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I. INTRODUCTION

The whole-body motion of an item of military equipment struck by a
long-duration blast wave may result in functional or physical damage to
that item. In order to develop techniques for predicting such motion, it
is necessary to describe the ioading on the target produced by the blast
wave. In a computer code developed at the Ballistic Research Laboratory
to calculate rigid body rotation, the target was modeled as a collection
of rectangular parallelepipedsl. For such a code, a load prediction
technique is required which considers the variations in dimensions of
such parallelepipeds which occur in a given model.

The blast leading of a target occurs in two phases. the diffraction
phase, where the shock wave encounters and engulfs the target; and the
drag phase, which occurs when variations due to the diffraction process
have ceased and quasi-steady drag loading is experienced by the target.
ThIs report is concerned with developing a prediction technique for the
average pressures developed on the front and rear surfaces of a rectang-
ular parallelepiped during the diffraction phase. The target is assumed
to be struck by a shock front which is moving nonmal to the front surface.

No satisfactory diffraction loading prediction technique was available

for predicting the average inading on all surfaces of a target. In Ref-
erence 2, Taylor describes a comparison between results obtained in shock
tube exLeriments and loading predicted by 0ochnitques contained in st.,dard
M:nuals-'. Significant differences were shown, and therefore such t echn i -
ques reouire impirovemenit.

The basic data used by Taylor for the analysis doscribed in Reference
"2 were available a.t DRLO, The purpose of this report is to present equa-
ti ims fitted to these data to provide a prediction technique for the aver-
age loading on the front and rear -_rfaces of rectanghlar parallelepipeds.
; Equations are present(t as fitted to the data and also as twdified for
use in a rigid-body response code.

I..V% W. J. Payler, "A4 Ithad frior Pivwit-tinr, Wain L.udo fIP7u- the Diffkactio'i
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Figure I shows the target used by Taylor in the shock tube experiments.
Pressure gages were positioned at locations labeled A, C, and D. Position
B was not instrumented, since by symmetry the pressure at Position B should
be the same as that at Position A. To obtain the average pressure the out-
put of all three gages were electronically summed. The output from the
gage at A was given twice the weight of the output of gages D and C to
effectively include the record that would have been obtained by a gage at
B.

Figure 2 shows the test configurations used by Taylor. By the addition
of blocks on the ends of the model a two-dimensional configuration was pro-
duced. Data were obtained for both configurations and for front and rear
surfaces for nominal shock overpressures of 34.5, 69, 103, and 138 kPa (5,
10, 15, and 20 rsi). Tables i and 2 list the test shots and data appro-
priate for each .

Gertry5 made a hydrocode calculation for this target for a shock wave
of 34.47 kPa (S psi) incident overpressure for the three-dimensional con-
figuration shown in Figures 2.(A) and 2(C). The hydrocode predictions for
individual gage records matched the experimental data very well, Average
pressures colaputed for the front and roar surfaces were in good agreement
with average pressures calculated using computed values at the gage posi-
tions and the same averaging procedure as, was used for the gage records
in Reference 2. Thus the procedure usad by Taylor to record average pres-
sure on front and rear surfaces -eems satisfactory for the three-dimen-
siona1 contfigurat ion. No hydrocode calculation was available to check the
averaging procedure for the two-dimensional configuration shown in Hg-
ureý; 2.01 and 2(M). The positions of the gages and the averaginc proce-
dure do not seýem as appropriate for the two-dimensional cenfiguxation as
for the three-dimeinsionai configuration.

