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Splines in Statistics 

§1   General Introduction 

Statistics (as we know it) began with fitting parametric models to data. 

Various principles for making estimates and inferences were developed and 

refined until their efficiencies reached their (asymptotic) limits with 

methods such as maximum likelihood, minimum variance, and likelihood ratio. 

Attention returned to the basic models and there appeared a growing realization 

that not all of the parametric structure was needed to make inferences.    From 

this idea arose the techniques variously known as distribution free or non- 

parametric.   At the cost of some loss of efficiency in certain instances, 

these methods prevented model violations from being reflected in false infer- 

ences.   Although non-parametric methods have had some remarkable success (for 

example, the theory of rank tests) they all too often ignore useful non-statis- 

tical information that may be present, and as a result lose efficiency. 

The classical method of incorporating non-statistical information is by 

means of the Bayesian framework.    In the absence of any canonical methods of 

determining and assessing priors, this has to be regarded with suspicion. 

Happily, there are at least three ways to incorporate validly non-statistical 

knowledge in inference procedures.   We discuss each in turn. 

The first occurs when it is realized that the predominantly normal data 

contains a certain amount of contamination, i.e. the normal model is roughly 

correct.    This knowledge may come from central limit type considerations.    The 

robustness methods of Huber (1964) and Hampel (1974) exploit this knowledge. 

If a system is known to have an order structure, this knowledge may be 

exploited by methods known as isotonic inference.    The book by Barlow, et al 

(1972) reviews most of these techniques.    Knowledge of order often follows from 

elementary consideration of the structure of the system being modelled. 
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The third sort of non-statistical knowledge we can use is knowledge of 

smoothness. The least action principle of dynamics suggests that nature makes 

things change as smoothly as possible. Our main concern in this article will 

be with a certain measure of smoothness and the consequences of making the 

underlying function as smooth as possible. A function which optimizes a 

smoothness criterion is a spline. Perhaps a little ironically spline methods 

also provide a sound route for Bayesians to re-enter the scene, as Kimeldorf 

and Wahba (1970 and 1971) show there of'».i exist a Bayesian model which gives 

a smoothing spline as the posterior mean in that model, given the data. Models 

which require an order structure as well as smoothness lead us to consider 

isotonic splines. Some original results in this area are presented in Wright 

(1977). 

The present account is organized as follows: We begin from first prin- 

ciples and develop those parts of spline theory which have proved most relevant 

to the recent applications in statistics. We then review the literature 

associated with the main applications of splines to statistical problems, ending 

with some general remarks on isotonic splines. 

We shall reserve the symbol D for the differentiation operator and the 

symbol L. for the set of measurable square integrable functions on the interval 

[0,1]. The symbol W will denote the set of functions f on [0,1] for which D-'f 

is absolutely continuous for j ■ 0,l,...,m-l and D f is in L-. When we 

occasionally consider functions with domain other than [0,1] the relevant domain 

will be shown after the function space symbol above, e.g. W (-00,00). 

§2 Classical Spline Theory 

The spline is the engineer's solution to a problem frequently concerning 

engineers. The problem is to fit a curve through points (t.,y.) i = l,2,...,n 

ä&Smm&ä&i&iüü ..   
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in the plane. However, the engineer often needs to obtain values of the first 

and second derivatives of the underlying function from this fitted curve. The 

spline, an optimal solution of this problem, uses the analogv with weightless 

beans, part of the engineer's stock in trade. A precise accounc of the 

engineer's spline follows. 

Let {(t.,y.): i ■ l,...,n} be the (error-free) points in ehe plane for 

which we seek an interpolant. Cal* A • {£,(* t.) < f;» < f;. <...< t,„ (= t )} 

a meeh' For computational considerations the mesh will normally just be the 

numbers (t.: i = l,...,n}. 

A (cubic) spline with mesh ä, written S (t), is a function with contin- 

uous derivatives up o (and including) order 2 which coir:ides exactly with a 

(possibly differfnt) cubic function on each interval [C-.C-^i] i ■ 1,...,N-1. 

The points {i.. 1 = 2,...,N-1} are called the knots  of die spline. A spline 

S (t) which in addition satisfies SA(t.) = y., i = 1,2,.. n is an interpolant 

for the data, fone fnrtiier restriction is needed in order to i; Ae this inter- 

polant unique on lt.,t ],    Although for certain applications, other end condi- 

tions are more convenient, the most natural condition is SV(t.) = SVU ) = 0. 

