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Abstract :

\ 1

Recursive algorithms for linear least squares
estimation problems have been based mainly on
state-space models. Recently, some new. recursive
solutions were obtained for processes classified
in terms of their "index of nonstationarity" or
equivalently-- the displacement rank of their
covariance functions. While this definition
provides a natural explanation of the properties
of constant-coefficient state-space models, it is
not satisfactory for time-variant models. How-
ever a modified definftion of the displacement
rank makes it possible to imbed time-varying
state~space models in the more general input-out-
put framework. In so doing, we are able to show
the mutual relationships of the Kalman filter
Riccati equation, the time~varying Chandrasekhar
equations and the Krein-Levinson equations.
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e

I. Introduction

In [1)-[5) we have developed recursive esti-
mation algorithms using input-output models (e.g.,
covariance functions) instead of state-space
models. A central idea in our approach was that
of the displacement rank o (an "index of non-
stationarity") of the covariaznce functions of the
signal and observation processes. Using this
notion certain Sobolev- and Krein-Levinson-type
differential equations were developed for the
optimal smoother and optimal filter, leading to
computational algorithms whose complexity depends
on the displacement rank o.

By imposing constant-parameter state-space
structure on the covariance functions, we then
showed in (1] how the Krein-Levinson equations
led to the Chandrasekhar equations for the compu-
tation of the Kalman gain. The successful im-
bedding of the state-space case in the input-out-
put framework was due to the fact that the
covariance function of constant parameter state-
space models has a (relatively) small displace-
ment rank. However, processes associated with
time varying models will not have small & and
may, in fact, have infinite displacement ranks.
This fact prevented us from treating time varying
models in our input-output framework.

+This work was supported by the Air Force
Office of Scientific Research, Air Force Systems
Command, under Contract AF44-620-74-C-0068, and
in part by the National Science Foundation under
Contract NSF-Eng-75-18952 and che Joint Services
gggctronlcs Program under Contract NOOO14-75-C-
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In Section I ve shall show that this diffi-
culty can be circumvented by introducing a more

. general definition that (i) leads to small values

of . both for time-varying and time-invariant
state-space models, (ii) coincides with the
previous definition of & in the time-invariant
case. In Sec. III, we note briefly how the general
results of (1]~[2] will be modified with the new
definition of displacement rank-- the changes are
minor. Then in Sec. IV we shall show how the
imposition of state-space structure leads to the
time-variant Chandrasekhar equations of [6]). A
direct derivation of these equations was first
given in [7]-[8] (see also [9)-[10]). Unfortu-
nately, as noted in [8]-[9] the time-variant
version is just a set of two-point boundary value
equations, which is not especially easy to solve.

. In fact.a standard approach to two-point equatiomns

‘ that this can be done here as well.

is via the Riccati equation, and we shall show

Of course,
the Riccati equation could also have been directly
obtained from the state-space models. (as in the
usual Kalman filter). The contribution here is
that we show how to deduce the Riccati equation
from a more general set of equations applicable

- when no state-space models are available.

Most proofs are omitted in this short paper,
but may be found in [11]; there we also indicate

' the analogous results for discrete-time estimation.

11. Thedisplacementrankofcovariancefunctions

The displacement rank of a kernel K(-,-) 1is
defined in [1] as the smallest integer a such

'that we can write e

(-ﬁ + F;)K(t.S) = K(t,T) K (1,s) + D(t)A D'(s) (1)

where K, D, and A are matrix functions with
dimensions p xp, px @ and 0 x @ respectively.
The functions D and A need not be unique,
though it will often be simplest to assume that

A 1is diagonal.

The reasons for choosing this definition of the
displacement rank and its application in solving
Fredholm and Wiener-Hopf type integral equation
arc discussed in detail in (1], [2] and will not
be repeated here.

Instead we shall focus on the special case of
processes generated by lumped state-space models

x(t) = F{t)x(t) + G(t)ult) , x(7) = X,
y(t) = H(t)x(t) + vit) , t>1

vhere x(+) 1is nxl, u( ) 4is mxl, and y(-)
scalar,

E u(t)u'(s)
E u(t)v'(s)

Q(t)8(t~s), E v(t)v'(s) = I &(t-8)
0=ZE u(t)x; 5
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When the model parameters {F(-), G(:), H(:),
Q(+)} are constant then it was shown in {1] that
(%t' + %;)K(t.a) = K(t,T)K'(s,T) + Keﬂt‘n e

