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S|1 .NTRODUCTION

1.1 Remote Systems Overview

Man and the functional environment with which he deals are

j |becoming increasingly separate. Remote systems such as undersea robotic

A systems, remotely piloted aircraft, extraterrestrial teleoperator systems,

and biomedical manipulators extend man's influence across distance,

time, and function. But as these systems amplify man's capabilities,

they simultaneously introduce new sources of uncertainty. The machine

I almost by definition acts as an intermediary between the task environment

and the operator, making certain states inaccessible to direct observation.

SI The operator must then depend upon artificial devices for sensing,

processing, and communicating situational information.

To some extent, the amount of infomation exchange required is

dictated by the degree of remote system autonomy. For example, operation

I of a simple remote effector without autonomous capability requies that

the operator continuously close a real-time feedback loop around the

remote element (Ferrell, 1973). Sufficient information must be transmitted

to enable the operator to judge distances; interpret forms and shapes;

I appraise contacts, orientations, forces, and motions; and to issue complex

commands (Bejczy, 1973). Much less information transmission is needed if

I the remote element takes over a portion of the routine, recurrent control

and decision making functions. In this situation, the operator retains

I responsibility for evaluation, problem solving, and supervision, but is

relieved of the continuous control function (Singleton, 1976). A good

example of this form of supervisory interaction is advanced aircraft

control. An aircraft control system has a hierarchy of control stages,

some of which are delegated to the machine and some to the operator. The

.1 inner loops of aircraft control entail such functions as vehicle1,
II-
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stabilization and short-range guidance. These routine, high frequency

tracking tasks are typically automated. The higher level loops of

navigation and long-range guidance, involving the more discrete processes

of problem solving and decision making, are normally delegated to the

operator (Johansson, 1976). This allocation of function results in a

decrease in the amount of continuous communications. Further, the

allocation matches the information flow more closely to human information .1

processing capabilities.

Remote systems demonstrate additional needs for minimizing

communications, since the operator is physically separated from the

system he is controlling. The information interchange in remote systems

can be extremely costly and time consuming. Beiczy (1973) and Freedy, II
Hull, Lucaccini, and Lyman (1971) note that communications between an

operator on Earth and a remote manipulator in space are limited by factors I

such as time delay, bandwidth, signal-to-noise ratio, and maximum video

frame rate. Thu! the remnte operation becomes an increasingly laborious,

slow, power consuming, and costly process as the distance to the remote

element increases. Even in closely linked terrestrial applications, the

communications costs can be high. Communications in remotely piloted

vehicle (RPV) control demonstrate significant energy costs, reduree system

reliability, and increased possibilities of detection (Fogel, Engiund,

M4out, and Hertz, 1974; Mills, Bachert, and Hume, 1975).

The substantial communication costs have led to development of

greater autonomous capabilities in remote systems. Machine intelligence--

denoted by Bejczy (1973) to be programmed control systems above the level

of numerical (or memory) control--has probably received the most attention.

Machine intelligence involves learning control based on pattern recognition,

Bayesian estimation, reinforcement learning, stochastic approximation, and

other sophisticated methods (see Fu, 1970, for a discussion of these

techniques). The incorporation of machine intelligence allows the

[1II
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operator to give mor- general cGoands. He car, then rely on the remute

1unit to carry out the comands (Ferrell, 1973). Idcal'iy, the recessary

communications are thus reduced to status updates and interchanges of

jprogram objectives. In actuality, however, the operator must still

frequently interrogate the system to verify performance and to identify

I critical situations.

"One methiod of reducing such inefficient i.iterrogation is to

I extend the function of the remote intelligence to include conunic.itions

evaluation and management. This should be well within t;Oe realm of

f feasibility. Machine intelligence n.rmally implies some explicit or

implicit m3del of the remote elcment, its environment: and task objectives.

jThe model should already be capable of assussing confidence levels for

machine and human control in the immediate action. It Nhould also be able

jto determine the efficacy of providing control information to the operator.

In fact, some initial efforts have been made toward placing such a

communications initiative with the machine, Information And control

allocation cechniques have been proposed using criteria based on queuing

models (Rouse, 1975; Engstrom and Rouse, 1976), optimal control models

I (Sheridan, 1976), and multi-attribute decis'on models (Steeb and Freedy,

1976). The present work p-oposes t-, develop end integrate these efforts

1.2 Communications Evaluation as a Decision Problem

I The communication of information between man and remote systcin is a

good deal more complicated than deciding when to pick up the receiver.

Choices must repeatedly be made regardIing variables such as the mix of

Information sensing, processing, encoding. transmitting, and display.

Throughout th!s process, a balance must be maintained between maximizing

operator awareness of system operation ar,d minimizing communications costs

1 Jand eperator load.

I1-
1-3
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At first, this appears to be a mathematical optimization

prcblFm--like searching for a diet that provides the necessary nutrition

a- minimum cost. However, the mathematical programming techniques requioed

for this optimization--linear programming, goal programming, dynamic

proe;'adning, etc.--demand rigid problem structuring hnd continuous

variables. More often, the communication decision is incompletely defined

and involves choices among discrete rather than continuous alternatives.

Thus the discrete operators used in decisian theoretic techniques--matrices,

difference operato-s, and detailed pardmeter enumerations--are more

appropriate.

The specific decision to be modeled is what type of information to

send and ýihen to transmit it. The operator (or, equivalently, an

information management system) mu,t select an alternative on the basis of

a number of multidimenslonzil and risky (probabilistic) factors. Decision

theory provides a normative framework for such choices, tying the decisions

to situational factors (linear cue models) or to the impAct of information

on system effecCiveness (multi-attr;bute expected utility models).

Chapters 2 and 3 will provide a detailed comparison of these approaches.

1.3 Subjective Elements of Information Value

The form of the decision model can be developed from completely

objective factors ("true" probabilities, dollar costs, etc.), from

purely subjective factors (subjective probabilities, utilities for
consequences), or from some combination of the two. A purely objective

analysis of information value would have to include a complete mapping of

system conditions and possible decision outcomes to operational goals.
Felson (1975) states that only in a few highly structured situations can

such an optimal model be derived. Also, even if such a model is

developed, acceptance of the aiding provided to the operator may be

1-4tfIl
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lessened sincp individual operator preferences would riot be incorporated

in the machine decisions (Hanes and Gebhard, 1966; Ferguson and Jones,

1969),

A more promising task is to elicit or infer the operator's goal

I structure and then to incorporate it in a model of the decision situation.

This is the approach currently taken. By incorporating operator utilities

I in the model, complex evaluation and goal direction functions are performed

by the operator, while normative aggregation functions are assumed by the

computer. Loss of optimality in such a pragmatic approach should not be a

I major problem, as operator utilities for information have been found to

approximate objectively derived values (Wendt, 1969; McKendry and

I Enderwick, 1971). Also, the subjective values may reflect aspects that

are not analytically tractable at the present time. These aspects include

j timing factors and expected influences on subsequent information decisions

(v.Winterfeldt, 1975).

1 1.4 Decision Modeling Philosophy and Objectives

One can use widely differing philosophies to model and aid the

information-seeking decisions of the human operator. Available

techniques focus on such diverse themes as uncertainty reduction,

behavioral cue regression, and risky utility maximization. To a degree,

3 all of these methudologies are potentially applicable to conmnunications

in remote systems.

Fortunately, there are some guidelines for model choice arising

from the special circumstances of remote systems supervision. For

example, behavior prescription by a normative model is far more important

than simiple prediction by a descriptive model, since the model Is to be
I used for Information evaluation and management. Also, the operator is

I1-
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expected to explicitly consider the likelihood and importance of achieving

specified system objectives. A nirmative model is again suited to

capturing such goal-oriented behavior. Finally, incorporation of the

model into the remote system demands simplicity, immediate access to model

parameters, minimal interference with operator function, and generality.

It is not guaranteed that any model will satisfy all of these criteria.

Nevertheless, an attempt will be made to develop a normative model that

satisfies many of the above goals.

The decision model has other potential benefits in addition to

evaluation a,'d management of communications. The model is expected to

provide a framework for comparing alternative configurations of

information sources, transmission systems, and displays. The model may

also be used for selection and training of operators through comparison

with "expert" judgment. Information needs may be disclosed through

sensitivity analysis of modeo parameters. Finally, the model is expected

to result in more consistent and effective operator decisions by providing

on-line recommendations to the operator. Each of these possibilities will

be developed in the following sections.

1-6
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2. INFORMATION SEEKING BEHAVIOR

2.1 Overview

The activities surrounding the selection, acquisition, and

processing of information can be surprisingly diverse. Even in the

rematively specialized task of remote system supervision, information-
related activities often constitute a majority of the operator's functions.

The operator must maintain an awareness of the remote environment state,

the machine state, the capacity and quality of the cormmunication channels,
and the progress toward objectives. This section will explore the more
important techniques of modeling these inforr• tion-related activities.

I For simplicity of phrase in the analyses, the processes of information
recognition, selection, and acquisition will all be subsuiaed under the

term infermazrion secking.

The major meth 5logies of modeling Information seeking behavior 4I can be somewhat arbitrarily divided into three catego,'ies: inform.,:lon

theory, cue regression, and utility theory. Each of these technicques

attempts to model the usefulness of information for the decision maker.

The techr.iques differ in the amrint of structure assumed by the decision
model. Following a discussion of what constitutes relevant information..
(regardlhss of modeling philosophy), each of the methodologies will be

SI discussed in turn. The c'-apter ends with a comparison of the potential

- contributions of tiie different techniques to renote systems analysis.

2.2 Information Relevance

Before bounding into the morass of mathematics, behavior, and
models, it is necessary to define some conceptual rules. In particular,

I lone n.teds to define what constitutes useful information and what properties

2-I'I



an information model should exhibit. These definitions can be derived

from the basic relationship of information seeking to decision making.

In the most general sense, information has been described as data

of value in decision making. The effect of the information is to reduce

some element of uncertainty in the decision making process. The uncertainty i
may be concerned with the structure of the decision, or it may deal with

the relations between the structural elements (Whittemore and Yovits, 1974;

Nickerson and Feehrer, 1975). Specifically, Whittemore and Yovits define I

the structural elements of a decision to be the possible set of actions,

outcomes, states of nature, and godls. Each of these may be defined

along continuous scales or as discrete elements. The information may help

to define the members or the domain of these sets. More commonly, however,

the decision structure is already defined, and the information acts to

define the relations between the structural elements. These relations are

the parameters normally dealt with in decision analysis--the probabilities

of the states of nature; the conditional probabilities of outcom.s given

certain actions; and the values of outcomes according to the goal structure.

Information may contain structural data, relational lata, or both. As a

corollary, then, information is valueless in a non-probabilistic, completely 4
structured decisioii.

It is not enough, however, that some uncertainty regarding the

decision structure and relations is reduced, since behavior and hence,

consequences, may be unchanged. To identify actually pragmati-' or

consequential information, Whittemore and Yovits (1974) define the

informon--the minimum amot-nt of information needed to change the state ot

a decision maker. The circumstances necessary to change this state have

been best enumerated by Emery (1969): (1) the information must affect the

existing representation of the decision situation; (2) the change in the

representation must then affect the decisions made; and () an lnrease

11
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must occut in the utility resulting from the changed decisions. Information

thus has value only if it changes the organization's formal view of the

world, if decisions are sensitive to such a change, and if the utility

3I derived is sensitive to differences in decisions.

There are several reasons why information may not have this impact.

Information may be ineffective in changing the situational representation

and resulting decisions because the data is too coarse or tco fine

5I (Marschak, 1963). Information that is too coarse fails to distinguish

between effectively different states of nature for at least one of the

alternative actions. Information that is too fine differentiatas between

states having identical payoffs for all actions. Effective information--

iI data that is not t3o fine or too coarse--is termed by MarsLnak to be payoff

In surmary, th 1, a Lomplete model of information seeking behavior

must; (1) reflect the data's effect on uncertainLy reduction. (2) identify

the change in behavior, and (3) quantify the difference in decision

consequences.

2.3 Inforn..tion Seeking Models

1 2.3.1 General. The concept of evaluating information on the basis of its

m effectiveness in improving decision making has led to a vwrietý of

m quantitative models for information sjeking. The most influential are the

normative modIs used for preLcribing optimal behavior. These normative

S1procedu.res involv maximizing ý,in or utility, minimizing losses, cr

ac ievi j gr(atest unc.•rta nty reductior.. Urfortunately, the operator

3m rarely acts optimally. More flexible avid varied descripcive models are

thus required to capture th, information seeker's it1dividual polcy.

Multiple regression, heuristic models, and modified normative models are

2-3
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used widely for such descriptive modeling. The following review will

attempt to characterize the various models in terms of normative qualities,

descriptive capabilites, degree of completeness, and practicality.

2.3.2 Information Theory Models. Information theory provides a simplistic
but direct means of specifying the impact or value of an item of information. 1
The measure of information value is given in terms of reductior of

uncertainty to a decision maker. In its early form, information theory

(or more correctly, communications theory) used choice information as a .1
measure of the freedom of choice one has in selerting a message from a

population of symbols (Shannon and Weaver, 1949). In this limited I
appllc3tion, the context, meaning, and effectiveness of the message are of
no significance. The theory is concerned only with the probability of I
receiving any particular message for various conditions of the transmission

system.

Whittemore and Yovits (1973) expanded the information theory
methodology by redefining the concept of uncertainty and by introducing I
aspects of decision theory into the formulation. In their model,

un;ertainty may be associated with the structural aspects of decision 11
mwking--the possible sets of act;ons, outcomes, state of nature, and

goals--along with the relational connections between these structural P
aspects. Information is considered to reduce the uncertainty associated
bvtth eitner the structiral or relational elements. 11

Just as the bit was developed as the primary unit in communications 11
theory, a single index was formulated by Whittemore and Yovits (1973, 1974)
to represent the impact of information. They derived an overall function

of decision determinacy--the uncertainty sui'rounding the choice of a course 11

of action. Tý:s measure represents the combined effects of the information

2-i



"on the decision maker's understanding of the situation. Whittemore and
UYovits represente this quantity in the following manner:

Decision Determinancy = J p(ai) - (2-1)
1=1

where

I ai, i=1, m are possible courses of action

p(ai) is the probability of choice of action i given the decision

maker's knowledge

- I If each p(ai) = 1/m, the situation is completely undetermined, and thus

the above function is essentially a distance from indeterminacy.III
It is assumed in this formulation that it is possible to obtain

3 a distribution that reflects the operator's overall inclination toward

the various courses of action. One possible form is the probabilisticii model of expected utility. Here each action is selected with a probability
related to its expected utility (Becker, DeGroot, and Marschak, 1963; also,

see Section 2.3.3 for a description of expected utility models). In this

way, the probabilities of choice are depenaent on both the structural and

relational components of uncertainty. The information results in changes

to the model parameters, new courses of action become favored, and the

decision determinacy is increased.

In general, this uncertainty reduction formulation accords witW

* m the requirments of responsiveness to changes in the situation and in the

, U decision maker's objectives. It appears descriptive, but lacks a normative

framework for directing behavior. Also, the formulation does not result

* ir. an easily derived scale of information value. The remaining techniques

will be seen to be more definitive.

I
I
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2.3.3 Utility Methods. Utility theorists provide an essentially optimal

but not necessarily descriptive approach to modeling information seeking.
They calculate the expected information impact on the estimate of the

state of nature. Then the increase in decision effectiveness under the
new situation estimate is determined. This provides a strong tie between

information and action choices, but at the same time requires a well-

structured decision task.

Development of a utility model of information seeking requires .1

that the possible states of nature, information choices, actions, outcomes,

and values can all be exhaustively enumerated. The values may be either ?

objectively defined (i.e., costs, payoffs) or subjectively estimated
(subjective values or utilities). Each action and state of nature is

assumed to be associated with a payoff or utility, as shown in the payoff

matrix in Figure 2-1 (Emery, 1969). Each utility value in this matrix

represents a summation of the multidimensional consequences stemming from

the specific action -Ad state of "ature.

A key component of the model is the state of nature during an *

action. This state is uncertain for two reasons (Emery, 1969; Sheridan,

1976).

(1) An action takes a finite time to implement, and so the

states considered are future states. Such states are
inherently uncertain.

(2) The states of nature are perceived only indirectly through

an information system. Thus existing and future states are

known imperfectly.

