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FLOW FIELD MATCHIN G

I. INTRODUCTION

In transonic flow problems with subsonic freestream and infinite flow field ,
discretized solution methods which by nature solve the equations only over a finite

* 

domain are not in themselves adequate. The influence on the near field solution of
the “far field” , which extends to Infinity , must be accounted for. The present
work has explored a matching method which has proved to be superior to the
asymptotic expansion comonly employed to accomplish this.

In the problem under consideration , the equations reduce to a linear , elliptic
Prandtl-Glauert equation in the limit at infinity . That equation is soluble on
infinite regions by methods of superposition using “panels” of Green ’s function
integrals. The simplest matching method introduces a matching boundary in the
flow field well outside the supersonic region. Outside the boundary, a Prandtl-
Glauert solution is found, while inside a nonlinear transonic solution is found
such that both value and normal derivative of the velocity potential match across
the boundary.

Two more refined methods were tried . In one, a Poisson term was added to the
Prandtl-Glauert equation to make it a second-order approximat ion to the nonlinear
equation. In the other, a “middle field” of large finite elements was introduced
between the panels and the (finite difference) Inner field , with matching conditions

as before.

In order to avoid duplication of effort, the present report details the

finite element results while only outlinin g results that have already been published

in our papers and previous q~iarter1y reports.

C II. THEORY

The transonic small disturbance equation (TSDE) used in the finite difference

and finite element areas is in 3D,
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The 2D eqs’ation Is the same except the y- derivative term Is missing . The f i r s t

order (FO) far field equation is the Prandtl -Glauert equation
(2) 4.~~ O .
The second order (SO) Poisson correction term used in the 2D second order me thod
satisfies
(
~

) t’-~ .~ ~~~a~~~P X ) / 2_ )
where ~~

“ is a first order solution.

The finite difference method used was conservative over-relaxation of the
Murman type. The outer flow is solved by source panels (see ref. 4) along the
matching boundary, the solution being updated every 10 to 80 sweeps. In the second-
order 20 method , the equation being solved for r is linearized about a new value
of about once every five first order updates .

Two methods of matching were tried: Revising the outer flow to partly eliminate
the normal derivative discontinuity between inner and outer regions (an “underelaxation”
factor of .5 being theoretically optimal here), and adding sufficient source strength
to cancel this discontinuity If ft were superimposed on both inner and outer flows.
The latter method is simpler and easier to justify (ref. 1), and both seem to be
about equivalent in practice.

For more details on these methods see refs. 1, 2, 3.1, 3.2, 3.3. and Figures 1 and 2.

The extension of the second -order method to 3D proved to involve really unwieldy
influence—coefficient calculations , and its stability was called somewhat into question
by the later 20 results (ref. 3.3). Therefore we decided (ref. 3.4) to introduce a
middle field wi th large finite elements satisfying an approximation to (1). The finite
element (FE) region is highly nonlinear but still subcritical , and the usual elliptic
variational approaches are therefore usable (see ref. 5).

Figure 3 shows a schematic example of a 3-0 midfield with finite elements. Both
potential and normal derivative continuity are enforced on the interface boundary between
FO and FE regions by overlapping by one mesh width . Since the same equation is solved
in both regions, the overlapping gives enough resolution for the continuity requirements.
Dirlchlet conditions are used on all ~des of the FE region boundary, and the overlapping 0

updates every cycle result in convergence of the normal derivative jump to zero.

Figure 4 dIagrams the ordering by which the three flow fields are brought to
simultaneous convergence (see ref. 3.5).

0
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For the nonlInear TSDE , the finite element formu lation introduces a variational
functional which will be minimized by the first variationa l principle. Only
rectangular elements are used , which allows the potential to be approximated simply
by using separation of variables . The finite element formulation is reviewed in
Appendix A.

A finite element code was developed for both trilinear and triquadratic elements .
The basic shape functions are defined and compared In Appendix B. The trilinear
function is continuous (C°) while the triquadratic spline is slope continuous (C 1).
However, the resulting matrix for the quadratic elements has wi dth five along the
diagonal , while it is tridiagonal for the linear elements .

III. RESULTS

As described in Ref. 2 and 3.1 , the first-order and second-order method s were
very successfu l in a simple supercritical non-lifting case . Table 1 show s a cost
and quality comparison. Those results marked by asterisks were judged to show no
significant errors due to the far field approx imation.