II. FRONT SUR"A" WADING.

A. Fitting an Lquati lofor Average Front Surface Pressure

In Reference 2, Taylor fouid that two and three-dinensional average
pressure curves on the front surface of the shock tube target would
nearly coincide if the time scale were described in units of the number
of rarefaction wave crossings of the loaded area. A rarefaction wave
originates at each free edge, so that for the three-dimensional con-
figuration two rarefaction wave crossings kccur in the time that one
occurs for the two-dimensional configuration. Figures 3 and 4 show &
figures from Reference 2 which present the average front-surface pressure
loading versus the numtber of rarefaction witve crossings. These data were
used for fitting an equation. As noted above, the three-dimensioonal data

R.A. Gantryj, et aZ1., "hre.'. Dimeeno.anZ Cjrate Ano Lysis of Shook-
bnd 0" aiz StPuct4*Nm m eM R 219, UFSA Rarr iatic Rsac

Zaboiatoieo, Aberdaen Puovuir Ground. MD, barh 197S. (AD #13003208L)
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(A) SURFACE ZONING
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in the stu&.j described in Reference 2.
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apparently represent the average pressure very well, while the two-dimen-
sional data may not present an accurate average. However, in the absence
of other data the two dimensional curves were fitted and used in forming
a prediction equation.

The basic form of the equation chosen for the fitting was as follows:

where:

P = average overpressure

PR = peak reflected overpressure

P =overpressure approached as a limit

LSI t a5(1 + R)/S

t time

SaS velocity of the rarefaction wave behind the reflected shock
wave

R z ratio of the edges of the minimum rectangular area which must
be examined to define the loading over the entire surface area.
The ratio is taken so that R ranges from 0 for the two-dimen-
sional configuration to I for the thrce-dimensional configura-i tlion.

SS minimum distauce of travel from an edge for a rarefaction wave
to traverse the loaded area.

A, B functions of time, incident overpressure, ambient pressure,
and R.

This equation provides the appropriate zero initial slope and can be
made asymptotic to the stagnation overpressure or some other selected
pressure limit.

The limiting average overpressuro for. PL was chosen to be the stagna-

tion ovorpressure, Pstag" Actually the average limiting overpressure on

the front surface should be somewhat. less than Pstag because some flow

occurs across the surface se the air flows around dho target. In"ikefer-
ence 3, the average overpressure limit. is given as VPs- 0.85 %P, where

* P8 is the incident pe•e overpressure and P is the corresponding dynaaic
q

vnsmhe. newoul exet the, anowlt of the' reduction from stagnation
ovrrssure, to 4e. funtion'of the she ýparameterI, a, d -A



The limited set of data available from Reference 2 suggest that the
three-dimensional data may indeed approach a limit less than that
approached by the two-dimensional data. However, because of the limited
data, Pstag was chosen as the average overpressure approached as a limit

for this fitting exercise.

The function A was found by examining values read from the curves for
t = 1. For that value the equation becomes:

P e A PL
R P RPR

Solving this equation for A, the result is:

A = -in (2)

Data for the two and three-dimensional configurations at t- 1 were
found to be almost equal for the same incident shock overpressuro, so
thOse data wore combined and fitted as a function of z, where z is the
ratio of incident shock overpressure Ps to the ambient atmospheric pres-

sureA

The function found for A was inserted into Equation 1 arnd corresponding
values of the function B were calculated to provide a smooth representation
of the curves in Figures 3 and 4. A finction was fitted to those values
of B versus t. A constant value provided a satisfactory representation of
the three-dimensional data. flowever, for the two-dimensional data a vari-
ation with both z and v was found necessary for a reasonable representation
and th. form selected was:

S,) =a (3)

where a, a and 8 wore the chosen parameters,

Figure 5 shows the area on the front surface of a block target for
which pressure loading must be determined in order to define the loading
over-the eoti-re front surface area, If the target Is' in free air there
are two planes of symetry, and only one-fourth the area need'be examined,
For a target on the surface, which represents the configurations shown inl

A ifigures 2A and 2C, a vertical plalie of syaetry exists aHd only one-half
the area -tst %e examinied. The paraverer R is defined as the ratio of the
two edges of. the sioiMm rectangular area which w4--t be examined to define

.20
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pressure loading over the entire front surface. The ratio is taken so
that R is less than or equal to one. For the two-dimensional data ob-
tained for the configurations shown in Figures 2B and 2D the value of R
is zero. For the three-dimensional configurations shown in Figures 2A
and 2C the value of R is essentially one.

