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PREFACE

The Rand Corporation, under sponsorship of the Tactical Technology
Office of the Defense Advanced Research Projects Agency, has been en-
gaged in analysis, development, and evaluation of hydrodynamic design
criteria for submersible vehicles. Boundary-layer control--including
shaping, pressure gradients, suction, and heating--has been the main
technological basis for these investigations.

Successful boundary-layer control depends on appropriate manipula-
tion of the laminar boundary layer to maintain stability and delay tran-
sition to turbulence. Thus, the effects of surface heating and pressure
gradients on properties of the laminar boundary layer in water are cen-
tral to progress in low-drag technology.

This report provides a simplified and accurate approximate method
{5 calculating the properties of heated laminar boundary layers in
water. When coupled with appropriate stability or transition criteria,
it provides a systematic and efficient approach to the optimization of
low-drag design.

The method presented here should simplify study of the interplay
between pressure gradients and surface heating on laminar characteris-
_ics to the point where a hand calculator can be used to compute laminar-
flow characteristics for the case of coinstant wall temperature. Addi-
tional work, still in progress, will extend this approach to the case
of variable wall temperature.

This report should be useful to hydrodynamicists, to designers of
submersibles, and to others interested in applying fluid mechanics to
improve the performance of underwater vehicles.

Other related Rand publications are:

R-1752-ARPA/ONR, Low-Speed Boundary-Layer Trarsition Workshop,
W. S. King, June 1975.

R-1789-ARPA, Controlling the Separation of Laminar Boundary
Layers in Water: Heating and Suctiom, J. Aroesty and S. A.

Berger, September 1975.
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R-1863-ARPA, The Effects of Wall Temperature and Suction on
Laminar Boundary-Layer Stability, W. S. King, April 1976.

R-189'~ARPA, "eg": Stability Theory and Boundary-Layer Transi-

tion, S. A. Berger and J. Aroesty, February 1977.

R-1907-ARPA, Buoyancy Cross-Flow Effects on the Boundary Layer
of a Heated Horizontal Cylinder, L. S. Yao and I. Catton,
April 1976.

R-1966~-ARPA, The Buoyancy and Variable Viscosity Effects on a
Water Laminar Boundary Layer Along a Heated Longitudinal
Horizontal Cylinder, L. S. Yao and I. Catton, February
1977.

R-2111~-ARPA, Entry Flow in a Heated Tube, L. S. Yao, June 1977.

R-2164~ARPA, The Effects of Unsteady Potential Flow on Heated
Laminar Boundary Layers in Water: Flow Properties and
Stability, W. S. King, J. Aroesty, L. S. Yao, and W.
Matyskiela, in process.

The authors wish to express their appreciation to C. Gazley, Jr.
for reading the manuscript and offering several helpful suggestions.

The authors also wish to thank W. H. Krase and L. S. Yao for their care-

ful reviews.




SUMMARY

Thwuites(l) and others(z) have used integral methods to compute
parameters of laminar boundary layers with constant fluid properties.
These methods use simple correlations of universal parameters based
principally on simllar boundary layers. The displacement thickness,
momentum thickness, and wall shear stress can be computed by these
methods for nonsimilar bonndary layers.

This report is concerned with the extension and application of
these methods to heated water boundary layers. The viscosity of water
is strongly temperature dependent, and thus variable fluid property
effocts are significant for heated water boundary tayers. The Thwaites
integral method has been extended to include variable fluid properties.
Numerical solutions of heated water wedge flows are tabulated for a
range of wedge angles and temperature differences. Universal param-
cters are correlated from these solutions for use with the integral
method. The method has been tested for the nonsimilar Howarth retarded
flow with t = 104°F and t _ = 32°F. Errors of only 1 or 2 percent are
found for displacement thickness, momentum thickness, and wall shear
stress. This is a particularly stringent test because of the adverse
pressure gradient in the Howarth flow, where heating causes the separ-
ation point to move 30 percent further down the Surface.(3)

The curvature of the velocity profile at the surface, f'"(0), de-
pends on the viscosity gradient at the surface, which in turn is deter-
mined by the heat flux at the surface. These three additional parameters
can be computed once the Nusselt number is known. The Lighthill high-
Prandt!-number approximation has been extended to permit computation
of the Nusselt number for boundary layers with variable fluid proper-
ties. Nusselt numbers computed with this approximate method for the
heated Howarth flow are reasonably close to the exact numerical solu-
tions for that flow, except in tte region near separation.