This corresponds to giving the analogous beam cantilevered ends (protruding 

beyond the end poivts) and also minimizes the "energy of flexion" of the beam 

(i.e. the mean square curvature). The proofs of these various properties are 

established in a more general context by various contributors to the theory of 

L-splines. See Ahlberg, Nilson and Walsh (1967). Notice that if the spline 

3    2 
between (t.,y.) and Ct.+1,y.+1) has equation y = a.t + b.t + c.t + d., the 

continuity of the lower derivatives ensures that b., c, d, are constants, 

independent of i. 

■ 
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Since curve fitting is a very practical task, it is against numerical 

considerations that a curve fitting method mu&t be judged. The ease with which 

a cubic spline is fitted must have contributed to its popularity. 

We now sketch the main steps in fitting a cubic spline to data. Suppose 

data is {(t.,/.), i » 1,2,...,n}. Let h. = t. . - t. and take M. ■ value of 

second derivative of interpolating spline S at t., i ■ l,2,...,n. 

Suppose the polynomial interpolating (XifYi)  and ^ui»/^!) ^5 

2.1 y = a.U-t.)3 + b.Ct-t.)2 ♦ c.U-t.) * d. 

then 

2.2 

f b. - M./2 

a. » (M. , - Mj/bh. 
i  v i+l   i" * 

y. , - y.  2(h.M. ♦ h.M. .) 
'i+l 'i   ii  i i+r 

c. = 
i 

d. o y. 
i  'i 

TT 

Thus our curve fitting problem reduces to that of finding the values of M.. 

The equations relating the M. are obtained by using the continuity of the first 

derivative of the spline, along with the relations 2.2 to give 

i+r'i     yi"yi-l hi.l Mi8l 
+ (2hi-l + 2hi)Mi + hiMi+l 

B ^-Tp " ir^ 

for i " 2,3,...,n-l. 

7..;,,.;.j.j:;:.:,:,^:-:,v..V'r,„ i 
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Our demand that M. ■ M «0 leads immediately to a tridiagonal system of linear 

equations for M,,,..,M .. This system can be easily solved by Gaussian elimi- 

nation. So eaily in fact, that fitting an interpolating spline to 40 points 

is feasible with only a simple calculator. 

It was soon realized that the cubic spline was the solution of an optimi- 

zing problem which could be easily generalized. Let L be a differential 

operator with constant coefficients of order m (usually D ) and let 

{(t.,y.): i ■ l,...,n} be data points. The problem 

j»      2 
minimize      /" (Lf) dt 

—00 

subject to     f^ e L-t-",") j = 0,1,...,m 

and f(t.) = y.     i = 1,.. .,n 

has a solution f(t) which satisfies L*Lf(t) = 0 in the intervals between knot 

points, where L* is the adjoint operator to L. We call such a solution an 

"Interpolating L-Spline".    There are accounts of such splines in the books by 

Ahlberg, Nilson and Walsh (1967) and T. N. E. Greville (1969). However, for 

statistical purposes another type of spline turns out to be more useful. 

§3 Smoothing Spline Theory 

For most applications in statistics the smoothing spline is much more 

useful than the interpolating spline. This is because most real-life data is 

subject to error be it from sampling, measurement or other sources. There are 

two main spline fitting methods in common use corresponding to different ways 

of dealing with the "noise" in the data. Because this data does not constrain 

the fitted function nearly as firmly as in the interpolating spline case, the 

fitting requires a genuine optimization routine, not just the simple solution 

of a linear system of equations as with the cubic interpolating spline. 

■»»M«*i«aMäiill&ÄB^ .    . 



The first, more frequently used method, parallels the least squares curve 

fitting procedure by minimizing a criterion depending on squares of deviations 

from data points and on the "roughness" of the fitted curve. When we have 

little or no knowledge of the magnitude of possible errors in our data this 

method is the appropriate one to use. 

On the other hand when the data points are, for example, direct readings 

from a calibrated instrument, we may be able to set fairly narrow 100% confi- 

dence limits for each data point. The second method is used in these circum- 

stances. For this we need to replace the ordinate y in the two dimensional 

data with a 100% confidence interval, and constrain the fitted spline function 

to pass through all of these intervals. This is accomplished in practice by 

using an optimization routine to minimize the (convex) roughness criterion, 

subject to the linear constraints. It will be noticed that this method attaches 

considerable importance to outliers, rather than largely ignoring them. 

First Method of Fitting Smoothing Splinee 

Suppose the t values of the data lie in a finite interval say [0,1] and 

we have 0 < t. < t, < ... < t <1. Fitting the spline leads us to solving 

the following problem. 

