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PREFACE 

The Rand Corporation, under sponsorship of the Tactical Technology 

Office of the Defense Advanced Research Projects Agency, has been en- 

gaged in analysis, development, and evaluation of hydrodynamic design 

criteria for submersible vehicles.  Boundary-layer control—including 

shaping, pressure gradients, suction, and heating—has been the main 

technological basis for these investigations. 

Successful boundary-layer control depends on appropriate manipula- 

tion of the laminar boundary layer to maintain stability and delay tran- 

sition to turbulence.  Thus, the effects of surface heating and pressure 

gradients on properties of the laminar boundary layer in water are cen- 

tral to progress in low-drag technology. 

This report provides a simplified and accurate approximate method 

ir,    calculating the properties of heated laminar boundary layers in 

water. When coupled with appropriate stability or transition criteria, 

it provides a systematic and efficient approach to the optimization of 

low-drag design. 

The method presented here should simplify study of the interplay 

between pressure gradients and surface heating on laminar characteris- 

_ics to the point where a hand calculator can be used to compute laminar- 

flow characteristics for the case of canstant wall temperature.  Addi- 

tional work, still in progress, will extend this approach to the case 

of variable wall temperature. 

This report should be useful to hydrodynamicists, to designers of 

submersibles, and to others interested in applylnf fluid mechanics to 

improve the performance of underwater vehicles. 

Other related Rand publications are; 

R-1752-ARPA/ONR, Low-Speed Boundary-Layer Travaition Workshop, 
W. S. King, June 1975. 

R-1789-ARPA, Controlling the Separation of Laminar Boundary 
Layers in Water:    Heating and Suction,  J.  Aroesty and S. A. 
Berger, September 1975. 
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R-1863-ARPA,  The Effects of Wall Temperature and Suction on 
laminar Boundary-Layer Stability, W.  S. King, April 1976. 

o 
R-lSgv'-ARPA,   "e ":    Stability Theory and Boundary-Lay er Tranei- 

tion,  S.  A.  Berger and J.  Aroesty,  February 1977. 

R-1907-ARPA, Buoyancy Cross-Flow Effects on the Boundary Layer 
of a Heated Horizontal Cylinder, L. S. Yao and I. Catton, 
April 1976. * 

R-1966-ARPA, The Buoyancy and Variable Viscosity Effects on a 
Water Laminar Boundary Layer Along a Heated Longitudinal 
Horizontal Cylinder,  L. S. Yao and I. Catton, February 
1977. 

R-2111-ARPA, Entry Flow in a Heated Tube,  L. S. Yao, June 1977. 

R-2164-ARPA, The Effects of Unsteady Potential Flaw on Heated 
Laminar Boundary Layers in Water:    Flow Properties and 
Stability,  W. S. King, J. Aroesty, L. S. Yao, and W. 
Matyskiela, in process. 

The authors wish to express their appreciation to C. Gazley, Jr. 

for reading the manuscript and offering several helpful suggestions. 

The authors also wish to thank W. H. Krase and L. S. Yao for their care- 

ful reviews. 
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SUMMAKY 

Thwalte8(1) and other8(2) have used Integral methods to compute 

parameters of laminar boundary layers with ronstant fluid properties. 

These methods use simple correlations of universal parameters based 

principally on similar boundary layers. The displacement thickness, 

momentum thickness, and wall shear stress can be computed by these 

methods for nonslmilar boundary layers. 

This report is concerned with the extension and application of 

these methods to heated water boundary layers.  The viscosity of water 

is strongly temperature dependent, and thus variable fluid property 

effects are significant for heated water boundary layers.  The Thwaites 

integral method has been extended to include variable fluid properties. 

Numerical solutions of heated water wedge flows are tabulated for a 

range of wedge angles and temperature differences.  Universal param- 

eters are correlated from these solutions for use with the integral 

method.  The method has been tested for the nonsimilar Howarth retarded 

flow with t  = 104*F and t  = 320F.  Errors of only 1 or 2 percent are 
w ^ 

found for displacement thickness, momentum thickness, and wall shear 

stress.  This is a particularly stringent test because of the adverse 

pressure gradient in the Howarth flow, where heating causes the separ- 

ation point to move 30 percent further down the surface. 

The curvature of the velocity profile at the surface, f'CO), de- 

pends on the viscosity gradient at. the surface, which In turn is deter- 

mined by the heat flux at the surface.  These three additional parameters 

can be computed once the Nusselt number Is known.  The Lighthill high- 

Prandtl-number approximation has been extended to permit computation 

of the Nusselt number for boundary layers with variable fluid proper- 

ties.  Nusselt numbers computed with this approximate method for the 

heated Howarth flow are reasonably close to the exact numerical solu- 

tions for that flow, except in th" region near separation. 

