions of the commander 

may be thought of as forming a basis for his subjective probability 

distribution yn  the initial state of the combat situation he is 

facing.  The numerical strength of the enemy is seldom known with 

any great precision; indeed, in some cases even friendly strength 

is uncertain.  Even more variable and difficult to estimate is 

the combat effectiveness of the enemy forces; their morale, supply 

and command situations, as well as many other similar factors, are 

often almost impossible to assess with accuracy from a purely 

objective point of view.  In fact, the art of the good commander 

lies in his ability to assess just such factors accurately and 

to employ his own limited resources in such a manner that the 

enemy weaknesses are exploited and his own strengths accentuated. 
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As a first step in introducing some of these uncertain 

factors into combat models in a more explicit manner, the next 

section of this chapter will deal with a specific simple case. 

All quantities are assumed to be fixed and known exactly except 

for the numerical strength, Y-., of the enemy force.  The commander 

is assumed to have formulated a probability distribution, G(«), 

over the possible strengths of the enemy.  This distribution 

represents his knowledge and opinions about the enemy force 

level.  The discussion of this problem is presented through the 

use of an example, based on the Lanchester Linear law model, 

so familiar by now, outlined in Section 3.3. 
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5.3.     Examples of  the Use of Subjective Distributions 

If    X      is  the  initial  friendly  force  level employed  in a 

one  stage decision problem as outlined  in Section 2.1,   then the 

risk of    X-,   assuming all other variables  to be  fixed and known, 

is given by 

p(X0)   =  cX0  +   (X0 -   E(Xf|X0))   -   VP(X wins|x0). 

The risk  function  ia  implicitly a  function of    Y0,  and  if    Y0 

is not known we write,   for a given value  of    Y_, 

p(X0lY0)   =   cX0   +   (X0 -   E(Xf|X0,Y0))   -   VP(X wins|X0.Y0). 

If    G(")   is a probability distribution over  the possible values 

of    Y0,   then 

^V   =     J     P<Xolyo)dG(yo)   =   CX0  +  X0 "      I    E(Xf|(X0,y0))dG(y0) 
(Y0] {Y0] 

-V    |    P(X wins|(X0,y0))dG(y0). 

The calculation of    p(X0)   thus  requires  the evaluation of 

two integrals 

J    E(Xf| (X0,y0))dG(y0) (5.3.1) 
fY0} 

and 

J    P(X wins| (X0,y0)dG(y0). (5.3.2) 

^0^ 
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S ince 

E(Xfi (X0,Y0))   =   E(Xfl(X0,Y0),X wins)P(X  wins|(X0,Y0)) 

+ E(Xf|(X0,Y0),X lose)P(X  lose(X0,Y0)), 

and 

E{Xfl (X  ,Y  ) ,X lose)   =  0   (fight  to  the  finish). 

we   find 

E(Xf| (X0,Y0))   =   E(Xf| (X0,Y0) ^X win)P(X winj (X0,Y0)). (5.3.3) 

Thus,   upon  substituting   (5.3.3),   expression   (5.3.1)   becomes 

E(Xf| (X0,y0) ,X wins)P(X win8|x0,y0))dG(y0).        (5.3.4) 

In order  to  calculate     D(X0),  we must now evaluate  expressions 

(5.3.2)   and   (5.3.4) . 

In the case of a Linear Law model,   the martingale is  formed 

from the   function    K(x,y)   »  px -   qy    as  discussed  in Section  3.5. 

It was shown  in  that section that 

E(Xf|x0,Y0,X win)  - J +  [f a>( u/a) ]/*( */a) 

and 

P(X win«| (X0,Y0))  - «(M/a) 

where 
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= PX0 " qY0' 
2 

a = 
pX0  if  i* < 0 

qX   if  u > 0. 

Thus expression (5.3.4) becomes 

j E(Xfi (X0,y0),X wins)P{X wins!(X0,y0))dG{y0) 

^o1 

p      p ♦( ^/a) 
♦{u/a)dG(y0)   = ^    ,r     [k**(^)   + a9{^/cT)]dG(y0) 

fv  ] 

CO 

i    r 
p 

pVq 

px0 - qy0 
(pXo- ^o^l   !^r    ' + /pXo ' 

Pxo - ^0 

\    VPX0 

dG(y0) 

Px(/q r 

p    J 
-ao 

(px0 - qy0) * 
i**o^o   +^,   ^o^fo   dG(yo). 