Minimize I    (f(t.).y.)2 + X /J (f(m))2 dt 
3.1 i=l   1  1 

Subject to f e W , X fixed > 0. J m 

The solution is given explicitly in the paper of Kimeldorf and Wahba (1970) 

and as expected turns out to be a polynomial spline of degree 2m-I with pos- 

sible knots at the data points. As so often happens, this theoretical solution 

m.^ur^Kr.*,.mtBIBtoimil;.ü 
'tiBüläutaJu^uLi;  
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cannot be used as an algorithm in any realistic practical case. When the t 

values are evenly spaced throughout [0,1], and f is periodic, Cogbum and 

Davis (1974) show how to do the fitting more easily. Apart from this one happy 

instance, a heavy ortimization is invariably required. 

Notice that the number A > 0 in 3.1 controls the amount of smoothing; A 

too small results in overfitting and insufficient removal of noise, whereas \ 

too large results in underfitting and removal of much of the wanted signal with 

the noise. Clearly the correct choice of X is of the greatest importance. A 

satisfactory solution to this problem is given by Wahba and Wold (1975), 

although not all theoretical consequences are yet developed. 

Second Method of Fitting Smoothing Splines 

From what was written in the preamble of this section, the reader will 

have seen that this spline is a cross between the interpolating spline and our 

first smoothing spline. For this reason the fitting technique is also known 

as (the solution procedure for) the Generaliied Hermite-Birkhoff Interpolation 

Problem- (GHB problem). 

Let [a. ,ß.] be the 100% confidence interval for the ordinate at t. (with 1 i' iJ i 

a. < B.). The GHB problem is 

Minimize     /J (fW)2 dt 

3.2      subject to the constraints  f e W , a. < f(t.) < 3. J m' i -  i - i 

for i = 1,2,...,n. 

^xiv:^;;...;- . ... ; ...,       
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Various recent contributions to the theory of such splines have been 

made by M. Atteia (1968), P. J. Laurent  (1969), and K. Ritter (1969).    Because 

Hubert space methods are directly applicable, this spline has been more 

thoroughly theoretically analyzed than the first smoothing spline. 

For the record, the solution of 3.2 is a spline of degree 2m-1 with knots 

at those data points where the constraints are active.. 

S4   Some Simplifications 

For most practical applications a slightly sub-optimum solution may be 

preferable to the optimum if it involves a great deal less computation effort. 

We have already seen that not all of the data points are knot points for the 

smoothing spline.    By using the following guidelines the old statistical virtue 

of eyeballing the data can be converted to considerable computational advantage. 

Knot Point Selection (Cubic smoothing spline). 

1) Knot points should be at data points. 

2) Try to have at least 4 or 5 data points between knots. 

3) Have not more than one extremum and one inflexion point between knots. 

4) Have extrema centered in intervals and inflexion point near knots. 

For more details see Wold (1974). 

The form of the optimal spline function f. 

Suppose data points {t.   , t.  ,  ..., t.   ) have been chosen as knots.    Then 
11     ^ ^ 2       J 

the optimal spline function will be f such that f(t) = an + a.t + a-t   +    ^   d. 
3 J 

(t - t. r i. + 

where    (t - c) ,.       x3 v '+     =(t-c) t>c. 

^■■^-'■■-■■^■'■■■■J'-^.J ■■•>■»■ ■'■"' ..,.,     ....     ....... :,.:-■ ..,....„. .,,.L. j . .■   tfiB ...... ... ■   .i^Ü 
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§5   Baye$ian Estimation Again 

We are now in a position to make our remarks about the equivalence of 

smoothness and Bayesian posterior means precise. 

Let L ■    £"     8.DJ be a differential operator and let B » [b.jj be a 

positive definite matrix.   Suppose B~ lbjkl. 

Problem I 

Problem II 

Find f e W (-00,00) which minimizes 
n 

I   (f(t.) - y.)bJK(f(tk) - yk) ♦ / „ (Lf)' dt 
j,k        J        ■' K        K 

Find f(t) with f(t) - ECxCOlyUj). y(t2) yUJ) 

where y. ■ x(t,) + e. with e, "u N(0,B) and x(t) is a 

stationary Gaussian process with mean zero and spectral 

density f(X) = ^ -^^   where P(X) = ^ a.(iX)J 

In their paper of 1970, Kimeldorf and Wahba show that the solution f of Problems 

I and II is the same function. 

When the errors in our observations are independent, this theorem tells 

us nothing new about fitting the spline. However, if we are forced to effect 

an estimation from a non-independent sample where the errors have known auto- 

correlation, this result provides the solution. Since this question is periph- 

eral to the main objective of our account we now let the matter rest. 

§6 Some General Remarks 

(a) A little reflection will convince the reader that smoothing spline methods 

will be the most useful when 

(i) An appropriate parametric model is not known and 

(ii) High accuracy is needed :ind 

mimMfiWMftin 
. ■■ ■ -■.■■. ■■■■...    ■ 

■ ■■  ■   .     ...■'■.■■■....... 
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(ill) A considerable amount of (noisy) data is available. 

