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aperator's decision 30l i&y by using a training algorithm based on pattern
recognition techniques.

Preliminary tests of the adaptive modeling approach were made using a task
simulation resembling control of a remotely piloted vehicle. Individual subjects
navigated the RPY through a changing, hazardous environment. In doing so, the
operators selecled different combinations of informaticn and control allocation.
The adaptive model was found to be more predictive of the subiject's behavior than
either a constant, unity weight model or an off-line method of weight estimation.
Also, prediction of behavior increased with presentation of model-based
reccaaendations to the subjects. Finally, the model was found to be useful in
identifying differing decision strategies. The multi-attribute model thus
formulated is expected to find application in evaluation of alternative

information needs. Methods for management of communications by the remote
element are also discussed.,‘\ -
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1. .NTRODUCTION

1.1 Remote Systems Overview

Man and the functional environment with which he deals are
becoming increasingly separate. Remote systems such as undersea robotic
systems, remotely piloted aircraft, cxtraterrestrial teleoperator systems,
and biomedical manipulators extend man's influence across distance,
time, and function. But as these systems amplify man's capabilities,
they simultaneously introduce new sources of uncertainty. The machine
almost by definition acts as an intermediary between the task environment
and the operator, making certain states inaccessible to direct observation,
The operator must then depend upon artificial devices for sensing,
processing, and communicating situational information.

To some extent, the amount of information exchange required is
dictated by the degree of remote system autonomy. For example, operation
of a simple remote effector without autonomous capability requies that
the operator continuously close a real-time feedback loop around the
remote element (Ferrell, 1973). Sufficient information must be transmitted
to enable the operator to judge distances; interpret forms and shapes;
appraise contacts, orientations, forces, and motions; and to issue complex
commands (Bejczy, 1973). Much less information transmission is needed if
the remote element takes over a portion of the routine, recurrent control
and decision making functions. In this situation, the operator retains
responsibility for evaluation, problem solving, and supervision, but is
relieved of the continuous control function (Singleton, 1976). A good
example of this form of supervisory interaction is advanced aircraft
control. An aircraft control system has a hierarchy of control stages,
some of which are delegated to the machine and some to the operator. The
inner loops of aircraft control entail such functions as vehicle

1-1
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stabilization and short-range guidance. These routine, high frequency
tracking tasks are typically automated. The higher level loops of
ravigation and long-range guidance, involving the more discrete processes
of problem solving and decision making, are rormally delegated to the
operator (Johansson, 1976). This allocation of function results in a
decrease in the amount of continuous communications. Further, the
allocation matches the information flow more closely to human information
processing capabilities.

Remote systems demonstrate additional needs for minimizing
communications, since the operator is physically separated from the
system he is controlling. The information interchange in remote systems
can be extremely costly and time consuming. Bejczy (1973) and Freedy,
Hull, Lucaccini, and Lyman (1971) note that communications between an
operator on Earth and a remote manipulator in space are limited by factors
such as time delay, bandwidth, signal-to-noise ratio, and maximum video
frame rate. Thus the remnte oreration becomes an increasingly laborious,
slow, power consuming, and costly process as the distance to the remote
element increases. Even in ciosely linked terrestrial applications, the
communications costs can be high. Communications in remotely piloted
vehicle (RPV) control demonstrate significant energy costs, reduced <vstem
reliability, and increased possibilities of detection (Fogel, Engiund,
Mout, and Hertz, 1974; Mills, Bachert, and Hume, 1975).

The substantial communication costs have led to development of
greal.r autonomous capabiliti:s in remote systems. Machine intelliigence--
denoted by Bejczy (1973) to be programmed control systems above the level
of numerical (or memory) control--has probably received the most attention.
Machine intelligence involves learning control based on pattern recognition,
Bayesian estimation, reinforcement learning, stochastic approximation, and
other sophisticated methods (see Fu, 1970, for a discussion of these
techniques). The incorporation of machine intelligence allcws the

1-2
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operator to give mor~ general ccmmands. He can then rely gn the remute
unit to carry out the commands (Ferrall, 1973). Idealiy, the recessary
communications are thus reduced to status updates and intercnanges of
program objectives. In actuality, hcwever, the operator must still
frequently interrogate the system to verify performance and to identify
critical situations.

One method of reducing such inefficient iaterrogation is to
extend the function of the remote inteiligence to include comrunications
evaluation and management. This should be well within the realm ot
feasibility. Machine inteliigence n.rmally imclies some explicit or
implicit madel of the remote clement, its environment. and task objectives.
The model should already be capabie of assussing confidence levels for
machine and human control in the immediate action. It should also be abie
to determine the efficacy of providing control information to the operator.
In fact, some initial efforts have been made toward placing such a
communications initiative with the machine. Information and control
allocation cechniques have been proposed using criteria based on queuing
nodels (Rouse, 1975; Engstrom and Rouse, 1976), optimal controi models
(Sheridan, 1976), and multi-attribute decision models (Steeb and Freedy,
1976). The present work proposes *; develop 2nd integrate these efforts

1.2 Communications Evaluation as a Decision Problem

The communication of information betwees man and remote system is a
good deal more complicated than deciding wher to plck up fthe receiver.
Choices must repeatedly be made regarding variables such as the mix of
information sensing, processing, encoding, transmitting, and display.
Throughout this process, a balance must be maintained between maximizing
operator awareness of system operation arnd minimizing communications costs
and cperator load.
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At first, this appears to he a mathematical optimization
prchiem--1ike searching for a diet that provides the necessary nutrition
a~ minimum cost. However, the mathematical programming techniques requi.ed
for this optimization--linear programming, goal programming, dynamic
progiamming, etc.--demand rigid problem structuring and continuous
variatles. More often, the communication decision is incompietely defined
and involves choices among discrete rather then continuous alternatives,
Thus the discirete operators used in decisian theoretic techniques--matrices,
difference nperators, and detailed parameter enumerations--are more
appropriate.

The specific decision to be modeled is what type of information to
send and when to transmit it. The operator (or, equivalently, an
information manag2ment system) must select an alternative on the basis of
a number of multidimensional and risky (probabilistic) factors. Decision
theory provides a normative framework for such choices, tying the decisions
to situational factors (linear cue models) or to the impact of information

on system effecciveness (multi-attribute expected utility models).
Chapters 2 and 3 will provide a detailed comparison of these approaches,

1.3 Subjective Elements of Information Value

The form of the decision model can be developed from completely
objective factors (“true" probabilities, dollar costs, etc.), from
purely subjective factors (subjective probabilities, utilities for
consequences), or from some combination of the two. A purely objective
analysis of information value would have to include a complete mapping of
system conditions and possible decision outcomes to operational goals.
Felson (1975) states that only in a few highly stiructured situations can
such an optimal model be derived. Also, even if such a model is
developed, acceptance of the aiding provided to the sperator may be

1-4
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lessened since individual operator preferences would not be incorporated
in the machine decisions (Hanes and Gebhard, 1966; Ferguson and Jones,
1969).

A more promising task is to elicit or infer the operator’s goal
structure and then to incorporate it in a model of the decision situation.
This is the approach currently taken. By incorporating operator utilities
in the model, complex evaluation and goal direction functions are performed
by the operator, while normative aggregation functions are assumed by the
computer. Loss of optimality in such a pragmatic approach should not be a
major problem, as operator utilities for information have been found to
approximate objectively derived values (Wendt, 1969; McKendry and
Enderwick, 1971). Also. the subjective values may reflect aspects that
are not analytically tractable at the nresent time. These aspects include
timing factors and expected influences on subsequent information decisions
{v.Winterfeldt, 1975).

1.4 Decision Modeling Philcsophy and Objectives

One can use widely ciffering philosophies to mcdel arnd aid the
information-seeking decisions of the human operator. Available
techniques focus on such diverse themes as uncertainty reduction,
behavioral cue regression, and risky utility maximization. To a degree,
all of these methudologies are potentially applicable to communications
in remote systems.

fortunately, there are some guidelines for model choice arising
from the special circumstances of remote systems supgrvision. For
example, behavior prescription by a normative model is far more importanrt
than simple prediction by a descriptive model, since the model is to be
used for informatfon evaluation and management. Also, the operator is

1-5
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expected to explicitly consider the likelihood and importance of achieving

specified system objectives. A nirmative model is again suited to
capturing such goal-oriented behavior. Finally, incorporaticn of the

model into the remote system demands simplicity, immediate access to model
parameters, minimal interference with operator function, and generality.

It is not guaranteed that any model will satisfy all of these criteria.
Nevertheless, an attempt will be made to develop a normative model that
satisfies many of the above goals.

The decision model has other potential benefits in addition to
evaluation and management of communications. The model is expected to
provide a framework for comparing alternative configurations of
information sources, transmission systems, and displays. The model may
also be used for selection and training of operators through comparison
with "expert" judament. Information needs may be disclosed through

sensitivity analysis of mode' parameters. Finally, the model is expected
to result in more consistent and effective operator decisions by providing
on-1ine recommendaticns to the operator. Each of these possibilities will

be developed in the following sections.

ey e e o e = ¢
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2. INFORMATION SEEKING BEHAVIOR
2.1 Qverview

The activities surrounding the selection, acquisition, and
processing of information can be surprisingly diverse. Even in the .
rematively specialized task of remote system supervision, information-
related activities often constitute a majority of the operator's functions. :
The operator must maintain an awareness of the remote environment state, ;
the machine state, the capacity and quality of the communication channels,

and the progress toward objectives. This section will explore tlie more
important techniques of modeling these inforr tion-related activities.
For simplicity of phirase in the analyses, the processes of information
recognition, selection, and acquisition will all be subsuiied under the

term infermacion secking.

Hom RIE" o b

The major meth >logies of modeling information seeking behavior 1
can be somewhat arbitrarily divided into three categosies: inform. :ion
theory, cue regression, and utility thenory. Each of these technicues ]
attempts to model the usefulness of information for the decision maker. '
The techniques differ in the ammunt of structure assumed by the decision 3
model. Following a discussion of what constitutes relevant information
(regardiess of modeiing philosophy), each of the methodslcgies will be 1
discussed in turn. The chapter ends with a comparison of the potential §
contributions of tne different techniques to remote systems analysis. :

;
k
g.
L

2.2 Information Relevance

PP PR R

Before bounding into the morass of mathematics, behavior, and
models, it i{s necessary to define some conceptual rules. In particular,
one nzeds to define what constitutes useful information and what properties

2-1




an information model should exhibit, These definitions can be derived
from the basic relationship of infurmation seeking to decision making.

In the most general sense, information has been described as data
of value in decision making. The effect of the information is to reduce
sume element of uncertainty in the decision making process. The uncertainty
may be concerned witn the structure of the decision, or it may deal with
the relations between the structural elements (Whittemore and Yovits, 1974,
Nickerson and Feehrer, 1975). Specifically, Whittemore and Yovits define
the structural elements of a decision to be the possible set of actions,
outcomes, states of nature, and goauls. Each of these may be defined
along continuous scales or as discrete elements. The information may help
to define the members or the domain of these sets. More commonly, however,
the decision structure is already defined, and the information acts to
define the relations between the structural elements. These relations are
the parameters normally dealt with in decision analysis--the probabilities
of the states of nature; the conditional probabilities of outcomes given
certain actions; and the values of outcomes according to the gual structure.
Information may contain structural data, relational data, or both. As a
coroliary, then, information is valueless in a non-probabilistic, completely
structured decision.

It is not enough, however, that some uncertainty regarding the
decision structure and relations is reduced, since behavior and hence,
consequences, may be unchanged. To identify actually pragmati~ or
consequential information, Whittemore and Yovits (1974) define the
informen--the minimum amouvnt of information needed tu change the state ot
a decision maker. The circumstances necessary to change this state have
been best enumerated by tmery (1969): (1) the information must affect the
existing representation of the decisicn situation; (2) the change in the
representation must then affect the decisions made; and (2) an Increase

2-2
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must occur in the utility resulting from the changed decisions. Information
thus has value only if 1t changes the organization's formai view of the
world, if decisions are sensitive to such a change, and if the utility
derived is sensitive to differences in decisions.

There are several reasons why information may not have this impact.
Information may be ineffective in changing the situational representation
and resulting decisions because the data is too coarse or tco fine
(Marschak, 1963). Information that is too coarse fails to distinguish
between effectively different states of nature for at least one of the
alternative actions. Information that is too fine differentiatas between
states having identical payofis for all actions. Effective information--

data that is not too fine or too coarse--is termed by Marsunak to be payoff
relevant.

In sumary, th 1, a complete model of information seeking behavior
must; (1) reflect the data's effect on uncertainiy reduction, (2) identify

the change in behavior, and (3) quantify the difference in decision
consequences. '

2.3 Inform.tion Seekinq Models

2.3.1 SGeneral. The concept of evaluating information on the basis of its
effectiveness in improving decision making has led to a veriety of
quantitative models for information s.eking. The most influential are the
normative mod21s vsed for prescribing optimal behaviorr. These normative
procedu.es involve maximizing ¢i1in or utility, minimizing lostes, or

ac .ievi- j grcatest uncortainty reductior.. Unfortunately, the operitor
rarely acts optimally. More flexible and varied descriptive models are
thus required to capture th: information seeker's individual policy.
Multiple regression, heuristic models, and modified normative models are

IR




used widely for such descriptive modeling. The following review will
attempt to characterize the various models in terms of normative qualities,
descriptive capabilites, degree of completeness, and practicality.

2.3.2 Information Theory Models. Information theory provides a simplistic

but direct means of specifying the impact or value of an item of information.

The measure of information value is given in terms of reductior of
uncertainty to a decision maker. In 1ts early form, information theory

(or more correctly, communications theory) used choice information as a
measure of the freedom of choice one has in sele~ting a message from a
population of symbols (Shannon and Weaver, 1949). In this limited
application, the context, meaning, and effectiveness of the message are of
no significance. The theory is concerned only with the probability of
receiving any particular message for various conditions of the transmission
system.

Whittemore and Yovits (1973) expanded the information theory
methodology by redetining the concept of uncertainty and by introducing
aspects of decision theory into the formulation. In their model,
un iertainty may be associated with the structural aspects of decision
meking--the possible sets of actions, outcomes, state of nature, and
goals--along with the relational connections between these structural
aspects. Information is considered to reduce the unceriainty associated
v.ith eitner the structural or relational elements.

Just as the bit was developed as the primary unit in communications
theory, a sincle index was formulated by Whittemore and Yovits (1973, 1974)
Lo represent the impact of information. They derived an overall function
of decision determinacy--the uncertainty sui'rounding the choice of a course
of action. Tr's measure represents the combined effects of the information
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on the decision maker's understanding of the situation. Whittemore and
Yovits represented this quantity in the following manner:

3

Decision Determinancy = J Ip(ai) - %1 (2-1)
i=1

where
a, i=1, m are possible courses of action

p(ai) is the probability of choice of action i given the decision
maker's knowledge

If eacn p(a1) = 1/m, the situation is completely urdetermined, and thus
the above function is essentially a distance from indeterminacy.

It is assumed in this formulation that it is possible to obtain
a distribution that refiects the operator's overall inclination toward
the various courses of action. One possible form is the probabilistic
modet of expected utility. Here each action is selected with a probability
related to its expected utility (Becker, DeGroot, and Marschak, 1963; also,
see Section 2.3.3 for a description of expected utility models). In this
way, the probabilities of choice are depenecent on both the structural and
relational components of uncertainty. The information results in changes
to the model parameters, new courses of action become favored, and the
decision determinacy is increased.

In general, this uncertainty reduction formulation accords witf
the requirments of responsiveness to changes in the situation and in the
decision maker's objectives. It appears descriptive, but lacks a normative
framework for directing behavior. Also, the formulation does not result
ir. an easily derived scale of information value. The remaining techniques
will be seen to be more definitive.

2-5
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2.3.3 Utility Methods. Utility theorists provide an essentially optimal
but not necessarily descriptive approach to modeling information seeking.
They calculate the expected information impact on the estimate of the
state of nature. Then the increase in decision effectiveness under the
new situation estimate is determined. This provides a strong tie between
information and action choices, but at the same time requires a well-
structured decision task.