\ ^ 

PX0  -   ^r 

(5.3.5) 

Similarly  (5.3.2)   is given by 

PV*1 

J    «(ki/a)dG(y0)  -       J    ♦ 
oo 

fY0^ 
-00 

PX^^   dG(yo)   *      J    * 
pVq 

PXn  -   ^f 

/9^> 
dG(yn) 

0      / 

(5.3.6) 

Combining expressions (5.3.5) and (5.3.6) the risk of XQ is 

given by 
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pX0/q 

p(X0)   =  CX0   + X0  -   ^ 

-03     L 

{px0 -  qy0)* 
PXO - gyp' 
—————^—— i 

V5y^    / 

—    , px0 - qy0 
+ V^o   '     r  v^ 

dG(y0) 

oo      r 
1        r 

P       - 
pX0/q 

(pxn - qyn)*   - 
pXo - qy. 

$% 
yp^ «p 

P
X

O - ^o 
dG(y0) 

V 

r px0/q 

-00 

dG(yn) 

(5.3.7) 

We wish to find an    X      such that the value of   (5.3.7)   is a minimum. 

Although the   function  to be minimized is well defined,   one may 

encounter substantial numerical problems in  finding  its minimum. 

One possible approach to the solution of the problem makes 

use of a continuous approximation to a discrete distribution. 

(A similar philosophy is seen in the use of  the diffusion approxi- 

mation of Chapter 4.     It was shown in this case  that a continuous 

approximation to the discrete state space works well.)     Specifically, 

assume that    G(y0)   has a density function with respect to Lebesgue 

measure so that    dG(y0)   - 9(y0)dy0, where    gfy/J   i« the approximating 

density function.     This approach seeks  to find the optimal    X0 

through the usual method of differentiating  (5.3.7)   as a function 

of    x0    and solving  for roots.    Unfortunately,   the complexity of 

" 

•> 

3.. * 
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(5.3.7)  makes  this quite a  difficult analytic problem.     This 

derivative can,   in  fact,  be  computed  explicitly  to be 

P' (x0) - = c  +  1 

pX0/q 

<-    *   pXo ' ^0 . * I I g(y0)dy0 J 
■OD qy, 0 

OD 

J 
pX^q 

* 
'F

X
^ - qy 

oo 
PXo   "   ^Yr 

"7=—   9(yo)dyo " 2     j     V^x   '   ""T1^— 
VP^        / 0       0 pX:/qY    0       \      ^       i 

g(y0)dy0 

pXo/q     ( \ 

-co       \    r^'o      i y^ v5^ 
g(y0)dy0 

CD 

+ J 
pX0/q 

£^v  .-1/2   +ß_   ,_   ,-3/2 
•(PV f qyo^^5 

9 
PXO - qypi 

g(y0)dy0 . 

(5.3.8) 

Clearly,  solving for  the roots of  (5.3.8)   as a   function of    X0, 

will,   in general,  present some major practical difficulties. 

An alternative  to  the technique discussed above would make 

use of equation  (5.3.7)   directly by searching over admissible 

(and reasonable)   values of X-.    to find an optimum.     As  long as 

p(X0)   is reasonably well behaved,   this  technique may be successful. 

If,   however,  an exhaustive or nearly exhaustive search must be 

I i ■ ■ 
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made  over many values  of    X0,   the cost of  this procedure  in terms 

of  cocputing  time may easily become very high. 

Other possibilities  exist.     If the distribution    G    places 

all of  its weight on a  very small number  of points,   then the 

integrals of expression  (5.3.7)   are actually  sums  of only a  few 

terms.     Further approximations   (such as  the Mill' s  ratio approxi- 

mation to the normal distribution function)   may be  employed to 

simplify the expressions.     In general,  however,   the  solution of 

the decision problem based on the risk  function   (5.3.7)   remains 

an  important topic requiring   further serious  research. 

n,»- 
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5.4.     Topics  fcr Further Research 

Bayesian analysis of decision problems arising  in combat is 

a   topic which,   up to now,   has been barely explored.     This  thesis 

presents  onl'j  the  first steps  towards  such an analysis:     the 

formulation of the general problem,  and  its partial  solution  for 

a  simple model.     Much remains  to be  investigated. 

Section  5.3 presented an example,   in general  terms,   of a 

subjective probability distribution over  the enemy  force   level. 

The question of what type of distribution  is  reasonable   for  such 

a  variable,  and the qualities  it should have,   remain  to be explored. 

The question of the  formulation of distributions   for  the  other 

variables,   such as enemy effectiveness,   terrain and weather 

effects,   etc.,  and their  interactions remains  an even more open 

and difficult topic  for analysis. 

The use of intelligence about the enemy position and strength 

as well as other information obtained during the course of a 

battle  should clearly play a  role  in any subsequent decisions a 

commander may make.     The mechanics of processing such  information 

to update the commander' s prior distribution to a posterior 

distribution must be considered,  and is,   in fact,   essential to a 

Bayesian analysis of the mult-1-stage problem. 