It was assumed that the average pressure loading would vary from that
fcr R = 0 to that for R = 1 in proportion to the value of R. In the
fitted equations, then, the parameter R is inserted where a difference
due to configuration occurs to produce a smooth variation with the value
of R. The final form of the fitted equation for front-surface loading
was Equation I with:

A 0.265 z- 0. 2 0

B I.SR * (1 - R) (0.97 + e" 0.177 z0.37 ) (4)

P R =2 Ps(4z + 7)/(z + 7)

L P stag

where: P stag stagnation ovorpressure on the front surface; which for
Mach number less than ono is:

P (P P [ 5Z2 7/2
stap =(s ÷ A) [1 + PA

PS = incident shock oveirprssure

P ambient atmoppheric pressuro

P /P
S TA

ao w sound velocity 331.32 M/s

TA ambient atmospheric teperature, degrrs Kelvin

Figures 6 through 13 show the curves from Figures 3 and 4 e mpared

with values calculated using Equation I with functions defined as shown
int Equation 4.
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The quality of fit to the experimental data was judged by inspection
rather than on statistical measures which would be provided by a least-
squares fit of Equation 1 to the data. The fits developed are estimated
to be within the range of error for gage records and the gage record
averaging procedure.

Before performing the fits, the curves from Figures 3 and 4 were
normalized so that the peak value corresponded to the peak reflected
pressure. These experimental summed gage records should show an initial
period of no decay which corresponds to the time for a rarefaction wave
to reach the nearest gage from an edge. The actual average loading curve
will begin to decay immediately.

The equation was fitted to data for overpressures ranging from 34.5
to 138 kPa (S to 20 psi). The equation can be used outside this range,
say from 13.8 to 345 kPa (2 to 50 psi), but with less confidence.
Figure 14 shows curves calculated using Equation 1 with functions as
defined in Equation 4 for 13.8, 34.47, 137.9, and 344.7 kPa (2, S, 20,
and SO psi) for PA = 101.325 kPa (14.696 psi) and TA 150 C and R = 0.5,

and y = 1.4.

B. Co•parisons with Other Shock Tube Data

Reference 6 presents shock tube data on front- surface loading obtained
on a target with R - 1.0, corresponding to the three-dimensional config-
uration, for overpressures of 22, 40, 62, and 100 kPa (3.2, 5.8, 9.0,
and 14.5 psi) at an average PA of 102 kPa (14.8 psi). The target was

" 421 50.8 mm (2 in.) high, 101.6 mm (4 in.) wide and 50,8 mm (2 in.) deep.
Five gages were located on the front face. The individual gages were
recorded separately. The records were read and the values combined to
form the average front-surface pressure. The records show a finite rise
time, and the peak values do not correspond to the theoretical values
of peak reflected pressures appropriate for the values quoted for the
incident ovorprossuro. However, it is not clear that accuracy of the
average pressure at later times would be improved by normalizing the
records so that the peak values shown in Figures 21-24 of Reference 6
would correspond to the theoretical peak reflected pressures. Those
curves wore transformed to plots of P r /P versus v without attompt-

iag any normalization.

The transformed curves are shown Figures 15 and 16. The dashedScurves were calculated using Equation I with functions as defined in
Equation 4. The agreement between the predicted curves and the data

Scurves is best Cor the lowest incident shock overpressure. Agreement

SC, N. Kijy 'and or ., H. as"oAfc ir toadtig o a Throe-Pimxan-

eiona Z StctwtwjBe, fiv~ 952,... ASWP R"ot 81,Julyj 195S.il i. •": OK(AD 78562) .

- .. "i
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would indeed be improved if normalization of the shock tube data to the
theoretical values of peak reflected pressure were justified. The general
shape of the experimental curves seems to correspond to the predicted
curves. The data indicate a decay to an overpressure below the stagna-
tion pressure.

C. Comparison with a Three-Dimensional Hydrocode Calculation

In Reference 7, lottero presents the results of a three-dimensional
hydrocode calculation of the loading developed on an S-280 Electrical
Equipment Shelter by a 34.47S kPa (5 psi) shock wave. The shock wave
was assumed to have no decay in pressure behind the shock front, and to
strike the side of the shelter at normal incidence. The calculation
was made by R. A. Gentry, et al., at the Los Alamos Scientific Laboratory
using the hydrocode 11ML. The calculation was made in the same fashion
as that reported by Gentry. in Reference S.

