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[.  INTRODUCTION

The whole-bhody motion of an item of military equipment struck by a
long-duration blast wave may result in functional or physical damage to
that item. In order tc develop techniques for predicting such motion, it
is necessary to describe the 1cading on the target produced by the hlast
wave. In a computer code developed at the Ballistic Rescarch Laboratory
to calculate rigid body rotation, the target was modeled as a collection
of rectangular parallelepipeds!. For such a code, a load prediction
technique is required which considers the variations in dimensions of
such pavallelepipeds which occur in a given model.

The blast leading of a target occurs in two phases: the diffraction
phase, where the shock wave encounters and engulfs the target; and the
drag phase, which occurs when variations due to the diffraction process
have ceased and quasi-steady drag loading is experienced by the target.
This report is concerned with developing a prediction technique for the
average pressures developed on the front and rear surfaces of a rectang-
uiar parallelepiped during the diffraction phase. The target is assumed
to be struck by a shock fromt which is moving normal to the front surfuce.

No satisfactory diffraction loading prediction technique was available
for predicting the average loading on all surfaces of a target. In Ret-
erence 2, Taylor describes a comparison between results obtained in shock
tube experiments and loading predicted by techniques contained in standard
manualsy.  Sigaificant differences were shown, and thervefore such techni-
ques requive improvewment.

The basic data used by Taylor for the analysis doseribed in Reference
2 wore available at BRLY. The purpose of this report is to present egua-
tions fitted to these data o provide u prediction technique for the aver-
age loading on the front and rear :.rfaces of vectangular parallelepipeds.
Equations arve presented as Titted o the data and also as modified for
use in a rigid-body response code,

A . ) n
NoH Brhrddge, "Blast Overtweming Mxdel Jop Growd Tapgets,™ BRL
Report 1883, Juw 1878, {(AD #BO12102L)

&
"W, d. Tagylor, "4 Method for Predictisns Blaae Loads During the Dffraction
fhage, * USA Balltgite Reecareh Laboretortes, Abewdecw Proviwg cround,
Narylawi; dncluded in Part ¢, Bulletin 42, The Shook and Vibration
Bulletin, Tha Shoek and Vibraticn Isuformrtion Center, Jawal Research
Laboratory, Nashingtom, D. C., Jamuay 1972,

C. H. Soreig, of al., YStructwal Doeign for Dymawic Loads, " NeGraw-d:ili
Book Company, Ine., New York, ¥. Y., 138§. -

W. J. Taylor, Private Comuoioation.
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Figure 1 shows the target used by Taylor in the shock tube experiments,
Pressure gages were positioned at locations labeled A, C, and D. Position
B was not instrumented, since by symmetry the pressure at Position B should
be the same as that at Position A. To obtain the average pressure the out-
put of all three gages were electronically summed. The output from the
gage at A was given twice the weight of the output of gages D and C to
effectively include the record that would have been obtained by a gage at
B.

Figure I shows the test configurations used by Taylor. By the addition
of blocks on the ends of the model a two-dimensional cenfiguration was pro-
duced. Data were obtained for both configurations and for front and rear
surfaces for nominal shock overpressures of 34.5, 69, 103, and 138 kPa (S,
10, 15, and 20 Esi). Tables 1 and 2 list the test shots and data appro-
priate for each®.

GertryS made a hydrocode calculation for this target for a shock wave
of 34.47 kPa (5 psi) incident overpressure {or the three-dimensional con-
figuration shown in Figures 2(A) and 2(C). The hydrocode predictions for
individual gage records matched the experimental data very well. Average
pressures computed for the front and rear surfaces were in good agreement
with average pressures calculated using cemputed values at the gage posi-
tions and the same avevaging procedure as was used for the gage records
in Reference . Thus the procedurc used by Taylor to vecord average pres-
sure on front and rear surfaces scems satisfactory for the three-dimen-
stonal configuration. No hydrocede caleulation was available to check the
averaging procedure for the two-dimensional configuration shown in Fig-
ures 2{B) and 2(D).  The pesitions of the gages and the averaging proce-
dure do not sger as appropriate for the two-dimensienal cenfigusation as
for the three-dimensional configuration.