Perhaps of more direct am.   immediate significance  than the 

topics discussed above is the question of the  sensitivity of the 

decisions based on the analytic methods advocated here.     This 

question is especially important for the analysis of  "he decision 

problem baaed on point priors.     Indeed,  if slight deviations from 

the  specified parameters results  in widely varying decisions and 
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risks,   the   importance of  finding a  solution  for  the  non-trivial 

problem  is heightened.     Similarly,   in the case of such non- 

trivial prior distributions,   sensitivity of  results   to  slight 

deviations   in the prior ccir make  care  in its accurate definition 

of great  importance.     Fortunately,   the results of the numerical 

studies done so  far show rather  flat peaks  in the risk  function. 

In such a  case,   solution  for  the   true optimum level   is  not so 

urgent,   as  any point  in  the neighborhood of  the optimum will 

give virtually the same risk.     This  fact may alleviate  some of 

the  sensitivity problems.     However,   much remains  to be done  in 

this area. 

Many   interesting and   important  topics,   some of which have 

been only  slightly touched on above,   remain  to be explored.     The 

extension  of  the diffusion and martingale methods,   used  to  solve 

the   two  stage problem,   to  the development of optimal  or  near- 

optimal decisions  for multi-stage problems  is an open and challenging 

field  for  further investigation,   and may be amenable  to  the 

application of some sort of control theory.     (See Taylor   (1973, 

1974)   for  examples of the use of control theory with deterministic 

models.)     An interesting question along these lines  is under what 

condition« a myopic rule may be optimal or nearly optimal  in a 

multi-stage problem. 

Alec of interest is  the  formulation and solution of a decision 

problem of the optimal resource allocation type.     Suppose  that a 

commander has some fixed force,   say    N,  available,   and he must 

allocate   forces to each of    k    combat situations.     He will seek 
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to  find an allocation vector   (n,,^, n,)   subject  to the 

constraints     n.   ^0,     V  i,       I n.   =  N.     If    p(n1,n2,. . . n, )   is 
i=l 

the  total  risk of an allocation of  force    n-     to combat    i, 

i =   l,2...k     then he wishes  to choose  a  vector which minimizes 

this  risk.     If each of  the combats  is  assumed to be  in the   form 

of the  standard one-stage decision problem,   then the methods 

developed above may prove useful  to  the  solution of  such a  problem, 

and  further work along these  lines  is   indicated. 

Another   important and  fascinating problem arises when the 

inherent two-sided nature of a combat action is considered.     A 

battle might be  formulated  in terms  of a  two-person game.     As 

noted  in Section 1.4,   some work has been done along these   lines, 

but not employing the decision  theoretic models  introduced above. 

If  the  two opposing "players" ,   or  commanders,  are assumed  to 

make  their decisions in accordance with the decision model proposed 

here,   then an analysis of the effects and interactions of  their 

various coat and reward structures,   as well as the comparative 

effects of  their  information bases   (prior distributions),   should 

prove most  interesting. 

The  list of further  topics  for research is  limited only by 

one' s  imagination.     This  thesis has attempted to introduce  a 

methodology and to use the methodology to solve some basic 

problems based on the simpler models already in existence.     The 

same problems may be analyzed based on more complex models.     Those 

which  immediately come to mind are  the cases of non-homogeneous 

forces and asymmetric attrition structures.    However,  other 
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effects, such as the impact of improved intelligence (sharper 

sub active distributions) , command and control problems, and 

uncertain weapon effectiveness are important and deserving of 

analysis. This list is, of course, far from complete, but it 

can serve as a reasonable starting point for further research 

and analysis. 

1 
-4 

4 
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5.5.  Summary 

This thesis has attempted to extend the analysis of stochastic 

conflict models of the Lanchester type beyond the stage of mere 

modeling.  To this end, the framework of statistical decision 

theory was adapted to a simplified combat situation:  the military 

decision maker, or commander, was now faced with making decisions 

within the context of a suitable cost and reward structure.  The 

decision problems which resulted from this structure were basically 

in the form of standard one-stage and multi-stage decision problems. 

The one-stage decision problem, which required only that the 

commander choose the amount of force to employ in the combat 

prior to its inception, proved amenable to a complete solution 

through the use of martingale central limit theorems in a manner 

based on the work of Watson (1976).  These methods provide a 

conceptually straightforward technique of calculating, approximately, 

all quantities necessary to solve the one-stage decision problem 

by use of the normal distribution. 

Although continuous (real) time played little direct role 

in the one-stage decision problem, the nature of the multi-stage 

problem dictated that time would be of major importance in its 

analysis.  The essence of the problem lies in the fact that rein- 

forcements may become available to the commander over time. 

Because of this fact, it is necessary for the commander to know 

the force level distribution as an explicit function of time. 