Figure 17 shows a plot of predictions made using Equations I and 4
compared with the average pressure computed from the hydrocode results.
The ratio of P /average own plotted versus time. Values of the

parameters used in Equation 4 were P /P 0.4904, S 1.81 metres,
stag R

R n 0.8584, a 3 69.62 m/s, and z z 0.3402.

The hydrocode data indicate an Initial decay to a pressure value
less than the stagnation pressure limit of Equation I with functions
as defined in Equation 4. A pressure limit somewhat less than stagnation
pressure is physically reasonable, since there will be some flow across
the front-surface area and near the edges the pressure will not be at
the full stagnation value. The agreement between the predicted curve
and the hydrocode data points seoms satisfactory.

0I. Co~raupason with Standard Prediction Techniques

In Reference 3 the average pressure on the front surface of a target
is presented as decaying from the peak reflected pressure to a value
P 0.85 P where P is the overpressure and P is the dynamic pressure

SS S q
ino the blast wave. The decay is approximated by a straight line and
occurs i the time t* u 3 S/as. This time corr"ponds to t - 3 for

the two-dimensional configuration where a . 0 a. u to - z 6 for the
three-dimonsional cotlfiguration where R a 1. In Figures 6 through 13
the predictions made using this technique are shown by the straight lines
terminating at an X. The disagreemnt is particularly largo for the
three-dimensional configuration. The primary purpose of the work by
Taylor 2 was to point out this disagreement and to emphasize that the
standard prediction techniques were not very good when applied to the

three-diwnsional configuration,

R?. H. Lot t'oro "Compu1taonat Prediotions of Shook Diffivation Loadinig
on a. S-200 Si tis•cal Equipmont Shotter," BRL Mamorondum Refprt 2599,
M~wo~ 394 '(AD) A022604)

i ji 7.
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E. Modification to Account for the Decay of the Incident Blast Wave

The data obtained by Taylor 2 apply for a shock wave with no pressure
decay behind the shock front, which corresponds to a blast wave from an
infinitely large explosion. To account for the pressure decay which
occurs in a real blast wave, the pressures predicted by Equation 1 are
reduced in proportion to the reduction in P with time. This provides

stag
only an approximation to the correct pressure, since the reflected pres-
sure is a non-linear function of the incident shock overpressure waveform.
However, the correct function is not available. A treatment of non-linear
shock wave reflection theory in one-dimensional form is given in Reference
8, and is quite complex, even for one-dimensional flow.

If this procedure is incorporated into Equation 1 to account for the
decay with time of the incident shock overpressure, the prediction equa-
tion becomes as follows;

"P (t) = { AB (1A()

[Rk R +saj stag

"where: P(t) average front-surface ovorpressure at time t

P (t) stagnation overpressure in the blast wave at time tstag

2 P Ct) 17/2
"(P (t)+ P(P It +)I P

P (t) overpressure in the blast wave at time t
s a

P g =stagnation overprossuro corresponding to peak incident
overpressure Ps'

F. An Alternative Pit to the Average Front-Surface Overpressure

In the course of using Equation I for predictions it was noted that
predicted curves for the extreme ends of the overpressure range of
interest (13 to 345 kPa, or 2 to SO psi) did not differ very much in
initial shape when plotted as P /P versus time. This result. averagge R

suggested e.aamination of the data in terms of a time normalization with
no dependence on overpressuro, such as t.* t ao0 ( * R)/S, where % is

the souind velocity in the undisturbed air.

R S. .Sh p md R. C. MAW, "A Mon ineau Shok Awe fLtioh
Tha'ooj" BiLt R t. 1351I Jakiay 1967,? .(AD 649946).
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Figures 18 and 19 show the two and three-dimensional data for
P average/PR plotted versus T.. The correspondence is such that no

attempt was made to maintain the separate identity of the curves in
the initial part of the plots. There is no indication of a consistent
variation with overpressure level until most of the pressure decay has
occurred.