Heated water boundary layers have been further explored with simpli- 

fied shear modeling, such as Couette flow.  The Couette flow model works 

very well at stagnation points, where the boundary layer does not grow. 

mm 
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NOMENCLATURE 

a,b ■ constants 

C 3S 

ck" 

pp/pe Pe 

_gk L 

^k)e Pre 

: = heat capacity 
P 

f = dlmensionless stream function, f ■ u/U 

F = universal parameter, 2T - 2(2 + H)X 

H ■ universal parameter, 6*/9 

j - 1 for axisymmetric, 0 for two-dimensional bodies 

k = thermal conductivity 

L = an arbitrary length 

m - (x/U) dU/dx 

Nu = Nusselt number, hx/k 

Pr - 

w 

Prandtl number 

r = radial distance from the symmetric axis 

Re ■ Reynolds number, x ue/ve 

t = temperature 

T = universal parameter, T
w 

9
/MU 

u « x component of velocity 

U - velocity outside the boundary layer 

v - y component of velocity 

x = coordinate along the surface 

y H coordinate normal to the surface 

I - 2m/(m + 1) 

I 2v     f    U dx i   /U 
(     e 70 | PRKJEDINa PlOX BUMWJOT TlxWp 

^'l r    !        i       innTli.riiiim.i i-1 ■    -r - -,■■-,   -,■-■ ■   ...» ..    h.. 
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z*00 

6* ■ displacement thickness, /  (1 - u/U) dy 
J0 

n = similarity variable,  y/6(x) 
/CO 

jr (1 - Tf)   dy 
u 

e - e/6 

A  -   (e2/v  )  dU/dx w 

u • viscosity 

v = kinematic viscosity 

P  = density 

T = shear stress 

Subscripts 

e = at ambient conditions 

iso = isothermal 

T = of the thermal boundary layer 

w = at the surface conditions 

ref = at A91.690R (320F) 
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INTRODUCTION 

The key to boundary-layer control is Che maintenance of laminar 

velocity profiles that promote hydrodynamic stability and delay separ- 

ation.  For undersea applications, surface heating is a possible means 

of achieving this control.(2 ':3 ,A ' 5)  Heating promotes stability through 

the interplay among the thermal boundary layer, the temperature-dependent 

viscosity of water, and the momentum balance in the crucial region near 

the wal1. 

To take full advantage of these phenomena, the surface heating dis- 

tribution should be optimized, so that total heat required is minimized 

subject to realistic constraints.  As part of a study to simplify opti- 

mization and design methods, we have developed an approximate method 

for determining laminar boundary-layer characteristics for cases of 

constant surface overheat.  The extension of this approach to the case 

of variable surface temperature is currently under investigation at Rand. 

Approximate methods are useful in optimization studies because nu- 

merical integration of the boundary-layer equations is unnecessary.  If, 

for example, the optimal heating distribution for a given body shape 

Is required, it may be necessary to perform hundreds of numerical calcu- 

lations of the boundary-layer equations, with consequent cost in computer 

time.  Approximate methods can reduce this cost considerably and can 

also yield better intuitive understanding. 

For a method to be useful In predicting stability, transition, and 

separation, it must supply information about the velocity profiles that 

Influence these phenomena.  For example, the critical Reynolds number 

for stability of TolImeln-Schlichting waves has been shown to correlate 

with the shape factor, H ■ 6*/6. and to depend on the curvature of the 

velocity profile at low values of H.(f,)  Integral methods can be used 

to determine these parameters with sufficient accuracy for use in op-.i- 

mlzation studies. 

We have extended Thwaites's integral method to .ne case of water 

flowing over constant temperature surfaces.   ThwaltesV method depends 

Although this method is conventionally called after Thwaltes, 
Walz, Thwaltes, and others were responsible for its development.  See 
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on extensive corn'Lit ions of parameters derived from numerically exact 

boundary-layer solutions, ra'jher than a particular assumed form of 

velocity profile.  The key simplification in the Thwaites nu thod arises 

from the observation that the parameter F = 2T - 2(2 + H)A can be 

approximately expressed as a - hA, where a a.id b an constants derived 

from a best fit to a graph of F vs A from a  computed series of different 

pressure gradients.  In the constant property case, a = .A4 and b = ''■>. iH 

are widely used values.  We have found that an approximate linear rela- 

tion between F and A is still valid, but the constants a and b now de- 

pend on wall overheat and' ambient temperature.  As in Thwaites's original 

method, the momentum thickness distribution can he obtained from a simple 

quadrature, while shear stress, shape factors, and profile curvature can 

be obtained from charts or tables. 