The use of a diffusion approximation to the combat process allowed 

the approximation of this distribution, again, an approximation 

based on the normal distribution.  This diffusion model, coupled 
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with the martingale methods, allowed solutions to be obtained for 

a two stage decision problem.  Problems with more than two stages 

are easy to conceptualize, however their solution is still some 

way off.  The diffusion approximation seems to be a most promising 

tool for use in solving such problems. 

To provide some empirical support of the accuracy and 

utility of the martingale and diffusion methods of analysis, 

several numerical studies were undertaken.  The results of these 

studies proved to be very encouragaing.  On the whole, the normal 

approximations were seen to be rather good ones except, perhaps, 

in the extreme tails.  This fact, as well as the reasonable farms 

of the optimal decisions based on these approximations, gives 

some rather strong support to the efficacy of the proposed 

methodologies in the solution of the decision problems.  In 

addition, the diffusion approximation provides an important 

contribution to the study of attrition processes of the Lanchaster 

type in the continuous time setting. 

In conclusion, therefore, this thesis serves as a foundation, 

a starting point for the further analysis of Lanchester type 

attrition models, and, more importantly the use of such models 

in the formulation and solution of the many decision problems 

which arise in combat situations. 

i 

- 
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APPENDIX:     Proof that the Watson Square  Law Martingale Satisfies 

the  Conditions of Scott's Martingale Central Limit 

Theorem 

To prove   that Watson' s Square  Law martingale  satisfies 

Scott's Central Limit Theorem we consider a  triangular array  in 

which the  elements of the    nth row are  given by 

S-(n)S, (n) . . .SXT   (n)     where     N     -♦ oo     as     n  -♦ oo , ü i N n n 

and in which {S, (n) , 3L(n) ;0 ^ k ^ N ] is a martingale sequence 

(see Section 3.2). Suppose that the initial force levels cor- 

responding to the nth row are given by (Nö,Ne) where 5 and e 

are known constants and No and Ne  are integers.  Let N = N6 + Ne n 
and     i*    =  K(X0,Y0)   ■ bX- -  aY»     for attrition parameters    a     and    b 

and    X0 = No,     Y0 = Ne.      (Square Law.) 

The row elements are defined by S. (n) ■ ^^^v^ " *n» 

0 ^ k ^ N , that is, the value of K - M». after k transitions 

have been made in the actual combat process.  Then <S. (n)> is a 

mean zero martingale sequence.  Define xjc(
n) ■ Sk^n^ " ^k-l^ 

to be the increments of the process.  '.X. (n) should not be confused 

with X. , the X force level after k transitions.)  In this 

case, the possible values of ^(n) depend on the force levels 

prior to the kth transition.  If these force levels are x 

and y, then 3C. (n) takes on the values -bx and +ay wi th 

probabilities ay ^
Y
bx  and ay ^

x
bx respectively. 

We wish to show that, properly scaled, '*'     (n) will converge 
* n 

, 

§ 
. !  « 
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weakly to a  normal distribution as    n  -» oo     by  invoking Scott' s 

triangular array martingale  central   limit theorem.      (See Section 

3.2.)     Scott's   theorem  is satisfied  if: 

m  (t) n 
sN   (n)     E    K^)   - t    as     n 

n        k=l 
oo (A.l) 

and 

-2 2 p 

sM   (n)     sup JCCn)   -»0    as     n -* oo 
Nn        k^N      K 

n 

(A.2) 

where    s. (n)   = Var Sk(n) ,    0 ^ k ^ N  ,   a nd 

mn(t)   = max[m ^ Nn|a^(n)   ^ ts^  (n) ]   for    t e   [0,1] 
n 

The proof that the Square Law martingale satisfies (A. 1) 

and (A.2) follows the same lines as the proof for the Linear Law 

martingale ^s shown in Section 3.3.  We make use of the Watson 

2 
(1976) e-^pro^imation to the variance  sN (n) which indicates 

2 3 n 

that s„ (n) - 0(N ) . 
Nn 

The proof of (A.2) is immediate.  Since the largest value 

of Xk(n) must occur for the first transition in either the X 

or the Y direction. 

-2 2 
sw (n) sup X. (n) 

n   k^N  K 

n 

n or 
-2/ x„2 2 sN (n)N € . 
n 
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2 3 Since Watson' s approximation  indicates  that    s     (n)   = 0(N ), 

-2 2   2 -2 2  2 n 

both    sN  (n)N  ö       and    s«  (n)N e       converge to  zero as    n  -► OD , 
n n 

and so   (A.2)   is  satisfied. 

The proof  of   (A.1)   follows  the  same   lines  as  the proof  of 

expression   (3.3.2),   and  is based on Scott's Lemma  10.     This proof 

requires  some  preliminary results. 