When these conditions are satisfied, spline methods will give very good 

value for the computational effort invested, 

(b)  The (smoothing) spline is very much the child of its age - the 1960's - 

depending as it does on optimization theory and the medium/large computer 

for its implementation. 

§7 Introduction to the Literature 

In the introduction we tried to place spline methods in the statistical 

scheme of things. Splines will be seen to be a departure from the most general 

non-parametric model back a little towards the (structure rich) parametric 

situation. The reward for the changed position is improved efficiency coupled 

Still with non-parametric integrity. 

Although spline functions were available in a highly refined form by the 

mid 1960*5 they were for some years largely ignored by statisticians. This 

situation was dramatically changed by the appearance of the paper by Kimeldorf 

and Wahba (1970). Although the authors' intention was to show the equivalence 

of smoothing by splines with the finding of a posterior mean, the real effect 

was to convince statisticians that splines were effective and not as difficult 

as they had thought. 

When all is said and done, spline methods are just a way of fitting a 

smooth curve to some data. The curve estimates most studied in the statistical 

spline literature are for non-parametric density estimation from an independent, 

identically distributed sample and for the estimation of the spectral density 

of a stationary time series. Splines have also been used in other areas, but 

are at present more a curiosity than a serious practical tool. 

■ ■ ■ ■ I ■■■■'■■■    ...■-■    . .... ,   .      ..  :       ... .:..;:  ...  ■;.... 
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§8   Non-Parametric Density Estimation 

Our account will be confined exclusively to density estimation based on 

an independent identically distributed sample.    There are two main routes we 

may follow:    we may use the empirical distribution function in some way or we 

may use an appropriate analogue of maximum likelihood adapted to the infinite 

dimensional  (non-parametric) situation. 

The empirical density is very easily obtained from the empirical distri- 

bution when we use the Sobolev spaces W   because of the following: 

i 
Lemma:    The solution f of the problem 

,A,    Minimize   f\ (f(,n))2 dt with f € W lAj u m 

and f(ti) = y^ i = l,...,n 

and the solution g of the problem 

i 
u..,-.-. A   rJ«-l).2 

: Minimize /; (gv *') dt with g e W . 
(B)       .  0 m-1 

and (D g)(t.) = yi, i = l,...,n 

are related by Df = g. This means the empirical spline fitted density is 

obtained by differentiating the spline fitted distribution function. 

The histosplines described by Boneva, Kendall, and Stefanov (1971) are 

empirical densities, in the nature of a smooth analogue of a histogram, with 

pleasant mathematical features. To make their analysis feasible, the authors 

are prepared to allow densities which sometimes take small negative values in 

a small region. 

..^.V.m.»,. o.^v.^i.  . .,.*.^..:„... ^...1.,.,.:.^.^>;.>1.J...^,.........J,v.-.--  
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Let Wj(-«,») denote the set of functions on the real line which are, along 

with their first derivatives, in L-C-",»).    Let 8.- denote the set of square 

summable (double ended) real sequences with inner product (h,k) « K*   o h.k.. 

Define 9: Wj-* l. by (Ou), = A*   u{t)dt.    Now define an inner product  [u,v] on 

Wj by [u,v] • (Bu,  ev).    + /"^ u'v' dt.    Write Z =    {u c W.: Ou = 0} and 
2 

S = {s e W :   [s,u] = 0 for all u e Z}.    Each o <  W    has unique decomposition 

o ■ s ♦ z, s e S,  z e Z.    Thus we obtain the projection P: W   + S where Po = s. 

Then the authors show 

1) 9 is a 1-1 bicontinuous map S -► S, 

2) S consists of all s e W.:  /* s'z'dt = 0 for all z e Z 

3) For given h e J,., 6" h is the unique solution of 6o = h which 

2 •inimizes    /     (a') dt 
00 

/ 
-OB 

4) S consists of those functions continuous and continuously differenti- 

able such that 

i) s(t) is quadratic in each cell 

ii) / (s2 + s'2)dt < » . 

The delta-spline is that function s0 e S which has (6s0)0 = 1, (9s-). = 0, 

i/0. This function is tabulated explicitly in the paper. The maneuvering 

with Z and the unusual choice of the inner product [ ] is rewarded with the 

following result. 

Proposition; Take h e )L, h « (h.). For any integer j, let s. be the trans- 

lated delta-spline with (9s.). = 1, (9s,). = 0, i / j. Then the unique 
J    J J 

2 
histospline a c W. which has 9o = h and which minimizes / (a1) dt is given 

by 0 = ^7_  s.. The paper of Boneva, Kendall and Stefanov (1971) also 

describes another histospline and includes much empirical material on histo- 

spline behavior. 