Equations of the same basic form as Equation 1 were fitted to the
data. For the two-dimensional case, R 0 O, the results for the functions
A and B were:

A 0.388

B = 1.13z -0.3 0.026f0'93 (T-6) 2  (6)

p =P
L stag

where T = = t ao (1 + R)/S, and other quantities have been defined for
Equations I and 4.

For the three-dimensional data the fit was made neglecting the appar-
ent variation in the limiting pressure at late times. The stagnation
pressure was used as the limit to simplify joining the resulting equation
with Equation 6 to obtain one equation applying for a~l valucs of R between
0 and 1. The results for A and B for the three-dimensional configuration

* were:

A 0--U6

B 1.54 * 0.1 (Y-2.3)- (7)

PL stag

The final ftuctions combining the results of both fittings are:

A 0.388 (O-R) * 0.346 9

S (l-R) (1.13:"0".0.026z0' (V-6)2].i [1.54 + 0.1 (1-2,3)2] (8)

P L stag

Figures 20 through 27 show the curves calculated from Equation I with
functions as defined in Equation 9 compared with the experimental curves.
It is clear that the resulting curves represent reasoanable fit's. Equa-
tion I can be used vith functions as defined by either Equation 4 or
Equation 8 in the range from •S45 to 138 kPa (S to, 20 psi) with! no sigri-

"* ificant difforeance in the result.
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One requirement for use with the overturning code is that the predic-
tion equation used should provide reasonable predictions over the range
of incident shock overpressures from 13 to 345 kPa (2 to 50 psi).
Figures 28 and 29 show predictions made using Equation 1 with functions
as defined by Equation 4 and Equation 8 for a target with R = 0.5,
S = 2 metres, PA = 101.325 kPa (14.969 psi) and TA = 150 C. It was

assumed that no decay occurred behind the shock front. For both over-
pressure extremes the fit versus T, (Equation 8) is higher initially and
lower later than the fit versus T (Equation 4). No data were available
to provide a basis for selecting one fit in preference to another. Ihe
fit provided by Equations 1 and 4 was selected as the preferred fit
because the pressures predicted are lower at early times than the fit
provided by Equations I and 8. Additional data are required to determine
which of the two fits is best, and whether fitting against T rather than
agaillst T. will provide the simplest representation over the widest range
of incident shock overpressures.

Ill. REAR SURFACE LOADING

In Reference 2, Taylor presents average loading data for rear sur-
faces for the configurations shown in Figures 2C and 2D. Figures 30 and
31 show these data. The average pressure ratio for the rear surface is
shown plotted versus -rV where T = t a /S. Note that this time normal-

0
ization does not include the paramoter R. The two-dimensional configura-
tion (R - 0) is configuration D, and the three-dimensional configuration
(R - 1) is configuration C. The curves were obtained by averaging the
output of the three gages shown in Figure 1 according to the relation

P (2A + C + D)/4average

Although this relation was shown to provide a good average for the
three-dimnnsional configuration at 34.47 kPa (5 psi) in Reference 5,
the placement of gages and this averaging procedure seems less suitable
for the two-dimensional configuration. IHowever, there were no hydrocodo
data at hand to use to evaluate this averaging procedure for tile two-
dimensional configurat ion.

The curves from Reference 2 shown in Figures 30 and 31 do not indi-
cats the initial time delay which corresponds to the time between shock
arrival at the edge of the rear face when loading of the rear surface
begins, and wave arrival at the gage nearest an edge. This time differ-
once was not measured in the prograr, of Reference 2. however, the ini-
tial wave crossing the rear surface must be a weak shock wave as shown
by the low pressuro at the initial rise of gage records. The velocity
of this initial wave must be very near the sound velocity in undisturbed
air, and hence this sound velocity was used to compute the initial delay
for the average loading records. The time delays expressed in totes of{ V were 0.488 for the two-dimensional configuration and 0.166 for the

three-dimensional configuration.
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* ~~Equations 3. a'nd

