ADAQS0415

i e

g WO,

Bolt Beranek and Newman Inc. ﬁ/’ bbhn

=P

Report No. 3752

Distributed Computation and TENEX-Related Activities
Quarterly Progress Report No. 11, 1 May 1977 to 31 July 1977

DOG FiLe copy

" January 1978

Prepared for: D D C
Defense Advanced Research Projects Agency) =
MEULG P
| FEB 27 1978 d
EELIVU LW
D

s

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

A

L

1

- O O DT A T IR 0 S— ik, { e O 2

BBN Report No. 3752

vt

STRIBUTED QOMPUTATION AND TQgEX—&ELATED L_CTIVITIES ‘
= e —

@ R, Sa.l’mr,f‘z.» R(‘[fw?” h’homa %/

"~

Quarterly Progress Report No. 1 L |
1 May 3meeige 31 Julps®77 /

e —

(S NeoE2e-15-C-977% i Orke o]

Sponsored by:

Defense Advanced Research Projects Agency
ARPA Order No. 2935

Monitored by:

Office of Naval Research
Under Contract No. N@Agd14-75-C-0773
Contract Period 1 November 1974 to 1 May 1978

Principal Investigator: Robert H. Thomas

P] 25 EEL N -

ABRBRIGN for

(] ¥hile Sectien

(7] futs Section *)
WANNOUKCED @
IOTIFICATION oo

DISTRIGHTION /AYAILABILITY COSER

st AVA' and,or SPEGIAL

f

DDC
()20 71T
FEB 27 1978

GELT
D

The views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied
of the Defense Advanced Research Projects Agency Or the United

States Government.

DISTRIBUTION STATEMENT A

Approved for public release; . » B
Distribution Unlimited O é /:X J. OO J-O ‘ Y 4

TR TN W pe———

R B L N Sy pap————

e

st ol

I o DRy T e
e

rﬂm" M e S

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE . BEFORE COMPLETING FORM
[T REPORT NUMBER 4 7. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

BBN Report No. 3752

A. TITLE (and Subtitle) S. TYPE OF RE‘PORT & PERIOO COVEREO

DISTRIBUTED COMPUTATION AND 5/1/77 - 7/31/77
TENEX~RELATED ACTIVITIES — 6. PERFORMING ORG. REPORT NUMBER

Ly
7. AUTHOR(e) 8. CONTRACT OR GRANT NUMBER(e)

R. Schantz, R. Thomas N@f@BL4-75-C-0773]

9. PERFORMING ORGANIZATION NAME ANO AOORESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Bolt Beranek and Newman Inc. '

= —

5@ Moulton Street
Cambridge. Massachusetts (2138 J
11. CONTROLLING OFFICE NAME AND AODRESS ’ 12. REPORT OATE
January 1978 |

13. NUMBER ogmczs

14, MONITORING AGENC‘Y NAME & ADDRESS(if different trom Controlling Ollice) 15. SECURITY CLASS. (of thie report)

Unclassified

1Sa. OECL ASSIFICATION/ OOWNGRADING
SCHEOULE

16. OISTRIBUTIU., STATEMENT (of this Report)

Distribution_of this document is unlimited. It may be released
to the Clearinghouse, Department of Commerce for sale to the '
general public. :

17. DISTRIBUTION STATEMENT (of thie abatract sntered in Block 20, if diiterent {rom Report)

i
|
’ i

18, SUPPLEMENTARY NOTES

@Thig research was supported by the Defense Advanced Research
' Projects Agency under ARPA Order No. 2935.

18. KEY WORDS (Continue on reverse side |{ nacessary and identify by block number)

distribution computation distributed operating system
National Software Works TENEX operating system

20. ABSTRACT (Conttnue on reverss side !l neceseary snd identify by block number)

his report describesfggﬁhefforts in the design of the
National Software Works system and efforts to integrate
TENEX into the National Software Works system.

DD , 55", 1473 EOITION OF 1 NOV 6515 OBSOLETE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Enteted)

B . e d e o Ll O e e R i ORI WL 1 s iied, k! "}’%5

BBN Report No. 3752 Bolt Beranek and Newman Inc.

Table of Contents

1. Introduction 1
»l 2. MSG: The NSW Interprocess Communication Facility 4
13

3. The TENEX Foreman

F .
g Appendix A - Design for the Management of Ssaved Tool Sessions

diGis sl

b e ok

R S s - ﬁ_
T W TSI ey T

hiahiecd

BBN Report No. 3752 Bolt Beranek and Newman Inc.

1. Introduction

Jur participation in the National Software Works (NSW)
project continued through this quarter. As noted in our previous
quarterly reports, the basic NSW concept has been adequately
demonstrated by various prototype versions of the system and the
focus of the project has turned from concept demonstration to
development of a functional, operational NSW system. Devzlopment
of an acceptable eperational system from these early system
versions requires: increased functionality; improved
per formance and responsiveness; increased reliability; and

improved operatnr tools for system control.

Development of an operational NSW system is a decidely
non-trivial task and the effort required to achieve it should not
be underestimated. To the best of our knowledge the only similar
distributed system to achieve a nearly operational status is the
RSEXEC system, and its goals were considerably less ambitious

than those of the NSW.

Our efforts this quarter have been directed primarily toward
implementation aspects of the project. 1In particular, we have
worked on the TENEX (and TOPS-20) implementation of MSG (the NSW
interprocess communication facility), the TENEX Foreman (the tool
bearing host software module responsible for controlling NSW tocl

execution), and the NSW dispatcher (the system component

e e Tt LY R R R T L (g [17 M G BRI e T, [
T . T e

hale i

BBN Report No. 3752 Bolt Beranek and Newman Inc.

responsible for creating instances of NSW Front End processes
when users initially attempt to access NSW). We expect that our
efforts for the next several quarters will continue to focus on
implementation issues as we work to develop an operational NSW

system.

Work was started this quarter to modify the TENEX MSG
implementation so that it will also run under the DEC TOPS-20
operating system. This is one of the steps required to make the
DEC System2@ an NSW tool bearing host and we expect to complete
the MSG conversion during the next quarter. In addition, we have
made a number of improvements to the TENEX MSG implementation.

The work on MSG is described in detail in Section 2 of this

report.

¥ “forts on the TENEX Foreman component and related tool
bearing host software occurred primarily in the following areas:
implementation of software to analyze system performance data
collected by the Foreman during tool sessions; design and
implementation of a "test encapsulator" which will be used as an
aid to facilitate the installation of new tools into the NSW
system; installation of a variety of new tools; and,
improvements to the Foreman component. These and other
activities related to the Foreman are discussed in detail in

Section 3.

In addition to the implementation work, we attended a number

of meetings as part of our participation in the NSW project. In

T T

R

BBN Report No. 3752 Bolt Beranek and Newman Inc.

June we met with personnel from Rome Air Development Center to
discuss future directions for the NSW project. We attended a
meeting hosted by the Rand Corporation in July on the
interprocess communication requirements of the joint ARPA/Navy
Advanced Command Control Architectural Testbed (ACCAT) program at
which we discussed the interprocess communication problems posed
by NSW and described the NSW approach to these problems. At the
meeting MSG was adopted as the ACCAT standard for interprocess
communication. In June we gave an invited talk on the NSW
system, its goals and approaches, at a meeting held in Newport,
Rhode Island for the New England chapter of the Federal
Information Processing Society. Finally, we continued to
interact with DEC to work out the details of the enhancements
planned for the DEC TOPS-20 operating system that are required to
enable its integration into NSW, both as a tool bearing host and

as a Works Manager host.

.

£

BBN Report No. 3752 Bolt Beranek and Newman Inc.

2. MSG: The NSW Interprocess Communication Facility

During this quarter we started to modify the TENEX MSG
implementation so that it will run under the new DEC TOPS-28
operating system (l1). This is one of a series of steps required
to integrate TOPS-2@ into NSW. The basic strategy for
accomplishing this integration is to modify the software that was
developed to make TENEX an NSW host so that it can run under the
TOPS-20 system. This is a feasible approach because the two
systems are so similar, both in terms of hardware and operating

system software.

The steps required to integrate TOPS-20 into NSW are:

- Ephance the TOPS-28# operating system so that it is capable
of supporting NSW software.
Although TOPS-20 is a direct descendent of a version of
TENEX, new features continued to be added to TENEX after
the TOPS-20 implementation project began. The TENEX NSW
software uses some of these TENEX features which are not
currently supported by TOPS-20. These features include

1. For a number of years the DEC KAl# processor operating under
the TENEX operating system developed at BBN has been central
to many ARPA information processing research projects.
Recently DEC has developed a new line of processors, including
the KL1@ and KL2@ processors, which are significantly faster
than, but functionally compatible with, the older KAl@. The
operating system for this new line of processors is a
descendent of an early version of TENEX (circa 1972) and is
called TOPS-20. The new DEC processor together with the
TOPS-20 operating system is called the DEC System2@. Because
the DEC System2@ offers similar capabilities to the older
KAl@-based TENEX system and is considerably more cost
effective, many ARPA sponsorea installations, including some
that will support NSW tool bearing hosts, have been upgrading
their equipment to these newer systems.

