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I.  INTRODUCTI ON

Fragment penetration of fuel cells is a traditional damage and kill
mechan ism of the Army ’s motorized vehicles and fuel storage containers.
In order to provide information which will assist in understanding the
physical phenomena involved , it was decided that a new approach for
simulating fluid flow may be of value . Consequently, a completely general

— 
* 

formulation was conceived to serve as the basis for the development of a
computer code.1

The purpose of this report is to document the basic ideas given in
the original notes and to present an expansion of them in a form suitable
for use as a guide in the construction of a code. It is not the inten-
tion of this report to discuss all of the physics which would be
involved in such an undertaking. Presented here is a mathematical
description of the procedure for simulating fluid flow by combining
Lagrangian cell motion and the computation of distributions of physical
quantities over cells based on a knowledge of moments over subregions
of the cell .

II. THE BASIS OF THE PROPOSED NUMERICAL TECHNIQUE FOR
TRANSPORTING PHYSICAL QUANTITIES IN FLUID FLOW

The numerical technique for simulating f luid flow transport consists
of two separate parts; the sum of which wil l  yield distributions of the
physical parameters across fixed cells as a function of time. While the
discussion is presented in terms of rectilinear coordinates , the same
theory is applicable in cylindrical or spherical coordinates and, in fact,
the code should be constructed to accomodate all three. To facilitate
understanding , the discussion will concentrate on one part of the numer-

F ical technique at a time .

Figure Il- i consists of a diagram which portrays cells assumed to be
formed by a fixed rectangular coordinate system x , y .  The two dimen-
sional assumption implied by the figure is not necessary since the
arguments are equal ly valid in one , two, or three dimensions. In each
cell an arbitrary physical parameter is represented by the symbol a~ .
The subscriptJ is to denote that the distribution of ~ corresponding toeach J cell , can be different. This situation is assumed to exist at
time t~ , which would be the instant corresponding to that at the beginn-
ing of a cycle of computation.

In each of the four cells depicted in Figure II-!, the fluid has
associated with it a local velocity distribution of the form presented
in Figure 11-2. As indicated, the two components, 

~~ 
and 

~y’ 
are assumed

‘Rogera, Joel , unpublishe d progress reports submitted to the Ballistic
Research Laboratory, March 9, 1970 and January 19, 1971 .
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to be linear and in general are represented by the following expres-
sions :

(II—’)
= ~ (a~ x + a4)

where T and are unit directional vectors and a1, a2, a3, and a
4 
are

coefficients.

• Treating the fluid in the cells of Figure II-! as Lagrangian cells
which move as bodies of fluid according to the fluid’s local velocity,
the new positions of these Lagrangian cells at t~ + At can be obtained

• and are represented by the dashed lines in Figure 11-3. The symbol At
represents a finite interval of time. The shaded regions, denoted by
SRj ,  constitute contributions of the moments of physical parameters
from the four Lagrangian cells to one cell in the fixed coordinate
system. The inunediate task is to explain how to obtain the distribu-
tions of the physical parameters based on these four contributions.

The basis for the procedure for computing the distribution of the
physical parameter is presented in Appendix A. There is shown that if
certain moments of the physical parameter are available for the sub-

• regions , then a new distribution based on these moments can be calcu-
lated for that parameter across the total region. To accomplish this,
it is necessary to resolve the question as to which moments are required

• and how are the moments obtained? For the present, we may hold the
latter portion of the question in abeyance and assume that the moments
are available. The decision , relative to the first part of the question
above , depends on the form of the distribution of the physical parameter
desired as we wil l  demonstrate by the following example.

First of all , we may arbitrarily assume that the distribution of
the physical parameter a, in Figure 11-3, is to be of a linear form as
follows :

a = b1x 
+ b

2
y + b

3 
(11-2)

A’• where a is a function of the spatial parameters x and y and b1, b2, and
b3 are coefficients to be evaluated.* In order to evaluate the three
coefficients, it is sufficient to generate three equations containing
these coefficients and to solve them simultaneously. To this end , we
mul tiply through Equation 11-2 by a function f which is required to

*The linear assumption asswned here is not necessary in tha t a higher
order pol ynomial may be utilized. In any case the 8cm~e procedure is
to be followed.
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take on values of 1 , x, and y. That is:

• f a = b
1
f x + b 2

f y + b 3 
(11-3)

and
• a = b 1 x + b 2

y + b 3

X a = b
1 x

2 + b
2
x y + b 3

X (11-4)

2
y a = b

1
x y + b 2

y + b
3
y .

* 

Integrating the terms of Equations 11-4 with respect to x and y
yields the following equations:

fa dA = b1 fx dA + b
2 fy 

dA + b
3 

TC

TJ TC TC TC

• f ~ a dA = b1 fx 
y dA + b

2 f y
2 dA + b

3 J ~ dA

TC TC TC TC

• where dA equals dx dy and the symbol TC is intended to indicate that the
• integrations are to be performed over limits which span the entire cell

( from ~~~~ and y 
~~ 

to 
~~ 

and y
~ ~ 

respectively in Figure 11-1). For
other forms of t~e distri~ution, t~e function £ would be set equa

l to
other value s, but in general:

k1 k2f = x  y (11-6)

where and k2 are equal to 0, 1, 2 For combinati~ns of the~e
values for k 1 and k2, the values of f are 1, x , y , x y, x y,  xy2, x y2,
and etc.

The integrals on the right side of Equations II--5 depend on the
limits defined by the coordinate values of the corner points of the cell
and are easily evaluated. We refer to them as Geometric Moments because
their values depend on the spatial parameters only, and for convenience,

*The propo sed distri butions for density, momentum, and kinetic energy
and the requ ired moments are presented in detail in Appendix C.
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we represent them by the symbol G as fol lows :

= 

TC

G2 = fy dA

TC

G
3 

= fx dA

(11-7)

G4 = fxy dA

TC

G5 =fx
2 dA

G
6 = fx

2 dA

Substitution of Equations 11-7 into Equations 11-5 yields the
following equations :

TI

fx a d A = b
1
G
5
÷ b

2
G
4
+b

3
G3 (11-8)

a dA = b
1
G
4 

+ b2G6 + b3G2 .

The integrals on the left are equal to the sums of the integrals
over the var ious subreg ions. Consequen tly , the following equations can

* be wri t ten :

14
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Ja dA = J a 1 dA + J a 2 dA + f  a3 dA + f  a4 dA
*fC SR1 SR2 SR3 SR4

fx a d A =  f x a 1 d A +  J x a 2 d A +  f x a 3 d A +  f x a 4 dA

TC SR1 SR2 
- 

SR
3 

SR4 (11 9)

a dA = a1 dA + f ~ a 2 dA + fy a 3 
dA + a

4 
dA

where SR~ indicates that the limits of integrations extend over the
various subregions.

We obtain the following equations after combining Equations 11-8
and Equations 11-9:

~~~~fa j d A = b 1 G3 + b 2 G2 + b 3 G1
4 JSRJ