Heated water boundary layers have been further explored with simpli- |

g
fied shear modeling, such as Couette flow. The Couette flow model works [?iy
.‘:&{;’- i
very well at stagnation points, where the boundary layer does not grow. e b
e
¥ ':i.;‘
{ :
" Vi Y e ————— e . d
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NOMENCLATURE
a,b = constants
c = ou/oe Mo
.ok L
k (pk)e Pre
¢ = heat capacity
f = dimensionless stream function, £' = u/U

F = universal parameter, 2T - 2(2 + H)A
H = universal parameter, 8*/6
4 = 1 for axisymmetric, 0 for two-dimensional bodies
k = thermal conductivity
L = an arbitrary length
m = (x/U) dU/dx
Nu = Nusselt number, hx/kw
Pr = Prandtl number
r = radial distance from the symmetric axis
Re = Reynolds number, x ue/ve
t = temperature
T = universal parameter, T, 9/uU
u = x component of velocity
U = velocity outside the boundary layer
v = y component of velocity
x = coordinate along the surface
y = coordinate normal to the surface

B = 2m/(m + 1)

1

{Zvej;x U dx}/i/ll
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displacement thickness, jf (1 - u/U) dy
0

sii.ilarity variable, y/8(x)

=]

momentum thickness, J/‘ % (1 - %) dy
0

8/6
2
(67/v ) du/dx
w
viscosity
kinematic viscosity
density

shear stress

Subscripts

e

iso

ref

"

at ambient conditions
isothermal
of the thermal boundary layer

at the surface conditions

at 491.69°R (32°F)
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[. INTRODUCTION

The key to boundary-layer control is the maintenance of ltaminar
velocity profiles that promote hydrodynamic stability and delay separ-
ation. For undersea applications, surface heating is a possible means

i 5
(2,3,4,5) Heating promotes stability through

of achieving this coutrol.
the interplay among the thermal boundary layer, the temperature-dependent
viscosity of water, and the momentum balance in the crucial region near
the wall.

To take full advantage of these phenomena, the surface heating dis-
tribution should be optimized, so that total heat required is minimized
subject to realistic constraints. As part of a study to simplify opti-
mization and design methods, we have developed an approximate method
for determining taminar boundary-layer characteristics for cases of
constant surface overheat. The extension of this approach to the case
of variable surface Lemperature is currently under invesiigation at Rand.

Approximate methods are useful in optimization studies because nu-
merical integration of the boundary-layer equations is unnecessary. TE 5
for example, the optimal heating distribution for a given body shape
is required, it may be necessary to perform hundreds of numerical calcu-
lations of the boundary-layer equations, with consequent cost in eomputer
time. Approximate methods can reduce this cost considerably and can
also yield better intuitive understanding.

For a method to be useful in predicting stability, transition, and
separaticn, it must supply information about the velocity profiles that
influence these phenomena. For example, the critical Reynolds number
for stability of Tollmein-Schlichting waves has been shown to correlate
with the shape factor, H = §*%/6, and to depend on the curvature of the

(6)

velocity profile at low values of H. Integral methods can be used
to determine these parameters with sufficient accuracy for use in opti-
mization studies.

We have extended Thwaites's integral method to tae case of water
flowing over constant temperature surfaces.* Thwaites's method depends

USSR

*
Although this method is conventionally called after Thwaites,
Walz, Thwaites, and others were responsible for its development. See
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o extensive correlations of parameters devived from numerically coxact
bommdarv-1aver solutions, rather than a particular assomed feem of
velocity profile.  The key simplification in the Thwaites method arises
from the observation that the parameter F = 2T - 2(2 + H)A can be
approximately expressed as a - bA, where a aad b ar. constants derivel
from a hest fit to a graph of ¥ vs A from a computed serics of different
pressure gradients.  In the constant property case, a = .44 and b = 5.38
are widety used vatnes. We have found that an approximate linear rela-
tion between F and A is still vatid, out the constants a and b now de-
pend on wall overheat and” ambient temperature. As in Thwaites's orviginal
method, the momentum thickness distribution can be obtained from a simple
quadrature, while shear stress, shape factors, and profile corvature can
be obtained from charts or tables.