T T TR P i mwa
k.

Rl e £

o

BBN Report No. 3752 Bolt Beranek and Newman Inc.

JSYS traps, fork groups, and various options of the CRJOB
JSYS. The work to enhance TOPS-20 will be performed by
BBN under a separate contract.

- Modify TENEX MSG to run under the TOPS-20 system.
The TOPS-20 implementation of MSG will provide the
communication services needed by the other NSW components
(e.g., the Foreman) which are required on TOPS-28 to make
it a tool bearing host.

- Modify the TENEX Foreman and related software to run under
TOPS-20.
This will allow TOPS-2@ software packages to be run as NSW
tools under the control of a TOPS-2@0 Foreman, which itself
accepts direction from the NSW Works Manager.

- Modify the TENEX File Package to run under TOPS-20.
A File Package for TOPS-2@ is necessary to permit TOPS-20
tools to access and create NSW files.

- Modify, as appropriate, other NSW software written for

TENEX.
Because DEC System2@ is more cost effective than TENEX, it

makes sense to use TOPS-20 to support other NSW system
components which are currently supported by TENEX. For
example, it is likely that NSW per formance could be
significantly improved by running the Works Manager on a
DEC System2@ host rather than TENEX.
The reason it is necessary to modify the various TENEX NSW
components is that the two systems, while very similar, are not
identical. The enhancements to TOPS-20 noted above will make the
two systems more or less functionally equivalent in the areas
that are important to NSW. However even after these enhancements
have been made, there will still be differences in the program

inter faces to operating system functions (JSYSs) and in the

detailed operation of these functions.

Our goal in converting the TENEX NSW software to run under
TOPS-2@ is to produce for each program a single executable module

which can run under either operating system. This module must,

R, A

e ML a b i e S S
2

R

BBN Report No. 3752 Bolt Beranek and Newman Inc.

of course, determi: vwe system on which it is executing and,
where appropriate, execute slightly different code depending upon
the system. The advantage of this approach over that of
producing two executable modules, one for TENEX and another for
TOPS-20, is that it greatly simplifies procedures for software
maintenance and enhancement. To update a program, modifications
to the program need to be entered only once and only a single new
executable module needs to be created. We have examined the

TENEX implementation of MSG and foresee no major obstacles in

accomplishing such a conversion.

As mentioned above, we have begun to convert MSG to run

under TOPS-20. There are two different aspects to this

conversion process:

- The call/return conventions for several JSYSs used by MSG
are different for TOPS-20 than for TENEX. References to
these JSYSs by MSG must be modified to behave
appropriately for the system being used.

- Certain TENEX features used by MSG are not supported by
TOPS-20 and will not be supported even after TOPS-20 is
enhanced for NSW. Where TOPS-20 provides functionally
equivalent features MSG will have to be modified to use
them. Where none exist MSG will have to be changed and
its capabilities perhaps limited when it executes under
TOPS-20. For example, MSG uses a TENEX inter-job
communication facility which TOPS-20 does not support.
However, TOPS-20 has an interprocess commuhication
facility (called IPCF) which provides the inter-job
communication functions required by MSG. MSG will be
modified to use the IPCF primitives when running under

TOPS-20.

MSG makes use of the TENEX JSYS trap mechanism as the means

by which it gains control when a process executes a communication

daliaad o ol i Las

Al LS

R g e S

|
]
vl"“

F[“ s

BBN Report No. 3752 Bolt Beranek and Newman Inc.

primitive (e.g., SendSpecificMessage). TOPS-20 will be enhanced
to support JSYS traps. However, the enhanced version of TOPS5-29
will not be available for some time. Until JSYS traps become

available, TOPS-20 MSG will make use of another more restricted

mechanism for passing control between processes and itself.

As part of our efforts to measure and improve NSW system
per formance, we have instrumented MSG to measure the delays
incurred as control passes from a process to MSG when a
communication primitive is executed, and from MSG to a process
when a pending event (e.g., outstanding receive operation) is
completed. These delays are principally due to the amount of
time required for the TENEX or TOPS-20 scheduler to stop running
one process and start running another, and reflect both scheduler
overhead and the number of other processes contending for the

processor.

Making these measurements requires some cooperation between
MSG and the process under its control. We implemented a pair of
communicating processes which cooperate with MSG as required to
make these measurements. Immediately before one of the processes
executes an MSG primitive it reads the system clock and stores
the time in one of its accumulators where it can be accessed by
MSG. When MSG gains control after the primitive has been
executed, it also reads the clock and c¢an compute the delay
incurred in gaining control from the process. A similar

procedure is followed when MSG completes a pending event. Before

- ﬁ

g
1

B - ,.Jc“i"-,

BBN Report No. 3752 Bolt Beranek and Newman Inc.

% signalling the process that the event has completed, MSG reads

the system clock and stores the time in one of the process

accumulators. When the process resumes execution (an "unblock"
| signal is assumed) it subtracts the time supplied by MSG from the
current time in order to obtain the delay incurred in gaining

control from MSG.

r Table 1 summarizes preliminary measurements made in May for
these control-passing delays. These preliminary measurements
indicate that in approximately 96% of the cases less than 100 ms
are required to pass control between MSG and a process it is
managing. However, in a small but significant number of cases
considerably more time is required. We do not at present,
understand why this is the case and we plan to study this

guestion in more depth.

MSG supports a command language which can be used to to

TR R R rea————

monitor and control both MSG and the processes MSG controls (See
BBN Report No. 3450). A special control character (CNTL-S) is

used to invoke the MSG command language interpreter. Use of

T PR e g D

CNTL-S for this purpose has caused some difficulties for NSW
users. There are two related problems here. First, since MSG
uses CNTL-S as a signal to activate its command language
interpreter, NSW users cannot transmit CNTL-S to tools; and
second, if a user should type CNTL-S, either accidentally or in
an attempt to transmit it to a tool, he would find himself

interacting directly with the MSG command language interpreter.

R : —_— 5 AR -
hﬁmm.m L i 1 o gt s s Ul R W i e ettt ol oo e T — v #a, nfi‘?&h s "

e

g

=
Niihit B, e i S0 oo i o o R e e ms«q&! —

BBN Report No. 3752 Bolt Beranek and Newman Inc.

JSYS Trap Delays

Delay 3 Cumulative $

9-59 62.6 62.6

50-75 10.90 72.6

75-100 20.5 83.1

190-125 5.4 98.5

125-150 afl 99.2

150-200 .4 99.6

200-250 A2 99.8

250-509 22 100.0

500-750 0.0 100.0

750-1000 0.9 100.0

>1000 .01 lud+

Unblock Signal Delays

Delay ¥ Cumulative %

9-50 56.7 56.7

50-75 24.0 80.7

75-100 6.0 86.7

1900-125 2.9 89.6

125-150 1.4 91.90

150-200 5ne 96.7

200-259 .8 97.5

250-500 2.2 99.7 5

500-750 .2 99.9 é

750-1000 .05 99.95 .

>1000 .2 100+ ;
|

TABLE 1 é

%

This generally causes much confusion. These problems have been
corrected by deactivating CNTL-S for MSGs which are created by

the NSW Dispatcher. Since all user Front End processes are

e 7 S e T —

managed by MSGs created by the Dispatcher, CNTL-S is an ordinary
character for NSW users. However, since the MSGs which manage

other system components are not created by the Dispatcher, CNTL-S

can still be used by system implementers and operators to invoke |

the MSG command language interpreter. %

i L

BBN Report No. 3752 Bolt Beranek and Newman Inc.

A number of debuggers (DDT, IDDT, BDDT) are accessible
through the M3G command language interpreter. NSW component
implementers use these debuggers Auring component checkout and
system integration. During this quarter we added a fourth
debugger, called DAD (for Do-All Debugger). DAD is a power ful,
multi-fork debugging aid developed by SRI. The ability to use it
from within MSG should greatly facilitate installation of NLS as
an NSW tool as well as ease the integration of the "SRI Front

End" into NSW.

