
305 STAWOW IM IV CAL I F DEPT OF ELE CTRICAL ENSIPLERINS F/S t 2/ t
A MOCIFIED DISPI..ACEICNT RANK AND SOME APPLICA TIONS. ( U )  N

DCC 77 S FRIEDLAICER. I KAILATH. M MORF F* 620—7~~C—0O6S
(SCLASSIFIED AFOSR—TR 7&’ 01S3 Nt.

~ UUEW., ~

•



TT~~~:

V

SECURITY C L A S SIF I C A T I O N  OF THIS PAGE (ITh.n Data ~~

~~~REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
_____________________________________________________ ~JEFORE_COMPLETING_FORM

7 8 — 0 1 4_I3IJ,...’(~ 
GOVT ACCESSION NO. 3. RECIPIENT S C A T A L O G  NUMBER• OR IN

__________________________________________________________________________________________________ _________________________________________________________

4. T ITLE (and SubISll.) S. TYPE OF PORT B PERiOD COVERED

C”~ 
‘
~~~~~ FIED 2ISPLACEMENT RANK AND SOME APPLICATI~~~~~~~~ (~~f~~~

erim rq~t~j j
~6. P ER F O~~~~iNG ORG WEPORT NUMBER

(~~~~~~hT RA CT OR GRANT NUMSER(.)

~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~74C~~~~~~N~~~~~~~ I~~~Fried1ande 
____________________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~

9. PERFORMING O R G A N I Z A T I O N  NAME AND ADDRESS $0. PROGRAM ELEMENT. PROJECT . TASK
Stanford University AREA &WoRK uNIl L4UMBERS

Dept. of Electrical Engineering ~~~~1102F ~~~~~~~~~~~~~~
Stanford, CA. 94305
II. CONTROLLING OFFICE NAME AND AOORESS j7e ~~~~ p 

~~~~~~~~~~~~~~~~~~ 
~
..-

Air Force Office of Scientific Research (NM) ________________

Boiling Air Force Base , Bldg. 410 IL NUMSER OF PAGES

c~~~~~JT~~~ 
~~Washington, D.C. 20332 4

14. MONITORING AGENCY NAME B AOORESS(11 dili•r.nt front Contsollhid Offic.) IS. SECURITY CLASS. (of (hi. ,.Po,r1 ’L

UNCLASSIFIED

f • (5.. OECLASSIFICATION/DOW NGRA DING

______________________________________________________________ 
[ SCHEDULE

O~~_ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _

16. DISTRIBUTION STATEMENT (of hi. R.porl)

/ ~ 
Approved for public release; distribution unlimited

• 2
~~~~~~ $7. DISTRIBUTION STATEMENT (.1 th. ab.lracl .nte, .d in Block 20. II dIlf.,.n t from Repo~ )

IS. SUPPLEMENTARY NOTES

Proc. 1977 IEEE Conference on Decision & Control, New Orleans, LA., December
1977.

19. KEY WORDS (Continue on re verse aid. IIn.c.aaasy and Identif y by block number)

Recursive Algorithms
Linear Least Squares Estimation Problem
Index of Nonstationarity

~~~~~~~ Disp lacement Rank
C~onstant-Coefficient State-Space Models
20.~.~~~STRACT (Conffnu. an ever ., aid. if n.c...a?y and Sd~n(ify by block numb.r)

Recursive Algorithms for linear least squares estimation problems have been
based mainly on state-space models. Recently, some new recursive solutions were
obtained for processes classified in terms of their~”index of nonstationarity” o~equivalently--the displacement rank of their covariance functions. While this
definition provides a natural explanation of the properties of constant-
coefficient state-space models, it is not satisfactory for time-variant models.
However a modified definition of the displacement rank makes it possible to Lab.
time-varying state-space models in the more general input-output framework. In~~ 

/DD ~~ ~473 EDITION OF I NOV 6S IS OB SOLETE UNCLASSIFIED

~~~ ~~~~ SECURITY CLASSIFICATION OF THIS PAGE

L



—~~~~-~~~~~—-~~

U ,.~~~~~j t jI~ I)

SECURITY C1.ASSIFICATION OF THIS PAGE(N7i.n Data Eset.r.d)

~~~~~ ‘ ‘~‘~~ so doing, w _av~~able to show the mutual relationships of the Kalman fi1te~/ Riccati equation , the time-varying Chandrasekhar equations and the Krein-Levinson equations.~~~~~~~~

.~~~

. 1• 1

SECURITY CLASSIFICATION OF THIS PAOE (~~.n D.~• En~.r•d)

—



F. ~~~~~~~~~~~~~~~~~~~~~ =~~~~~7~~
_ -

~~~~~~~~~~~~~~~~~~~~~ 

~7 
8 

— ~~~ a
1 

~~ 

: 1  .1 I; ~~~~~~~~~ . I: JI ‘ 
.. .