Development of a utility model of information seeking requires
that the possible states of nature, information choices, actions, outcomes,
and values can all be exhaustively enumerated. The values may be either
objectively defined (i.e., costs, payoffs) or subjectively estimated
(subjective values or utilities). Each action and state of nature is
assumed to be associated with a payoff or utility, as shown in the payoff
matrix in Figure 2-1 (Emery, 1969). Each utility value in this matrix
represents a summation of the multidimensional consequences stemming from

the specific action and state of nature.

A key component of the model is the state of nature during an
action. This state is uncertain for two reasons (Emery, 1969; Sheridan,
1976).

(1) An action takes a finite time to implement, and so the
states considered are future states. Such states are
inherently uncertain.

(2) The states of nature are perceived only indirectly through
an information system., Thus existing and future states are
known imperfectly.

The information system cen be characterized as an s by m Markov maxtrix
relating messages to the possible unknown states of nature {(Figure 2-2). The
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matrix elements P(yjlah) are the conditiinal probabilities of receiving
message j if state h prevails. Off-diagonal elements indicate imperfections
in the information system. Such an imperfect correspondence between statz
and message may be due to a failure of the messages to discriminate between
states, or may be the result of random errors in the messages.

A Bayesian analysis can be used to determine the usefulness of
acquiring information to sharpen the estimate of the state of nature
(Wendt, 1969). Let P(zh) be the prior probability that state z) will
occur during the coming decision. The revised probability of state z,,
given the message Y can be given by Bayes' theorem:

P(Y|Zh) ¢ p(Zh)
p(zh|.‘/j) = . P‘(yj) (2-2)

where

Py ) = % Plyjlzp) « Plzp) (2-3)

The vi lue of information derives from the fact that only one
message, Yjo is selected from the set Y of possible messages, and that
this message allows improved inferences about the state of nature. To
determine the value of the information structure, then, one must estimate
the probability and impact of receiving each potential message y. (The
subscripts 1, j, h will be dropped in the following discussion for
simplification.) In the coming paragraphs, a decision policy will be
established for action seiection in response to the message received.
Then an expectation taken over all possible messages provides a figure of
merit for the information system.
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The optimal decision rule for action selection in a non-conflict
situation is the max.mization of expected utility (EU). This rule specifies
selection of the action with the highest probability-weighted utility. If
a specific message y is observed, EU maximization taken the following form:

a*(y) = "% 1 P(z]y) u(a,2) (2-4)
2

Thus the optimal decision rule a*{y) selects the action a that maximizes
the expected utility under the revised probability estimate P(z|y). The
value of an information system, v(r), is calculated by summing across all
possible messages:

v(r) =} § P(z,y) ula*(y),z) (2-5)
yz

The joint probability of state z and message y can be decomposed

in the following manner:

P(z,y) = P(z) P(y|z) (2-6)

resulting in:

v(r) = ¥ P(z) P(ylz) « u(a*(y),z) (2-7)
yz

The overall expected value of the actions taken using information
system y can thus be calculated using three sets of parameters: (1) P(z),
the prior probability of each state; (2) P(y|z), the information system
matrix; and (3) u(a,z), the utility or payoff matrix. The fair cost of an
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inquiry with the information system is the difference in expected utilities
with the without the inquiry:

Fair Cost = J ] P(z) P(y]z) u{a=(y,2z)),
y z

(2-8)

- ™%X 5 piz) u(a,z)
a7

This analysis is suited for highly structured tasks, Not only
must the possible states, messages, actions, and outcomes be specifiable,
but the prior state probabilities and the conditional probabilities
characterizing the information system must te derivable. The cequence of
decision stages can be depicted using a decision tree, as shown in
Figure 2-3. The tree is folded back by asscciating with each possible
message the maximum expected utility of the subsequent actions. This
folding back reprasents graphically the process of EU maximization. The
favored information source ' is then identified by comparing the
expectations taken over all possible messages.

The state-message-action appreach described above is directly
applicable to simple, di:zcrete information transfers. Examples of
information sources exhibiting such a discrete nature are warning signals,
status displays, and mode indicators. The more dynamic and multidimensional
forms of information transfer such as video displays and radar scans, must
first be partitioned into analyzable elements. The normally continuous
states, messages, and actions must each be organized into a small number
of meaningfully distinct catagories. This catagorization is typically
based on payoff relevance. Catagories should be coiprised of elements
having equivalent consequences or implications.

'
o m———

e )

b —

et o it

e gy

T A e e T




T IE-

-y
L e

e

[P %

DA AT N e AT T

REPR = DERRT I T P

o

B OB NAE MR e ey

INFORMAT [ ON
SYSTeM

FIGURE 2-3.

MESSAGE

DECISION TREE

ACTIUN STATE

FOR INFORMATION SYSTEM

utnuinry

u (a;,7;)

v (ay,2,}




For example, the environmental states and the resulting messages
are often not difficuit to discretize, The state variables by definition
can be measured and described with only finite resolution. Also, the
states are typically rwitidimensional, representing ensemhles of
environmental variables. Those elements of the states or messages that
are irrelevant or unchanging can be ignored (Emery, 19b63).

The possible actions can also be reduced to an elementary set. In
addition to the formation of equivalence groupings according tc conseguence,
there are techniques for identifying and deleting dominated actions.

Actions which exhibit inferior ccnsequences compared to some other action
for every state of nature (dominated rows in Figure 2-1) can normaily be
deleted withcut problem.

Once the structure nf the decision is establisked, the appropriate
probabilities can be estimated. The key parameters are the conditional
prohabilities P{ylz) characterizing each information source. These
conditional probabilities can be estimated either objectively or subjectively.
Objective estimation is simply the actuarial tabulation of the transmitted
mess2ges and the subsequently observed states. Subjective estimations are
elicitaticns of judgments from the operator or inferences from his behavior.
However, Slovic, Fischoff, and Lichtenstein (1977) state that man is a very
poor Bayesian, systematically violating principles of rational decision
making when dealing with probabilistic tasks. Similarly, Goldberg (1968),
Rapoport and Wallsten (1972), and Beach (1975) have concluded that man's
probabilistic judgments are unreliable across time and acrcss diagnosticians,
and only marginally related to his confidence in the accuracy of his
judgments. In general, it appears that man {is ili-suited for taking
responsibility for complex probability aggregation. The methods of
objective estimation are preferred whenever feasiple. Once the conditional
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probabilities P(y!z) are defined either objectively or subjectively, the
message probabilities [P(y)] and the updated state probabilities [P(z)]
can be derived.

It should also be noted that an upper bound to vhe value of
information can be easily calculated. This is the value of perfect
information--the advantage provided by a completely clairvoyant information
source. The perfect information tells with certainty what event will ensue.
The difference in expected gain between an action taken with this
information compared to an action *aken without it provides a measure of
the maximum possible value of information (Macrimmon and Taylor, 1972;
Sheridan, 1976).

Utility Estimation. The utility u(a,z) associated with a given
state and action is typicallyv a multidimensional quantity. The
consequences associated with a giver vutcome may be characterized by such
variables as resource expenditures, time delays, equipment lusses,
operator load, and goal attainment. For convenience, the consequerce set
{s considered to include all costs and conseguences, whether arising from
the information acquisition ovr the action decision. This incorporation
of information costs in the single function wiil simplify the parameter
estimation processes in the coming sections.

The consequences may he either objectively or subjectively defined.
For objective definition, the costs and gains associated with each outcome
must be divectly accessible. The choice of action can then be made solely
on the basis of expected dollar return, ship-equivalents lost, or some
other objective criteria. However, most real-life decision situations are
sJ complex, unstructured, and poorly understood that such optimal decision
systems cannot be designed (Felson, 1975). Instead, the operator's
subjective value or utility for a giver outcome must frequently be used as
a guide. This 1s not nccessarily bad. Uperator utilities for outcores or
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information are often closa to the objective values (Wendt, 1969; McKendry
and Enderwick, 1971). Also, the subjective values may refiect important
non-aralytical aspects of outcomes, such as expected influences on
subsequrnt decisions and individual operator needs. Finally, the
subjective values are criteria that are condensed from experience, making
the derivation of a complete but unwieldy dynamic model unnacessary.

The most tractable form for decomposition of the multidimensional
cutcomes is the additive muiti-attribute model. This model requires
satisfaction of severa. assumptions regarding behavicr, which will be
discussed in the contex' of remote systems decisions in Section 3.2. For
now, let it be assumed that the axioms are met. The model takes the ‘
foiiowing form:

N
u(a,z) = ulxgaxps..0ux ) = 'Z] Kyuy(xs) (2-9)
2 i

where
X; is the level of attribute X5 u(x) and “i(xi) are utility
functions scaled from 0 to 1

K1 is the scaling constant of attribute i

The notation used above and in the coming sections follows closely that
used by Raiffa and Feeney (1975). Each distinct outcome is considered to
be different combination of leveis of the attributes X Thus a single
attribute vector characterizes each outcome,

The information seeking model (Squation 2-8) adds the aspect of
risk to the multi-attribute formulation. Risk, in this context and in the
remainder of this work, refers to a situation where the decision maker is
able to specify a probabiiity distribution over the pocsible cutcomes of
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an actio... Each cnhoice in the decision tree of Figure 2-3 can, by folding
back, be asssciated with an expected consequence vector. If axiomatically
sound, this results in a multi-attribute expected utility formulation:

M N ,
E [u(x)], = Z P(xj) _E Ki uy (xij) (2-10)
J=1 i=1
where

£ [u(x)Jr is the expected utility of inquiry r, and

P(xi) is the probavility of outcome j with this inquiry

The normative nature of the EU mcdel is well established, but its
descriptive ability has been under a certain amo.nt of attack. Tversky,
Lichtenstein, and Slovik (1572) argue that descriptive models of choice
must take into account cognitive variables such as memory and set.
Similariy. Tversky and Kahneman (1973) have shown that decision makers
often use heuristic, strain-reducing policies to simplify complex situations.
In general though, the usefulnes. of EU models is conceded in situations
where the number of attributes is iow and the decision maker can relate to
211 attributes in terms of vrobabilities (Goodman, Saltzman, Edwards, and
Krantz, 1971). Also, The EU medels have the advantage of modeling both
descriptive and normative behavior, unlike mast of the other, heuristic-
based models (Wendt, 1973; v.Winterfeldt and Fischer, 1973).

Less critical problems may also manifest themselves with the EU
modei. The analysis up to this point has been based on deterministic
models of cheice. The choice or action with the maximum expected gain is
presumed selected, and randomncss or change of behavior is not expressed
by the model. A family of models that take such behavior randomness into
account are the probabilistic models. These models are based on a theory
of random preferences that can account for substantial errors or fluctuations
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in behavior (v.Winterfeldt, 1975). Among the more important probabilistic
models are the constant utility .iodels (Luce and Suppes, 1965) and the

random utiiity models (Becker, DeGroot, and Marschak, 1963). Constant

utility models assume randomness in the response mechanism, while random

utility models place this randomness in the utilitiss themselves. Unfortunately,
the difficulties of assessing and using the probabilistic utility functions has
made these techniques virtually intractable (v.Winterfeldt, 1975).

Similarly, utility models ov dynamic decision situations (in which
each decision affects the future decisions) are as yet unfeasible. Some
dynamic programming models have used static expected utility measurements
as inputs to their dynamic calculitions {Slovik, Fischoff, and Lichtenstein,
1977). Thus var, however, no modals have explicitly incorporated the
dynamic nature of the decision environment into the utility measurements
(v.Winterfeldt, 1975).

The technigues currentiy used for deterministic utility assessment
can be divided into five main categories: ordinal scale methods, direct
methods, gambling methods, regression techniques, and pattern recognition
algorithms. The fi»st three techniques have Lezen thoroughly reviewed and
analyzed Ly Kneppreth, Gustafson, Johnson, and Leifer (1973). With ordinal
ascessment methods, the decision maker is asked to qualitatively rank his
preferer ;es. His rankings are used to develop an ordinal scale of utilities.
This can be converted to an interval scale if equal intertals are assumed,
but the resulting sclae is only approximate.

Direct methods of wtility assessment require the decision meker to
make quantitative estimates of his subjective feelings. These methods are
quick and easy to use since they do not require large numbers of repeticious
Judgments and caiculations. Their validity, hovever, has been questioned
because they do not follow the axioms of utility theory. Nevertheless,
several resear hers (Beach, 1972; Fischer, 1972} have showr that direct
utility estimates are comparable with axiomatically derived estimates.
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One axiomatic procedure that is especiaily useful for quantifyin:
ut.1ities that vary on scvzral value relevant attributes is conjoint
measurement. This technique coustructe a utility function over the
multidimensional choice entities that decomposes to a single attribute
utility function. One procedure prescribed for defining the functions
involves indifference judgments to a sequence of unit steps in one
attribute and varying amounts in a second attribute (v.Winterfeldt, 1975).
While axiomatically valid, this process can be time-consuming and artificial
to the decision maker.

Gambling methods require the a priori decomposition of complex
decisions into many simple lotteries. Either the probability or the outcome
of each lottery is varied until the decision maker is indifferent between
the lottery and a "sure thing." Often, utilitiss associated with
probabilistic outcomes are different from those found with riskless chaices.
Thus some form of gambliny method is necessary for decisions under risk

{Kneppreth, et al, 1973). Urfortunately, while the utilities thus calculated
are axfomatically valid, the process is long, tedious, and somewhat contrived.

The regrecsion and pattern recognition methods are the only
techniques that estimate parameters from actual in-task behavior. These
techniques assume a model of behavior, such as a multi-attribute EU model,
and fit the parameters of the model to the observed behavior. The
regression techniques usually require a large batch of observations and an
interval scaled response. The model parameters are then estimated using a
“least squared error” criterion. The pattern recognition approaches are
more iterative than the regression methods. An initial set of parameter
values is assumed and the model adjusts the parameter set decision-by-
decision as incorrect predictions are made. The pattern recognition
approach thus has the advantages of refining the model each time information
becomes available, of requiring minimal memory, and of weighting recent
observetions more neavily {Felson, 1975b; Weisbrod, Freedy, and Steeb,




in press), Also, the pattern recognition approach is very flexible in
structure. Differing criteria of modeling performance--praedictability,
adaptability, robustness, etc.--can be met by varying the form of the
model narameters and adjustment mechanism,

2.3.4 Cue Regression Approaches. Cue regression is a highly descriptive
and pragmatic approach to modeling behavior. Rather than restricting the
mode! to the limited realm of normative behaviar, cue regression assumes

only that the operator responds to situational cues in an algebraic fashion,

Then the information cholces are predicted by simple linear combinations of
situational factors such as information cost, content, accuracy, and
timeliness. These factors are the characteristics that contribute to the
attractiveness of an information choice. The cues or features may also
include the factors treated by the normative models--the specific outcomes
of the decisiony. However, the strict assumptions underlying the normative
models- are not considered. As a result, the cue regression approaches
achieve great flexibility, but lack the goal-oriented power of the utility-
baseda methods.

The parameters of the algebraic models are typically estimated
througn analysis of variance, conjoint measurement, and multiple regression
(Slovik, Fischoff, and Lichtenstein, 1977). The simplest of these are the
regression appreoaches. The regression methods employ correlational
statistics to define 2 1inear model of individual judgment. The linear
model form was developed from Brunswik's (1940, 1952) famous lens model.
This early mode] was an attempt to express the decision maker's policy of
weighting various stimulus dimensions. Initially, Brunswik's cues and
Judgments dealt solely with information concerning the environient state,
hut later researchers expanded the model domain to inciude a wice range of
judgments {Rapoport and Wallsten, 1972).
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The structure of the cue regression model is guite simple. It is
assumed that the decision maker provides numerical respenses as judgments,
and that the responses constitute some linear combination of the stimulus
dimensions. In equation form, this becomes:

R = § WS; + ¢ (2-11)

where
R is the nume (cai responsc
Si is the stimulus levei on dimension i
W. is the regression weight for dimension i

i
C is an optional scaling constant

The W's are regression weights reflecting the relative importance
of each dimension. Estimation of the W's is accomplished by making the
best fit of these weights to a batch of interval-scaled responses. The
Tinear model thus deveioped is highly predictive if the predictor variables
(the stimuli in Equation 2-11) are monotonic with the response function
(Dawes and Corrigan, 1974). Unfortunately, the model may fail to suggest
any underlying processes, as it is not axiomatic. In fact, the linear
model is "paramorphic"--it does not presuppose the operator to acdditively
consider the various stimulus dimensions. The model is simply predictive
of the operator's choices.