Lemma  1. 

N 
-2 n   2 p 

s/(n)     E xr(n)   - 1, 
n        k=l K 

(A. 3) 

Proof;     We wish to  show 

N n 
P(| s"2(n)     Z xj(n)   -   1|   > 0)   - 0    as    n  - OD 

n        k=l 

Consider 

N n 
al  (n)   - Var SN   (n)   - E[(   I ^(n))2] 

n n k"! 

since    E(S„   (n)) 
a n 

0. 

N n N. N 

E[(   Z ^(n))'] 
k»l 

E[   Z xr(n)   + 2   Z v..(n)X.(n)] 
k-1 K i^j   1 J 

E(   Z X*(n))   + 2E(   Z X.(n)X.(n)] 
k-1 K i<i   ^        ■* 

Now, 



But 
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E[   E X. (n)X.(n) ]  = E[E[   Z X. (n)X  (n) ^.(n)]]. 

E[Xi(n)Xj(n)|3i(n)]  = Xi(n)E(Xj (n) | ^(n)) 

= Xi(n) [ECSjCn)] S^n))   -  E(Sj_1(n)| ^(n))] 

= Xi{n) [Si(n) Si(n) ]  = 0. 

N n 
Thus     sN  (n) 

n 
E(   Z X^(n))   and  so 

k=l 

Nn 
E[s"2(n)   I xhn)]  =  1. 

n      k»l 

By the Chebyahev inequality 

N N_ 

P(l3;2(n)   r X?(n)   -   1|   > e)  ^var[8;2(n)   ZX?(n)]/€2, 
Nn      k»l K Nn      k-1 K 

Therefore in order to prove  (A.3)   it is sufficient to show 

-2 n   2 
var[sM  (n)   Zxr(n)]   -»0    as    n -» oo. 

Nn      k-l^ 

(Recall from the definition of the  triangular array that    n  -» oo 

if and only if    N  -» oo.) 
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Lenuna  2. 
N n - 2 "2 Var{s     (n)   Z Xj(n) ]   -»0    as     n  -► OD 

n       k=l 
(A.4) 

Proof:     Notice  that 

N n N 

var[3~2(n)   £ xj(n) ] 
n      k=l 

n 
s"4(n)var(   I xhn)). 

n k=l 

Since    s     (n)   = 0(N  ) ,   it  ifollows   that    s«   (n)   = 0(N )   and  in 
n n 

order  to demonstrate   (A.4),   it will be sufficient to show  that 

N. n 
var(   I X?(n))   = 0(N5) 

k-1 K 

To prove the latter, notice that 

N n N n n  n 
Var ( Zxr(n)) -  I VarCX, (n)) + I  Z Cov(XT(n) ,X'(n)) . 

k-1 K     k»l    K     i«l j^i    i    :, 

N n     , 
Consider first  £ Var(X. (n)). For any 0 ^ k ^ N , 

k-1    K '     n 

2        4 Var X, (n) ^ E[x7(n)].  The possible values of X, (n) are of order 

at most N, so that 

Var X^(n) ^ 0(N4) , 

and 
N n 

Z Var X?(n) £ 0(N5) , 
k-1    K 

since ML - 0(N) n It remains only to show; m 
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Lemma 3. 

I E Cov(xJ{n),X^(n)) ^ 0(N5) . 
i j J 

2  2 
Proof;  Consider first the  Cov(X.,X. ,) for any  i. 

(The argument n of X. (n) is deleted in the following.  Once 

again these X.  should not be confused with force levels.)  To 

2  2 
simplify notation only, let us refer to this as Cov(X,jX») . 

Suppose that prior to the increment X, (that is, prior to the 

ith transition) the force level configuration is (x,y) where both 

x and y are of order 0(N).  We wish to show 

IcovU^Xj) | 1 0(N3). 

Refer to Figure A.1 for the possible configurations of X.  and 

A** • 

-b(x-^(x-2.y) 

(x-l,y)v.  ay 

bx^*-1'*"1* 

vl A2 

■bx -b(x-l) 

■bx ay 

ay -bx 

ay a(y-l) 

a(y-l)^(x,y-2) 

Figure A. 1 

A simple calculation gives 

-1 
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-,     o 1.4  2.      .,222 42,      ,, 2, 2   2 p/Y2     2    _ b x   (x-1)   ay  a  v   (v-l)"b  x  
MA1,A2;   -    (ay  + bx) [ay  + b(x_1)]   T   (ay  + bx) [a(y-l)   + bx] 

2,2   2   2 
+ a b x y  avb(x-l) bxa(v-l)  

(ay  + bx) [ay + b(x-l) ]        (ay  + bx) [a(y-l)   + y-1)   + bx] 