~~~fx a~~d A = b
1
G
5
+ b

2
G
4
+ b

3
G
3 

(11-1 0)

* 

~~~~f Y a j d A = b 1 G4 + b 2 G6 + b
3

G2
J S R

J

The remaining task consist of evaluating the moments of the phys ical
parameter over the various subregions as indicated by the integrals on
the left side of Equations 11-10 and the shaded regions in Figure 11-3.
The limits of these subregions can be determined by the intersections
of the boundaries of the Lagrangian cell and the fixed coordinate system ’s
cells. However, the distributions of are unknown since changes in
aj  have occurred over the time step At , and thus the integrals cannot be
evaluated directly.

In Figure II-4A, a Lagrangian cell of fluid is shown at t5 + At ,
where the subregions are formed by the intersections of the boundaries.
Since the motion of the cell is calculated using the local fluid velocity
and the time step At , the limits of these subregions can be converted by
the reverse process to limits of corresponding subregions for the cell
loeated at t~, as shown in Figure II-4B. The distribution of a is known

15
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at t5, thus if the integrals for calculating moments could be evaluated
over the limits at t5, such that the results are equivalent to those at
t5 + At , then the d i f f icu l ty  would be resolved .

In order to permit integrations at t5, the function f(x,y,t) is
defined at t~ + At as follows:

k k
f(x, y, t5 + At) = x 

~
, 
2 (lI-il)

* 

and is required to satisfy the following differential equation:

= .~~~~~ + • V f = 0 . (11-12)

This differential equation is to be interpreted as saying that f is a
constant along particle paths. Thus, to first order accuracy, we have

f(x, y, t ) = f (x + 
~ 

At , y + i~y At , t~ 
+ At) (II-13)

where x, y are the global coordinates of the fixed coordinate system .

In Appendix B, the Equation 11-12 and the conservation equations
of change are utilized in deriving the appropriate equations of change
needed to compute moments of the physical parameters over the subregion
att 5.

• III. A COMPUTATIONAL VERIFICATION OF THE METHOD

A satisfactory verification of the method proposed in this report
demands a comparison with computations of complicated problems solved
with existing codes using already “proven” methods. This is currently
impossible since the program, utilizing this proposed method, has not
been constructed. Consequently, the best one can do at this point is to
solve a simple problem for the purpose of demonstrating that the pro-
posed method for simulating fluid flow is feasible. In addition, such
a calculation may be helpful in providing a means whereby the method
can be better understood. In any case, this section is intended to
verify the method to a limited extent and should be approached from that
point of view.

* 

The problem chosen is the determination of the steady velocity
distribution for flow between two semi-infinite parallel flat plates,
where the driving mechanism is the frictional forces due to the constant

17
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motion of one of the plates. Diagrams , describing the tempora l aspect
of the problem , are presented in Figure Ill -i . In the diagram at the
top of Fi gure 111-1 , the velocity is zero throughout the fluid for times
prior to some arbitrary instant of time t0. At t0, the lower plate is
set i n  motion suddenly at some velocity (in this case the value 0.8 is
assumed) and due to the frictional force between the plate and the fluid ,
the f l u i d  is dragged along with the plate . It is assumed that no
slippage exist between the surfaces of the fluid and the plates; thus
th at layer of fluid adjacent to the surface of the plates and the plates
have the same veloc ity.  For all time af ter t 0, the lower plate is
forced to retain its initial velocity and momentum is continuously
transferred in the y direction from the moving plate to the fluid and
through the fluid toward the upper plate. The momentum is transferred
from one layer of fluid to the next due to the frictional force created
by the effect of the viscosity of the fluid . Since the upper plate is
forced to remain motionless, the velocity of the layer of fluid adjacent
to its surface remains zero. Eventually the steady velocity distribu-
tion is obtained , as shown in the bottom diagram of Figure 111-i . The
objective of the calculation is to determine momentum distributions of
the fluid from t 0 until the steady velocity distribution is obtained.
It is not necessary to simulate a real fluid to make our point, thus

— 
simple values are used for the parameters involved and no reference to
spec if ic units are made .

The fluid motion in this flow problem is in one direction only;
that being in a direction parallel to the plates. The form of the
velocity distribution is written as follows :

= I (a1 y + a2) (111-1)

F 
• 

where

= the velocity parallel to the plates .

• y = the coord~nate perpendicular to the platesin the j  direction.

I = the unit vector in the direction parallel
to the plates.

a1, a2 
- coefficients.

The motion of the Lagrangian cell is demonstrated in Figures 111-2
and 111-3 , where the dashed lines represent the cells formed by the —

fixed coordinate system and the solid lines indicate the positions of
the Lagrang ian cells at t~ + At. Focussing attention on the T row of
cells in Figure III-2 , we see that the cells of fluid are partitioned
into two subregions by the intersection of boundaries. The shaded

18
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Figure 111-i Velocity Distributions For Fluid Between Semi-infinite
Parallel Flat Plates As A Function Of Time.
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subregions represent the contributions of fluid from Lagrangian cells,
which were initially superimposed on (S-i T) and (S,T) fixed cells at

to the fixed cell (S,T) at t + At. Based on this information, the
fixed cells, to which the contri~utions from the various subregions areto be summed , are identified. The motion of the Lagrangian cells are
computed by translating the corner points with the Equation ILL-i and a
time step At.

~In this problem, at any point in time, the flow does not vary in
the i direction parallel to the flat plates. Consequently the velocity
distribution at t5 + At need be determined in only one column of cells
(say Column S of Figure 111-2). However, the procedure required an
additional column of cells (Column S-l in Figure 111-2) in order to

* obtain the contribution of flow from one column of cells into the next
column. In this case the contributions are represented by the subregions
identified as SR5..j.1 and SR~ T~ 

At the end of a cycle of computations
both columns of celis are giv~n the same velocity distribution as thatcalculated in order to start the next cycle of computations.

For this problem, only momentum need be considered to obtain the
required results. And for simplification, we assume that the density
distribution throughout the flow is equal to 1. Therefore, the expres-
sion for the momentum is identical to the velocity distribution which
is expressed as Equation 111-1. Thus, the two moment equations needed
to obtain the velocity or momentum distribution across the fixed cell

4 
at t5 + At are written as follows:

S
~~~1T 

dy + dx dy = a1 Jy dx dy + a2 
TC 

dy

- , S ,T ( 111— 2)

f ~~ 
dx dy + dx dy = a1 fy

2 dx dy + a2 fy dx dy

SRS..l,T SR51  IC TC

To evaluate the left side of Equations 111-2 , it is necessary to
revert to the subregion’s limits at t5 as shown in Figure 111-3 and to
utilize the integral equation for momentum derived in Appendix B. Since
there are no external forces or any imposed pressure gradient, the
applicable momentum equations reduce to the following:

21
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fP~~x
dX dY J’Pv ~~dx dy _ At f ~~~~~~~

SR(t +At) SR(t5) SR(t5)

fY
P;

x
dX d Y= f (Y +V y

At) P~~x
dXd Y (111-3)

SR(t +At) SR(t
5)

-A t  ,f(y+vy At) (~~.jt’)dx + At JY + v y At) ~~dx dy

SR(t ) SR(t )

where

-r = the stress tensor .
it = the unit vector perpendicular to subregion surface

as shown in Figure 111-4.
A = ! a/ax + j  3/ay.
p = density.