0.9 \---- Equiations 1 and 8

TI R 0.5, S 2 metres

P 101.325 kPa (14.696 psi)

0.8 .. A 2.150K (15 0C)

PS = 13.78 kPa (2.0 psi)
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Figure 28 Predictions of trort surface pressure ratios using
Equations I. and 4 and Equations. 1 and 8 for an
incident Shoot overpreosure of 13.78 iat (2-.0 P1i)
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Figures 32 and 33 show the curves from Figu.es 30 and 31 with the time
delay for wave arrival included so that TB = 0 corresponds to the initia-

tion of loading on the rear surface. Values were estimated for the aver-
age maximum pressure ratio achieved on the rear surface at the conclusion
of the initial rise of the record. These values are listed as PRM/P s

in Table 1, where PRM is the estimated maximum average pressure on the

rear surface and Ps is the incident peak overpressure, This ratio is

shown plotted versus z = P s/PA in Figure 34.

A. Fitting an Equation for Average Rear Surface Pressure

The curves in Figures 32 and 3$ for experimental data were normalized
so that the ordinate value of 1.0 corresponds to the value of PIN /P s. It

was found that the following relatior provided what seems to be a good
average curve for both the two and three-dimensional configurations:

P 0- .71-B (I + 0.16TB2)2 (9)

RI

Figure 35 shows the normalizod curves superimposed without regard for
individual shot identification for the two and three-dimensional configur-
ations. The dashed curve shown in eých plot is the plot of Equation 9.

Figure 36 shows the normalized curves for the two-dimensional config-
uration for Shot 3 (32.82 kPa or 4.76 psi) and Shot 6 (139.4 kPa or 20.22
psi) and for Equation 9. Figure 37 shows a similar plot for Shot 2
(32.96 kPa or 4.78 psi) and Shot 10 (148,5 kPa or 21.54 p5i) fol the
three-dimensional configuration. Thierv is an indication of a variation
in shape with z, the incident shoct pressure ratio. In Figure 37 the
curve for the lower pressure seems to rise faster than the curve for the
higher pressure. The curves shown in Figure 36 also suggest a variation
with I. In the initial part of the record the variation is the opposite
of that shown in Figure 3?, Nhile for vB > 1.75 the curve for the higher

Z ,oes seem to be lower than that for the lower

Another sttudy 6 ihows a variation wit-, incident overpressure level for

a configuration corresponding to R -1 or the three-dimensional configura-
* t.ion. Considering this fact, and that the rore usual structure of inter-
* est ,nore nearly corresponds to the threeo-dimensional rather the'n the two-

dimensional configuration, an equation was fitted zoneidering the t
dependence as shown by the three-dimensioflwl configuration. Because of
the uncertainty in the accuracy of the average pressure for the two-dimen-
sional configuration and the iixed vsriation with z shown, no attempt was
made to fit a variation with t for the two-dimensional configuration- -
Instead, the same variation as found for the three-divensional configura-
tion was assuaed to apply for both cmsos, and for all values of R between
0 o"d 1.
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The equation fitted was

S1 - e 0 9 4e 0'27Z TB(l + 0 .16¶B 2 (10)

PRM

Figures 38 and 39 show the normalized records with the fit from
Equation 10 plotted as the dashed curve.

To develop a complete prediction equation for the rear surface pres-
sure, it was necessary to find equations for the maximum rear surface
pressure used as normalizing factors. These data are shown in Figure 34.
A difficulty added in the fitting process was the requirement for finding
relations which would behave in a reasonable fashion when used outside
the range of fitting, say over the range of z from 0.1 to 3.4. The rela-
tions found were as follows:

Two-dimensional, R 0

P RM 0.73zO0.5 1.4o 0)83z

S~s
Three-dimensional, R 1

083:

(12)

The equations whore combined to predict values for the variation of
R botween 0 and I as follows:

PRM 0-0.73 - 0.4R)z0$*14""5

The curves shown in Figare 34 are plots of this equation with R - 0.