11, FRONT SURFACE LOADING

A, Fitting an Equation for Average Front Surface Pressure
8 4

In Reference 2, Teylor found that two and three-dimensional average
pressure curves on the frant surface of the shock tube target wauid
nearly coincide {f the timo scale were described in units of the nuaber
of rarefaction wave crossings of the loaded area. A rarvefaction wave
originates at each free edge, so that for the three-dimeasional con-
figuration two rarefaction wave crossings vecur in the time that one
occurs for the two-dimensional configuration. Figures 3 and § show
firures from Reference 2 which present the average front-surface pressure
loading versus the nurber of rarefaction wave crossings. These data were
used for fitting an cquation. AS notod above, the three-dimensional data

5F. A. Gantry, et al., "Throw Meansional Computer Analysis of Skook

Leqda on a Sieple Structure, ™ BHL CR 219, USA Ballistie Rosearch
Laborataries, Aberdwen Proviwy Cround, ND, March 1273, (AD #B003208L)
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Figure 1 Target dimensions and gage positioning used
in the study descrived in Reference 2.
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Figure 2 Test vconfigurations for the shock tube experimehts
for the study reported in Heference 2.
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apparently represent the average pressure very well, while the two-dimen-
sional data may not present an accurate average. However, in the absence
of other data the two dimensional curves were fitted and used in forming
a prediction equation.

The basic form of the equation chosen for the fitting was as follows:

P PLY -a® Py
o\l tE)e T R 1)
R R R
where:
p = average overpressure
Pp = peak reflected overpressure
?L = overpressure approached as a limit
T =t as(l + R)/S
t = time
ag = velocity of the rarefaction wave behind the reflected shock
wWave

R s vatio of the edges of the minimum rectangular area which must

be examined to define the loading over the entire surface area.

The ratio is taken so that R ranges from 0 for the two-dimen-
sional configuration to | tor the three~dimensional configura-
tion.

S e winimun distance of travel from an edge fcr a rarcfaction wave
to traverse the loaded avea. :

A, B = functions of timeo, incident overpressure, ambiont pressure,
and R,

This equation provides the appropriate zero initial slope and can be
made asymptotic to the stagnation overpressure or somo other sclected
pressure limit.

The limiting average overprassure fﬁr.?h was chosen to be the stagna-
tion overpressure, pst'g' Actually the average limiting Qverpressure on
the front surface should be somewhat less than P, stag’ , hocause soame flow

accurs across the surface ae the aix flows. avound ths target. In Kefey-
ence 3, the. average overpressure limit is given as P + 0,85 Pq. where

P is the 1ncident p¢¢k nverpressure and Pq is the LofreSponding dynamic
jp@essnre. Orie would exgect the amount of the veduction fron stngnatxnu '

~ overpressure to be a-function of the shaps parameter R, vs, and. P
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The limited set of data available from Reference 2 suggest that the
three-dimensional data may indeed approach a limit less than that
approached by the two-dimensional data. However, because of the limited

data, Pstag was chosen as the average overpressure approached as a limit

for this fitting exercise.

The function A was found by examining values read from the curves for
T = 1. For that value the equation becomes:

P L} -A L

—_—ul] - =]e e

pR R R

Solving this equation for A, the result is:
?R pR
pR

Data for the two and throe-dimensional configurations at v = 1 were
found to be almost equal for the same incident shock overpressure, so

these data were combined and fittod as a function of z, where z is the
ratio of incident shock overpressure PS to the ambient atmospheric pres-

A= -In

v
——
% ]
N

sure P,
A

The function found for A was inserted into Equation ] and corresponding
values of the function B were calculated to provide a smooth reprcsentation
of the curves in Figures 3 and 4. A function was fitted to these values
of B versus t. A constant value provided a satisfactory representation of
the three-dimensional data. However, for the two-dimensional data a vari-
ation with both ¢ and v was found necossary for a reasonable representation

gl th. form Selected was:

L8 v
B{z, v)=a+e &7 (%)

-wheve a, o and 8 were the chosen parameters.

Figure § shows the area on the front surface of a block target for
which preéssure loading must be determined in ovder to define the loading.
over the entive front surface avea. [f the target is ir free air there
are two planes of sywsetry, and only one-fourth the area need be examined.
For a target on the surface, which represents the configurations shown in
Figures 2A and 2C, a vertical plaiae of synnetry exists and only ono-half

- the area nust “e exanined The pavamerer R is defined as the ratio of the

two edges of the mininum rectanguler avea which wust be exanined. to define

20
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pressure loading over the entire front surface. The ratio is taken so

that R is less than or equal to one. For the two-dimensional data ob-

tained for the configurations shown in Figures 2B and 2D the value of R
is zero. For the three-dimensional configurations shown in Figures 2A

and 2C the value of R is essentially one.