The Thwaites approach is a simple, economical, and practical scheme 

for the calculation of nonsimilar boundary layers and is accurate enough 

for most applications except in the neighborhood of laminar separation 

With the extension we present here, it is poss;  :> to compute laminar 

boundary characteristics of water flowing over constant temperature sur- 

faces with a hand calculator alone. 

Ref. 2 for a historical survey.  The method we adopt here, because of 

its reliance on similarity solutions, is closest to that proposed by 

Wa1x for the constant property case. 
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II.  INTEGRAL METHOD 

The conservation equations for mass, momentum, and thermal energy 

In a steady boundary layer are 

1^ (purj) +1^ (pvr1) - 0 . (la) 

^ (u Ix + VTy;   PeU dx+ 9y VU 9y j 
(lb) 

(lc) 

where j = 1 for axlsymmetric flow and j = 0 for two-dimensional flow. 

If the density is not a strong function of temperature (as for water), 

the momentum equation can be Integrated across the boundary layer, 

yielding 

Tw   dG   29 + 5* dU + ü dr 
„2 ^ dx  "  U  ' dx ' r dx ' 

pU 

(2a) 

where 

and 

'-.TiK1-*) dy 

**. r(i-H)dy . 

(2b) 

(2c) 

The integral method developed by Thwaitesv '  has been useful for 

unheated boundary layers.  In this method, universal parameters corre- 

lated from a number of known solutions for similar and nonsimilar flows 

are applied to boundary-layer computations for any body shape. The con- 

venient universal parameters F, H, and T, defined as 

-— 
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F = 2T - 2(2 + H)X (3a) 

H - 6*/e (3b) 

T = T e/'^U  , (3c) w 

are correlated as functions of X,   defined as 

A=^f . (4) v dx 

The Integrated momentum equation (2a) can be expressed as 

1 d (r2h   \      F(X1 
.2j dx \dU/dx/ "  U   ' K3} 

If F Is linear In X, F = a - bA (as shown to be approximately the case by 

Thwaltes^1'2^ for cor 

Integrated, yielding 

(1 2) Thwaltes  '   for constant fluid properties), then Eq. (5) can be formally 

/ { r^V6'1  dx )   . (6) 
\  r2Jub J0 

For a given U ■ U(x), 9 can be obtained from this expression; A Is then ob- 

tained from Its definition and H and T are then found from their correla- 

tions as functions of X. With this procedure, 6(x), 6*(x), and T (X) can 
w 

be calculated for flow over a surface of any shape, once U(x) Is known.  It 
(1 2) has been shown  '   that the Thwaltes Integral method accurately (with- 

in about 5 percent) determines H and skin friction for general nonslral- 

lar laminar boundary layers with constant fluid properties, except In the 

region near separation. 

The variable viscosity analogs to Eqs. (3) through (6) are almost 

Identical to these constant fluid property equations. Equations (2) hold 

when the viscosity is temperature dependent.  If the definitions In Eqs. (3) 

I r 
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and (4) are modified only to the extent of evaluating y and v at the wall 

temperature (replace w and v with yw and Vw), then Eq. (5) holds for 

variable viscosity. The simple algebraic derivation of Eq. (5) for the 

variable viscosity case is nearly identical to that for the constant 

fluid properties case.  Again, if F is assumed linear in X, Eq. (6) will 

hold (with v replaced by vj.  In fact, for a given constant wall-to- 

ambient-temperature difference, it will shortly be shown that P is indeed 

approximately linear in X. Thus, Eq. (6) for e(x) holds for heated water 

boundary layers as well as for unheated ones, but the universal functions 

F(X), H(X), and T(X) will depend on the wall and ambient temperatures as 

well as on X. These correlations can be obtained from numerical solutions 

for wedge flows. 
For laminar boundary layer flow of a fluid with temperature-dependent 

fluid properties over a wedge (j = 0) or a cone (j - 1) with a constant 

surface-to-ambient-temperature difference, the boundary layer equations 

(la through c) reduce to two ordinary differential equations, similarity 

equations.  Tims, these wedge and cone flows are convenient for correlat- 

ing the universal functions F, H, and T.  The continuity equation (la) 

can be eliminated by defining a stream function as 

rV - *   ^PV - -15 "> 

Now if the Mangier-Levy-Lees transformation from x and y coordinates to 

5 and n coordinates is introduced, 

d5 ■ PeyeU(r/L)2:i dx (8a) 

dn = [pU/(20ls](r/L):i dy , (8b) 

where L is any arbitrary length, and a dimensionless stream function, f, 

Is defined such that 

Mx.y) - (20b Ljfa,n) . (9) 

(8) 
then the boundary layer equations   (1) become 

«... 
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(cf")' + ff" + B -- (f)2 

(ckg')+fg'=2e(f'|f-g'|f) . 

