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PREFACE

Work on flutter prediction has always been based on the modal representation of the
structure, which implies a linear model of the aircraft. A number of good results have been
obtained, for many prototypes, using this method. Unfortunately, more and more
difficulties have appeared during the last few years, both for aircraft carrying large stores and
for light aircraft, where non-linear phenomena make it hazardous to use a linear approach.

25, @Ae WeprT L,

: This pilot paper, given by Dr E.Breitbach to the Sub-Committee on Aeroelasticity of the

; Structures and Materials Panel, presents a possibility for taking into account some non-
linearities of the structure and their effect on flutter. It was the opinion of the Sub-
Committee that it should be published by AGARD as an important milestone in the way of
accurate flutter prediction in complicated conditions.

G.COUPRY
Chairman, Sub-Committee
on Aeroelasticity
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EFFECTS OF STRUCTURAL NON-LINEARITIES ON AIRCRAFT
VIBRATION AND FLUTTER

by

E. Breitbach

r; Deutsche Forschungs- und Versuchsanstalt fir Luft- und Raumfahrt E. V.
- Aerodynamische Versuchsanstalt Gottingen -
Institut fir Aeroelastik
Bunsenstrafle 10, 3400 Géttingen, Fed. Rep. Germany

SUMMARY

Experience has shown that aircraft structures are generally affected by structural non-linearities.
The purpose of this paper is to find out the physical sources of the various types of non-lnearities, to in-
vestigate their influence especially on the different parts of the flutter clearance process and to deal with
those methods which permit quantitative solutions of non-linear aeroelastic problems.

NOTATION
t time
P structure point
f frequency
fr normal frequency
h normal deflection of the quarter-chord point of a wing section
a rotation of a wing section
B aileron rotation
B a’ Bo: By characteristic angles of a non-linear force deflection diagram
‘k critical angle of limited amplitude flutter 4
u deflection
% u, normal mode deflection
C Uinear stiffness of an aileron hinge
C1 ’ Cz characteristic stiffnesses of a non-linear force deflection diagram
F force or moment, F = F/C
M " generalized mass
Kr generalized stiffness ;
D" generalized damping ‘
Qr generalized external force i
L damping loss angle
(] » logarithmic decrement = Y T
R q, generalized coordinate
Aut Unear stiffness energy




AUnl non-linear stiffness energy

Subscripts

r,s integers denoting the mode number

1. INTRODUCTION

As is well known, aeroelastic investigations are usually performed on the basis of the simplified as-
swumnption of structural linearity. However, it becomes more and more evident that many dynamics and
flutter problems can only be solved satisfactorily by taking into account structural non-linearities.

Therefore, primarily a survey is made of the various types of non-linear effects which may arise
on aircraft structures. Beyond that, it is attempted to understand their physical origin and to classify
them as to their influence on ground and flight test methods as well as on the analytical flutter predic-
tion. Emphasis is placed on methods which are suitable for treating non-lnear vibration and flutter
problems with special regard to systems with several degrees of freedom formulated in terms of calcu-
lated or measured modal characteristics.

The applicability of such methods is illustrated by a number of experimental and analytical results.

2. SURVEY OF RELEVANT STRUCTURAL NON-LINEARITIES ON AIRCRAFT

Non-linearities as arising in aircraft structures can generally be subdivided into distributed non-
linearities which are continuously activated throughout the whole structure by elasto-dynamic deforma-
tions and into concentrated ones which act locally lumped especially in control mechanisms or in the
connecting parts between wing and external stores. Some characteristic types of these two classes of
non-linearities are described and discussed in the following sections.

2.1 CONCENTRATED NON-LINEARITIES

The control mechanisms of hand operated aircraft are affected by different types of strong concen-
trated non-linearities resulting from

e back-lash in the linkage elements of the control system

e solid friction in control cable and push rod ducts as well as in the hinge bearings
e kinematic limitation of the cor‘rol surface deflection

e application of spring tab systems provided for relieving pilot operation.