During this quarter a number of bugs in the TENEX
implementation of MSG have been detected and corrected. One of
the more interesting bugs was a synchronization problem that
occurred during MSG initialization. An active MSG configuration
consists of a collection of TENEX jobs started at initialization
time by a "central" or "controlling" MSG job (See BBN Report 3450
for details). At initialization the controlling job creates, in
sequence, the subsidiary jobs which directly control the various
NSW system components (e.g., Foreman, File Package). Tiae
synchronization problem was that it was possible for a process
(such as a Foreman) to attempt to send a (generically addressed)
message to another process (such as a Works Manager) before the
MSG job for the receiving process had been created and started by

the controlling MSG. The result was that the message would be

lost.

- 10 -

E
E-'
3

BBN Report No. 3752 Bolt Beranek and Newman Inc.

This problem first became evident during the checkout of the
new NSW system that supports the interim reliability plan (See
BBN Report No. 3751 and Section 3 of this report). As r::.:% of
this reliability package a Foreman process is created whenever a
tool bearing hnst restarts. This Foreman process checks for any
tool sessions that may have been left uncompleted as the result
of a crash. Part of its responsiblity is to send a message to a
Works Manager process to notify it that the tool bearing host has
been restarted. Whenever a host that supports both the Works
Manager and NSW tools (i.e., a Foreman) was restarted, this
Foreman message induced the race condition. Once detected, the
problem was relatively easy to correct by properly synchronizing

the subsidiary jobs during MSG initializaton.

At a meeting hosted by the Rand Corporation on the subject
of interprocess communication for the joint ARPA/Navy ACCAT
program MSG was adopted as the standard mechanism for
interprocess communication within ACCAT. At present the ACCAT
facility includes threeJdifferent host operating systems: TENEX,
TOPS-20, and UNIX. When we complete our conversion of MSG for
TOPS-20 next quarter, MSG implementations will exist for two of
these three systems. As part of our work on the ACCAT project
(supported by another contract) we will be implementing MSG for

the UNIX operating system.

Finally, we report that Computer Corporation of America is

planning to use MSG to support the interprocess communication

- 11 -

i, Sl e st v b it T i, Wmummwﬂummﬂ

I D T

P bt

|
I
1]

I

‘_- Sl e e b T e e L R L L L RTINS —— *—mmm—ﬁ
T

BBN Report No. 3752 Bolt Beranek and Newman Inc. 3

b

requirements of SDD-1, a sophisticated data base management f
system for distributed data bases. | ;
:f

i o e TR s

Lo iy

s B e

s 12 -

TERTELL . Ve e,

e

BBN Report No. 3752 Bolt Beranek and Newman Inc.

3. The TENEX Foreman

Last quarter we repocrted on the development of an
instrumentation package for the TENEX Foreman component (see BBN
Report number 3751). The probes for this instrumentation
package, which are inserted at strategic locations directly into
the Foreman code, generate raw binary data relating to message
traffic, abnormal occurrences, and performance data. Only binary
data is recorded in order to minimize the on-line processing
time. The raw binary data for the Foreman sessions of a given
NSW host incarnation is collected in a single file.

Periodically, these files are retrieved and processed.

This quarter we have developed a software package to do the
data reduction and formatting necessary to utilize the raw data,
and to enable us to summarize large quantities of data. The data
analysis program is capable of processing multiple raw data input
files either in their entirety or on a session by session basis.
It can automatically generate separate textual reports covering
session summaries, message traffic, detected failures, and
performance data. The session summaries report the name of the
tool used, the time and date of the session, and identifiers to
help locate the data for this session in other reports. The
failure report summary provides a partial state description for
all sessions that terminated in an abnormal fashion. This is

generally sufficient to isolate the problem. Even when it is

- 13 -

BBN Report No. 3752 Bolt Beranek and Newman Inc.

not, it has served to alert us to the existence of the problem,

1 enabling other measures to be taken to more accurately pinpoint

the cause. The performance data summaries are currently oriented

L T e o e o i
-

) toward timing the intervals (both CPU time and real time)
associated with the major Foreman functions. These include
measuring the time to begin a tool session, the time to terminate

; a tool session, and the time to retrieve and replace NSW files.
In addition to the various computed intervals, the verformance

5 summary includes data indicating the group and system load

occurring at the time of the event. We are currently

experimenting with the format of the performance summary in an
effort to expedite its use as direct input to statistical
analysis programs. During the next quarter we will be using the
automatic data analysis program to process the data generated by

the new Foreman releases.

At present, all TENEX programs which are NSW tools execute
in an encapsulation mode. 1In this mode the Foreman intercepts
(traps) certain operating system calls (JSYSs) made by these
programs (such as file manipulating operations) before they can
be acted upon by TENEX and iransforms them into equivalent NSW
operations. Refer to BBN Report No. 3266 for a more detailed
discussion of the principles of encapsulation. To support this
mode of operation the TENEX Foreman includes an encapsulator
module which is invoked by the Foreman when a JSYS executed by a

tool is trapped.

- 14 -

m e g i bo fioyeuceunag K cBiaiiabd Koituasin o B oo Ll i 2 oo P, N

i %

i

|
|

BBN Report No. 3752 Bolt Beranek and Newman Inc.

Ideally, encapsulation makes it possible for existing
programs to be installed into NSW as tools without modification.
In practice, the success of the encapsulation approach depends
upon the functional commonality between the tool bearing host
operating system and the NSW, and the degree various tools
exercise tool bearing host functions not naturally mapped into
NSW functions. Encapsulation has been fairly successful for
TENEX hosts. However, it is not uncommon for the installation of
a new TENEX tool to require minor enhancements to the

encapsulator module.

The process of installing a TENEX program as a tool includes
trying to run it under the Foreman to determine whether it
behaves properly when its operatingvsystem calls are trapped and
transformed by the encapsulator module. If the tool misbehaves,
then the problem must be diagnosed and corrected. 1In some cases
the encapsulator module must be modified to properly transform
some of the JSYSs used hy the program. 1In other cases the name
of a non-NSW file used by the tool (e.g., the dictionary file
used by SPELL) must be added to a list of local files referenced
by the tool. This list is passed by the Works Manager to the
Foreman when the tool is started. The Foreman allows direct
access by the tool to all files on tV ist. Thoroughly

exercising a program in this way is tedious procedure in a

fully configured NSW system.

;
i
i
,

%:
i
F‘

T I L R L VR Sy e 1 1

S (I Im— e e Mt i e e . b o o Ak i 4 el T . e e .] e R RN T g T ST e— b N A i 0 T

BBN Report No. 3752 Bolt Beranek and Newman Inc.

To facilitate the installation of TENEX programs as NSW
tools we have developed and implemented a "test encapsulator"
called WDYT (for Who Do You Trap). WDYT provides a more orderly
means for examining the behavior of TENEX software being
installed as NSW tools and can be used in a "stand alone" mode

that does not require an NSW system.

The program to be installed as a tool runs under the control
of WDYT. WDYT is set up to trap exactly the JSY¥Ss trapped by the
Foreman encapsulator moduie. When one of these JSYS traps
occurs, the tool installer can use WDYT to examine the particular
JSYS along with the parameters supplied by the tool. Given
knowledge of the behavior of the Foreman encapsulator module, the
tool installer can determine whether it will properly handle the
JSYS. 1If not, he can decide whether modification to the
encapsulator module, addition of a file name to the tool's local
file list, or some other modification is required. Initial
experience with WDYT indicates that it significantly reduces both
the amount of time required to install a tool and the likelihood

v

that the tool will misbehave in the NSW environment after it has

been installed.

During this quarter we installed several TENEX software
packages as NSW tools including SPELL, LINKER, BCPL, BDDT, and
JIGSAW. SPELL is an interactive spelling corrector developed at
Stanford and enhanced at BBN. It accepts as input a text file

and checks the spelling of each word in it. For words that it

- 16 -

bk e Ta e e e i 2 s e s P T e T

- -'mw

£ s

R SR o e o . SO Louent
-

-

R R TG I = g R ety i, v o o >
~

BBN Report No. 3752 Bolt Beranek and Newman Inc.

believes may be misspelled, it informs the user and gives him
several options. These include: keeping the word as currently
spelled, correcting the word as recommended by SPELL, selecting
one from a possible set of correctly spelled words supplied by
SPELL, or replacing the word with one supplied by the user. The
previously installed text editing tools, together with MRUNOFF
and SPELL, form the basis for a powerful documentation

preparation facility within NSW.

LINKER is the NSW name for the DEC PDP-10 linking loader,
LINK1@, which is used to produce executable object modules (core
images) from relocatable binary files (.REL files). When used
under TENEX, LINK1@ terminates after it completes construction of
a core image from the specified .REL files. The assumption is
that the user will use the SAVE or SSAVE command of the TENEX
EXEC to save the core image in a file. Since the NSW command
language does not have the concept of saving a core image, LINK1@
had to be augmented for the NSW environment to save the core
image in an NSW file. This enhancement to LINK1@ was done in a
modular way so that any new DEC releases of LINK1@ can be
installed simply by ensuring that LINKER uses the new version of

LINK1@ rather than the o0ld one.

