|~ AD-A05S0 323 BOEING AEROSPACE CO SEATTLE WASH F/6 20/4

FLOW FIELD MATCHING, (U) | e
JAN 78 L J DICKSON, K D LEE+ A W CHEN N00014=76=C=0931
UNCLASSIFIED 0D180-24040-1 NL

Cll‘”
FILMED

3-78







FLOW FIELD MATCHING

Lawrence J. Dickson, Ki D. Lee,
Allen W. Chen, and Paul E. Rubbert

Distribution unlimited




Unclassified *1 ?¢—;LL/—¢L/'¢"_Z/

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

A \ 20N

\ - A S DT
%F]ow Field Matching 7 v i,”"a], Ma 76 - Jan. 78

Lawrence J. /b1ckson, Ki D. /Lee,

Allen W. IChen:PaM E. JRubbert

@ &ﬂ;;:rm-c-ﬂgaﬁumm

Ty TR R
/

9. PERFORMING OR’ANIZAT\ON NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

11. CONTROLLING OFFICE NAME AND ADDRESS /

Boeing Aerospace Co., P. 0. YBox 3707 il il e
Office of Naval Research

Seattle, WA 98124
m;é p-
Arlington, VA 22217 21

ﬁ)

. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)
Unclassified

15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side il necessary and !dentify by block number)

Transonic flow, matching boundary, far field, middle field

Gwd)

In a transonic flow problem with subsoni¢ freestream in an untransformed
infinite flow field, the outer boundary conditions are hard to apply. By
assuming that the flow outside an artificia )hatching boundary” is subcritical
and linear, we—use a Prandt1-Glauert solutiofA(generated by panels of Green's
function integrals along the matching boundary) in the far field, while
solving the near field by finite differences. The two solutions are joined

iteratively by requiring continuity of potential and normal derivative across
the matching boundary. —> pva

VQ ABSTRACT (Continue on reverse side If necessary end Mhmlﬂkby\flock number)

DD , on'ys 1473  eoimion oF 1 NOV 6313 cRsoLETE Unclassified
SECURITY CLAuvn ﬂo?r T&iﬂ%’““'m M

u yﬁ- A . . P




g Unclassified
o SECUR|TY CLASSIFICATION OF THIS PAGE(When Data Entered)
4 - S e L L S 0 Sl ’

e & s b g vt s o, S O

b}
Unclassified WFA‘&”
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) = )
an
m%vo refinements of this method. In one, a locally linearized
second-order far Field solution (a Poisson equation solution) is used. In
the second, a ”middle field” inhabited by large rectangular finite elements
is used in the area where the flow is highly nonlinear but still subcritical.
This report details only the finite element results, the earlier ones having
already been pub]'lshed.'}[n the scientific literature (references 1 and 2). 3
2
k
0:‘ |
4
® _45'
s |




RE————

Table of Contents

I. Introduction 1
II. Theory 1
III. Results 3
IvV. Conclusions 8
Appendix A 9
Appendix B 10
Figures 11
References 20
Abbreviations, Symbols and Acronyms 21
Table of Figures
Figure 1 - Error as function of effort 11
Figure 2 - Boundary meets lower surface of 12
airfoil in mixed flow
Figure 3 - Finite element mid-field matching 13
Figure 4 - Flow Chart for the far-field matching 14
Figure 5 - Example of 3-D mid-field with 15
finite elements
Figure 6A - Chordwise pressure distribution 16
(at root)
Figure 6B- Chordwise pressure distribution 17
(ear tip)
Figure 7 - Shape functions in one-dimensional 18
elements
Figure 8 - Comparison of linear and Quadratic 19
elements
:;(I:S @ Section
3 "
UNAY*~ b} 1 Section C
Jus: !
s s |
BY
DT e gy ey |

P('l

e, ‘
e A ——

s "‘&“""n‘“v’ N s A (T

L A ol

g i
ib LTSN




[ =%

FLOW FIELD MATCHING

I.  INTRODUCTION

In transonic flow problems with subsonic freestream and infinite flow field,
discretized solution methods which by nature solve the equations only over a finite
domain are not in themselves adequate. The influence on the near field solution of
the "far field”, which extends to infinity, must be accounted for. The present
work has explored a matching method which has proved to be superior to the
asymptotic expansion commonly employed to accomplish this.