It was assumed that the average pressure loading would vary from that
fcr R = 0 to that for R = 1 in proportion to the value of R. In the
fitted equations, then, the parameter R is inserted where a difference
due to configuration occurs to produce a smooth variation with the value
of R. The final form of the fitted equation for front-surface loading
was Equation 1 with:

A= 0.265 2-0.20

Os 37
B= 1.5 + (1 - R) (0.97 + e 0-377 27771y 4)
PR = 2 Ps(dz + NN/ (2 +7)
PL® Pstag
where: Pstag = stagnation overpressure on the front surface; which for

Mach number less than one is:
P =P+l e st " p
stag s A T(z+1; (247) T A

incident shock overpressure

-~
4]

-3
)

A ambient atmogpheric pressure

1. PS/PA
| 8247) (2297)
8g © so‘li"i(”i_oéz‘.i

TA‘

a_ = sound velocity = 331.32 W5 S

-t
&

. “ ambicnt atmospheric temperature, degrres Kelvin

Figures 6 through 13 show the curves from Figures 3 and 4 compared
with values calculated usxng Equation 1 with functions defined as shown
in Equation 4,

e e s wanms pmisos es s r
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--- BEquations 1 and b
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Figure 6 Average pressure ratio on the front face of the two-
dimensional shock tube target compared with Titted
‘eguations and u standard prediction technique for an
incident shock overpressure of 3& 13 kPg (5 2h pai).
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144.2 kPa (20.9 psi)

= Shot 14 - 2-Dimensional
--- Equaticns 1 and b

T et a_s(l + R)/S

—x Standard Prediction Technique

Average pressure rasio on the front face of the two-
Admensional shock tube target compared with fitted

equations and a standsrd prediction technique for an
tncident chock overyressurs of 144.2 kPe (20.9 psi).

26

e e e e g et s st <1l 0




34.5 kPa (5.0 psi)
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-~~ Equations 1 and b
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Figure 10 Avorage presgure ratio on tho front face of the three-
dimensional shock tube target compartd with fitted '
‘equations and & standexd preduction technique for an
incident shosk cverpressure of 34.5 kPa (5.0 psi).
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The quality of fit to the experimental data was judged by inspection
rather than on statistical measures which would be provided by a least-
squares fit of Equation 1 to the data. The fits developed are estimated
to be within the range of error for gage records and the gage record

averaging procedure.

Before perferming the fits, the curves from Figures 3 and 4 were
normalized so that the peak value corresponded to the peak reflected
pressure. These experimental summed gage records should show an initial
period of no decay which corresponds to the time for a rarefaction wave
to reach the nearest gage from an edge. The actual average loading curve

will begin to decay immediately.

The equation was fitted to data for overpressures ranging from 34.5
to 138 kPa (5 to 20 psi). The equation can be used outside this range,
say from 13.8 to 345 kPa (2 to 50 psi), but with less confidence.

Figure 14 shows curves calculated using Equation 1 with functions as
defined in Equation 4 for 13.8, 34.47, 137.9, and 344.7 kPa (2, 5, 20,
and 50 psi) for PA = 101.325 kPa (14.696 psi) and TA = 15°C and R = 0.5,

and y = 1.4,

B. Comparisons with Other Shock Tube Data

Reference 6 presents shock tube data on front.surface loading obtained
or a target with 8 = 1.0, corresponding to the threc-dimensional config-
uration, for overpressures of 22, 40, 62, and 100 kPa (3.2, 5.8, 9.0,
and 14.5 psi) at an average PA of 10z kPa (14.8 psi). The target was

50.8 mm (2 in.) high, 101.6 mm (4 in.) widoe and 50,8 mm (2 in.) deep.
Five gages were located on the front face. The individual gages were
vecorded separately. The records were read and the values combined to
form the average front-surface pressure. The records show a finite rise
time, and the peak values do not correspond to the theorctical values
of peak reflocted pressures appropriate for the values quoted for the
incident overpressuve. Howover, it is not clear that accuracy of the
avorage pressure at later times would be improved by normalizing the
records so that the peak values shown in Figures 21-24 of Referounce 6
would correspoud to the theorstical peak reflected pressures. These
curves wore transformed to pluts of P /PR versus v without attompt-

averago
ing any novmalization. :

The transformed curves are shown in Figures 15 and 16. The dashed
curvos wern calculated using Equation 1 with functions as defined in
Equation 4. The agreement between the predicted curves and the data
curves is best for the lowest incident shock overprossure. Agreomeut

%. . Kangery and J. K. Keefer, ”Azr BZaat Load&ng on a Throe-Diman-
atonatl Structure," BRL Rapo»t 982, AFSWP Report 813 July 1955, '

(AD - £78562)
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would indeed be improved if normalization of the shock tube data to the
theoretical values of peak reflected pressure were justified. The general
shape of the experimental curves seems to correspond te the predicted
curves. The data indicate a decay to an overpressure below the stagna-
tion pressure.