. Bt Py &)
vhere . .. i d

P(1) = F B(Y) + P(T)F' - P(T)H'H P(T) +GQG' .
In this case, therefore, we see that

a = rank l"(t)._:- A syt

It is easy to verlty'tﬁa't' t‘h.e"proéus'e‘s“-‘i:'(-) and
y(-) will be stationary for t > T if F is
stable and P(T) obeys

F P(T) + P(T)F' +6Q6' = 0,

in vhich case o =1 . For other initial condi-
tions, @ will generally be greater than 1, but
in any case we shall alvays have a < n. The
significance of a is that n(l+a) 1s the
number of equations in the Chandrasekhar equa-
tions for finding the least-squares estimates of
x(*) , which is to be compared to the n2/2
equations needed in the usual Riccati-equation-
based Kalman filter solution. We refer to 1)
for more details.

Our interest here is in the fact that when
F(t), H(t), Q(t) are time-varying, applying the

operator (%t- + %—;) to the covariance function

will lead to a rather involved expression. We
can no longer claim that the displacement rank
of K(t,s;T) will be bounded by n and it may
even be infinit-. This raises the question of
using a different definition of the displacement
rank, one that will still yield an upper bound
of n for the displace ramk.
Let us re-define the displacement rank of

K(+,+) as the smallest integer «Q such that

- %1- K(t,s;T) = K(t,T)K(T,s) +D(t)A D' (s) 3) ‘

where K , D and A have dimensions pxp, P
and axa, respectively. To see why this particu-
lar definition was chosen note that in the con-
stant parameter case the covariance K depends
only on the difference (t-T) and (s-1), which
can be symbolically written as K(t,s;T) =

K(t-T, 8-1) . Therefore,

- %; K(t-t, 8-1) = ‘%:‘ + Lik(er, 1) )

which indicates that the new definition (3)
yields the same result in this case as the "old"”
definition (1). In the time-varying case it is
no longer true that K(t,s;T) = K(t-T, s-T), and
the two definitions are really different.

However, when the new definition (3) is
applied to the covariance function of the time-
vn%in; state-space model it can be shown that
{14

" %—1- K(t,s) = K(t, K’ (8,7) + H(t)O(t, ) * ‘
o G PO (s, DR (S) (D)

AL DIATER

where © is the state transition matrix
It is obvious from (5) that the new displacement
rank 18 upper bounded by n. ’
in problems where there is no dependence on T
(say a K(t,s) defined for 0<t,8< T), the new
definition can still be used by introducing T
- artificially, say by K(t,s) = K(t-T, -0 . .o
so that i ' o o

e :%T— (-1, s-0) | .o~ (’3’:‘ + %;)K(t.s).

: ;_which'i:d:l'.ﬂ(-:idés' with the original definition.
_v_i‘_'____lnlll. The modified Sobolev- and Levinson-Krein~

: E,r;ﬂ. ..type equations .. .. . firs7 ig2 o

: Let us now consider the problem of estimating
' a stochastic process x(+) (n-dimensional) from
" observations of a related process y(-) (p-
dimensional), using the knowledge of their
covariance functions,

Note also that even |

!

Ey(t)y'(s) = 1 8(t-s) +K(t,8), T<s,t<T (6) :
E x(t)y'(s) = K, (t,8) ,

It 1s well known that the optimal smoother
(t,s) and optimal filter hyy(t,s) for the
process x(°:) can bé obtained as the solution
_of certain integral equations. For example,
{ hxy(t,s) obeys a Wiener-Hopf equation of the form

t
: hxy(t:,s)+ft hﬂ(:,o)x(a.-)do = K’y(t.s),

- r<s<t, (8

. and llq.h obeys a Fredholm equation of the second
kind. e notion of the displacement rank was

' useful in reducing the solution of such equations
to that of the generalized Krein-Levinson equa-

. tions (cf., [1], [2]). To do this, it was neces-

' gary to make the following structural assumption

about the cross covariance function K‘y(-. ),

| ‘%E + gT)ny(t") - fﬂ(e.r)x(r,s) +D_ (YA D' (s)
(9)

!
wvhere D , A are as defined earlier, and Dyy §
is defined by the equation above. Using our new
definition for the displacement rank we shall
replace (9) by

.2 g . '

| = 37 Kyy(ts®) ny(t,‘t)ll('t,s) +D_ (t)A D*(9). (10)
It can be shown that with the new definitions,

we can obtain a very similar set of equations for

» to those presented ian [1]. In fact,
the only changes.that have to be made are replac-

ing (%? + %s-) by (- 'g?) and using the new
valuesof‘D.ny,A,a o
We give here only a subset of the analogs of the
equations of {1}, in fact only those necessary
. for the analysis in Sec. Iv:

-a =B (t3 H 11
thy(t.l) Bxy(t.t)l\ ?'(t.s) (11)

e e
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Bft;e) + 1% K(s,0)B(ei0)do = D(s) , (12a)

B, (tis) +15 K, (5,0)B(t;0)du = D (s) (12b)
. = - t

By(tit) = D . (c) A hxy(:,o)n(o)da . (12¢)

Notice that the dependence of hxy(t,s) on T
is not explicitly shown.