In the problem under consideration, the equations reduce to a linear, elliptic
Prandt1-Glauert equation in the limit at infinity. That equation is soluble on
infinite regions by methods of superposition using "panels" of Green's function
integrals. The simplest matching method introduces a matching boundary in the
flow field well outside the supersonic region. Outside the boundary, a Prandtl-
Glauert solution is found, while inside a nonlinear transonic solution is found
such that both value and normal derivative of the velocity potential match across
the boundary.

Two more refined methods were tried. In one, a Poisson term was added to the
Prandt1-Glauert equation to make it a second-order approximation to the nonlinear
equation. In the other, a "middle field" of large finite elements was introduced
between the panels and the (finite difference) inner field, with matching conditions
as before.

In order to avoid duplication of effort, the present report details the
finite element results while only outlining results that have already been published
in our papers and previous quarterly reports.

II. THEORY

The trarsonic small disturbance equation (TSDE) used in the finite difference
and finite element areas is in 3D,

) (K4x—KU%:)l*(?’2f *(¢l)1 ‘:O, '
where K'-'j-M”z and KY‘("”MMQ'
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The 2D equation is the same except the y- derivative term is missing. The first
order (FO) far field equation is the Prandtl-Glauert equation
(2) k¢ﬁ}* "*¢!£:o i .
The second order (SO) Poisson correction term used in the 2D second order method
satisfies

4 3 A 9 ) 2
(3) K‘\.(Mt"\{'l'l ‘Qﬁ‘cpx)/z)

where QV‘ is a first order solution.

The finite difference method used was conservative over-relaxation of the
Murman type. The outer flow is solved by source panels (see ref. 4) along the
matching boundary, the solution being updated every 10 to 80 sweeps. In the second-
order 2D method, the equation being solved for 77 is linearized about a new value
of 7“‘ about once every five first order updates.

Two methods of matching were tried: Revising the outer flow to partly eliminate
the normal derivative discontinuity between inner and outer regions (an "underelaxation"
factor of .5 being theoretically optimal here), and adding sufficient source strength
to cancel this discontinuity if it were superimposed on both inner and outer flows.

The latter method is simpler and easier to justify (ref. 1), and both seem to be
about equivalent in practice.

For more details on these methods see refs. 1, 2, 3.1, 3.2, 3.3. and Figures 1 and 2.

The extension of the second-order method to 3D proved to involve really unwieldy
influence-coefficient calculations, and its stability was called somewhat into question
by the later 2D results (ref. 3.3). Therefore we decided (ref. 3.4) to introduce a
middle field with large finite elements satisfying an approximation to (1). The finite
element (FE) region is highly nonlinear but still subcritical, and the usual elliptic
variational approaches are therefore usable (see ref. 5).

Figure 3 shows a schematic example of a 3-D midfield with finite elements. Both
potential and normal derivative continuity are enforced on the interface boundary between
FD and FE regions by overlapping by one mesh width. Since the same equation is solved
in both regions, the overlapping gives enough resolution for the continuity requirements.
Dirichlet conditions are used on all sides of the FE region boundary, and the overlapping
updates every cycle result 1in convergence of the normal derivative jump to zero.

Figure 4 diagrams the ordering by which the three flow fields are brought to
simu) taneous convergence (see ref. 3.5).

A iy a Kb, e %
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For the nonlinear TSDE, the finite element formulation introduces a variational
functional which will be minimized by the first variational principle. Only
rectangular elements are used, which allows the potential to be approximated simply
by using separation of variables. The finite element formulation is reviewed in
Appendix A.

A finite element code was developed for both trilinear and triquadratic elements.
The basic shape functions are defined and compared in Appendix B. The trilinear

function is continuous (C°) while the triquadratic spline is slope continuous (C]).
However, the resulting matrix for the quadratic elements has width five along the

diagonal, while it is tridiagonal for the linear elements.

IIT. RESULTS

As described in Ref. 2 and 3.1, the first-order and second-order methods were
very successful in a simple supercritical non-lifting case. Table 1 shows a cost
and quality comparison. Those results marked by asterisks were judged to show no
significant errors due to the far field approximation.