The final prediction equation for average pregsure on the rear surface
is the combination of .Lquations 10 ard 13, and is as follows:

S-(0,. 73 - 0 4 R z . ° 1o..94o6 (14)
PV

: V ," : ,":-It(14 )'!.0
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The dashed curves in Figures 32 and 33 were calculated using this
equation, and the quality of the fit can be judged from these plots. The
fit is best for the three-dimensional configuration, where R = 1.

B. Comparison with Other Shock Tube Data

In Reference 6 rear surface average pressures are shown for a config-
uration for R = 1. Figure 40 shows these data compared with the predic-
tions from Equation 14. The multiple curvatures shown by the experimental
data are not modeled by the equation, but the equation does seem to pro-
vide a curve which fairs reasonably through the data.

C. Comparison with a Three-Dimensional Hydrocode Calculation

Figure 41 presents a comparison of the predicted curve calculated
using Equation 14 with results from a hydrocode calculation for the
average pressure on the rear surface of an S-280 Electrical Equipment
Shelter 7 . The cliculation was made for an incident shock front over-
pressure of 34.47S kPa (S psi). It was assumed that no decay occurred
behind the shock front. The calculation is reported in detail in
Reference 7. The agreement shown in Figure 41 seems satisfactory.

D. Comparison with Standard Prediction Techniques

In Reference 3 the average pressure rise on the roar surface is
approximated by a linear increase from the time of arrival of the shock
front at the rear surface to a maximum value given by:

PRMp ½[i (1 -OSz)e°'s ] (S

S

The time for the rise is specified as t 4S/a.o which corresponds

to T 4.

Predictions using this technique are shown as the straight •lines in
Piguros 32 and 33, with the X indicating the taximum value. The large
discrepaticy emphasized by Taylor 2 betweevi the straight-lino approximation
and the shock tube data is evident.

U. Modificatito to Account for lDcay of the Incident Blast Wave

• : When the ovetpressure behind the incident shock front decreases with
time as occurs in a blast wave, the average pressuie on the rear surface j
is assumed to be reduced in proportion to the reduction in incident pros-
sure from its peak value. Equation 14 remains unchanged except that Ps(t)

is substituted for P ' the peak iucidpt ovarpressure,
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F. Modification for Code Use

The suggested form of the average front surface pressure function
for incorporation into the overturning code of Reference 1 decays to
stagnation overpressure as shown in Equation 4. The particular over-
turning code terminates the calculation of diffraction loading when the
overturning moment due to drag loading becomes equal to or exceeds that
due to the diffraction moment. Assuming equal diffraction and drag
loading areas and moment arms, the moments are equal at late times when:

Pstag -P rear C d Pq

where: Pstag = peak stagnation overpressure

"Prear = ultimate average ovcrpressure on rear surface

Cd = drag coefficient

P = peak dynamic pressure.q

To insure that the diffraction loading calculation tern.inates in a
reasonable time with an appropriate match between the diffraction and
drag loading, the asymptotic value of Prear was adjusted so that

Pstag -Prear = 0. 9 7 Cd Pq.

The choice of the factor 0.97 is arbitrary, but its use is expected
to produce a transition where the diffraction loading essentially has
boon completed. Then the value for Prear is:

Proar Pstag - 0.97 Cd Pq. (16)

IFor a tlast wave where the pressure decays with time, P (t) and
stag

P (t) are substituted for P and Pq, respectively. Thon the predic-
q S tall

tion relation appropriate for incorporation into an overturining code is:

PNt) (Psg(t) -0.97 C4 Pq(t)) I 94eO2 7 zT(l * 0"16Q{ (1-)

TV. DISCUSSION

Equations -for predicting average pri'ssure on the front and rear
surfaces of a rectangular parallelopipod have been developed by fairing
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curves through a limited set of data from Reference 2. The equations
fitted for the three-dimensional configuration provide reasonable agree-
ment with shock tube data from References 2 and 6 in the overpressure
range from 22 to 138 kPa (3 to 20 psi) and with a hydrocode calculation7

at 34.475 kPa (5 psi). The validity of the fits for the two-dimensional
configuration is subject to question because the placement and weighting
of the gage records in Reference 2 does not seen; as suitable for the
two-dimensional configuration as for the three-dimensional configuration.
Thus the equations fitted for the two-dimeasional configuration should
be regarded as an interim fit which may be improved if additional shock
tube data and hydrocode calculations become available and are utilized,
Because the two-dimensional results are incorporated in the final pre-
diction equations where R varies between 0 and 1, the confidence in the
prediction should decrease somewhat as R approaches zero.