..■,.■  . ■ . ..      ■    ■ .-.■ . -. . . ■ ,...   ■ .- ■ ■ ■     ■■  ■ _■■.■...■ 
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Some Femarka on Uietoeplinea 

1. Once the tabulated form of the delta-spline is stored in the computer 

(requiring 39 parameters) there is no explicit optimization required - just the 

grouping of the data into classes.    Consequently this method is well suited to 

programmable calculators and mini-computers without optimization routines. 

2. Boneva, Kendall and Stefanov (1971) and Schoenberg (1972a and b) also 

consider the variant histospline defined as the derivative of that function G 

in W2[0,1] which solves: 

Minimize A  (GM)2dt 

8.1 4-1 Subject to G(0) = 0 and G(ih) = K * h, i = 1,2,...,I 

where U+l)h = 1 and G^O) = G'd) = 0 . 

Yet another variant of this problem is considered by Wahba (1975b). This 

involves replacing the final constraints in 8.1 by 

G'(0) = a. and G'U) = b  where a., b. 

are calculated from the empirical distribution function.   This variant gives 

better accuracy near 0 and 1 than  8.1.    When the criterion is minimum mean 

square error at a point, Wahba (1975b) also shows how to choose h optimally. 

Finally we note that if the problem   8.1   has the further constraint 

G'U) >^ 0 for all t e   [0,1] the solution will be isotonic with respect to a 

natural order on W2 and will give a more acceptable density function. 

3.    It must be emphasized that histosplines are interpolating splines based on 

.he sample histogram,  and not a smoothing spline.    Consequently in the presence 

of noise (sampling error) we cannot expect this method to be much better at 

filtering the noise than the histogram it is derived from. 

l^S«»***^!*«,-.,..,    :.-:.„i...    .     .■ :vits.,6^.:u ■... 
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This assertion is supported by the results of Wahba (1975b) who shows 

for her variant of the hlstospline that for the true density f e W and f the 
in n 

histospline corresponding to a sample of size n 

E(fn(t) - f(t))2 » 0    (n-^m-D/ZiY 

In a companion paper Wahba (1975a) shows that the expected mean square error at 

a point t has that same order of magnitude for all of the following estimation 

methods: the polynomial algorithm (Wahba), kernel type estimator (Parzen), 

certain orthogonal series estimates (Kronmal-Tatar), and the ordinary histogram. 

However, the constants covered by the 0 may be larger in these latter cases, 

§9 Itensities by Maximum Penalized Likelihood 

This area is realtively unexplored to date. The analogy with parametric 

maximum likelihood estimation gives rise to the hope that Maximum Penalized 

Likelihood Estimators (MPLEs) may be optimal in some fundamental sense. We now 

look at some of the details. 

Let n be an interval (a,b) and let H(n) be a manifold in L.(fi). 

(Manifold « Set of "reasonably similar" functions). Suppose (t.,t2,...,t ) is 

a i.i.d. sample from an unknown density f c L.(fJ). Unfortunately the problem 

n 
Maximize L(v) = TT v(t.) subject to v e H(n), 

9.1 i=l   1 

/ v(t)dt = 1, v(t) > 0  Vt e fi 

will not have a solution for most manifolds of interest (the unimodal or monotone 

functions are an exception).   Specifically, any manifold which contains an 

approximating sequence to any linear combination of 6-functions, admits no 

maximum likelihood estimator for the density f. 
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From heuristic Bayesian considerations, Good and Gaskins (1971) suggested 

adding a penalty term to the likelihood which would penalize unsmooth estimates. 

They chose a manifold and penalty function that lead inevitably to polynomial 

splines.    Good's and Gaskin's results were refined and made rigorous by 

de Montricher, Tapia and Thompson (1975).    We can now describe the current 

state of the art. 

It will normally be the case that the manifold H(n) is contained in W fn) ' m 

and the penalty function «Kv) ■ /fi (D v) dt. Let 

L(v) = TTvCt.) exp(-<Kv)) 
i=l   1 

and consider the optimization problem 

9.2 

Maximize L(v) subject to 

(i) v e H(fi) 

(ii) Vdt = l 

(iii) v(t) > 0, Vt e fi 

The solution v is the MPLE of the underlying density, f. 

The task of computing the MPL Estimate of the density is greatly simpli- 

fied by knowing the form the optimum must take. The following existence 

theorem is proved in the paper by de Montricher, Tapia and Thompson (1975). 