C. Comparison with a Three-Dimensional Hydrocode Calculation

In Reference 7, lLottero presents the results of a three-dimensional
hydrocode calculation of the loading developad on an $-280 Electrical
Equipment Shelter by a 34.475 kPa (S psi) shock wave. The shock wave
was assumed to have no decay in pressure behind the shock front, and to
strike the side of the shelter at normal incidence. The calculation
was made by R. A, Gentry, et al., at the Los Alamos Scientific Laboratory
using the hydrocode BAAL. The calculation was made in the same fashion
as that reported by Gentry in Reference 5.

Figure 17 shows a plot of predictions made using Equations 1 and 4
compared with the average pressure computed from the hydrocode results.
The ratio of P /P, is shown plotted versus time. Values of the

average’ R
parameters used in Equation 4 were pstag/PR = 0.4904, S = 1.8! metros,
R = 0.8584, a, = 369.62 m/s, and z = 0.3402.

5

The hydrocode data indicate an initial decay to a pressure value
less than the stagnation pressure limit of Equation 1 with functions
as defined in Equation 4. A pressure limit somewhat less than stagnation
pressure is physically reasonable, since there will be some flow across
the front.surface area amnd near the edges the pressure will not be at
the full stagnation value. The agrecment between the predicted curve
and the hydrocode data points seems satisfactory.

0. Comparason with Standard Prediction Technigues

In Reference 3 the average pressure on the front surface of a target
is presented as decaying from the pesk reflected pressure to a value
B+ 0.8 P‘; where P is the overpressure and P is the dynamic pressure

in the blast wave. The decay is approximated by a straight line and
occurs in the time t, = 3 S/ag.’ This time corresponds to v = 3 for

the two-dimensional configuration where R = 0 and to v = & for the
three-dimgnsionaf configuration where R = 1. In Figures 6 through 13

the predictions wade using this technique are shown by the straight lines
torminating at an X. The disgpreement is particularly lavge for the
three-dinensional configuration. The primary purpose of the work by
Taylor? was to point ont this disagrecmont and to omphasize that the
standard prediction techniques wotre mot very good when applied to the
three-dimensional configuration. '

“R. &, Lottero, ”Computatwanal Prediotions of Shook Diffraction Loading
on an 5-200 Blectrical Equipment Sholter," BRL Mumonandum Report 2599,
Mareh 1576, (AD 0&023804) .
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E. Modification to Account for the Decay of the Incident Blast Wave

The data obtained by Taylor? apply for a shock wave with no pressure
decay behind the shock front, which corresponds to a blast wave from an
infinitely large explosion. To account for the pressure decay which
occurs in a real blast wave, the pressures predicted by Equation 1 ave

reduced in proportion to the reduction in Pstag with time. This provides

only an approximation to the correct pressure, since the reflected pres-
sure is a non-linear function of the incident shock overpressure waveform.
However, the correct function is not available. A treatment of non-linear
shock wave reflection theory in one-dimensional form is given in Reference
8, and is quite complex, even for one-dimensional flow.

If this procedure is incorporated into Equation 1 to account for the
decay with time of the incident shock overpressure, the prediction equa-
tion becomes as follows:

P, B P (t)
P(t) = |P (1 - _Stag ) Q‘AT + P . _Stag ~ (5)
R P stag P
R stag
where: P(t) = average front-surface overpressure at time t
p%tag(t) = stagnation ovarpressure in the blast wave at time t

| 2e ) 17
# (Ps(t) + PA) 1+ V(Ps(t) - PA) - Py

Ps(t) = gverpressure in the blast wave at time t

psta = stagnation overpressure corresponding to peak incident
£ overpressure Ps.