:.t was found that the available shock tube data for average front sur-
face overpressure could be fitted satisfactorily against either the dimen-
sionless parameter T = t a5 (l + R)/S or * t a0 (1 + R)/S. Addiional

data for a wider range of shock overpressures are required to determine
which of the two parameters can be used to obtain the most useful fit.

The prediction equations provide smooth extrapolations to the extreme
values of overpressure of interest (13 to 354 kPa, or 2 to 50 psi), but
the validity of the extrapolation at these extremes is not established.
Addition,l data, particularly at overpressures above 20 psi, are required
for values of R between 0 and 1 to provide a basis for properly accounting
for the variauion of pr:'diicted average pressure with R The modifications
to account for deca•c of pre&sur, behbind the incident shock front should
be evaluated if appropriate datA beome available.
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LIST OF SYMBOLS

Symbol

A = function of time, incident overpressure, ambient overpres-
sure, and R used in equations fitted to average pressure
profiles.

a = parameter used in a fitted equation.

a0  = ambient sound velocity = 331.32 T2-•A1 6 mAs.

a5  = velocity of the rarefaction wave behind the reflected shock

wave = 7(7, + 6z)

B = function of time, incident overpressure, ambient overpres-
sure, and R used in equations fitted to average pressurei ~pro files.

Cd = drag coefficient for a blast target.

CONF = symbol meaning configuration

P = average overpressure on front surface or ioar surface.

P(t) = average overpressure versus time for a front or rear surface.

P = average pressure on front surface.
S • average

P A = ambient atmospheric pressure.

PL overpressure approached as a limit on the front surface.

P q peak dynamic pressure.

Pq~t) drtamic pressure versus time for a blast wave.

SR Ptak reflected overprossuio = 2 P (4z + 7)/(z +7).

P rear average pressure on rear surface approached as a limit as. b• roar time increases.

•il estimated maximum average overpressure on roar surf'ace after

initial pressure rise.
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LIST OF SYMBOLS (Continued)

Sym.bol

P = peak incident shock overpressure.s

PS(t) = overpressure versus time for a blast wave.

P = stagnation overpressure on the frent surface; which for a
stag non-decaying shock wave and a Mach number less than one is:

Psta (P + PA) (I + 5z2 )/ PA
stag s A 7(z + 1)(z + 7))

P stag(t) - stagnation overpressure at time t on front surface, whichfor Mach number less than one is:

P (t) 17/2
Ps (t) = 'Ps(t) + PA) + (2/7) ,t,sta s (tl+ P A) " A

R ratio of the edges of the minimum rectangular area which
must be examined to define loading over the entire surface
area. The ratio is taken so that R ranges from 0 for the
two-dimensional configuration to 1 for the three-dimensional
configuration.

S- minimum distance of travel from an edge of a front or rear
surface for a wave to traverse the surface.

- time.

t* - time for decay of front surface average overpressure in a
standard prediction technique 3 , t' a 3 S/a 5 .

TA u ambient atmospheric temperature, degrees Kelvin.

-a PiP AD the ratio of peak incident shock overpressure to

ambient atmospheric pressure.

"- parameter used tn a fitted equation.

w parameter used in a fitted equation.

y - ratio of specific heats y u 1.4 for an ideal g-s.

T t a(1 R)S.
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LIST OF SYMBOLS (Continued)

Symbo 1

T, = t a(0 + R)/S.

S•B ta/S.

2DF = symbol meaning two-dimensional configuration, front surface
record.

2DR symbol meaning two-dimensional configuration, rear surface
record.

3DF symbol meaning three-dimensional configuration, front sur-
face record.

3DR' symbol meaning three-dimensional configuration, rear surface
record.
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