For this problem, the stress tensor reduces to the following :

~~~~~ ~~~~9v-~~~( ij ~~~- + j i ~~~- ) .

Consequently, the term

At fA y .Id x dy

SR(t )

becomes

- At __2~. dx dy (111-4)

SR(t5)

where for simplicitity, the value of the viscosity u is set equal to 1.

For this two dimensional problem, the second term on the right side
of Equation III-3 are line integrals. Since the stress tensor reduces
to Equation 111-4, the terms in question are, in this case, independent
of the y coordinate. Therefore, only integrations along the top and
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Figure 111-5 The Least Square Cubic Fit Of Velocity Slopes .
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bottom of the subregions are needed.

In order to carry out the calculations , the adjacent cells must be
inter-related through an averaging of the stress tensor. In Figure
111-5 , three adjacent cells are presented, where the slopes of the
velocities are indicated by (al)T+l, (al)T, and (al)T_l. The procedure
for obtaining the average consist of assuming that these velocity slopes
exist at the center of each cell and then fitting them with a least
square cubic equation of the following form :

a
1 

= c1 y2 
+ c2 y + c3 (111-5)

There are three boundary conditions which are accounted for as dia-
gramed in Figures III-6A to III-6B. After the momentum distribution at
t5 + At is computed for all of the non-boundary cells , the boundary
conditions are imposed. The upper plate remains motionless , thus the
fluid velocity adjacent to the plate remains zero. Consequently, for

— the upper boundary cell , the momentum distribution is set equal to a
linear fit between zero at the top of cell CLT and the momentum value at
the top of the next lower cell CL~~1. The lower plate is forced to
retain a constant velocity of 0.8 thus for the lower boundary cell , the
momentum distribution is set equal to a linear fit from the momentum
value at the bottom of the next higher cell CL~.~ 1 and the constant plate
velocity at the bottom of the lower boundary cell Cl1. In addition , as
the momentum is propagated in the y direction, there will be some cells

-
- - 

with no momentum. Therefore a moving boundary condition exists until
all of the cells between the plates have gained some momentum . In order
to handle this moving boundary , the cell with no momentum, say CL.~. which
is adjacent to a cell with momentum , say CL..f l .  is identified. Then a
momentum distribution is assigned to CL.~. whicTl is a linear fit between
zero momentum at the top of cell CL~f and the momentum value at the topof cell CL1, 1

.

Figure 111-7 presents the momentum distributions as a function of y
for various instants of time. As the graph shows, momentum was pro- - -

gressively transported in the y direction until the fluid in all of the
cells obtained values of momentum above zero. Then the momentum in-
creased in all of the cells until the steady distribution, represented
by the dashed line, was obtained. The x’s on the graph represent the
results of the last cycle of computation. The data presented in Table
111-1 represents the momentum computed at the top and bottom of the cells
where the values were determined from the momentum distribution. The
data indicates the closeness of the values of momentum between adjacent
cells and suggests that a high degree of continuity between cells exist
using the proposed method.
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Table 111-1. Momentum Values At The Top and ~ottom of Cells For
The Sliding Plate Problem.

Momentum Values

Cell BottOm lop

1 0.8 0.729246870

2 0.729246870 0.659359231

- - 
3 0.659359241 0.591170446

-. 4 0.59 1170426 0.425451446

5 0.525451478 0.462884307

6 0.462884251 0.404040364

— - 7 0.404040364 0.349365223

8 0.349365239 0.299169344

9 0.299169299 0.253625760

10 0.253625788 0.212773912

11 0.212773847 0.176527839

12 0.176527922 0.144689503

13 0.144689462 0.116963056

14 0.116963063 0.092972181

15 0.092972282 0.072275841

16 0.072275821 0.054383357

17 0.054383268 0.038768292

18 0.038768374 0.024879464

19 0.024879485 0.012149046

20 0.012149046 0.0

* Ax = 1; Ay = 1; Atime = 0.1; Time = 40

- 
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LV. A CONCEPTUAL DESCRIPTION OF THE CODE CONSTRUCTION

The most efficient device for organizing a conceptual description
of a code structure is the flowchart as presented in Figures IV-1 to
I V — b .  This  flowchart is a preliminary effort and is not intended to
accomplish more than a demonstration of an overall approach .

That part of the flowchart in Figure IV-1 symbolizes the modeling
of a rea l problem in terms of the actual da ta requ ired to compute a
solution . In general , such a model would be based on the var ious phys i-
cal characteristics of the real target and the offensive mechanism with
wh ich the target w i ll  be engaged . In particular , the geometry of the
target, the properties of the materials of which the target is constructed ,

- 

- and any specif ic initial conditions must be def ined . In addition , the
off en si ve mechanism must be characterized and described in an ideal ized
manner appropriate for computer computations. Based on this information ,
the actual input data for a calculation is to be formalized.

The input model would consist primarily of basic assumptions ,
boundary conditions , and other basic data associated with the target
materials. The basic assumptions deal with items such as the number of
dimensions , compress ibil ity, the number of kinds of species, external
forces , and etc. The boundary conditions would vary from problem to

L problem and accounting for them wi l l  constitute one of the more dif f ic ult
tasks. Some of the other basic data referred to above could be vapor-
ization rates, reaction rates , an ignition cri teria and etc , which would
be needed if the problem required accounting for combustion .

Once the input model has been read into the computer, the code
should execute those subroutines designed to compute moments of the
physical parameters for all of the cells and then sum them in the appro-
priate fixed cells. These subroutines are indicated in that part of the
flow chart shown in Figures IV-2 and IV-3; beginning at Sl and ending

C with S3.

Assuming that the cells are numbered consecutively from 1 to a
maximum number 

~max ’ the code would naturally beg in with the I = 1 cell
and resolve the question as to whether it is a boundary cell .  If the
cell is one defining a boundary, the code would activate that subroutine
(not shown on the flowchart) which accounts for the appropriate boundary
cond ition corresponding to that cell , and then proceed to the next I
cel l .

Whenever -the cell does not constitute one defining a boundary con-
dition , the code would execute a subroutine entitled “Neighboring Cells”
in the flowchart . This subroutine would identify those cells which are
adjacen t to the current I cell by their I number and these numbers would
be stored for future use. The reason this information will be needed is
that the Lagrangian cell will deposit its “contents” in certain ones of
these nei ghboring cells , depending on the direction of the fluid velocity .
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etc. External ForcesDamage criteria 
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Figure IV-l Plowchart For Code Construction .
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Figure IV-2 Flowchart For Code Construction (Continued ).
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CALCULAT I ONS FOR MASS , MOMENTUM , AND ENERGY MOMENTS
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~~~) 
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Figure IV-3 Flowchart For Code Construction (Continued)
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Figure IV-4 Flowchart For Code Construction (Continued).
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Figure IV-5 Flowchart For Code Construction (Continued).
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CALCULAT I ONS FOR DEP ENDENT VARIABLES
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Figure IV-6 Flowchart For Code Construction (Continued ).
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In the case of two dimensional flow, there will be nine neighboring
cells including the current I cell.

The next step is to determine if there are more than one kind of
species. In the case of one kind of species, the code would proceed to
S2 of the flowchart as shown in Figure 1V-3. If not, then the code
would initiate a reiteration design to compute the moments of the species
concentration for each i kind of species. Each kind of species will
have associated with it a velocity distribution 

~~~~~
. Consequently, a

Lagrangian cell of that species would be calculated to move according
to and limits of subregions SRK at t5 would be determined by a sub-routine entitled “Limits” in the flowchart. In addition, subroutine
“Limits” would identify the neighboring cells in which the moments of thesubregions are to be summed. Then taking each subregion in turn, the
moments for the species concentration would be calculated and summed.
In this procedure some of the subroutines would be bypassed if Wj = 0
or if 1

~ 
= 0. After all of the kinds of species have been considered,

the code would move on to consider the remaining physical parameters,
where the flowchart is marked with the symbol S2.

In considering the computation of moments for the remaining physical
parameters, in Figure IV-3, it is noted that subroutine “Limits” would
again be called and, based on the mass average velocity, the limits of
subregions at t5 would be determined. Following the flowchart) it can
be seen that if the fluid is assumed to be incompressible, the integral
for computing the mass moments would be bypassed. Then the terms for
calculating the moments for momentum and energy would be evaluated.
However certain terms may be bypassed if the viscosity is zero, the
heat flux is zero, the number of kinds of species is greater than one,
or if exterior forces are absent. Once all of the subregions have been
accounted for, the code would recycle until all of the cells have been
processed. At the conclusion of these calculations, corresponding to
each of the I cells , there will be sums of the various moments stored.

The new distributions of the physical quantities at t5 + At would
be determined by the operations presented in Figure IV-5. As before in
the case of boundary cells, special subroutines would be called to im-
pose the appropriate boundary conditions. If the size of the cells
varies from one cell to another, then for each cycle of computation the
Geometric Moments would have to be computed for the different size cells
or a table of these values required. If the cell sizes vary in the
computation, then appropriate adjustments in the table would be needed
to reflect these changes. At the completion of these calculations, the
new distributions of the physical parameters at t5 + At would be avail-
able for the next cycle of computation.

In Figure IV-6 , some of the operations which would be needed to
complete the calculation are presented. Firstly, certain physical
quantities may be required which depend on those already calculated .
These could include fluid temperature and pressure. If more than one
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i ntt o1 species is possible , then based on the ignition criteria , it
would 1w determined if ignition had occurred. If so, then a new value of w~

(the mass rate of production term ) based on the existing temperature
- 

- 
and species concentrations would be evaluated for use in the next
cycle. Afterwards a new species velocity, for each species, would be
determined from which a new mass average velocity could be derived. At
th is point , the code would be prepared to print out data, initiate the
next cycle or stop .

The flowchart does not indicate numerous operations and subroutines
which the final version of the code will need. In some cases it will
be desirable to change the cell sizes by doubling or halving some or all
of them . A difficulty will be the programing of the code such that
a r b i t r a r y  coordinates systems can be handled (Cartesian, cylindrical ,
sph e r i c a l , etc). Also certain problems must be resolved , such as ensur-

- . ing that distri butions of physical quantities are continuous across cell
boundaries and that non-negative quantities never end up with negative
va l ues. In order to place these and possibly other problem areas in
perspective relative to the entire code, the flowchart needs to be
expanded. However, the current version provides sufficient descriptive
in fo i-mat ion to adequately portray the basic approach for organizing the
code structure.

V. CONCLUS IONS - -

— 
The objective of this report is to document the essential and basic

elements of the proposed mathematical and physical scheme for simulating
- - fluid flow . The simple problem solved in Section III provides verifi-

cation to the extent that it demonstrates that the approach is feasible.
The flowchart and its associated description in Section IV provides a
general picture as to a possible procedure for implementing the proposed
method in terms of a computer code. There is no attempt to anticipate
or categorize all of the difficult areas or to explain how they might be
overcome. That would tend to confuse and undermine the primary objective
of the report.