A MODIFIED DISPlACEMENT RANK AND SOME APPLICATIONSt

-

B. Friedlander, T. Kailath and M. liort
Information Systems Laboratory

—— -— —~~-----—S tanford University, CA 94305 •~-~-_.~~ L._______ ._ ._-. . . - -

L Abstract~~~~~~~~~ ~~i:. ::. ;~~~~~~ ~i~~i;~0; that this di f f i— 
culty can be circumvented by introducing a more

Recursiv e algorithms for linear least squares . . general defini tion that (i) leads to small values
estimation problems have been based mainly on of U both fo~ tim e—varying and t ime—invarian t
state— space models. Recently, some new, recursive state—space models , (ii) coincides with the
solutions were obtained for processes classified previous definition of a in the time—invariant
in terms of their “index of nonstatioriarity” or case. In Sec. I I I , we note briefly how the general
equivalently—— the displacement rank of their results of ( l J — ( 2 3  will be modified with the new
covariance functions. While this definition definition of displacement rank— the changes are
provides a natural explanation of the properties minor. Then in Sec . IV we shall show how the

‘\ of constant—coefficient state—space moders, it is imposition of state—apace structure leads to the
not satisfactory for time—variant models. Row— time—variant Chandraaekhar equations of [6). A
ever a modified definition of the displacement direct derivation of these equations was first
rank makes it possible to imbed time-varying given in [7)—[83 (see also [9)— [lOJ). Unfortu—
state—space models in the more general input—out— nately, as noted in [8)—(9) the time—variant
put framework. In so doing, we are able to show version is just a set of two—point boundary value
the mutual relationships of the Kalman filter equations, which is not especially easy to solve.
Riccati equation, the time—varying Chandrasekhar In fact: a standard approach to two—point equations
equations and the Krein—Levinson equations. is via the Riccati equation, and we shall show

that this can be done here as well. Of course,
I. Introduction the Riccati equation could also have been directly

obtained from the state-space models. (as in the
In [l)—( 5) we have developed recursive esti— usual Kalman filter) . The contribution her e is

nation algorithms using input—output models (e.g. , that we show how to deduce the Riccati equation
covariance functions) instead of state—space from a more general set of equations applicable
models. A central idea in our approach was that when no state—space models are available.
of the displacement rank a (an “index of non— Most proofs are omitted in this short paper,
stationarity”) of the covarinnce functions of the but may be found in (11]; there we also indicate
signal and observation processes. Using this the analogous results for discrete—time estimation.
notion certain Sobolew— and Krein—Levinson—type
differential equations were developed for the II. Thedisplacement rank of covariance functions
optimal smoother and optimal filter, leading to
computational algorithms whose complexity depends The displacement rank of a kernel K(~,

.) is
on the displacement rank ~~~. defined in [1) as the smallest integer a such

By imposing constant—parameter state-space that we can write
structure on the covariance functions, we then a a
showed in (I] how the I rein—Levinson equations (‘5~’ + 5 )K(t,s) — K(t,’r) K (‘r,s) + D(t)A D (a) (1)

led to the Chandrasekhar equations for the compu— where K, D, and A are matrix functions with
tation of the Kalman gain. The successful in— dimensions p x p, p x a and a x a respectively.
bedding of the state—space case in the input—out— The functions D and A need not be unique,
put fran ework was due to the fact  that the though it will often be simplest to assume that
covariance function of constant parameter state— A is diagonal .
space models has a (relatively) small displace— The reasons for choosing this definition of the
cient rank. However, processes associated with displacement rank and its application In solving
time varying models will not have small U and Fredholm and Wiener—Hopf type integral equation
may, in fact, have infinite displacement ranks. are discussed in detail in (11, [2) and will not
This fact prevented us from treating time varying be repeated here.
models in our input—outPut framework. Instead we shall focus on the special case of

processes generated by lumped state—space models
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It is obvious from (5) that the new diaplac~mefl~

When the model parameters (F(.), G(.), U(•)~ 
rank is upper bounded by n. Note also that ~ven ~

Q(.)} are constant then it was shown in [11 that 
in problems where there is no dependence on T

________ 
(say a IC(t,s) defined for 0 C t,s < T), the new

+ f_.)E(t 1s K(t,’r)K’ (s,T) + ge~~
t’T) ~ .. .  definition can still be used by

” intro~uciflç t

artificially, say by K(t,s) K(t—t , s—r) 
~ 

—

• . • ; r)a
T (s—r)H, (2) so that

wher e . .  ~~~~~~~ ~~~~~~
_•_ .. . . ! .  ____ .~~~_

— F 1(r) + P(t)F’—P(t) R ’H p (t)+GQG’ . - which èoin~I4es with the original definition.