The information system can be characterized as an s by m Markov maxtrix

relating messages to the possible unknown states of nature (Figure 2-2). The

I2
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STATE OF NATURE

h zm

1~l z1) (a1'zh , Zm)

IACTION ak u(ak, Z1) u(a, Zh) u(ak Zm)

ax u(ay z1) Nan, Zh ulak Z)

FIGURE 2-1. DECISION PAYOFF MATRIX

MESSAGE

zi P(II) P (y j z1 ) P(Yn1z1 )

STATE
OFh P(Yllzh) P(Yjlzh) P~nzh)I NATURE

zm P(YiIZm) P(YjIZm) P(YnIzm)

23 FIGURE 2-2. INFORMATION SYSTEM MATRIX
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matrix elements P(yjlah) are the conditiý.nal probabilities of receiving

message j if state h prevails. Off-diagonal elements indicate imperfections

in the information system. Such an imperfect correspondence between stal2

and message may be due to a failure of the messages to discriminate between I
states, or may be the result of random errors in the messages.

A Bayesian analysis can be used to determine the usefulness of -I

acquiring information to sharpen the estimate of the state of nature

(Wendt, 1969). Let P(zh) be the prior probability that state Zh will i
occur during the coming decision. The reised probability of state Zh,

given the message yj, can be given by Bayes' theorem:

P(YjlZh) "P(Zh) :
P(zhIY1 ) = p(y j) (2-2) ',

where

P(y.) = P(yjNzh) P(zh) (2-3)

The vwlue of information derives from the fact that only one

riessage, yj, is selected from the set Y of possible messages, and that

this message allows improved inferences about the state of nature. To

determine the value of the information structure, then, one must estimate

the probability and impact of receiving each potential message y. (The
subscripts i, J, h will be dropped in the following discussion for

simplification.) In the coming paragraphs, a decision policy will be

established for action selection in response to the message received.

Then an expectation taken over all possible messages provides a figure of

merit for the information system.

2-8



The optimal decision rule for action selection in a non-conflict

m I situation is the max.mization of expected utility (EU). This rule specifies

selection of the action with the highest probability-weighted utility. If

J a specific message y is observed, EU maximization taken the following form:

aI *(Y) max I P(zly) u(a,z) (2-4)
a

SThus the optimal decision rule a*(y) selects the action a that maximizes

the expected utility under the revised probability estimate P(zly). The

Ivalue of an information system, v(r), is calculated by summing across all

possible messages:

v(r) : • • P(z,y) u(c'*(y),z) (2-5)
Syz

The joint probability of state z and message y can be decomposed
in the following manner:

I P(z,y) P(z) P(ylz) (2-6)

j resulting in:

v(r) = j P(z) P(y!z) •U(a*(y),z) (2-7)
yz

i JThe overall expected value of the actions taken using informat'lon

I system y can thus be calculated using three sets of parameters: (1) P(z),

I the prior probability of each state; (2) P(ylz), the information system

mtrix; and (3) u(a,z), the utilit or payoff mtrix. The fair cost of an
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inquiry with the information system is the difference in expected utilities

with the without the inquiry:

Fair Cost = I P(z) P(ylz) u(a-(y,z)),

(2-8) ,
_max 7 PIZ ~azyz

ia
This analysis is suited for highly structured tasks. Not only

must the possible states, messages, actions, and outcomes be specifiable, I
but tne prior state probabilities and the conditional probabilities

characterizin-g the information system must be derivable. The sequence of

decision stages can be depicted using a decision tree, as shown in .
Figure 2-3. The tree is folded back by associating with each possible

message the maximum expected utility of the subsequent actions. This I
folding back represents graphically the process of EU maximization. The

favored infonrm.aot!o source r is then Identifled by cnmparing the

expectations taken over all possible messages.

The state-message-action approach described above is directly

applicable to simple, d-;Lcrete information transfers. Examples of

information sources exhibiting such a discrete nature Are warning signals,

status displays, and mode indicators. The mnore dynamic and multidimensional

forms of information transfer such as video displays and radar scans, must
first be partitioned into analyzable elements. The normally continuous

states, messages, and actions must each be orgdnized into a small number

of meanitigfully distinct catagories. This catagorization is typically

based on payoff relevance. Catagories should be comaprised of elements U

heving equivalent consequences or implications.

Ii
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For example, the environmental states and the resulting messages

are often not difficult to disc,-etizp. The state variables by definition

can be measured and described with only finite resolution. Also, the

states are typically multidimensional, representing ensembles of

environmental variables. Those elements of the states or messages that

are irrelevant or unchanging can be ignored (Emery, 1969). .

The possible actions can also be reduced to an elementary set. In

addition to the foimation of equivalence groupings according to consequence,

there are techniques for identifying and deleting dominated actions.

Actions which exhibit inferior consequences comparel to some other action

for every state of nature (dominated rows in Figure 2-1) can normally be

deleted without problem.

Once the structure nf the decision is established, the appropriate

probabilities can be estimated. The key parameters are the conditional

probabilities P(y!z) characterizing each information source. These

conditional probabilities can be estimated either objectively or stibjectiuely.

Objective estimation is simply the actuarial tabulation of the transmitted

messeges and the subsequently observed states. Subje:tive estimations are

elicitaticis of judgments from the operator or inferences from his behavior.

However, Slovic, Fischoff, and Lichtenstein (1977) state that man is a very

poor Bayesian, systematically violating principles of rational decision

making when dealing with probabilistic tasks. Similarly, Goldberg (1968), '1
Rapoport and Wallsten (1972), and Beach (1975) have concluded that man's

probabilistic judgments are unreliable across time and acrcss diagnosticians,

and only marginally related to his confidence in the accuracy of his

judgments. In general, it appears that man is ill-suited for taking

responsibility for complex probability aggregation. The methods of -l

objective estimation are preferred whenever feasible. Once the conditional

21
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I
probabilities P(ylz) are defined either objectively or subjectively, the

I message probabilities [P(y)] and the updated state probabilities [P(z)]

can be derived.

1 It should also be noted that an upper bound to the value of

information can be easily calculated. This is the value of perfect

information--the advantage provided by a completely clairvoyant information

source. The perfect information tells with certainty what event will ensue.

I The difference in expected gain between an action taken with this

information compared to an action taken without it provides a measure of

I the maximum possible value of information (Macrimmon and Taylor, 1972;

Sheridan, 1976).

Utility Estimation. The utility u(a,z) associated with a given

state and action is typically a multidimensional quantity. The

4 consequences associated with a given outcome may be characterized by such

variables as resource expenditures, time delays, equipment losses,

I operator load, and goal attainment. For convenience, the consequence set

Is considered to include all costs and consequences, whether arising from

the information acquisition or the action decision. This incorporation

of information costs in the single function will simplify the parameter

estimation processes in the coming sections.

The consequences may be either objectively or subjectively defined.

For objective definition, the costs and gains associated with each outcome

must be directly accessible. The choice of action can then be made solely

I on the basis of expected dollar return, ship-equivalents lost, or some

other objective criterid. However, most real-life decision situations are

s. complex, unstructured, dnd poorly understood that such optimal decision

systems cannot be designed (Felson, 1975). Instead, the operator's

I subjective value or utility for a given outcome must frequently be used as

a guide. This is not necessarily bad. Operator utilities for outcomdes or
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information are often close to the objective values (Wendt, 1969; McKendry

arnd Enderwick, 1971). Also, the subjective values may reflect important

non-analytical aspects of outcomes, such as expected influences on

subsequfnt decisions and individual operator needs. Finally, the

subjective values are criteria t~iat are condensed from experience, making

the derivation of a complete but unwieldy dynamic model unnecessary.

The most tractable form for decomposition of the multidimensional

cutcomes is the additive multi-attribute model. This model requires

satisfaction of severa; assumptions regarding behavior, which will be

discussed in the contex, of remote systems decisions in Section 3.2. For

now, let it be assumed that the axioms are met. The model takes the

following form: :1
N

u(az) u(xx,....xn) = ui(xi) (2-9)
n- i

where '1

xi is the level of attribute xi: u(x) and ui(xi) are utility

functions scaled from 0 to 1 (

K is the scaling constant of attribute i

The notation used above and in the coming sections follows closely that

used by Raiffa and Keeney (1975). Each distinct outcome is considered to

be different combination of levels of the attributes xi. Thus a single

attribute vector characterizes each outcome.

The information seeking model (Equation 2-8) adds the aspect of

risk to the multi-attribute formulation. Risk, in this context and in the

remainder of this work, refers to a situation where the decision maker is

able to specify a probability distribution over the possible outcomes of

2I
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an actio,.. Each cMoice in the decision tree of Figure 2-3 can, by folding

I back, be assciated with an expected consequence vector. If axiomatically

sound, this results in a multi-attribute expected utility formulation:

M N
E [u(x)], Y P(x.) ý Ki ui (xij) (2-10)

J=l i=1I

where

F [u(x)]F is the expected utility of inquiry r, and

P(xi) is the probability of outcome j with this inquiry

The normative nature of the EU mouel is well established, but its
descriptive ability has been under a certain amo.-:nt of attack. Tversky,

I Lichtenstein, and Slovik (1972) argue that descriptive models of choice

must take into account cognitive variables such as memory and set.

i,,,,,a, y. Tv•,•ky arid Kahn&euan (1973) have shown that decision makers

often use heuristic, strain-reducing policies to simplify complex situations.

In general though, the usefulnes-. of EU models is conceded in situations

where the number of attributes is low ard the decision maker can relate to

all attributes in terms of 9robabilities (Goodman, Saltzman, Edwards, and

I' Krantz, 1971). Also, The EU mcdels have the advantage of modeling both
descriptive and normative behavior, unlike m.,st of the other, heuristic-

based models (Wendt., 1973; v.Winterfeldt and Fischer, 1973).

Less critical problems may also manifest themselves with the EU
model. The analysis up to this point has been based on deterministic

models of choice. The choice or action with the maximum expected gain is

presumed selected, and randomness or change of behavior is not expressed

by the model. A family of models that take such behavior randomness into

account are the probabilistic models. These models are based on a theory

of random preferences that can account for substantial errors or fluctuations

2-15



I
in behavior (v.Winterfeldt, 1975). Among the more important probabilistic

models are the constant utility ,,iodels (Luce and Suppes, 1965) and the

random utility models (Becker, DeGroot, and Marschak, 1963). Constant

utility models assume randomness in the response mechanism, while random

utility models place this randomness in the utilities themselves. Unfortunately,

the difficulties of assessing and using the probabilistic utility functions has

made these techniques virtually intractable (v.Winterfeldt, 1975).

Similarly, utility models oi dynamic decision situations (in which -I

each decision affects the future decisions) are as yet unfeasible. Some

dynamic programming models have used static expected utility measurements

as inputs to their dynamic calculations (Slovik, Fischoff, and Lichtenstein,

1977). Thus far, however, no models have explicitly incorporated the I
dynamic nature of the decision environment into the utility measurements

(v.Winterfeldt, 1975). .1

The techniques currently used for deterministic utility assessment

can be divided into five main categories: ordinal scale methods, direct

methods, gambling methods, regression techniques, and pattern recognition

algorithms. The fi-st three techniques have been thoroughly reviewed and

analyzed by Kneppreth, Gustafson, Johnson, and Leifer (1973). With ordinal

assessment methods, the decision maker is asked to qualitatively rank his

preferer.;es. His rankings are used to develop an ordinal scale of utilities.

This can be converted to an interval scale if equal inter'als are assumed,

but the resultin6 sclae is only approximate.

Direct methods of utility assessment require the decision maker to

make quantitative estimates of his subjective feelings. These methods are

quick and easy to use since they do not require large numbers of repetitious

judgments a•id calculations. Their validity, however, has been questioned

because they do not follow the axioms of utility theory. Nevertheless, I
several researchers (Beach, 1912; Fischer, 1972) have showr• that direct

utility estimates are comparable with axiomatically derived estimates. f
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One axiomatic procedure that is especially useful for quantifyin-
* J utlities that vary on sc',ral value relevant attributes is conjoint

measurement. This technique costructe a utility function over the

S I multidimensional choice entities that decomposes to a single attribute
utility function. One procedure prescribed for defining the functions
involves indifference judgments to a sequence of unit steps in one
attribute and varying amounts in a second attribute (v.Winterfeldt, 1975).

While axiomatically valid, this process can be time-consuming and artificial

i to the decision maker.

Gambling methods require the a priori decomposition of complex
decisions into many simple lotteries Either the probability or the outcome

of each lottery is varied until the decision maker is indifferent between
the lottery and a "sure thing." Often, utilities associated with

probabilistic outcomes are different from those found with riskless choices.
Thus some form of gambling method is necessary for decisions under risk

* (Kneppreth, et al, 1973). Unfortunately, while the utilities thus calculated

are axiomatically valid, the process is long, tedious, and somewhat contrived.

I The regression and pattern recognition methods are the only
techniques that estimate parameters from actual in-task behavior. These 1

I techniques assume a model of behavior, such as a multi-attribute EU model,
and fit the parameters of the model to the observed behavior. The

I regression techniques usually require a large batch of observations and an
interval scaled response. The model parameters are then estimated using a

* "least aquared error" criterion. The pattern recognition approaches are

more iterative than the regression methods. An initial set of parameter

values is assumed and the model adjusts the parameter set decision-by-

dtclsion as incorrect predictions are made. The pattern recognition

approach thus has the advantages of refining the model each time information
becomes available, of requiring minimal memory, and of weighting recent

observations more neav 4ly (Felson, 1975b; Weisbrod, Freedy, and Steeb,
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in press). Also, the pattern recognition approach is very flexible in

structure. Differing criteria of modeling performance--predictability,

adaptability, robustness, etc.--can be met by varying the form of the

model riarameters and adjustment mechanism. 1

2.3.4 Cue Regression Approaches. Cue regression is a highly descriptive I
and pragmatic approach to modeling behavior. Rather than restricting the

model to the limited realm of normative behavior, cue regression assumes "j

only that the operator responds to situational cues in an algebraic fashion.

Then the information choices are predicted by simple linear combinations of

situational factors such as information cost, content, accuracy, and

timeliness. These factors are the characteristics that contribute to the

attractiveoiess of an information choice. The cues or features may also

include the factors treated by the normative models--the specific outcomes

of the decisions. However, the strict assumptions underlying the normative H
models-are not considered. As a result, the cue regression approaches

achieve great flexibility, but lack the goal-oriented power of the utility-

based methods. A

The parameters of the algebraic models are typically estimated

through analysis of variance, conjoint measurement, and multiple regression

(Slovik, Fischoff, and Lichtensteln, 1977). The simplest of these are the

regression approaches. Yhe regression methods employ correlational

statistics to define a linear model of individual judgment. The linear I
model form was developed from Brunswik's (1940, 1952) famous lens model.

This early model was an attempt to express the decision maker's policy of

weighting various stimulus dimensions. Initially, Brunswik's cueý and

judgments dealt solely with information concerning the environment state,

but later researchers expanded the model domain to hilude a wide range of j1
judgments (Rapoport and Wallsten, 1972).

II2-J i,



The structure of the cue regression model is quite simple. It is
, assumed that the decision maker provides numerical responses as judgments,

and that the responses constitute some linear combination of the stimulus

j dimensions. In equation form, this becomes:

R S is + C (2-11)

I! where
R is the nume ,cal response.

I| S. is the stimulus levei on dimension i

Wi is the regression weight for dimension i1
C is an optional scalIng constant

The W's are regression weights reflecting the relative importance

I of each dimension. Estimation of the W's is accomplished by making the
best fit of these weights to a batch of interval-scaled responses. The

linear model thus devoeoped 1ý highly predictive if the predictor variables
(the stimuli in Equation 2-11) are monotonic with the response function
(Dawes and Corrigan, 1974). Unfortunately, the model may fail to suggest
any underlying processes, as it is not axiomatic. In fact, the linear

model is "paramorphic"--it does not presuppose the operator to additively
consider the various stimulus dimensions. The model is simply predictive
of the operator's choices.

The linear regression models have proved to be effective both in

I prediction of benavior and in replacement of the operator. Correlations

betjeen model-cstimated parameter weights and subjectively elicited weights

are quite high, normaily in the .80 to .90 range (Dawes and Corrigan, 1974).
Similarly, replacing the operator by a model derived from his previous

judgments in the sam.e situation (bootstrapping) is quite effective. Based

on an autocorrelation model of the operator, these linear mdels often

I
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perform better than the operators whom they model (Dawes and Corrigan,

1974; Slovik, Fischoff and Lichtenstein, 1977). That is, the correlation

between the output of the model with a criterion (e~g., correct decisions)

is often higher than the correlation between the operator's output and the

criterion. The basis for this superiority of model over man appears to be

the ability of models to eliminate or reduce "noise" effects or random
behavior (Bowman, 1963). The applicability of these models is limited to0

situations involving recurrent decisions with relatively stationary

behavior. However, such situations are common (Kunruther, 1969).