Theorem: For m > 1, the MPLE corresponding to W exists, is unique, and is a 

polynomial spline of degree 2m-l. Moreover, if the estimate is positive in the 

interior of an interval, then in this interval it is of degree 2m-1 and of 

continuity class 2m-2 with knots at the sample points. 

-i-^vi^Hf-gtiMji»—iJiiM if Ml 11 |rm««nli«JTiHj--.i 
■..,..-....   ■.. . 
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From (Fisher) information-theoretic considerations, as well as a desire 

to avoid the awkward non-negativity constraint v(t) > 0, Good and Gaskins (1971) 

also considered the MPLE problem with manifold 

H (SI) = (v: v** ( W (-«•,«)) and 
9.3 1 j 

Mv) = ex f*    ^Q- dt = 4a r   (DvV dt a > 0 

L 2 
trtiere v ■ (v ) is to be the (necessarily positive) density. 

After noting that the reformulation trick (9.3) is standard in the liter- 

ature, deMontricher, Tapia and Thompson (197S) record conditions for its valid 

use with the following lemma. 

Leaaa: Let H be a subset of L (n) and J a functional on H. Consider 

Problem 1 

and Problem II 

Maximize J(v ) subject to 

v5* e H, / v dt = 1, v(t)  > 0    Vt 

Maximize J(u) subject to u e H 

2 
and / u dt = 1 

2 
Let u* be a solution of II. Then v* = (u*) solves I if and only if |u*| € H 

and J(u*) = J(|u*|). 

The authors (deMontricher, Tapia and Thompson) go on to establish that 

the price of using the non-negativity trick is to lose the polynomial spline 

form of solution - the solution is an exponential spline instead, with knots 

at the sample points. 

The paper of Good and Gaskins (1971) shows how one might prove that MPLEs 

are weakly consistent and also gives algorithms and some empirical material. 
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We regretfully record that on the two most important aspects - how effec- 

tively noise is filtered out, and the asymptotic (large n) performance - the 

literature on MPLEs is quite silent. 

§10 Noise Filtering by Smoothing Splines 

Statisticians and applied mathematicians arc continually faced with the 

problem of recovering a smooth function when only noisy measurements of it are 

available. In fitting a parametric model the residuals are made up of the 

noise as well as tie deviations of the model from the true function. Smoothing 

splines are admirably placed to estimate this true function (known only to be 

smooth) for two reasons. First, they are flexible enough to respond to any 

real local variation, without allowing pathological behavior, and second, the 

actual degree of smoothing (= filtering of noise together with rapid variation) 

is controllable. Even when the correct degree of smoothing is unknown, these 

features, in conjunction with a technique called cross-validation (to determine 

the correct degree of smoothing) allow us to remove most of the model deviation 

component from the residuals, leaving virtually only the (real) noise. We 

presently give an account of the main features of fitting smoothing spline 

functions by cross validation - full details are given by Wahba and Wold 

(1975a and b). 

The model we are fitting is 

i 
■ 

Y(t) = f(t) + e(t)      t e  [0,1] where 

10-1 f e W    and Ee(t) =0    all t and 
m 

Ee(s)e(t) - o        s = t 
»0        s / t 

•-i«Mtti', hit ■ w**» -iti- ■ ■■■^..■■- ■.,■...■.■ ■    .   .    .        .■■..,, ,;      .:.:.,,...... ....v     .. 
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The noise variance a is generally unknown and Y(t) is observed at (an 

increasing set of points) t.,t2l...,t . 

Consider the problem: Find f e W to 

10.2 
Minimize (i j:(Y(t ) - f(t.))2 + X /J {f(m))2dt) 

where X >0 is a fixed real number. 

The first term is a measure of the fidelity to the data, the second is X times 

the "smoothness" of f. The optimum solution is known (Greville (1969), 

Reinsch (1967)) to be a cubic spline with knots at the t., i * l,2,...,n. As 

X -^ oo, the solution f , approaches its smoothest possible for« - the least 
III A 

squar«» straight line through the data.   As X ■«■ 0, f   ,  approaches the inter- 

polating spline through all of the data points.   Thus we call X the degree of 

smoothing.    It is shown in Wahba (1973 and 1974) that in order to have 
W m 

f    ,    -»• f as n ->• oo We "»ust also have X + 0. n,X 
If (from previous experience of our particular problem)  the correct value 

of X is known, we have only to solve 10.2 using that X.    Unless the problem 

10.1   can be converted to the periodic smoothing spline form of Cogburn and 

Davis (1974) there is no simple way of solving 10.2   other than the usual 

optimization routine. 