The Thwaites approach is a simple, economical, and practical scheme
for the calculation of nonsimilar boundarv lavers and is accurate enongh
for most applicarions except in the neighborhood of laminar separation.
With the extension we present here, it is poss: © to compute laminar
boundary characteristics of water flowing over constant temperaturce sur-

faces with a hand calcutator alone.

Ref. 2 for a historical survey. The method we adopt here, because of
its reliance on similarity solutions, is closest to that proposed by
Walz for the constant property case.

L e

|
4
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T1I. INTEGRAL METHOD

The conservation equations for mass, momentum, and thermal enzrgy

in a steady boundary layer are

3 j 9 .
e (pur’) + 3y (pvr’) = 0> (1a)
Ju Ju du ) Ju
o(uax‘rvay)—erdx‘ray(u 3y> (1b)
At at\ _ 3 [, 3t
pcp (u Y + v p > * % (k 3y > , (1lc)

where j = 1 for axisymmetric flow and j = 0 for two-dimensional flow.
If the density 1is not a strong function of temperature (as for water),

the momentum equation can be integrated across the boundary layer,

yielding
T
Tw _de, 20+ 6%du fodr
2 dx t U dx + r dx °’ (22)
pU
where
[ 7]
u u
4 f u(l'u)dy (2h)
0
and

O
*
]

8
b

H

I
e

)dy . (2¢)

The integral method developed by Thwaites(l’z) has been useful for
unheated boundary layers. In this method, universal parameters corre-
lated from a number of known solutions for similar and nonsimilar flows
are applied to boundary-layer computations for any body shape. The con-

venient universal paremeters F, H, and T, defined as




F=2T - 2(2 + H)) (3a)
H= §%/¢ (3b)
T = TWB/uU . (3¢)

are correlated as functions of A, defined as

2
_8%au
A= v dx (4)
The integrated momentum equation (2a) can be expressed as
1od (e2h ) roy 59
(2] dx du/dx U ’

If F 1s linear in A, F = a ~ b} (as shown to be approximately the case by

(1,2)

Thwaites for constant fluid properties), then Eq. (5) can be formally

integrated, yielding

= X L
6(x) = < 4 p2dgP~1 dx) . (6)
rszb '{

For a given U = U(x), 6 can be obtained from this expression; A is then ob-
tained from its definition and H and T are then found from their correla-
tions as functions of A. With this procedure, 6(x), &*(x), and rw(x) can
be calculated for flow over a surface of any shape, once U(x) is known. It

»2) that the Thwaites integral method accurately (with-

has been shown
in about 5 percent) determines H and skin friction for general nonsimi-
lar laminar boundary layers with constant fluid properties, except in the

region near separation.

The variable viscosity analogs to Eqs. (3) through (6) are almost

identical to these constant fluid property equations. Equations (2) hold
when the viscosity is temperature dependent. If the definitions in Eqs. (3)
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and (4) are mcdified only to the extent of evaluating u and v at the wall
temperature (replace u and v with M, and vw), then Eq. (5) holds for
variable viscosity. The simple algebraic derivation of Eq. (5) for the
variable viscosity case is nearly identical to that for the constant
fluid properties case. Again, if T is assumed linear in A, Eq. (6) will
hold (with v replaced by vw). In fuact, for a given constant wall-to-
ambient~temperature difference, it will shortly be shown that ¥ is indeed
approximately linear in A. Thus, Eq. (6) for 6(x) holds for heated water
boundary layers as well as for unheated ones, but the universal functions
F()), H()), and T(}) will depend on the wall and ambient temperatures as
well as on A. These correlations can be obtained from numerical solutions
for wedge [lows.