These effects generally occurring in combined forms can best be demonstrated by means of results
measured on real aircraft structures. Fig.1l shows t
the aileron hinge moment of a glider versus hinge
angle in case of static moments symmetrically act-
ing in the sense opposite to the regular operation of
the aileron system. The result represents the sim-
plest form of a low damped back-lash, The anti-
symmetrical force deflection curve resulting from ’0 T
static loading in the regular operation sense of the
aileron system is given in Fig.2. It is a hysteresis
type diagram with an elastic and nearly frictionless
slope for forces below the critical slip-stick point
where static friction changes to sliding friction. The
latter causes an hysteresis increasing up to the ma-
ximum aileron deflection, beyond which the force
deflection curve is characterized by nearly friction-
less elastic deformation. Resulting from this non-
Unearity the resonance frequency of the antisymme-
trical aileron vibration decreases from about 7 Hz
at low amplitudes up to a minimum of 2.5 Hz at
about 15 degrees, s. Fig. 3. The resonance frequen-
cy increases again along the dashed line for ampl-
tudes exceeding the maximum aileron stroke. The
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HINGE MOMENT [Nm ]

force deflection diagram of a glider rudder in Fig. 4 HINGE ANGLE [degr]
is almost exclusively characterized by solid friction
whereas elastic dof:’rmuau are u:’unbh. Fig.1: Alleron hinge moment of a l‘“";
versus hinge angle, symmetrica
Quite similar non-linear effects due to back- \oading

lash and solid friction can be observed on aircraft
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HINGE MOMENT [Nm]

HINGE ANGLE [degr]

Fig.2: Aileron hinge moment of a gli-
der versus hinge angle, anti-
symmetrical loading
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Fig. 3: Resonance frequency of the anti-
symmetrical aileron vibration
versus hinge angle

02

o1

HINGE MOMEN! [N
&r
3

-0

-02}
MINGE ANSLE ldegr]

Fig. 4: Rudder hinge moment of a glider
versus hinge angle

with external wing stores. In [1] and [2] special emphasis is
placed on the investigation of the single point suspended un-
der wing stores of a combat aircraft with sweepable wing.
Main purpose of these studies is to find out the limits of line-
arisation and their possible consequences to test and analy-
sis.

Another type of a concentrated non-linearity is occurring
in spring tab systems deliberately introduced into the control
mechanism in order to relieve pilot operation. Both the me-
chanism of a spring tab system and the appertaining force
deflection curve are sketched in Fig.5 and Fig. 6 respective-
ly, assuming the hinge stiffness Fc of the main control sur-
face to be zero. The stiffness of the spring tab system is re-
latively high in a rather small range around the origin of the
diagram resulting from a special pre-tension of the tab
spring Fr. At a certain tab deflection the pre-tension cea-
ses and the stiffness suddenly drops to a much lower value.
The force deflection diagram of the complete control me-
chanism is a combination of the tab spring Fq and the stiff-
ness Fc between control stick and econtrol surface which is
generally characterized by back-lash and solid friction. As
outlined in one of the following sections, such spring tab sys-
tems have already proved to be very susceptible to a danger-
ous kind of divergent flutter.

Power operated controls as schematically shown in Fig.7
are also affected with non-linear effects. This might be il-
lustrated for instance by the resonance frequency of the
F 104G aileron system plotted in Fig.8 as a function of the
aileron deflection, [3]). Generally, it can be assumed that
the dynamic behaviour of power control mechanisms is cha-
racterized by a combination of different sorts of non-linear
effects such as outlined in the following:

e As pointed out in [3] and [4] the complex highly damped
stiffness of the hydraulic actuator itself is a non-linear
function of the vibration amplitude as well as of the actua-
tor preload and of the position of the jack piston.

e The linkage mechanism between the actuator body and the
aircraft structure is affected by conziderable non-linear
effects due to solid friction and back-lash especially in the
hinge bearings.

e In case that vibratory motions of the aircraft structure re-
sult in relative motions between piston and cylinder of the
servo valve, actuator forces are induced which also vary
with the vibration amplitude. This kind of dynamic inter-
action can lead to considerable stability problems,

In addition to all that, the dynamic stiffness of hydraulic
actuators is usually a frequency dependent function to be ta-
ken into account as a very important part of the flutter clea-
rance process, see [5].