BCPL is the compiler for the BCPL programming language. It
produces .REL files from BCPL source programs. BDDT is a
debugging package for the BCPL language. It allows users to

debug BCPL programs in terms of source language constructs (such

i] =

LXSPS

s e e M e e i i sl B b e R sl n e

BBN Report No. 3752 Bolt Beranek and Newman Inc.

as statements, subroutine calls, structures, and variables)
rather than machine language concepts (such as instructions and
memory locations). With the installation of BCPL, BDDT, and
LINKER, NSW now supports the edit/compile/debug cycle for the
BCPL language. This is a significant achievement because, in
principle at least, it is now possible for NSW to support the
development of those NSW system components which are implemented

in BCPL. These include the Works Manager and the Front End.

JIGSAW is a preprocessor for the JOVIAL programming
language. It represents the first JOVIAL tool installed in NSW,
?nd as such is the first step toward developing a JOVIAL
pProgramming environment within NSW. JIGSAW was installed at the
request of Rome Air Development Center. To install it, we
obtained the FORTRAN source programs for it from TRW. We created
a TENEX core image for JOVIAL by compiling thes2 programs, after
slight modification, using the TENEX FORTRAN compiler and loading
the resulting .REL files using LINK1#. This produced a JIGSAW
for TENEX which was then installed as an NSW tool in the normal
way. The TENEX JIGSAW operates in an interactive mode. JIGSAW
is also being installed on a Multics tool bearing host through a
GCOS simulator for use in batch mode. This nicely illustrates
the potential flexibility in selecting an appropriate tool set,

which is a major goal of NSW.

Part of the reliability plan for the NSW requires that the

Foreman maintain tool workspaces in a crash proof manner. This

- 18 -

i

P

(L P L s S s e P n’ﬂ

BBN Report No. 3752 Bolt Beranek and Newman Inc.

is to ensure that files that may have been trapped in a workspace
as the result of a system crash occurring before the normal
termination of a tool session are not lost. It is the
responsibility of the Foreman to maintain these workspaces until
the user has an opportunity to retrieve files he is interested in
by "rerunning" the tool. The files saved for the tool sessions
are currently maintained in place within the workspace. See BBN

Report No. 3751 for a more complete discussion of this.

For the TENEX Foreman this poses a potential problem. The
problem derives from the fact that on TENEX workspaces are
implemented by a fixed number of file directories. If enough
users are slow in retrieving files from saved workspaces it is
possible for all of the workspaces to be used for saving
incomplete tool sessions, thereby preventing new tool sessions
from being initiated. One solution to this problem is to
implement a "two level" workspace scheme. This would allow saved
workspaces to be moved from workspace directories to a secondary
storage area, releasing the workspaces for use in new tool
sessions. When a user attempts to retrieve files from a saved
workspace that had been moved to secondary storage, the saved
workspace would first be returned to a workspace directory, after
which the file retrieval would occur as usual. During this
quarter we designed a two level workspace scheme. The design is

presented in Appendix A of this report.

- 19 -

) . 5 . 2 4
hmm.;wm;-.u:_hmﬁsa_é T T T k’.‘.w".ﬁ‘_"&_‘flﬁt.’u U I T TR,

e e

D T S R s = P - ££ = e

I

PR

#

-

BBN Report No. 3752 Bolt Beranek and Newman Inc. |

Finally, during this quarter we released and integrated into
the NSW system several new versions of the TENEX Foreman. In
addition to minor bug fixes, these releases included a number of

changes and improvements, some of which are described in the

paragraphs below. ,

Due to recent changes in the NSW inter-component protocols ‘
the Foreman must be prepared to receive and react to asynchrunous |
messages from other components. By an "asynchronous message" we
mean here a message which is not part of an on-going protocol
exchange between the Foreman and some other component; for
example, a message from the Front End to terminate a tool
session. 1In the earlier versions of these protocols, in those
situations where the Foreman had to handle such asynchronous
messages it would be alerted by an MSG alarm to issue a receive.

In the new protocols the alarm is often omitted. This required i
the Foreman to be changed so that it always has an outstanding

receive operation. Since the Foreman, in general, will be busy }ﬁ
monitoring its tool's execution while this receive is pending, it
requests a PSI (rather than Unblock) completion signal from MSG

for the receive.

Under certain circumstances, such as a termination request
from a tool, the Foreman enters into a more sequential mode of
operation in which it also expects to receive a message. Since a
receive is already outstanding, in principle the Foreman need not

issue another one. However, in these situations the Foreman

- 28 -

o gve R e s b A VT JUR VR ¥ \}?ﬁi"i gl

a6

T 0 WS Wr e T e L <
ok

BBN Report No. 3752 Bolt Beranek and Newman Inc.

prefers an Unblock completion signal to the PSI signal associated
with the pending receive. Because MSG, at present, aoes not
allow a process to change the signal associated with an
outstanding operation, the Foreman must rescind the pending
receive and then issue a new one with the desired completion
signal. We are considering adding a "change signal" operation to

MSG to allow simplication of process actions in such situations.

1f the Foreman is engaged in a protocol exchange with
another component, such as one to open a file, when it receives
certain asynchronous messages, such as a request to terminate
tool execution, it must abandon the on going exchange and enter
into a new one with the sending component. To do this correctly,
the Foreman must be able to determine the protocol exchange

subsequent messages belong to so that it can ignore messages from

the abandoned exchange and process messSajes from the new one.
Early versions of the Foreman did not do this properly. The

current Foreman uses TIDs (Transaction IDs) as a means to

distinguish among these messages.

When a tool is started, the Foreman establishes a
communication path with the Front End for the tool. For early
versions of the NSW all the interactive tools normally
communicated with the user directly through his terminal.
Consequently the Foreman always established TELNET connections

with the Front End. 1In order to accommodate NLS and other tools

which are designed to interact with the Front End component in

- 2] =

-~

BBN Report No. 3752 Bolt Beranek and Newman Inc.

more general ways than TELNET connections can easily support, the
Foreman has been modified to additionally support binary MSG
direct connections. The type ¢of connection required by a
particular tool is stored in its tool descriptor maintained by
the Works Manager and passed to the Foreman as part of the
RUNTOOL protocol scenario. The Foreman uses this information to
cooperate with the Front End to establish the proper communcation

support.

The Foreman has been changed to be more selective in the way
it uses the Front End help facility in file open operations. In
the message it sends to the Works Manager to open a file on
behalf of a tool the Foreman must specify the action to be taken
by the Works Manager if the file specification supplied by the
tool is ambiguous. The Foreman has three options: the Works
Manager should consult the user via the Front End help facility
to disambiguate the file name; the Works Manager should consult
the Foreman to do the disambiguation; or, the Works Manager
should tell the Foreman that the open failed. The current
Foreman uses a heuristic to determine the origin of the file name
in an attempt to select the appropriate option. 1If it believes
the file name was one supplied by the user (e.g., the name of a
file to be edited), it instructs the Works Manager to consult the
Front End for help. 1If it believes the file name was one
generatzd internally by the tool, it instructs the Works Manager
to report failure if the name is ambiguous. The reasoning here

is that many tools are equipped to handle such failures; for

E By L

AR,

RIPRATI

W O iy e

e So o

1

e s e]

e

B I e SR

T R g .

P

>

s b Lt s L e

BBN Report No. 3752 Bolt Beranek and Newman Inc.

example, certain text editors look for files containing mode
settings but are prepared to continue operating if they can't
find them. Additionally, it was felt that it would be very
confusing to a user if he were asked to disambiguate a file name
for an open operation he had no knowledge was even occurring.
This procedure is heuristic in the sense that it is not possible
to correctly determine the origin on thne file name in all cases.
However, we have been successful within the limited tool set

currently available through NSW.

BBN Report No. 3752 Rolt Beranek and Newman Inc.

TP WU SR T
-

Appendix A

ST

LAEE

The Management of 3aved Tool Sessions
Foreman Extensions Enabling Workspace and Tool Session Recovery

\ The present TENEX Foreman implementation of the NSW interim
reliability scenarios preserves the state of the local filespace
of the running tool by reserving the TENEX directory assigned as
the tool's workspace. Since only a finite number of workspaces
are defined for a given NSW tool-bearing host, a sequence of
events which results in the preservation of a number of local
name directories (LND's) rapidly depletes the stock of available
workspaces. It is desirable, then, to provide a more
satisfactory mechanism for the preservation of working files from
the time of a SAVELND operation to the occasion of restarting the
tool session or delivering the files back to the global NSW file

system.

This note describes the present implementation of the
LNDSAVE scenario in the Foreman component and defines the
modifications which are proposed to relieve the problem of a
diminishing supply of workspaces.