These policy-capturing approaches have been found by Dawes and I
Corrigan (1974) to be most effective in situations where (1) the predictor

variables are monotonically related to the criterion (or can be easily

rescaled to be monotonic), and (2) there is error in the independent and

dependent variables. Dawes and Corrigan demonstrated that these conditions

ensure good fits by the linear models, regardless of whether the weights

in the models are optimal. In fact, Einhorn anO Hogarth (1975) found that

unit weights sometimes outstrip the estimated weights in predictive ability.

They noted that unit-weighting schemes are effective in situations with

errors in the model form, intercorrelations of variables, and small sample 1:
sizes. On the other hind, Newman (1975) states that unit weighting schemes

are contraindicated in situations where there are negative correlations

between attributes. He also notes that such circumstances are frequent.

An applied comparison of the potential usefulness of unity and inferred

weighting models will be found in Section 4.2.

2.4 Conclusions II

The main considerations in the develop'ient of aiding in remote It
systems must be practicality and normative direction. Aiding in the

information and control decisions faced by the human operator should be ii
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based on optimal criteria of choice. Also, the aiding must rely on model

I parameters observable during task performance.

S I The information theory and cue regression approaches mtke only

marginal contributions to this level of communications analysis. Neither

approach provides a strictly normative basis for decision making. The

entropy measures used in information theory do not identify the optimal

information source or provide guidelines for choice. However, these

methods do provide some direction when structural information is deficient.

None of the other models appear to be able to deal with structurally

I incomplete decisions.

The linear cue models are well suited to prediction of information

seeking decisions. These regression approaches can incorporate a variety

of combinations of independent, monotonic situational cues to arrive at

a predictive model. The attributes are not limited to decision consequences,

-d in fact, the ensuing action decisions do not even have to ba consideredii the information seeking model. This approach is preferred over the

lity models if descriptive modeling of the information behavior alone

Is desired or if the action decisions are unobservable. Also, the linear

cue r-dels may be required if the axioms underlying the utility model cannot

be SaCisFied.

The utility models provide the most powerful and normative approach.

These models employ a multi-attribute, expected-utility formulation to

model both the information seeking choices and the subsequent action

decisions. The model is tied implicitly to system objectives since the

model attributes are comprised of the constituent decision consequences.

I The information seeking is thus linked directly to the effect it has on

augmenting system effectiveness.
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With such a normative utility model, diverse aids are feasible.

The communications configurations can be compared accordig to their

contribution to the attainment of immediate system objectives. The

operator's cGnsistency between information seeking and action decisions

can be ascertained and corrective feedback can be given. Also, the

automated management of information can be based on the expected impact

on action effectiveness, rather than on the simple mimicry of operator

behavior provided by the cue regression approach.

Of course, the stronger implications of the utility model require

more stringent assumptions of behavior. The axioms of both expected

utility theory and multi-attribute aggregation must be satisfied. Also,

the levels of the constituent decision consequences must be available as i
inputs to the model. As will be seen in the next section, these

requirements are only rarely satisfied in a strict sense, but often can

be realized to the necessary degree.

ii
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3. INFORMATION VALUE MODELING IN REMOTE SYSTEMS

3.1 OverviewI
The purpose of modeling is to provide a means of structuring,

I analyzing, and predicting the behavior of the system under study. The

system in question, a human operator supervising a semi-autonomous remote

element, is a very complex one. The objective of this work will be to

examine a specific aspect of the remote system, the recurrent communications

decision, and develop an elementary but tractable model. The key decisions

of information seeking and control will be exhaustively structured,

resulting in a definition of the set of actions, attributes, and

Sconsequences, A pattern recognition approach will be used to fit the

model to observed behavior. In the end, the model should be capable of

'i evaluating the information system and, to some extent, managing the

con.,,unications according to operator needs.

I Philosophically, the adaptive modeling pursued here will be closely

related to the "on-line model matching" methods practiced in adaptive

manual control (Baron, 1977). It will also be similar to the adaptive

linear models used to augment or replace the expert decision maker (Bowinan,

m 1963; Kunreuther, 1969; Dawes and Corrigan, 1974). These techniques assume

the operator to respond consistently to situational circumstances and
C requiremlents. They then use pattern recognition, lear ing algorithms, or

regression techniques to estimate behavioral parameters.

3.2 Structuring of Remote Systems Communications Decisions

The combination of supervisory human operdtor and remote system

can be considered to be a partnership between two synergistic elements.

Although a large amount of overlap in function occurs, aach element

contributes unique capabilities to the task. The machine generally

3-A



assumes responsibility for rapid, recurrent control functions, while the

man tends to take over the supervisory functions--planning, problem

solving, performance evaluation, etc. Of course, this mix is changing

as higher level functions become attainable with automation.

The communications requirements between man and machine ire tied

closely to the functional allocation between the two. As the remote system

becomes more competent and autonomous, the supervisory and control demands

on the operator are lessened. This reduces the need for continuous

communications, and in fact, changes the form ot the directives transmitted.

With greater machine capabilities, discrete statements of objectives and
plan changes tend to be transmitted instead of continuous control command:

(Johansson, 1976).

The basic form of the information flow between a remote system j
(here a remotely piloted aircraft) and a man is shown in Figure 3-i. The I
autopilot system is supplied continuously by onboard sensors with

information regarding the machine state and environmental conditions.
Assuming the remote element is equipped with a set of automated responses

or learning algorithms, it should be able to respond autonomously to a

variety of situational conditions. The human operator, on the other hand,
must rely completely on the communications channel for information and Ii
control. His only access to the environmental conditions and machine
state is through the communications interface. In the same way, the I
operator must rely on the communication interface as a means of transmitting

comnands and objectives to the remote system. I!

A learning control system is ideally suited to the modeling of

information seeking decisions. Almost be definition, a learning system II
must partition into meanln~ful catagories the possible states, messages,

and actions. Also, learning systems often employ conditional probability

models for determining action policies (Freedy, 1969; Kanal, 1974). Thus

3
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the same prior probability estimates and conditional probabilities

described in Section 2.3.3 for the information seeking model may already

be resident in the autopilut program. Transfer of the information seeking

model to such a learning system should be straightforward.

Communications between the remote system and the human operator,

on the other hand, are much more difficult to model using a state-message-

action paradigm. The information transmissions provided to the operator-- I
video displays, radar sightings, infrared scans, etc.--are often complex, I

dynamic, and multidimensional. The operator normally does not respond to

these information displays as discrete messages, but rather as dynamic,
pictorial displays. This situation can be illuminated by looking at the

observable inputs and outputs of the human operator and of the remote

autopilot. These inputs and outputs are diagrammed in Figure 3-2. The

autopilot, being contiguous with the remote environment, has access to the

sensed conditions, the consequences sustained, and various operator inputs.

The autopilot uses these inputs to estiliate the information system i

characteristics, calculate the expected consequence levels for combinations

of information and control, and select optimal actions. Also, as will be
shown later, the remote system will often be able to use the operator .1

inputs to Infer the operator's value structure. The human operator, shown

in the lower portion of Figure 3-2, has a different set of inputs and I
different responsibilities. He is appraised of the communications choices

open to him and of their expected consequences. He may request an I
information transmission or he may be provided one automatically by the

remote element. His observable outputs are the information requests and

control commands.

T;ie problem, then, is to develop an information and control model

which takes into account both the discrete, deterministic nature of the
remote automaton and the complex, intuitive processes of the human. An

3-4
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attempt to diagram such a decision structure is shown in Figure 3-3. Two

stages are evident, just as in the information seeking model depicted
previously in Figure 2-3. The first stage concerns the sensing of the

environmental state by the remote element. Information sources are
selected according to their costs and their impact on the prior probability

estimate P(z). A given information source results in a sampling of a set

of possible messages. The probability of a given message y depends on the

prior probability P(z) and on the information system characteristics

P(ylz). Once a message is received, the autopilot updates its state

estimate and selects an appropriate action.

The second stage, action selectioi,, is the critical one with

respect to the man-machine interaction. The autopilot must respond to

the apparent circumstances by either selecting a direct control action or
by opening the communications channel to the operator. The two actions--

autopilot control versus delegation of information and control to the
human operator--are treated quite differently. The autopilot control

action is considered to be an optimal response to an uncertain state

estimrite. The outcome is a deterministic function of the action and the

true state z. The costs incurred during acquisition of the information
are also included in the consequence set. The allocation of information

and control to the operator, on the other hand, is treated as an

information transmission with only partially observable parameters. The

channel opening is simply considered to be an action with a distribution

of outcomes which depend on the true states. Section 3.3.2 will develop

these concepts more carefully.

The outcomes or vectors of consequences seen at the right of

Figure 3-3 are all of the same space of dimensions, whether for machine

actions or operator control. The levels of the consequences will be either

3 -
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input prior to system operation, or estimated using predictive fe tures

and performance histories. The utilities for the consequence vectc,'s

will be elicited from the operator or inferred from his behavior.

The decision diagrammed in Figure 3-3 is by necessity a

simplification of reality. For example, the basic two-stage structure

does not consider the continued sampling of information prior to an action

or the possible generation of new alternatives due to the information.

Including such factors into the model at this stage would make it -1

excessively complex. The remainder of this chapter will analyze methods

of modeling the two-stage communication decision. The modeling will include I
both the structuring of the decision and the means of estimating model

parameters.

3.3 Multi-Attribute Decision Model

3.3.1 General. Several steps are necessary to define the information

and control model outlined in Section 3.2. First, the various event

probabilities P(y), P(z), and P(zly) must be estimated or ascertained by

observation and adjustment. Then the consequences associated with each I
outcome must be scaled along a set of dimensions. The decision tree is

then folded back, associating an expected consequence vector with each

information and action choice. Finally, the subjective importance weights

associated with each consequence dimension are determined by elicitation

or by inference from behavior.

These processes are based on the three major normative theories of'

decision making--Bayesian revision of probabilities, expected utility

maximization, and multi-attribute utility analysis (Pitz, 1975). For these II
methods to apply, a variety of assumptions concerning the decision behavior

must be satisfied. This section will explore the Implications of these

1 t[1 !:
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assumptions. The chapter will also develop procedures for specification

of the decision parameter set and estimation of the parameter levels.

SI Before continuing, some clarification of notation needs to be made.
The system to be used will, for the most part, follow that of Keeney and

Raiffa (1975). The following terms from the core of this notation:

II Attributes: The basic attributes vll be XI, X2 , .. , Xn,

where X may be either vector or scalar.

Attribute Sets: A complete set of attributes is defined as

X {Xl, X2, .... X. A subset Y of X may be defined by

identifying the attributes X in the subset.

Consequences: The consequence space X x X2 x ... x Xn represents

a clidean 'apace. Conssequences are desluigated by

(xI, x2 , . X) where xi corresponds to a specific
amount of X for i -1, 2, ... , n.

i Relations: Preferences among consequences are denoted by the

following relations: > indicates preferred over

equivaient to; - indicates equivalence.

I Scaling: The symbol x* = (xj, x*, ... , x*) represents the most

desirable consequence, and x° = (x', x2 ... , x*) designates
the least desirable. The utility function of x (with the

appropriate assumptions satisfied) is scaled by assigning

U(x°) - 0 and U(x*) = 1.

3
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Probabilities: The probability of occurrance of an event z will

be denoted by P(z); a joint probability of a and z will be

P(a,z); a conditional probability of y given z will be P(ylz).

Risky Outcomes: An option of receiving x' with probability ni and

x" with probability 1-n1 is expressed by <x', Hi. x">. The I
superscript prime denotes a distinct var';able, not a derivative.

A risky (probabilistic) variable is designated by a tilde: x.

3.3.2 Probability Aggregation. The probability calculation procedures 71

are centered around Bayes' rule expressed earlier in Equation 2-2. The

use of Bayes' rule presupposes several key assumptions. Most importantly,

the hypothesized states of the world must be exhaustive and mutually

exclusive (Nickerson and Feehrer, 1975). Each state zh is assigned an

a priori probability of occurrence P(zh). Because these probabilities

are mutually exclusive and exhaustive, they sum to one:

Y P(zh) = 1 (3-1)

fI!
Data or messages concerning the state may be used to revise the

a priori distribution if the data is in the form of discrete, conditionally

independent observations. Conditionally independent messages are t2iose

which are dependent of each other with respect to the states. This

consideration of the states make conditional independence a stronger

assumption than simple independence. Beach (1975) gives the following
example showing the difference between the two conditions: i

"...suppose medical research shows that across diseasee
there is no relationship between blood pressure and
fever. These two synrptoms would then be considered
independent. It is possible, however, that there is
a disease or a set of diseases for which blood pressure

"3-10
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and fever are related, i.e., that they are conditionally
dependent. Use of Bayes' theorem with these diseases as
hypotheses is inappropriate because the redundant
information or the extra information latent in the
combination c.' the two semptome (conparable to an
interaction effect) can result in higher or lower
posterior piobabiliti•, than is appropriate. "(p. 44)

The notion of conditional independence appears to be of importance

only when messages are selected in groups. When making revisions based on

single messages, the set of messages from which the datum is sampled need

not be independent. Even if multiple messages are present, Beach (1975)

notes that methods are available for circumventing the requirements.

Conditionally dependent data can be dealt with using a modified form of

Bayes' theorem, or the data can be "chunked" into conditionally

independent groups.

The sensor characteristics P(ylz) can be derived from observation.

Comparisons of the messages received and the states subsequently observed

provide the necessary data. Estimates of P(zjy) and P(y) result from

frequency counts. P(yz) then can be calculated using the following

I expression:

IP(ylz) =P(Zly) P(y) (3-2)

In combination with the prior probability estimates, the sensor

characteristics allow for the estimation of P(y), the probability

distribution of each specific message.

P(Y) = P(Ylz) P(z) (3-3)

' 1
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Finally, when a particular message y is received, en updated P(z)

can be calculated:

P(ylz) PW)
P(zly) = p(y) (3-4)

The above calculations are applicable to the decisions surrounding -i
autopilot control. As mentioned earlier, the enalysis of the human control

branch of Figure 3-3 is somewhat less deterministic. It is true that with I
human control, the states, information system characteristics, and

consequences are observable entities, just as with autopilot control. I
However, the information provided the operator is seldom amenable to

decompositicn into discrete messages. The rich mediums of video and radar

display are typically too complex and multidimensional to be decomposed

into such an analytical formulation. Consequently, the updated state

probability estimate contingent on the message will also be unobservable.

This state estimate is within the mind of the ran. In fact, if a complete

message-state-action specification were possible, then the entire cycle

should probably be automated.

Nevertheless, the provision of a specific information transmission

to the operator is an action with an observable set of consequences. The

consequences depend on the true state of the world, just as they do for

autopilot control. The action/state combination differs from that under

autopilot control because the outcome is not deterministic--a variety of H
outcomes may occur depending on the specific action taken by the operator.

Thus an expected consequence vector, estimated from a number of

observations, fs associated with each action (form of inFormation

transmitted to the operator) and state. H
The above procedure essentially results in a collapsing of one

stage of the decision tree. Figure 3-4 details the processes resulting

u [
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from opening the communications channel to the operator. This is an

elaboration of the lower right portion of Figure 3-3. The operator

receives a specific but complex message from one of the information

sources, updates his estimate of the situation, select3 an appropriate

action, and obtains an outcome dependent on the true state of the world.

The lower figure, representing the observ3ble stages, compresses the

sequence to one of action and outcome. The outcomes for a given state

in the lower figure are simply the expectation of all the outcomes for

the corresponding state shown in the upper figure.

The probability estimates P(z) for human control are the same as

those for machine control. The updated state probability P(zly) is that

derived from the initial autopilot receipt of sensor data. As mentioned

earlier, the simplest method of determining the conditional probabilities

is to maintain frequency counts of the various messages and subsequently

observed states. If the conditional probabilities vary in time, then

moving averages employing an observation window of a set number of past

decisions can be used. Also, an exponential weighting of past decisions

can be used to provide a bias adding to the importance of recent

observati ons.