Table 1. Computer Times and Iterations

Box Far-Field CP Sec Sweeps FO It SO It
Large Freestream *266 612 / /
Medium Klunker 114 507 / /
Medium FO *136 597 10 /
Medium SO *158 682 12 3
Small Klunker 34 238 / /
Small FO 82 542 10 /
Small SO *83 569 11 3
V. small  Klunker 19 171 / /
V. small FO 79 524 39 /

*: Error £ 0.01 in off-shock Cp and shock location

Refs. 1 and 3.2 describe the extension of these methods to lifting airfoils.
Here again both FO and SO methods proved to be of value. The error in circulation of
the converged result (as measured against a "standard" result computed with a very
(e}
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large FD mesh) is plotted in Figure 1 as a function of effort for each matching
method. It was also discovered that the accuracy and cost of the results was
indpendent of the location of the circulation vortex, an important improvement on
the asymptotic methods.

Ref. 3.3 describes the conclusion of the 2D effort. Here the location of the
matching boundary was moved to halfway between mesh points, and it was proved that
the FO method could converge to good results even with the Tower "far field"” boundary
along the lower surface of an airfoil (Figure 2), as long as this surface was sub-
critical. The SO method diverged for this case, and showed instability and poor
results in other cases where the matching boundary went through a subcritical but rapidly
changing area of the flow field.

The 3D FE midfield is now operational and testbed results have been generated.
A rectangular wing of R = 6 with constant NACA 0012 section was analyzed by using
the FE midfield matching (Figure 5). Table 2 gives the comparison between three cases;
large FD box, with no matching, FO matching with panels, and double matching with FE's
and panels. In the FE midfield matching, the FD region was reduced to a very small
box.
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VERY
LARGE BOX SMALL BOX SMALL BOX
NUMBER OF o i ;
MATCHING BOUNDARY
TECHNOLOGY FDM FOM FDM
USED PANEL FEM
PANEL
OUTER BOUNDARY “19 € x <16 -162 £ x<1.55 -, 15 < X < (.9
OF FD BOX OLySINT 0<y<3.6 O<y < 3.6
042418 o<z <1(,%% 0<z < .9/
FD MESH SIZE
(XxYx2) 64 x 28 x 20 48 x 18 x 14 42 x 18 x 12
NUMBER OF
FD NODES 35840 12096 9072
NUMBER OF
FE NODES 0 0 280
NUMBER OF
PANELS 0 108 108
TABLE 2 COMPARISONS OF MESH SIZE

Note: Lengths are based on chord = 1
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FE and FE fields were iterated alternately for each far field update and the
potentials at non-common points on matching boundaries were approximated by Lagrangian
interpolation. Figure 6 shows the results when trilinear elements were used and
Table 3 demonstrates a further reduction in computational time. The FE midfield
matching solution, like the first-order solution, is indistinguishable from the
large box solution, while it converged in about 20% less computational time, even
though some computational time was used for the Lagrangian interpolations between
FD and FE regions.

Stability and convergence of the method were checked by testing several parameters
and the following requirements were found. The linearization of the nonlinear term in
TSDE should be compatible in FD and FE algorithms. The interface boundary should be
at least one node width outside of the supersonic FD area. Lastly, in the FD box
we used the customary relaxation factors of 1.5 for elliptic points and .9 for
hyperbolic points, but we found that instability resulted from the use of this
over-relaxation in FE region when alternate iterations were used.

@




VERY
LARGE BOX SMALL BOX SMALL BOX
CONVERGENCE -5 3 B
LIMIT 10 10-5 10-5
¥ TOTAL 749.2 293.0 231.8
E
’-—/\
::‘§ FD 747.7 278.4 175.1
=Ww
o
-
=S FE 0 0 31.0
Ew
a. ~
50
SE | PANEL 0 13.0 24.8 *
FD 440 470 389
] &
&8
= FE 0 0 389
0
5K
25 PANEL 0 25 25
TABLE 3 COMPARISONS OF COMPUTATIONAL TIME
AND NUMBER OF ITERATIONS
*Inefficient matrix solver used.
i’
!
i
) : %
! z
i ‘
:"K, : —————— ~ o— '
- —“ — e ——




IV. CONCLUSIONS

The first-order method of far-field matching, whereby the boundary conditions
at infinity for a transonic flow problem with subsonic freestream are applied using
linear panel methods in the far field, is a success both in 2D and in 3D. It allows
comparatively small finite difference meshes to be used without fear of "wind-
tunnel-wall-1ike" far field errors, resulting in cost savings and increased confidence.
(An estimate for the far field error is easily computed, as explained in ref. 1.).