(10a) 

(10b) 

where 

6 .— 25 dU 
U dK 

c ■ py 
(py) e 

Ck 
■ 

pk   1 
(pk) Pr 

e  e 

■ 

T-T0 

g 
Te-T0 

(11a) 

(lib) 

(He) 

(lid) 

for any constant T-, and where prin-.es denote derivatives with respect to n- 

The fluid property ratios are functions of local temperature, or of g 

only.  If g and all boundary conditions are independent of E,,   then Eqs. (10) 

become independent of £.  For flow over either a wedge or a cone, the 

velocity outside the boundary layer is of the form   U ■ U_x ; for a wedge 

or a cone, £ is also proportional to a power of x.  Thus, for a wedge or 

a cone, ß (from Eq. (11a)) is a constant.  For an isothermal impermeable 

surface without slip, the boundary conditions at the surface (n = 0) are 

f(0) ■ t*(0)  • 0 g(0) ■ 0 (12a) 

if we set T- - T . To match the ambient temperature and velocity at the 
0   w 

edge of the boundary layer, the boundary conditions as n ->■ ^ are 

f' («) * 1 g(co) *   i (12b) 

Therefore, for an Isothermal wedge or cone, 3 and the boundary conditions 

are in fact independent of K,  and so Eqs. (10) reduce to the similarity 

equations 
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: 

(cf")' + ff" + 3 -e. (f.)
2 = 0 (13a) 

(c^')' + fg' - 0.. (13b) 

The transformed velocity profiles for cones are the same as those for 

wedges; we need only correlate F, H, and T with wedge flows. 

Numerical solutions of wedge flows (Eqs. (13)) with water have been 

obtained for various values of wedge angle and wall-to-ambient-temperature 

difference for an ambient temperature of 670F (see Table 1).  The water 
(9) 

property correlations used were those of Kaups and Smith   (see the appen- 

dix), but density was taken as constant. 

The above transformed boundary layer equations are convenient for 

numerical study, but the true magnitude of the heating and pressure 

gradient effects on the shear stress, for example, may not be obvious 

from the transformed shear stress, fM(0).  To explore the combined ef- 

fects of pressure gradient and heating, and to offer further physi^l 

insight into these effects, the following simplified shear models have 

been developed.  The simplest is to assume that heating does not 

change the shear in the boundary layer, the "isothermal shear model." 

Since T  is proportional to c f"(0), 
w w 

f"(0) ~ -"I (14) 
f"  (0) '" w ' 
iso 

Another shear model, the Couette flow model, assumes that the shear 

stress (but not the velocity gradient) is a constant for the entire vis- 

cous boundary layer.  The Couette flow model requires that some distribu- 

tion of viscosity be assumed. We have assumed that lh  is distributed 

linearly from t/w at the wall to 1/^ at the therm^. boundary layer 

edge.  This viscosity distribution assumption corresponds closely to a 

linear temperature distribution. The Couette flow model also requires 

the assumption that the viscous boundary layer thickness is not changed 

appreciably by heating; this can be shown to be the case from the top 

part of Table 1.  This model results in 

Y'i 
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Table 1 

WEDGE FLOW NUMERICAL SOLUTIONS WITH WATER AT 
AN AMBIENT TEMPERATURE t  = 67"F 

e 

f'CO), 9, and H as functions of ß and At 

At 
c 

w 

- 0 
- 1.000 

At 
c 

w 

-   10oF 
•  0.8765 c 

w 

-   20ÜF 
■  0.7758 

At 
c 

w 

- 30oF 
- 0.6927 

At   - 
c 

w 

50'V 
- 0.5646 

6 f"(0) B H f"(0) Ü H f"(0) 8 11 f"(0) e H f"(0) 0 H 

-0.18 .1293 .5665 3.298 .1611 .5607 3.164 .1947 .5543 1.04 7 .2299 .5474 2.943 .3038 .5327 2.769 

-0.15 .2165 .5448 3.022 .2531 .5363 2.923 .2914 .5314 2.833 .3311 .5242 2.752 .4131 .5090 2.613 

-0,10 .3193 .5153 2.802 .3640 .5079 2.721 .4100 .5006 2.648 .4570 .4931 2.581 .5526 .4774 2.466 

-0.05 .4003 .4904 2.676 .4519 .4831 2.604 .5046 .4756 2.5)8 .5579 .4678 2.479 .6652 .4518 2.377 