If these objective methods cannot be used, subjective probabilities

can be elicited from the decision maker. A variety of approaches are

available for such expressions (see for example, Goodman, 1973). Such

elicitations add an additional subjective element to the model, making it

the more descriptive, subjective expected utility (SEU) form. Of course, 31such subjective elicitations again have the drawback of interfering with

the operator's task. Objective estimates are preferred because they tend

to be more accurate and less burdensome.

3-14

Ab



r

3.3.3 Utility_ Analysis. The set of consequences associated with each

. I action and state must be evaluated along well-defined interval scales.

The relative importance of resource expenditures, time delays, vehicle

losses, operation attention, and other consequences of operation can be

either objectively defined or subjectively determined. Objective

definition entails development of a mapping of organization goals to

specific consequences. Such a mapping is extremely difficult to realize

in complex situations. Such factors as future consequences, interactions,

I and subjective needs are often virtually undefinable. In situations

involving such factors, it appears more useful to elicit or infer from

SI the operator his utilities tor the consequences.

The technique of greatest potential for providing a framework for

subjective evaluation is that of multi-attribute expected utility theory.

This is a relatively new methodology designed explicitly for complex

decisions under risk. The analysis that follows is primarily attributable
Q j to Raiffa and his colleagues (Raiffa, 1969; Keeney and Raiffa, 1975), and

to V.Winterfeldt and his associates (v.Winterfeldt and Fischer, 1973;

v.Winterfeld, 1975). The intent of this analysis is to provide an

axiomatic basis for the additive expected utility representation:

I In n

Ux) hl MI P(z h ) Il Ui (Xihk) (3-5)

where

xrepresents the vector of consequences of risky action k

I (h) is the probability of state h

I
I ~3-15".
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Xihk is the level of attribute I associated with state h and

action k

Ui is the utility function over the ith attribute

The expression in Equation 3-1 Is a decomposition of the decision !
into actions, event states, and attribute levels. The level of

decomposition possible depends on several crucial independence assumptions.

These assumptions derive from the origin of the model as a combination of

expected utility maximization and multi-attribute utility aggregation.

Thus the respective axiomatic treatments of these two methodologies must I
be satistied. For expected utility, v.Winterfeldt and Fischer (1973) note

that the theories of von Neumann and Morgenstern (1947), Savage (1954),

and Luce and Raiffa (1957) all make two central assumptions concerning

preferences among risky choices:

(1) .ur .thing Principle. Preferences among risky alternatives
should be independent of events in which these alternatives J

have common outcomes. For two events, this is expressed by:

if and only if
. ~<x. EV W> a <z.I' nil W>

(2) Solvability. No outcome should be infinitely desirable or

undesirable. Thus, for all outcomes x, y, and z for which

x • y ? z, there is a •I such that ii
y ~ <x, ]i, Z>

|L
3 V6
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These axioms allow formation of the single attribute expected utility

" I function:

m
U(x) = Z P(zh) U(xhk) (3-6)

h=1

Multi-attribute EU models can be developed from these axioms in two ways,

transfotmation and decomposition. The less rigorous, transformation

method uses riskless multi-attribute assumptions to construct a riskless

utility function. This function is then transformed into a risky function

I jusing the expected utility formulation above.

The riskless MAUT model requires that preferences for values of

each attribute are independent of constant values in the other attributes.

Consider a set of attributes X partitioned into an arbitraiy subset Y and

3 its complement 7. Then for any riskless consequences y', y", y

2 u(y, Y4) u(y", yt) :u(y', Y) u(y", A)

This is termed weakly conditional utility independence (WCUI) by

Raiffa (1969) and by v.Winterfeldt and Fischer (1973), preferentialIi independence (Keeney and Raiffa, 1975), and single calcellation. If the

test is satisfied for all attributes, then a riskless combination model

is justified. The riskless model is generalized to include uncertainty

by defining an expected utility model with a function U defined over

multi-attributed alternatives. This is possible only if U is a linear

j [ function of the attributes (v.Winterfeldt and Fischer, 1973). A possible

representation of this function is:

U6~) IPz(3-8)I I U(;) h•A. h) U(Xhk) -8
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in which

n
U(Xhk) Wi Ui (xihk)

where Wi is a scaling constant for attribute i I
A second, more restrictive approach to modeling risky, multi-

attributed choices is the decomposition technique. This method first
constructs the utility function U and then adds assumptions justifying

the decomposition of U into individual components (v.Winterfeldt and
Fischer, 1973). The main test is that of strong conditional utility

independence (SCUI). This axiom states that preferences among risky
alternatives, in which a subset of the attributes has constant values

across the outcomes, should not depend on these constant values.

Explicitly, for any lotteries y' and y", for any riskless consequence y ,
and tor all y:

Satisfaction of this assumption implies that the model form is
either additive or multiplicative. A second, stricter axiom guaranteeing

activity is that of marginality (Raiffa, 1969) or additive independence

(Keeney and Raiffa, 1975). Marginality requires that the alternatives are
judged solely on the basis of the marginal probability distribution over
single attribute values. This implies:

<(y', z'). (y0, zo)> - <(y', zO), (yO, z')> for all y', z' (3-10)

The marginality condition seldom holds in practice because of
operator preferences concerning the variance of outcomes (see Wendt (1973)

[I
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for a discussion of variance preferences). If SCUII and marginality do

hold, en additive expected utility model of the following form is justified:

U(x) h1 P(z h) i Ui (Xihk) (3-11)
hrl iil

I This is a risky decompnsition model, compared to the previous

riskless transformation model (Equationi 3-6). The difference lies in the

j presence of weighting constants in the transformation model. This

difference is not important in the present context, since both additive

I models will be seen to be amenable to the adaptive techniques of

estimation developed in Section 3.4.

Strict adherence to the axiomatic assumptions is apparently not

crucial. Experience has shown that models and procedures with differing

I axiomatic backing will produce convergent utility functions in a large

number of cases (v.Winterfeldt, 1975). For instance, in riskZess decision

I making, Yntema and Torgers'n (1961) and Fischer (1972) demonstrate that

additive models can approximate non-additive models quite well. Riskless

S! linear models in regression also produce good results when compared with

more complex models that include interactions (v.Winterfeldt and Fischer,

1973). Finally, Fischer (1972) showed that variations in the shape of

riskless single attribute utility functions will produce cverall utilities

that are highly correlated as long as all single attribute functions are

monotonic.

I Specific studies of the importance of axiomatic backing in risky

multi-attribute models are more difficult to locate, apparently bc.ause of

I the complexity of assessment required. v.Wlnterfeldt and Fischer (1973)
recount that in v.Winterfeldt's (1971) dissertation, the risky MAUT

measurement procedures were not adversely affected by axiomatic lapses.

3-19



Direct tests of the independence assumptions (Equations 3-7, 3-8) showed

satisfaction of the SCUI condition but violation of marginality. .

Nevertheless, a correlational analysis indicated that the decomposition

model was still quite effective. Fischer (1972) made similar observations

studying preferences for risky job alternatives described by three attributes.

The observed insensitivity to axiomatic strictness may be related

to the complexity of the decisions. WI-en the number of dimensions is not

large, v.Winterfeldt and Fischei (1973) say 5 or less, operators are

fairly consistent in behavior and the models closely reproduce the

operators' holistic responses. This is evocative of Miller's (1956) 1
findings that people cen deal with only 5 or 10 "chunks" of information

at a time. Consequently, the random error (and model insensitivity)

associated with a decision tends to increase as the DM attempts to consider

an incredsing number of value attributes (Slovic and Lichtenstein, 1971,. I

The axiomatic prucedures a-e altaso s•.....ect to problems ofi

assessment. Often, the tests are impossible to complete in complex real

choice situations. None of the axioms can be verified absolutely, since

they normally apply to an infinite domain. Also, the axioms require

judgments that the decision maker is generally unable to make, such as

ordering complex alternatives consistently (v.Wlnterfeldt and Fischer,

1973). Consequently, the applied work has been more concerned with

structuring decision problems, assessing model parameters, and making

sensitivity analyses, than with axiomatic tests. The axioms simply

provide a tool to eliminate nodels that are clearly wrong. The basic

axioms can be testd-• roughly by presenting the decision maker with "easy"

choices. In this way, the DM should violate model assumptions '1

systematically, sc that it can be discovered which assumptions are

appropriate.

32
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3.3.4 Model Form. The multi-attribute EU model assumes that the

decision outcomes are an amalgamation of many factors, each contributing

to the overall attractiveness of the outcomes. The most widely used means
j of combination of the attributes are the additive, the multiplicative, and

the multilinear fornms (Keeney &ad Raiffa, 1975; Fischer, 1972). The

respective expressions are:

n
U(x) =iZ KiUk(Xi) (Additive) (3-12)i k

I+KU(x) = 'i [1 + KKiUi(x 1 )] (Multiplicative) (3-13)i=l I

n
U(x) = • KiUi(xY) + Kj KU(x1 ) Uj(xj) +

(Multilinear) (3-14)
4 + Kl'"n UI(xI) ... Un(xn)

where the Ki, . KI...n are scaling constants, 0 < Ki < 1

and K > -1 is a non-zero scaling constant satisfying

I + K - n (I + KKi)

The multiplicative and multilinear forms are needed if the factors are not

treated i. an entirely compensatory fasion. A compensatory model is one

In which changes in one attribute can compensate for changes in another.
The multiplicative and multilinear forms can be non-compensatory since an

extreme value of one factor allows it to dominate all other factors. Also,
these Pon-compensatory models can account for some configural effects--

" I interactions and higher or6der terms.
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The additive form, while simply a special case of the multiplicative

form (Keeney and Sicherman, 1975), appears to be the one best suited for :i

modeling and aiding. The linear form of the additive function is more

appropriate for estimation by pattern recognition techniques than the j
cumplex structures of the multiplicative and multilinear models. In fact,

Section 3.4 will demonstrate how the linear additive form can be used

directly as a discriminant function. The additive model is also more

suitable for use in analysis and feedback of behavioral characteristics.

For example, the use of outcome probabilities as model parameters makes

sense only for the additive model (Huber, 1974). Huber also notes that

the additive model is more robust to unsatisfactory attribute levels than I
the multiplicative model. An erroneous zero in one of the additive factors

does not have the major effect seen in a multiplicative model.

In certain cases, the additive MAU model may even be modified to

account for interdependencies among factors. Keeney and Sicherman (1975)

define a special "nested" attribute that consists of a vector of sub-

attributes. This factor provides an extra degree of freedom through an

eXtra scaling constant. Thus trade-offs between two factors can depend

on a third. This reduces the need for the configural terms provided by

the multiplicative and exponential models.

The favored model form is thus a weighted sum (Fquation 3-8) of

outcome comp9nents, some of which may be probabilistic. This model is

postulated to be applicable to both stages of the remote systems *1

comunnication decision--the information seeking decisions and the ensuing i
action selection choices. Both of these decisions entail evaluations of

the same set of attributes. Also, the same weighting factors Wi are

expected to apply equally to thE two types of decisions.

I
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3.3.5 Factor Development. The choice of factors to include in the

decision model is probably of greater importance than the choice of the

model form itself. This is evident from the frequent effectiveness of

unity (arbitrary) weighting schemes in predicting choiies. Dawes (1975)

states: "The whole trick is to decide what variables to look at and then

know how to add." Unfortunately, guidelines for the choice of model

attributes are not readily available. The following list of desirable

characteristics expands on Raiffa's (1969) recommendations of attribute

independence, set completeness, and minimum dimernsionality:

(1) Accessible. The levels of each factor should be easily and

accurately measurable.

(2) Conditionally Monotonic. The factor level should be

monotonic with the criterion (preference) regardless of the

constant values of other factors.

(3) Value Independent. The level of one attribute should not

idepen on the levels of the other attributes. This is to

sme extent a consequence of recommendation number two.

1 (4) Complete. The set of attributes should account for as much

as possible of the operator's behavior.

1 (5) Meaningful. The attributes should be reliable and should

demonstrate construct validity. Their implications should be

understandable when expressed in feedback to the operator.

For the most part, these recomnendations result in an attribute

set that is accessible, predictive, and in accord with the axioms of

Sutility theory. The recommendations also imply a limitation on the number

3-23J
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of possible attributes. The requirements of independence and meaningfulness

render any large set of attributes unrealizable, because of the cognitive I
limitations of the human operator.

A candidate set of attributes xi for the remote systems decision

task could include such factors as resource expenditures, time usage,

vehicle losses, operator supervisory load, and future consequences. The

levels of each of these attributes can be derived using relations between H
the attributes and such situational features as environmental conditions,

communications channel characteristics, and autopilot capability. The

relations may entail probahilistic mappings from features to attributes,1

or they may involve simple transformations. In the absence of available

situational features and mappings, subjective estimates can be used

(Edwards and Gutentag, 1975). Of course, the expression of such subjective

estimates may be burdensome or may require costly communications between

the operator and the remote system. Thus attributes which are measurable

by the remo.te element are favored.

An attribute requiring special attention is cost. Information

acquisition costs are often considered separately in decision model-;.

However, a variety of types of costs may be incurred--energy costs,

equipment usage, risk of detection, etc. Thus appears more 1ogical to

associate a vector of incurred costs with the respective outcome. Also,

if cost is subject to an upper bound due to limited resources, the ratio

U(x)Ic for each alternative must be calculated (Edwards and Gutentag, 1975).

These are the famous benefit to cost ratios. Actions should be chosen in B
decreasing order of that ratio until the budget constraint is used up. In

the absence of a budget corstraint, cost is just another additive dimension

of value.

32
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SThe initial selection of attribute sets may be perforired by

•: I interview, intuition, or analysis. Protocol analysis is a subjective

interview technique whereby the operator introspectively recounts the

Ifactors and procedures which enter into his decisions. Consciously

considered attributes may be identified from this introspection. A

second, more objective technique is possible if the decision situation

is highly defined. The feature set can be determined according to the

predictive error rate and from correlations of the candidate ettributes

(Felson, 1975). The first attribute chosen is that with the lowest

expected probability of error (EPE). The EPE is the error rate that I
SI would result if the ith attribute alone were used as a basis for decision

making. The second feature chosen is the one with the smallest correlation1

with the first attribute. The choice of the Ith attribute depends on its

correlation with the i-i attributes already chosen.

n Finally, the .ttritates in their raw form may be highly non-linear.

Linear transformations to achieve interval srales are often warranted. The

effect of the linear transformation is normally minor compared to the

n.•nitudes of the test/ritest reliability and intersubject differences

(Edwar('s aný Gutentag, 1975).

3.4 Adaptive Parameter Estimation

3 The previous sections have described the means of structuring the

decision wiodei, identifying relevant uility dimensions or attributes,

aisd determining the levels of the 4ttributes. •Opletion of this modeling

I process demands the a~c~ssment or inference of the subjective weights of

L-ach attribute,!
It was noted in Sectioii 2.3.5 that numerous techniques are

available for off-line assessment of the operator's attribute weights.

These techniques include direct elicitation of preference, ýecomposltion

I 3725



of complex decisions into hypothetical lotteries, and use of multi-variate

methods to analyze binary preference expressions to determine underlying 1
factors. These off-line tecnniques of utility assessment are accurate

and reliable in many circumstances, but they have a number of disadvantages ij

when applied to remote systems. Typically, these techniques require two

separate stages--assessment and application. Assessment requires an I
interrtption of the task and elicitation of responses to hypothetical

decisions. Problems arise with such procedures since the operator's

judgments may not transfer to the actual situation; the DM may not be able

to accurately verbalize his preference structure (Macrimnon, 1973); and the

judgments made in multidimensional situations are typically responses to

non-generalizable uxtreme values (Keeney and Sicherman, 1975).

Estimation techniques relying on interference from in-task behavior
T Imay be more useful. These inference techniques assume a model of decision

behav ior zd then fit the parameters of the model by obseevation and

adjustment. The parameter estimation may be performed by multiple

regression, time series analysis, heuristic search procedures, optimal

control (Kalman filtering) techniques, pattern recognition, mathematical

programming, or forms of iterative approximation. Each of thise techniques

has a specific domain of application. For remote system aDplications, two

methods appear particularly useful. The multiple regression and patterni
recognition techniques demonstrate the simplicity, robustness, and

convergence guarantee necessary for on-line modeling and aiding.