The linear rearessiun models have proved to be effactive both in
prediction of benavior and in replacement of the operator. Correlations
between model-rstimated parameter weights and subjectiveiy elicited weights
are guite high, normaily in the .80 to .90 range (Dawes and Corrigan, 1974).
Similarly, replacinc the operator by a model derived from his previous
Judgments in the same situation (bootstrapping) is quite effective. Based
on an autocorrelation model of the operator, these linear mudels often
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perform better than the operators whom they model (Dawes and Corrigan,
1974; Slovik, Fischoff and Lichtenstein, 1977). That is, the correlation
between the output of the model with a criterion (e.g., correct decisions)
is often higher than the correlation between the operator's output and the
criterion. The basis for this superiority of model over man appears to be
the abiiity of models to eliminate or reduce "noise" effects or random
behavior (Bowman, 1963). The applicability of these models is limited to
situations involving recurrent decisions with relatively stationary
behavior. However, such situations are commen (Kunruther, 1969).

These poiicy-capturing approaches have been found by Dawes and
Corrigan (1974) to be most effective in situations where (1) the predictor
variables are monotonically related to the criterion (or can be easily
rescaled to be monotonic), and (2) there is error in the independent and
dependent variabies. Dawes and Corrigan demonstrated that these conditions
ensure good fits by the linear models, regardless of whether the weights
in the models are optimal. In fact, Einhorn and Hogarth (1975) found that

unit weights sometimes outstrip the estimated weights in predictive ability.

They noted that unit-weighting schemes are effective in situations with
errors in the model form, intercorrelations of variables, and small sample
sizes. On the other hand, Newman (1975) states that unit weighting schemes
are contraindicated in situations where there are negative correlations
petween attributes. He also notes that such circumstances are frequent.

An applied comparison of the potential usefulness of unity and inferred
weighting models will be found in Section 4.2.

2.4 Conclusions
The main considerations in the development of aiding in remote

systems must be practicality and normative direction. Aiding in the
information and control decisions faced by the human cperator shculd be
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based on optimal criteria of choice. Also, the aiding must rely on model
parameters observable during task performance.

The information theory and cue regression approaches mzke only
marginal contributions to this level of communications analysis. Neither
approach provides a strictly normative basis for decision making. The
entropy measures used in information theory do not identify the optimal
information source or provide guidelines for choice. However, these
methods do provide some direction when structural information is deficient.
None of the other models appear to be able to deal with structuraily
incomplete decisions.

The linear cue models are well suited to prediction of information

seeking decisions. These regression approaches can incorporate a variety
of combinations of independent, monotonic situational cues to arrive at
a predictive model. The attributes are not limited to decision consequences,
»-d in fact, the encuing action decisions do not even have to ba considered

the information seeking model. This approach is preferred over the

ity models if descriptive modeling of the information behavior alone
is desired or if the action decisions are unobservable. Also, the linear

cue rodels may be required if the axioms underiying the utility model cannot
be satisfied.

The utility models provide the most powerful and rormative approach.
These models empioy a multi-attribute, expected-uti1lity formylation to
model both the information seeking choices and the subsequent action
decisions. The model is tied implicitly to system objectives since the
model attributes are comprised of the constituent decision consequences.
The information seeking is thus linked directly to the effect it has om
augmenting system effectiveness.
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With such a normative utility model, diverse aids are feasible.
The communications configurations can be compared according to their
contribution to the attainment of immediate system objectives. The
operator's consistency between information seeking and action decisions
can be ascertained and corrective feedback can be given. Also, the
automated management of information can be based on the expected impact
on action effectiveness, rather than on the simple mimicry of operator
behavior provided by the cue regression approach.

0f course, the stronger implications of the utility model require
more stringent assumptions of behavior. The axioms of both expected
utility theory and multi-attribute aggregation must be satisfied. Also,
the levels of the constituent decision consequences must be available as
inputs to the model. As will be Seen in the next section, these
requirements are only rarely satisfied in a strict sense, but often can
be reaiized to the necessary degree.
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3. INFORMATION VALUE MODELING IN REMOTE SYSTEMS
3.1 Overview

The purpose of modeling is to provide a means of structuring,
analyzing, and predicting the behavior cof the system under study. The
system in question, a human operator supervising a semi-autonomcus remote
element, is a very complex one. The objective of this work will be to
examine a specific aspect of the remote system, the recurrent communications
decision, and develop an elementary but tractable model. The key decisions
of information seeking and control will be exhaustiv2ly structured,
resulting in a definition of the set of actions, attributes, and
consequences. A pattern recognition approach will be used to fiv the
model to observed hehavior. In the end, the model should be capable of
evaluating the information system and, to some extent, managing the

communications according Lo operator needs.

Philosophically, the adaptive modeling pursued here will be closely
related to the "on-line model matchihg" methods practiced in adaptive
manual control (Baron, 1977). It will also be similar to the adaptive
1inear models used to augment or replace the expert decision maker (Bowman,
1963; Kunreuther, 1969; Dawes and Corrigan, 1974). These techniques assume
the operator to respond consistently to situational circumstances and
requirements, They then use pattern recognition, lear ing algorithms, or
regression techniques to estimate behavioral parameters.

3.2 Structuring of Remote Systems Comnunications Decisions

The combination of supervisory human operdator and remote system
can be considered to be a partnership between two synergistic elements.
Although a large amount of overlap in function occurs, cach element
contributes unique capabilities to the task. The machine generally
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assumes responsibility for rapid, recurrent control functions, while the
man tends to take over the supervisory functions--planning, probiem
solving, performance evaluation, etc. Of coursc, this mix is changing
as higher level functions become attainable with automation,

The communications requirements between man and machine are tied
closely to the functional aliocation between the two. As the remote system
becomes more competent and autonomous, the supervisory and control demands
on the operator are lessened. This reduces the need for continuous
communications, and in fact, changes the form ot the directives transmitted.
With greater machine capabilities, discrete statements of objectives and
plan changes tend to be transmitted instead of continuous control command:
(Johansson, 1976).

The basic form of the information flow between a remote system
{here a remoteiy piicted aircraft) and a man is shown in Figure 3-i. The
autopilot system is supplied continuously by onboard sensors with
information regarding the machine state and environmental conditions.
Assuming the remote element is equipped with a set of automated responses
or learning algorithms, it should be able to respond autonomously to a
variety of situational conditions. The human operator, on the other hand,
must rely completely on the communications channel for information and
control. His only access to the environmental conditions and machine
state is through the communications interface. In the same way, the

operator must rely on the communication interface as a means of transmitting

comnands and objectives to the remote system.

A learning control system is ideally suited to the modeling of
information seecking decisions. Almost be definition, a learning system
must partition into meanincful catagories the possible states, messages,
and actions. Alsn, learning systems often employ conditional probability
models for determining action policies (Freedy, 1969; Kanal, 1974). Thus
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the same prior prcbability estimates and concditional probabilities
described in Section 2.3.3 for the information seeking model may already
be resident in the autopiiot program. Transfer of the information seeking
model to such a learning system should be straightforward.

Communications between the remote system and the human operator,
on the other hand, are much more difficult to model using a state-message-
action paradigm. The informaticn transmissions provided to the operator--
video displays, radar sightings, infrared scans, etc.--are often complex,
dyramic, and muitidimensional. The operator normally does not respond to
these information displays as discrete messages, but rather as dynamic,
pictorial displays. This situation can be illuminated by looking at the
observable inputs and outputs of the human operator and of the remote
autopilot. These inputs and outputs are diagrammed in Figure 3.2. The
autoyilot, being contiguous with the remote environment, has zccess to the
sensed conditions, the consequences sustained, and various operator inputs.
The autopilot uses these inpuis to esiimate the information syste
characteristics, calculate the expected consequence levels for combinations
of information and control, and select optimal actions. Also, as will be
shown later, the remote system will often be able to use the operator
inouts to infer the operator's value structure. The human operator, shown
in the lower portion of Figure 3-2, has a different set of inputs and
different responsibilities. He is appraised of the communications choices
open to him and of their expected consequences. He may request an
information transmission or he may be provided one automatically by the
remote element. His observable outputs are the information requests and
control commands.

The probiem, then, is to develop an information and control mode)

which takes into account both the discrete, deterministic nature of the
remcte automaton and the complex, intuitive processes of the human. An
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attempt to diagram such a decisien structure is shown in Figure 3-3. Two
stages are evident, just as in the information seeking model depicted
previously in Figure 2-3. The first stage concerns the sensing of the
environmental state by the remote element. Information sources are
selected according to their costs and their impact on the prior probability
estimate P(z). A given information source results in a sampling of a set
of possible messages. The probability of a given message y depends on the
prior probability P(z) and on the information system characteristics
P{y|z). Once a message is received, the autopilot updates its state
estimate and selects an appropriate action.

The second stage, action selection, is the critical one with
respect to the man-machine interaction. The autopilot must respond to N
the apparent circumstances by either selecting a direct control action or
by opening the communications channel to the operator. The two actions--
autopilot control versus delegation of information and control to the
human operator--are treated guite differently. The autopilot control
action is considered to be an optimal response to an uncertain state
estimite. The outcome is a deterministic function of the action and the o
true state z. The costs incurred during acquisition of the information N
are also included in the consequence set. The allocation of information -
and control to the operator, on the other hand, is treated as an 3}
‘ information transmission with only partially observable parameters. The
i channel opening is simply considered to be an action with a distribution Tz
of outcomes which depend on the true states. Section 3.3.2 will develop
these concepts more carefully. i

LT
—————re

X The outcomes or vectors of consequences seen at the right of ; N
t Figure 3-3 are all of the same space of dimensions, whether for machine i D
i actions or operator control. The levels of the consequences will be either '.i

R - W
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input prior to system operation, or estimated using predictive fe tures
and performance histories. The utilities for the consequence veciors
will be elicited from the operator or inferred from his behavior.

The decision diagrammed in Figure 3-3 1s by necessity a
simplification of reality. For example, the basic two-stage structure
does not consider the continued sampling of information prior to an action
or the pessible generation of new alternatives due to the information.
Including such factors into the model at this stage would make it
excessively complex. The remainder of this chapter will analyze methods
of modeling the two-stage communication decision. The modeling will include
both the structuring of the decision and the means of estimating model
parameters.

3.3 Multi-Attribute Decision Mcdel

3.3.1 General. Several steps are necessary toc define the information
and control model cutlined in Section 3.2. First, the varijous event
probabilities P(y), P(z), and P(z|y) must be estimated or ascertained by
observation and adjustment. Then the consequences associated with each
outcome must be scaled along a set of dimensions. The decision tree is
then folded back, associating an expected conseguence vector with each
information and action choice. Finally, the subjective importance weights
associated with each consequence dimension are determined by elicitation
ar by inference from behavior,

These processes are based on the three major normative theories of
decision making--Bayesian revision of probabilities, expected utility
maximization, and multi-attribute utility analysis (Pitz, 1975). For these
methods to apply, a variety of assumptions concerning the decision behavior
must be satisfied. This section will explore the implications of these
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assumptions. The chapter will also develop procedures for specification
of the decision parameter set and estimation of the parameter levels.

Before continuing, some clarification of notation needs to be made.

The system to be used will, for the most part, follow that of Keeney and
Raiffa (1975). The following terms from the core of this notation:
Attributes: The basic attributes will be x‘, X
where Xi may be either vector or scalar.

9% < Xn,

Attribute Sets: A complete set of attributes is defined as
X = {X], X2, vees xn}. A subset Y of X may be defined by
identifying the attributes Xi in the subset.

Consequences: The consequence space X] X x2 X ooo X Xn represents
a tuclidean Space. Consequences are designated by
X = (x], Xps +oes xn) where x; corresponds to a specific
amount of Xi for i = 1,‘2, R

Relations: Preferences among consequences are denoted by the
following relations: =z indicates preferred over
equivaient to; ~ indicates equivalence.

Scaling: The symbol x* = (xf. xE, ceny x;) represents the most
desirable consequence, and x° = (x;, x;. cees x;) designates
the loast desirable. The utiiity function of x (with the
appropriate assumptions satisfied) is scaled by assigning
U{x°) = 0 and U(x*) = 1.

3-9
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Probabilities: The probability of occurrance of an event z will
be denoted by P(z); a joint probability of a and z will be
P(a,z); a conditional probability of y given z will be P(y|z).

Risky Outcomes: An option of receiving x' with probability Iy and
x" with probability l-n1 is expressed by <x', L x">. The

superscript prime denotes a distinct variable, not a derivative.

A risky (probabilistic) variable is designated by a tilde: X.

3.3.2 Probabiiity Agqgregation. The probability calculation procedures
are centered around Bayes' rule expressed earlier in Equation 2-2. The
use of Bayes' rule presupposes several key assumptions. Most importantly,
the hypothesized states of the world must be exhaustive and mutually
exclusive (Nickerson and Feehrer, 1975). Each state z, is assigned an

a priori probability of occurrence P(zh). Because these probabilities
are mutualiy exciusive and exhaustive, they sum to one:

% P(zh) =1 (3-1)

Data or messages concerning the state may be used to revise the
a priori distribution if the data is in the form of discrete, conditinnally
independent observations. Conditionally independent messages are those
which are dependent of each other with vespect to the states. This
consideration cf the states make conditional independence a stronger
assumption than simple independence. Beach {1975) gives the following
example showing the difference between the two conditions:

", ..8uppose medical research showe that acrose diseases
there i@ no relationship between blood pressure and
fever. These two symptoms would then be considered
independent. It <g possible, however, that there ig
a disease or a get of diseasee for which blood preassure
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and fever are related, t.e., that they are conditionally
dependent. Use of Bayes' theorem with these diseasea as
hypotheses i8 inappropriate because the redundant
information or the extra informotion latent in the
combination cf the tuwo symptome (comparable to an
interaction effect) carn reasult irn higher or lower
posterior probabiliticve thar i8 appropriate.’”(p.44)

The notion of conditional independence appears to be of importance
only when messages are selected in groups. When making revisions based on
single messages, the set of messages from which the datum is sampled need
not be independent. Even if multiple messages are present, Beach (1975)
notes that methods are available for circumventing the requirements.
Conditionally dependent data can be dealt with using a modified form of
Bayes' theorem, or the data can be “chunked" into conditionally
independent groups.

The sensor characteristics P(y|z) can be derived from observation.
Comparisons of the messages received and the states subsequently observed
provide the necessary data. Estimates of P(z|y) and P(y) result from

frequency counts. P(ylz) then can be calculated using the following
expression:

P(y|z) = P(z]y) P(y) (3-2)
In combination with the prior probability estimates, the sensor

characteristics allow for the estimation of P(y), the probability
distribution of each specific message.

P(y) = P(y|z) P(z) (3-3)




Finally, when a particular message y 1s received, an updated P(z)
can be caictlated:

Plzly) = E(x%%)ﬂ_z_l (3-4)

The above calculations are applicable to the decisions surrounding
autopilot control. As mentioned earlier, the 2nalysis of the human control
branch of Figure 3-3 is somewhat less deterministic. It is true that with
human control, the states, information system characteristics, and
consequences ar2 ohservable entities, jrst as with autopilot control.
However, the information provided the operator is seldom amenable to
decompositicn into discrete messages. The rich mediums of video and radar
display are typically ton complex and multidimensional to be decompoced
into such an analytical formulation. Consequently, the updated state
probability estimate contingent on the message will aiso be unobservable.
This state estimate is within the mind of the man. In fact, if a complete
message-state-action specification were possible, then the entire cycle
should probably be automated.

Nevertheless, the provision of a specific information transmission
to the operator is an action with an observable set of consequences. The
consequences depend on the true state of the world, just as they do for
autopilot control. The action/state combination differs from that under
autopilot control because the outcome is not deterministic--a variety of
outcomes may occur depending on the specific action taken by the operator.
Thus an expected consequence vector, estimated from a number of
chservations, is assaciated with each action (form of inTormation
transmitted to the operator) and state.