F. ~An Alternative Pit to the Average Front-Surface Qverpressure

In the course of using Equation 1 for predictions it was noted that
predicted curves for the extreme ends of the overpressure range of
interest (13 to 345 kPa, or 2 to 50 psi) did not differ very much in
initial shape when plotted as Paverane/pn versus time. This result

suggestod examinavion of the data in terms of o timo normalization with
no dependence on overpressuro, such as ¢, s t a (1 + R)/8, where 8, is

the sound veolocity in the undisturbnd air.

gﬂ E. Sheay amd 8. €. Makino, "A NonsLincav Shaak ﬂaue Rafiaatzou
Thaory," Br & Report 1361, Jannary 1567, (AD 643345}. R _
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Figures 18 and 19 show the two and three-dimensional data for

o .
‘average/pR plotted versus t,. The correspondence is such that no

attempt was made to maintain the separate identity of the curves in
the initial part of the plots. There is no indication of a consistent
variation with overpressure level until most of the pressure decay has
occurred.

Equations of the same basic form as Equation 1 were fitted to the
data. For the two-dimensional case, R = 0, the results for the functions
A and B were:

A = 0.388
B o= 1.13279% & 0.02627°9% (1-6)° (6)
pL = Pstag

where v = v, = t a5 (1 + R)/S, and other quantities have been defined for
Equations 1 and 4.

Far the three-dimensional data the fit was made neglecting the appar-
ent variation in the limiting pressurc at late times. The stagnation
pressure was used as the limit to simplify joining the resulting equation
with Equation 6 to obtain one equation applying for all valucs of R bhetween
0 and 1. The results for A and B for the thyec-dimensional configuration
were:

A = 0.346
B s 1.54 + 0.1 (r-2.3)° Q)

P, =P

L stag
T o=x,
The final functions combining the results of both fittings ave:

A = 0.388 (I-R) + 0.346 R

'0:3

8 = (1-R) [1.132°0°3 4 0.0262" (f-6)2]0R [a 54+ 0.1 (e-2. 5)%7 (8)

.pL * petug

T o= x,

Figures 20 through 27 show the cuvves celculated £rom Equation 1 with
functions as dofined in Equation 9 compared with the experimental curves.
It is clear that the resulting curves represent reascnable fits. Equa-
tion 1 can be used with functions as defined by elther Equation 4 or
Equation 8 in the range from 34.5 to 138 kPa (S to 20 psi) with no signz-
ficant difforence in the result.
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One requirement for use with the overturning code is that the predic-
tion equation used should provide reasonable predictions over the range
of incident shock overpressures from 13 to 345 kPa (2 to 50 psi).

Figures 28 and 29 show predictions made using Equation 1 with functions
as defined by Equation 4 and Equation 8 for a target with R = 0.5,
S = 2 metres, PA = 101.325 kPa (14.969 psi) and Ty = 15°C. It was

assumed that no decay occurred behind the shock front. For both over-
pressure extremes the fit versus v, (Equation 8) is higher initially and
lower later than the fit versus t (Equation 4). No data were available
to provide a basis for selecting one fit in preference to another. The
fit provided by Equations 1 and 4 was selected as the preferred fit
because the pressures predicted are lower at early times than the fit
provided by Equations 1 and 8. Additional data are required to determine
which of the two fits is best, and whether fitting against t rather than
against 1, will provide the simplest representation over the widest range
of incident shock overpressures.
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I11. REAR SURFACE LOADING

& In Reference 2, Taylor presents average loading data for rear sur-

E faces for the configurations shown in Figures 2C and 2ZD. Figures 30 and
31 show these data, The average pressure ratio for the rear surface is

shown plotted versus Tpo where Ty = t aO/S. Note that this time normal-

ization Joes not include the parameter R. The two-dimensional configura-
tion (R = 0) is configuration D, and the three-dimensional configuration
(R = 1) is configuration C. The curves were obtained by averaging the
output of the threo gages shown in Figure 1 according to the relation

(AL

RN AT
DA

%‘ Paverage = (2A+ C+D)/4

) Although this relation was shown to provide a good average for the
ﬁ threo-dimensional configuration at 34.47 kPa (5 psi) in Reference §,