When X is not known we can (with much labor) use the Cross Validation 

Mean Square Error (minimizing)  technique to estimate the appropriate degree of 

smoothing from the data alone.    The method has been used successfully in various 

applications by Feinberg and Holland (1972), Hocking (1972), Mosteller and 

Wallace (1963) and others.    In effect the CVMSE method gives the value of 

parameter which maximizes the internal consistency of the data set with, regard 

to the applied model. 
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Nahba and Wold find it useful to recast problem 10.2 into a form used by 

Reinsch (1967). 

• 

10.3 

1     2 
Find f f W to minimize /_ (f") dt subject to 

1  n 2 
- I    (Y(t.) - f(t.)r < S, where S is given. 

j«l   J     J  ~ 

It is well known that if 

n S < inf I  (Y(t.) - a + b t.)' 
a,b     J       J 

then there exists a unique A = A(S) such that f    .   is the solution to 10.2 and 
II i A 

; I ""'j' - fn.» V)2's- 

Armed with the appropriate tools from the last paragraph, we now give an 

account of Wahba and Wold's Cross Validation procedure (1975a). 

1) Divide the data set into p groups 

Group 1: ^ t^,  t1+2p. ... 

Group 2: t,,. t2+p. t2+2p> ... 

Group p: tp, t2p. t3p. ... 

2 
2) Guess a starting value for S (Amost invariably S = ka with 

0.7 ^ k < 1. A reasonable starting point might be k = 0.8). 

3) Delete the first group of data. Fit a smoothing spline to the rest 

of the data using the method of Reinsch with the S of step 2. Compute the sum 

of squared deviations of this smoothing spline from the deleted data points. 

■ . , .,;,-.,  ■,'.:., ..;.   .. ■  ■. ;. .. ■ ;.■. ■  ■  ..:■ ■ ■ ■'■'■ ■ ■    ■■.....■  .:  ■ ■ . 
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4) Delete instead the second group of data. Fit a smoothing spline with 

the S of step 2. Compute the sum of squared deviations of the spline from the 

data points. 

5) Repeat Step 4 for the 3rd, 4th, ..., p1^ group of data. 

6) Add the sums of squared deviation from steps 3-5, and divide by n. 

This is the CVMSE for S and is written CV(S). 

7) Determine the S ■ S. making CV(S) a minimum. 

The smoothing problem 10.3 can now be solved with S = S.. 

2 
Empirical studies by Wahba and Wold (1975a) indicate that when o is 

2 
extremely small, the CVMSE estimate for k in S - ka has positive bias, 

resulting in very slight undersmoothing. This effect is negligible for 

2 
realistic sized o , although the authors do not present a proof. 

§11 Periodic Smoothing Splines 

The work of Cogburn and Davis (1974) has been referred to several times 

already. We now describe their results in detail. 

Let G be the group of real numbers modulo 211 with the usual topology and 

measure. The model to be fitted is 

h(t) = f(t) + e(t)   Vt e  G 

11,1 with f c W (G) and Ee(t) =0, Vt c G 
m 

2 
and Ee(s) e(t) = a   s = t 

= 0   s M 

where h is observed either on a lattice of points or continuously and the noise 

2 
variance a   is unknown.    The asymptotic solution for large n devised by Cogburn 

and Davis is very convenient to handle, and easy to compute since it avoids 

explicit optimization. 
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§12 Estimating Spectral Densities 

Determining spectral densities gives spline theory not only a great 

opportunity but also a severe test. When the spectrum is absolutely continuous, 

spline methods are extremely effective. However, when the spectrum has a 

discrete component, i.e. 6-function spikes, spline methods based on L_ have 

little chance of sharply resolving the spike without a great deal of data in 

the vicinity of the spike. The heart of the difficulty is that every sequence 

of functions approximating a 6-function must be unbounded in L norm and so 

also in W norm, and thus the smoothing spline is duty bound to flatten these 

real spikes out. However, before abandoning the L? based W spaces, we need to 

see the problem in perspective. Because of the superficial similarity between 

a 6-spike and a noisy observation, any attempt to transfer the problem to a 

space where 5-function approximants are bounded seems doomed to failure because 

we would be unable to filter out the noise in such a space. 

Thus reconciled to remaining in W with its pleasant inner product and 

Fourier Transform structure we may yet be able to find a way out. One strategy 

may be to proceed as follows. Since further data points are easily obtained 

from the periodogram, it might be feasible to use repeated applications of the 

CVMSE method coupled with a procedure to introduce extra data points in regions 

where the rate of change (of fitted function) is large. 

First let us examine the current state of the art for estimating spectral 

densities with spUne methods. 