Table 1. Computer Times and Iterations

Box Far-Field CP Sec Sweeps FO It SO It

Large Freestream *266 612 / /
Medium Klunker 114 507 / /
Medium FO *136 597 10 /
Medium SO *158 682 12 3
Small Klunker 34 238 / /
Small FO 82 542 10 /
Small SO *83 569 11 3

o V. small Klunker 19 171 / /
V. small FO 79 524 39 /

*: Error ~ 0.01 In off-shock Cp and shock location

Re~~. 1 and 3.2 describe the ex tension of these methods to lifting airfoils.
Here again both FO and SO methods proved to be of value . The error in circulation of
the converged result (as measured against a “standard” result computed with a very 

~~~~ 
±~
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large FD mesh) is plotted in Figure 1 as a function of effort for each matching
method. It was also discovered that the accuracy and cost of the results was
indpendent of the location of the circu l ation vortex , an important improvement on
the asymptotic methods.

Ref. 3.3 describes the conclusion of the 2D effort. Here the location of the
matching boundary was moved to halfway between mesh points , and it was proved that
the FO method could converge to good results even with the lower “far field” boundary
along the lower surface of an airfoil (Figure 2), as long as this surface was sub-
critical. The SO method diverged for this case, and showed instability and poor
results in other cases where the matching boundary went through a subcritical but rapidly
changing area of the flow field.

The 3D FE midfield is now operational and testbed results have been generated.
A rectangular wing of A~ = 6 with constant NIACA 0012 section was analyzed by using
the FE midfield matching (Figure 5). Table 2 gives the comparison between three cases;
large FD box, with no matching , FO matching with panels , and double matching with FE’s
and panels. In the FE midfield matching , the FD region was reduced to a very small
box.

— 

~~~~
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VERY
LARGE BOX SMALL BOX SMALL BOX

NUMBER OF 1MATCHING BOUNDARY 0 2

TECHNOLOGY FOM FDM FDM
USED PANEL FEM

PANEL

OUTER BOUNDARY ~~ K “2.. ~ ~~ I.5~ — .~5 ~ E~ (.I~t
OF FD BOX

FD MESH SIZE 64 x 28 x 20 48 x 18 x 14 42 x 18 x 12

NUMBER OF 35840 12096 9072

NUMBER OF
FE NODES 0 0 280

NUMBER OF 0 108 108

I
TABLE 2 COMPARISONS OF MESH SIZE

Note: Lengths are based on chord = 1
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FE and FE fields were iterated alternately for each far field update and the
potentials at non-coninon points on matching boundaries were approximated by Lagrangian
interpol ation . Figure 6 shows the results when trilinear elements were used and
Table 3 demonstrates a further reduction in computational time . The FE midfield
matching solution , like the fi rst-order solution , is indistinguishable from the
large box solution , while it converged in about 20% less computational time , even

though some computational time was used for the Lagrangian interpolations between
FD and FE regions.

Stability and convergence of the method were checked by testing several parameters
and the fol lowing requirements we re found. The linearization of the nonlinear term in
TSDE should be compatible in FD and FE algorithms . The interface boundary should be
at least one node width outside of the supersonic FD area. Lastly , in the FD box
we used the customary relaxation factors of 1.5 for elliptic points and .9 for -‘

hyperbolic points , but we found that instability resulted from the use of this
over—relaxation in FE region when alternate iterations were used .

‘I

~~~1
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VERY
LARGE BOX SMALL BOX SMALL BOX

CONVERGENCE i~
-
~ i~-5 

-5

TOTAL 749 .2 293.0 231. 8
Lu

I--—