The fi'st of the two, multiple linear regression, is a highly

etficient form of determining attribute weights from batches of behavioral

observations. The technique uses a least-squared-error criterion to I]

provide an unbiased estimate of the attribute weights. Confidence intervals 1
o: the estimated values may be determined at the same time. In fact, if

fzctorial combinations of attribute levels can be presented to the decision

3-26
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maker, a full analysis of variance can be made, providing data concerning

the relative contributions of linear, quadratic, and higher-order terms

(Macrininon, 1973). Of course, both the regression and ANOVA techniques

requir? large batches of data taken under ccmparable circumstances. Also,

the responses given by the operator must be made along an interval scale.

In-task choices between alternatives are not usable observations for

regression. The regression techniques thus appear to primarily suited

for separate, pre-mission simulations during which cumplex estimates are

elicited. Once estimated, the parameter levels could be input to the

remote system.

Actual in-task estimation appears feasible using pattern

#1 recognition techniques. Instead of batch processing, the pattern

recognition methods refine the model decision-by-decision. Briefly, the

technique considers the decision maker to respond to the characteristics

of the various alternatives as patterns, classifying them according to

preference. A linear discriminant function is used to predict this

ordinal response behavior, and when amiss, is adjusted using error

correcting procedures. This use of pattern recognition as a method for

estimation of decision model parameters was apparently first suggested

by Slagle. (1971). He made the key observation that the process of

I expected utility maximization involved a linear evaluation function that

could be learned from a person's choices.

The suggested technique was soon applied by Freedy, Weisbrod, and

Weltman (1973) to the modeling of decision behavior in a simulated

intelligence gathering context. Freedy and his associates assumed the

decision maker to maximize expected util'ty on each decision. They

assigned a distinct utility, U(xjk)' to each possible combination of

action and outcome, as shown in the decision tree in Figure 3-3. The

I probabilities of occurrence of each outcome j given each action k were
determined using Bayesian techniques. These patterns of probability
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were used as inputs to the estimation program (Figure 3-3). The expected

utitity of each action Ak was then calculated by forming the dot product

of the input :,robability vector and the respective utility vector. This

T I operation is equivalent to the expected utility calculation:

EU(Ak) NX P(x1 k) U(Xjk) (3-12)

I The classificaidon weight vector Wjk in the pattern recognition

program acts as the utility U(xjk). The ilternative Ak having the maximum

expected utility is selected by the model and compared with the decision

S•aker's choice. if a discrepancy is observed an adjustment is made, as

shown in Figure 3-4. The adjustment moves the u,. lity vectors of the chosen

and predicted actions (Wc and Wp, respectively) in the direction minimizing

the prediction error. The adjustment consists of the following:

W= W - d P (3-15)c C p

W• W + d •P (3-16)

where

Wc is the new vector rf weights EW(xIc), W(X2)]

Wc is the previous weight vector for action c

d is the correction increment

Pi is the probability vector describing the distribution of

I outcomes [Plk' P2k' "'" Pnk] resulting from action k

3-29*1:
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This model is an adaptation of the R-category linear machine

(Nilsson, 1966). The pattern classifier receives patterns of descriptive

data (outcome probabilities) and responds with a decision to classify each

of the patterns in one of R categories (actions). The classification is

made on the basis of R linear discriininant functions, each of which

corresponds to one of the R categories. The discriminant functions are

F ' of the form:

gi(x) = Wi * x for i=l, 2, ... , R (3-17)

I where x is the pattern vector and W is the weight vector. The pattern

classifier computes the value of each discriminant function and selects

'I the category i such that

gi(x) > gj(x) (3-18)

for all j=l, 2, ... , R; isj

A geometric interpretation of the R-category linear machine is

I shown in Figure 3-5 (Nilsson, 1965). Decisions involving two possible

consequences, xI and x2 , are evaluated according to three discriminant

functions GI(x), G,(x), and G3 (x). The lines of intersection between the

discriminant hyperplanes are the points of indifferEnce between actions.

Mappings of these lines of intersection to the attribute plane are shown

in the figure. The resulting regions R,, R2 , and R3 correspond to the

i actions maximizing the (expected utility) evaluation function.

The R-category technique becomes somewhat cumbersome if a large

number of actions are possible or if the decision circumstances change

rapidly. This problem is a result of the assignment of a distinct,

* I holistic utility to each tip of the decisiorn tree. The number of model
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parameters thus increases rapidly with an increase in the number of actions

jI possible. Also, the only weight vectors adjusted in a given decision are

those corresponding to the model-predicted and the actually chosen actions.

This partial adjustment makes the system somewhat unresponsive to change.

Some of these shortcomings were lessened by a multi-attribute

formulation developed independently by Felson (1975). Felson attempted

to predict stock market behavior by fitting parameters of a linear model

j using pattern recognition techniques. Unlike Freedy, et al., Felson

considered each action to be decomposable according to a single common

I set of attributes. Felson thus assumed that a single vector of weights

could account for the observed behavior. The approach is centered around

the use of a threshold logic unit (TLU), 4 two-category variant of the

linear machine:

In
G(x) Rx +w (3-19)

where
W is the weight corresponding to attribtute i

x is the level of attribute i

SW0 is a constant

Two possible consequences are considered in Felson's model--a rise

or a fall in stock value compared to the market average. The consequence

predicted depends on the sign of G(x). A single hyperplane serves to

separate the two regions.

Figure 3-6 sumnmarizes the estimation process of the stock market

program. A set of feature or attribute levels (some of which are

subjectively estimated) are input to the program. The attribute level
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vectors are evaluated according to the current weight vector and a

prediction of each alternative's market performance is made. The

w prediction is compared to actual stock performance (not to human behavior)

and an adjustment made if a disagreement is present. The use of a single

:3 discriminant function adjusted at each erroneous decision led to very

rapid trainiing. Roughly 15 to 25 trials were found to result in asymptotic

I mperformance with 5 attributes (Felson, 1975). During this period, the

error rate was found to drop from almost 50% to approximately 20%. Also,3• IFelson noted the advantages of the pattern recognition approach over

conventional estimation techniques: Its computational simplicity, its

p I minimal need for initial information, and its parsimony of operation--change

is made only when an error is detected.

A natural extension of Freedy's and Felson's approaches is to

adapt the single discriminant, multi-attribute approach to the modeling
of objective rhoice behavior. Each possible outcome of a decision can be

associated with a set of attributes or objectives of the decision maker.3 An importance weight vector defined over the various attributes can then

be adjusted tu predict behavior. As in Felson's approach, the mechanism
is simply that of • threshold logic unit. The adjustment rule following an

incorrect predlction is

1 W" = W + d(x - Xp) (3-20)
c p

where

I
W' is the updated weighting vector

W is the previous weightino vector

i p Is the attribute pattern of the model-predicted choice

X c is the attribute pattern of the decision iaker's choice

d is the adjustment factor

3

l
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The cycle of prediction, comparison, and adjustmnnt of this

proposed approach is illustrated in Figure 3-7. The model training is 1
based on pairwise comparisons of alternatives, as shown in the right-hand

portion of the figure. If a set of three or more alternatives Is presented,

and one is chosen, it is assumed that the DM prefers that alternative in

any pairwise comparison with the remaining choices. Thus a single choice

may result in a number of trilning adjustments.

The closed-loop nature of all of these programs is evident from

Figure 3-8. It can be seen that the system compares the model output with

the operator choice and uses the error as an input to the controller.

Also, the system is adaptive in the sense of Gaines' (1972) criteria: the

pattern classifier does not rely on a preset function to operate on the

error, but it adjusts its parameters (the model weights) to minimize

succeeding errors. 1

An ir"ediate question concerning all of these models is whether the

estimated parameters exhibit interval properties. The parameters are i
estimated solely from observations of ordinal responses. However, the

resulting weight vector is defined along an interval scale. This is j
because in the limit, only a single hyperplane can correctly classify

consistent responses to a fully represented pattern space. This hyperplane

is also Invarient to the usual positive linear transformations. The

ensuing predictions made from these weights are not necessarily interval,

though. The predictions are ordinal if SCUI is satisfied, and interval .1

if both SCUI and marginality hold. These properties parallel those of the

off-line technique of paired comparisons. The paired comparison judgments I
are ordinal; the resulting estimated parameters are interval; and the

resulting predictions are again at least ordinal (Samet, 1976).

3
I
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A possible advantage of the pattern recognition technique over

U many of the other forms of estimation is its flexibility of adjustment.

Several types of error correction are possible for the TLU, each with a

different combination of speed, stability, and complexity. The three

principle forms are the fixed increment rule, the absolute correction

rule, and the fractional correction rule. These differ solely in their

formulation of the adjustment factor d in Equation 3-20.

The fixed incremert rule simply assigns a non-zero constant to d.

Thus the movement of the weight vector is a constant proportion of the

'I difference in the predicted and chosen patterns. The correction may not

be sufficient to avoid subsequent errors with the same pattern, but the

process is eventually convergent (Duda and Hart, 1973). The fixed

increment rule has the advantages of simplicity and relative insensitivity

to inconsistent behavior.

A more rapid but also more potentially unstable rule is the

3 absolute correction rule. This method sets d to be the smallest inte'ir

at which the error of the pattern is corrected. In the decision modeling

situatioti, this becomes:

I d = smallest interger > )k • (xc - xpH (3-21)
tic" X p) • (x-p

in which

Xc is the attribute level vector of the operator selected choice

X is the attribute vector of the predicted choice

I
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ihe fractional correction rule is similar to the absolute rule but

is typically less extreme. The fractional rule moves the weight point some

fraction of the above distance:

Xlk *(x C,- x i
(A c - Xp)(Xc - x p (Ac(

where X is a constant 0 < X < 2.

All three of the adjustment rules have been proven convergent with
linearly separable patterns (Nilsson, 1965). The speed of convergence is

normally fastest with the absolute rule. This is illustrated for an
example series of adjustments in Figure 3-9. The set of four numbered I
lines ir the figure are a sequence of patterns. These patterns are shown

as hyperplanes in a 2-dimensionbl weight space. Each hyperplane represents

the difference between two multi-attribute vectors. The operator choice is H
shown by the direction of the arrow at each pattern. The absolute rule,

(the triangles in the figure) is seen to achieve correct prediction after i

four observations, while the fixed rule (the circles) requires five.
Unfortunately, the absolute rule is expected tzi be les3 forgiving of

inconsistent behavior than the fixed or frpdtional rules. This is because

of the large responses the absolute rule makes to operator inconsistencies.

The fixed and fractional rules may exhibit a greater tendency to smooth

.1 or average the behavior.

3.5 The Adaptive Model as a Decision Aid

The adaptive decision model has the potential of improving system

decision performance in two key areas:

II
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(1) Smoothing. The reduction of the random error or noise

implicit in human response. This reduction is a consequence 2

of the averaging of observations during parameter estimation.

(2) Augmentation. The amplification of the operator's decision .1
making capability by displaying model recommendations.

Observing the model recommendations, the operator may refine .1
his behavior and possibly even consider a larger set of factors.

:1

Smoothing or reduction of random effects in subjective weighting of

data is a well-established advantage of linear models. Linear models based

on an operator's average behavio, typically outperform the actual behavior

of the operator (Bowman, 1963; Goldberg, 1970; Dawes and Corrigan, 1974). 71

Aiding by model recommendation of choices and by model-based automation -

should result in this type of performance enhancement.

The second area of improvement provided by the model, augmentation,

deals with sub-optimal decision behavior that is more deep-seated than

noise or random effects. Because of cognitive limitations, the operator

can consider only a small number of attributes in a decision. In complex

situations, he then constructs his own simplified and manageable model of

the problem. This is Simon's (1957) "principle of bounded rationality"

in which the man's behavior may be consistent with his own simplified

model even though not even approximately optimal with respect to the real

world.

The sub-optimal behavior resulting from cognitive limnitations may

possibly be reduced through model-based aiding. Macrimmon (1973) suggested

that by operating in parallel with the DM, a model can present decision

reconmmendations based on a normative processing of the circumstances and

utilities. The operator's task is then changed to one of evaluation and II
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U correction. Freedy and his associates (1976) displayed such model-based

recommendations to operators in a simulated task of submarine surveillance.

1 Significant imporvements in performance resulted, possibly from the

opportunity to consider more complex and effective strategies,

Unfortunately, the parallel, closed loop relationship of man and

model engenders some problems of dynamics. With aiding, the decision

faced by the operator includes both the attribute patterns of the choices

and a normative processing of those patterns. Since this processing is

I based on his previously observed behavior, it should lead to greater

corsistencv, speed, and effectiveness in recurrent situations. However,

it may result in inappropriate recommendations in completely new

circumstances These characteristics are typical of predictive displays.

The predictions are only accurate if future behavior can be estimated

from previous observations. Thus with a major structural change in the

I environment, the recommendations may be based on irrelevant data, and could

slow the operator's adjustment. Kunreuther (1969) states that this type

of lag can be minimized by including only recent decisions or by exponentially

weighting the observations according to the age. A recency bias of this

type is realized to some extent by virtue of the adjustment mechanism. An

additional bias may be necessary in rapidly changing situations.

3 The level of aiding provided by the model depends on the degree of

training it has experienced. A possible sequence of training of the model,

at least in the initial validation phase, is one of passive observation,

then observation and reconmendation, and finally, automation. At each

I succeeding stage, the model will gain more knowledge and become more

independent. The first stage, observation, consists of the passive

monitoring of decision conditions and operator choices. The initial

arbitrary vector of attribute weights is adjusted and the model is

sharpened with each incorrect model prediction. With experience, the
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model approaches the behavior of the unaided operator. Once a minimum

confidence or prediction level is reached, the model can ala the operator

by making recommendations. In this second phase, the model provides a

normative structuring for decisions, displaying the logical extrapolation

of his previous behavior to the current choices. The model should, in

time, stabilize to a consistent set of values reflecting the augmented Jdecision strategy of the operator. Automation by the remote element can

then begin. The automated decisions will still be subject to operator

overrides, and the model parameters will continue to adapt, but the il
program will be largely autonomous. The model should then be capable of

managing conmnunications from the remote element.

ii
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4. SYSTEM APPLICATION

1 4.1 The RPV Communications Problem

1 4.1.1 Structure. The preceeding chapters have confronted the general

problems of information evaliation and management in remote systems. It

I should be useful to explore these implications in a specific application.

Probably the area of greatest immediate potential for machine control of

I comnunications is that of remotely piloted vehicle (RPV) supervision. Some

operational RPV'z already have an advanced degree of autonomy resident

in their autopilot systems. At the same time, the evaluation and goal

direction functions are the responsibility of the human operator, so that

some degree of interaction is essential. Finally, substantial coimmunication

costs are present because of the possibility of detection, the energies

expended in data transmission, and the supervisory loads imposed on the

operator. The three elements :-bove - machine intelligence, operator

supervisory requirements, and costly communications - are factors that

encourage the placement of the communications evaluation and management

functions with the remote element.

i The RPV control task is normally hierarchical and goal directed

in nature. The levels of function range from continuous stabilization

adjustments to long range planning of the overall route. Figure 4-1

(adapted from Roscoe and Eisele, 1976) depicts a representative ordering

of these functions along with the feedback loops involved. Usually the

r lower level 'high frequency) functions such as vehicle stabilization are

automated. Fer these vehicle control functions, the complete processes of

actuation, performance m-easurement, and comparison with objectives are

performed by the autopilot system.

1 The intermediate level functions, on the other hand, tend to be

actions assumable by either the remote element or the human. These
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functions involve such actions as responses to unforseen obstacles,

I identification of targets, and handling of system failures. Such actions

tend to be discrete decisions rather than continuous control responses.

Speed of response and minimization of costs dictate that the machine take

I responsibility in some cases, while flexibility and safety necessitate

human control in other situations (Johansson, 1976).

The highest level functions, such as definition of the system

j objectives and constraints, are almost exclusively the domain of the

human operator. For example, the criteria of performance at each level of
SI the functional hierarchy are input by the human. Certain constraints, such

I as traffic, weather and terrain conditions, may be recognizable by the machine

element, but the overall decision policy is virtuaily ;,lways defined by
I the human.

S4.1.2 RPV Mission Characteristics. The degree of functional responsibility
assumable by the machine depends to a large extent on the task circumstances.
"--Y- i 1ly, a remotev hicle mission is "fn - by a ui of - " ' .... .....

The phases can be characterized by the amount of comnunicaticns allowed.

I I the availability of feedback concerning vehicle and environmental states,
the probability and extent of potential losses, and the Lime available for

decision making (Mills, Bachert, and Rume, 1Q75). Each of these factors
influence the degree of autonomy that can be realized by a remote system.