-0.025 .4361 .4795 2.630 .4908 .4722 2.561 .5464 .4645 2.498 .6026 .4567 2.441 .7152 .4406 2.344 

0.0 .4696 .4696 2.592 .5272 .4620 2.525 .5857 .4543 2.464 .6445 .4464 2.409 .7622 .4303 2.315 

0.025 .4980 .4631 2.558 .5615 .4526 2.493 .6226 .4448 2.435 .6840 .4368 2.382 .8064 .4207 2.291 

0.05 .5311 .4514 2.529 .5941 .447.8 2.466 .6577 .4359 2.409 .7215 .4280 2.358 .8484 .4117 2.269 

0.10 .5870 .4354 2.481 .6549 .4277 2.421 .72 32 .4197 2.366 .7915 .4116 2.318 .9268 .3954 2.234 

0.20 .6867 .4082 2.411 .7631 .4003 2.355 .8398 .3922 2.304 .9161 .3842 2.259 1.066 .3678 2.182 

0.50 .9277 .3502 2.297 1.025 .3422 2.248 1.121 .3141 2.204 1.216 .3261 2.166 1.401 .3103 2.101 

1.00 1.233 .2923 2.217 1.354 .2B44 2.174 1.475 .2766 2.136 1.593 .2689 2.103 1.821 .2540 2.048 

f"'(()) and Nu/Re as functions of ß and At 

it  •  A 

f   (0) 

0.1907 

0°F 

Nu/Re*5 

At   - 20"F 

Nu/Re15 

At - 30oF At  -  50oF 

8 f*{0) Nu/Re*5 f"(0) Nu/Re^ 

-0.18 0.4860 0.1983 0.5017 0.2023 0.5163 0.2023 0.5432 

-0.15 0.1459 0.5359 0.1382 0.5489 0.1272 0.5613 0.09638 0.5844 

-0.10 0.07470 0.5894 0.04 500 0.6010 0.01141 0.6121 -0.06525 ' 0.6330 

-0.05 0.005474 0.6291 -0.04420 0.6401 0.6507 -0.2169      0.6706 

-0.025 -0,02865 0.6463 -0.08782 0.65^ 1.6676 -0.2902       0.6871 

0.0 -0.06256 0.6623 -0.1310 0.67 ).6833 -0.3622       0.7026 

0.02S -0.09626 0.6774 -0.1737 0.688, 0.6982 -0.43J9      0.7173 

0.05 -0.1298 0.6918 -0.2161 0.7023 -0,1077       0.7124 -0.5029      0.7313 

0.10 -0.1963 0.7189 -0.2996 0.7293 -0.4089       0.7393 -0.6401       0.7580 

0.20 -0.3280 0.7690 -0.4640 0.7794 -0.6068    i 0.7892 -0.9067    ' 0.8075 

0.50 -0.7152 0.9110 -0.9417 0.9214 -1.177      | 0.9313 -1.665      | 0.9496 

1.00 -1. )47 1.201 -1.709 1.212 -2.083     [1.223 -2.854 1.243 
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f"(0) 

-1 
c 
 w  

i+^mcc;1-!) 
(15) 

where the ratio of boundary-layer thicknesses can be approximated by 

rsPr (16) 

These simplified shear models suggest that heating may affect f"(0) 

by approximately the same factor for all pressure gradients; this f"(0) 

ratio is shown in Table 2 for wedge flows with various values of B, and 

in fact, this ratio is fairly constant for a given At.  Note that 

the Couette flow model is very good at ß = 1, stagnation point flow, 

where the boundary layer does not grow (see Table 2).  The isothermal 

shear model corresponds closely to ß - -0.1 (see Table 2), for which it 

can be seen from Table 1 that the shear stress (proportional to c^f'CO)) 

is nearly the same for all heating levels. 

Returning now to our original analysis, we note that Eqs. (3) for 

F, H, and T can be expressed in terms of the transformed variables. 

With the density taken as constant, for a wedge transformation (8b) be- 
    u 

comes n ■ y/<5(x), where 6(x) = /2- B Re^ . Equations (3) become 

F = 2(1 - ß)e2c"1 w 

H - 6*/e 

T - ef"(o) 

(17a) 

(17b) 

(17c) 

for isothermal wedge flows, where 0=9/6. For wedge flows, X can be 

found from the following boundary condition at the wall 

t/  3u 
3y \y 9y 3y/ 

n dU 
w  dx 

w 
X ~ U 

e 
(18) 

. 

