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I. INTRODUCTION

Fragment penetration of fuel cells is a traditional damage and kill
mechanism of the Army's motorized vehicles and fuel storage containers.
In order to provide information which will assist in understanding the
physical phenomena involved, it was decided that a new approach for
simulating fluid flow may be of value. Consequently, a completely general
formulation was conceived to serve as the basis for the development of a
computer code. !

The purpose of this report is to document the basic ideas given in
the original notes and to present an expansion of them in a form suitable
for use as a guide in the construction of a code. It is not the inten-
tion of this report to discuss all of the physics which would be
involved in such an undertaking. Presented here is a mathematical
description of the procedure for simulating fluid flow by combining
Lagrangian cell motion and the computation of distributions of physical
quantities over cells based on a knowledge of moments over subregions
of the cell. :

II. THE BASIS OF THE PROPOSED NUMERICAL TECHNIQUE FOR
TRANSPORTING PHYSICAL QUANTITIES IN FLUID FLOW

The numerical technique for simulating fluid flow transport consists
of two separate parts; the sum of which will yield distributions of the
physical parameters across fixed cells as a function of time. While the
discussion is presented in terms of rectilinear coordinates, the same
theory is applicable in cylindrical or spherical coordinates and,in fact,
the code should be constructed to accomodate all three. To facilitate
understanding, the discussion will concentrate on one part of the numer-
ical technique at a time.

Figure II-1 consists of a diagram which portrays cells assumed to be
formed by a fixed rectangular coordinate system x, y. The two dimen-
sional assumption implied by the figure is not necessary since the
arguments are equally valid in one, two, or three dimensions. In each
cell an arbitrary physical parameter is represented by the symbol ay.
The subscriptJ is to denote that the distribution of o corresponding to
each J cell, can be different. This situation is assumed to exist at
time t_, which would be the instant corresponding to that at the beginn-
ing of a cycle of computation.

In each of the four cells depicted in Figure II-1, the fluid has
associated with it a local velocity distribution of the form presented
in Figure II-2. As indicated, the two components, V* and Vy, are assumed

lRogers, Joel, unpublished progress reports submitted to the Ballistic
Research Laboratory, March 9, 1970 and January 19, 1971.
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to be linear and in general are represented by the following expres-
sions:

> >
Vo 4 (a1 y + az)

(I1-1)

- ->
v +
> j (a3 X a4)
> s : g .
where 1 and j are unit directional vectors and ay, 3y, g, and a, are
coefficients.

Treating the fluid in the cells of Figure II-1 as Lagrangian cells
which move as bodies of fluid according to the fluid's local velocity,
the new positions of these Lagrangian cells at tg + At can be obtained
and are represented by the dashed lines in Figure II-3. The symbol At
represents a finite interval of time. The shaded regions, denoted by
SRy, constitute contributions of the moments of physical parameters
from the four Lagrangian cells to one cell in the fixed coordinate
system. The immediate task is to explain how to obtain the distribu-
tions of the physical parameters based on these four contributions.

The basis for the procedure for computing the distribution of the
physical parameter is presented in Appendix A. There is shown that if
certain moments of the physical parameter are available for the sub-
regions, then a new distribution based on these moments can be calcu-
lated for that parameter across the total region. To accomplish this,
it is necessary to resolve the question as to which moments are required
and how are the moments obtained? For the present, we may hold the
latter portion of the question in abeyance and assume that the moments
are available. The decision, relative to the first part of the question
above, depends on the form of the distribution of the physical parameter
desired as we will demonstrate by the following example.

First of all, we may arbitrarily assume that the distribution of
the physical parameter o, in Figure II-3, is to be of a linear form as
follows:

a = blx + bzy + b (I1-2)

3

where a is a function of the spatial parameters x and y and by, b, and
bz are coefficients to be evaluated.* In order to evaluate the three
coefficients, it is sufficient to generate three equations containing
these coefficients and to solve them simultaneously. To this end, we
multiply through Equation II-2 by a function f which is required to

*The linear assumption assumed here is not mecessary in that a higher
order polynomial may be utilized. In any case the same procedure is
to be followed.

11
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take on values of 1, x, and y. That is:

fa=b fx+b, fy+b, (11-3)

and
wnby Xt by y » by :‘
Xa=b x"+«byxy+byx (11-4)

" 2
y o b1 Xy # b2 y~ + b3 y .

Integrating the terms of Equations II-4 with respect to x and y
yields the following equations:

fudA=b1 fdi+b2 jydA+b3 fdA
TC TC TC

TC
2
xczolA-b1 j:x dA+b2 fxydA+b3 IXdA(II-S)
TC TC TC TC
fyadA=b1 fxydA+b2 /deA+b3 /)’dA
TC TC TC TC

where dA equals dx dy and the symbol TC is intended to indicate that the
integrations are to be performed over limits which span the entire cell
(from xp;, and y in Yo x and yp., respectively in Figure II-1). For
other forms of the distri ution, the function f would be set equal to
other values, but in general:

ki ik
Fanihy® (11-6)
where k; and k, are equal to 0, 1, 2, .... For combinations of these
values for k; and kp, the values of f are 1, x, y, x Y, x2y, xyz, xzyz,

and etc.”