The amount of commrunications allowed is a function of the channel
capacity, the direct and indirect costs of transmission, and the amount of

Sattention the human operator can contribute. Channel capacity is defined

by such factors as band width, time delay, and signal-to-noise ratio.

These factors become more troublesome as the distance to the remote element

becomes greater and as the number of intervening obstacles increase. The

i direct costs of ccMvunication alse increase with distance and number of

hazards. These costs include energy expenditures and equipment expenses.

I
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The indirect costs - increased possibilities of detection, countermeasures,

etc. - are more a function of the hazardousness of the region rather than

the communications distance. The available operator, attention, finally, .1

is defined by the number of controlled systems, the secondary task dEands,

and the individual capabilities of the operators.

The costs and payoffs associated with the various possible control

outcomes also vary with mission phase. The consequences are defined not

only in terms of attrition of eq,.,ipnent and attainment of objectives, but

also as a tunction of organizational policy and procedur-es. ThE relative

importance of fuel expi'r~ditures, vehicle survival, countermeasures, etc.,

change as the mission objective is approached, attained, or past (Fogel,

Englund, Mout, and Hertz, 1974). The relative importance of these factors

must be assigned by the human operato." or by the organization.

A•vailable time for Jecisior.nmakirng varies throughout the RPV mission

as a direct function 6f tho varying venicle speed, ,ilLitude, anG sur;,'unding

weather coiditions. AltiLjde and weather de';ermine the distance that

obstac!es, navigation points, or targets cai be ooberve1. The speed the-it

dete-mines the available time. Decision time can oe e'xpected to influence

"o amount of intorl.,ation that can be processed and t!Ve probability

tribution of the possible Lonsequences.

Ir. sum, the selectloi of information and c-introl to allocate tu

-. 4pervisory human operator is a complex and dynamic decision The

decisiov, maKer must continually weigh the probable usefulness of the

information or assuming control -- energy costs, attercion requirementL,

risk of detection, etc. The-e ji-;gments often must be based on subjective

factors, as the decision task is normally too compley and dynaumic to be

analytically trattable.

4-4
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1 4.1.3 System Overview. An overview of the sequence of processes involved

in RPV supervislon is diagrammed in Figure 4.2. The sequence is divided
into three segments - modeling, analysis, and execution. Modeling is

considered to consist of structuring and assessment.. Structuring is the
I |de-inition of the various components of the decision model, while assessment

is the determination of tne parameter levels. The modeling segment is shared
j in function, as the hu.man operatcr typically defines the decision structuring

(at least until self-organizinq 3ystems can be realized) and the computer
performs tne assessment. The second segment in the cycle, analysis, is assigned
completely t.o the computer. Analysis involves solving a m0el to determine

u its iimplications. Analysls also involves computing the etfects of alterinn
i model assumptions. The finai segment, execution, is again a flexible

function: either man or machine may make the decision. In the early
stages of model training, the human would be executed to perform the
action with the machine observing passively. Luer, with increased

* Iconfidence in its controls, the machine cruld tither make recommendations to
the operator or take over the decision function (subject to operator override).

I The coming sections will consider in greater detail t'e stages of modeling,
analysis, and execution.

A. 2 Modelingq

I4.2.1 General. The nmulti-attribute model developed ihitially in Section 3.4

will provide the basis for the structuring and assessment processet.. The
the inhessefth

specficstes o thee mdelng rocssesareoutine inFigure 4-3 througn
4-5 (aeapted from Gardiner, 1975). The first figure shows the two sides of the

modeling proble'n, probauility estimation and utility asse -ent. The upper
portion of Figure 4-3 details the processes of probabil . 7.%,tion. These
ir.clude delineation of the posiblc states of the environmený., evaluating the

current level of u:,certainty conct,-riAr, the states, selecting information

to redu,.e the uncertainty, and tevising the probabilicy estilmites in light
i of the new 6ita.

I
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The key elenent in this probability estimation sequence is the

information acquisition stage (enclosed by dotted lines). Figure 4-4

elaborates this stage, showing the steps that go into the choice of I
information and the subsequent incorporation of the datum into the situation -|

estimate. The upper portion of theb figure deals with the information source .1
selection. The characteristics of the various available sources are determined

by observation and analysis. This estimation of the characteristics of the

information sources is accomplished by successive comparisons of messages

received and suhsequently observed states. The choice of information source

is then made according to the potential impact of the information on the

prior probability estimate. Once a source is selected and a datun, observed,

the information i; incorporated into a revised situation ostimate through

Bayes' rule (see Equation 2-2).

The other major modeling process is utility assessment or outcome

evaluation. The possile combinations of actions and states -re enumerated

off-line prior to a mis:ion. The problem is then to assign consequence

levels and importaace weights along a predefined set of dimiensions. Figure 1
4-5 elaborates this process. The first stbp is the selection of an independent.

exhaustive, aviJ predictive attribute set. The attributes are the various

constituent aspects of the consequences. Each combination of action and

outcome is associated with a set of attribute levels. This is done by

observation and adjustment, just as in the determination of information source 1

characteristics. Scaling procedures are applied to the raw consequence

dimensions to arrive at normalized values. Each attribute is scaled so

that its plausible range spans zero to one.

The attribute weight estimations (the WI in Equation 3-6) can be

performed using either pattern recognition techniques or off-line decomposition

approaches. These methods were described previously in Section 3.4 and

will be applied to the RPV control sitluation in the coming sections.
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The above process description is, of cuurse, still a simplification

Sof the general infomation seeking problem. Certain aspects cannot be

considered at this time. For example, coFhtinued sampling of infomation

prior to the action decision is not represented. A complication of special

SI note is the dynamic nature of the environment. The effects of an action

would be expected to be different depending on the time of executioi. Timing,

however, may not be a major problem in remote systems applications, since

the action choices are normally made at times determined by the situation.

Typically, the decision is forced by the sensing of an obstacle or critical

situation. Thus, the consequence set does not necessarily have to be

S- time dependent.

The following sections will develop some of the specific points of

the modeling cycle.

4.2.2 Probability Estimation. The two mai-tr probability parameters

requiring estimation are the prior probabilities (P(z)) and the conditional

probabilities P(ylz). The priors are presumed to be of only minor importance

in remote systems applications. This is because highly diagnostic data from

the remote system sensors should result in virtually the same posterior

probability estimates regardless of the values of the priors. Diagnosticity

refers to the informativeness of the data concerning the states z1. A highly

diagnostic datum y exhibits a high likelihood ratio:

'L2 = P~tI (4-1)

When incorporated into Bayes' rule, such a datum will have a major
effect regardless of the prior probabilities of zI and z2 . It is expected

that a remote system with sophisticated sensors operating in a well defined

environment will receive data of high diagnosticity.

This reduction of importance of the priors is fortunate, as estimates

of P(z) can be only coarsely estimated prior to an operation or mission.

En4-l



The priors are descriptors of the mission phases -- estimates of the likelihood -

of weather problems, adversaries, terrain obstacles, etc. These estimates

are by nature of low confidence.

The sensor characteristics P(yjz) are easier to estimate accurately. .
This is because the sensor characteristics are assumed to be invarient over

time, unlike the changing prior probabilities. Comparisons of the messages

received and the states subsequently observed provide the necessary data.

P(ylz) can then be derived from frequency counts of P(z) and P(zly) using I
the following expression:

P(ylz) = P(zly) P(y) (4-2) 1
These observations may be made either in a simulation or during actual system j
operation.

4.2.3 Factor Choice. It was noted in Section 3.3.4 that the attribute set

should be accessible, monotonic, independent, complete and meaningful. Also, A

a single set must account for both information acquisition and action selection _

behavior. Finally, the attribute set must be manageably small in dimension.

With these considerations in mind, an initial taxonomy of consequences can

be organized around the following five areas:

(1) Communications Costs - The expenditures associated with use

of the communication chdnnel.. These may include requirements 11
of energy, equipment, and operator attention.

(2) Equipment Attrition - The consequences of control concerning the

integrity of the vehicle. Included are fuel expenditures, system
damage, and vehicle loss.

IfI
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(3) Objective Attaiment - The degree of accomplishment of the

u |mission objectives. Target goals may be the area reconnoitered,

payload delivered, and political impact obtained.

f (4) Dynamic Effects - The future consequences resulting from the

current actions. These consequences may include effects oa

J subsequent autopilot capabilities, availability of future

information, and changes in the environment resulting from

the action.

(5) Subjective Needs - The operator may have propensities for obtaining

(or refusing) information or for maintaining control beyond that

called for by the above factors. These preferences reflect needs

SI of task continuity, maintenance of load, or other idiosyncratic

factors.

A useful consequence set might contain a single dimension or attribute

from each of these categories. In fact, five attributes appears to be an
upper limit to the number of factors a decision maker can effectively consider

(V. Winterfeldt, 1975). If several factors contribute to one consequence

dimension, these factors should be combined using a single common scale --

dollars, ship-equivalents, fuel quantity, etc.

Each of the attributes -- communications costs, vehicle losses, etc. --

must be scaled with interval properties along a set range. The least
constderable consequence that may occur is assigned a level of zero o Th
the scale. The most desirable consequence is assigned a level of one. The

weighting factors WI should also be normalized so that the overall worst

combination of factors results in a value of zero and the overall best

combination a value of one. Th method of assessment of these weights will
be discussed shortly.

'3 4-13

. IF~ --. -.-- -



Probab'listic consequences will be computed according to their

expected value. For example, the vehicle loss attribute may have three I

possible levels, each with a different estimated probability of occurrence.

The expected value is computed by the following additive expression:

E(xi) = I P(zk)xijk (4-3) 71

where E(xi) is the expected consequence level

Pk is the probability of state k occurring

xijk is the level of attribute associated with action j and
state k

4.2.4 Consequence Level Determination. The actual level of each of the

attributes for a given outcome can be determined by mappings between predictive

features and the attributes. Predictive features must be identified which

are accessible to an onboard program and capable of determining the consequence j

levels. Mappings between the predictive features and the attributes are

either pre-established or determined by observation and adjustment. -{

Thp data available to the decision program are: I
(1) Directly sensed information concerning the environmental

state (weather, terrain, adversaries).

(2) The vehicle state (velocity, fuel, autopilot capability).

(3) The channel charictpristics (capacity, noise, cost).

(4) Operator capabilities (attention, loid).

(5) Communications choices (information, control acquired).

II



I A manageable subject of these features must be determined. This

u can be done using the correlational procedure described in Section 3.3.5.

I The consequence mapping can then be refined by comparison of the predicted

and actually observed consequences, as in Figure 4-6. The mapping can be

SI developed eithcr by prior definition, by regression, or by the pattern

recogniti techniques described in the coming section.

4.2.5 Weight Assessment. The method of assessment developed in Section 3.4
: • -- adaptive estimation usinq pattern recognition -- appears well suited to the

remote system problem. The goal is to estimate the operator's decision making

policy by observation of his choices. The procedure is diagramed in Figure 4-7.
•I First, expected consequence vectors associated with each combination of

information and control are input to the model. These consequence vectors

are dotted with the weight vector, resulting in evaluations along a single

scale. The maximum expected utility choice is determined and compared with

the operator's actual choice. If a discrepancy occurs, the weight vector

is adjusted according to the procedures outlined in Section 3.4. Ideally,

) Ithe error correction moves the weight vector in a direction minimizing

subsequent errors.

I The criteria used for model training is a question of special
importance. The m3del training could be based on objective (external)

criteria or on subjective (internal) criteria. It was ncted Freviously

that external criteria of systen performance, such as control error, speed,

and monetary cost; are seldow availablA. during the execution of a mission.

Felson's (1975a) stock market program, adjusted according to daily stock

Iperformance, is a notable exception. More frequently, a completely analytical

moeel is impractical and subjective criteria for model traioing must be

m used. Here it is assumed that the operator's behavior refl':ts the task

objectives along with individual needs. The adaptive model functions in

parallel with the operator, attempting to capture h*s decision policy by

fitting a normative framework to his choices. This was shown earlier in

Figure 4-2 by the feeuback from the decision execution stage to the assessment

3 Iblock.
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In many situations, an occasional indicator of objective performance i
is observable. The RPV may be lost, the target attained, or other goals

accomplished. In this way, the correctness of a sequence of subjective

decisions may become known. The utility model would still be trained by

observation of the uperator's choices. If the sequence of choices led to

an objectively favorable outcome, the new parameter set would be retained.

If the outcome was unfavorable, the parameter set would be returned to the

levels present prior to the sequence of decisions. In this way, objective

criteria would guide training, but the explicit decision-by-decision policy

for controlling the RPV would be subjectively derived.

Of course, the adaptive techniques of estimation described above

are warranted only if repetitive decisions are available for training and I

if the weight differences present are important. In cases where only a few

decisions will be made, off-line estimates of the weights Wi are favored.

Here, techniques such as direct estimates, hypothetical lotteries, or paired

comparisons .re used f, nstimation prior to tne mission. Some problems

may occur since it is assumed with these techniques that the system requirements

will not change after the estimates. These techniques also assume that the

operator can effectively express his preferences along each dimension of

choice.

Questions concerning the importance of weight differences are more

basic. It was noted in Section 2.3.4 that unit weighting schemes (in which

all weights Wi are set equal to 1.0) can be quite effective in certain

circumstances. Errors in the model form, positive correlations between

variables, and small sample sizes all reduce the predictive capabilities of

inferred weights compared to unit weights. Essentially, the more precise

and parsimonious the model, the more important inferred weights are.

Unit weighting schemes are expected to see only minor application in

remote systems modeling. Careful selection of attributes minimizes

4-18
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F intercorrelations between variables, and the correlations that do occur

should tend to be negative. For example, in RPV supervision, costly

SU information is generally more informative than inexpensive information, and

equipment attrition tends to be negatively correlated with goal attainment.

m These circumstances favor inferred weight models. The unit weighting

schemes should primarily be useful as starting points for estimation, ur as

strategies for situations in which a great deal of noise is present.

I 4.3 Analysis

The analysis functions are computational processes intended to

U determine the model implications and sensitivity. Analysis includes such

processes as evaluation of the various information sources and specification

3 of the types of information needed. Also, sensitivity anaiysis may be made

regarding changes introduced in various aspects of the model.

The type of information needed in a particular situation can be

specified analytically by working through the predictive features and

consequences, or empirically by sensitivity analysis. The analytical

approach requires that relationships between the type of infor.aation and

the consequences can be specified. Then if situational requirements result

in certain consequeiices being emphasized, the corresponding forms of information

can be identified.

I3 The empirical approach utilizing sensitivity analysis is probably

the most practical means of developing design criteria and determining model

i m characteristics. Sensitivity analysis involves the systematic alterat'on

of input variables to see how such changes affect outcome variables. The

parameters that can be varied are:

(1) Information Sources - Source characteristics, costs.

(2) Situational Factors - Prior probabilities, predictive features.
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(3) Conwequence Levels - Values of each consequence dimension.

(4) Importance Weights The inferred or preset Wi.-

The possible criterion or output variables are also numerous:

(1) Predictive Capability - Percent of decisions predicted.

(2) Speed of Convergence - Number of decisions or time required f
tor %.raining.

(3) Objective Performance - Level of task performance.

Sensitivity tests also disclose whether a flat maxima situation is

present. Here, large changes in an input variable lead to only minor changes

in the output. It was noted earlier that linear models are often insentitive

to differences in attribute weights -- witness the efficiency of arbitrary

unit weightings in many situations. However, Slovik, Fischoff and Lichtenstein

(1977) concluded that this flat maxima behavior is primarily a problem of

continuous choices. With discrete choices, (e.g., perform surgery vs. don't

perform surgery) it has been shown that a moderat( error in probability

estimation can lead to a substantial decrease in expected utility. This is

expected to be the situation in RPV supervision.

4.4 Preliminary Tests of the Adaptive Model

Prior to experimentation with human subjects, a number of automated

simulations were run testing the pattern recognition model. Human choice

behavior was simulated by progralining a "model operator" to make decisionls

according to pre-set attribute weights. Sets of consequence vectors (attribute

levels) were generated randomly and presented to the model operator as pairwise

choices. The model operator selected the choice determined by the preset

weights, while a separate adaptive program observed the choices and modeled 1
the behavior.

I4
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~I I The factors tested with this simulation were the number of

consequence dimensions, the type of adjustment rule, and the degree of

I consistency of the operator. The adjustment rules tested were the fixed

and the absolute rules (see Section 3.4 for a description of these rules).

The operator consistency was controlled by adding random numbers to the

pre-set weights on a set percentage of decisions.