~~~~~~~~ FD 747.7 278 .4 175.1
< L u

I -0~<c.., FE 0 0 31.0
I-

o.t—.

~~~~~~~~~ PANEL 0 13.0 24.8*

FD 440 470 389

LL~~~~

~ 2 FE 0 0 389
Lu

~ t PANEL 0 25 25

1~

TABLE 3 COMPARISONS OF COMPUTATIONAL TIME
AND NUMBER OF ITERATIONS

*Inefficjent matrix solver used.

0
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IV. CONCLUSIONS

The first-order method of far-field matching , whereby the boundary conditions
at infinity for a transonic flow problem with subsonic freestream are applied using
linear panel methods in the far field , is a success both In 2D and in 3D. It allows
comparatively small finite difference meshes to be used without fear of “wind-
tunnel-wall-like ” far field errors , resulting in cost savings and increased confidence.
(An estimate for the far field error is easily computed, as explained in ref. 1.).

The second order method, successful in some of the simpler 2D cases, Is touchy
and cannot easily be extended to 3D. Its alternative , the finite element mid-field ,
appears to be stable and accurate, and is likely to yield cost advantages over the
first order method.

The first order method is not hard to code and should see imediate application,

not only in transonic smal l disturbance equation codes, but also in other similar
problems like full potential equation codes and even separated-variable unsteady
flows (Helmholtz-like equations). The finite element mid field , being more complex

to code and yielding less advantage, will probably still find its way Into the

mature forms of these codes - a 20% savIng ought not to be scorned In a high Intensity
production use environment.

J

0



APPENDIX A FINITE ELEMENT FORMULATION

The Guderley-von Karman transonic small disturbance equation , (1) is solved
In the finite element midfield as wel l as in the finite difference box inside.

In this study, the finite element formulation is applied only to an elliptic
field and an iterative process is used . For a given Dirlchlet condition, the
calculus of variations introduces a variational functi onal

.X (4)~ ~~~(K4,~ -f ~ ~~~~ +~~~)4~~ li (4)

whose first variation yields the TSDE. That is , a function which minimi zes the
functional is the solution to the Eq~(1). For non-Dirichlet (Eq. 4) type
boundary conditions , a surface integra l term must be added to Eq. (4). In enforcing
normal derivative continuity, it proved to be more convenient to update the solution
at the boundary i teratively, when an iterative process is used , than to add this term.

For the finite element approximation , a functional representation is used for
the approximate solution such as

4i~x ,y ,?)  2 C ~~~ 01~,,,7) L~EJ~~.J, (5)

where the Z
~
’, are the basic shape functions , already defined , and are the

coefficientr~ to be estimated. Since only rectangular elements are used in this
study, a factorization can be used for simplicity :

L (6)

Then , from Eq. (4) and the first variational principle

~~~~~aX/aic~j  = Q , (7)
the discr etized finite element algoritimi is derived by substituti on. However, the
resulting FE formulation becomes nonlinear due to the second term in the RHS of Eq. (4).
As In the finite difference algorithm, the nonl inear term was linearized and updated
Iteratively. Hence, Eq. (4) becomes

S K
v t4~~~~~~~~)t t

hJ
~~~~~ ~~ L+;Lr.,t~ d~

where superscript ,
~ 
stands for i_

~1 
Iterate and subscript e. is the local element

in which the velocity Is evaluated. It can be shown that this variational finite
element algorithm in the purely elliptic field yields precisely the same finite
element equation as the Galerkin approach in which the sh~~e function Itsel f Isp I’’used for the weighting function.
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APPENDIX B
Basic Shape Functi ons in the FE Formulation

Only the one dimensional case is shown In this appendix since the 3D shape
functi ons are factorized in the rectangular element. From Eq. (5), the approximate
solution is defi ned by

z [4~J~ (j ~~. (8)

If we define the basic shape functions in each element ( ~ ..f,...,Z) as shown in
Figure 7, we have ..,

Oc)~~ (4~, $~.J [
~

‘ ‘

~~~ 

for .., ~ ‘~ �
in a linear element and

- I

4’ (~~~ ~~~~ -, ~ ~~:, 
1 ~~~ for ~~~~~ , ~ ~~~

I, ’
in a quadratic element.
Fig. 8 shows the difference In approximating a curve wi th these respective elements.
A linear element Is an approximation of C~

’g which gives ~~~~~ 
(
~ ~~~~ but

linear variation in each element. Hence it is C° continuous.

The quadratic element gives better approximation to a smooth function at Interior
points of the domain and guarantees C continuity since the derivative of 4~Is continuous everywhere. .‘
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Symbol Abbrev iations , Symbol s and Ac ronyms Meaning

Cr
~ Continuous to n-th order

Cp Coeff icient of pressure

CP Central Processor
Cl75 CDC Cyber 175 Computer
0 Dimens ions , Dimensional
FD Finite Di fference
FE Finite Element
FO First Order
It Iterat ions

Freestream Mach Number
SO Second Order
TSDE Transonic Smal l Disturbance Equation
0 Velocity Potential

Second Order Correction to Far Field Potential
Aspect Ratio

C’,

0
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