The integrals on the right side of Equations II-5 depend on the
limits defined by the coordinate values of the corner points of the cell
and are easily evaluated. We refer to them as Geometric Moments because
their values depend on the spatial parameters only, and for convenience,

*The proposed distributions for demsity, momentum, and kinetic energy
and the required moments are presented in detail in Appendix C.
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we represent them by the symbol G as follows:

£3 gfo
TC
G2 = ‘/} dA

(<p]
"

TC
G3 = J(; dA
TC
(11-7)
G4 = slrxy dA
TC
2
Gs = “/3c dA
TC
2,
G6 = J(; dA .
TC
Substitution of Equations II-7 into Equations II-5 yields the
following equations:
fadA=b1G3+b262+b361
TC
J(; a dA = b1 G5 + b2G4 + b363 (11-8)
I'c
fyadA=b1G4+b2G6+bst.
TC

The integrals on the left are equal to the sums of the integrals
over the various subregions. Consequently, the following equations can
be written:

14




judA=fuldA+fa2dA+fusdA+fa4dA

TC SR1 SR2 SR3 SR,
fxudA=fxu1dA+ fxasz+ fxasdA+ fxaddA
TC SR1 SR2 ‘ SR3 SR4 (11-9)
yadA=fyaldA+ /yasz+ fyanA+fya4dA
TC SR1 SR2 SR SR

3 4

where SRj; indicates that the limits of integrations extend over the
various subregions.

We obtain the following equations after combining Equations II-8
and Equations II-9:

E faJdA=blG3+b2G2+b3Gl
J SRJ

S

b
- =b, G +b) G, + b G, (11-10)
SR
J
E fqudA=bIG4+b2G6+b3G2.
J SR,

The remaining task consist of evaluating the moments of the physical
parameter over the various subregions as indicated by the integrals on
the left side of Equations II-10 and the shaded regions in Figure II-3.
The limits of these subregions can be determined by the intersections
of the boundaries of the Lagrangian cell and the fixed coordinate system's
cells. However, the distributions of a; are unknown since changes in
oy have occurred over the time step At, and thus the integrals cannot be
evaluated directly.

TR T NPT vy

In Figure II-4A, a Lagrangian cell of fluid is shown at t, + At,
where the subregions are formed by the intersections of the boundaries.
Since the motion of the cell is calculated using the local fluid velocity
and the time step At, the limits of these subregions can be converted by
the reverse process to limits of corresponding subregions for the cell
located at tg, as shown in Figure II-4B. The distribution of a is known

15




Figure I11-4A Lagrangian Cell Position In Fixed Coordinates At tS + At.

Figure 11-4B Lagrangian Cell Position In Fixed Coordinates At t_,

16

TR AT s e

et Vi (AR TR N 7, AR TR (7 TR © K



at t., thus if the integrals for calculating moments could be evaluated
over the limits at tg, such that the results are equivalent to those at
t, + At, then the difficulty would be resolved.

In order to permit integrations at tg, the function f(x,y,t) is
defined at tg + At as follows:

Ky k3
f(x, vy, ts +AT) = ox Ty (II-11)

and is required to satisfy the following differential equation:

DE " 9f =& e :
Te =gt Vin¥f= 0., (I1-12)

This differential equation is to be interpreted as saying that f is a
constant along particle paths. Thus, to first order accuracy, we have

f(x, vy, t) . f (x + vx At, y + Vy At, t_ + At) (I1-13)

where x, y are the global coordinates of the fixed coordinate system.

In Appendix B, the Equation II-12 and the conservation equations
of change are utilized in deriving the appropriate equations of change
needed to compute moments of the physical parameters over the subregion
at t_.

s

III. A COMPUTATIONAL VERIFICATION OF THE METHOD

A satisfactory verification of the method proposed in this report
demands a comparison with computations of complicated problems solved
with existing codes using already 'prqven' methods. This is currently
impossible since the program, utilizing this proposed method, has not
been constructed. Consequently, the best one can do at this point is to
solve a simple problem for the purpose of demonstrating that the pro-
posed method for simulating fluid flow is feasible. In addition, such
a calculation may be helpful in providing a means whereby the method
can be better understood. In any case, this section is intended to
verify the method to a limited extent and should be approached from that
point of view.