The proposed method has two important characteristics. One is that
it involves integral equations, which means that singular points will
not be a problem and no instabilities will occur for that reason. The
other is that the various physical parameters will be represented by
variable distributions across the cells , which should provide increase
accuracy in contrast to using constant distributions for the same cell
size. 

-

At this stage, it is impossible to make a reasonable comparison of
this method with existing hydrodynainic codes which utilize other methods .
This can be accomplished only when a code has been written and
computationa’ results compared. There is no way to estimate the computer
time required to compute a typical problem. That also must be held in
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abeyance until problems are run. To this end, progress in code construc-
tion will be accomplished as manpower and funds become available.

I
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APPENDIX A

THE DETERMINATION OF DISTRIBu TIONS OF FUNCT IONS BY
THE MOMENT S METHOD

A part of the mathematical basis of the theory is the so called
Moments Method for the determination of an average distribution of a
variable over a region if certain moments of the variable over sub-
regions are known. The method may be derived directly from the concept
of a weighted arithmetic mean. In general, if it is assumed that there
are available cz1, ct2 aj  non—negative numbers (we ights), not all
zero, the weighted arithmetic mean I of f1, f2 , fj  is defined by
the following formula:

(A- i)

J

When the weights are all equal, Equation A-i reduces to the expression
for computing the ordinary arithmetic means.

This may be extended to the weighting of a function over an interval
where the weighting function varies continuously. This extention yields
the follow ing equation :

- . 
- 

fa(x) f(x) dx
f(x) = (A-2)

fc&(x) dx

where ct(x) is a non-negative weighting function whose integral is not
zero. -

In Figure A-i , a function a(x), whose first derivative is discon-
tinuous at certain values of x is plotted. Between each pair of first
derivative discontinuity values, the function f(x) and the weight func-
tion a(x) are assumed to be known. Utilizing this information and
Equation A-2, the following expression can be obtained:
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~f

x2 a1 f dx + a~ f dx + .... + a
5 f dx

f  2 5 
- (A-3)

f 2 
~~~~~ 

dx + a2 dx + .... + / 6  a~ dx
x2 X

5

~
\lso indicated in Figure A-i , by the dashed line, is the average

weigh t f unc tion for the entire range of x. The integral of the average
wei ght function over the entire range of x is equivalent to the sum of
the integrals of the individua l weight functions over their correspond-: lug intervals of x. That is

6 a (x )  dx f
7 

a 1 dx + /3 a2 dx + ... + 
6 a5 dx.

x
l x

l ~S (A-4)

r 
- Al so , we may write

( 6j  a(x) f(x) dx
x

1= (A-5)
/6 cz(x) dx

X
1

Combining Equations A-3, A-4, and A-5 yields the desired expression
for evaluating the average weighting function a(x), wri tten as follows:

/ 2  f dx + / 3  a2 f dx + .... + / 6  a5 f dx = / 6  a f dx
X

1 
x 2 X

5 X
1 (A 6)

where and f are known . If f is set equal to x° = 1, then a is a
constant as indicated in Figure A-l. However, f may be any power of x
and for that reason a can be evaluated as a variable function. In two
or three dimensions, f may be a function of the other spatial parameters
as well .

For the purpose of demonstration, we may utilize Figure A-2, where
a two dimensional spatial region is defined and which is partitionedç into five subregions SRj. Also, we may assume that corresponding to
each subregion a known distribution of a physical parameter a(x,y) exist .
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- Figure A-i Schematic Presentation Of An Average Function Based On
- Moments Over Subregions.
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Thus the  wei ght i ng function is represented by a(x,y)j and the function
t o  be wei ghted is

k k
f (x ,y) = x 1 2 

(A-fl

Let t s assume that the average weighting function a(x,y) is repre-
--t itred by the fol lowing equation :

a( x ,y) b
1 

x + b
2 
y + b3 (A-8)

where b1, b2, and b3 are constants to be evaluated in the manner to be
• explained below.

By u t i l i z i n g  Equations A-6 , A-7 , and A-8 and setting the values
of and k, to 1 and 0 respectively such that f = 1, x, or y, the
following tfiree equations are obtained:

J u. dA + J~a2 dA + .... + 

/c
~5 

dA = fci dA
SR 1 

SR
2 S~~ TC

I x dA + f  a
2 

x ~~~ + .... + x dA = fa x dA (A-9)

SR] SR
2 

SR
5 TC

.... +fa5 ydA = fay dA

1 2 5

where

TC y’ f 
~~~~~

mm mm

and dA = dx dy.
/-

The integrals on the left of Equations A-9 can be evaluated once
the l imits of the subregions have been determined . By summing the values
of those integrals and substituting from Equations A-8, the following
form of the equations is obtained :
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~ f a~ dA b
1 fx 

dA + b
2 fy 

dA + b
3 fdA

J SR~ TC TC TC

~~ J x a j d A = b i J
~x
2 d A + b

2 J x Y dA + b 3 ~Jx dA (A-b )

J SR 1 TC TC TC

~~ 
y a~ dA = b

1 
f ~ y dA + b

2 f
~2 dA + b

3 fy 
dA

J SR3 
TC TC TC

Th e integrals on the ri ght side of Equations A-b depend entirely
on the spatial parameters, so for convenience , these integrals are re-
ferred to as Geometric Moments and are integrated over the entire spatial
region . Since there are three equations and three unknowns, the
coefficients b1, b7, and b,~ of a can be evaluated by solving the equa-
tioris simultaneously. If ifigher order expressions for a are desired ,
the additional coefficients required can be evaluated by increas ing the
value of the k’s in Equation A-7 and thereby increas ing the number of
Fquations in A-b accordingly.

I
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APPENDIX B

TIlE DERIVATION OF THE INTEGRAL EQUATIONS FOR CALCULATING
MOMENTS IN FLUID F LOW

In deriving the integral equations for computing moments of physical
quantities over a spatial domain, where the results include changes
over a time step ~t, it is sufficient to begin with the basic equations
of change , wri tten as follows:

Species Concentration:

an. w.
-~~

__
~~. + v n .. = (B-la)

-

- - Mass:

+ v • = 0 (B-lb)
at

Momentum :

a v  —+—u-— + v (pv) ~~~ 
= - V P - (V • -r) + E n.m.f. (B-ic)at 1

Total Energy :

3E ’ -~~T -,
• yE = - V ~~ (t  ‘~~~

) - (V P~) - ( V •  q)

(B-id)

+ E n.in.t .

i i i i  m

Kinetic Energy :

V E~~ = - V • (~ • ~) + (~ V ) + P(V .

(B-le)
-~~ -~~

- V • Pv + E n.m.f. • v.
i i i i 1

Internal Energy :

I-~ 
-

~~
+ V • E V = - V • q - : V v - P (V • v) . (B-lf)
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— The de f in i t ions  of the physical quantit ies used in Equations B- i
are listed as fol lows:

n. - the number desity of the 1th species.

w1 
- the mass rate of production of the ~

th species
through chemical reactions.

- the average velocity of the ~
th species.

.th .m1 
- the mass of the i species.

p - the mass per unit volume (density).
- the mass average velocity of the mixture.

P - the pressure.

- the stress tensor.
-~ thf1 

- the external force per unit mass on the i
species.

• ET - the total energy.

- the energy flux.

K . . -+2E - the kinetic energy (1/2 p v ).
- - 

E’ - the internal energy.

The conservation laws, in integral form, are to be applied to fluid
volume s which move through a fixed coordinate system. In addition,
weight functions are utilized and these are assumed to be products of
powers of x, y, and z at t = t5 + t~t and in addition satisfy the follow-
ing differential equation.

-~f +~ . v f = 0  - (B-2)

In deriving the necessary form of the equations, the function f is
initially multiplied through Equations B-b. Substitution and rearrange-
ment of the terms yields the following form :

Species Concentration:

+ f (V • (n
~ ~~~ 

= n
~ 

+ f (B-3a)
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Mass:

(B -3b)

Momentum:

a~pv + I ( V .  ( p )  ) = ~~~~~~~~~~~~~~~~ 
f V  P - I (V

(B-3c)

+ f E n .m. f.
j  1 1 1

Total Energy :

3
~~~~+ f V  •~~~E

T = E
T
~~~~~~f V  (~~~

) - f (V
(B-3d)

-. 
_, -..