Eetimting the Spectral Density of a Stationary Stochastic Process 

Let X ,X-,X,,... be a second order stationary stochastic process with 

EXk.O. EX.X.+k=pk. 

ttBBBBJMiif^T ■; M^k..;,. ^:*t:t.^ ...■.:^ ri|-, ^ y,,.,. aa»i^-Liu^, 
UU-.^I^JL;«^^ .■..■  .; ,., 
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The p   are Fourier coefficients of a symmetric distribution function F on 

[-11,113, Pv ' n   "^0 ^os ^ ** F^w^•    w**en F is absolutely continuous, it is 

completely determined by the spectral density 

f(s)  = (DF)(w) 

f(w)  =    I Pu e 
ikw 

The statistical problem is to estimate £(w) on the basis of observations 

X.,X2,...,X . Let f(w) denote the periodogram 

12.1 

n-1 ikw n-1 
f(w) =  y  p. e   * P    +    I     Pi. Cos kw where 

-n+1 0  k=l  k 

. n-k 

Pk=n I     XjXj+k 1=1 •' •' 
,    k = 0,...,n-l 

When the process is Gaussian it is shown in Walker (1965) that 

12.2 f(w) = f(w) U£(w) ♦ nn(w) 

where n -»■ 0 in probability as n ->■ « and U (jn/n) are uncorrelated exponential 

random variables with a mean and variance of 1 for j = 0,...,+^ n-1. 

Since the periodogram is an inconsistent estimator of f, some modification is 

required. Smoothed (consistent) estimators of f(w) are obtained either by 

smoothing the periodogram 

f*(w) = /^ f(X) K(w - X)  dX 

or by weighting the covariances by a "lag window"   Mr) giving 

■BfaMfy^a.^are^^^^ ;..■■: .■,     .^■Z:!,^::,.^.^.:,:^ ■.-...    .".. .:..■:■.-. ............. 
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f*(w).^     I     kM(r)e-irwar 
ra-M 

where 

Cogburn and Davis (1974) consider estimating f by a CSS or LSS to ?: 
A     n A

      
A in i.e. f *     S    , or f * t,.   They take L = D   and obtain an estimate of the n, A A o 

n   A    ~ x ö 2 
integrated mean square error for n large. It is /_- MSE(f(t))dt ■ «- 

fi„ f2dt + 4- ;nn (f
(2m))2 dt. The value of X minimizing the RHS is 

1 

Xo 3 ( ID» ; (f(2mVdt/ / f^t)^*1 

0
m 

and the resulting MSE is 0(-). 

Wahba and Wold (1975b) are concerned with estimating log f(w) for spectral 

densities f which are bounded below. Taking the logarithm of equation 12.2 

converts the curve fitting problem to that of §11. 

We have 

Y(j) * log f (^) + Y + e.., j - ♦!, +2, .... +n-l 

2  II 
with Ee. = 0, Ee. = 7- , Y = 0.5772... . Euler's constant, and a reasonably 

symmetric distribution of e. about 0 with constant variance. In their paper 

(1975b) Wahba and Wold use various results from Cogburn and Davis (1974) en 

route to their objective which is to show (in principle) that the smoothing 

parameter chosen by CVMSE converges to the parameter minimizing the mean squared 

error. 

»»•■ir U.rrhr.v.-r^nraaavtisir 
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Wegman (1977) records the various advantages and disadvantages of using 

log f(w) rather than f(w) for the spline fitting model. Although the fit to 

log f (w) is improved, the kernel interpretation and the attendant results on 

consistency are lost. For multiple time series (with which Wegman was 

concerned) various functions such as transfer function, multiple coherence and 

coherency fit the spline model directly via log fvv(w). log f^M,  etc. and 

each of the above functions may be estimated directly with a spline, rather 

than as products and quotients of spline estimates. 

§13 Isotonic Splines 

There are many moJ«l fitting problems where we either have some prior 

knowledge of the form the solution must take, or else have some insight into 

the laws governing the system. This knowledge may be equivalent to tue 

requirement that the fitted function preserve some order on the data points - 

and obvious example is a fitted distribution function - this must satisfy 

F(») > F(y) whenever x > y. Functions which preserve (in some sense) an order 

relation of their requirements are called isotone. Knowledge of isotonicity 

may follow from very elementary considerations. 

Some important isotone families of functions are the monotone functions, 

the convex functions, the positive functions and the unimodal functions. 

The main virtues of isotonic splines are that they are locally very 

flexible in one direction for following the true underlying function and 

exceedingly stiff in the other direction so as to filter out the noise. The 

convex functions for example can easily bend upwards but not down. Preliminary 

studies suggest this filtering is spectacularly effective when the noise vari- 

ance is large. A general account of isotonic splines is given in Wright (1977) 

and a more statistically oriented account in the paper by Wright and Wegman (1977). 

■McrsaL:-., . ■-■.■-.:. ' '; ... .. './.  ... ,. 
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