E(X^)   =  abxy, 

and 

E(X2
2) =  ElXjlX    =  -bx]P(X1 = -bx)   + E(X2ix1 = ay)P(X1 = ay) 

_ay_ b   (x-1)   ay       a  y b(x-l) 
ay  + bx       ay + b(x-l)        ay  + b(x-l) 

bx b2x2a(y-l)     + a2(y-l)2bx 
ay + bx      a (y-1)   + bx      a (y-1)   + bx 

So, 

Cov(X2,X2) abxv 
ay + bx 

b  x(x-l)   ay   .   a y(y-l)   bx  + a b xy  (x-1) 
ay ■»- b(x-l)       a (y-1)   + bx      ay + b(x-l) 

(1) (2) 
2   2   2 

a (y-1)   + bx 

(4) 

(3) 

abxy 
ay + bx 

a2y2b2(x-l)2       a3v3b(x-l)     ^bVa(y-l,) 
ay + b(x-l) ay + b(x-l)       a(y-l)   + bx 

(3) (2) (1) 

lYzllfb 2  2 x 
a (y-1)   + bx 

(4) 

Combining   like numbered terms gives the  following expressions: 

a 
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(1)     b  x(x-l)   ay 
{i-1      ay  + b(x-l) 

a3v(v-l)2bx 
a(y-l)   + bx 

Similarly, 

b x a(y-l) ; 
a(y-l)   + bx "    D 

av(v-l) (l-2x)   ■)• bx(x-l) (x-v) 
[ay  + b(x-l) ] [a(y-l)   + bx] 

1 0(ir), 

ay  + b(x-l) a'Hjy bx(x-v) (l-2v)   -t- av(v-l) (y-x) 
[a(y-l)   + bx] [ay + b(x-l) ] 

1 0(ir). 

2,2  2   .     ,, 
/3)     a b y x(x-l) 
K   '     ay + b(x-l) 

2t2 .2 

7 
,2,2   2.       ..2        ,2,2   2.       .> - a b y   (x-1)     m a b y  (x-1)       -^,2. 
ay + b(x-l) ay + b(x-l)   ^ UVJN   ; 

and 

.2,2  2   ,     .. 
f4)     a b x y(y-l) 
^,     a(y-l)   + bx 

a2b2x2(y-l)2 „ a2b2x2(y-l) .2, 
a(y-l)   + bx a(y-l)   + bx ^ u^  ; 

Thus each of the terms  is of order no more  than    0(N )   and so 

Cov(X2,X2)| 1 ay^bx (0(N2)] ^0(N3). 

. 

We now wish to proceed inductively.  Recall that we are 

dealing with a numbering system where X,  represents X.  and 

X-  represents X^ .j^.  The induction proof consists of assuming 

2  2       3 
for some k ^ 2, Cov(Xj,X.) £ 0(N ) for t ^ 1c, and then proving 

2 2        3 that Cov(Xj,xr+1) ^ 0(N ).  The proof proceeds as follows: 

Suppose once more that prior to the transition which gives 

increment X,, the force level configuration is (x,y).  Define 
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S *  [all possible configurations   (x* ,7' )   which can be  reached 

from  (x,y)   in    k -   1     transitions] . 

That  is,   if  (x1 .y1 )   e  S,      (x1 »y1 )   is a possible   force  level 

configuration immediately prior  to the occurrence  of    X. .     Now, 
2     2 3 by assumption,    Cov(XfjXT)   ■ 0(N ),  and that covariance  is given 

by 

Cov(X^,X^)   =  E(X^,X^)   -   E{X^)E(X^) 

Dut 

E(XlXk)   = E(X^|X1 =  -bx)P{X1 = -bx)   + E(X^|X1 = ay)P(X1 = ay) 

= b2x2E(xJ|x1 = -bx)P(Xl = -bx)   + a2y2E(xJ|x1 » ay)P(X1 = ay) 

£        bVECX?! (x1 »y1 ),X    - -bx)P[(x',y') |X    = 
(x',y')eS K 1 i 

-bxjP^ » -bx) 

+ Z a2y2E(X^| (x- »y1 ),X1 - ay)P[(x' ,y' )\xl* ay]P(X1 = ay) , 

(A. 5) 

where    P ((x1 ,y') I XjJ  - Pr   (transition from  (x,y)   to   (x1 »y* )   in 

k-1    steps given the first step is    X^ .     Now,  E(xJ| (x1 »y1) ^ - 

-bx)   depends only on  (x* «y1)   as long as  (x1 »y1 )   is a valid point 

given    X.  » -bx,  and the same holds true for    E(X^| (x* ,y') .X,  • ay). 