& the placement of gages and this averaging procedure soems less suitable

%,
r

for the two-dimensional configuvation. However, there were no hydrocode
data at hand to use to cvaluate thiq averaging prucodure for the two-
dimonsional configuration,

s ‘..;-‘ ";'-;f_‘ ﬁ:i,;":,: r

The curves from Refevence 2 shown in Figures 30 and 31 do not indi-
cats the initial time delay which corresponds to the time betweon shock
arrival at the edge of the rear face when loading of the rear surface
beging, and wave arrival at the gage nearest an cdge. This time diffor-
ence was not moasured in the program of Reference 2. Howover, the ini-
tial wave crossing the rear surface must be a weak shock wave as shown
by the low pressure at the initial rise of gage records. The velocity
of this initinl wave must be very near the sound velocity in undisturbed
air, and hence this sound velecity was used te compute the initial delay
for the average loading vecords. The time delays expressed in texms of
Yy Were 0.488 for the two- dxmensxonal configurstion and 0,166 for the

threo~nimensions! configuration.
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Figures 32 and 33 show the curves from Figu.es 30 and 3i with the time
delay for wave arrival included so that Ty = 0 corresponds to the initia-

tion of loading on the rear surface. Values were estimated for the aver-
age maximum pressure ratioc achieved on the rear surface at the conclusion
of the initial rise of the record. These values are listed as PRM/Ps

in Table !, where pRM is the estimated maximum average pressure on the
rear surface and Ps is the incident peak overprassure. This ratio is

shown plotted versus z = PS/PA in Figure 34.

A. Fitting an Equation for Average Rear Surface Pressure

The curves in Figures 32 and 35 for experimental data were normalized
so that the ordinate value of 1.0 corresponds to the value of pRM/Ps‘ It

was found that the following relation provided what seems to be a good
average curve for both the two and three-dimensional configurations:

2
0-0.711 1+ 0.161’B )

B (

-

LA
RM

) (9)

Figure 35 shows the normalized curves superimposed without regard for
individual shot identification for the two and three-dimensional configur-
ations. The dashed curve shown in each plot is the plot of Equation 9.

Figure 36 shows the normalized curves for the two-dimensional contig-
uration for Shot 3 (32.82 kia or 4.76 psi) snd Shot 6 (139.4 kPa or 20.22
psi) and for Equation 9. Figure 37 shows a similar plot for Shot 2
(32.96 kPa or 4.78 psi) and Shot 10 (148.5 kPa or 21.54 psi) fox the
three-dinensional configuration. There is an indication of a variation
in shape with z, the incident shock pressure ratie. In Figure 37 the
curve for the lewer prossure seems to rise faster than the curve for the
higher prossure. The curves shown in Figure 36 also suggest a variation
with ¥. In the initial part of the record the variation is the opposite
of that shown in Figure 37, while for g > 1.75 the curve for the higher

3 Aqes seets to be lower than that for the lower 3.

Another study® shows a varistion wit. incident overpressure level for

a configuration corvesponding to R = 1 or the three-dimensional configura-
tion. Considering this fact, and that the sore usual structure of inter-
est more nearly corresponds to the three-dimensional rathor thes the two-
dimensional configuration, an cquation was fitted concidering the =
dependence as shown by the threo-dimensionsl configuration. Because of
the uncertainty in the accuracy of the average pressurvy for the two-dimen-
sional configuration and the mixed vsristion with z shown, no attempt was
made to fit @& variation with z for the two-.dimensional configuration.

~ Instoad, the same vaviation as found for the three-dimensienal configura-
tion was essumed to apply for both cases, and for all values of R between
0 and 1. - - :
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Figure 33 Average weéam’e ratios on the rear face of g tlaee~

dimensional shock tube target plotted wversus ?‘B -t a /2,

with delay for wave arrimd included. Plots of a Fitted
equation and a standard prediction technique are shown.
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Figure 36 Comparison of pressure ratios on rear surface of a two-

dimensional shock tube target for maximum and minimum
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The equation fitted was

P —0.27zT

PRy

0-0.949 1 +0.167

2
= ] - B( B ) (10)

Figures 38 and 39 show the normalized records with the fit from
Equation 10 plotted as the dashed curve.

To develop a complete prediction equation for the rear surface pres-
sure, it was necessary to find equations for the maximum rear surface
pressure used as normalizing factors. These data are shown in Figure 34.
A difficulty added in the fitting process was the requirement for finding
relations which would behave in a reasonable fashion when used outside
the range of fitting, say over the range of z from 0.1 to 3.4. The rela-
tions found were as follows:

Two-dimensional, R = 0

-0.83:
P 0.5 « 1l.4¢
s
Threo-dimensional, R s 1
N -0.83z
Podt .0.3250°5 ¢ 1.de

LA | , (12)
PS . ) . .