The problem chosen is the determination of the steady velocity
distribution for flow between two semi-infinite parallel flat plates,
where the driving mechanism is the frictional forces due to the constant

17




motion of one of the plates. Diagrams, describing the temporal aspect
of the problem, are presented in Figure III-1. In the diagram at the
top of Figure III-1, the velocity is zero throughout the fluid for times
prior to some arbitrary instant of time ty. At ty, the lower plate is
set in motion suddenly at some velocity (in this case the value 0.8 is
assumed) and due to the frictional force between the plate and the fluid,
the fluid is dragged along with the plate. It is assumed that no
slippage exist between the surfaces of the fluid and the plates; thus
that layer of fluid adjacent to the surface of the plates and the plates
have the same velocity. For all time after ty, the lower plate is
tforced to retain its initial velocity and momentum is continuously
transferred in the y direction from the moving plate to the fluid and
through the fluid toward the upper plate. The momentum is transferred
from one layer of fluid to the next due to the frictional force created
by the effect of the viscosity of the fluid. Since the upper plate is
forced to remain motionless, the velocity of the layer of fluid adjacent
to its surface remains zero. Eventually the steady velocity distribu-
tion is obtained, as shown in the bottom diagram of Figure III-1. The
objective of the calculation is to determine momentum distributions of
the fluid from t; until the steady velocity distribution is obtained.

It is not necessary to simulate a real fluid to make our point, thus
simple values are used for the parameters involved and no reference to
specific units are made.

The fluid motion in this flow problem is in one direction only;

that being in a direction parallel to the plates. The form of the
velocity distribution is written as follows:

(I1I-1)

VvV =1 (a + a
X 1 y

5)

the velocity parallel to the plates.

the coordinate perpendicular to the plates
in the j direction.

the unit vector in the direction parallel
to the plates.

al, a2 - coefficients.

The motion of the Lagrangian cell is demonstrated in Figures III-2
and 111-3, where the dashed lines represent the cells formed by the
fixed coordinate system and the solid lines indicate the positions of
the Lagrangian cells at t_ + At. Focussing attention on the T row of
cells in Figure III-2, we see that the cells of fluid are partitioned
into two subregions by the intersection of boundaries. The shaded

18
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Figure III-3 Position Of Subregions At ts'
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subregions represent the contributions of fluid from Lagrangian cells,
which were initially superimposed on (S-1,T) and (S,T) fixed cells at
tg, to the fixed cell (S,T) at t_ + At. Based on this information, the
fixed cells, to which the contrigutions from the various subregions are
to be summed, are identified. The motion of the Lagrangian cells are
computed by translating the corner points with the Equation III-1 and a
time step At.

LIn this problem, at any point in time, the flow does not vary in
the i direction parallel to the flat plates. Consequently the velocity
distribution at tg + At need be determined in only one column of cells
(say Column S of Figure III-2). However, the procedure required an
additional column of cells (Column S-1 in Figure III-2) in order to
obtain the contribution of flow from one column of cells into the next
column. In this case the contributions are represented by the subregions
identified as SRg_j.T and SRg 7. At the end of a cycle of computations
both columns of cells are given the same velocity distribution as that
calculated in order to start the next cycle of computations.

For this problem, only momentum need be considered to obtain the
required results. And for simplification, we assume that the density
distribution throughout the flow is equal to 1. Therefore, the expres-
sion for the momentum is identical to the velocity distribution which
is expressed as Equation III-1. Thus, the two moment equations needed
to obtain the velocity or momentum distribution across the fixed cell
at tg + At are written as follows:

f?r’xdxdy+ fodxdy=a1 jydxdy+a2 fdxdy

SR SR TC TC
s-1,T S,T (III-2)
> -> 2
fyvxdxdy+fvxdxdy=aljy dxdy+azfydxdy.
SRS-I,T SRS,T TC TC

To evaluate the left side of Equations III-2, it is necessary to
revert to the subregion's limits at tg as shown in Figure III-3 and to
utilize the integral equation for momentum derived in Appendix B. Since
there are no external forces or any imposed pressure gradient, the
applicable momentum equations reduce to the following:

21
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3
/pvxdxdy= fpvxdxdy-At/ T+ 1 dx

SR(t _+At) SR(t,) SR(t,)
-
/ ye v, dx dy = /(y + vy At) p Vx dx dy (I11-3)
SR(t _+At) SR(t,)

-> -
- At /(y+vyAt)(?-?f)dx+At-/'y+vyAt)°’r'dxdy

SR(ts) SR(ts)
where
-
=
T = the stress tensor.
R = the unit vector perpendicular to subregion surface
as shown in Figure III-4.
- -
A =3 3/ax + 3 a/3y.
= density.

For this problem, the stress tensor reduces to the following:

— ->
_',_,av _?_,avx
‘U(le'y—""Jl—y"‘)

Consequently, the term

=
At fAy--rdxdy

SR( ts)
becomes

Vv
ot fugEaxdy (111-4)

where for simplicitity, the value of the viscosity u is set equal to 1.