from which 

-JW- 

'^ 
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Table 2 

COMPARISON OF SIMPLIFIED SHEAR MODELS WITH NUMERICAL SOLUTIONS 
OF f"(0) FOR HEATED WATER BOUNDARY LAYERS OVER WEDGES 

(t  = 670F) 

3 

- .18 

- .15 

- . 10 

- .05 

0.00 

.10 

.20 

.50 

1.00 

f"(0)/f"  (0) 
ISO 

f"  (0) I At = 10 F 
ISO 

.1286 

.2164 

.3193 

.4003 

.4696 

.5870 

.6867 

.9277 

1.233 

Isothermal shear 
model 

Couette flow 
model 

1.246 

1.169 

1.140 

1.129 

1.123 

1.116 

1.112 

1.104 

1.098 

1.141 

1.100 

At = 20 F 

1.506 

1.347 

1.284 

1.260 

1.247 

1.232 

1.223 

1.208 

1.196 

1.289 

1. 195 

At 30OF 

1.778 

1.530 

1.432 

1 . 394 

1.372 

1.348 

1.334 

1.311 

1.292 

1.444 

1.286 

At  =  50  F 

2.349 

1.909 

1.731 

1.662 

1.623 

1.579 

1.553 

1.511 

1.477 

1.771 

1.453 

or 

X't 

~2 

M    \dy      \ 9y / 
w w \ 

w 
c 

L   W 

£"(0)  + f"(0) 

ay2 
w 

(19a) 

(19b) 

~?     -1 
A - -ßez c i 

w 
(19c) 

/ 
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F, H, and T have beer calculated from Eqs. (17) using Table 1, and ^re 

plotted in Figs. 1, 2, and 3 as functions of X, computed from Eq. (19c). 

Actually, as indicated, the F and H curves are plotted as functions of 

\ - c  \  instead of X, and F = c F it. plotted instead of F.  This removes 
w '        w    ' 

c from F and X (see Eqs. (17a) and (19c)) and makes the resulting curves 
w 
nearly parallel and closer together.  Fortunately, as is seen in Fig. 1, 

F Is nearly linear in X for a given At, so that the extension of Thwaites's 

method is straightforward.  The form F = a - bX can be used, but the con- 

stants a and b now depend on temperature.  As shown in Figs. 1, 2, and 3, 

K = 670r 
0.8r 

0.7 

0.6 

0.00 

/   0° 
10o> 

AtpF]    20° ■ 
/   30° 

Separation 
cwF 
c WX 

-0.10   -0.08    -0.06    -0.04    -0.02 _0.00      0.02 
X = /3Ö2 

0.04      0.06       0.08     0.10 

Fig.   1      F versus X 

■i'jiM'gsiyjwjH}»***»»!^^ 



12- 

3.40 

3.20 

3.00 

2.80 

H 

2.60 

2.40 

2.20 

2.00 

0^ 

10 

At[OF]{20 

30 

50 

H=     % 

\ = ße2 = 

-0.10   -0.08   -0.06    -0.04    -0.02     O.X       0.02      0.04      0.06      0.08      0.10 

Fig.  2 — H versus X 

F and H decrease with temperature and T increases with temperature.  This 

is because 0 decreases with temperature, but not as fast as does 6*, and 

f"(0) Increases with temperature. 

Correlating the universal parameters with At is not totally satis- 

factory, because the curves would ilso be expected to have some depend- 

ence on the ambient temperature level.  The correlations should be based 

on fluid properties.  We note that c   is a function of t  and At only 
w .       e 

and is approximately linear in At.  Therefore, C*  is probably the best 

single parameter to correlate F, H, and T, because the curves in Figs. 1 

through 3 are nearly parallel and the intercepts of these- curves are 

nearly linear In At.  These correlations are 
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0.45 r 

C.40 

0.35 - 

0.30 - 

0.25 

0.20 

0,05 

0.00 J I J L 
• 0.06   -0.04    -0.02       0.0       0.02      0.04 

X 

Fig. 3 — T versus \ 

0.06      0.08      0.10 

\ 3 

m 

*wmm nwnmia IIH 



-14- 

F = a -  bA 

a =   [0.441 - 0.0953(0  1 - Die'1 

w    'J w 

b = 5.38 + O^lSCc"1 - 1) 
w 

(20a) 

H = Hn(A) - 0.410(c  - 1) 

-1 
T - Tn(A) + (0.149 - O.730A)(c  - 1) , 

(20b) 

(20c) 

where H and T are the isothermal H and T values.  These correlations 

are based on wedge flow solutions with t = 670F, and they have been checked 

at several other ambient temperatures.  Perhaps an additional correlating 

parameter, sucli as Pr or c', is needed in addition to c  .  At t = 470F 
e    w we 

and At = 20°F, a, b, and H are predicted by the above correlations within 

1 percent; for this case, T is predicted within 4 percent except for 

values of X  near separation where T can be in error by as much as 12 per- 

cent.  However, at t = 320F, the above correlations are poor, as might 

be expected. 