The above procedure essentially resuits in a collapsing of one
stage of the decisfon tree. Figure 3-4 details the processes resulting
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from opening the communications channel to the operator. This is an
elaboration of the lower right portion of Figure 3-3. The operator
receives a specific but complex message from one of the information
sources, updates his estimate of the situation, selects an appropriate
action, and obtains an outcome dependent on the true state of the world.
The lower figure, representing the observable stages, compresses the
sequence to one of action and outcome. The outcomes for a given state
in the Yower figure are simply the expectation of all the outcomes for
the corresponding state shown in the upper figure.

The probability estimates P(z) for human control are the same as
those for machine control. The updated state probability P(z|y) is that
derived from the initial autopilot receipt of sensor data. As mentioned
earlier, the simpiest method of determining the conditional probabilities
is to maintain frequency counts of the various messages and subsequently
observed states. If the conditional probabilities vary in time, then
moving averages employing an observation window of a set number of past
decisions can be used. Also, an exponential weighting of past decisions
can be used to provide a bias adding to the importance of recent
observations.

if these objective methods cannot be used, subjective probabilities
can be elicited from the decision maker. A variety of approaches are
available for such expressions (see for example, Goodman, 1973). Such
elicitations add an additional subjective element to the model, making it
the more descriptive, subjective expected utility (SEU) form. OFf course,
such subjective elicitations again have the drawback of interfering with
the operator's task. Objective estimates are preferred because they tend
to be more accurate and less burdensome.
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3.3.3 Utility Analysis. The set of consequences associated with each
action and state must be evaluated along well-defined interval scales.
The relative importance of resource expenditures, time delays, vehicle
losses, operation attention, and other consequences of operation can be
either objectively defined or subjectively determined. Objective
definition entails development of a mapping of organization goals to
specific consequences. Such a mapping is extremely difficult to realize
in complex situations. Such factors as future censequences, interactions,
and subjective needs are often virtually undefinable. In situations
involving such factors, it appears more useful to elicit or infer from
the operator his utilities for the conscquences.

The technique of greatest potential for providing a framework for
subjective evaluation is that of multi-attribute expected utility theory.
This is a relatively new methodology designed explicitly for compliex
decisions under risk. The analysis that follows is primarily attributable
to Raiffa and his colleagues (Raiffa, 1969; Keeney and Raiffa, 1975), and
to V.Winterfeldt and his associates (v.Winterfeldt and Fischer, 1973;
v.Winterfeld, 1975). The intent of this analysis is to provide an
axiomatic basis for the additive expected utility representation:

m n
U~ = P u 3'5
(R = T Play) 1 Uy gy (3-5)

where
X represents the vector of consequences of risky action k

P(zh) is the probability of state h
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X3 hk is the level of attribute 1 associated with state h and
action k

U

i is the utility function over the ith attribute

The expression in Equation 3-1 {s a decomposition of the decision
into actions, event states, and attribute levels. The level of
decomposition possible depends on several crucial! indeperdence assumptions.
These assumptions derive from the origin of the model as a combination of
expected utility maximization and multi-attribute utility acgregation.

Thus the respective axiomatic treatments of these two methodologies must
be satistied. For expected utility, v.Winterfeldt and Fischer (1972) note
that the theories of von Neunann and Morgenstern (1947), Savage (1954),
and Luce and Rajffa (1957) all make two central assumptions concerning
preferences among risky choices:

(1) Surec thing principle. Preferences among risky alternatives
should be independent of events in which these alternatives

have common outcomes. For two events, this is expressed by:

<X, Ty ¥> 2 <2, s y>
if and only if

<X Hi' w> 2 <2, Tl,l. w>

(2) Solvability. No outcome should be infinitely desirable or
undesirable. Thus, for all outcomes x, y, and z for which
Xzyz2z, there is a n1 such that

Yy~ <X, N, 2>
i

T
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These axioms allow formation of the cingle attribute expected utility
function:

m
u(x) = hZ] P(z,) Ulxp) (3-6)

Multi-attribute EU models can be developed from these axioms in two ways,
transformation and decomposition. The less rigorous, transformation
method uses riskless multi-attribute assumptions to construct a riskless
utility function. This function 1s then transformed into a risky function
using the expected utility formulation above.

The riskless MAUT model requires that preferences for values of
each attribute are independent of constant values in the other attributes.
Consider a set of attributes X partitioned into an arbitrai'y subset Y and
its complement Y. Then for any riskless consequences y', y", ¥, 3#

uly's 7)) 2 uly"s ¥°) =uly's ¥) = uly", ) (2-7)

This is termed weakly conditional utility independence (WCUI) by
Raiffa (1969) and by v.Winterfeldt and Fischer (1973), preferential
independence (Xeeney and Raiffa, 1975), and single calcellation. If the
test 1s satisfied for all attributes, then a riskless combination model
is justified. The riskless model is generalized to include uncertainty
by defining an expected utility model with a function U defined over
multi-attributed alternatives. This i1s possible only if U is a 1inear
function of the attributes (v.Winterfeldt and Fischer, 1973). A possible
representation of this function is:

m
U(;) = hz“ P(Zh) "(xhk) (3‘8)

o d e el s

—




'kq_{a‘._ S
L

in which

N~

i=1
where w1 is a scaling constant for attribute 1

A second, more restrictive approach to modeling risky, multi-
attributed choices is the decomposition technique. This method first
constructs the utility function U and then adds assumptions justifying
the decomposition of U into individual components (v.Winterfeldt and
Fischer, 1973). The main test is that of strong conditional utility
independence (SCUI). This axiom states that preferences among risky
alternatives, in which a subset of the attributes has constant values
across the outcomes, should not depend on these constant values.
Explicitly, for any lotteries y' and y", for any riskless consequence §+,
and for ail y:

u(¥, ¥) 2 u(3". ¥ =u3, ¥) 2 u(3", 3) (3-9)

Satisfaction of this assumption implies that the model form is
either additive or multiplicative. A second, stricter axiom guaranteeing
activity is that of marginality (Raiffa, 1969) or additive independence
(Keeney and Raiffa, 1975). Marginality requires that the alternatives are
Judged solely on the basis of the marginal probability distribution over
single attribute values. This implies:

<(y" Z')c (yO) z°)> ~ <(.Y'. z°)s (y°¢ Z')> for all .y.’ z' (3']0)

The marginality condition seldom holds in practice because of
operator preferences concerning the variance of outcomes (see Wendt (1973)
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for & discussion of variance preferences). If SCUI and marginality do

hold, 2n additive expected utility model of the following form is justified:

. m n
U(x) = ] P(z,)
h=1 i=1

This is a risky decompnsition model, conpared to the previous
riskless transformation model (Equation 3-6). Tne difference lies in the
presence of weighting constants in the transformation madel. This
difference is not important in the present context, since both additive
models will be seen to be amenable to the adaptive techniques of
estimation developed in Section 3.4.

Strict adherence to the axiomatic assumptions is apparently rot
crucial. Experience has shown that models and procedures with differing
axiomatic backing will produce convergent utility functions in a large
number of cases (v.Winterfeldt, 1975). For instance, in riskless decision
making, Yntema and Torger:t-n (1961) and Fischer (1972) demonstrate that
additive models can approximate non-additive models quite well. Riskless
linear models in regression also produce good results when compared with
more complex models that include interactions (v.Winterfeldt and Fischer,
1973). Finally, Fischer (1972) showed that variations in the shape of
riskless single attribute utility functions will produce cverall utilities
that are highly correlated as long as all single attribute functions are
monotonic.

Specific studies of the importance of axiomatic backing in risky
multi-attribute models are more difficult to locate, apparently bc.ause of
the complexity of assessment required. v.Winterfeldt and Fischer (1973)
recount that in v.Winterfeldt's (1971) dissertation, the risky MAUT
measurement procedures were not adversely affected by axiomatic lapses.
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Direct tests of the independence assumptions (Equations 3-7, 3-8) showed
satisfaction of the SCUI condition but violation of marginality.
Nevertheless, a correlational analysis indicated that the decomposition

model was still quite effective. [ischer (1972) made similar observations
studying preferences for risky job alternatives described by three attributes.

The observed insensitivity to axiomatic strictness may be related
to the compiexity of the decisions. Wken the number of dimensions is not
large, v.Winterfeldt and Fischer (1973) say 5 or less, operators are
fairly consistent in behavior and the models closely reproduce the
operators' holistic responses. This is evocative of Miller's (1956)
findings that people can deal with oniy 5 or 10 "chunks" of information
at a tima. Consequently, the random error (and model insensitivity)

associaied with a decision tends to increase as the DM attempts to consider

an increasing number of value attributes (Slovic and Lichtenstein, 1971;.

The axiomatic procedures are a'so siubyect to probiems of
assessment. Often, the tests are impossibie to complete in complex real
choice situations. None of the axioms can de verified absolutely, since
they normally apply to an infinite domain. Also, the axioms requive
Judgmente that the decision maker is gencrally unable to make, such as
nordering compiex alternatives consistently (v.Winterfeldt and Fischer,
1973). Consecuently, the applied work has b2en more concerned with
structuring decision problems, assessing model parameters, and making
sensitivity analyses, than with axiomatic tests. The axioms sinply
provide a tool to eliminate models that are clearly wrong. The basic
axioms can be testad roughly by presenting the decision maker with “easy”
choices. In this way, the DM should violate model assumptions
systematically, s¢ that it can be discovered which assumptions are
appvobriate,
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3.3.4 Model Form. The multi-attribute EU model assumes that the 5.
decision outcomes are an amalgamation of many factors, each contributing
to the overall attractiveness of the outcomes. The most widely used means
of combination of the attributes are the additive, the multiplicative, and
the multilinear torms (Keeney &nd Raiffa, 1975; Fischer, 1972). The
respective expressions are:

U(z) = z K, U (x (Additive) (3-12)
1+KU(x) = 12] [1+ KKiui(xi)] (Multiplicative) (3-13)
n
U(x)=1z KiU; (x) + [ K”i(x)u(x)+...

(Multilinear) (3-14) {
K Gg) e Upxg)

where the Ki’ Kij’ .o Kl...n are scaling constants, 0 < Ki <1

and K > -1 is a non-zero scualing constant satisfying
n

t+K= 1 (1 +KK1)
i=1 [}

The multiplicative and nultilinear forms are needed if the factors are not
treated in an entirely compensatory fasion. A compensatory modei is one
in which changes in one attribute can compensate for changes in another.
The multiplicative and multilinear forms can be non-compensatory since an
extrame value of one factor allows it to dominate all other factors. Also,
these non-compensatory models can account for some configural effects--
interactions and higher oreur terms.
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The additive form, while simply a special case of the multiplicative

form (Keeney and Sicherman, 1975), appears to be the one best suited for
modeling and aiding. The Tinear form of the additive function is more
appropriate for estimation by pattern recognition technigques than the
cumplex structures of the myltiplicative and multilinear models. In fact,
Section 3.4 will demonstrate how the linear additive form can be used
directly as a discriminant function, The additive model is also more
suitable for use in analysis and feedback of behavioral characteristics.
For example, the use of outcome probabilities as model parameters makes
sense only for the additive model (Huber, 1974). Huber also rotes that
the additive model is more robust to unsatisfactory attribute levels than

the multiplicative model. An erronecus zero in one of the additive factors

does not have the major erfect seen in 2 multiplicative model.

In certain cases, the additive MAU model may even be modified to
account for interdependencies among factors. Keeney and Sicherman (1975)
define & special "nested" attribute that consists of a vector of sub-
attributas. This factor provides an extra degree of freedom through an
extra scaling constant. Thus trade-offs between two factors can depend
on a third. This reduces the need for the configural terms provided by
the multiplicative and exponential models.

The favored model form is thus & weighted sum (Fquation 3-8) of
ocutcome components, some of which may be probabiiistic. This model is
postulated to be applicable to both stages of the remote systems
communication decision--the information seeking decisions and the ensuing
action selection choices. Both of these decisions entai) evaluations of
the same set of attributes. Also, the same weighting factcrs Hi are
expected to apply equally to the two types of decisions.
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3.3.5 Factor Development. The choice of factors to include in the
decision model 1s probably of greater importance than the chaice of the
model form itself. This is evident from the frequent effectiveness of
unity (arbitrary) weighting schemes in predicting choices. Dawes (1975)
states: "The whale trick is to decide what variables to look at and then
know how to add." Unfortunately, quidelines for the choice of model
attributes are not readily available. The following 1ist of desirable
characteristics expands on Raiffa's (1969) recommendations of attribute
independence, set completeness, and minimum dimensionality:

(1) Accessible. The levels of each factor should be easily and
accurately measurable.

(2) Conditionally Monotonic. The factor level should be
monotonic with the criterion (preference) regardless of the
constant values of other factors.

{3) Vvalue Independent. The level of one attribute should not
depend on the levels of the other attributes. This is to
some extent a consequence of recommendation number two.

(4) Complete. The set of attributes should account for as much
as possible of the operator's behavior,

(5) Meaningful. The attributes should be reliable and should
demonstrate construct validity. Thelr implications should be
understandable when expressed in feedback to the operator.

For the most part, these recommendations result in an attribute

set that is accessible, predictive, and in accord with the axioms of
util{ty theory. The recommendations aiso imply a limitation on the number
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of possible attributes. The requirements of independence and meaningfulness
render any large set of attributes unrealizable, because of the cognitive
limitations of the human operator.

A candidate set of attributes Xy for the remote systems decision
task could include such factors as rescurce expenditures, time usage,
vehicle losses, operator supervisory load, and future consequences. The
Tevels of each of these attributes can be derived using relations between
the attributes and such situational f'eatures as environmental conditions,
communications channel characteristics, and autopilot capability. The
relations may entail probahilistic mappings from features to 2ttributes,
or they may involve simple transformations. In the absence of available
situational features and mappings, subjective estimates can be used
(Edwards and Gutentag, 1975). Of course, the expression of such subjective
estimates may be burdensome or may require costly communications between
the operator and the remote system. Thus attributes which are measurable
by the remote element are favored,

An attribute requiring special attention is cost. Information
acquisition costs are often considered separately in decision model:.
However, a variety of types of costs may be Incurred--ecnergy costs,
equipment usage, risk of detection, et¢c. Thus appears more ‘ogical to
associate a vector of incurred costs with the respective outcome. Also,
if cost is subject to an upper bound due to limited resources, the ratio
U(x)|c for each alternative must be calculated (Edwards and Gutentag, 1975).
These are the famous benefit to cost ratios. Actions shouid be chosen in
decreasing order of that ratic until the budget constraint is used up. In
the absence of a budget constraint, cost is just ancther additive dimension
of value.
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The initial selection of attribute sets may be performed by
interview, intuition, or analysis. Protocol analysis is a subjective
fnterview technique whereby the operator introspectively recounts the
factors and procedures which enter into his decisions. Consciously
considered attributes may be identified from this introspection. A
second, more objective technique is possible if the decision situation
is highly defined. The feature set can be determined according to the
predictive error rate and from correlations of the candidate attributes
(Felson, 1975). The first attribute chosen is that with the lowest
expected probability of error (EPE). The EPE is the error rate that
would result if the ith attribute alone were used as a basis for decision
making. The second feature chosan is the one with the smallest correlation
with the first attribute. The choice of the ith attribute depends on its
correlation with the i-1 attributes already chosen.

Finally, the attritutes in their raw form may be highly non-linear.
Linear trarsformations to achieve interval srales are often warranted. The
effect of the linear transformation is normally minor compared to the
macnitudes of the test/r:test reiiability and intersubject differences
(Euwards anc Gutontag, 1975).