— - f (V .Pv )+ fE f l . Ifl. f. V.
~~~~~

l l  1 1

-
- 

K ine tic Energy :

~~~K 
+ ~ (V • EK~~) = EK~~~~_ f (V • • ~)) + f (~~ 

: V~~)

(B-3e)

+ f ( p cv . ; ) ) _ f ( v . P ~) + f E n ~~ml f~~v~

In ternal Energy :

alE 
+ f (V E1 ) = B1 }

~- f (V • ~) - I (~ : V )

(B-3f)

- f P ( V.)

The following identities can be used for transforming the above

equations to the desired form :

U (V V ) lJ (V V~~~~)+U(V V V) (B-4a)

47



~~~
uIr•. 

~~~~~ 
- —.----- -----

~~~~~~
- -.- -—--- -,-—- - ----—

~
——- 

~~~ 
—.- ---

~~~~
- — 

~~ III ~~~

I

and V • U V *  V(V U • 
~
) + U(V • + UV(V

(B-4b)

or U V V ’~~~= (V • UV~) - ( V V U . )  - (UV V ~~
)

and V • = UV(V • ~) + (
~ 

• V IJV) (B-4c )

where Ii and V are arbitrary functions.

Substitution of Equations B-4 into Equations B-3 and after rearrange-

-
~ I ment of terms, the following equations are obtained :

Species Concentration:

___  • V + ~~ (V •~~~
) = n

1 
(
~~~+~~~ 

Vf) + f —i- (B-5a)

Mass:

+ • Vfp + fp (V • ) = p(~f + V Vf) (B-Sb)

Momentum:

afPV + • Vfp~ + f p~ (V • ~
) = p (}f . + ~ • Vf)

(B-5c)
.+ 

_,
- f (V .T ) - f V P + f E n . m. f.

F- - - i 1 1

-j Total Energy:

~~~
T

~~~~~~~~~~~ T T T ~~~~~~~~ - f ( V .

(B-Sd)

-
,
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K inetic Energy :

afEK 
+ . VfE~ (V • ) = EK (}~ + • Vf)

- f V • (~~ 
. ) + I : V ~

) + f P (V . ~
) (B-Se)

- f ( V .P ~) + f E n . m .~~~~~~~.t i l l  1

- N

i ntern al Energy :

~~~~+~~~.v fE1 (V .~~~~= E ’(}~~+~~~~ Vf)
(B- Sf)

- f(V .~~)- f (~~:V ~)- f P (V ~~~~)

The substantial derivative (also referred to as the derivative
following the motion) D/DT is defined as the change with respect to
time plus the change with respect to position. That is:

D(UV) 
= 

a OJV) 
+ • ~ (B - 6)

Substitution of the substantial derivative into Equations B-S and
then integrating t~e terms over a spatial domain R(t), 

which has a
bounding surface R (t) , yields the following set of integral equat ions;

Species Concentration :

f  {D Dt + f n . (V . 

)] 
dR = 

J

’

n.[~~ 
+ (

~ Vf)j  -IR

R( t )  R(t)  (B-7a)

1 w .

+J f —a- dR

R(t)
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• Mass:

f  
~ 

+ f p (V ~)] dR = f  [
~ 

+ (~~ 
. Vf)] dR

R(t)  R(t)

Momentum :

f{
DfPV + f p  (V .~~~~~dR f ~;[ ~+ ~~~~~

. Vf)]dR
- •~ R(t )  R(t)

-
~~~~ (B-7c)

- j
”

f ( v .~~ ) d R _ 
f

fv P d R + J f E n i mi ?i dR

R ( t )  R ( t )  R(t)

- 
- ,

‘_ - Total Energy :

• 1. 
J{DIE

T 
+ ifT (V • dR = f  ET 

+ . VI]
R ( t )  R(t )

- 
- ff  V ~ (~~

• ) dR - f f  (V . 

~
) dR (B-7d)

- . R(t) R(t)

- ff (V .P~~)dR + ~~~~~~~~~~~~~
-

- 1 R (t )  R( t )

Kinetic Energy:

J {DIE
K 

- fE~ (V . )]dR = fEX [~~+ ( • Vf] dR
R ( t )  - R(t)

(B-7e)

- ff [V .(~~
.;)]dR+ ffc~~:V;) dR

R(t) R(t)
(continued)
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+ ffP(V .
~~~~dR ff(V .P~~~~dR

F - R ( t )  R(t )  (B- 7c
cont)

+ f  f E n. m . ?. • ~~~ . dR
j i l l  1

R (t )

Internal Energy;

J[DIE
J 

+ ~‘ (V • 
;] 

dR = f  ~~~ + • 

~
] dR

R( t )  R( t )

- ff(v .
~~)dR~~ ff~~~~:V~~)dR (B-7f)

• - R(t)  R(t)

- ffP (v .;)dR

R(t)

In order to transform Equations B-7 , such that appropriate integral •

• equations can be obtained, it is necessary to recall the Convection
Theorm2 , given as follows:

~~~~~

. f  U dR = + U (V • ~)] dR (B-8)

R(t) R(t)

or ~~ fUdR= ~~~ fu dR + fu~~~~.in dR* (B-9~

• R(t) R(t) R(t)

2Meyer, Ricthard E., “Intro dzsotion to Mathematical Fluid Dyriamice,”
Wi le Interecience, New York, N. 1’., 1971.
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where ~ is a unit vector normal to the surface dR
*. For our purpose,

the second term of Equation 8-9 is set to zero since no fluid is to be
permitted to cross the boundary of the cell. The application of this
condition plus the imposition of the restriction as defined by Equation
B-2 to Equations 8-7 yields the following set of equations:

Species Concentration :

~~ f  f n. dR = f  I ~~ dR (B-lOa)

R(t) R(t)

— 
- 

Mass:

~~ 
ff  p dR (B-lob)

R( t)

Momentum:

~ f I p~ dR = - f  f (V • ~
) dR - Jf  VP dR

R(t) R(t) R(t)

r (B-lOc)
.4

+ I f.  E n. m. f. dR
J i i I l l

R(t) - -

- 
.~~ Total Energy :

a ff ET dR = - f  f V (? ~
) dR - f  I (V • dR

R(t) R(t) R(t)

(B-lOd)
• 

- J f (V . P )  dR + 
~ 

ni~ m1 V .  dR

R ( t )  R(t )
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K inetic Energy:

d 1 K ‘ 
.4

_+ —

~~ J f B dR = - J f V ‘ (~ • v) dR + J I (~: Vv) dR
R( t) R(t) R(t)

+ ffP (V~~~~)dR j~f (
V .P ~ ) d R  (B-iOe )

R(t) R(t)

N . f• 
+ I £ E n. m . f. • V. dRJ t i l l  1
R(t)

In tern al Energy:

~~ ffE
1 dR= ~~ ff (V .

~~)dR~~ ff(~~:V ~)dR
R(t) R(t) R(t)

(B-l Of)
- fP (V •~~)dR

R(t)

Approximate solutions can be obtained by replacing Equations B-b
-
~ with the following equations~Species Concentration:

Jf n~ dR Jf n. dR + ~t J~ ~~ 
dR (8-h a)

R(t + At) R(t5) R( t5)

Mass:

_ffPdR
= J fp d R  (B-llbj

R(t + At) R(t5)
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~ Mome nt tup :

ffp dR= ffp~~~dR - At ff (V .
~~) d R

R(t + At) R(t5)

(B-ilc)

- A t J f V P d R + At ffEn. m. t dR

1:1 
R(t ) R(t5)

Total Energy:

Jf ET dR = ff  ET dR - At ff [V • (
~ 

• 

~
)] dR

R(t + At) R(t5) R(t5)

I - 
~t ff (V • 

~
) dR - ~t ff (V • P~) dR (B-lld)

R( t ) R( t
5)

t -~~ .4
F - + ~~ I I E n . m. f. • v. dR

- .1 j i l l  1

~: :1 R(t5)

K inet ic Energy :

ff  EK dR = ff B
K dR - At fv • . ) dR

R(t + At) R(t
5
) R(t

5)

- -4 1 -+ 1 -+
+ At J I (-r : V v) dR + At J f  P (V • v) dR (B-lle)

R(t5) R( t
5)

• - At j f (V • P )  dR + At Jf  E n
~ 
m. dR

R(t5) R( t5)
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internal Energy:

J f B1 dR = J ’f E1 dR - At fl  (V . 