■^—"'mfij^m m 
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Ifl.  HEAT 1RANSFER 

Water has a high Prandtl number:  In the temperature range of Inter- 

est for underwater vehicles, the Prandtl number of water ranges from 4^0 

13.  The Lighthill high-Prandtl-number approximation for heat transfer 

works well in this range; in fact, for a flat plate with zero pressure 

gradient at a Prandtl number of one, the high-Prandtl-number approxima- 

tion is in error by only 2 percent.  For constant fluid properties, the 
,    (10,7) , 

high-Prandtl-number approximation for heat transfer      is 

(10,7) 

Nu = 0.538/, 
x -l/3#!f J^| 

-1/3 

(21) 

For this same formula to hold for water, with its temperature-dependent 

viscosity, a reference temperature must be used.  As demonstrated in the 

following section, this reference temperature approach meets with accept- 

able but limited success. 

The Nusselt number is a r'imensionless surface heat flux or a dimen- 

sionless temperature gradient at the surface. 

Nu 
q X 
w 

x  k (t  - t ) 
w w   e 

where ^w   w 3n w 

In 
9y 

w 

When the Nusselt number has been determined, the viscosity ratio gradient 

at the wall can be computed from the expression 

t . JL At 
"w  y dn 

e 

1    dp dt 
u    dt dn 

n-0        e t=t 
(22) 

n=0 

It is sometimes useful or necessary to have expressions for higher deriva- 

tives of the velocity at the wall (e.g., see comments in Sec. I).  By 

A 
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taking  the   l^mit  of   Eq.    (10a)   as  n "> 0,   ^"(O)   en   be  expressed  as 

f"(O)   - -(ß +c'f"(0)]/cw w w (23) 

Higher derivatives of f and t at the wall can he similarly found such 

that, e.g., series expansions for the temperature and velocity profiles 

near the wall can be obtained. 

Thus 6, 6*, f"(0), Nu , c1, £'"(0), and other parameters can all be 
x  w 

found for nonsimilar heated water boundary layers by simple Integrals and 

a table or chart.  The procedure, for an arbitrary pressure gradient of 

the nonsimilar type, is to integrate Eq. (6) to obtain the momentum thick- 

ness 6, then use Eq. (4) and Figs. 1,  2, and 3 to obtain the shape factor 

H, and the shear parameter T.  With T and 9 known, then x (x) = y UT(x)/0(x) 
w     w 

is computed, and the integration in the high-Prandtl-number heat-transfer 

formula (Eq. (21)) csn be performed. 
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IV,  EXAMPLE:  HOWARTH'S LINEARLY RETARDED FLOW 

The methods described in the previous sections have been applied 

to a demanding test case with an adverse pressure gradient and strongly 
(2) 

varying fluid properties.  An exact numerical solution   of Howarth s 

retarded flow [U = u (1 - x/8L)] for water with tw = I04oF and te = 32
0F 

has been compared with the Integral method solution to the same problem. 

The correlations (Eqs. (20)) cannot be extrapolated to this low an 

ambient temperature, so numerical solutions for water wedge flows were 

made with t = 104oF and t - 320F.  F, H, and T are plotted as func- 
w e 

tions of I in Fig. A.  Again, F(X) is a nearly straight line with a = 0.90A 

and b = 6.05.  The comparison between the exact and integral solutions (see 

Table 3) shows excellent agreement for 6 and good agreement for 6* and 

f"(0).  Note that 0 = -.18 corresponds to A ~ .13 for wedge flows, and our 

computations beyond this point (x/L greater than 0.8 for Howarth's flow) 

are extrapolations.  Howarth's flow, having an adverse pressure gradient, 

is strongly affected by variable fluid properties.  With the above tempera- 

ture boundary conditions, separation occurs at x/L ■ 1.246, while in the 

constant fluid properties case (t = t ) separation occurs at x/L = 0.958 

(the "8" in the U equation was arbitrarily chosen to make x/L near one at 

separation).  This shift of the separation point is a dramatic variable- 

fluid property effect.  Thus, this flow is a good check case for the inte- 

gral method. 