1. Present Implementation

There are several circumstances under which the Foreman may
discover that a particular tool session can no longer be
continued. We distinguish two cases, which will be termed
individual and general. In the individual case, a specific event
occurs such as the timeout of a FE or WM function, the loss of
the tool-FE connection (and failure to reestablish), or the
receipt of the message FM-SAVELND. 1In the general case, the
Foreman is presumed to be starting up after the TBH is restarted,
either due to a crash or a normal shutdown; routine examination
of the state of the current workspaces discloses the presence of :
local working files undelivered at the time of shutdown. 1In an 1t
individual case, the specifically interrupted tool session cannot
be continued. 1In the general case, none of the tool sessions ’
active at the time of Foreman shutdown can be resumed without i
both user presence and interaction with other NSW components.

hﬁmmwmm 2R S i Pl e b .*!3"'5 .

BBN Report No. 3752 Bolt Beranek and Newman Inc.

In either case, a number of specific actions are performed
for protection of the files associated with the tool sessions
which cannot be continued. The single set of actions which
concern us in this discussion are implemented through the
subroutine RESCUE for the individual case and FORSAV for the
general case. Since the functions of FORSAV are partially
determined by antecedent functions of RESCUE, that rsutine will
be discussed first.

As an introduction to the following discussion, it must be
explained tha', on TENEX, each NSW tool executes as an inferior
process of a Foreman connected to a private directory, hereafter
referred to as a "workspace". The TBH provides a finite set of
workspaces for the use of NSW tools. Each time a tool is
started, its controlling Foreman selects a workspace from a
shared data base and connects the tool fork to the corresponding
directory. All TENEX Foremen associated with a given NSW TBH and
incarnation run in individual forks which are initially connected
to a common directory containing the Foreman data base file,
FORCOMFILE.SHR. The common data base file contains two data
structures--the workspace list (or the WE. structure) and the
rerun list (or the RR. structure). In addition, the common file
contains a semaphore by which a Foreman can obtain exclusive
access to the common data base.

Each entry in the workspace list comprises three words,
arranged as follows:

WE.USE, ,WE.DIRNO
WE.XTRA, ,WE.PSWDPTR
WE.TOOLID

WE.USE always contains a zero if the workspace is not in use, and
the NSW process instance number of the controlling Foreman if
currently active. A workspace not under Foreman control may be
blocked from reuse or deallocation by setting WE.USE to -1
(777777). WE.DIRNO is the number of the workspace directory,
WE.PSWDPTR is an optional to the password string for this
directory, and WE.TOOLID the unique tool-id assigned to this tool
session by the Works Manager. WE.XTRA is an unused half-word.
There is one and only one entry in the WE. structure for each
available workspace.

Each entry in the rerun list comprises two words, arranged
as follows:

RR.ITYP, ,RR.IDX
RR.WMFLAG

RR.IDTYP always contains a zero if the rerunlist entry is not in

use, and a +1 if it is in use to record a rerunnable tool
session. RR.IDX is an index to the WE. structure entry for the

A-2

-

BBN Report No. 3752 Bolt Beranek and Newman Inc.

workspace containing the rerunnable tool session. RR.WMFLAG is
always zero if the tool session has been saved but not yet
acknowledged as rerunnable by the Works Manager. When the Works
Manager finally acknowledges the tool session as rerunnable,
RR.WMFLAG is set to the current TENEX day and date obtained fron
the GTAD JSYS (if none is available, +1 is used instead). There
is one and oniy one entry in the rerun list for each workspace
containing a rerunnable tool session.

Whenever a condition is detected in the Foreman which
requires the preservation of a tool session, the routine RESCUE
can be used to protect the workspace and create the appropriate
rerun list entries. A separate routine, FORSAV, exists to
process the entire domair of available workspaces when the NSW on
the TBH is restarted.

1.1 Preservation of Indivdual Tool Session State

When an individual tool session must be preserved, the
Foreman stops the tool, closes any open files, and examines the
LND (via the routine WSUSED) to see if it contains any entries.
If there is at least one entry in the LND, we assume the tool
session should be preserved. A special code (777777) is entered
in location WE.USE assigned to the tool's workspace in the
Foreman common data base, and the index to WE. which identifies
the workspace is entered in a location RR.IDX in the rerun list.
RR.WMFLAG. RR.IDTYP is set to 1, to indicate an @antry in use to
address the WE. structure. RR.WMFLAG will be set to the time and
date when the NSW Works Manager confirms the rerunnability of the
tool session preserved in the workspace indicated by RR.IDX.

When RR.WMFLAG contains a zero (and RR.IDTYP = 1) the tool
session has been identified as rerunnable by the Foreman, but
this state has not yet been confirmed by the WM.

It is necessary to modify this strategy to permit the files
contained in the workspace to be transferred (along with the LND
file itself) to some appropriated holding directory. and to
enable recovery of these files in a timely and efficient manner.

1.2 Preservation of Multiple Tool Session States

When the NSW 'oreman job is started on a TBH, the Foreman
MSG signals the first Foreman instance to perform initialization
for all Foremen. Among other things, this entaiis the
examination of each available workspace to determine if any are
holding tool sessions interrupted at the time of a TBH crash.
These are workspaces which are marked in the common page
(location WE.USE) with a positive number, the instance number of
the controlling Foreman at the time of the crash. For each such
workspace, the rescue operation outlined abose is performed.

A-3

- ™ 4 .
hb‘i’r.‘m R R T R T S g VL WE— =

Sl

?
:
1
:

BBN Report No. 3752 Bolt Beranek and Newman Inc.

This examination also picks up any workspaces locked by RESCUE
(WE.USE = 777777) but not entered on the rerun list (no matching
RR.IDX entry), just in case the TBH crashed while performing an
LNDSAVE.

After the initializing Foreman updates the rerun list and
corrects any omissions detected, the old saved tool sessiong are
examined and discarded if their RR.WMFLAG entries indicate the
session was saved longer ago than HLDTIM (currently 4 weeks).

(It is always possible for the WM host to crash before the tool
session salvation has been recorded in its data base, but after
the Foreman has been notified, leaving the Joreman holding a
rerunnable tool session not recorded in the WM data base. This
can be overcome by reporting rerunnable tool sessions one or more
additional times, even if WM confirmation of rerunnability has
already been received.) Routine FMWMK2 is called to send the
WM-LND-SAVED message to the WM, reporting all saved tool sessions
not previously acknowledged by the WM. On reply from the WM, the
routine FMOKREP marks RR.WMFLAG with the time and date for each
tool session confirmed as rerunnable by the WM. Tool sessions
reported from the WM as non-rerunnable have their workspaces
freed (WE.USE <== @) and their rerun list entries deleted
(RR.IDTYP <== 0;:; RR.IDX <== ¥; RR.WMFLAG <== -1 (in the future
the senses of @ and -1 for this flag will be exchanged)). The
Foreman common page is kept locked while awaiting the WM reply to
WM-LND-SAVED. Like all interactions with the Fi or WM which
require a reply for continuation of a specific action, the
receive specific issued to MSG for this transaction sets a timer
on transmission of this message so that appropriate remedial
action can be taken if the reply is not promptly received. This
provision assures that the Foreman common page will not be left
locked for lengthy periods of time. The common page .ock is
automatically cleared during startup after a crash of the TBH.

In all interactions between the WM and the Foreman, the tool
sessions are identified by "tool-id". The value of the tool-id
for each session is saved in the location WE.TOOLID in the common
page. The WM is alleged to assure non-duplication of values of
tool-id for a given series of NSW incarnations.

1.3 Resumption of Suspended Tool Sessions

The Foreman attempts to resume a previously suspended tool
session when it receives the FM-REBEGINTOOL message. Routine
FNDWSFCN is used to retrie'=: the correct workspace (corresponding
to the tool-id sent by the WM). FNDWSFCN also assigns tool-id's
to unused workspaces wher invoked to handle the FM-BEGINTOOL
message. At present, no check is made to determine if the
tool-id of a new FM-BEGINTOOL request is already in use for a
previously saved tool session. Since the WM is assuring
non-duplication over extremely long time periods, this should not

A-4

¥
7
5

e i e e R

A e et p———

BBN Report No. 3752 Bolt Beranek and Newman Inc.

be problem. If, however, a duplication should arise, there is a
probability that files saved for the user of the former tool-id
might be delivered to the new user, and/or vice-versa. Recovery
of an old workspace is accomplished through routine GOLDWS, which
searches the rerun list for entries into the workspace table
(RR.IDX, when RR.IDTYP = 1). If WE.USE = 777777 for the entry
indicated by RR.IDX, WE.TOOLID is tested against the tool-id
value received from the WM. A match, of course, indicates that
the workspace containing the desired saved tool session has been
found. The workspace is assigned to the current Foreman instance
(WE.USE <== MYINSTNO) and the corresponding entry in the rerun
list is freed for reuse (RR.IDTYP <== @; RR.IDX <== 07 RR.WMFLAG
== -1). The Foremin connects its fork to the designated
directory and enters the regular code to wait for further
instructions (STARTOOL, TERMINATE, ABORT, etc.), after replying
to the WM.