~
)

R(t 4. At) R(t5
) R(t

5)

(B- h f)

-A t  ffc~~: V ) d R - At J f P ( V .) d R

R(t5) R(t5)

The following expressions are required to obtain the desired form
4 of the equations :

f  V • U dR = fu (V • dR + / V U • dR
R(t5) R(t5) R(t5)

• and the Divergence Theorem:

fU (V .) d R = ~~~~~~~~ (B-l2b)

-
• 

R(t5) R (t5)

Application of Equation 8-12 to Equations B-li yields the final form
of the integral equations written as follows:

Species Concentration:

J f n. dR f  I n. dR + At J ’ f dR (B-13a)

R(t + At) R(t ) R(t )
S .3 S

Mass:

f  f p dR = f  f p dR (B-l3b)

R(t
5 

+ At) R(t5)

Momentum :I I  1 *f  f p v d R = J f p v d R - At J f - r • d R

R(t5 
+ At) R(t ) R*(t )

(B-b3c )

+ At f  Vf . dR - At ff  VP dR + At ff E n. m. dR

R(t5) R(t5) R( t5)
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t otal  Energy:
T I T  I ~~ -+ .4 *f  f E  d R =  Jf E  dR - At Jf(T .v) • n d R

R(t5 
+ At ) R(t5) R (t5)

I -+ t - + - * I
+ L I t J V f . (-r .v) dR At J f q .n d R + At

J
V f .q d R

R(t ) R*(t5) R(t5) (B-13d)

- t~t J ~ (V P ~
) dR + At /f E n. m. dR

R(t ) R(t5)

Kinetic Energy:

f  f EK dR = /1 E
K dR - At ff (

~ 
) dR*

R(t + At) R(t ) R*(t5)

P .. I ~+ At J Vf . (i • v) dR + At J f (r : V v) dR

R(t5) R(t5)

(B-13e)

+ At f  f i? (V • ~
) dR - At ,f f  (V • ) dR

R(t5) R(t5)

1 . 4 . 4

+ At I £ E n. m. f. v. dli
.1 j i l l 1

R( t )

In ternal Energy:
1 I 1 1  1.4  -4 *J f E  d R =  J f E  dR - At J f q .  ndR

R(t5 
+ At) R(t5) R (t5)

+ At J. Vf • dR - At ,f  I (
~ : V ) dR (8-131)

R(t) R(t5)

- At ff P (V 
. ) dR

R(t5)

56

-r --_~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~



I ~
f ~~~~~~~~~~~~~~ 

.

I 
- These integral equations are sufficient to utilize for the computa-

- tion of approximate values of moments of physical quantities related to
fluid flow over a spatial domain in a time increment At.
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APPENCIX C

DEVELOPMENT OF EXPRESSIONS FOR CALCULATING DENSITY,
MOMENTUM AND KINETIC ENERGY DISTRIBI.TFION AT

t
~ 

+ At BASED ON ThE MOMENTS

The form of the expression for calculating a distribution of a
physical parameter over a spatial region is arbitrary provided the values
of the required moments are available. Since the limits of the sub-
regions are determined by the velocity distributions and it is desirable
to simplify the integrations, the velocity distribution are assumed to
be linear in form , as follows:

V = i (A(l,l) y + A(2,l) z + A (3,l))

= (A( l,2) z + A(2,2) x + A (3,2)) (C-i)

= i~ (A( i,3) x + A(2,3) y + A (3,3))

• where

lTx~ “y’ 
= the velocity components

-~~ .4 -4

1, j , k = unit orthogonal vectors

A(i ,j) = coeff icients

x, y, z = spatial parameters in fixed
coordinates.

The coefficients of E?cpressions C-i cannot be evaluated directly,
but must be evaluated from a knowledge of the density distribution and
the momentum or the kinetic energy distribution. Consequently, the
density is required to be a constant across the cell and the momentum
distribution is a linear function similiar to Expressions C-i. The
form of the kinetic energy distribution reflects the velocity squared
term. To assist in writing down the equations the symbol G, which
represents the Geometric Moments as presented in Table C-i, are
utilized.
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Table C—i. The Integrals for Calculating Geometric Moments *

6(1 ,1) =fy
0z0 dR1 G(l,2) =fz

0x0 dR2 G(1,3) =fx
0y0 dR 3

6(2,1) i f y 1 z0 dR1 G(2,2) =fz
1x0 dR2 G(2,3) =Jx

1y0 dR3

6(3,1) =fy
2z° dR 1 G(3,2) =fz

2x0 dR2 6(3,3) =5x
2y
0 dR3

G(4,1) =f y 3z0 dR~ 6(4,2) =fz3x° dR2 G(4,3) =5x 3y0 dR3

6(5 , 1) =fy4z° dR1 G(5,2) =fz4x° dR2 G(5,3) =fx
4y0 dR3

6(6,1) =f y °z
1 dR 1 G(6,2) =fz0x1 dR2 G(6,3) =$x°y1 dR3

- G(7,1) =fy1z1 dR1 6(7,2) =fz
1x1 dR2 6(7,3) =5x

1y1 dR3

6(8,1) =fy
2z1 dR1 6(8,2) =fz

2x1 dR2 6(8,3) =Jx
2y1 dR3

6(9,1) =fr
3
z’ dR1 G~9,2) =fz

3x’ dR2 6(9,3) =Jx
3y1 dR3

-

• 
6(10,1) =fr

4
z’ dR 1 

6( 10,2) .fz4x1 dR2 6(10,3) =Jx4y1 dR
3

6(11,1) =fy
0z2 dR1 6(11,2) =fz

0x2 dR2 G(il,3) =fx
0y2 dR3

6(12,1) =fr
1
z
2 dR

1 
6(12,2) =fz

1x2 dR2 6(12,3) =fx
1y2 dR3

6(13,1) =fr 2 z2 dR1 6(13,2) =fz
2x2 dR2 G(l3,3) =fx

2y2 dR3

6(14,1) = J r 3z2 dR1 G(l4,2) =5z
3x2 dR2 6(14,3) =fx3y2 dR3

6(15,1) =fy
4
z
2 dR1 6(15,2) =fz

4x2 dR2 6(15,3) =fx
4y2 dR

3

G(l6,l) =fy
0z3 dR1 6(16,2) =fz°x

3 dR2 G(16,3) =fx
0y3 dR3

6(17,1) =fr
1z3 dR1 G(i7,2) afz1x3 dR2 6(17,3) =fx

1y3 dR3

6(18,1) =fr
2z3 dR1 6(18,2) af z2x3 dR2 6(18,3) =fx

2y3 dR3

6(19,1) =fr
3
z
3 dR 1 

6(19,2) =fz
3x3 dR2 6(19,3) =fx

3y3 dR3

G(20 ,l) =fr
4
z3 dR 1 6(20,2) =fz

4x3 dR2 6(20,3) =fx
4y3 dR3

6(21,1) = h r°z4 dR 1 6(21,2) =fz
0x4 dR2 6(21,3) ii fx°y~ dR3

dR = dx dy dz; dR
2 

= dy dz dx; dR3 = dz dx dy

H 
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The Mass

The mass distribution, assumed to be a constant across the cell , is
represented by the following equation:

p = A ’ (C—2)

where

p = the density

A ’ = constant distribution across cell.

After multiplying through by the function I and integrating, we
have the following integral equation:

~~ ~~ dR1 = A ’ ff dR1 
(C-3)

JSRJ TC

where
-‘ SR~ = limits over subregion contribution by

the J Lagrangian cell.

TC = limits over total cell.
dR1 =dx dy dz.

f = weighted function.