For this two dimensional problem, the second term on the right side
of Equation III-3 are line integrals. Since the stress tensor reduces
to Equation III-4, the terms in question are, in this case, independent
of the y coordinate. Therefore, only integrations along the top and

22
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bottom of the subregions are needed.

In order to carry out the calculations, the adjacent cells must be
inter-related through an averaging of the stress tensor. In Figure
ITI-5, three adjacent cells are presented, where the slopes of the
velocities are indicated by (al)T+1’ (al)T, and (a;) o1° The procedure
for obtaining the average consist of assuming that tgese velocity slopes
exist at the center of each cell and then fitting them with a least
square cubic equation of the following form:

* % 2
a = ¥t Y

” (111-5)

3

There are three boundary conditions which are accounted for as dia-
gramed in Figures III-6A to III-6B. After the momentum distribution at
tg + At is computed for all of the non-boundary cells, the boundary
conditions are imposed. The upper plate remains motionless, thus the
fluid velocity adjacent to the plate remains zero. Consequently, for
the upper boundary cell, the momentum distribution is set equal to a
linear fit between zero at the top of cell CLy and the momentum value at
the top of the next lower cell CLy_,. The lower plate is forced to
retain a constant velocity of 0.8, %hus for the lower boundary cell, the
momentum distribution is set equal to a linear fit from the momentum
value at the bottom of the next higher cell CLp,, and the constant plate
velocity at the bottom of the lower boundary cel CLp. In addition, as
the momentum is propagated in the y direction, there will be some cells
with no momentum. Therefore a moving boundary condition exists until
all of the cells between the plates have gained some momentum. In order
to handle this moving boundary, the cell with no momentum, say CLg which
is adjacent to a cell with momentum, say CL. ., is identified. Then a
momentum distribution is assigned to C wh1cﬁ is a linear fit between
zero momentum at the top of cell CLT and the momentum value at the top
of cell CLy_,-

Figure III-7 presents the momentum distributions as a function of y
for various instants of time. As the graph shows, momentum was pro-
gressively transported in the y direction until the fluid in all of the
cells obtained values of momentum above zero. Then the momentum in-
creased in all of the cells until the steady distribution, represented
by the dashed line, was obtained. The x's on the graph represent the
results of the last cycle of computation. The data presented in Table
III-1 represents the momentum computed at the top and bottom of the cells
where the values were determined from the momentum distribution. The
data indicates the closeness of the values of momentum between adjacent
cells and suggeststhat a high degree of continuity between cells exist
using the proposed method.
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Table III-1.

Cell

O 00 N OO0 1 A& B N -
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Momentum Values At The Top and Bottom of Cells For

The Sliding Plate Problem.”

Momentum Values

SO O O OO Qe BB L0 0 Q0 IO 9.0 S

Bottom

.8

.729246870
.659359241
.591170426
.525451478
.462884251
.404040364
. 349365239
.299169299
.253625788
.212773847
.176527922
.144689462
.116963063
.092972282
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Ax = 1; Ay = 1; Atime = 0.1; Time = 40
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IV. A CONCEPTUAL DESCRIPTION OF THE CODE CONSTRUCTION

The most efficient device for organizing a conceptual description
of a code structure is the flowchart as presented in Figures IV-1 to
IV-6. This flowchart is a preliminary effort and is not intended to
accomplish more than a demonstration of an overall approach.

That part of the flowchart in Figure IV-1 symbolizes the modeling
of a real problem in terms of the actual data required to compute a
solution. In general, such a model would be based on the various physi-
cal characteristics of the real target and the offensive mechanism with
which the target will be engaged. In particular, the geometry of the
target, the properties of the materials of which the target is constructed,
and any specific initial conditions must be defined. In addition, the
offensive mechanism must be characterized and described in an idealized
manner appropriate for computer computations. Based on this information,
the actual input data for a calculation is to be formalized.

The input model would consist primarily of basic assumptions,
boundary conditions, and other basic data associated with the target
materials. The basic assumptions deal with items such as the number of
dimensions, compressibility, the number of kinds of species, external
forces, and etc. The boundary conditions would vary from problem to
problem and accounting for them will constitute one of the more difficult
tasks. Some of the other basic data referred to above could be vapor-
ization rates, reaction rates, an ignition criteria and etc, which would
be needed if the problem required accounting for combustion.

Once the input model has been read into the computer, the code
should execute those subroutines designed to compute moments of the
physical parameters for all of the cells and then sum them in the appro-
priate fixed cells. These subroutines are indicated in that part of the
flow chart shown in Figures 1IV-2 and IV-3; beginning at S1 and ending
with S3.