In this case, therefore , we see that .• . . .< V :

a - rank i~(t) . •. ____ 
_~~~~~~~~~ %~~~~0dtfmd Sobolev— and Levimson-Kreth”

~~~~ ., typq equations . ,
~~
,, .

-,i~~ 
.
.• .

It is easy to verify that the processes x ( )  and
y( .) will be stationary for t > ‘r if F is Let us now consider the problem of estimating

stable and ?(r) obeys a stochastic process x(~) (n—d imensional) frost

F 1(r) + P(r)F’ + ~~~~~‘ — ~ 
observations of a related process y C’) (p-
dimensional), using the knowledge of their

in which case a — 1 • For other initial cond i— covariance functions ,

tions, a will generally be greater than 1, but
in any case we shall always have a < it. The 

E y(t)y’(s) — I 6(t—s) +K(t,s), r<s ,t<T (6)

significance of a is that m(l4U) ‘is the . K x(t)y ’(s) — K

ntmber of equations in the Chandrasekhar equa— 
,(t,s) .

tions for finding the least—squares estimates of it is well known that the optimal smoother

x(~) , which is to be compared to the n2/ 2 L~~(t ,s) and opt imal filter h~ ,(t,s) for the

equations needed in the usual Riccati—equatiOn” process x( .) can be obtained as the solution

based Kalman filter solution. We refer to (1) of certain integral equations. For example ,

for more details.
Our interest here is in the fact that when 

h,~~(t ,s) obey& a Wiener-Hopf equation of the form

1(t), H(t), Q(t) are time-varying, applying the hx,(t ,s)+f t It (t ,COE6,s)dU — K (t,s);my

T < s < t , (8) ~operator ~~~~ + ~~
) to the covariance function

will lead to a rather involved sxpression. We 
—

can no longer claim that the displacement rank 
and R,j y  obeys a Fredholm equation of the second

of K(t,s;r) will be bounded by n and ~~ 
kind e notion of the displacement rank was

even be Infinit . This raises the question of 
useful in reducing the solution of such equations

using a different definition of the displacement 
to that of the generalized Irein—Levinsoit equa—

~ 
. rank, one that will still yield an upper bound 

tions (cf., [1), [2)). To do this, it was neccs—

of it for the displace rank . 
sary to make the following structural assumption

Let us re—define the displacement rank of 
about the cross covariance function

as the smallest integer a such that + ~~ .)K~~,(~~ 5) — K,~~(t ,t)K(r ,s) +D~,
(t)A D’(s)

— K(t ,s;’t) — K( t,t)K(’t,s) +D(t)A D’(s) (3) (9)

where K , D and ?~ 
‘have dimensions pxp, p~3

and a~~, 
respecti vely . To see why this particu- 

where D , A are as defined earl ier , and D~.

lar definition was chosen note that in the con— 
is defined by the equation above. Using out new

stant parameter case the covariance K depends 
definition for the displacement rank we shall

only on the difference (t—t ) and (s—i’) , which 
replace (9) by

can be symbolically written as K(t,s;T) —
K(t—r, s—i ’) • Therefore, 

_
~~jK (t,s).K (t,t)K(t,e)+D (t)A D’(s). (10)my xY my

• — ~~ K(t—’t, s-i’) 
— (

~~ 
+ ~~)K(t—v, s’.t) It can be shown that with the new definitions,a

which indicates that the new definition (3) 
we can obtain a very similar set of equations for

yields the same result in this case as the “old” 
, IL~ to those presented in [1). In fact,

definitiOn (1). In the time—varying case it is the only changes.that have to be made are repiac—

no longer true that K(t ,s;t) — K(t-t , s—i’), and ing (~~ + .~~~) by (— ~~~ 
and using the new

the two definitions are really different.
However, when the new definition (3) ~~ 

values of D 
~ 
Dmy , A , a

applied to the covariance function of the time— We give here only a subset of the analogs of the

varying state—space model it can be shown that equations of (11. in fact only 
those necesSarY

(143 
- for the analysis in Sec. IV:

a a
- K(t ,s) - E(t ,r)V(s ,T) + n(t )•(t , ) - Ti hmy(t~5) -g,~,

(t;t)A 3’(t;s) (1].)

‘ “ I L  LW 1~

(5) ____  
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)Jt;s)+çt K(s,o)B(t;o)da — U(s) , (12a) regarded as a general set of two—point boundary—
value equations, with all the attendant difficul t
ties. It is weilkuown that the Riccati equation

I
~,

(t;s) +L K
my
(s o)B(t;O)da — D (a) (12b) enables us to replace the two—point Hamiltonianmy

equations of control and estimation theory by an
- D

my
(t) - ct h~~(t~a)D(a)da • (12c) initial—value equation, and this can be done here

as well.