Ihe equations where combined to predict values for the variation of
R between 0 and 1 as tollows

14

. . -0. 832
T, -00.73 - 0.a1m)e®eS ¢ 1ode (%)
Ps . '

The curves shown in Figure 34 are plots of this equation with R = 0.

The finul prediction cquation for average pressure on the rear surfnue
is the cowbination of Dgquations 10 and 13, and is as follows:

| 083y 0.27 2y
r {“(0 . o.m}z" S 1. e’ }[1 0 940° 0.2 ‘vc {1 * 0.16v )](34)
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The dashed curves in Figures 32 and 33 were calculated using this
equation, and the quality of the fit can be judged from these plots. The
fit is best for the three-dimensional configuration, where R = 1.

B. Comparison with Other Shock Tube Data

In Reference 6 rear surface average pressures are shown for a config-
uration for R = 1. Figure 40 shows these data compared with the predic-
tions from Equation 14. The multiple curvatures shown by the experimental
data are not modeled by the equation, but the equation does seem to pro-
vide a curve which fairs reasonably through the data.

C. Comparison with a Three-Dimensional Hydrocode Calculation

Figure 41 presents a comparison of the predicted curve calculated
using Equation 14 with results from a hydrocode calculation for the
average pressure on the rear surface of an $-280 Electrical Equipment
Shelter?. The calculation was made for an incident shock front over-
pressure of 34.475 kPa (5 psi). It was assumed that no decay occurred
behind the shock front. The calculation is reported in detail in
Reference 7. The agreement shown in Figure 41 seems satisfactory.

D. Comparison with Standard Prediction Techniques

In Roference 3 the average pressure rise on the rear surface is
approximated by a linear increase from the time of arrival of the shock
front at the rear surface to a maximum value given by:

p
355‘- @ %(x + (1 - 0.5:)«_3”0‘5‘] (15)
S

The time for the rise is specified as t = 48/, which corrosponds

to ts e 4,

Predictions using this technique arc shown as the styaight lires in
-Figures 32 and 33, with the X 1ndicating the maximus value, The large
discrepancy umphasxzad by Taylor? between the straight- l;ue approximation
and the shock tube data is evident.

E. Hodifica%ioﬂ to Account for Decay of,gho':ncideﬂt giast Wave

When the overpressurc behind the incident shock front decreases with
time as occurs in a blast wave, tho average pyessure on the vear surface
is assumed to be reduced in proportion to the raduction in incident pres-
sure from its pvak value. Equation 14 reuaxns unchanged except that P (t)

is substituted for P , the pesk iacident overpressuro.
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F. Modification for Code Use

The suggested form of the average front surface pressure function
for incorporation into the overturning code of Reference 1 decays to
stagnation overpressure as shown in Equation 4. The particular over-
turning code terminates the calculation of diffraction loading when the
overturning moment due to drag loading becomes equal to or exceeds that
due to the diffraction moment. Assuming equal diffraction and drag
loading areas and moment arms, the moments are equal at late times when:

=

Pstag " Prear = Cd Pq

= peak stagnation overpressure

k4
=
O
-
[¢]
-~
]

P = ultimate average ovcrpressure on rear surface

o
]

drag coefficient

-
u

q peak dynamic pressure.

To insure that the diffraction loading calculation terminates in a
reasonable time with an appropriate match between the diffraction and
drag loading, the asymptotic value of Prear was adjusted s¢ that

P P = 0.97 C

stag rear d pq'

The choice of the factor 0.97 is arbitrary, but its use is expected
to produce a transition where the diffraction loading essentially has

been completed, Then the value for Pooar is:
prear s pstag - 0.97 Cd Pq. (16)
For a Llast wave vhera the pressure decays with time, P (t) and

_ stag
Pq(t) are substituted for Pqmg and Pq. raspoctively. Tnen the predic.
tion relation appropriate for incorporation into an overturning code 1s:

«0.272

-0.94e vl e 616t 20 (17)
B 8 &'

L) = (pst&g(t) < 0.97 Cd Pq(t)) l-e

IV. DISCUSSION

gquations for prcdicting average pressure on the front and rear
surfaces of a rectangular parallelepiped have been doveloped by fairing
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curves through a limited set of data from Reference 2. The equations
fitted for the three-dimensional configuratior provide rcasonable agree-
ment with shock tube Jata from References 2 and 6 in the overpressure
range from 22 to 138 kPa (3 to 20 psi) and with a hydrocode calculation’
at 34.475 kPa (5 psi). The validity of the fits for the two-dimensional
configuration is subject to question because the placement and weighting
of the gage records in Reference 2 does not seem as suitable for the
two-dimensional configuration as for the three-dimensional configuration.
Thus the equations fitted for the two-dimeasional configuration should
be regarded as an interim fit which may be improved if additional shock
tube data and hydrocode calcuiations become available and are utilized.
Because the two-dimensional results are incorporated in the final pre-
diction equations where R varies between 0 and 1, the confidence in the
prediction should decrease somewhat as R approaches zero,