Assuming that the cells are numbered consecutively from 1 to a
maximum number I..., the code would naturally begin with the I = 1 cell
and resolve the question as to whether it is a boundary cell. If the
cell is one defining a boundary, the code would activate that subroutine
(not shown on the flowchart) which accounts for the appropriate boundary
condition corresponding to that cell, and then proceed to the next I
cell.

Whenever the cell does not constitute one defining a boundary con-
dition, the code would execute a subroutine entitled 'Neighboring Cells"
in the flowchart. This subroutine would identify those cells which are
adjacent to the current I cell by their I number and these numbers would
be stored for future use. The reason this information will be needed is
that the Lagrangian cell will deposit its ''contents" in certain ones of
these neighboring cells, depending on the direction of the fluid velocity.

28




I

TARGET

Geometry

Material properties
Fuel

Initial Conditions

B =480

OFFENSIVE MECHANISM

PROBLEM
DEFINITION

Munition type, vel,etc.
Fragment - inert

Fragment - reactive

| INPUT MODEL

!

BASIC DATA

BOUNDARY CONDITIONS

BASIC ASSUMPTIONS

M” T

Input values

: : 1 st. kind Number of dimensions
¥aggi;§3té¥2t::§:s 2 nd. kind Kinds of species
Rga bl i 3 rd. kind Compressibility
comhonil etc. External Forces
Damage criteria
etc.
S1

Figure IV-1
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MOMENTS CALCULATIONS FOR SPECIES CONCENTRATIONS
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Figure IV-2 Flowchart For Code Construction (Continued ).
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CALCULATIONS FOR MASS, MOMENTUM, AND ENERGY MOMENTS
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Figure IV-3 Flowchart For Code Construction (Continued)
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CALCULATIONS FOR MASS, MOMENTUM, AND ENERGY MOMENTS ( CONTINUED )
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yes =
lal >0 ?
Internal Energy l
.- - * -
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Figure IV-4 Flowchart For Code Construction (Continued).
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CALCULATIONS FOR NEW DISTRIBUTIONS

[ = 1+1 Lo S8

Compute Geometric
Moments Table

no

yes

Is I >1 — S4
max

ino

T

Are All Cells
of Equal Size?

Determine Kind of Boundary Cell
& Initiate Appropriate Subroutine

!

Compute New Distribution
for Each Specie

zes

g5

| Boundary Cell?

Is Cell A

no

Compute New Distribution
for The Density

o e Is Number of Kinds
of Species > 1 ?
l—‘ 1' lno
yes

e Is Fluid

l Compressible?
no
=

Compute New Distribution
for Momentum

!

Compute New Distribution
for Kinetic Energy

‘

Compute New Distribution
for Internal Energy

Figure IV-5 Flowchart For Code Construction (Continued).




CALCULATIONS FOR DEPENDENT VARIABLES

I +1 S9
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p e
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Figure IV-6 Flowchart For Code Construction (Continued ).
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In the case of two dimensional flow, there will be nine neighboring
cells including the current I cell.

The next step is to determine if there are more than one kind of

species. In the case of one kind of species, the code would proceed to
S2 of the flowchart as shown in Figure 1V-3. If not, then the code
would initiate a reiteration design to compute the moments of the species
concentration for each i kind of species. Each kind of species will
have associated with it a velocity distribution V;. Consequently, a
Lagrangian cell of that species would be calculated to move according
to V; and limits of subregions SRy at t_ would be determined by a sub-
routine entitled "Limits" in the flowchart. In addition, subroutine 4
"Limits" would identify the neighboring cells in which the moments of the 1
subregions are to be summed. en taking each subregion in turn, f%e
moments for the species concentration would be calculated and summed.
In thig procedure some of the subroutines would be bypassed if w; = 0 %
or if f; = 0. After all of the kinds of species have been consiaered,
the code would move on to consider the remaining physical parameters,
where the flowchart is marked with the symbol S2.

In considering the computation of moments for the remaining physical :
parameters, in Figure IV-3, it is noted that subroutine 'Limits'" would
again be called and, based on the mass average velocity, the limits of
subregions at tg would be determined. Following the flowchart, it can
be seen that if the fluid is assumed to be incompressible, the integral
for computing the mass moments would be bypassed. Then the terms for
calculating the moments for momentum and energy would be evaluated.
However certain terms may be bypassed if the viscosity is zero, the
heat flux is zero, the number of kinds of species is greater than one,
or if exterior forces are absent. Once all of the subregions have been
accounted for, the code would recycle until all of the cells have been
processed. At the conclusion of these calculations, corresponding to
each of the I cells, there will be sums of the various moments stored.