The model was found to converge at a rate dependent on the number

of attributes and the degree of operator consistency. Only minor differences

in dynamics were seen between the fixed and absolute adjustment rules.

Convergence behavior as a function of the number of attributes is shown in

I Figure 4-8. The number of pairwise choices necessary to achieve a criterion

level of prediction increases rapidly with dimensionality. As little as

1 15 decisions resulted in asymptotic training with three attributes, while

75 decisions were required for seven attributes. Figures 4-9 and 4-10 show

j this behavior more clearly for representative cases of 3 and 5 attributes.

For three attvibutes, the adaptive model was able to rank the weights
... .. . I. I2 ý .-rc ,I (for

twenty-decision window) after 19 decisions. The corresponding values for

5 attributes were 28 and S0 decisions, respectively.

The introduction of inconsistent behavior also increased the required
training time. Figure 4-11 shows the increase in training time due to the
imposition of 20 percent inconsistent behavior on the model operator. The

number of decisions to convergence roughly doubled with this level of

,'inconsistency.

I The number of decisions required for training in an RPV sspervision

task should be considerably less than the number demonstrated in this

simulation. The operator normally selects an information end control choice

from a sizable number of alternatives rather than from a single pair. The

I t
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0 1 frequency of adjustment should thus Ircrease, accelerating the training.

Also, the model produces a ranking of the various alternatives. If the

operator selects an alternative that lies in the lower range of the ranking,

pairwise comparisons and adjustmients can be made with all alternatives

j ranked above the operator's choice. This further reduces the training

period.

i
I

•. I

I
Ut

I '
Ii

,• J I

I

" " I

b4-2



I

II 5. EXPERIMENTAL STUDY

1 5.i Overview

An exploratory study was performed to test the effectiveness of the

of the adaptive multi-attribute model with human subjects. The study

utilized a task simulation resembling control of a remotely piloted

vehicle (RPV). Individual subjects were required to navigate the RPV

through a changing, hazardous environment. In doing so, the operators were

able to select different combinations of information display and control

allocation. The main objective of the study was to determine the ability

of the decision model to analyze, predict, and aid in these information

and control ch,ýices.

5.2 Hypotheses

I The following experimental hypotheses were tested:

J (1) The adaptive model can accurately predict operator information

and control choices under a variety of task conditions.!
(2) The model-estimated parameters are more predictive and

demonstrate greater construct validity than a unity weighting
scheme (an arbitrary model with all weights set to 1.0).

(3) 'ý'jbjective biases and inconsistencies of the operator can be

identified using the adaptive model.

(4) Aiding provided through display of the model recommendations

I will result in performance superior to that obtained: (1)

without aiding; and (2) with aiding derived from a unity

j weight model.

I
1 5-1

I i



5.3 Task Simulation

The task simulation was patterned after an important and representative

remote system task -- coninunication with and control of an RPV. This

simulation is an adaptation of an RPV supervision task developed previously .t

for study of human factors aspects of shared decision making (Steeb, Artof,

Crooks, and Weltman, 1976). This task appears appropriate as it combines i
some degree of fidelity with an extensive amount of experimental control.

Briefly, the updated simulation requires the operator to supervise control

of an RPV in a hazardous environment. The environment contains obstacles

of uncertain form and extent. At each set of obstacles, the operator can I
either control the RPV manually, or he can delegate control to the onboard

autopilot system. Also, the operator has the option of accessing several

foris of information about the environment. The forms of information

differ in content, cost, and influence on future decisions. I

Displ&ys and Controls. The simulation uses a computer-generated CRT
display, i!Iustr.Ced in Figure '-i. The environment and vehicle are shown |

as in a moving-map display. Sets of obstacles appear at random positions

at the upper edge of the display and move downward at a constant velocity. -

The operator can move the vehicle sym'ol horizontally to one of eleven

different pathways to avoid the obstacles. He can do so manually, using

a joystick, or he can allow the autopilot system to select a path. These

control actions are primarily decision making in nature. Dynamics of control

are minimized since the obstacle and vehicle velocities are held constant. I

The obstacles introduce uncertainty to the task simulation. Each 1
type of obstacle has a specific probability distribution of vehicle loss.
Figure 5-2 shows the four obstacle types and their associated probability

distributions. For ease of learning, the four obstacle types are designed

to be evocative of some obstacles expected to occur in actual control situations

-- adverse weather conditions, terrain obstacles, adversaries, and navigational

problems. I ,
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,I
Communicatlons. The identity and location of the obstacles can only

I be determined from information communicated from the RPV. lnree types of

information are available for transmission from RPV to operator: (1) Full:

A high detail link corresponding to transmission of video images from a nose-

mounted camera. This information is simulated by a symbolic presentation

of both form and location of the obstacles. While highly informative, this

I broad band link is costly; (2) Location: A low detail link that provides a

report on the location of the obstacles but not their identity. This might

m correspond to low cost radar infornation; and (3) None: A minimal information

link in which the operator simply relies on flight plan characteristics

I provided gratis. The presence of obstacles is acknowledged, but data on their

identity and location is lacking.

I Sequence. The task consists of a series of similar, connected decisions.

Prior to the appearance of any obstacles, the operator is appraised of the

I circumstances surrounding the upcoming decision. He must annunciate (by

pressing the button shown in Figure 5.1) the choice of information to acquire.

A set of two obstacles is presented at the top cf the screen and moves downward.

If he selects full information, the differentiated obstacle symbols will move

down the screen. If location information is chosen, undifferentiated symbols

marking the obstacle locations will pass down the screen. If the minimal

information choice is selected, a bar denoting the presence (but not the

location) of the set of obstacles moves down. The task moves on continuously,

just as an RPV mission does. If the operator does not select an information

I •choice in the time allocated, the minimal information choice is automatically

Fresented.

The operator must make his second decision, that of control allocation,

* before the obstacle symbols reach the control takeover limit (a line approximately

2/3 of the distance dow•i the screen). This control decision is two-fold:

3 h• must decide whether to control the vehicle himself or to give control to

the autopilot; and, if controlling himself, he must decide which path to take

through the obstacles.

I 5-5
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Autopilut Capability. The simulated RPV incorporates an autopilot

program capable of limited autonomous control. The autopilot program is

subject to error depending on the situational conditions. This combination

of autonomous response and unreliability is representative of the behavior

associated with both adaptive control systems and preprogrammed response

systems. Unpredictable behavior is especially prevalent with adaptive or

learning systems since these programs adjust their behavior according to the

requirements of the situation. Such systems typically commit errors during

changing or unfamiliar conditions. I

Unreliability is introduced to the simulated autopilot program

through the addition of randomly generated insertions. First, the autopilot

selects the optimal action bas' on the obstacle probability distributions.

Then these choices are, with a certain frequency, corrupted by random
additions. The frequency of insertion is adjusted according to the task

requirements.

Situational Conditions. The various stages of an RPV exercise can -,

be characterized by such factors as difficulty, costs, system reliability,

and communications accuracy. Accordingly, the task simulation is configured

to involve many of the same factors. It should be noted that these conditions

are not experimental variables, but rather are situational conditions designed
to provide a demanding exercise for the adaptive model. The experimental

variables, defined in a coming section, deal with the form and function of

the model. The sit:jational conditions are:

(1) Information Costs. The opening of the coatnunications channel

for transmission of information has costs that depend on the

level of detail transmitted and on the mission phase. The

minimal information choice is gratis, while location and full

information have moderate and high costs respectively.

5-6 I
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I (2) Control Channel Costs. Just as for information transmission,

manual control of the RPV is costly. Again, the cost depends

3 on the mission phase.

1 (3) Infcrmation Accuracy. The information transmitted to the

operator is subject to error. The unreliability is simulated

by random insertions at a giver frequency. The frequency of

insertion depends on the mission phase.

1 (4) Future Impact. The establishment of contact with the RPV is

assumed to enhance subsequent autopilot capability. Acquisition

I of full information increases the autopilot reliability on the

ensuing decision by a given amount. Acquisition of location
I information also increases the reliability but does so to a

lesser degree.

1 (5) Payoff Schedule. Payotff are made independent of whether the

operator or autopilot makes the control action. A positive

payoff is set for a successful traverse and a negative payoff

is associated with an unsuccessful one. Each of these are

! I constants dependent on the missirn phase.

The presentation of conditions is organized into three distinct

mission phases -- launch, enroute, and target. These phases are similar to

the types of exercises an RPV must perform, thus lending a degree of surface

credibility to the task. Each phase has set levels of payoffs, information

accuracy, autopilot capability, and future impact. For diversity, the

communications costs of obtaining information and control are randomly

varied about central values established for each phase. The mission phases

and their associated conditions are:

I5
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.1
(1) Launch--Low risk flight in safe area.

Low: Communications costs; payoffs j
High: Information accuracy, autopilot capability,

future impact
-1

(2) Enroute--Trav.;rse of hostile regiun.

Low: Infcrmation accuracy. autopilot capability .1
High: Communications costs, payoffs, future impact

(3) Target--Critical approach to target.

Low: Informatiorn accuracy, communication costs,
autopilot capability, future impact

High: Payo 's 7

The conditions are displayed to the operator prior to each decision. -!

The conditions shown in Figure 5-1 are an example of a launch phase A
decision. The upper line on the left provides estimates of the Operator's

probability of succes, under each form of informaticn. The next line j
indicates the p'obability of success of the autopilot. This estimate does

not change with the information acquired. The next two lines are the
information costs and the future impact. The information costs are the -J

points subtracted for acquisition of each type of information. The future

impact is the degree of augmentation of the autopilot on the succeeding

decision. The right side of the display shows the control cost for pilot

control along with the payoffs for successful and unsuccessful actions.

5.4 Decision Model

The experimertal situation results In a simplification of the

general information and control model of Section 4-2. The decision space

is reduced to three information choices and two subsequent control choices.

II5
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I
Nevertheless, a variety of multidimensional consequences are possible,

stemming from the various combinations of costs, payoffs, and actions
possible.

I The decision tree shown in Figure 5-3 summarizes the conmmunications

choices. The initial portion of the more general tree depicted earlier in

I Figure 3-3, the information gathering decision by the autopilot for its

own use, is not represented in this tree. The experimental situation

corresponds to the case where the autopilot has continuous, cost-free

access to high detail information. This allows the vehicle-to-operator

• I communications to be emphasized in this initial study.

uj The major decision faced by the operator is thus the choice of

information and control to transmit. All six combinations of information

and control are shown in the figure. Two combinations of special note are

I those of full information/autopilot control and location infnrmatlon/
autopilot control. These combinations might be selected when the operator

wishes to maintain supervision of the remote system activities (and increase

autopilot reliability) without taking control. The remaining combinations

have more obvious rationales.

The probability of occurrence of each of the 12 outcome catagories

can be estimated analytically or from performance histories. The probability
I' of success for the autopilot can be derived from the obstacle probability

distributions, the autopilot unreliability level, and the future impact.
This calculation is the following:

a

1 (5-1)
I 11

-(R-F) "TI (1"P(Hbla))(l-P(Hcla))I ~a= 1

I9
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I
where

SI a is an action; the choice of one of the eleven paths

R is the reliability of the autopilot; the percent of random
!:. actions

I F is the influence of preceeding communications on increasing

autopilot reliability

P(Hbla) is the probability of a hit from obstacle b given that

S I action a is taken (see Figure 5-2 for hit distributions)

* I P(Hcla) is the probability of a hit from obstacle c given action a

The first of the two factors in Equation 5-I is simply the probability

I of success of traversing the two obstacles encountered, given that the highest

probability path is taken. The secund factor takes ",,to, account the AutopIlot

reliability. R-F represents the frequency of random actions by the autopilot,

and the suimuation provides an averaging of the effectiveness of these

I responses across all possible actions. The probability of success so

determined for the autopilot is the same for all information choices.

I The probability of success of operator control, on the other hand,

depends strongly on the type of information displayed. A different estimator

must be used for each of the three levels of information transmission. The

specific actions and states are not analyzed, since the operator may not act

I optimally. The operator is simply assumed to ha.z different distributions

of outcomes under the different information sources and mission phases.

I Separate estimators, based on moving averages of the success frequencies,

are maintained for each of the 9 combinations of information type and

SI mission phase.

I
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I
Decision Attributes. A prelimirary set of attributes has been

selected that appears representative of the types of factors that enter

into RPV communications decisions. An attempt was made to choose attributes
by the criteria described in Section 3.3--accessibility, monotonicity,

completeness, and independence. The factors and their derivation follow:

(1) Communications Costs. The direct costs associated with use

of the communication channel--energy expenditures, detection,

etc. In the simulation, the combined costs of information

transmission and manual control comprise this scale.

(2) Control Outcomes. The actual consequences of control. In

the real world, these consequences may iticlude loss of vehicle,
system damage, fuel depletion, political gains, or attainment

of goal. The consequences here are defined simply as success

and failure. The expected payoff associated with success and --

failurc detem.rin the attribute level.

(3) Future Impact. The effect on future decisions resulting from

the establishment of communications. This factor is

representative of the many indirect effects of RPV commu,,cations,

among them such factors as control cuntinuity and influence on

autopilot effectiveness. Future impact is defined in this
exercise as the augmentation of autopilot capability on the i
succeeding decision. As was described earlier, greater amounts

of man-machine interaction lead to reductions in autopilot

unreliability on the immediately succeeoing decision. The

attribute level is defined as the percent improvement resulting

from the communication.

5-12
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(4) Control Preference. The subjective preference for manual

j over autopilot control. This factor is one of a number of

possible purely subjective factors--manual control propensity,

operator loading, concrete versus abstract preference, etc.

The attribute level in this study is binary, as it corresponds

to the presence or absence of manual control in the alternative.

The attributes thus represent four main sources of consideration in

communications decisions--costs, direct consequences, indirect affects, and

operational preferences. The same attributes are used to describe both the

information seeking and the control allocation decisions. The evaluation

of each of the 6 combinations of information and control would be made

Ii according to the following equation:

4

.Uj = i W'x

,I where
MAU. is thý aggregate (multi-attribute) utility of alternative j

xij is the level of attribute i in alternative j

W is the inferred weight of attribute i

The information/control choice with the highest MAU would be selected

by the model. If the operator selected a different alternative, the model
would be adjusted according to the methods described in Section 3.4. The

* r absolute rule is used for adjustment.

5.5 Experimenvtal ProcedureI.
5.5.1 Experimental Variables. The experimental hypotheses deal with the

* I. effectiveness of prediction and degree of aiding provided by the model.

Accordingly, the following experimental variables and levels are planned:

I 51
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(1) Model Form--Two Levels

Oifferential weighting. Use of model inferred attribute

weights for prediction, analysis, and aiding.

Unity Weighting. Control condition in which arbitrary

(all 1.0) weights are used for prediction and aiding. All I
of the weights are defined to be positive except cost.

(2) Aiding--Two Levels

Model Based Aiding. Operator makes information and control

choices after observing model recommendations. -,

No Aiding. Operator makes information and control choices

without model recommendation. ii
The four combinations of the above experimental conditicns provide

an essentially complete testing sequence for the experimental hypotheses.

The model form conditions provide a basis for testing the predictability
and validity of the adaptive model, while the complete set of conditions
allow testing of the influence of aiding on performance. The aiding i|
conditions also result in an indication of the degree of operator acceptance

of the machine recommendations.

5.5.2 Performance Measures. The standard performance measures such as

errors and speed only partly describe the quality of performance in a
shared control task. The close coupling of man and semi-autonomous
machine require additional evaluations of individual contributions, decision I
model performance, and decision quality.

!
I!
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I
System Performance. The overall system performance is described

using a single index, the score. The score is derived from the number

"and cost of errors conmitted and the communications costs expended:

I SCORE = {PAYOFFS} - {PENALTIES + COMMUNICATION COSTS)

I. The communications costs include both the costs of information

transfer and the cc.ts of assumption of manual control. The score is

j presented to the subject as a single index of performance, and his

compensation depends to a large extent on the measure. The complexities

of having speed as a second, independent measure are avoided by presenting

the task at a set pace.

Decision Model Performance. The effectiveness of the decision

model in inferring decision parameters and predicting operator behavior

SI. can be determined by d number of methods. Among these means of model

validation are axiomatic tests, measures of prediction, construct validity

tests, and checks of operator acceptance. PredcLiron it tie simplesL of

these. The 3hility of the adaptive model (and of a utility weight model)

I to predict behavior in both the information and control decisions can be

determined directly. Construct validity tests are more difficult. These

tests are made by comparing the inferred weights with weights estimated

off-line by other techniques. The off-line estimation techniques may

involve direct estimation, paired-comparisons, or the Ynetma-Torgerson

"interpolation between the corners" method. The last of these, the

Yntema-Torgerson technique, was selected for use in the stud, because of

its simplicity and reliability.