Thus    F(xJ| (x'»yM.Xj «  -bx)   - E(xj! (x1 ,y') »Xj^ - ay)   - abx'y»      if 

(x* «y1 )  can be reached after the occurrence of either value of    X.. 

Therefore we may write   (A.5)   as 
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E(XlXk)   =  I b2x2(abx,y')P[(x, ,y') IXj^ = -bx]P(X1 = -bx) 

+ Z a2y2(abx,y' )P[(x' »y' ) !x    = ay]P(X1   =  ay) . 

Similarly, 

E(X^)   =  2  (abx1 y' ) P [ (x' fy' ) | X1 = -bxJPCX^^ =  -bx) 

+ E  (abx'y' )P[(xl ,yl )\Xl = ay]P(X1 =  ay) . 

It  follows  that 

Cov(X2,X^)   = Z b2x2(abx,y')P[(x',y')|X1 =» -bx]P(X1 = -bx) 
s 

+ Z a2y2{abx,y' )P[(x' »y1) | X,   = ay]P{X1   « ay) 
S 

- abxy Z  (abx* y1 ) P [(x',y') | X,  • -bx]P(X,  = -bx) 
S i i 

- abxy  Z  (abx'y1 JPUX' .y') IX,  » ay]P(X    « ay) 
S x i 

«  (b2x2 -  abxy)   Z (abx1 y'^[(x» .y') I X,  « -bx]P(X1  » -bx) 
S i i 

+  (a2y2 -  abxy)   Z  («bx'y» )P[(x'»y« ) | X.   -  ayJPCX.  » ay) 
S x        1 

2  2 
A similar approach may be used to calculate Cov(X,,xr+1), 

conditioning once again on the points (x1»y' ) which are possible 

force level configurations prior to the occurrence of X. .  This 

procedure gives 
i 

& 
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2     2 2  2 
Cov(X^,X£+1)   =   (b  x abxy)   Z | abx' y' 

S : 

ab2x' 2  + a2bv' 2 I # 
ay'   + bx' 

/   2   2 +   (a  y 
r 

s L 

2     2 2        2 
i          r        •    i   i       ab x1     + a^bv' abxy)   L   | abx'y'   -   a„,    .  ^v, y— 

P[(x' »y1 )|X1 = -bx]P(X1 = -bx) 

P[(x' .y')|x1 ay'   + bx' » ay] 

P(X,   = ay) 

It  follows  that 

Cov(X2,X^+1)   = Cov(X2,X^) Z:   (bx    -  abxy) 
S 

^2,2 2^  , 2 
ab x'      + a by' 

ay'   + bx' 

I  (a2y2 -  abxy) 
S 

2     2 2       2 
ab x'     ± a^bv' f 

ay'   + bx' 

P[(x' ,Y') \X1 = -bx]P(X1 = -bx) 

P[(x' ,y' ) [Xj^ « ay]P{X1 = ay). 

i 

Both  of  the  sums  in the above  expression are of  the   form of expected 

values of functions which are at most    0(N )   and,   since 

Cov(X2,xJ)   ^0(N3),   it  follows   that 

|Cov(X2,X^+1)|   1 0(N3). 

Thus, by induction, Cov(Xl,X^)  ^ 0(N3) for all -t > 1.  Now 

recall that X. represented X.  for any i, and that the force 

level configuration (x,y) was also arbitrary.  Thus the proof 

hold« in general and Cov(X2,X^) ^ 0(N3) for all i and j. 

2  2 In this case,  I I Cov(x.,x.) must be of order no greater 
5        i j     X ^ 

than 0(N ) and Lemma 3 is established. 

It follows from Lemma 3 that 
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N. 
n  .2 .5, Var(   I xr(n))  ^ 0(N ) 

k-1 K 

and so 

N n   2 
Var(   I X-di)) 

lc=l  j-»     -»0       as      n -» oo, 
sN  (n) 

n 

and the  proof of Lemma 2   is  complete. 

We  have,  by Chebyshev1 s   inequality, and Lemma  2, 

N Nn 

P(is"2(n) I X?{n) - 1| > €) ivar[s"2(8) L X?(n) ]/e2 -»0 
Nn  k-1 K wn  k=»l K 

-2   ^ 2   P 
and so s  (n) I X, (n) -» 1.  This completes the proof of Lemma 1. 

Nn  k»l K 

With Lemma 1 verified, we now wish to demonstrate: 

Lemma 4. 

-2 2 -2       2 
lim sw (n) sup E(Xk(n)) £ lim E(sN (n) sup X. (n) ] » 0. 
n-»aD wn   k^N   K     n-»a)   n   k^N * 

n n (A. 6) 

Proof;  The proof employs expression (A.2) and a lemma due 

to Pratt (1960) . 