IV. Imbedding the state-space case in the input-
output framework.

Let us now introduce some further assumptions

about the covariance functions K , , Wwhich
will impose a state-space type structure on the
processes x(°) and y(*). We assume that there
exist functions F(:) (n x m) and H(.) (p x n)
such that K(t,s) = H(t)Kyy(t,s), and

%7 Ky(t:8) = F(OK, (€,8). It can be shown [1]

that under these assumptions the filtered esti-
mate %(t) obeys the usual Kalman filter equation

-:? R(t) = F(OR(D) +h (£, 0 (y(1) -H(DR(D) ,

where (t,t) can be identified as the Kalman
gain. The significance of this fact is that, at
least in the constant-parameter case, it was
shown [1), [7) that the Chandrasekhar-type equa-
tions could be used to compute (t,t), instead
of having to compute (t,s) for all

T <8 < t as would be required when no state-
space structure is available.

We shall now show what are the corresponding
equations for the time-varying case. With the
assumptions (13), we see from (12a,b) that we
can identify

B(t;s) = R(s)Bxy(t;a)

and therefore, we can write (11) as

-3 b (£,8) = B (HOA B (GOR'()  (14)
With a little calculation (see [11] and [1)]),

it can also be shown that }

9

73 "xy“‘" = (F(t) -hxy(t,t)ﬂ(t))l!(t;t). (15)

Equations (14), (15) are the time-varying
version of the Chandrasekhar-type equations that
were derived using a completely different
approach in [8], [9]. Note that (14), (15) can
not be solved directly since the time arguments
"do not fit”, that is, because of the opposite
directions of evolution of these equations, at
any intermediate point the values of Byy(:;-)
needed to solve for hy,(-,°) , will not be
available. This difficulty is circumvented in
the time-invariant model case, because now we
can reverse the direction of time in (14) since
in this case
9 9
b~ hxy(t.t) et hxy(t.t) ‘

In the time-variant case, the Chandrasekhar
equations (first obtained in (8]) have to be

regarded as a general set of two~point boundary-
value equations, with all the attendant difficul=~
ties. It is wellknown that the Riccati equation
enables us to replace the two-point Hamiltonian
equations of control and estimation theory by an
initial-value equation, and this can be done here
as well,

Introduction of the Riccati Equation

This difficulty can be resolved by considering
instead a different quantity P(t,T), defined by

9T xy

-2 n (6,0 = Pee,DH(E) =B, (£iIABY ¢

e (L3O)H'(L) , ' (16)
or rather, in its integrated form hxy(t.t) =

P(t,T)H'(t). Differentation of (16) with respect
to t and integration with respect to T gives

%‘:’ P(t,T) = F(t)P(t,T) +P(t,T)F'(t) - P(t,T)H" (L) °
e H(£)P(t,T) +Q(t) , P(T,t) = P(T)
(17)

Q(*) being the integration constant. This is an
initial-value equation, solution of which will
yield P(t,r) and them hxy(t,:) via (16) and
then X(t) via the Kalman“filter equation.

In fact, we have now obtained the usual Kalman
filter solution, except that we have not yet
identiffed Q(:). In the case that x(-) and
y(+) are related by the state-space model of
Sec. II, it can be shown that Q(-) =
G(*) Q(*) G'(-), as expected.

v. Concluding Remarks

We presented a new definition for the displace-

. ment rank of covariance functions that makes it

possible to imbed both time-invariant and time-

. varying state-space models in a more general

input-output framework. This approach provides
insight into the relationship between various
solutions to the estimation problem and clarifies
the role of the state-space structure in simpli-
fying the estimation algorithms. For processes
with measure a of "distance from stationarity”
recursive estimation algorithms of the Levinson-
type can be derived [1], [4). If additional
(state space type) structure is added to the
problem, alternative algorithms become available.
In the time-varying state-space case the Kalman-
filter and the Riccati equation are naturally
obtained, while in the constant-parameter case
the more efficient Chandrasekhar equations may be
used. Of course the general input-output
recursions have to be used when state-space
models are not readily available.

-
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