The new distributions of the physical quantities at tg + At would
be determined by the operations presented in Figure IV-5. As before in |
the case of boundary cells, special subroutines would be called to im- |
pose the appropriate boundary conditions. If the size of the cells |
varies from one cell to another, then for each cycle of computation the |
Geometric Moments would have to be computed for the different size cells
or a table of these values required. If the cell sizes vary in the
computation, then appropriate adjustments in the table would be needed
to reflect these changes. At the completion of these calculations, the
new distributions of the physical parameters at tg + At would be avail-
able for the next cycle of computation.

In Figure IV-6, some of the operations which would be needed to
complete the calculation are presented. Firstly, certain physical
quantities may be required which depend on those already calculated.
These could include fluid temperature and pressure. If more than one
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} hind ot species is possible, then based on the ignition criteria, it

would be determined if ignition had occurred. If so, then a new valuc of W,
(the mass rate of production term) based on the existing temperature

and species concentrations would be evaluated for use in the next
cycle. Afterwards a new species velocity, for each species, would be
determined from which a new mass average velocity could be derived. At |
this point, the code would be prepared to print out data, initiate the
next cycle or stop.

The flowchart does not indicate numerous operations and subroutines
which the final version of the code will need. In some cases it will
be desirable to change the cell sizes by doubling or halving some or all
of them. A difficulty will be the programing of the code such that
arbitrary coordinates systems can be handled (cartesian, cylindrical, | 4
spherical, etc). Also certain problems must be resolved, such as ensur- { 4
ing that distributions of physical quantities are continuous across cell
boundaries and that non-negative quantities never end up with negative
values. In order to place these and possibly other problem areas in
perspective relative to the entire code, the flowchart needs to be
expanded. However, the current version provides sufficient descriptive i
information to adequately portray the basic approach for organizing the ’
code structure.

V. CONCLUSIONS

The objective of this report is to document the essential and basic
elements of the proposed mathematical and physical scheme for simulating
fluid flow. The simple problem solved in Section III provides verifi-
cation to the extent that it demonstrates that the approach is feasible.
The flowchart and its associated description in Section IV provides a
general picture as to a possible procedure for implementing the proposed
method in terms of a computer code. There is no attempt to anticipate
or categorize all of the difficult areas or to explain how they might be
overcome. That would tend to confuse and undermine the primary objective
of the report.

The proposed method has two important characteristics. One is that
it involves integral equations, which means that singular points will
not be a problem and no instabilities will occur for that reason. The
g other is that the various physical parameters will be represented by
[ ‘ variable distributions across the cells, which should provide increase
5 accuracy in contrast to using constant distributions for the same cell

i size.

At this stage, it is impossible to make a reasonable comparison of
this method with existing hydrodynamic codes which utilize other methods.
$ This can be accomplished only when a code has been written and

g computationai results cumpared. There is no way to estimate the computer
time required to compute a typical problem. That also must be held in

T P e

W e

36




abeyance until problems are run. To this end, progress in code construc-
tion will be accomplished as manpower and funds become available.




APPENDIX A

THE DETERMINATION OF DISTRIBUTIONS OF FUNCTIONS BY
THE MOMENTS METHOD

A part of the mathematical basis of the theory is the so called
Moments Method for the determination of an average distribution of a
variable over a region if certain moments of the variable over sub-
regions are known. The method may be derived directly from the concept
of a weighted arithmetic mean. In general, if it is assumed that there

are available a,, Gpy sevnns oy non-negative numbers (weights), not all
zero, the weighted arithmetic mean f of fl’ fz, ..., fy is defined by
the following formula:
e ZJ:“J 5
f= "Z——"—' . (A—l)
a
3 J

When the weights are all equal, Equation A-1 reduces to the expression
for computing the ordinary arithmetic means.

This may be extended to the weighting of a function over an interval
where the weighting function varies continuously. This extention yields
the following equation:

fa(x) f(x) dx
f(x) = (A-2)

" fa(x) dx

where o(x) is a non-negative weighting function whose integral is not
zero. 3

In Figure A-1, a function a(x), whose first derivative is discon-
tinuous at certain values of x is plotted. Between each pair of first
derivative discontinuity values, the function f(x) and the weight func-
tion a(x) are assumed to be known. Utilizing this information and
Equation A-2, the following expression can be obtained:
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2 3 6
f ooty SRR ... o f Ve v
s X Xy X5
E» X X X (A-3)
2 3 6
f o dx + f @, dx + .... + f ag dx
=1 s Xg

Also indicated in Figure A-1, by the dashed line, is the average
weight function for the entire range of x. The integral of the average
weight function over the entire range of x is equivalent to the sum of

the integrals of the individual weight functions over their correspond-
ing intervals of x. That is

X X x X
6 ¢ 2 3 6
,(f a(x) dx-xf o) dx+xf a, dx+....+xf asdx.
5 1 2 5 (A-4)
Also, we may write
X6
S Cam £ ax
T xl
fi= (A-5)
%6
f a(x) dx
1

Combining Equations A-3, A-4, and A-5 yields the desired expression
for evaluating the average weighting function a(x), written as follows:

X X X X
2 3 6 o
Xf alfdx+xf azfdx+....+xf asfdx—xf o f dx
1 2 5 1 (A-6)

where ayand f are known. If f is set equal to xo = 1, then a is a
constant as indicated in Figure A-1. However, f may be any power of x
and for that reason a can be evaluated as a variable function. In two

or three dimensions, f may be a function of the other spatial parameters
as well.