For f = 1, Equation C-3 becomes:

~ J’~3 dR1 = A ’ 6(1,1) (C-4)
J SR,~

where G(l , l) is the Geometric Moment . The coefficient A ’ can be
evaluated with Equation C-4 and thus the new constant density for the
cell is determined. -

The Momentum -

1’

The momentum distributions have components in the i, j ,  and k
directions corresponding to the velocity distribution expressions of
C-l. Therefore, we may write them down as follows:

~~~= T  (B(l ,l) y +  B(2,l) z + 8(3,1))

p = 3’ (8(1,2) z + B(2 2) x + B(3,2)) (C-5)

‘ ~ (8(1,3) x + R” 2 ,3) y + B(3,3)).

- 61

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ — ~~ ~~~~~~~~~ ~~~~~~~~~~~~ —— —  -5 ~~~~~~—— J ~~~~



Multip lying through by I yields the following expressions:

£ ~ = T (B(l ,1) f y + B(2,1) I z + B(3,1) f)

f ~ = T (B(l ,2) f z + 8(2,2) f x + 8(3,2) 1) (C-6)

f p v~ = k (B( 1,3) f x + B(2,3) f y + B(3,3) ~
where

B(i,j) - the coefficients

;

_

- 
V ,V ,V = velocity components

i, j ,  k = unit orthogonal vectors.

These equations dictate.4that f be assigned (i,y,z) for tJ~e I
Component, (l,z,x) for the j Component, and (l ,x,y) for the k Component.
In addition, the o~de~ of in~egration is dx dy dz, dy dz dx, and dz dx
dy for components i, j , and k respectively. Consequently, the expres-
sions for obtaining the values of the coefficients of the three corn-
ponents of momentum are as follows:

i Component:
M(l,i) = 8(1,1) G(2,l) + 8(2,1) G(6,l) + B(3,l) 6(1,1)

M(2,1) = B(i,1) 6(3,1) + 8(2,1) 6(7,1) + B(3,l) G(2,l) (C-7a)

M(3,1) = B(1,l) 6(7,1) + 8(2,1) 6(11,1) + 8(3,1) 6(6.1)
I

where

M(1,1 = 

~~ / (1) x~J 
dR1

JSRJ

M(2,l) =E f >‘ ~ ~ )j  dR1 (C-7b)

JSR J

M(3,1) = 

~~ f z ~ ~~)j  
dR1

JSRJ

and the 6’s are substituted from Table C-i. Naturally, the coefficients
B(l,l), B(2,1), and B( 3,1) are to be evaluated by solving Equations
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C-6a simultaneously. The symbol 4R1 is equal to dx dy dz as before.

3’ Component:

M(l,2) 8(1,2) G(2,2) + B(2,2) 6(6,2) + B(3,2) G(1,2)

M(2,2) = B(l,2) 6(3,2) + B( 2,2) 6(7,2) + 8(3,2) G(2,2) (C-8a)

M(3,2) = B(l,2) G(7,2) + B(2,2) 6(11,2) + B(3,2) G(6,2)

where

M(l,2) =L f (~ ~~~ dR2
JSRJ —

M(2 ,2) = 

~ f z (i ’ 

~~~~ 
dR2 (C-8b)

JSRJ

M(3,2) = 

~~ / x (
~ 
;
y)J ~~2

JSRJ

9 and the symbol dR2 is equal to dy dz dx.

-4
k Component:

M(l,3) = B(1,3) 6(2,3) + 8(2,3) G(6,3) + B(3,3) G(l,3)

L M(2,3) = B(l,3) 6(3,3) + B(2,3) G(7,3) + 8(3,3) G(2,3) (C-9a)

M(3,3) = B(l,3) G(7,3) + B(2,3) 6(11,3) + 8(3,3) G(3,3)

where

M(l,3) = 

~~ f~) 
z~J 

dR
3

JSR J

M(2,3) = 

~~ / x ~ “z~J dR3 (C-9b)

JSRJ

M(3,3) alE I “ (1) z~J 
dR3

J SR~
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where the symbol dR3 is equal to dz dx dy.

-~ 

- 

The Kinetic Energy

The kinetic energy is not a vector quantity. However, since it is
directly related to the velocity which is a vector quantity4 w* wil l
refer to components of kinetic energy corresponding to the i , j , and k

- -~ 
- compone~ts of velocity. The fact that kinetic energy is equal to

- 
1/2 p ~ is reflected in the six term expressions which follow:

1 Component:

- 

½ ~~ x
2 

= C(l,1)y2 + C(2 ,i)z2 + C(3,1) + C(4,l)yz + C(5,1) + C(6,l)z

4 
- 

-4
- - j  Component:

½~ 
;2 

= C(1,2)z2 + C(2,2)x2 + C(3 2) + C(4,2)zx + C(5,2)z + C(6,2)x
- 

- 
-4 (C-b )
k Component: • 

-

½ ~~2 = C(i,3)x2 + C(2,3)y2 + C(3 3) + C(4 ,3)xy + C(5 3)x + C(6,3)y

where the C’s are the coefficients to be evaluated.

Multiplying through Equations C-b by the function f yields the
following expressions:

- 
• -i I Component:

• - 
f(½ ~ = C(l,1) f y3 + C(2 ,l) f z2 + C(3,l) I

- - + C(4,l) f yz + C(5,l) I y + C(6,l) f z

3’ Component:

f(½ ~~~~~~~~ 

2) = C(l ,2) f z2 + C(2 ,2) f x2 + C(3,2) £
-
~ >‘ 

(C—li)
* 

+ C(4 ,2) f zx + C(5,2) I z + C(6,2) Ix
-4
k Component :

f(½ ~ = C(1,3) f x2 + C(2,3) f y2 + C(3,3) f

- * 
+ C(4 ,3) f xy + C(5 ,3) f x + C(6 3) f y.

- 
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Th~ appropriate substitutions for f in Equations C-il ar~ (1, y, z,
y z~, y— , z-’), (1, z, x, zx , z , x2), and (1, x, y ,  xy, x2, y’) for the
i, j ,  and k components respectively. In addition, the ordei o~ inte- ,.
gration is dx dy dz, dy dz dx, and dz dx dy for components 1, j ,  and k
respectively. Consequently, the expressions for obtaining the values of
the coefficients of the components of kinetic energy are as follows:

I Component:

N(1,1) = C(l , l) G(3 , l) + C(2,i) 6(11,1) + C(3,l) 6(1,1)

+ C(4 , l) G(7 ,l) + C(5,l) G(2,l) + C(6,l) G(6,1)

N(2 , l) = C(l,1) G(4,l) + C(2,l) 6(12,1) + C(3,1) 6(2,1)

+ C(4,l) G(8,l) + C(5. 1) G(3 ,l) + C(6 ,l) G(7. i)

N(3,l) = C( 1,l) 6(8.1) + C(2 ,l) G(l6 ,i) + C(3 ,l) 6(6. 1)

+ C(4,l) G(12,1) + C(5.l) 6(7.1) + C(6,l) G(ll,l)

(C-12a)
N(i,l) = C(l,l) G(14,l) + C(2.1) G(17 ,l) + C(3.i) G(7. i)

+ C(4 ,1) G (l3 ,1) + C(5.1) G(8,l) + C(6. 1) 6( 12 ,1)

N(5,l) = C(l,1) G(5,l) + C(2,l) G(l3,1) + C(3 ,1) G(3 ,1)

+ C(4 ,1) 6(9,1) + C(5,1) G(4,l) + C(6,l) 6(8,1)

N(6,l) = C(l,l) G(l3,1) + C(2,l) G(21,l) + C(3,l) G(11,1)

+ C(4 , l) G(l7 ,l) + C(5,1) 6(12,1) + C(6.l) G(16,l)

where the G’s are substituted from Table C-i, and

N( 1 , l) =E J’JJ (½ ‘~ x
2

~J 
dR1

J S R J
(C-12b)

N(2,l) = E j f 5  y (½ ~ x
2

~J 
dR1

J SR~

(Continued)



N(3,l) E .11.1 z (½ “x~~J 
dR1

J SR~

N(4,1) E ff1 yz (½ ~ “x~~J 
dR1

J SR~ (c l2b
cont.)