:t was found that the available shock tube data for average front sur-
face overpressure could be fitted satisfactorily against either the dimen-
sionless parameter T = t as(l + R)/Sor v, =t a, (1 + R)/S. Addi.ional

data for a wider range of shock overpressures are required to determine
which of the two parameters can be used to obtain the most useful fit.

The prediction equations provide smooth extrapolations to the extreme
values of overpressure of interest {13 to 345 kPa, or 2 to 50 psi), but
the validity of the extrapolation at these extremes is not established.
Additional data, particularly at overpressuves above 20 psi, are required
for values of R between 0 and 1 to provide a basis for properly accounting
for the variacion of predicted average pressure with R The modifications
to account for decuy of pressure behind the incident shoek freat should
be evaluated if appropriate dats become available.
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LIST OF SYMBOLS

Symbol
A = function of time, incident overpressure, ambient overpres-
sure, and R used in equations fitted to average pressure
. profiles.
a = parameter used in a fitted equation.
' bient sound velocity = 331.32 Yeml- n/

a = ambient sou oc = 331, e .

o m sound velocity 7515 'S

ac = velocity of the rarefaction wave behind the reflected shock

(82 + 7)(2z + 7;
W = 3 Y—5=
ave “o\/- (7 + 62)

B = function of time, incident overpressure, ambicnt overpres-
sure, and R used in equations fitted to average pressure
profiles,

Cd = drag coefficient for a blast target.

CONF = symbol meaning configuration

p = average overpressure on front surface or rear surface.

P(t) = average overpressure versus time for a front or rear surface.

paverage = average prossure on front surface,

; Pa = ambient atmospheric pressuro.
‘ PL + overpressure approached as a limit on the front surfuce.
|
i p = poak dynamic pressure.
! q
¥ . .
; Pq{t) = dynamic pressure versus time for a blast wave.
%- -
¢ PR = Peak reflected overprossuse = 2 Ps 4z = 1)/ (2 +7).
3
X
L
g P = gverage pressure on rear surface approached as a limit as
£ rear )
£ time increases.
PRM = estimated moximum average overprussure om rear surface after

initial pressure rise.
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LIST OF SYMBOLS (Continued)

Symbol
PS = peak iacident shock overpressure.
P (t) = overpressure versus time for a blast wave.
Psta = stagnation overpressure on the frent surface; which for a
g non-decaying shock wave and a Mach number less than one is:
_ 2 7/
p = (P o+ Pl + 52 : - P
stag S A 7(z + 1)(z + 7) A
PSta (t) = stagnation overpressure at time t on front surface, which
8 for Mach number less than one is:
: P (t) 772
Porag(t) = P81+ PN +(2/7)-(~P~—q-s(t) N - Py
R = ratio of the edges of the minimum rectangular area which
must bhe examined to define loading over the entire surface
area. The ratio is taken so that R ranges from 0 for the
two-dimensional configuration to 1 for the three-dimensional
configuration.
S = minimum distance of travel from an edge of a front or rear
surface for a wave to traverse the surface.
t = time,
t, = time for decay of front surface average overpressure in &
standard prediction techniqued, ¢, = 3 8/a.
TA » gmblent atmospheric temperaturc, degrees Kelvia.
: “ Pq/?a. the ratio of peak incident shock overpressure to
anbient atmospheric pressure.
a =« parameter used in e fitted eguatiom.
8 = paramcter used in a fitted oquation.
Y = yatio of specific heats vy = 1.4 for an ideal gus.
1 L 4 as(l + R)/S.
70
popres B ) ivnce e e e




LIST OF SYMBOLS (Continued)

Symbo
T =t 30(1 + R)/S.
¢ Ty =t aO/S.

2DF = symbol meaning two-dimensional configuration, front surface
record.

2DR = symbol meaning two-dimensional configuration, rear surface
record.

3DF = symbol meaning three-dimensional configuration, front sur-
face record.

DR = symbol! meaning three-dimensional configuration, rear surface

record.
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