3.4 Adaptive Parameter Estimation

The previous sections have described the means of structuring the
decision wodei, identifying relevant uvility dimensions or attributes,
and determining the levels of the attributes. <ompletion of this modeling
process demands the ascessment or inference of the subjective weights of
cach attribute.

it was noted in Section 2.3.5 that numerous technijues are

available for off-line assessment of the operator's attribute weights.
These techniques include direct elicitation of preference, uecomposition
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of complex decisions into hypothetical Iottéries, and use of multi-variate
methods to analyze binary preference expressions to determine underlying
factors. These off-line techniaues of utility assessment are accurate

and relfable in many circumstances, but they have a number of disadvantages
when applied to remote systems. Typically, these techniques require two
separate stages--assessment and application. Assessment requires an
interruption of the task and elicitation of responses to hypothetical
decisions. Problems arise with such procedures since the operator's
Judgments may not transfer to the actual situation; the DM may not be able
to accurately verbalize his preference structure (Macrimmon, 1973); and the
Judgments made in multidimensional situations are typically responses to
non-generalizable uxtreme vaiues (Keeney and Sicherman, 1975).

Estimation techniques relying on interference from in-task behavior
may be more useful. These inference techniques assume a model of decision
behavior and then fit the parameters of the model by observation and
adjustment. The parameter estimation may be performed by mulitiple
regression, time series analysis, heuristic search procedures, optimal
control (Kalman filtering) techniques, pattern recognition, mathematical
programming, or forms of iterative approximation. Each of these techniques
has a specific domain of application. For remote system applications, two
methods appear particularly useful. The multiple regression and patter:n
recognition techniques demonstrate the simplicity, robustness, and
convergence guarantee necessary for on-line modeling and aiding.

The fivrst of the two, multiple linear regression, is a highly
etficient form of determining attribute weights from batches of behavioral
observations. The technigue uses a least-squared-error criterion to
provide an unbiased estimate of the attribute weights. Confidence intervals
03 the estimated values may be determined at the same time. In fact, if
f_ctorial combinations of attribute levels can be presented to the decision

L
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makar, a full analysis of variance can be made, providing data concerning
the relative contributions of linear, cuadratic, and higher-order terms
(Macrimmon, 1973). Gf course, both the regression and ANOVA techniques

recuir2 large batches of data taken under ccmparable circumstances. Also,

the resvonses given by the operator must be made along an interval scale.
In-task choices between alternatives are not usable observations for
regression. The regression techniques thus appear to primarily suited
for separate, pre-mission simulations during which complex estimates are

elicited. Once estimated, the parameter levels could be input to the
remote system,

Actual in-task estimation appears feasible using pattern
recagnition techniques. Instead of batch processing, the pattern
recognition methods refine the model decision-by-decision. B8riefly, the
technique considers the decision maker to respend to the characteristics
of the various alternatives as patterns, classifying them according to
preference. A linear discriminant function is used to vredict this
ordinal response behavior, and when amiss, 15 adjusted using error
corirecting procedures. This use of pattern recognition as a method for
estimation of decision model parameters was apparentiy first suggested
by Siagle. (1971). He made the key observation that the process of
expected utility maximization involved a linear evaluation function that
could be ilearned Trom & person's choices.

The suggested technique was soon applied by Freedy, Weisbrod, and
Weltman (1973) to the modeling of decision behavior in a simulated
intelligence gathering context. Freedy and his associates assumed the
decision mater to maximize expected uti! 'ty on each decision. They
assfgned a distinct utitity, U(xjk)‘ to each possible combination of
action and outcome, &s Shown in the decision tree in Figure 3-3. The
probebilities of occurrence of each outcome j given each action k were
determined using Bayesian techniques. These patterns of probability
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were used as inputs to the estimation program (Figure 3-3). The expected
utiiity of each action Ak was then calculated by forming the dot product
of the fnput nrobability vector and the respective utility vector. This
operation is aquivalent to the expected utility calculation:

EU(Ak) = § P(xjk) . U(xjk) (3-12)

The classificazion weight vector W K in the pattern recognition
program acts as the utility U(xjk)’ The 1lternative Ak having the maximum
exnacted utility is selected by the model and compared with the decisicn
maker's choice. Iif z discrepancy is observed an adjustment is made, as
shown in Figure 3-4. 7Yhe adjustment moves the u. lity vectors of the chosen
and predicted actions (Nc and wp, respectively) in the direction minimizing
the prediction error. The adjustment consists of the following:

”,
C

1]
L =4
]
=9
-

(3-15)

Wo=W +d P (3-16)

where
wé is the new vector rf weights [w(xic). w(XZC)]
fer action ¢

NC is the previous weight vector for action ¢

d is the correction increment

Pi is the probability vector describing the distribution of
outcomes [Plk’ Por oo+ Pnk] resulting from action k
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This model is an adaptation of the R-category linear machine
(Nilsson, 1965). The pattern classifier receives patterns of descriptive
data (outcome probabilities) and responds with a decision to classify each
of the patterns in one of R categories (actions). The classification is
made on the basis of R linear discriminant functions, each of which

corresponds to one of the R categories. The discriminant functions are
of the form:

gi(x) =W, - ox for i=1, 2, ..., R (3-17)

where x is the pattern vector and Ni is the weight vector. The pattern

classifier computes the value of each discriminant function and selects
the categary 1 such that

g;(x) > g5(x) (3-18)
for all j=1, 2, ..., R; i=)

A geometric interpretation of the R-category linear machine i3
shown in Figure 3-5 (Nilsson, 1965). Decisions involving two possible
consequences, X, and X5, are evaluated according to three discriminant
functions G,{x), G,(x), and G3(x). The lines of intersection between the
discriminant hyperplanes are the points of indifference between actions.
Mappings of these iines of intersection to the attribute plane are shown
in the figure. The resulting regions R], Rys and R3 correspond o the
actions maximizing the (expected utility) evaluation function.

The R-category technique becomes somewhat cumbersome if a large
number of actions are possible or if the decision circumstances change
rapidly. This problem is a result of the assignment of a distinct,
nolistic utility to each tip of the de:isior tree. The number of model
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parameters thus increases rapidly with an increase in the number of actions
possible. Also, the only weight vectnrs adjusted in a given decision are
those corresponding to the model-predicted and the actually chosen actions.
This partial adjustment makes the system somewhat unrespensive to change.

Some of these shortcomings were lessened by a multi-attrihute
formulation developed independently by Felson (1975). Felson attempted
to predict stock market behavior by fitting parameters of a linear model
using pattern recognition techniques. Unlike Freedy, et al., Felson
considered each action to be decomposable according to a single common
set of attributes. Felson thus assumed that a single vector of weights
could account for the observed behavior. The apprcach is cantered a+ound
the use of a threshold logic unit (TLU), a two-category variant of the
1inear machine:

+W (3-19)

where
“i is the weight corresponding to attribute i
X4 is the level of attribute 1
No is a constant

Two possible consequences are considered in Felson's model--a rise
or a fall in stock value compared to the market average. The consequence
predicted depends on the sign of G(x). A single hyperplane serves to
separate the two regions.

Figure 3-6 summarizes the estimation process of the stock market

program. A set of feature or attribute levels (some of which are
subjectively estimated) are input to the program. The attribute level
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i
vectors are evaluated according to the current weight vector and a

I prediction of each alternative's market performance is made. The
prediction is compared to actual stock performance (not to human behavior)
and an adjustment made if a disagreement is present. The use of a single

l discriminant function adjusted at each erroneous decision led to very
rapid training. Roughly 15 to 25 trials were found to result in asymptotic

I performance with 5 attributes {Felson, 1975). During this period, the
error rate was found to drop from almost 50% to approximately 20%. Also,

' Felson noted the advantages of the pattern recognition approach over
conventional estimation techniques: Its computational simplicity, its

l minimal nced for initial information, and its parsimony of operation--change

¥ is made unly when an error is detected.

oo R T T AR e

[N

3

? A natural extension of Freedy's and Felson's approaches is to

3 adapt the single discriminant, multi-attribute approach to the modeling
% of objective choice behavior. Each possible outcome of a decision can be
§ associated with a set of attributes or objectives of the decision maker.

An importance weight vector defined over the various attributes can then
be adjusted tu predict behavior. As in Felson's approach, the mechanism

1s simply that of » threshold logic unit. The adjustment rule following an
incorrect grediction is

W =H+ d(xc - xp) (3-20)
where

W is the previous weighting vector
xp is the attribute pattern of the model-predicted choice

X, is the a*tribute pattern of the decision maker's choice
d is the adjustment factor

3-3%5

i W’ is the ypdated weighting vector
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The cycle of prediction, comparison, and adjustment of this
proposed approach is 11lustrated in Figure 3-7. The model training is
based on pairwise comparisons of alternatives, as shown in the right-hand
portion of the figure. If a set of three or more alternatives is presentud,
and one 1s chosen, it is assumed that the DM prefers that alternative in
any pairwise comparison with the remaining choices. Thus a single choice
may result in a number of training adjustments.

The ciosed-loop nature of all of these programs is evident from
Figure 3-8. It can be seen that the system compares the model output with
the operator choice and uses the error as an input to the controller.
Also, the system is adaptive in the sense of Gaines' {1972) criteria: the
pattern classifier does not rely on a preset function to operate on the
error, but it adjusts its parameters (the model weights) to minimize
succeeding errors.

An immediate question concerning all of these models is whether the
estimated parameters exhibit interval properties. The parameters are
estimated solely from observations of ordinal responses. However, the
resulting weight vector is defined along an interval scale. This is
because in the 1imit, only a single hyperplane can correctly classify
consistent responses to a fully represented pattern space. This hyperplane
is also invarient to the usual positive linear transformations. The
ensuing predictions made from these weights are not necessarily interval,
though. The predictions are ordinal if SCUI is satisfied, and interval
if both SCUI and marginality hold. These properties parallel those of the
off-11ne technique of paired comparisons. The paired comparison judgments
are ordinal; the resulting estimated parameters are interval; and the
resulting predictions are again at least ordinal (Samet, 1976).
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A possible advantage of the pattern recognition technique over
many of the other forms of estimation is its flexibility of adjustment.
Several types of error correction are possibie for the TLU, each with a
different combination of speed, stability, and complexity. The three
principle forms are the fixed increment rule, the absolute correction
rule, and the fractional correction rule. These differ solely in their
formulation of the adjustment factor d in Equatien 3-20.

The fixed increment rule simply assigns a non-zero constant to d.
Thus the movement of %he weight vector is a constant proportion of the
difference in the predicted and chosen patterns. The correction may not
be sufficient to avoid subsequent errors with the same pattern, but the
process is eventually convergent (Duda and Hart, 1973). The fixed
increment rule has the advantages of simplicity and relative insensitivity
to inconsistent behavior.

A more rapid but also more potentially unstable rule is the
absolute correction rule. This method sets d to be the smallest inter

2t which the error of the pattern is corrected. In the decision modeling
situation, this becomes:

d¢ = smallest interger > X ° (e - xp)l (3-21)

(xc - xp) . (xc - xpf

in which
X is the attribute level vector of the operator selected choice

xp is the attribute vector of the predicted choice
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The fractional correction rule is similar to the absolute ruie but
is typically less extreme. The fractional rule moves the weight point some
fraction of the above distance:

Alk o (xc - xp)l

d= T = I = %)

where A is a constant 0 < a» < 2.

A1l threz of the adjustment rules have been proven convergent with
Tinearly separahle patterns (Nilsson, 1965). The speed of convergence is
normaily fastest with the absolute rule. This is illustrated for an
example series of adjustments in Figure 3-9. The set of four numbered
lines ir the figure are a sequence of patterns. These patterns are shown
as hyperplanes in a 2-dimensional weight space. Each hyperplane represents
the difference between two multi-attribute vectors. The operator choice is
shown by tne direction of the arrow at each pattern. The absolute rule,
(the triangles in the figure) is seen to achieve correct prediction after
four observations, while the fixed rule (the circles) requires five,
Unfortunately, the absolute rule is expected tu be less forgiving of
inconsisten®, behavior than the fixed or fractional rules. This is because
of the large responses the absolute rule makes to operator inconsistencies.
The fixed and fractional rules may exhibit & greater tendency to smooth
or average the behavior.

3.5 The Adaptive Modei as a Decition Aid

The adaptive decision model has the potential of improving system
decision performance in two key areas:
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(1) Smoothing. The reduction of the random error or noise
implicit in human response. This reduction is a consequence
of the averaging of observaticns during parameter estimation. g

{2) Augmentation. The amplification of the operator's cecision .
making capability by displaying model recommendations.
Observing the model recommendations, the operator may refine
his behavior and possibly even consider a larger set of factors.

Smoothing or reduction of random effects in subjective weighting of

data is a well-established advantage of linear models. Linear models based %
on an operator's average behavior typically outperform the actual behavior N
of the operator (Bowman, 1963; Goldberg, 1970; Dawes and Corrigar, 1974). E!
Aiding by model recommendation of choices and by model-tased automation -+

should result in this type of performance enhancement.

Srutemch

The second area of improvement provided by the model, augmentation,
deals with sub-optimal decision behavior that is more deep-seated than
noise or random effects. Because of cognitive limitations, the operator
can consider only a2 small number of attributes in a decision. In complex
situations, he then constructs his own simplified and manageable model of “
the problem. This is Simon's (1957) “"principle of bounded raticnality" '
in which the man's behavior may be consistent with his own simplified
model even though not even approximately optimal with respect to the real

[ b

§ et

Bisiiaal

worid. .

The sub-optimal behavior resulting from cognitive Timitations may 3i
possibly be reduced through model-based aiding. Macrimmon (1973) suggested ‘
that by operating in parallel with the DM, a model can present decision ;

recommendations based on a nermative processing of the circumstances and i
utilities. The operator's task is then changed to one of evaluation and

,_.
oo, —— .

3-42




) - e, .

ot

R L T L

e

'
§-—
g
L

L S

correction. Freedy and his associates (1976) displayed such model-based
recommendations to operators in a simulated task of submarine surveillance.
Significant imporvements in performance resulted, possibly from the
opportunity to consider more complex and effective strategies,

Unfortunately, the parallel, closed loop relationship of man and
model engenders some problems of dynamics. With aiding, the decision
faced by the operator includes both the attribute patterns of the choices
and a4 normative processing of those patterns. Since this processing is
based on his previously observed behavior, it should lead to greater
consistencyv, speed, and effectiveness in recurrent situations. However,
it may result in inappropriate recommendations in completely new
circumstances These characteristics are typical of predictive displays.
The predictions are only accurate if future behavior can be estimated
from previous observations. Thus with a major structural change in the
environment, the recommendations may be based on irrelevant data, and could
slow the operator's adjustment. Kunreuther (1969) states that this type
of lag can be minimized by including only recent decisions or by exponentially
weighting the observations accordina to the age. A recency bias of this
type is realized to some extent by virtue of the adjustment mechanism. An
additional bias may be necessary in rapidly changing situations.

The level of aiding provided by the model depends on the degree of
training it has experienced. A possible sequence of training of the medel,
at least in the initial validation phase, is one of passive observation,
then observation and recommendation, and finally, automation. At each
succeeding stage, the model will gain more knowledge and become more
independent. The first stage, observation, consists of the passive
monitoring of decision conditions and operator choices. The initial
arbitrary vector of attribute weights {is adjusted and the model is
sharpened with each incorrect model prediction. With experience, the
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model approaches the behavior of the unaided operator. Once a minimum
confidence or prediction level is reached, the model can aia the operator
by making recommendations. In this second phase, the model provides a
normative structuring Tor decisions, displaying the logical extrapolation
of his previous behavior to the current choices. The model should, in
time, stabilize to 3 consistent set of values reflecting the augmented
dacision strategy of the operator. Automation by the remote element carn
then begin. The automated decisions will still be subject to operator
overrides, and the mouel parameters will continue to adapt, but the
program will be largely autoncmous. The model should then be capable of
managing cormunications from the remote element.
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4., SYSTEM APPLICATION

4.1 The RPV Communications Problem

4.1.1 Structure. The preceeding chapters have confronted the general
probliems of information evaluation and management in remcte systems. It
should be useful to explore these implications in a specific application.
Probably the area of greatest immediate potential for machine control of
conmunications is that of remotely piloted vehicle (RPV) supervision. Some
operational RPV'c already have an advanced degree of autonomy resident

in their autopilot systems. At the same time, the evaluation and goal
direction functions are the responsibility of the human operator, so that
some degree of interaction is essential. Finally, substantial communication
costs are present because of the possibility of detection, the energies
expencad in data transmission, and the supervisory loads imposed on the
operator. The three elements :bove - machine intelligence, operator
supervisory requirements, and costly communications - are factors that
encourage the placement of the communications evaluation and management
functions with the remote element.