For laminar boundary layer flow of a fluid with temperature~dependent
fluid properties over a wedge (j = 0) or a cone (j = 1) with a constant
surface-to-ambient-temperature difference, the boundary layer equations
(la through c) reduce to two ordinary differential equations, similarity
equations. Thus, these wedge and cone flows are convenient for correlat-
ing the universal functions F, H, and T. The contt;ué;y equation (la)

can be eliminated by defining a stream function as

3 %%— rjpv = - EI-. D)

rpu = 3%

Now if the Mangler-Levy-Lees transformation from x and y coordinates to

£ and n coordinates is intreduced,

24
dg = oeueU(r/L) 4 4z (8a)

an = [p0/28) 1 (x/1)3 dy , (8b)

where L is any arbltrary length, and a dimensionless stream function, f,

is defined such that

sy = @) udee,n 9)

(8)

then the boundary layer equations (1) become

ey




J

p
eyt " _9;_ |2 Py 'a.g_i._ “_«")_f_
(cE™' + ff +B[p (f)] 2£(f - (10a)
' U= E_g_ v?_f_ .
(ckg ) + fg 2¢ <f' 3E g 3E > . (10b)
where
_ 2 au
B = U de (11a)
- 2
€= ow 1ib)
e
- Pk 1
) (0k) Pre (11c)
T-T
g oy ]
8 =T T (11d)
e 0

for any constant TO’ and where primes denote derivatives with respect to n.
The fluid property ratios are functions of local temperature, or of g

only. If B and all boundary conditions are independent of £, then Eqs. (10)
become independent of £. For flow over either a wedge or a cone, the
velocity outside the boundary layer is of the form(z) U= onm; for a wedge
or a cone, £ is also proportional to a power of x. Thus, for a wedge or

a cone, B (from Eq. (lla)) is a constant. For an isothermal impermeable

surface without slip, the boundary conditions at the surface (n = 0) are
£(0) = £'(0) = 0 g(0) =0 , (12a)

if we set T0 = Tw. To match the ambient temperature and velocity at the

edge of the boundary layer, the boundary conditions as n + « are
6 = 4 g(=) -1 . (12b)

Therefore, for an isothermal wedge or cone, B and the boundary conditions
are in fact independent of £, and so Eqs. (10) reduce to the similarity

equations
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]
o

o
(cf™)' + ££" + B[:BE-— (f')z] (13a)

(ckg')' + fg'

]
o

(13b)

The transformed velocity profilecs for cones are the same as those for
wedges; we need only correlate F, H, and T with wedge flows.

Numerical solutions of wedge flows (Eqgs. (13)) with water have becen
obtained for various values of wedge angle and wall-to-ambient-temperature

difference for an ambient temperature of 67°F (sce Table 1). The water

(9

property correlations used were those of Kaups and Smith (sec the appen-
dix), but density was taken as constant.

The above transformed boundary layer equations are convenient for
numerical study, but the true magnitude of the heating and pressure
gradient effects on the shear stress, for example, may nnt be obvious
from the transformed shear stress, £''(0). To explore the combined ef-
fects of pressure gradient and heating, and to offer further physical
insight into these effects, the following simplified shear models have
been developed. The simplest is vo assume that heating does not
change the shear in the boundary layer, the "isothermal shear model."

Since T is proportional to cwf“(O),

£(0) -1
" (0) s Cw 5 (1[4)
iso

Another shear model, the Couette flow model, assumes that the shear
stress (but not the velocity gradient) is a constant for the entire vis-
cous boundary layer. The Couette flow model requires that some distribu-
tion of viscosity be assumed. We have assumed that 1/u is distributed
linearly from l/uw at the wall to 1/ue at the therma’ boundary layer
edge. This viscosity distribution assumption corresponds closely to a
linear temperature distribution. The Couette flow model also requires
the assumption that the viscous boundary layer thickness is not changed
appreciably by heating; this can be shown to be the case from the top