Lemma - Pratt.  If fn, f, gn, g, Gn, G are measurable 

function« on a measure space (0, ft,m) and if 

(i)  f -♦ f, g ■• g, Gn -» G in measure, 
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f     c     r      r 
(iii)  | g dm -» i gdm,   G^dm -»  Gdm as n -» oo  with 

r r c       r 
gdm and  ' Gdm < oo , then  | f dm "♦ i fdm if 

j j w  n    v 

r 
fdm is finite. 

Now, 

Nn 
0 1 8;2(n) sup X?(n) ^ s'2(n) Z X?(n) 

Nn   k^N K      Nn  k=l K n 

Relating this expression to Pratt's Lemma, let g s 0 V n, 
Nn 

f = s"2(n) sup X?(n) and G = s'2(n) I X2(n).  Clearly 
n   Nn   k<N K        n   Nn  k=l K 

"*■ n 

g -» g so, while from (A. 3)  G -» G = 1, and from (A.2) 

r       c f -» f =■ O.  Also  i g dm * 0 « | gdm Y n and n •» n       J 
Nn 

J G dm » Efs;2(n) I xjcn) ] - 1 V n. 
J  n      Nn  k-l^ 

(Note that the integration is with respect to dP, the appropriate 

probability measure over the space.) 

Thus, by Pratt* s Lemma 

Et«^2(n) sup X?(n)] - f f dm -» r fdm - 0. 

*■ n 

But »«2(n) sup E(X?(n)) 1 E(8'2(n) sup X-U)] -»0 and so Lemma 
Nn   klNn   ^        

Nn   klNn * 

4 is verified. 

The next result needed to complete the demonstration of  (A. 1) 

is: 
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Lemma   5. 
p 

sN2{n)sm   (t)(n)   " *• 
n n 

Proof;     To prove this  lemma we  show 

lsN'{n)X(t)(n) " t' ^sN^n)lE(Xmn(t)+l
(n)l -*0- 

and so 8N (n)am (t) (n) "• t' 

(A.7) 

First, from the definition of ^(t) given above 

m(t)-»ao  as  n-»CD. 

0 0 0 0 0 
Now, Is' (n)sm (t)(n) - t| = s" (n) 1 sm (t) (n) - tsN (n) | .  But, 

2 2 by the definition of m (t),  s  /^.x (n) <^  tsM (n) while 
n      ^'n^^       wn 

sm (t)+l
(n) > t8N (n)-  ThU8 n n 

lsm (t)(n) - t8N (n)l ^ '«m (t)(n) - 8m (t)+l
(n)l n n        n n 

Therefore, 

n    n n      n 

-2 2    P 
^ •« (u) sup E(xr(n)) - 0, 

Mn   KQi^      K 

•* n 

-2, x 2       P 

n    n 

With Lemma 5 proved, the demonstration of (A. 1) is now 

completed by showing 

-. 
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- 

mn(t) p 

s-2{n)     Z    X^(n)   -» t. 
n k=l 

Consider,   therefore, 

mn(t) 
ls-2(n)     I    X?(n)   -  s-2(n)s2   (   . (n) | 

Nn        k=l    K r,n        "n1^ 
mn(t) 

=   sN2(n)sm   (t)(n)ls;2(t)^)      I    ^(n)   -   1). (A.8) 
n n n K=I 

It follows  that 

mn(t) 
-2        ,   x   n„    „2,     "   ,     ^ . , -2 

sm .n(t)(n)   ^^(n)-! while    s^nU^di)   -. t 

from Lemma  5,   since    m  (t)   -► oo    as     n -* ao .     Therefore,   the  right- 

hand side of   (A. a)   converges  in probability to zero and so the 

left-hand aide must also  converge to  zero  in probability.     That 

is, 

mn(t) p 

s;2(n)     £    X?(n)  -  s"2(n)s2   ,.v(n)   -0. 
Nn        k«l   ^ Nn        mn(t) 

-2 2 Since    $„ (n)s-  /4.x(n)   -» t,   it follows that 
Nn        mn(t) 

mn(t) p 

s"2(n)     E   X?(n)   -» t, 
Nn        k-1    * 

and condition   (A. 1)   is verified.     Thus Watson' s Square Law 

martingale satisfies Scott* s central  limit theorem. 
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Note that after the proof of expression (A.3), the actual 

form of the martingale never again plays a direct role in the 

demonstration.  In fact, the remainder of the above proof is 

merely a generalization of Scott's results to triangular arrays 

with N  elements in the nth row.  The fact that the martingale 

proposed in Watson (1976) for use with a Lanchester Square Law 

combat model satisfies expressions (A.2) and (A.3) insures that 

a triangular array formed from this martingale in the manner 

described will satisfy the martingale central limit theorem of 

Scott (1972). 
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