• Notice that the dependence of hmy(tie) on t Introduction of the Riccati Equation
is not explicitly shown. This difficulty can be resolved by consider 1mg

instead a different quantity P(t,t), defined by
IV. Iinbedding the state—space case in the input—

• •~ output framework. 
— h (t i t ) _ _

~j P(t ,T) H ’( t )
~~ Bxy (t t)AB ’my~~~~xy

• Let us now introduce anne further assumptions • • • ‘ • . •

about the covariance functions K , , which • (t;t)H’(t) , (16)
will impose a state—space type structur e on the or rather, in its integrated form bmy(t t) —

processes z(~ ) and ~
‘ (.) .  We assume that there P(t,t)R’(t). Differentation of (16) with respect

exist functions F(.) (it x in) and H(.) (i x to t and integration with respect to r gives
such that K(t,s) — H(t)Kmy(t,s), and

F(t)K
~,
(t,s). It can be shown (1) ~~

.P(t,t) F(t)P(t,T)+P(t,t)F’(t)— P(t,OU’(t) ‘

that under these assumptions the filtered esti— H(t)P(t,T) +Q(t) , P(’r,t) — 1(t)
mate ~(t) obeys the usual Kalman filter equation (17)

~(t) — Y(t)~(t) +hmy
(tit)(Y(t) —R (t)~(t)) , Q(~) being the integration constant. This is an

initial—value equation, solution of which will
where It (t,t) can be identified as the Kalman yield P(t,t) and then hxv(t,t) via (16) and
gain. ~~~ significance of this fact is that , at then ~(t) via the Kalman filter equation.
least in the constant—parameter case, it was In fact, we have now obtained the usual Kalman
shown (1), (7) that the Chandrasekhar—type equa— filter solution, except that we have not yet
tions could be used to compute h,~,(t ,t) , instead identified ~ () .  In the case that x(.) and
of having to compute bmy(t,s) for all 

y(.) are related by the state-space modal of
r c s ‘C t as would be required when no state— Sec. II, it can be shown that ~~

( )  —

• space structure is available. C() Q (.)  C’(’), as expected .
We shall now show what are the corresponding

equations for the time-varying case. With the V. Concluding Remarks
• assumptions (13) , we see from (l2a ,b) that we

can identify • We presented a new definition for the displace—
• ment rank of covariance functions that makes it

B(t;s) — H(s)B,~7
(t;s) possible to imbed both time—invariant and time—

varying state—space models in a more general
and theref ore, we can write (11) as input—output framework. This approach provides

r
— ~~~~~ bmy

(tit) — H
my(t;t)A 3~ ,

(t;t)R’(t) (14) 
insight into the relationship between vatious
solutions to the estimation problem and clarifies

• • the role of the state—space structure in simpli—
With a little calculation (see (11) and ~~~ fying the estimation algorithms. Yor processes

it can also be shown that i with measure ci of “distance from stationarity”
recursive estimation algorithms of the Levinson-’

~j  Bmy (t~t) — (F(t) _ h
~7

(t ,t)H( t))3(t;t) . (15) type can be derived (13 , (4). If additional
(state space type) structure is added to the

A’ Equations (14), (15) are the time—varying problem, alternative algorithms become available.
version of the Chandrasekhar—type equations that In the time—varying state—space case the Kalisan—• were derived us ing a completely differen t filter and the Riccati equation are naturally
approach in (8), (9]. Note that (14) , (15) can obtain ed , while in the constan t —p arameter case
not be solved directly since the time arguments the more efficient Chandrasekhar equations may be
“do not fit”, that is, because of the opposite used. Of course the general input—output
directions of evolution of these equations , at recursions have to be used when state—space
any intermediate point the values of B

~y
(;.) models are not readily available.

needed to solve for h
~1
(.,•) will not be

available. This dif f icul ty  is circumvented in References• the time—invariant model case, because now we •

can reverse the direction of time in (14) since 
- (13 T. Kailath, L. Ljung and 11. Hot!, “Recursive

in this case input-output and State—space solutions for
continuous—time linear est imation problems ” p

~~ h5y(tit) 
— — 

~T l~xy
(t it) Proceedings of the 1976 Conference on Dect-’

sion and Con trol, Cicarwater, Florida.
In the time-variant case, the Chandrasekliar Also submitted ‘for publication.

• equations (first obtained in (83) have to be 
•

• 

• 
•
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