part of Table 1. This model results in

R




Tabhle 1

WEDGE FLOW NUMERTCAL SOLUTIONS WITII WATER AT
AN AMBLENT TEMPERATURE tO = 67°F

£ ), 3, and H as functions of B and At

At =0 at =~ 10°F s = 20°F se = 30%F st = 50°F
T 1.000 cw = (),8765 e, " 0.7758 " 0.6927 c, " 0.5646
8 £"(0) 8 H £ (0) ] H £ (0) [ H £(0) ) H SO N i
-0.18 | .1293 ] .5665(3.2981 .1611{ .5607 | 3.164] .1947§ .5543| 1.047| .2299] .5474| 2.943| .3038| .5327 2.769
-0.15 | .2165|.5448 | 3.022 .2531|.5383}2.923] .2914 .5314| 2.833| .3311] .5262| 2,752 .4131] .5090] 2.613
-0.10 | .3193.5153|2.802 ) .3640 | .5079(2.721] .4100]| .5006] 2.648 | .4570| .4931] 2.581| .s5526| .4774] 2.466
=0.05 | 4003 | .4904 | 2.676 | .4519 | 4831 | 2.604 | .5046| .4756] 2.538| .5579| .4678] 2.479| .6652| .4518 2.377
-0.025) 4361 .4795|2.630 | .4908 | .4722 [ 2.561 | .5464 | .4645| 2,498 | 6026 .4567| 2.441{ .7152| .4406] 2. 344
0.0 L4696 | L4696 1 2,592 | .5272 | 4620 2.525] .5857| .4543| 2.464 | .6445] (4464 | 2.409| .7622) .4303| 2.315
0.025 | .4980 | .4631)2.556 | .5615{ .4526 | 2.493| .6226| .4448] 2.435| .6840] .43e8] 2.382| .8064| .4207] 2.291
0.05 | .5311 | .s4514 ) 2,529 .5941 | .44%8 ] 2.466| .6577) .4359| 2.409 | .7215] 4280 2.358| .84841 .4117] 2.269
0.10 | .5870 | .4354 2,481 | .s549 1 4277 | 2,420 ) 7292 .4197) 2.366 | .7915) .4116| 2.318| .9268] .3954 ] 2.234
0.20 | .6867|.4082 | 2,411 .7631 | .400312.355| .8398].3922| 2.304 | .9161] .3842] 2.259| 1.066 | .3678] 2.182
0.50 | .9277 | .3502]2.297 | 1.025 | .3422 | 2,248 1.121 | .3341| 2.204 | 1.216 | .3261] 2.166 | 1.401 | .3103] 2.101
1,00 |1.233 [.2923)2.207 | 1.354 | .284s | 2,174 | 1,475 | L2766 2.136| 1.597 | 2689 2.103| 1.821 | .2540] 2.048

1.
£''"(0) and Nu/Re? as functions of B and At

l___ A= 0% at = 20°F at = 30°F | v = 50°F

Nu/ReH £“00) Nu/ReH £7(0) Nu/Re?

£“(0) Nu/ReH

0.4860 | 0.1983 | 0.5017 | 0.2023 | 0.5163 , 0.2023 | 0.5432
-0.15 , 0,1459 0.5359 | 0.1382 | 0.5489 | 0.1272 | 0.5613  0.09638 | 0,5844
-0.10 0.07470  0.5894 [ 0.04500] 0.6010 | 0.01141] 0.6121 ~0.06525! 0.6330

-0.05 0.005474 0.6291 |~0.04420 0.6401 0.6507 -0,2169 0.6706
-0.025:-0.02865 0.6463 | -0.087821 0,65 ).6676 -0.2902 0.6871
0.0 -0.06256 0.6623 |~0.1310 | 0,67 0.6833 ~0.3622 0,7026
0.0255-0.09626 0.6774 |~0,1737 ! 0.6881 0.6982 :-0.4329 0.7173

0.05 |-0.1298 { 0.6918 | -0.2161 | 0.7023 | -0.3077 . 0.7124 | -0,5029 0.7313
0.10 [-0.1963 1 0.7189 |-0.2996 | 0.7293 | -0.4089 ' 0.7393 | -0.6401  0.7580
0.20 [~0.3280 | 0,7690 | -0.4640 | 0.7794 | -0.6068 | 0.7892 | -0.9067 | 0.8075
0.50 {-0,7152 | 0.9110 (-0,9417 | 0.9214 |~1.177 Lo.9313 -1,665 [0.9&96

1.00 -1, 347 1.201 |-1.709 1.212 | ~2.083 1,223 | -2.854 1.243

-



£'(0) . W , (15)

f;so(o): 1+ %(GT/G)(c;l - 1)

where the ratio of boundary-layer thicknesses can be approximated by

8 -1/3

T
5 P J (16)

These simplified shear models suggest that heating may affect £''(0)
by approximately the same factor for all pressure gradients; this £"(0)
ratio is shown in Table 2 for wedge flows with various values of B8, and
in fact, this ratio is fairly constant for a given At. Note that
the Couette flow model is very good at B = 1, stagnation point flow,
where the boundary layer does not grow (see Table 2). The isothermal
shear model corresponds closely to B = -0.1 (see Table 2), for which it
can be seen from Table 1 that the shear stress (proportional to cwf"(O))
is nearly the same for all heating levels.