2. Planned Implementation

As noted previously, while workspaces do not represent a
costly TENEX resource, there is still only be a limited number of
them available to a given NSW TBH at any one time; therefore,
since there is no practical limit to the number of interrupted
tool sessions which may have to be saved, it is desirable to
provide a way to save the various local files associated with an
interrupted tool session without using one of the available
workspaces.

To accomplish this, certain additional conventions will be
adopted. A special directory will be required on every TENEX TBH
to hold files salvaged from interrupted tool sessions. The name
of this directory will be saved in the common page and
initialized through the MKCOM program. The directory name will
be found in a block labeled SVDRNM. The entire contents of the
LND and its files (i.e., not any TENEX temporary files)
associated with an interrupted tool session will be transferred
to <svdrnm> at some appropriate time after detection of the
interruption of NSW function. By preserving the entire state of
the directory associated with the tool session, it may be
possible t> resume the tool session with the files in
approximately the same state as when the interruption initiating
the LNDSAVE occurred. This should make the tool sessions appear
to be relatively continuous in the presence of short-term
failures of various NSW components. Obviously, the conditions at
the time of the failure cannot be exactly duplicated. It will be
left to the user's discretion as to whether a tool should be
continued in this approximate state or should merely have the
pertinent files delivered for later use.

A-5

Gt e ¥ i e b il p S el il da i

BBN Report No. 3752 Bolt Beranek and Newman Inc.

The wM-assigned tool-id will become the major identifier for
the recovery of interrupted tool sessions; a new entry,
RR.TOOLID, will be added to the rerun list data structure. The
entry WE.TOOLID will be preserved, since some source record of
the tool session in progress will be needed for TBH crash
recovery. A large number of new states will be needed for
RR.IDTYP, which will be the principal indicator of status for
each saved tool session. State +1 of RR.IDTYP will be used to
indicate a transitory state when a tool session has been
identified as savable, but the WM has not yet acknowledged it as
such. State +2 will connote a rerunnable tool session which is
saved in a worspace, rather than in <svdrnm>. Saving a tool
session in a workspace is an efficiency measure by which, in
selected cases, we hope to avoid the overhead of first moving all
of the files out of the workspace and then moving them back into
(perhaps) another workspace when the tooi is continued. Our
design is based on the philosophy that we should be able to
remove the LND from a workspace at any time, if it becomes
prudent to do so. State +3 of RR.IDTYP will be used to indicate
a transitory state during the time local files are being moved
from the workspace to <svdrnm>. RR.IDTYP with state value +4
means that the saved tool session is recorded in <svdrnm>. State
+5 will be a transitory state during the time files are being
moved from <svdrnm> into a new workspace from which the tool will
be rebegun. State +6 will be a transitory state indicating that
a tool session exists, but contains no savable files, pending WM
notification of this fact. State +7 indicates a tool s=2ssion
which is to be discarded by garbage collection. Examination of
the state variable will facilitate recovery if a TBH crash occurs
during the general LNDSAVE accompanying Foreman initialization.
RR.IDX will be undefined when RR.IDTYP = +3, +4, or +5.

A naming convention for local files will be adopted which
simplifies identification of all files associated with a
particular tool session when stored in <svdrnm>, while assuring
non-duplication of file names. As a further policy, we will also
adopt this convention within the confines of the workspace so
that each file has a single, local name throughout its existence,
even when moved from a workspace to <svdrnm> and back to a
workspace. This convention greatly simplifies the procedures
involved in saving a workspace. Duplication protection could be
further assured by modifying routine WSGET, which assigns new
free workspaces, to search the rerun list for duplications of the
tool-id received from the WM; however, this appears to create an
unreasonable burden of verification for the Foreman.

Accordingly, this modification will not be implemented. Instead,
we will rely on the WM to make a unique assignment of tool-id.
(To facilitate the recovery of specific tool-id's from the rerun
list, the RR. structure will be expanded in size, and the entry
selection in routine LWSFRR will be converted to a hashed-address
scheme. This accessing scheme will be propagated throughout the
rerun list manipulating routines wherever appropriate, and GOLDWS

A-6

- wo e T e B e e e s B S —-.---—."-[-r_..--——w—-—w—j
R s R e R .

i AT 5 ek R b L ik bia S o A T A it iy
F L3 " et RS A R A AR WA (T SO R P T I e L ey — ks j
" o e

BBN Report No. 3752 Bolt Beranek and Newman Inc.

will be modified to search for tool-id from the RR. structure,
rather than the WE. table, as in the current implementation.
These modifications are discussed in detail below.) Every local
1 file name, whether in a workspace or ¢svdrnm>, will begin with an
arbitrary string, such as "XNSW-", followed by the WM-assigned
tool-id as an ASCII string giving a 12-digit octal value. The
name of all local files associated with a given tool session will
be distinguished by its extension. The extension will be an
ASCII string giving a 6-digit octal value equal to the present
NSW incarnation number obtained by the Foreman instance from MSG,
concatenated with a 12-digit octal value representing the time
(in milliseconds, at file creation), since the TENEX system was
restarted. The value of the duration of TENEX service is
obtained via the TIME JSYS.

We believe this approach will assure that two files are
never assigned the same name. Unless the WM makes an error, each
tool will use a unique tool-id for naming its files. Each new
NSW file name created by a tool requires trapping to the Foreman.
In general, since it takes significantly more than one
millisecond of real time to execute the appropriate Foreman code,
the system time read by the TIME JSYS will be different for each
instance of file creation, and each new file created will have a
unique name. It is possible that at some future time there will
exist NSW tools which run in multiple forks, making it possible
for two or more forks to simultaneously attempt to create NSW
files. Redundant naming in this case will be precluded by
establishing an internal Foreman register to record the system
time last used in naming a file. This register will be accessed
only after testing and setting a mutual exclusion semaphore. If
the time read by the TIME JSYS is less than or equal to the
stored time, the stored time will be incremented and the
incremented value used as the basis for naming the file being
created. We believe it will then be possible for the Foreman to
assure the uniqueness of the extension field of the file name
under the following assumptions. ¢

Although the system time clock cycles once in an average of
2 years, 61.9 days, it is extremely unlikely that a given TENEX
TBH and/or NSW incarnation will remain continuously active for
that period. Since restarting the TBH generally implies a system
clock reset, there is the possibility of having the same system
time field string for a sucsequent file creation (P = .000116 for
a TBH creating 10000 files between resets every 24 hours). To
make sure there will be no duplication, the TENEX NSW incarnation
number, which is incremented each time the central MSG job is
started, will be used to further identify files. Successive
version numbers for subsequent versions of the NSW files will be :
assigned under normal TENEX conventions.]

The file naming conventions will require modification of the
name-generating program in the encapsulation code, as well as a

A-7

T T - Ay 4 k \
. 1 S e o et i b e s o Y

¥ e ————— T P, B

BBN Report No. 3752 Bolt Beranek and Newman Inc.

renaming of all files delivered to the Fo eman by the File
: Package. The LND file will be named slightly differently to
facilitate identification. The extension will be "LND", and the
principal file name will be simply the 12-character ASCII/octal
tool-id, without the "XNSW-" prefix. The LND is named
differently from all other files of a given tool session both to
identify it and to permi:c the GNJFN JSYS to be used to reference
the family of non-LND files for the session. Thus, with these
conventions, it is easy for a program (or operator) to reference
the family of all saved LND files, or the family of all saved
files for any particular tool session.

e Rl v e ascad o oo ﬁ:wqy!_‘

C N A

PR

An example: A tool session has been started by Foreman
11606, running in NSW incarnation 1776, with tool-id 453271602413
in workspace FWK7. Its LND file is named:

<FWK7>453271602413.LND;1

After some period of operation, some files have been created.
Three versions exist of a file begun at "112345047654" and one
version of a file begun at "112345847773". The files associated
with this tool session are:
<FWK7>XNSW-453271602413.001776112345047654;1,2,3
<FWK7>XNSW-453271602413.001776112345047773;1

Wwhen an LNDSAVE is performed for this tool session, FWK7 will be
freed for reuse after copying these files to <svdrnm> as:

<svdrnm>453271662413.LND;1
{svdrnm>XNSW-453271602413.001776112345647654;1,2,3
<svdrnm>XNSW-453271602413.001776112345847773;1

Note that no attempt is made to determine which files or versions
will eventually need to be delivered to the file system.