The second order method, successful in some of the simpler 2D cases, is touchy
and cannot easily be extended to 3D. Its alternative, the finite element mid-field,
appears to be stable and accurate, and is likely to yield cost advantages over the
first order method.

The first order method is not hard to code and should see immediate application,
not only in transonic small disturbance equation codes, but also in other similar
problems like full potential equation codes and even separated-variable unsteady
flows (Helmholtz-like equations). The finite element midfield, being more complex
to code and yielding less advantage, will probably still find its way into the
mature forms of these codes - a 20% saving ought not to be scorned in a high intensity
production use environment.
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APPENDIX A FINITE ELEMENT FORMULATION

The Guderley-von Karman transonic small disturbance equation, (1) is solved
in the finite element midfield as well as in the finite difference box inside.

In this study, the finite element formulation is applied only to an elliptic
field and an iterative process is used. For a given Dirichlet condition, the
calculus of variations introduces a variational functional

X(‘#) = SSS(K¢:‘~+ % K,"P: + ‘P;'*- ¢:)4m<"y42 (3)
whose first variation yields the TSDE. That is, a function which minimizes the
functional is the solution to the E'l'(l)' For non-Dirichlet (Eq. 4) type
boundary conditions, a surface integral term must be added to Eq. (4). In enforcing
normal derivative continuity, it proved to be more convenient to update the solution
at the boundary iteratively, when an iterative process is used, than to add this term.

For the finite element approximation, a functional representation is used for
the approximate solution such as
Pyars Ze iy = LY 148, (5)
where the ," s are the basic shape functions, already defined, and < s are the
coefficient; to be estimated. Since only rectangular elements are used in this
study, a factorization can be used for simplicity:

¢0‘;)’,z7 - Z Ci: L (x)s (y)h (?) (6)
Then, from Eq. (4) and the f1rst variational principle
$X-2%/1c] =Q, (7)

the discretized finite element algorithm is derived by substitution. However, the
resulting FE formulation becomes nonlinear due to the second term in the RHS of Eq. (4).
As in the finite difference algorithm, the nonlinear term was linearized and updated
iteratively. Hence, Eq. (4) becomes

X@)= [fSikon, T, 35O [621" 192" + [4;1 an &y &z,
where superscript » stands for n-th 1terate and subscript e is the local element
in which the velocity is evaluated. It can be shown that this variational finite
element algorithm in the purely elliptic field yields precisely the same finite
element equation as the Galerkin approach in which the sha\pe function itself is ,
used for the weighting function. t
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APPENDIX B
Basic Shape Functions in the FE Formulation

Only the one dimensional case is shown in this appendix since the 3D shape
functions are factorized in the rectangular element. From Eq. (5), the approximate
solution is defined by

P = Ze o = 118, (8)
If we define the basic shape functions in each element ( Jf-i,...,l') as shown in
Figure 7, we have o
¢o~)*(-? £ ]{ ”g for ¥io € "‘X[

in a linear element and

C- -1
$wo= l;* S-‘ ;‘*']g z for X ¢XSX,

in a quadratic element.

Fig. 8 shows the difference in aoproximating a curve with these respect'lve elements.
A linear element is an approximation of £ g which gives (- cf (.« =.()...,'I) but
linear variation in each element. Hence it is €2 continuous.

The quadratic element gives better approximation to a smooth function at interior
points of the domain and guarantees C ” continuity since the derivative of -f:
is continuous everywhere.
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FIGURE 2 BOUNDARY MEETS LOMER SURFACE OF AIRFOIL IN MIXED FLOW
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FIGURE 6A CHORDWISE PRESSURE DISTRIBUTION (AT ROOT)




-17-

n = .97

— LARGE BOX

*x SMALL BOX WITH PANEL

O VERY SMALL BOX WITH PANEL AND FE
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FIGURE 8 COMPARISON OF LINEAR AND QUADRATIC ELEMENTS
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Abbreviations, Symbols and Acronyms Meaning

Continuous to n-th order

Coefficient of pressure

Central Processor

COC Cyber 175 Computer

Dimensions, Dimensional

Finite Difference

Finite Element

First Order

Iterations

Freestream Mach Number

Second Order

Transonic Small Disturbance Equation
Velocity Potential

Second Order Correction to Far Field Potential
Aspect Ratio
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