Returning now to our original analysis, we note that Eqs. (3) for
F, H, and T can be expressed in terms of the transformed variables.
With the density taken as constant, for a wedge transformation (8b) be-

SR =1
comes n = y/8(x), where §(x) = V2 - B Rexﬁ. Equations (3) become

F=201- s)Szc;l (17a)
H = &%/ (17b)
T = 8£"(0) (17¢)

for isothermal wedge flows, where 5 = §/6. For wedge flows, X can be

found from the following boundary condition at the wall

3 Ju du My

3;(u_a.;)w.,pwua;”-e—zu : (18)

from which
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Table 2

COMPARISON OF SIMPLIFIED SHEAR MODELS WITH NUMERICAL SOLUTIONS
OF f"(0) FOR HEATED WATER BOUNDARY LAYERS OVER WEDGES

(t, = 67°F)
£7(0) /€% __(0)
B | fy (0 lac = 10°F | At = 20°F {At = 30°F | At = 50°F
- .18 | .1286 1.246 1.506 1.778 2.349
S5 | L2164 1.169 1.347 1.530 1.909
- .10 | .3193 1.140 1.284 1.432 1.731
- .05 | .4003 1.129 1.260 1.394 1.662
0.00 | .4696 1473 1.247 1.372 1.623
.10 | .5870 1.116 1.232 i 1.348 1.579
.20 | .6867 L2 1.223 | 1.334 1.553
.50 | .9277 1.104  1.208 L 1.311 1.511
1.00 | 1.233 | 1.098 | 1.19 1.292 1.477
Isothe-r.mal shear : | o
model oLl 1.289 | l.444 | 1.771
Couette flow
model l 1.100 1.195 1.286 1.453

0211 /du\ /au o
v o= ielae) (Sl =2
LW Yig oy w ay s
o
)6 '62 E_‘:’_ f"(O) " f'"(O)
L. W
A & -852 & 1

(19a)

(19b)

(19¢)
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F, H, and T have beer calculated from Eqs. (17) using Table 1, and are
plotted in Figs. 1, 2, and 3 as functions of X, computed from Eq. (19¢).
Actually, as indicated, the F and H curves are plotted as functions of

X = cwk instead of A, and F = ch is plotted instead of F. This removes
C, from F and ) (see Eqs. (17a) and (19c¢)) and makes the resulting curves
nearly parallel and closer together. Fortunately, as is seen in Fig. 1;

F is nearly linear in ) for a given At, so that the extension of Thwaites's
method is straightforward. The form F = a - bX can be used, but the con-

stants a and b now depend on temperature. As shown in Figs. 1, 2, and 3,

t, = 67°F
0.8 - Oo
o ) F=c,F
At[°F]$ 12000 Separation = :,I)\
0.7 l 30°
50°
0.6
0.5+
0.4
0.3
C.2}
0.1F
Stagnation
0.00 | I | I | I | |
-0.10 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.10

x=R62

Fig. 1—F versus A
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X = 862
Fig. 2—H versus

F and H decrease with temperature and T increases with temperature. This
is because 0 decreases with temperature, but not as fast as does 8%, and
£'"(0) increases with temperature.

Correlating the universal parameters with At is not totally satis-
factory, because the curves would also be expected to have some depend-
ence on the ambient temperature level. The correlations should be based
on fluid properties. We note that o;l is a function of te and At only
and i{s approximately linear in At. Therefore, c;l is probably the best
single parameter to correlate F, H, and T, because the curves in Figs. 1
through 3 are nearly parallel and the intercepts of these curves are

nearly linear in At. These correlations are
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F=a- bl (20a)
-1 -1

a = [0.441 - 0.0953(c. " - 1)]c
W W

b=5.38 + 0.415(c;1 - 1)

1

=
]

HO(A) = O.élO(cw -1) (20b)

1
]

T,0) + (0.149 - O.730A)(c;l - 1) (20¢)

where HO and TO are the isothermal H and T values. These correlations

are based on wedge flow solutions with t, = 67°F, and they have been checked
at several other ambient temperatures. Perhaps an additional correlating
parameter, such as Pre or c&, is needed in addition to c;l. At te = 47°F
and At = 20°F, a, b, and H are predicted by the above correlations within