N(5,1) =E IfS Y2 (½ ~ x
2

~J 
dR1

J S R J

N(6,l) E 111 z2 (½ ~ x
2

~J 
dR1

J SR,~

- 

- j Component :

N(l,2) = C(1,2) G(3,2) + C(2,2) 6(11,2) + C(3,2) 6(1,2)

+ C(4,2) 6(7,2) + C(5,2) 6(2,2) + C(6,2) G(6,2)

N(2,2) = C(l,2) 6(4,2) + C(2,2) G(12,2) + C(3,2) 6(2,2)

+ C(4,2) G(8,2) + C(5,2) 6(3,2) + C(6 ,2) G(7 ,2)

N(3,2) = C(l,2) 6(8,2) + C(2,2) 6(16,2) + C(3,2) G(6,2)

+ C(4,2) G(12,2) + C(5,2) G(7,2) + C(7,2) 6(11,2)
(C-l3a)

N(4,2) = C(l,2) 6(14,2) + C(2,2) G(l7,2) + C(3,2) 6(7,2)

+ C(4,2) G(l3,2) + C(5,2) G(8,2) + C(7,2) G(l2,2)

N(5,2) = C(l,2) G(5,2) + C(2,2) G(13,2) + C(3,2) 6(3,2)

+ C(4,2) G(9,2) + C(5,2) 6(4,2) + C(7,2) G(8,2)

N(6,2) = C(1,2) G(13,2 + C(2,2) G(2l,2) + C(3,2) G(ll,2)

+ C(4,2) G(17,2) + C(5,2) G(l2,2) + C(7,2) G(l6,2)
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where

N(i,2) =E fif (½ 
~ 
;
y
2
)J dR2

J SR,~

• N(2,2) = E OS z (½ p ;
y
2)J dR2

J SR
3

N(3,2) = 5ff x (½ c~ ;y

2

)
J 
dR2

J SR
(C-13b)

N(4,2) = E 555 zx (½ ~ ;y
2)J dR2

3 SR3

N(5,2) = 
~~~~~~ 5ff z

2 (½ p ;y
2)J dR2

J SR3

N(6 ,2) = E çJJ ,~2 (½ ~ ;y
2 ) J dR2

J S R J

and dR
2 =dy dz dx.

-4
k Component:

N(l,3) = C(l,3) 6(3,3) + C(2,3) 6(11,3) + C(3,3) G(i,3)
+ C(4,3) 6(7,3) + C(5,3) 6(2,3) + C(6,3) 6(6,3)

N(2,3) = C(l,3) 6(4,3) + C(2,3) G(l2,3) + C(3,3) 6(2,3)
+ C(4,3) G(8,3) + C(5,3) G(3,3) + C(6,3) 6(7,3)

N(3,3) = C(1 3) G(8,3) + C(2,3) G(l6,3) + C(3,3) 6(6,3) (C-l4a)
+ C(4,3) G(12,3) + C(5,3) G(7,3) + C(6,3) G(ll,3)

N(4,3) = C(l,3) G(14,3) + C(2,3) G(i7,3) + C(3,3) 6(7,3)
• 

+ C(4,3) 6(13,3) + C(5,3) 6(8,3) + C(6,3) G(l2,3)

N(5,3) = C(1,3) G(5,3) + C( 2,3) G(13,3) + C(3,3) G(3,3)
+ C(4,3) 6(9,3) + C(S.3) G(4,3) + C(6,3) G(8,3)

(Continued)
- 
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I
N(6,3) = C(1,3) G(13,3) + C(2,3) G(21,3) + C(3,3) G(ll,3) (C-l4a

+ C(4 ,3) G(17,3) + C(5,3) 6(12,3) + C(6,3) G(l6,3) Cont.)

where

N(l.3) =E fff (½ 
~ 
;2) dR3

J S R J

N(2,3) =

~~~~~~~ 5ff ~ (½ ~ ;2) dR3
J SR3

4 N(3,3) = E 5ff y (½ ~ ;2) dR3
- - - J SR

(C-l4b) —

N(4,3) = E fff xy (½ p 2) dR3
:: j 

JSRJ

N(5 ,3) = E 555 x2 (½ ~ ;2) dR3
J SR3

N(6,3) = E  fff~
2 (½ ~ ~~

2) dR
3

-. J SR3

- The relationships between the coefficients of the momentum expres-
- sions and the kinetic energy expressions are listed in Table C-2.
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Table C-2. Relationships Between The Coefficients of 
-

-
~ 

-~ Distributions at t5 + ~~~~~ 
-

The Density Coefficient -
-

A ’

I Component 3’ Component Component -

The Velocity Coefficients -~
- -

A(1,l) A(l,2) A(l,3)

A(2,l) A(2,2) A(2,3)

A(3,1) A(3,2) A(3,3) -

¶ The Momentum Coefficients

8(1,1) = A’A(l,l) B(1,2) = A ’A(l,2) B(l,3) = A ’A(l,3)

B(2,l) = A ’A(2,l) B(2,2) = A ’A(2,2) B(2,3) = A ’A(2,3) -

B(3,1) = A ’A(3,1) B(3,2) = A ’A(3,2) B(3,3) = A ’A(3,3) -

L -‘~ 
-

The Kinetic Energy Coefficients

C(l,i) = 1/2 A’A(l,l)2 C(l,2) = 1/2 A ’A(l,2)2 C(l,3) = 1/2 A ’A(l,3)2 -

C(2,l) = 1/2 A ’A(2,l)2 C(2,2) = 1/2 A ’A(2,2)2 C(2,3) = 1/2 A ’A (2,3)2 -

C(3,l) = 1/2 A’A(3,l) 2 C(3,2) = 1/2 A ’A(3,2)2 C(3,3) = 1/2 A ’A(3,3)2 -

C(4,l) = A ’A(l,l)A(3,l) C(4,2) = A ’A(l,2)A(2,2) C(4,3) A ’A(l,3)A(2,3)

C(5,l) = A ’A(l ,l)A( 3,l) C(5,2) = A ’A(l,2)A(3,2) C(5,3) = A ’A(l ,3)A(3,3)
C(6,1) = A ’A(2,l)A(3,l) C(6,2) = A ’A(2.2)A(3.2) C(6,3) = A ’A(2,3)A(3,3) 

-

-

‘
- -

I
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LIST OF SYMBOLS

A’ - a constant density distribution.

A(i,j) - coefficients for velocity distribution at t5 + At.

- the average slope of across three adjacent cells;
• a least square cubic fit.

a1,a2 , a~ - coefficients for velocity distributions.

B(i,j) - coefficients for momentum distributions.

b1, b2, and b3 - coefficients for distribution of arbitrary parameter c~.

C(i,j) - coefficients for Kinetic Energy distribution at t5 
+ At.

C1, c~, and c3 - coefficients of least square cubic fit of a1 of
adjacent cells.

: 
dA =dx dy.

dx, dy, dz - fixed coordinate derivatives.

dR1, dR2, dR3 
- equals dx dy dz, dy dz dx, and dz dx dy respectively.

dR - derivatives over volumes.

~• dR* - derivatives over surfaces.

D/Dt - substantial derivative .

ET - total energy.

E1 - internal energy.

- • 
EK - kinetic energy.

f - function to be weighted.

- external force on species i.

G1,G2 ,G6 
- Geometric Moments.

G(i,j) - Geometric Moments.

I - consecutive numbering of computational cells.

I - maximum number of computational cells.
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LIST OF SYMBOLS
.4
i - unit directional vector.

3’ - unit ~iirectiona1 vector.
-4
k - unit directional vector.

k1, k2, k3 
- exponents for function f.

M(i ,j) - moments for mo entum .

m. - mass of jth species.
1

N (i ,j) - moments for kinetic energy.

P - pressure.

- energy flux.

S - denotes columns of cells in fixed coordinates.

Sl, S2 ,S7 - identifies parts of flowchart.

SR(t5) 
- limits of subregions at t5.

SR(t + At) - limits of subregions at t + At.
S S

T - denotes rows of cells in fixed coordinates.

t - time.

At - time step.

- an instant of time corresponding to start of cycle of
computation.

t
o - an instant of time corresponding to start of problem.

IC - implies integration over total cell. 
- 

-

U - an arbitrary function.
1-

V - an arbitrary function. *

-4
v - mass average velocity.

- speci.s velocity.

- 72

-5 _ _ _



-- - - - -5-,- - 

~~~~~~~~~~~~ 

•

LIST OF SYMBOLS

~
1x’ Vy~ ~ 

- velocity components.

w. - mass rate of production of the ~
th species through

chemical reactions.

x, y, z - coordinates in fixed coordinate system.

V - the del operator; I a/ax + 3’ a/ ay + ~~~ a/ az .

N a/at - partial derivative with respect to time.

jl - fluid viscosity.

a - an arbitrary physica1 param eter.

A - delta.

p - density distribution.

-4

- stress tensor .

:~ - :  SUBSCRIPTS -

-
- 

• i - species

I - cells Li computational grid

J - denotes SR’s which are summed in a fixed I cell at
r t +A - ~$

K - denotes SR’s of Lagrang ian cell at t~
Kma,x 

- maximum number of subregions of Lagrangian cell at t~

S - denotes subregions in Section III

S - denotes time at start of cycle of computation

T - denotes subregions in Section III

- 
0 - denotes instant of time corresponding to the start

of problem
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