The high Prandtl number approximation was applied to this flow, with 

the same surface and ambient temperatures, using the numerical solutions 

for f"(0) (see Table 3), the average Prandtl number, and the surface values 

of T and v.  The Nusselt numbers from this approximate formula are compared 

with exact numerical solutions(3) in Table 4. The difference is only about 

4 percent for most of the plate, but the difference is much larger near 

separation. 

i>. 
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Table 3 

COMPAR ISt-N OF TilK INTEGRAL METHOD TO NUMERICAL SOLUTIONS FOR HOWARTH's 

RETARDED FLOW (WATER WITH lw = \MnV  AND t( 320F) 

X 0 

Numerical   Solutions Intes -al  Method 

x/l. GRe'Vx 
X 

* 
6 A) f"(0) OReVx 

X 

A 
f, /e f"(0) 

0.0 0. 0. .573 2.13 1.117 .574 2.12 1.113 

.2 -.0247 0.0526 .592 2.17 1.022 .593 z.17 1.022 

.« -.0544 -. HI .613 2.22 .914 .614 2.24 .911 

.6 -.0900 -.176 .637 2.28 .789 .637 2.33 .772 

.8 -.133 -.250 .663 2.36 .641 .661 2.48 .594 

1.0 -.186 -.333 .693 2. 50 .454 .689 

1.1 -.216 -.379 .710 2.60 .334 .704 

1.2 -.250 -.429 .728 2.78 .170 .719 

1.246 -.267 -.452 .737 3.01 .016 .726 
[                            —- 

aRe ference (3). 

Table  4 

COMPARISON OF THE  HIGH-PRANDTL-NUMBER APPROXIMATION 
TO  NUMERICAL  SOLUTIONS   FOR  HOWARTH'S  RETARDED   FLOW 

(WATEF WITH t      = 
w 

104oF AND t   = rr?) 
e 

High- 
Prandtl-Number 

Numert cnl  Solution Approximation 

x/l. 
Nu fim* 

X          X 
Nu  /Re5 

x       >: 

0.0 0.923 0.90F 

.2 0.890 0.869 

.4 0.853 0.820 

.6 0.80' 0.763 

.8 0.750 0.689 

1.0 0.669 0.582 

1.1 0.610 0.501 

1.2 0.511 0.359 

1.246 0.357 0.111 

i 

'Reference  (3). 

- 
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CONCLUSIONS 

The classica] isothermal constant-properties integral method of 

Walz and Thwaitea has been extended to heated water boundary layers, 

where temperature-dependent viscosity is important.  Correlations of 

the universal parameters F, M, and T as simple functions of c   and A 
' w 

allow computation of 0, 6*, and f"(0) for heated water boundary layers 

with any surface shape and with most temperature levels of interest 

for underwater vehicles. 

The method has been tested for the Howarth retarded flow with 

t  = 1Ü40F and t  = 320F.  With water, this flow is ver/ temperature 
we 

dependent; heating in this flow causes the separation point to move 

(3) 
SO percent further down the plate ';   the flow is highly nonslrailar 

even without heating.  The value of 8 was calculated by the integral 

method to within 1 percent nearly to the separation point.  The values 

of 6* and f"(0), both nearly exact at x = 0, had each attained an error 

of only 2 percent at a position halfway to the separation point. 

The method shares several advantages and shortcomings with the 

original methods upon which it is based.  Its advantages are that the 

momentum thickness and heac transfer can be calculated accurately, 

easily, and economically for a wide variety of pressure gradients, both 

favorable and adverse.  The shortcomings are that it may not represent 

H and T adequately, particularly in regions of adverse gradients, and 

thus the location of laminar separation may not be determined accurately. 

The hiKh-Frandt1-number approximation has also been found to be 

accurate in computing the heat transfer in heated water boundary layers, 

except in the reg <n near separation. 

Despite these limitations, this method extends a proven and re- 

liable approach to the computation of laminar boundary layers in water. 

■-,)"-• ■ .:< 
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Appendlx 

FLUID PROPERTY CORRELATIONS 

The water fluid properties correlations used in the numerical work 

for this report are those of Kaups and Smith.(9)  The density is taken 

as constant, so only the viscosity ratio, thermal conductivity ratio, and 

Prandtl number correlations are needed. With T expressed in degrees 

Rankine, and T . - A91.690R (320F), these correlations are 
ret 

M/yref - 1/C35.15539 - 106.9718715 (T/Tref) + 107.7720376 (T/TrefV 

- 40.595307A (T/Tref)
3 + 5.6391948 (T/Tref) ] 

k/k ref 
-1.9A0589 + 5.2220185 (T/T f) - 2.693322 (T/T f) ref 

+ 0.4176167 (T/Tref) 

Pr - 13.66/[73.376906 - 208.7474538 (T/Tref) + 197.7604676 (T/Tref) 

- 68.8626186 (T/Tref)
3 + 7.4779458 (T/Trf{) ]. 
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