For the purpose of demonstration, we may utilize Figure A-2, where
a two dimensional spatial region is defined and which is partitioned
into five subregions SRy. Also, we may assume that corresponding to
each subregion a known distribution of a physical parameter a(x,y) exist.
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Figure A-1 Schematic Presentation Of An Average Function Based On
Moments Over Subregions.
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Figure A-2 Schematic Representation Of Subregions Of A Spatial Region
Over Which Distributions Of A Physical Quantity Are Known.
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Thus the weighting function is represented by a(x,y)J and the function
to be weighted is

kik
f(x,y) = x : y 2 : (A-7)

Let's assume that the average weighting function a(x,y) is repre-
scnted by the following equation:

a(x,y) = b, x + b2 y + b3 (A-8)

1

where b, by, and b3 are constants to be evaluated in the manner to be
explained below.

By utilizing Equations A-6, A-7, and A-8 and setting the values

of k; and k, to 1 and 0 respectively such that f = 1, x, or y, the
following tﬁree equations are obtained:

/aldA+ fa2M+....+/asM= a dA
S 5 TC

SRl SR2

/aldi+ /azdi+.... asdi=fadi

SR] SR2 SR TC

falydA+ /azydA+...

.+
SR SR S

1 2
f j‘ymax /‘ Xmax
L *nin

min

5
J/Pas y dA = ay dA
Rg

TC

where

and dA = dx dy.

The integrals on the left of Equations A-9 can be evaluated once
the limits of the subregions have been determined. By summing the values
of those integrals and substituting from Equations A-8, the following
form of the equations is obtained:
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The integrals on the right side of Equations A-10 depend entirely
on the spatial parameters, so for convenience, these integrals are re-
ferred to as Geometric Moments and are integrated over the entire spatial
region. Since there are three equations and three unknowns, the
coefficients by, b,, and b, of a can be evaluated by solving the equa-
tions simultaneousfy. If ﬁigher order expressions for a are desired,
the additional coefficients required can be evaluated by increasing the
value of the k's in Equation A-7 and thereby increasing the number of
Equations in A-10 accordingly.
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APPENDIX B

THE DERIVATION OF THE INTEGRAL EQUATIONS FOR CALCULATING
MOMENTS IN FLUID FLOW

In deriving the integral equations for computing moments of physical
quantities over a spatial domain, where the results include changes
over a time step At, it is sufficient to begin with the basic equations
of change, written as follows:

Species Concentration:

on,.

w
i T i
: LT (i)
i 1
Mass:
B ,g.pv=0 (B-1b)
at
| Momentum:
§21-+ Ve ( 7) V=-90UP - (V- ?) + I n.m ? (B-1c)
ot 8 i i |
Total Energy:
T 3
v W=V @ D@D
(B-1d) :
E
+Tamt, « 9, ‘
§. 431 i
Kinetic Energy:
A
-‘;%—+v-EKV=-v-(1~3)+(r:v7)+l>(v-'\7)
(B-1e)
-V ePve+Inmt V.
j i1 i
1
Internal Energy:
I 3
vV EN=-V-q-TiVV-P V). (B-1f)
:
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The definitions of the physical quantities used in Equations B-l
are listed as follows:

the number desity of the ith species.

n., -

1

w, - the mass rate of production of the ith species

through chemical reactions.

-

X the average velocity of the ith species.

. th A

m, - the mass of the i~ species.

p - the mass per unit volume (density).

V - the mass average velocity of the mixture.

P - the pressure.

3

T - the stress tensor.
B : .th
f. - the external force per unit mass on the i

species.
E' - the total energy.
a - the energy flux.

EX - the kinetic energy (1/2 o 72).

m
1

the internal energy.

The conservation laws, in integral form, are to be applied to fluid
volumes which move through a fixed coordinate system. In addition,
weight functions are utilized and these are assumed to be products of
powers of x, y, and z at t = tg + At and in addition satisfy the follow-
ing differential equation.