[ Auxiliry Measures. Additional measures of decision quality and

decision consistency were imple'nented. The decision quality measures are

determinations of the deviation from maximum expected utility exhibited

Ii
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by the operator. Assuming model accuracy, this is a measure of sub-optimality

of behavior due to logical inconsistency. The second measure, decision

consistency, is measured by the overall stability of the estimated preference

structure. A
5.5.3 Experimental Desiqn and Procedures. The hypotheses were examined

using a three factor experiment with repeated measures. The three factors .

were the model, level of aiding, and sequencing of conditions. Repeated

measures were taken across the first two factors as shown in Figure 5-4.

In this design, each subject was exposed to all four combinations of

condit-ons. •1

The eight subjects participating in the study were recruited from

nearby Air National Guard units. They represented the type of personnel ,{

who might interface with computer-aided communications system. The

subjects' ages ranged from 22 to 42. Four of the subjects were pilots :1
a,,d three had cxtcr-ive ..... enc ,di+h rncmputr systems, All had some

college experience (1 to 12 years). The eight subjects were assigned I

randomly to the four groups.

Each subject performed the task during three sessions of 2 hours

duration. The first hour of the first session served as a familiarization 11
and practice period. The subjects were given instructions on system

operation and were provided hands-on experience with the equipment. The

remaining hour of the first session, both hours of the second session, I
and the first hour of the final session were devoted to experimental runs.

Each of the experimental runs lasted 55 minutes and consisted of four

complete sequences of launch, enroute, and terminal phases. The subjects

were paid on an hourly basis and received up to $4.00 an hour additional jJ
as a bonus contingent on performance. The bonus was a function of their

score compared to that of the other participants. fl
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41

INo Aiding Aiding

Unity Infrared Unity Infrared
Weights Weights Weights Weights

Group I C D A B

Group 2 D C B A

Group 3 B A C D

Group 4 A B D C

(Letters denote order)

FIGURE 5-4. EXPERIMENTAL DESIGN

I
II
I
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The subjects were informed that on two of the runs, aiding would

be provided in the form of communications recommendations. The subjects

were not informed as to the nature of the aiding. The experimental runs

ended with an off-line estimation of each subjects' attribute weights

using the Yntema-lorgerson tecnnique.

Data Report. Following every experimental segment, the computer .1
provided a printout of the experimental performance indices. Segments

consisted of ten decisions, spanning a single mission phase. The 24 seconds

required for the printing permitted a short rest period. The data report

provides a breakdown of the performance score into .that attributable to the
operator and to the autopilot. Also, analyses of the information seeking

behavior and model performance are included. A typical data report is

shown in Figure 5-5.

A
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SMEIN ATTRIBUTE LEVELS 5 55 8 3 5E 0 2 25E 0 4 7M 0 4 25a8 3 iE 8
IIENIEIG• T -1i u ei 8 18WBtOW 0 IttEKa
W• OF IWO & CONT RQ.IESTS 2 0 1 0 2 5
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NO OF OPERATO CONTROLS 3
NO OF MACHINE COLIROL% 7
NOPRE OPERTOR ERORS eNO OF KOCINE EI•OS, 0

N OF INFO00VEIDES. I

IPERCENT OPERATOR ERR 0

IPERCENT PUCHINE ERRORS,
WuAd OF PR(6ILITIES 8 08(-1 9E 0 5. OE-I OE 0 6 UE-1 5 INE-1
HEM FWIPL EV i 418E i
MEAN DEVIATION OF FMIM LU 3 90% 0IE*CTED VALE FOR DECISION 1 493E
C9M COST LOR OPERT CONTROL 14
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'TOTAL ERRIR 0

DECISION PERCENT PRE.DICTEV: ae
MA INlFORMTION VtLUE 2 :75 0 1. 25B 1-3 206E 1-i. 25 1

i IIFIGURE 5-5. SAMPLE DATA REPORT
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6. EXPERIMENTAL RESULTS AND DISCUSSION

16.1 General Observations

I The choices presented in the RPV task simulation were found to be

sufficiently varied and difficult to provide a good initial exercise for

SI the decision model. A wide variety of behaviors were observed and modeled.

The task simulation was also found to be sufficiently demanding to maintain

a high level of subject interest. The subjects learned the task procedure

readily and by the end of the training session, could efficiently handle

f the task requirements.

i 6.2 Model Descriptive Performance

6.2.1 Prediction. Table 6-1 shows the percent of decisions predicted by

the experimental (inferred weight) model and by the control (unity weight)
m.,ren

1  
trak cn..nnrmn,.+l scsermn rc..14,A in, a4* data + po nto pc-.rnn

prediction. The prediction itself was the choice of one of the six

possible combinations of information and control.

I The experimental model was found to predict behavior significantly

I~ more effectively than the unity weight model (F=1O.l, df=l,4, p<.05).

Overall, a 50 percent prediction rate was observed with the adaptive model,

as compared with a 40 percent prediction rate by the unity model. The

seemingly low rates of prediction were due to the difficulty of the

Info•mation and control choices. Dominated alternatives and clear choices

I were seldom present. Aiding by recommendation using either model, also

improved the prediction accuracy (F=26.2, df=1,4, p<.Ol). Prediction by

the unity weight model increased from a level of approximately 35 percent

to one of 45 percent, while for the inferred weight model, aiding increased

the prediction rate from a 45 percent level to a 56 percent level. These

increases w.ere presumably due to acceptance of the aiding by the subjects.

I
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TABLE 6-1. MEANS OF PREDICTION MEASURES FOR THE
COMBINATIONS OF MODEL AND AIDING ]

Non-Aiding L na

Control Experimental Control Experimental
Model Model Model Model ]

Percent of
Communications 34.6 44.6 44.9 55.7Decisions

Predicted

Percent of
Information 58.3 65.3 70.5 76.4
Decisions
Predicted

Percent of I
Control 73.2 71.3 76.1 82.9
Decisions
Predicted

I
I

i:i
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I iThe majority of the prediction increment between the inferred and

unity weight models was traceable to increased accuracy of prediction in

the information choice. As shown in Figure 6-1, a significant increase in

information choice prediction was found with the inferred model as compared

I to the unity model (F=17.2, df=l,4, p<.Ol). Also, increases in infornmation

prediction were found with the aiding conditions compared to the non-aiding

J conditions (F=17.6, df=l,4, p<.Ol). Neither the modeling or the aiding

differences reached significance with the subsequent control choice.

UI However, an interesting interaction effect was found with the control

choice behavior, as shown in Figure 6-1. Acceptance of model recommendations,

indicated by an increase of prediction with aiding, was present only with the

I experimental model (F=7.7, df=l,4, p<.05). The unity weight model did not

seem to engender such acceptance.

6.2.2 Decomposition. The components of the multi-attribute model were

,J also found to be predictive of components of behavior. The costs actually

expended by the subjects were highly correlated with the communications

cost weight (r=.853, p<.OOl) and moderately correlated with the control

outcome weight (r=-.51, p<.05). These findings indicate an intercorrelation

among attributes, pointing to a need for more careful initial definition of

the attributes. The intercorrelation appears to be due to the fact that

V costlier infomation Is typically associated with higher probabilities of

' Isuccess. Nevertheless, the robustness of the linear model allows it to

function well regardless. The number of requests for information having

non-zero future impact was similarly correlated with both the future impact

weight (r-.51, p<.05) and the communications cost weight (r=.57, p<.05).
Here the acquisition of information having high future impact was
associated with increased costs.

I The relationship of behavior to model-inferred weights can be

illustrated by example. Figure 6-2 shows three representative samples of

divergent behavior and the corresponding weight vectors. Each example

I
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100

8 Experimental Model

Percent Control Model

of

Control 60

Decisions

Predicted

An

201

Without Aiding Aiding

FIGURE 6-1. INTERACTION OF AIDING WIIH MODEL FORM
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i Attribute Weights

80

Number- Costs -. 15

Choices 60 O, tcomes Op

Preference .40

40 Future .37

I ~~20kI n
Full Location None Fu'l Location Nfone

Pilot Control Autopilot Control

Attribute Weights
80

Number Costs -.11

of 6Outcomes .06

SChoices Preference .59

40 Future .24

20_ H0. A

Full Location fJohe Full Location oe

I Pilot Control Autopilot Control

80 
Attribute Weights

I Number Co3ts -. 07

of 60 Outcomes .06

Choices Preference .68

40 Future -. 18

207

* 0 u1 Luctiton None Full Lochtion None

*1

Pilot Control Autopilot Control

3i IFIGURE 6-2. REPRESENTATIVE SAMPLES OF CHOICE DISTRIBUTIONS
AND THE ASSOCIATED MODEL WEIGHTS
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depicts the distribution of choices made during an experimental session.

The averaged weight estimations for each session are shown to the right I
of the figures. The upper figure is from a session during which the

subject minimized costs by emphasizing autopilot control. This behavior I
is reflected in the relatively high negative weight for communications -

costs and the low weight for manual control preference. The moderate

level of the future impact weight appears to be due to the frequent I
acquisition of full and location information during autopilot control.

It should be noted that while the weight vectors are normalized (the

absolute levels sum to one), the relative contributions of the attributes

are not proportional to the weights, since the ranges of the attributes I
are different.

The second histogram of Figure 6-2 shows a more balanced behavior.

The information and control choices are distributed more equally among the

options available. The communications cost weight Is less extreme than i
in the first case, and the manual control preference is somewhat higher.

An example of strong manual control propensity is shown in the

lower figure. Here the communications cost weight is quite low, as might 3
be expected, with frequent acquisition of full information and manual

control. Also, the manual control preference is high and the future impact

weight is negative. The negative weight for future impact may be due to
the subject's neglect of location information in both manual and autopilot

modes.

6.3 Task Performance I
No significant differences in the performance score were noted

between the aided and unaided conditions with either model. This is

understandable, since the adaptive model does not direct the operator

to maximize score, but rather attempts to capture, analyze, and extrapolate

his behavior to new situations.

6-6 I
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I Nevertheless, the adaptive model was useful in identifying

behaviors which led to superior performance. Corrections between scores

achieved and the inferred attribute weights indicated that the communications

costs and control outcome attributes were the factors of primary importance.

I The control preference and future impact attributes appeared to be more

subjective and less consequential regarding performance. The score

•" I attained correlated very highly with the commnunications cost weight

(r=-.853, p<.O1) and moderately so with the control outcome weight

(r=.448, p<.05). Between these two factors, roughly 93 percent of the

variance in scores was accounted for. Inspection of scatter plots of the

individual attribute weights with the scores attained, indicated that

I inverted-u relations were present between each of the four weights and

4 the score. This seems reasonable, as an optimal region for each importance

weight would be expected. The sizable linear relationship of score

attained to the communications cost and control outcome weights appeared

I ibe due to the concentration of scores on the low end of these scales.

subjects seemed to take sufficient account of these factors. Instead,

I factors:4ppea to oUVr'-•e,,phaC ie the couLroi prefr lerm: orid futurth irpact

An interesting finding was the relationship of score achieved to

corsistency of behavior with respect to the model. With the unity weight

model, a moderate correlation was observed between the deviation from

expected utility (DEU) and the score (r=.52, p<.05). The DEU is essentially

a distance measure reflecting closeness ol behavior to the model

recommendations. Typically, the lower the DEU, the higher was the observed

score. This relationship of decision consistency to score was also seen

with the adaptive model during aiding (r=.80, p<.05). It appears that both

the unity and the adaptive models resulted in improvements in performance

when deviations from the model recommendatlons were minimized.

* 6-7

rll



.1

6.4 Validation

A preliminary check on the model validity was made by comparing -1

the inferred parameters with weights estimated through off-line procedures.

The Yntema-Torgerson "Interpolation Between the Corners" technique was

employed as the comparison method. In this, each subject estimated on a

scale of zero to 100 ths attractiveness of various hypothetical information

and control choices. The scale was anchored at the zero and 100 points

by the worst and best combinations of conditions, respectively. These

combinations specify 2 of the 16 possible combinations of the 4 attribute

extremes. The remaining 14 combinations of corner conditions were presented

in sequence to the individual subjects. The resulting ratings were then

normalized so as to be comparable in scale to the model inferred weights

(see Sheridan and Ferrell (1974) for a description of the derivation

procedures).

A vry strong tost of the similarit, of the eight pair- of attribute

profiles was made using a two factor ANOVA with repeated measures on both 4
factors (estimation methods and attributes). The test that the two profiles

were identical was rejected (F=5.43, df=3,21, p,.Ol). Nevertheless, m

correlation coefficients between the attribute estimations by the two

methods averaged .46, which is significant at the level. ii
Comparisons of the on-line and off-lne methods of estimation were

also performed by correlation with behavior. As noted previously, the

adaptively inferred weights for communications costs and future impact

correlated significantly with the costs expended and with the frequency

of information acquisition in the task. The off-line estimates of the

future impact weights also correlated significantly with information

acquisition (r=.56, p<.05), but the critical weight for communications

6-8
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cost did not correlate with costs expended. Also, correlations between

j the communication cost weight and the task performance did not reach

significance. From these findings, it appears that the adaptive estimation

procedures had an advantage in prediction over the off-line technique.

I
I

I
I

I
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Si 1 7. CONCLUSIONS AND RECOIMIENDATIONS

1 7.1 Adaptive Decision Modelinl

I The present study demonstrates some of the potential of on-line,

adaptive techniques for modeling communications decisions. The information

seeking decisions involved in remotely piloted vehicle supervision were

seen to be amenable to analysis using multi-attribute decision models. In

the RPV situation, the operator is repeatedly required to make complex,

subjective decisions regarding information and control options. Multi-

attribute models using pattern recognition techniques for estimation were

seen to be able to capture much of this behavior.

I The preliminary experimental studies demonstrated the speed,

simplicity, and robustness of the adaptive technique. The on-line
estimation technique was found to be more predictive of behavior than

either the urity weight or off-line methods tested. The adaptive model

was also useful in identifying differing decision policies and partitioning

out components of behavior, at least to a rudimentary level. Finally,

* I the adaptive model appeared to be accepted to some degree by the operators,

since the model prediction rate increased with display of the moael's

recommendations.

Of course, the multi-attribute models and adaptive estimation

S I procedures are not proferred as the general methodology for communications
decision modeling. lhese techniques are specific to decisions that are

J complex, subjective, and recurrent. Some rough criteria are given

Identlfylng situations that favor use of off-line parameter estimations,

unity weight models, linear cue formulations, and related techniques.

The coming studies will attempt to refine these guidelines.

I 7-I
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7.2 Decision Modeling and Task Performance

The adaptive model was found to be helpful in identifying

strategies which led to superior performance. The time-proven capabilities

of linear models in analyzing components of performance were again seen.

Aiding, based on recommendations by the on-line model, did not

produce the significant increases in performance expected, although those

subjects who followed the reconmendations most closely achieved the highest

scores. The effect on these subjects appeared to be the classic reduction

of randomness or noise in behavior. Strong improvement in performance with

aiding are expected to be more likely in situations of greater time stress

and decision complexity.

7.3 Value of Information

The probabilistic multi-attribute model provides an ideal framework

for ascertaining the value of information. The benefit of an information

system in a set of task situations can be determined by aggregating the

constituent influences of the connunications.

The adaptive model contributes to this analysis by providing

estimates of the model parameters in operational situations. A figure

of merit can then be given to a specific information system by aggregating

the values derived over the distribution of situations. Such a procedure

is planned for the coming study, along with sensitivity analyses of the

various model parameters and situatinnOl factors. The resulting

methodology should be useful for evaluating alternative systems of
information sensing, processing, encoding, transmitting, and display.

Also, the techniques should be helpful for specifying information needs

and training operators to make effective communications decisions.

7-2 [1
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7.4 Manaemnt of Communications

IThe availability of a methodology for information value

determination opens up the possibility of minaging communications from

an automated system. Ideally, the operator would then be appraised of

only essential information, instead of having to frequently and
inefficiently interrogate the system.

The acceptance of model recommendations noted in this study is

encouraging regarding the possibility of remote management of communications.

The next step, scheduled for the coming year, is the model-directed

presentation of communications to the operator.

I

.I

i
I
I
I
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