The following sections describe in greater detail how these
new conventions will be used in implementing the transfer of
files to and from <svdrnm> in the context of the interim
reliability scenario implementation described above.

2.1 Individual LNDSAVE : %

Under the implementation plan, the salvation of individual
tool sescions proceeds as described in 1.1 above--the tool is
stopped, the files are closed, and the workspace is marked
(WE.USE <== 777777) and entered on the rerun list. The rerun
list entry used by routine LWSFRR will be selected by converting
the tool-id to a 9-bit hash index to RR. Search for a free entry
in RP. will proceed from this starting point. When a free entry
is located, WE.TOOLID will be copied into RR.TOOLID, RR. IDTYP

A-8

e i o e s e b o i oo . w B i i i e bt L L g (e o o el R am sl "ﬂ
-

BBN Report No. 3752 Bolt Beranek an? Newman Inc.

will be set to +1 (indicating temporary preservation of the tool
1 session with files in the workspace), RR.WMFLAG will be set to -1
(indicating that a tool session has been saved, but not yet
confirmed as rerunnable by the WM), and RR.IDX will be set to the
index of the workspace holding the saved tool session in the WE.
structure. The sequence of these operations is important. It is
necessary to insure.that the Foreman making a rerun list entry
can complete the entry without competition from other Foremen:
therefore, the operation begins with the Foreman testing and
setting the mutual exclusion semaphore for the Foreman common
page.

e

Marking WE.USE has first priority, since it blocks deallocation
of the workspace by all other Foreman processes. Loss of an
incomplete rerun list entry is of no importance, so RR.TOOLID and

k RR.IDX can be completed next. RR.WMFLAG can be set to -1 at this
time. Finally, setting RR.IDTYP to +1 signals that a stable
state has been reached from which the tool may be rebegun. (Note
that prior to this, RR.IDTYP has necessarily been zero, since
this is the only condition under which a rerun list entry can be
considered to be free.)

A special state, RR.IDTYP = +6 is reserved to indicate that
the LND for the saved workspace contains no files. For such tool
sessions, the Foreman will attempt to notify the Works Manager
that it is discarding the entry. After setting RR.IDTYP to +1,
the LND is examined to determine if it contains any files. If
none are found, RR.IDTYP is changed to +6. At this time the
mutual exclusion semaphore on the Foreman common page may be
freed to allow access by other Foremen.

The tool cannot be rebegun until the WM has acknowledged the
tool session as rerunnable. RESCUE will be modified to check the
LND to see if it contains any files. The WM-LND-SAVED message
will be generated whether or not the LND contains any files;
however, if the LND contains no files, RR.IDTYP will have been _
set to the special state +6 and a NEW list argument in the ;
WM-LND-SAVED message, "empty-tool-session-list", will be sent |
with a single element equal to the tool-id. If a non-empty LND
was previously found (RR.IDTYP = 1), "empty-tool-session-list" :
will be returned with no elements and the tool-id will be ‘
reported in "saved-tool-session-list". (This is a proposed ‘
modification to the present protocol, and requires the
concurrence of COMPASS and other NSW participants.) The WM will
reply by returning the tool-id on the "exception-list" if either
the tool session cannot be idenivified, or it is OK to throw it
away. If the tool session is to be discarded, WE.USE is
immediately cleared, along with RR.IDTYP, on receipt of the reply
to the message WM-LND-SAVED. Then, the other rerun list entries
may be cleaned up (RR.WMFLAG <== @, etc.). If the tool session
is to be saved, it is only necessary to set RR.WMFLAG to the date

A-9

m"‘%m ke S SR s i o il e e R By B g o it fkw

3
5

BBN Report No. 3752 Bolt Beranek and Newman Inc.

and time reported by the GTAD JSYS, as previously described. The
LNDSAVE is completed by changing RR.IDTYP to state +2. It is
necessary for these modifications to the data base to be
performed under the protection of the common page mutual
exclusion semaphore, since resetting RR.IDTYP will permit another
Foreman to attempt to use the rerun list entry being reset. The
need for mutual exclusion can be avoided by making RR.IDTYP the
last rerun list entry to be changed.

This stable state (files preserved in protected workspace,
RR.IDTYP = +2) is roughly equivalent to the state in which all
tool sessions are preserved under the present implementation. As
mentioned previously, we want to eventually move the files from
this protected workspace to the general directory <svdrnm>.
There are many strategies by which this could be accomplished.
We could agree to start moving the files as soon as the WM has
confirmed rerunnability; however, since many LNDSAVEs will be in
response to transient failures of User-FE or perhaps FE-Tool
connections, and since the user will probably want to continue
his tool session as soon as he can get back into NSW, it would be
more efficient to keep the files in the rerunnable workspace
until the workspace is needed for a new tool session. Since the
tool session which has just been LNDSAVEd is a current session,
and since usually the best candidate to move to <svdrnm> is one
of the older (if not the oldest) saved tool sessions, it is
resonable to assume that no further manipulations will be
immediately required on the session just saved. We will address
the problem of when to actually move the saved files to <svdrnm>
in the broader context of how best to manage shared TBH
resources.

2.2 General LNDSAVE

In the case of a TBH restart, initialization and crash
recovery proceeds essentially as outlined in 1.2 above. The
mutual exclusion semaphore of the oreman common page is locked,
whether or not the common page was previously in use (only the
initializing Foreman is permitted this liberty to gain control of
the data base for restart). The initializing Foreman looks for
workspaces which were in use at the time of the crash (indicated
by 777777 > WE.USE > @). Each such workspace is initially listed
on the rerun list. The LND is examined before listing each
workspace; if the tool session has any files (and hence should be
rerun), the rerunlist entry is made with RR,IDTYP = +1, but if
the session has no files (and hence should be discarded), the
rerunlist entry is made with RR.IDTYP = +6 and the workspace is
deallocated. It is important at this point to check for the
possibility of a TBH crash occurring during a prior LNDSAVE
(either individual or general). This is disclosed by the
detection of a protected workspace (WE.USE = 777777) which is not
on the rerun list, or which is listed, but does not have RR.IDTYP

A-10

T S = o B,
o -
:

M Dt B e
e

TN e

BBN Report No. 3752 Bolt Beranek and Newman Inc.

= +2 or +3. This crash state is processed quite simply. It is
only necessary to assure that the states of the two data
structures, WE. and RR. are properly synchronized before
transmission of the WM-LND-SAVED message. Any locked workspace
not on the rerun list is added to it, just as if the Foreman had
come up with the workspace in use from a previous crash. 1t is
probably easiest to simply expunge the old rerun list entry if it
is incomplete, and create a new onej however, the logic by which
sub-entries are made should assure that one can recover by
"filling in the blanks". That is, if RR.IDTYP = +6, it is not
necessary to recheck the LND. On completion of this initial
phase of the general LND saving operation, every workspace in use
must be locked and listed on the rerun list with RR.IDTYP = +1,
+2, +3, or +5. All other rerun 1ist entries must be in state +4,
+5, +6, or +7. Eventually, in our recovery scenario, state +3
will be resolved to +2 and state +5 to +4, while states +6 and +7
require no special action since they indicate pending deletions.
However, these actions need not be implemented as part of the
initial steps of rescuing tool sessions in progress at the time

of the crash.

The next step is to report all newly-saved tool-id's to the
WM. The rerunlist is scanned and all tool-id's with RR.IDTYP =
+1 are entered on "saved-tool-session-1list", while those with
RR.IDTYP = +6 are entered on "empty-tool-session-list"”. There
should be no tool-id which has RR.IDTYP = +1 and RR.WMFLAG = 0.
These two lists are sent to the WM in the general WM-LND-SAVED
message. The reply from the WM contains two lists,
"acknowledged-tool-sessions-1list" and "exception-list". All
workspaces appearing on the e-ception list are freed and removed
from the rerun list, providing RR.IDTYP = +1, +2 or +6. All
others on the exception list are set to a "garbage state", +7.
This permits the WM to delete tool sessions that have been
previously saved. All workspaces appearing on the acknowledged
list are time-stamped in RR.WMFLAG and then have RR.IDTYP set to
+2 from +1. Confirmation of any other listed tool-id (RR.IDTYP
not +1) is ignored. A non-existent tool-id will log a non-fatal

error message.

This completes the initial recovery phases of the general
LNDSAVE operation. The initializing Foreman releases its lock on
the common page, enabling other Foremen to begin running or
rebeginning tools. The initializing Foreman may now take the
actions necessary to resolve rerun list entries with RR.IDTYP =
+3 or +5 at the time of the restart and then enter a background
service mode associated with continuing management of the TBH
Foreman activities, including movement of files from the

workspaces to <svdrnm>.