The RPV control task is normally hierarchical and goal directed
in nature. The levels of function range from continuous stabilization
adjustments to long range planning of the overall route. Figure 4-1
{adapted from Roscoe and Eisele, 1976) depicts a representative ordering
of these functions along with the feedback loops involved. Usually the
lower level !high frequancy) functions such as vehicle stabilization are
automated. For these vehicle control functions, the complete processes of
actuation, performance measurement, and comparison with objectives are
performed by the autopilot system.

The intermediate level functions, on the other hand, tend to be
actions assumable by either the remote element or the human. These
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functions involve such actions as responses to unforseen obstacles,
identification of targets, and handling of sysiem failures. Such actions
tend to be discrete decisions rather than continuous contrcl responses.
Speed of response and minimization of costs dictate that the machine take
responsibility in some cases, while flexihility and safety necessitate
human control in other situations (Johansson, 1976).

The highest level functions, such as definition of the system
objectives and constraints, are almost exclusively the domain of the
human operator. For example, the criteria of performance at each level of
the functional hierarchy are input by the human. Certain constraints, such
as traffic, weather and terrain conditions, may be recognizable ty the machine
element, but the overall decision policy is virtuaily .lways defined by
the human,

Bavian o 0 boed e 0 bamal el Geeesl 0 WA baaew

4.1.2 RPV Mission Characteristics. The degree of functional responsibility
assumable by the machine depends to a large extent on the task circumstances.

B o TN A

! Typically, a remote vehicle mission is defined by a sevies of mission phases.
. The phases can be characterized by the amount of communicaticns allowed,
the availability of feedback concerning vehicle and environmental states,
the probability and extent of potential losses, and the time available for “

decision making (Mills, Bachert, and Rume, 1975). Each of these factors
influence the degree of autonomy that can be realized by a remote system.

Viman Tiknateg

|
,§
i

’ The amount of communications allowed is a function of the channel
capacity, the direct and indirect costs of transmission, and the amount of
i. attention the human operetor can contribute. Channel capacity is defined
by such factors as band width, time delay, and signal-to-noise ratio.
! These factors become more troublesome as the distance to the remote element
becomes greater and as the number of intervening obstacles increase. The
direct costs of ccmmunication alsc increase with distance and number of
l hazards. These costs include energy expenditures and equipment expenses.
i
|
§
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Englund, Mout, and Hertz, 1974). The relative importance of these factors

The indirect costs - increased possibilities of detection, countermeasures,
etc. - are more a function of the hazardousness of the region rather than

.
————

the communicacions distance. The availabie operator attention, finally,
is defined by the number of controliled systems, the secondary task demands,
and the individual capabilities of the operators.

PP
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Paws 4
Peme ot

The costs and payoffs associated with the various possible control
outcomes also vary with mission phase. The consequences are defined not
only in terms of attrition of equipment and attainment of cbjectives, but

b

also as a vunction of crganizational policy and procedures. The reiative
importance of fuel expurnditures, vehicle survival, countermeasures, etc., 3!
change as the mission objective is abprnached, attained, or past (Fogel, -t

must be assigned by the human operato: or by the organization. -t

Available time for decisior. making varies throughout the KPV mission i!
as a divect function of the varying venicle speed, aliitude, anu surisunding )
weather couditions. Altitude and w2ather de.ermine the distance that ii
obstacles, navigation points, or targets can be ocserved. The speed then
determines the avaiiable time. DNecision {ime can pe evpected to influence ;!
*~a amount of intormation that can be processed and the probability

tribution of the possible conseguences.

Ir sum, the selection of information and comtrol to allocate tu ,
- upervisory human operator is a complex ard dynramic decision The {}
decisioy maker must continualiy weigh the probable usefulness of the

risk of detection, etc. These ju-igments oftzn must be based on subjective

factors, as the decicion task is normaily too compler ana dynamic to be

information or assuming control -- erergy costs., atteriion requirement:, 3}
analytically tractable. -
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4.1.3 System Overview. An overview of the sequence of processes involved
in RPV supervisior is diagrammed in Figure 4.2. The sequence is divided
into three segments - modeling, analvsis, and execution. Modeling is
considerad to consist of structuring and assessmen.. Structuring is the
deYirition of the various components of the decision model, while assessment
is the determination of tne parameter levels. The modeling segment is shared
in function, as the human operatcr twpically defines the decision structuring
(at least until self-organizing systems can be realized) and the computer
perfarms tre assessment. The second segment in the cycle, analysis, is assigned
compietely to the computer. Anslvsis involves solving a mciel to determine
its implications. Analycis also involves computing the etfects of alterina
model assumptions. The finai segment, execution, is again a flexible
furction: either man or machine may make the decision. In the early

stages of model training, the human would be executed to perform the

action with the machine observing passively. L.ler, with increased
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confidence in its controls, the machine cculd cither make recommendations to
the operator or take over the decisior functicn (subject to operator override).
will provide the basis for the structuring and assessment processes. The

specific steps of these modeiing processes are outlined in Figure 4-3 througn

4-5 (acapted from Gardiner, 1975). The first figure shows the two sides of the
modeiing problen, probapvility estimation and utility asse ent. The upper

irclude deiineation of tne porsible states of the envirommeu:, evaluating the 5
current lTevel of uicertainty concernin, the states, seiecting information
to reduse the uncertainty, and revising Lhe probability estirites in light
of the new wate.

- 4-5

The cominyg sections will consider in greater detail the stages of modeling,

analysis, and execution. ‘
2.2 Modeling P
4.2.1  Gencral. The aulti-attribute model developed initially in Section 3.4 ;
portion of Figure 4-3 details the processes of probabili « . ‘mation. These
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The'key element in this probability estimation sequence is the
information acquisition stage (enclosed by dotted 1ines). Figure 4-4
elaborates this stage, showing the steps that go into the choice of
information and the subsequent incorporation of ths datum into the situation
estimate. The upper portion of the figure deals with the information source
selection. The characteristics of the various available sources are determined
by observation and analysis. This estimation of the characteristics of the
information sources is accomplished by successive comparisons of messages
received and suhsequently observed states. The choice of information source
is then made according to the potential impapt of the information on the
prior probability estimate. Once a source is selected and a datum observed,
the information 1 incorporated into a revised situation ustimate through
Bayes' rule (see Equation 2-2).

The other major modeliny process is utility assessment or outcome
evaluation. The poassivle comhinations of actions and states are enumcratled
off-line prior to a miszion. The problem is then to assign consequence
levels and importance weights alony a predefined set of dimensions. Figure

4-5 elaborates this process. The first step is the selection of ar independent.

exhaustive, and predictive attribute set. The attributes are the various
constituent aspects of the consequences. Each combination of action and
outcome is associated with a set of attribute levels. This is done by
observation and adjustment, just as in the determination of information source
characteristics. Scaling procedures are applied to the raw consequence
dimensions to arrive at normalized values. Each attribute is scaled so

that its plausible range spans zZero to cne.

The attribute weight estimations (the H1 in Equation 3-8) can be
performed using either pattern recognition techniques or off-line decomposition
approaches. These methods were described previously in Section 3.4 and
will be applied to the RPV control situalicn in the coming sections.
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FIGURE 4-4. PRGCFSSES INVOLVED IN PROBABILITY ESTIMATION

(This is an elaboraticn ¢f the "Information
Acquisition” block of Figure 4-3.)
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tvaluation" block of Figure 4-3.)
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The above process description is, of cuurse, still a simplification
of the general information seeking problem. Certain aspects cannot be
considered at this time. For example, continued sampling of information
prior to the actioh decision is not represented. A complication of special
note is the dynamic nature of the environment. The effects of an action
would be expected to be diffarent depending on the time of execution. Timing,
however, may not be a major problem in remote systems applications, since
the action choices are normally made at times determined by the situation.
Typically, the decision is forced by the sensing of an obstacle or critical
situation. Thus, the consequence set does not necessarily have to be
time dependent.

The following sections will develop some of the specific points of
the modeling cycle.

4.2.2 Probability Estimation. The two maior probability parameters
requiring estimation are the prior probabilities (P(z}) and the conditional
probabilities P(y|z). The priors are presumed to be of only minor importance
in remote systems applications. This is because highly diagnostic data from
the remote system sensors should result in virtually the same posterior
probability estimates regardless of the values of the priors. Diagnosticity
refers to the informativeness of the data concerning the states z;- A highly
diagnostic datum y exhibits a high 1ikelihood ratic:

) P(ylz])
b2 T FlyTE,T (4-1)

When incorporated into Bayes' rule, such a datum will have a major
effect regardless of the prior probabilities of 2 and z,. It is expected
that a remote system with sophisticated sensors operating in a well defined
environment will receive data of high diagnosticity.

This reduction of importance of the priors {s fortunate, as estimates
of P(z) can be only coarsely estimated prior to an operation or mission.
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The priors are descriptors of the mission phases -- estimates of the likelihood
of weather problems, adversaries, terrain obstacles, etc. These estimates
are by nature of low confidence.

The sensor characteristics P(y|z) are easier to estimate accurately.
This is because the sensor characteristics are assumed to be invarient over
time, unlike the changing prior probabilities. Comparisons of the messages
received and the states subsequently observed provide the necessary data.
P(y|z) can then be derived from frequency counts of P(z) and P(z|y) using
the following expression:

P(y|z) = P(z]y) P(y) (4-2)

These observations may be made either in a simulation or during actual system
operation.

4.2.3 Factor Choice. It was noted in Section 3.3.4 that the attribute set
should be accessible, monotenic, independent, complete and meaningful. Also,

a single set must account for both information acquisition and action selection
behavior. Finally, the attribute set must be manageably small in dimension.
With these considerations in mind, an initial taxonomy of consequences can

be organized around the following five areas:

(1) Communications Costs - The expenditures associated with use
of the communication channel. These may include requirements
of energy, equipment, and operator attention.

{2) Equipment Attrition - The consequences of control concerning the
integrity of the vehicle. Included are fuel expenditures, system
damage, and vehicle loss.
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(3) Objective Attainment - The degree of accomplishment of the
mission objectives. Target goals may be the area reconnoitered,
pavioad delivered, and political impact obtained.

(4) Oynamic Effects - The future consequences resulting from the
current actions. These consequences may include effects eon
subsequent autopilot capabilities, availability of future

information, and changes in the enviromment resulting from
the action.

(5) Subjective Needs - The operatof may have propensities for obtaining
ior refusing) information or for maintaining control beyond that
called for by the above factors. These preferences reflect needs

of task continuity, maintenance of load, or other idiosyncratic
factors.

A useful consequence set might contain a single dimension or attribute
from each of these categories. In fact, five atiributes appears to be an
upper limit to the number of Tactors a decision maker can effectively consider
{V. Winterfeldt, 1975). If several factors contribute to one consequence
dimension, these factors should be combined using a single common scale --
dollars, ship-equivalents, fuel quantity, etc.

Each of the attributes -- communications costs, vehicle losses, etc. --
must be scaied with interval properties along a set range. The least
considerable consequence that may occur is assigned a level of zero on
the scale. The most desirable consequence is assigned a level of one. The
weighting factors H5 should also be normalized so that the overall worst
combination of factors results in a value of zero and the overall best

combination a value of one. The method of assessment of these weights will
be discussed shortly. :
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Probabilistic consequences will be computed according to their
expected value. For example, the vehicle loss attribute may have three
possible levels, each with a different estimated probability of occurrence.
The expected value is computed by the following additive expression:

E(xi) = E p(zk)xijk (8-3)

where E(xi) is the expected consequence level
Pk is the probability of state k occurring

X3k is the level of attribute associated with action j and
state k

4.2.4 Consequence Level Determination. The actual level of each of the
attributes for a given outcome can be determined by mappings between predictive
features and the attributes. Predictive features must be identified which

are accessible to an onboard program and capable of determining the consequence
levels. Mappings between the predictive features and the attributes are

either pre-estabiished or determined by observation and adjustment.

The data available to the decision program are:

(1) Directly sensed information concerning the environmental
state {weather, terrain, adversaries).

(2) The vehicle state {velocity, fuel, autopilot capability).
(3) The channel characteristics (capacity, noise, cost).

(4) Operator capabilities (attention, load).

(5) Communications choices (information, control acquired).
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A manageable subject of these features must be determined. This
can be done using the correlational procedure described in Section 3.3.5.
The consequence mapping can then be refined by comparison of the predicted
and actually observed consequences, as in Figure 4-6. The mapping can be
developed either by pricr definition, by regression, or by the pattern
recogniti  techniques described in the coming section.

R RN e e
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4.2.5 MWeight Assessment. The method of assessment developed in Section 3.4

-- adaptive estimation using pattern recognition -- appears well suited to the
remote system problem. The dgoal is to estimate the operator's decision making
policy by observation of his choices. The procedure is diagramed in Figure 4-7.
First, expected consequence vectors associated with each combination of
information ard control are input to the model. These consequence vectors

are dotted with the weight vector, resulting in evaluations along a single
scale. The maximum expected utility choice is determined and compared with
the operator’'s actual choice. If a discrepancy occurs, the weight vector

is adjusted according to the procedures outlired in Section 3.4. Ideally,

the error correction moves the weight vector in a direction minimizing
subsaquent errors.
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The criteria used for model training is a question of special
importarce. The mode! training could be based on objective (externat) o
criteria or on supjective (internal) criteria. It was ncted previously
that external criteria of system performance, such as contiol error, speed,
and menetary costs are seldom availablz during the execution of a mission.
Felson's (1975a) stock market prog.-am, adjusted according to daily stock
performance, is a notable exception. More frequently, a conpletely analytical
mocel is impracticai and subjective criteria for model training must be -
used. Here it is assumed that the operato~'s behavio:~ refle:ts the task ot
objectives along with individual needs. The adaptive model functions in
parallel with the operator, attempting to capture his decision policy by
fitting a normative framework to his choices. This was showr earlier in
Figure 4-2 by the feeaback from the dacision execution stage to the assessment
block.
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In many situations, an occasional indicator of objective performance
is observable. The RPV may be lost, the target attained, or other goals
accemplished. In this way, the correctness of a sequence of subjective
decisions may become known. The utility model would still be trained by
observation of the uperator's choices. If the sequence of choices led to
an objectively favorable outcome, the new parameter set would be retained.
1f the outcome was unfavorable, the parameter set would be returned to the
levels present prior to the sequence of decisions. In this way, objective
criteria would guide training, but the explicit decision-by-decision policy
for controlling the RPV would be subjectively derived.

0f course, the adaptive techniques of estimation described above
are warranted oniy if repetitive decisions are available for training and
if the weight differences present are important. In cases where only a few
decisions will be made, off-line estimates af the weights Ni are favored.
Here, techniques such as direct estimates, hypothetical lotteries, or paired
comparisons .re used fui astimation prior to tne mission. Some probliems

- 3 R R

may occur since it i sumed with these techniques that the system requirements
£
1

will not change after the estimates. These techniques also assume that the
operator can effectively express his preferences along each dimension of
choice.

Questions concerning the importance of weight differences are more
basic. It was noted in Section 2.3.4 that unit weighting schemes (in which
211 weights wi are set equal to 1.0) can be quite effective in certain
circumstances. E£rrors in the model form, positive correlations between
variables, and small sample sizes all reduce the predictive capabilities of
inferred weights compared to unit weights. Essentially, the more precise
and parsimonious the model, the more important inferred weights are.

Unit weighting schemes are expected to see only minor applicatior in
remote systems modeling. Careful selection of attributes minimizes
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intercorrelations between variables, and the correlations that do occur
should tend to be negative. For example, in RPY supervision, costly
information is generally more informative than inexpensive information, and
equipmenf. attrition tends to be negatively correlated with goal attainment.
These circumstances favor inferred weight models. The unit weighting
schemes should primarily be useful as starting points for estimation, ur as
strateoies for situations in which a great deal of noise is present.

4.3 Analysis

The analysis functions are computational processes intended to
detarmine the model implications and sensitivity. Analysis includes such
processes as evaluation of the various information sources and specification
of the types of information needed. Also, sensitivity anaiysis may be made
regarding changes introduced in various aspects of the model.