.3 ovtan. (B-2)

In deriving the necessary form of the equations, the function f is
initially multiplied through Equations B-1. Substitution and rearrange-
ment of the terms yields the following form:

Species Concentration:

B, o G
5t + £ (V (ni Vi) =n, 5% + f N (B-3a)
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T

o, sw-oN=0 (B-3b)

at
Momentum:
¢ 3
WY, e N =V EVP-E (D)
t ot
(B-3c)
+ fIn m ?.
1111
Total Energy:
AFE" 4+ T _ T af 2 = -
+ £V VE 2B ==-€fV (V) -f (V" q)
ot ot
(B-3d)
~>. -
-f(V-.Pv) +f § n, m, ?i vy
Kinetic Energy:
SFEN K K of O -]
at+f(V~EV)=E-ﬁ-f(v-(t-v))+f(t:\77)
(B-3e)
cE@P @) -£@ P +fIn . m F TV
;-2 11 i
Internal Energy:
I
3fE . I of L2 =
e f(Ve+eE v) =E A £V -+-qQ -f(t:vVv)
(B-3f)

-fP (VV)
The following identities can be used for transforming the above

equations to the desired form:

U@ - W =U@V -N+UNV V) (B-4a)

47




L T —
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: 1
E : and VeUW =V U-+*V)+UW:*V) + UV - V)
) :
- (B-4b)
: or UV VeT=(VeUF)-(VIU-V) - (V-7
-
E and VeUW=UW(E- V) + {F 70UV (B-4c¢)
s :
5 where U and V are arbitrary functioms. i
i ]
3 g Substitution of Equations B-4 into Equations B-3 and after rearrange- !
- b ment of terms, the following equations are obtained: é

Species Concentration: ;

ofm, W,
i - e af . > i 3
¥y v fni + fni (v - vi) =n; (at X, vf) + f m (B-5a)
Mass:
g—;fﬂ+v-vfp+fp (v-v’)=p(-g-f—+Von) (B-5b)

; Momentum:
8
- —

b | MV T vgv e Eov (T V) =0V GEe T 0D A
B . a i |
- -f(Vert)-fVWP+£fIn m f. i

illl f
! !
Total Energy: %
i %
E | SfET 3
UE LV B vt 0 VD - E @ ) j

-

(B-5d)

— - ->
-f(V-q)-f(V-PV)-c-f!i‘nimifi-vi
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Kinetic Energy:

K
JofE -* K of
I 7 A U I -l € A T

-fv-(?-?;’)+f(:r‘:vi7)+fp(v~7) (B-5¢) I

->
-f (V-PY) +f ? n, m £ - vi
Internal Energy:

I
ol o I I °f
o . PR\ V) = E Ge* v . V)

(B-5f)
3
S f @ - -f(T:W)-FfP (@D
The substantial derivative (also referred to as the derivative

following the motion) D/DT is defined as the change with respect to
time plus the change with respect to position. That is:

D(UV) _ 3 (uv) ; ¢
et e Sk ¥ .vuy (B-6)

Substitution of the substantial derivative into Equations B-5 and
then integrating tge terms over a spatial domain R(t), which has a
bounding surface R™(t), yields the following set of integral equations:

Species Concentration:

e vi)] dR = n, [ﬁ + (V 4 Vf)] AR
(B-7a)

R(t) R(t)

"3
+ ] £—=dr
my

R(t)
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Mass:
/[g}@-*fp(V°V)]dR= fp[%+('\7-vf)]dk (B-7b)
R(t) R(t)
Momentum:
f[___‘)[f)‘:" +£pV (V- V)}dk = f pV[g—f-+ @ - Vf)]‘"‘
R(t) R(t)
(8-7¢)
- /f(v-:r:)dR- £VPdR+ /f;_:nimi'f'idn
1

R(t) R(t) R(t)

Total Energy:
¥

R(t) R(t)
= /fv-(?-?r’)dn-/f(v-?{)dk (B-7d)

R(t) R(t)
- /f(v-pV) dR + _/f;nimi“f’i-vidk

R(t) REEY). - *
Kinetic Energy:

K
DfE K > Klof . = .
/[_IY__fE (v-v)]dR= fE [5%-+(v Vf]dR
R(t) R(t)
(B-7e)

- /f[V- (X + V)] dR + ff(‘r’:v'\?)dk

R(t) R(t)

(continued)
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N ffp(v-‘»?)dn- ff(v-p‘\hdn

R(t) R(t) (B- 7e
cont)

+ J,ﬁ fIn, m.'¥. « V. dR
i & %73 i

R(t)
B
| Internal Energy:
1
| foEI+fEI(v-"dR- |3, 9 . ve|ar
Dt > 7 at
_ R(t) R(t)
c‘~1 L
: -
. ff(v-q)dR- ffﬁ’.vv')dk (B-7£)
R(t) R(t)
o -/fp(v-i?)dn
: R(t)
In order to transform Equations B-7, such that appropriate integral
equations can be obtained, it is necessary to recall the Convection
i Theorm?, given as follows:
D DU -
o fuan= f[ﬁt-»fucv v)]dR (B-8)
R(t) R(t)
" or = fuan=3-<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>