1 percent; for this case, T is predicted within 4 percent except for

values of A near separation where T can be in error by as much as 12 per-
cent. However, at te = 32°F, the above correlations are poor, as might

be expected.
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111, HEAT 1RANSFER

Water has a high Prandtl number: in the temperature range of inter-
est for underwater vehicles, the Prandtl number of water ranges from 4 to
13. The Lighthill high-Prandtl-number approximation for heat transfer(10’7)
works well in this range; in fact, for a flat plate with zero pressure

gradient at a Prandtl number of one, the high-Prandtl-number approxima-

tion is in error by only 2 percent. For constant fiuid properties, the
(10,7

high-Prandtl-number approximation for heat transfer is

1/3 x

3 (21)

Nu = 0.5384 Pr
X

For this same formula to hold for water, with its temperature-dependent
viscosity, a reference temperature must be used. As demonstrated in the
following sectien, this reference temperature approach meets with accept-
able but limited success.

The Nusselt number is a cimensionless surface heat flux or a dimen-

sionless temperature gradient at the surface,

qwx
Nu =% (t -t)
w
where q =k S 2n
w w on| 9y
w V'

When the Nusselt number has been determined, the viscosity ratio gradient

at the wall can be computed from the expression

= . (22)

It is sometimes useful or necessary to have expressions for higher deriva-

tives of the velocity at the wall (e.g., see comments in Sec. I). By




taking the limit of Eq. (10a) as n -~ 0, £'"(0) c nu ke expressod as

‘

£1(0) = -[B +c£"(0))/c . (23)

Higher derivatives of f and t at the wall can be similarlf found such
that, e.g., series expansions for the temperature and velocity profiles
near the wall can be obStained.

Thues 6, &%, £'"(0), Nux’ c;, f'"(0), and other parameters can all be
found for nonsimilar heated water boundary layers by simple integrals and
a table or chart. The procedure, for an arbitrary pressure gradient of
the nonsimilar type, is to integrate Eq. (6) to obtain the momentum thick-
ness 6, then use Eq. (4) and Figs. 1, 2, and 3 to obtain the shape factor

H, and the shear parameter T. With T and 6 known, then Tw(x) = quT(x)/G(x)

is computed, and the irtegration in the high-Prandtl-number heat-transfer
formula (Eq. (21)) cén be performed.

o
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IV. EXAMPLE: HOWARTH'S LINEARLY RETARDED FLOW

The methods deseribed in the previous sections have been applied
to a demanding test case with an adverse pressure gradient and strongly

(2)

varying fluid properties. An exact numerical solution of Howarth's
retarded flow [U = uo(] - x/8L)] for water with £, = 104°F and t, = 32°F
has been compared with the integral method solution to the same problem.
The correlations (Eqs. (20)) cannot be extrapolated to this low an

ambient temperature, so numerical solutions for water wedge flows were

made with te = 104°F and Ly o= 32°F. F, H, and T are plotted as func-

tions of A in Fig. 4. Again, F(A) is a nearly straight line with a = 0.904
and b = 6.05. The comparison between the exact and integral solutions (see
Table 3) shows excellent agreement for 6 and good agreement for &* and
£'(0). Note that B = -.18 corresponds to X =~ .13 for wedge flows, and our
computations beyond this point (x/L greater than 0.8 for Howarth's flow)
are extrapolations. Howarth's flow, having an adverse pressure gradient,
is strongly affected by variable fluid properties. With the above tempera-
ture bcundary conditions, separation occurs at x/L = 1.246, while in the
constant fluid properties case (t;w = te) separation occurs at x/L = 0.958
(the "8" in the U equation was arbitrarily chosen to make x/L near one at
separation). This shift of the separation point is a dramatic variable-
fluid- property effect. Thus, this flow is a good check case for the inte-
gral method.