The type of information needed in a particular situation can be
specified analytically by working through the predictive features and
consequences, or empirically by sensitivity analysis. The analytical
approach requires that relationships between the type of inforaation and
the consequences can be specified. Then if situational requirements result
in certain consequences being emphasized, the corresponding forms of information
can be identified.

The empirical approach utilizing sensitivity analysis is probably
the most practical means of developina design criteria and determining model
characteristics. Sensitivity analysis involves the systematic alteration
of input variables tc see how such changes affect outcome variables. The
parameters that can be varied are:

(1) Informition Sources - Source characteristics, costs.
(2) Situational Factors - Prior probabilities, predictive features.

ANIEN b ity e T n




L]

2l

(3) Consequence Levels - Values of each consequence dimension.
(4) Importance Weights ~ The inferred or preset wj.

The possible criterion or output variables are also numerous:

{1) Predictive Capability - Percent of decisions predicted.

(2) Speed of Convergence - Number of decisions or time required
tor wraining.

(3) Objective Performance - Level of task performance.

Sensitivity tests also disclose whether a flat maxima situation is
present. Here, large changes in an input variable lead to only minor changes
in the output. It was noted earlier that linear models are often insentitive
to differences in attribute weights -- witness the efficiency of arbitrary
unit weightings in many situations. However, Slovik, Fischoff and Lichtenstein
(1977) concluded that this flat maxima behavior is primarily a problem of
continuous choices. With discrete choices, (e.g., perform surgery vs. don't
perform suvrgery) it has been shown that a moderate error in probabiiity
estimation can lead to a substantial decrease in expected utility. This is
expected to be the situation in RPV supervision.

4.4 Preliminary Tests of the Adaptive Madel

Prior to experimentation with human subjects, a number of automated
simulations were run testing the pattern recognition model. Human choice
tehavior was simulated by programning a "model operator" to make decisions
according to pre-set attribute weights. Sets of conseguence vectors {attribute
levels) were generated randomly and presented to the model operator as pairwise
choices. The model operator selected the choice determined by the preset
weights, while a separate adapiive prougram observed the choices and modeled
the behavior.
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The factors tested with this simulation were the number of
consequence dimensions, the type of adjustment rule, and the degree of
consistency of the operator. The adjustment rules tested were the fixed
and the absolute rules {see Section 3.4 for a description of these rules).
The operator consistency was controlled by adding random numbers to the
pre-set weights on a set percentage of decisijons.

The model was found to converge at a rate dependent on the number

of attributes and the degree of operator consistency. Only minor differences

in dynamics were seen between the fixed and absolute adjustment rules.
Convergence behavior as a function of the number of attributes is shown in
Figure 4-8. The number of pairwise choices necessary to achieve a criterion
level of prediction increases rapidly with dimensionality. As litile as
15 decisions resulted in asymptotic training with three attributes, while
75 decisions were required for seven attributes. Figures 4-9 and 4-10 show
this behavior more clearly for representative cases of 3 and 5 attributes.
For three attributes, the adaptive model was able to rank the weights

da v ction (for o
twenty-decision window) after 19 decisions. The corresponding values for
5 attributes were 28 and 50 decisions, vespectively.

The introduction of inconsistent behavior also increased the required
training time. Figure 4-11 shows the increase in training time due to the
imposition of 20 percent inconsistent behavior on the model operator. The
number of decisions to convergence roughly doubled with this level of
inconsistency.

The number of decisions required for training in an RPV sipervision
task should be considerably less than the number demonstrated in this
simulation. The operator normally selects an information #nd control chaice
from a sizable number of alternatives rather than from a single pair. The
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] ] frequency of adjustment should thus ircrcase, accelerating the training.
Also, the model produces a ranking of the various alternatives. If the
l operator selects an alternative that lies in the lower range of the rankinog,
pairwise comparisons and adjustiments can be made with all alternatives
l ranked above the operator's choice. This further reduces the training
period.
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5. EXPERIMENTAL STUDY
5.1 Overview

An exploratory study was performed to test the effectiveness of the
of the adaptive multi-attribute model with human subjects. The study
utilized a task simulation resembling control of a remotely piloted
vehicle (RPV). Individual subjects were required to navigate the RPV
through & changina, hazardous environment. In doing so, the operators were
able to select different combinations of information display and control
allocation. The main cobjective of the study was to determine the ability
of the decision model to aralyze, predict, and aid in these information
and control choices.

5.2 Hypotheses

The following experimental hypotheses were tested:

(1) The adaptive model can accurately predict operator information
and control choices under a variety of task conditions.

(2) The model-estimated parameters are more predictive and
demonstrate greater construct validity than a unity weighting
scheme (an arbitrary model with all weights set to 1.0).

(3) “bjective biases and inconsistencies of the operator can be
identified using the adaptive model.

(4) Aiding provided through display of the model recommendations
will result in performance superior to that obtained: (1)
without aiding; and {2) with aiding derived from a unity
weight model.




5.3 Task Simulation

The task simulation was patterned after an important and representative
remote system task -- communication with and control of an RPV. This i
simulation is an adaptation of an RPV supervision task developed previously -4
for study of human factors aspects of shared decision making (Steeb, Artof,
Crooks, and Weltman, 1976). This task appears appropriate as it combines .
some degree of fidelity with an extensive amount of experimental control.
Briefly, the updated simulation requires the operator to supervise control i
of an RPV in a hazardous environment. The environment contains obstacles
of uncertain form and extent. At each set of obstaclies, the operator can
either control the RPV manually, or he can delegate control to the onboard
autopilot system. Also, the operator has the option of accessing several
forms of information about the environment. The forms of information -
differ in content, cost, and influence on future decisions.

Displays and Controls. The simulation uses a computer-generated CRT
display, iltustr.ced wn Figure 5-1. The environment and vehicie are shown
as in a moving-map dispiay. Sets of obstacles appear at random positions
at the upper edge of the display and move downward at a constant velocity.
The operator can move the vehicle sym' ol herizontally to one of eleven
different pathways to avoid the obstacles. He can do so manually, using
a joystick, or he can aliow the autopilot system to select a path. These :
control actions are primarily decision making in nature. Dynamics of control 1
are minimized since the obstacle and vehicle velocities are held constant. :

[ )

The obstacles introduce uncertainty to the task simulation. Each
type of obstacle has a specific probability distribution of vehiclie loss.
Figure 5-2 shows the four obstacle types and their associated probability
distributions. For ease of learning, the four obstacle types are designed
to be evocative of some obstacles expected to occur in actual control situations
-- adverse weather conditions, terrain obstacles, adversaries, and navigational N
problems. [
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Communications. The identity and location of the obstacles can only

be determined from information communicated from the RPV. Tnree types of
information are available for transmission from RPV to operator: (1) Full:

A high detail link corresponding to transmission of videc images from a nose -
mounted camera. This information is simulated by a symbolic presentation

of borh form and location of the obstacles. While highly informative, this
troad band iink fs costly; (2) Location: A low detail 1ink that provides a
report on the lacation of the obstacles but not their identity. This might
correspond to low cost radar information; and (3) Wone: A minimal information
link in which the operator simply relies on flight plan characteristics
provided gratis. The presence of obstacles is acknowledged, but data on their
identity and location is lacking.

Sequence. The task consists of a se¢ries of similar, connected decisions.
Prior to the appearance of any obstacles, the operator is appraised of the
circumstances surrounding the upcoming decision. He must annunciate (by
pressing the button shown in Figure 5.1) the choice of information to acquire.
A set of two cobstacles is presented at the top (f the screen and moves downward.
If he selects full information, the differentiated obstacle symhols will move
down the screen. If location information is chosen, undifferentiated symbols
marking the obstacie locations will pass down the screen. If the minimal
information choice is selected, a bar denoting the presence (but not the
location) of the set of cbstacies moves down. The task movec on continuously,
Just &s an RPV mission does. If the operator does not select an information
choice in the time allocated, the minima)l information choice is automatically
gresented.

The operator must make his second decision, that of control allocation,
before the obstacle symbols reach the control takeover 1imit (a line approximately
2/3 of the distance down the screen). This control decision is two-fold:
he must decide whether to control the vehicle himself or to give control to
the autopilot; and, if controlling himself, he must decide which path to take
through the obstacles.
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Autopilut Capability. The simulated RPV incorporates an autopilot
progran capable of limited autonomous control. The autopilot program is
subject to error depending an the situational conditions. This combination

of autonomous response and unreliability is representative of the behavior
associated with both adaptive control systems and preprogrammed response
systems. Unpredictable behavior is especially prevalent with adaptive or
learning systems since these programs adjust their behavior according to the
requirvements of the situation. Such systems typicallvy commit errors during
changing or unfamiliar conditions.

Unreliability is introduced to the simulated autopilot program
through the addition of randomiy generated insertions. First, the autopilot
selects the optimal action bas' ! on the obstacle probability distributions.
Then these choices are, with & certain frequency, corrupted by random
additions, The frequency of insertion is adjusted according to the task
requirements.

Situational Conditions. The various stages of an RPV exercise can

be characterized by such factors as difficulty, costs, system reliability,

and communications accuracy. Accordingly, the task simulation is configured
te invoive many of the same factors. It should be noted that these conditions
are not experimental variables, but rather are situational conditions designed
to provide a demanding exercise for the adaptive model. The experimental
variables, defined in a coming section, deal with the form and function of

the model. The situational conditions are:

(1) Information Costs. The opening of the communications channel
for transmission of information has costs that depend on the
level of detail transmitted and on the mission phase. The
minimal! infermation choice is gratis, while location and full
information have mcderate and high costs respectively.
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(2) Control Channel Costs. Just as for information transmission,
manual control of the RPV is costly. Again, the cost depends
on the mission phase.

(3) Infcrmation Accuracy. The information transmitted to the
operator is subject to error. The unreliability is simulated
by random insertions at a giver frequency. The frequency of
insertion depends on the mission phase.

{(4) Future Impact. The establishment of contact with the RPV is
assumed to enhance subsequent autopilot capability. Acguisition
of full information increases the autopilot reiiability on the
ensuing decision by a given amount. Acquisition of location
information also increases the reliability but does so to a
lesser degree.

(5) Payoff Schedule. Payotf. are made independent of whether the
operator or autopiiot makes the controi action. A positive
payoff is set for a successful traverse and a negative payoff
is associated with an unsuccessful one. Each of these are
constants dependent on the mission phase.

The presentation of conditions is organized into three distinct
mission phases -- launch, enroute, and target. These phases are similar to
the types of exercises an RPV must perform, thus lending a degree of surface
credibility to the task. Each phase has set levels of payoffs, information
accuracy, autopilot capability, and future impact. For diversity, the
communications costs of obtaining information and control are randomiy
varied about central values established for each phase. The mission phases
and their associated conditions are:
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(1) Launch-~Low risk flight in safe area.
Low: Communications costs; payoffs
High: Information accuracy, autopilot capability,
future impact

(2) Enroute--Trav.rse of hostile region.
Low: Infocrmation accuracy,. autopilot capability
High: Communications costs, payorfs, future impact

(3) Target--Critical approach to target.
Low: Information accuracy, communication costs,
autopilot capabiltity, future impact
High: Payo s

The conditions are displayed to the operator prior to each decision.

The conditions shown in Figure 5-1 are an example of a launch phase
decicsion. The upper 1ine on the left provides estimatec of the operator's
probability of succes . under each form of informaticn. The next line
indicates the p obability of success of the autopilot. This estimate does
not change with the information acquired. The next two lines are the
information costs and the future impact. The information costs are the
points subtracted for acquisition of each type of information. The future
impact is the degree of augmentation of the autopiict on the succeeding
decision. The right side of the display shows the control cost for pilot
control along with the payoffs for successful and unsuccessful actions.

5.4 Decision Model

The experimertal situation results in a simplification of the
general information and control model of Section 4-2. The decision space
is reduced to three information choices and two subsequent control choices.
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Nevertheless, a variety of multidimensional consequences are possibie,

stemming from the various combinations of costs, payoffs, and actions
possible.

The decision tree shown in Figure 5-3 summarizes the communications
choices. The initial portion of the more general tree depicted earlier in
Figure 3-3, the information gathering decision by the autopilot for its
own use, is not represented in this tree. The experimental situation
correspeonds to the case where the autopilot has continuous, cost-free
access to high detail information. This aliows the vehicle-to-operator
communications to be emphasized in this initial study.

The major decision faced by the operator is thus the choice of
information and control to transmit. All six combinations of information
and control are shown in the figure. Two combinations of special note are
those of full information/autopilot control and location infarmation/
autopilot control. These combinations might be selected when the operator
wishes to maintain supervision of the remote system activities (and increase

autopilot reliability) without taking control. The remaining combinations
have more obvious rationales.

The probability of occurrence of each of the 12 outcome catagories
can be estimated analytically or from performance histories. The probability
of success for the autopilot can be derived from the obstacle probability
distributions, the autopilot unreliability level, and the future impact.

This calculation is the following:

P(s) = (1-R-F)} « ™% ((1-P(H,1a))(1-P(H_l2))}
(5-1)
1]
-(R-F) - 7y I (1Pl [a))(1-P(H o))
a:
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FIGURE 5-3. STRUCTURE OF COMMUNICATIONS DECISIONS
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where
a is an action; the choice of one of the eleven paths

R is the reliability of the autopilot; the percent of random
actions

F is the influence of preceeding communications on increasing
autopilot reliability

P(Hbla) is the probability of a hit from obstacle b given that
action a is taken (see Figure 5-2 for hit distributions)

P(Hcla) is the probability of a hit from obstacle ¢ given action a

The first of the two factors in Equation 5-1 is simply the probability
of success of traversing the two obstacles encountered, given that the highest
probabiiity path is taken. The second Tactor {ékes into account the autopilot
reliability. R-F represents the frequency of random actions by the autopilot,
and the summation provides an averaging of the effectiveness of these
responses across all possible actions. The probability of success so
determined for the autopilot is the same for all information choices.

The probability of success of operator control, on the other hand,
depends strongly on the type ¢f information displayed. A different estimator
must be used for each of the three levels of information transmission. The
specific actions and states are not analyzed, since the operator may not act
optimally. The operator is simply assumed to ha.. different distributions
of outcomas undey the different information scurces and mission phases.
Separate estimators, based on moving averages of the success frequencies,
are maintained for each of the 9 combinations of information type and
mission phase.




Decision Attributes. A prelimirary set of attributes has been
selected that appears representative of the types of factors that enter
into RPV communications decisions. An attempt was made to choose attributes
by the criteria described in Section 3.3--accessibility, monotonicity,
completeness, and independence. The factors and their derivation follow:

(1) Communicaticns Costs. The direct costs associated with use
of the communication channel--energy expenditures, detection,
etc. In the simulation, the combined costs of information
transmission and manual control comprise this scale.

(2) Control Outcomes. The actual consequences of control. In
the real world, these consequences may include loss of vehicle,
system damage, fuel depletion, political gains, or attainment
of goal, The consequences here are defined simply as success
and failure. The expected payoff associated with success and

ctermine the attribute level.

(3) Future Impact. The effect orn future decisions resulting from
the establishment of communications. This factor is
representative of the many indirect effects of RPV commuu.cations,
among them such factors as control continuity and influence on
autopilot effectiveness. Future impact is defined in this
exercise as the augmentation of autopilot capability on the
succeeding decision. As was described earlier, greater amounts
of man-machine interaction lead to reductions in autopilot
unreliability on the immediately succeeding decision. The
attribute level is defined as the percent improvement vesulting
from the communication.
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(4) Control Preference. The subjective preference for manual
over autopilot control. This factor is one of a number of
possible purely subjective factors--manual control propensity,
operator loading, concrete versus abstract preference, etc.
The attribute level in this study is binary, as it corresponds
to the presence or ahsence of manual control in the alternativ

The attributes thus represent four main sources of consideration in
communications decisions--costs, direct consequences, indirect affects, and
operational preferences. The same attributes are used to describe both the
information seeking and the contral allocation decisions. The evaluation
of each of the 6 combinations of information and control would be made
according to the following equation:

where
MAUj is th» aggregate (multi-attribute) utility of alternative j
xij is the level of attribute i in alternative j

”i is the inferred weight of attribute i

e.