Unfortunately, it is possible for the TBH to have crashed
with files being moved to or from <svdrnm>. If files were being
moved from the workspace to <svdrnm>, RR. [DTYP will be +3, and

A-11

> T T R o A T Ay e pe—

e

L Y

BBN Report Ho. 3752 Bolt Beranek and Newman Inc.

the proper recovery procedure is to delete and expunge all files
in <svdrnm> associated with the rerunnable tool-id and then reset
the session state to +2. A curious ambiguous state of the data
base exists if the TBH crashed after all files had been moved to
<svdrnm> and the workspace had been deallocated, but before
RR.IDTYP could be changed to state +4. To allow for this
contingency, a rerun list entry trapped in state +3 at TBH
restart must be checked for the continued presence of a locked
workspace; if one is found, then the file movement was incomplete
and should be deleted in anticipation of a later try. If one is
not found, then the file movement must have been complete, and
the state of the rerun list entry should be changed to +4
instead.

If files were being moved from <svdrnm> to a newly assigned
workspace, RR.IDTYP will be +5, and the proper recovery procedure
is to deallocate the new workspace, if one had been assigned at
the time of the crash, fix up the rerun list entry, and reset the
state to +4. To assure that the new workspace, which is not
rebeginnable, is deleted rather than processed by the LNDSAVE
section of the Foreman restart procedures, the REBEGINTOOL
implementation must change RR.IDTYP from +4 to +5 before it
assigns the new workspace to rebeginning the saved tool session.
There is no set of conditions under which the contents :f the new
workspace would be preserved. The REBEGINTOOL implemetation
must change RR.IDTYP from +5 to +2 only after all files have been
successfully copied (including the LND) from <svdrnm> to the new
workspace.

It is undesirable for a different Foreman to attempt to
rebegin a tool session while the initializing Foreman is
releasing it from one of these two intermediate states (+3 or
+5). It is also undesirable to lock out all other Foremen from
beginning or rebeginning any other tool for the duration of this
cleanup operation. Accordingly, our implementation provides that
any Foreman attempting to rebegin a tool session in state +3 or
+5 will dismiss action for a period of time and try again later
on. Since the cleanup of these intermediate states occurs
immediately after the lock is released on the common page, there
will be a minimum time before a tool session which is in one of
these state can be rebegun.

After completion of all these actions, the initializing
Foreman will enter a new mode of operation as a background
service program, responsible for garbage collection of <svdrnm>,
movement of files from old saved workspaces to <svdrnm>, and a
number of other functions not directly related to the subject of
this note. The detailed operational strategy for the background
server is described in section 2.4 below.

T
R gy
it e i i i g oo

BBN Report No. 3752 Bolt Beranek and Newman Inc.

2.3 FM-REBEGINTOOL Implementation Plan

As described in 1.3 above, resumption of a previously
suspended tool cession is initiated by receipt of the
FM-REBEGINTOOL message. The message specifies the unique tool-id
of the tool session to be rebegqun. The rerun list is examined to
find an entry with a RR.TOOLID matching the desired tool-id.

When it is found, the associated RR.IDTYP is examined. If this
indicates the tool session is in state +2, it may be rebegun
immediately; the workspace is located via RR.IDX, the
corresponding WE.TOOLID is checked, WE.USE is set to the current
Foreman instance number, the rerun list entries are cleared, and
the Foreman rebegintool code executed (this is essentially the
same as the present implementation). If RR.IDTYP is @, +1, +6,
or +7, this rerun list entry is not valid for rebeginning a tool
session, and further action is required. For states 0, +1, and
+6, this is simply the reporting of an error to the WM; however,
the function of the background server program is such that a
tool-id may be listed twice, providing that one entry is +7.

This state of affair occurs if the TBH crashed during execution
of a previous REBZGINTOOL, after files had been moved from
<svdrnm> to a workspace, but pefore the background server had
garbage collected the archival entries of files in <svdrnm>. the
search for matching tool-id must continue. If the state is
indicated as +3 or +5, this entry is rebeginnable, but
temporarily locked; the Foreman will dismiss for a while and try
again (by which time the initializing Foreman process should have

resolved the lock).

1f RR.IDTYP indicates state +4, the tool session has been
transferred to <svdrnm>, SO the Foreman will execute code
(FILGET) to retrieve the necessary files. This works in the
following way. RR.IDTYP is set to +5 to indicate that the tool
session is being retrieved. A free workspace is selected and
assigned to the current Foreman. (WE.USE <== MYINCNO; WE.TOOLID
¢== RR.TOOLID; RR.IDX <== workspace-index) The index to this
workspace and the tocl-id are passed to FILGET, which maps the
saved files for the ool session from <svdrnm> toO the assigned
workspace. The LND will be the last file mapped. After
successful mapping of all working files and the LND, the Foreman
completes the assignment of the workspace to the tool session by
flagging the rerun list entry for garbage collection by setting
RR.IDTYP to state +7. After the workspace has been set up with
the old saved files, and the tool session flagged on the rerun
list, the Foreman proceeds as before to connect its fork to the
designated directory and to enter the regular code for file
delivery and termination, after replying to the WM.

The new routine FILGET operates in the reverse manner from
the component of the background server charged with moving files
to <svdrnm>. FILGET first copies all files named
"YXNSW- (tool-id)" from ¢svdrnm> to the workspace and then copies

A-13

A A

s e i SR B R b Sl Sl e S
o B

b el R MU PR ™ DL e Ll S VR g —— N RE—— L Lol
K . AT =T i " EEEPU S L TSNV Gt e | SN N

BBN Report No. 3752 Bolt Beranek and Newman Inc.

the LND. A successful return from FILGET canses release of the
rerun list entry. For reasons discusc ! in 2.4 below,
resynchronization in the event of a Thi crash can be accomplished

fairly easily.

2.4 Background Server Functions

The initializing Foreman will support a number of background
functiors related to the ongoing management of TBH resources not
directly related to any individual tool session. These functions
include general management of the rerun list, the rerunnable
workspaces, and the directory <svdrnm> for all functions not
already assigned to the regular Foreman initialization and
reliability code. On completion of the actions described in
section 2.2 above, the initializing Foreman will enter the
background service mode of operation. In this mode, the
initializing Foreman (background server' will be responsive to
messages via MSG and will respond to periodic signals of definite
elapsed time periods to perform its housekeeping tasks.

Periodically, according to an algorithm discussed below, the
background server will perform its routine processing of the
rerun list. On these cycles, the Foreman common page will be
locked only for brief periods of time, and only tool sessions in
states +2, +4, and +7 will be examined. Every tool session in
state +7 is to be expunged. If it has any files in <svdrnm>,
those files are deleted and expunged. When these actions are
complete, the rerun 175t entry is reset to the free state. These
actions represent the garbage collection function.

Tool sessions ir. states +2 and +4 are screened according to
their ages, as measured by the time elapsed since the recorded
RR.WMFLAG time stamp. A state +4 tool session more than a given
number of days old is simply marked for garbage collection
(switch to state +7). A state +2 tool session more than a given
number of minutes old may be transferred to <svdrnm>. To do
this, the state is cwitched to +3 and the files are all copied to
<svdrnm>, the LND being mapped last. After successful mapping of
the LND, the workspace is deallocated and tle tool session state
switched to +4.

There are several possible strategies for managing the
operation of the background server. It may function
periodically, simply by setting a timer for inter-service
intervals, or it may operate on demand. Since its primary
function is to keep the set of available workspaces free to
handle the beginning of new tool sessions, it is probably most
2ffective to have it function more-or-less on demand; however,
common garbage collection functions can adequately be handled
with somewhat infrequent wakeup intervals. As a result of these

A-14

S ko il v o i i o AL s o it ,.J;Xb

& uCa

BBN Report No. 3752 Bolt Beranek and Newman Inc.

considerations, the strategy we are adopting is a mixture of the
two approaches. Let a count of the number of unassigned
workspaces be maintained in the Foreman common page. Let the
background server wake up periodically (say every 15 minutes),
examine this count, and, if it is not smaller than some fixed
value, dismiss for another fixed interval. Let each Foreman
beginning a tool session reduce this count by one. The
activation level for the background server will be set on the
basis of the assigned frequency of background service and the
expected rates of beginning and ending tool sessions. The
background server will be receptive to an interprocess signal
dismissed. Let each Foreman beginning a tool session signal the
background server (whose process name has been saved by itself in
a block of the common page at ini:ialization time) when it takes
the next-to-the-last availablie workspace. This strategy seems to
provide a smooth transition from a state in which the cleanup and
garbage collection procedures zre purely cyclical to one ir which
they are interrupt-driven as a function of the demand for new
workspaces and the frequency of LNDSAVEs.

A-15