The high-Prandtl number approximation was applied to this flow, with
the same surface and ambient temperatures, using the numerical solutions
for £'"(0) (see Table 3), the average Prandtl number, and the surface values
of T and v. The Nusselt numbers from this approximate formula are compared
with exact numerical solutions(B) in Table 4. The difference is only about
4 percent for most of the plate, but the difference is much larger near

separation.
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Table 3

COMPARISCN OF Tl INTEGRAL METHOD TO NUMERICAL SOLUTIONS FOR HOWARTI s
RUTARDED FLOW (WATER WITH lw = 104°F AND Lv = 32°1)

Numerical Solutionsa Integral Method
x/1. volos oreZ/x | 6" /0 | £7(0) ore?/x |67 /0 |1"(0)
0.0 0. 0. .573 2.13 11.117 L9574 2.12 {1.113
04 -.0247] 0.0526 592 2.17 | 1.022 .593 12,17 |1.022
A -.0544 1 =111 .613 2.22 .914 .614 2.24 .911
.6 -.0900) -.176 .637 2.28 .789 657 2.33 L1772
.8 -.133 | -.250 .663 2.36 641 .661 2,48 .59
1.6 -.186 | -.333 .693 2.50 LA54 .689
1. -.216 | -.379 .710 | 2.60 L334 . 704
Y2 -.250 | -.429 . 728 2.78 .170 .719
1.246 | -.267 | -.452 .737 3.01 .016 .726

dpeference (3).

Table 4

COMPARISON OF THE 1IIGH-PRANDTL-NUMBER APPROXTMATION
TO NUMERICAL SOLUTIONS FOR HOWARTH'S RETARDED FLOW
(WATER WITH ty = 104°F AND tc = 32°F)

High-
Prandtl-Number
Numerical Solution® Approximation
*/L Nux/Ret Nux/Rez
0.0 0.923 0.90f
o2 0.890 0.869
A 0.853 0.820
.6 0.807 0.763
.8 0.750 0.689
1.0 0.669 0.582
1.1 0. 610 0.501
1.2 0.511 0.359
1.246 0.357 0.111

Bpeference (3).

-
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V. CONCLUSIONS

The classical isothermal constant-properties integral method of
Walz and Thwaites has been extended to heated water boundary layers,
where temperature-dependent viscosicy is important. Correlations of
the universal parameters F, H, and T as simple functions of v;l and A
altow computation of 0, &%, and f'"(0) for heated water houndary layers
with any surface shape and with most temperature levels of interest
for underwater vehicles.

The method has been tested for the Howarth retarded flow with
tw = [04°F and tC = 32°F. With water, this flow is ver/s temperature
dependent; heating in this flow causes the separation point to move
30 percent further down the plate(B); the flow is highly nonsinilar
even without heating. The value of 0 was calculated by the integral
method to within 1 percent nearly to the separation point. The values
of §* and f'"(0), both nearly exact at x = 0, had each attained an error
of only 2 percent at a position halfway to the separation point.

The method shares several advantages and shortcomings with the
original methods upon which it is based. Its advantages are that the
momentum thickness and heac transfer can be calculated accurately,
casily, and economically for a wide variety of pressure gradients, both
favorable and adverse. The shortcomings are that it may not represent
H and T adequately, particularly in regions of adverse gradients, and
thus the ltocation of laminar separation may no*t be determined accurately.

The high-Prandtl-number approximation has also been found to be
accurate in computing the heat transfer in heated water boundary layers,
except in the reg /n near separation.

Despite these limitations, this method extends a proven and re-

liable approach to the computation of laminar boundary layers ir water.
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Appendix

FLUID PROPERTY CORRELATIONS

The water fluid properties correlations used in the numerical work

for this report are those of Kaups and Smith.(g) The density is taken

as constant, so only the viscosity ratio, thermal conductivity ratio, and
Prandt]l number correlations are needed. With T expressed in degrees

Rankine, and Tref = 491.69°R (32°F), these correlations are

- . . 2
u/uref = 1/{35.15539 -~ 106.9718715 (T/Tref, + 107.7720376 (T/Tref)
3 4
- 40.5953074 (T/Tref) + 5.6391948 (T/Tref) ]
2
= - - ("
k/kref 1.940589 + 5.2220185 (T/Tref) 2.693322 ‘r/Tref)

3
+ 0.4176167 (T/Tref)

2

Pr = 13.66/[73.376906 - 208.7474538 (T/Tref) + 197.7604676 (T/T__.)

ref

3 4
- 68.8626186 (T/T__.)~ + 7.4779458 (T/T o) ].

T LAY 3 ¥
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