The information/control choice with the highest MAU would be selected

by the model. If the operator selected a different alternative, the model
would be adjusted according to the methods described in Section 3.4. The
absolute rule is used for adjustment.

5.5 Experimental Procedure

5.5.1 Experimental Variables. The experimental hypotheses deal with the
effectiveness of prediction and degree of aiding provided by the model.
Accordingly, the following experimental variables and levels are planned:




B

(1) Model Form--Two Levels

Cifferential weighting. Use of model inferred attribute
weights for prediction, analysis, and aiding.

Unity MWeighting. Control condition in which arbitrary
(311 1.0) weights are used for prediction and aiding. All

of the weights are defined to be positive except cost.

(2) Aiding--Two Levels

Model Based Aiding. Operator makes information and control
choices after observing model recommendations.

No Aiding. Operator makes information and control choices
without modei recommendation.

The four combinations of the above experimental conditicns provide
an essentially complete testing sequence for the experimental hypotheses.
The model form conditions provide a basis for testing the predictability
and validity of the adaptive model, while the complete set of conditions
allow testing of the influence of aiding on performance. The aiding
conditions also result in an indication of the degree of operator acceptance
of the machine recommendations.

5.5.2 Performance Measures. The standard performance measures Such as

errors and speed only partly describe the quality of performance in a

shared control task. The close coupling ¢f man and semi-autonomous

machine require additional evaluations of individual contributions, decision
model performance, and decision quality.
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System Performance. The overall system performance is described
using a single index, the score. The score is derived from the number
and cost of errors conmitted and the communications costs expended:

SCORE = {PAYOFFS} - {PENALTIES + COMMUNICATION COSTS}

The communications costs incliude both the costs of information
transfer and the ccsts of assumption of manual controi. The score is
presented to the subject as a single index of performarce, and his
é ' compensation depends to a large extent on the measure. The complexities

; of having speed as a second, independent measure are avoided by presenting
) the task at a set pace.

f Decision Model Performance. The effectiveness of the decision

model in inferring decision parameters and predicting operator behavior
can be determined by a number of methods. Among these means of model
validation are axiomatic tests, measures of prediction, construct validity
iests, and checks of operaior acceptance. Frediciion is the simpiesi of
these. The ability of the adaptive model (and of a utility weight model)
to predict behavior in both the information and control decisions can be
determined directly. Construct validity tests are more difficult. These
tests are made by comparing the inferred weights with weights estimated
off-1ine by other techniques. The off-line estimation techniques may
- involve direct estimation, paired-comparisons, or the Ynetma-Torgerson
"interpolation Letween the corners" method. The last of these, the
Yntema-Torgerson technique, was selected for use in the stud, because of
its simplicity and reliability.

LY Wl

Auxiliary Measures. Additional measures of decision quality and
decision consistency were implemented. The decision quality measures are
determinations of the deviation from maximum expected utility exhibited
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by the operator. Assuming model accuracy, this is a measure of sub-optimality
of behavior due to logical inconsistency. The second measure, decision
consistency, is measured by the overall stability of the estimated preference
structure.

5.5.3 Experimental Design and Procedures. The hypotheses were examined

using a three factor experiment with repeated measures. The three factors
were the model, level of aiding, and sequencing of conditions. Repeated
measures were taken across the first two factors as shown in Figure 5-4.
In this design, each subject was exposed to all four combinations of
condit®ons.

The eight subjects participating in the study were recruited from
nearhy Air National Guard units. They represented the type of personnel
who might interface with computer-aided communications system. The
subjects' ajes ranged from 22 to 42. Four of the subjects were pilots

norionc
perieng

ccllege experience (1 to 12 years). The eight subjects were assigned
randomly to the four groups.

-ad 4l
and tnvee nadd <X

with computer systems, All had some

Each subject performed the task during three sessions of 2 hours
duration. The first hour of the first session served as a familiarization
and practice period. The subjects were given instructions on system
operation and were provided hands-on experience with the equipment. The
remaining hour of the first session, both hours of the second session,
and the first hour of the final session were devoted to experimental Yvuns.
Each of the experimental runs lasted 55 minutes and consisted of four
complete sequences of launch, enroute, and terminal phases. The subjects
were paid on an hourly basis and received up to $4.00 an hour additional
as a bonus contingent on performance. The bonus was a function of their
score compared to that of the other participants.
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Group 1
Group 2
Group 3

Group 4

No Aiding Aiding
Unity Infrared Unity Infrared
Weights Weights Weights Weights
C D A B
D C B A
B A C D
A B D C
(Letters denote order)
FIGURE 5-4. EXPERIMENTAL DESIGN




The subjects were informed that on two of the runs, aiding would
be provided in the form cf communications recommendations. The subjects g
were not informed as to the nature of the aiding. The experimental runs
ended with an off-1ine estimation of each subjects' attribute weights H

using the Yntema-Torgerson technique. -1
Data Report. Ffollowing every experimental segment, the computer -I

provided a printout of the experimental performance indices. Segments

consisted of ten decisions, spanning a single mission phase. The 24 seconds _i

required for the printing permitted a short rest period. The data report
provides a breakdown of the performance score into that attributable to the
operator and to the autopilot. Also, analyses of the information seeking
behavior and model performance are included. A typical data report is
shown in Figure 5-5.
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6. EXPERIMENTAL RESULTS AND DISCUSSION

6.1 General Observations

The choices presented in the RPV task simulation were found to be
sufficiently varied and difficult tn provide a good initial exercise for
the decision model. A wide variety of behaviors were observed and modeled.
The task simulation was also found to be sufficiently demanding to maintain
a high level of subject interest. The subjects learned the task procedure
readily and by the end of the training session, could efficiently handle
the task requirements.

6.2 Model Descriptive Performance

6.2.1 Prediction. Table 6-1 shows the percent of decisions predicted by
the experimental (inferred weight) model and by the control (unity weight)

iAn rc(‘u'li’nrl inm 3 Aatas naint Af
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prediction. The prediction itself was the choice of one of the six
possible combinations of information and control.

The experimental model was found to predict behavior significantly
more effectively than the unity weight model (F=10.1, df=1,4, p<.05).
Overail, a 50 percent prediction rate was observed with the adaptive model,
as compared with a 40 percent prediction rate by the unity model. The
seemingly low rates of prediction were due to the difficulty of the
information and control choices. Dominated alternatives and clear choices
were seldom present. Aiding by recommendation using either model, also
improved the prediction accuracy {F=26.2, df=1,4, p<.01). Prediction by
the unity weight model increased from a level of approximately 35 percent
to cne of 45 percent, while for the inferred weight model, aiding increased
the prediction rate from a 45 percent level to a 56 percent level. These
increases were presumably due to acceptance of the aiding by the subjects.
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TABLE 6-1. MEANS OF PREDICTION MEASURES FOR THE

COMBINATIONS OF MODEL AND AIDING

Non-Aiding Aiding

Control Experimental Control Experimental

Model Model Model Model
Percent of
Comuunications
Decisions 34.6 44.6 44.9 55.7
Predicted
Percent of
Information
Decisions 58.3 65.3 70.5 76.4
Predicted
Percent of
Control
Decisions 73.2 71.3 76.1 82.9
Predicted
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The majority of the prediction increment between the inferred and
unity weight models was traceable to increased accuracy of prediction in
the information choice. As shown in Figure 6-1, a significant increase in
information choice prediction was found with the inferred model as compared
to the unity model (F=17.2, df=1,4, p<.01). Also, increases in information
prediction were found with the aiding conditions compared tc the non-aiding
conditions (F=17.6, df=1,4, p<.01). Neither the modeling or the aiding
differences reached siynificance with the subsequent control choice.
However, an interesting interaction effect was found with the control
choice behavior, as shown in Figure 6-1. Acceptance of model recommendations,
indicated by an increase of prediction with aiding, was present only with the
experimental model (F=7.7, df=1,4, p<.05). The unity weight model did not
seem to engender such acceptance.

6.2.2 Decomposition. The components cf the multi-attribute model were
also found to be predictive of components of behavior. The costs actually
expended by the subjects were highly correlated with the communications
cost weight (r=.853, p<.001) and moderately correlated with the control
outcome weight (r=-.581, p<.05). These findings indicate an intercorrelation
among attributes, pointing to a need for more careful initial definition of
the attributes. The intercorrelation appears to be due to the fact that
costlier information is typically associated with higher probabilities of
success. Nevertheless, the robustness of the linear model allows it to
function well regardless. The number of requests for information having
non-zero future impact was similarly correlated with both the future impact
weight {r=.51, p<.05) and the communications cost weight (r=.57, p<.05).
Here the &cquisition cf information having high future impact was
associated with increased costs.

The relationship of behavior to model-inferred weights can be

illustrated by example. Figure 6-2 shows three representative samples of
divergent behavior and the corresponding weight vectors. Each example
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depicts the distribution of choices made during an experimental session.
The averaged weight estimations for each session are shown to the right
of the figures. The upper figure is from a session during which the
subject minimized costs by emphasizing autopilot control. This behavior
is reflected in the relatively high negative weight for communications
costs and the low weight for manual control preference. The moderate
level of the future impact weight appears to be due to the frequent
acquisition of full and location information during autopilot control.

It should be noted that while the weight vectors are normalized {the
absolute levels sum to one), the relative contributions of the attributes

are not proportional to the weights, since the ranges of the attributes
are different,

The second histogram of Figure 6-2 shows a more balanced behavior.
The information and control choices are distributed more equally among the
options available. The communications cost wefght is less extreme than
in the first case, and the manual control preference is somewhat higher.

An example of strong manual control propensity is shown in the
lower figure. Here the communications cost weight is quite low, as might
be expected, with frequent acquisition of full information and manual
control. Also, the manual control preference is high and the future impact
weight is negative. The negative weight for future impact may be due to

the subject's neglect of location information in both manual and autopilot
modes.

6.3 Task Performance

No significant differences in the performance score were noted
between the aided and unaided conditions with either model. This is
understandable, since the adaptive model does not direct the operator

to maximize score, but rather attempts to capture, analyze, and extrapolate
his behavior to new situations.
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Nevertheless, the adaptive model was useful in identifying
behavicrs which led to superior performance. Corrections between scores
achieved and the inferred attribute weights indicated that the communications
costs and control outcome attributes were the factors of primary importance.
The control preference and future impact attributes appeared to be more
subjective and less consequential regarding performance. The score
attained correlated very highly with the communications cost weight
(r=-.853, p<.01) and moderately so with the control outcome weight
{r=.448, p<.05). Between these two factors, roughly 93 percent of the
variance in scores was accounted for. Inspection of scatter plots of the
individual attribute weights with the scores attained, indicated that
inverted-u relations were present between each of the four weights and
the score. This seems reasonable, as an optimal region for each importance
weight would be expected. The sizable linear relationship of score
attained to the communications cost and control outcome weights appeared

be due to the concentration cf scores on the low end of these scales.
subjects seemed to take sufficient account of these factors. Instead,
¢ ;s dppeared 1o over-enphesize the conirgl preference and future impact
factors.

An interesting finding was the relationship of score achieved to
consistency of behavior with respact to the model. With the unity weight
medel, a moderate correlation was observed between the deviation from
expected utility (DEU) and the score {r=.52, p<.05). The DEU is essentially
a distance measure reflecting closeness o“ behavior to the model
recommendations. Typically, the lower the DEU, the higher was the observed
score. This relationship of decision consistency to score was also seen
with the adaptive model during aiding (r=.80, p<.05). It appears that both
the unity and the adaptive models resulted in improvements in performance
when deviations from the model recommendations were minimized.
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6.4 vValidation

A preliminary check on the mcdel validity was made by comparing
the inferred parameters with weights estimated through off-1ine procedures.
The Yntema-Torgerson "Interpolation Between the Corners" technique was
employed as the comparison method. In this, each subject estimated on a
scale of zero to 100 the attractiveness of various hypothetical information
and control choices. The scale was anchored at the zero and 100 points
by the worst and best combinations of conditions, respectively. These
combinations specify 2 of the 16 possible combinations of the 4 attribute
extremes. The remaining 14 combinations of corner conditions were presented
in sequence to the individual subjects. The resulting ratings were then
normalized so as to be comparable in scale to the model inferred weights
(see Sheridan and Ferrell (1974} for a description of the derivation
procedures).

i g test of the similarity of the eight pair< of attribute

prafiles was made using a two factor ANQVA with repeated measures on both
factors (estimation methods and attributes). The test that the two profiles
were identical was rejected (F=5.43, df=3,21, p<.01). Nevertheless,
correlation coefficients between the attribute estimations by the twe
methods averaged .46, which is significant at the ... level.

Comparisons of the on-1ine and off-1ine methods of estimation were
alsu performed by correlation with behavior. As noted previcusly, the
adaptively inferred weights for communications costs and future impact
correlated significantly with the costs expended and with the frequency
of information acquisition in the task. The off-1ine estimates of the
future impact weights also correlated significantly with information
acquisition (r=.56, p<.05), but the critical weight for communications
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cost did not correlate with costs expended. Also, correlations between
the communication cost weight and the task performance did not reach
significance. From these findings, it appears that the adaptive estimation
procedures had an advantage in prediction over the off-line technique.
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7. (CONCLUSIONS AND RECOMMENDATIONS

7.1 Adaptive Decision Modeling

The prasent study demonstrates some of the potential of on-line,
adaptive techniques for modeling communications decisions. The information
seeking decisions involved in remotely piloted vehicle supervision were
seen to be amenable to analysis using multi-attribute decision models. In
the RPY situation, the operator is repeatedly required to make complex,
subjective decisions regarding information and control options. Multi-
attribute models using pattern recognition techniques for estimation were
seen to be able to capture much of this behavior.

The preliminary experimental studies demonstrated the speed,
simplicity, and robustness of the adaptive technique. The on-line
estimation technique was found to be more predictive of behavior than
either the urity weight or off-line methods tested. The adaptive model
was also useful in identifying differing decision policies and partitioning
out components of behavior, at least to a rudimentary level. Finally,
the adaptive model appeared to be accepted to some degree by the operators,
since the model prediction rate increased with display of the model's
recommendations.

Of course, the multi-attribute models and adaptive estimation
procedures are not proferred as the general methodology for communications
decision modeling. 1hese techniques are specific to decisions that are
complex, subjective, and recurrent. Some rough criteria are given
identifying situations that favor use of off-line parameter estimations,
unity weight models, linear cue formulations, and related techniques.

The coming studies will attempt to refine these guidelines.
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7.2 Decision Modeling and Task Performance

The adaptive model was found to be helpful in identifying
strategies which led to superior performance. The time-proven capabilities
of linear models in analvzing components of porformance were again seen,

Aiding, based on recommendations by the on-1line model, did not
produce the significant increases in performance expected, although those
subjects who followed the recommendations most closely achieved the highest
scores. The effect on these subjects appeared to be the classic reduction
of randomness or noise in behavior. Strong improvement in performance with
aiding are expected to be more likely in situations of greater time stress
and decision complexity.

7.3 Value of Information

The probabilistic multi-attribute model provides an ideal framework
for ascertaining the value of information. The benefit of an information
system in a set of task situations can be determined by 2ggregating the
constituent influences of the communications.

The adaptive model contributes to this analysis by providing
estimates of the model parameters in operational situations. A figure
of merit can then be given to a specific information system by aggregating
the values derived over the distribution of situations. Such a procedure
is planned for the coming study, along with sensitivity analyses of the
various model parameters and situatinnel factors. The resulting
methodology should be useful for evaluating alternative systems of
information sensing, processing, encoding, transmitting, and display.
Also, the techniques should be helpful for specifying information needs
and training operators to make effective communications decisions.
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7.4 Management of Communications

The availability of a methodology for information value
determination opens up the possibility of managing communicatiors from
an automated system. Ideally, the operator would then be appraised of
only essential information, instead of having to frequently and
inefficiently interrogate the system.

The acceptance of model recommendations noted in this study is
encouraging regarding the possibiiity of remote management of communicatiens.
The next step. scheduled for the coming year, is the model-directed
presentation of communications to the operator.
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