2.2 DISTRIBUTED NON-LINEARITIES

The vibration behaviour of aircraft structures is influ-
enced not only by the concentrated non-linear effects des-
cribed above but also by the so-called distributed ones which
are induced by elastic deformations in riveted, screwed and
bolted connections as well as within the structural compo-
nents themselves. Because of the great number of rivets,
screws and bolts it can be assumed that the resulting damp-
ing and stiffness non-linearities are more or less continuous-
ly distributed throughout the structure. In consequence of this
special property, the effect of these distributed non-lineari-
ties on the normal mode shapes can mostly be regarded as
negligible.

Experience has shown that the normal frequencies are
weakly decreasing functions of the vibration amplitude. Quite
contrary the overall damping values can undergo much higher




variations against amplitude. Two typical results
of a ground vibration test, carried out on the air-
craft F 104G, [6], are plotted in Fig. 9.

As found out in special damping measurements
on a fiber reinforced composite box spar, (7],
structural damping of modern design components
depends not only on the vibration amplitude but also
on frequency. Fig.10 shows the results of the fun-
damental bending normal mode, the normal fre-
quency of which was modified from 235 up to 88 Hz
by attaching additional masses. Thus, the stress
distribution over the test structure could be kept
invariant.

3. INFLUENCE OF STRUCTURAL NON-LINEARI-
TIES ON TEST AND ANALYSIS

The survey above demonstrates that there are a
lot of different types of structural non-linearities to
be taken into account in ground vibration test as
well as in flutter analysis and flight flutter test.

At first sight, the above described distributed
non-linearities do not seem to be of great impor-
tance for aeroelastic investigations. However, many
difficulties as occurring particularly during ground
vibration and flight flutter tests can be attributed to
these effects.

Thus, it has been shown in [8] that weak distri-
buted stiffness non-iinearities in concurrence with
equally weak manufacture-conditioned structural a-
symmetries can be identified as physical sources of
the well-known phenomenon of amplitude dependent
normal mode asymmetries.

Another very interesting problem concerning
the measurement of generalized masses is investi-
gated in [9). The study comes to the conclusion that
measured generalized masses can be considerably
affected by measuring errors due to small distri-
buted stiffness non-linearities. Suitable means to
overcome this problem are proposed.

As to the influence of distributed damping non-
linearities, it is worth mentioning that certain
changements of the critical flutter speed resulting
from non-linear damping effects can be expected
only in cases of mild flutter. However, damping be-
comes far more important in case of many dynamic
response problems because the dynamic amplifica-
tion of an externally excited structure is inversely
proportional to the structural damping.

Regarding the so-called concentrated non-Une-
arities it is self-evident that in most cases simpli-
fied linearized approaches must lead to inadmis-
sible errors and misinterpretations. To settle these
problems some propositions have been made espe-
cially in view of a more sophisticated preparation
and execution of the ground vibration test.

According to [10] non-linear dry friction effects
on control surfaces of hand controlled aircraft can
be largely reduced by the application of an auxiliary
periodic high frequency excitation. In this way an
aircraft structure can be artificially lnearized for
frequencies much lower than that of the auxiliary
excitation.

If the modal synthesis approach is utilized the
detrimental influence of concentrated non-lineari-
ties on the accuracy of ground vibration tests can be

1o conmeay sticx R TENSED SPRIG fy

AILERON RING TAB
Fig.5: Sketch of a spring tab mechanism
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Fig. 6: Schematic force deflection dia-
gram of a pre-tensed spring tab

ACTUAIOR B00Y

Fig. 7: Sketch of a power operated con-
trol surface
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Fig.8: Resonance frequency of the F 104G

aileron vibration versus trailing
edge amplitude




eliminated by means of three different procedures, which guarantee the measurement of a set of ortho-
gonal normal modes:

During the ground vibration test the mechanism of the control surfaces can be linearized by re-
placing the non-linear elements by linear artificial ones. As shown in [11], the real non-linear
effects can be subsequently reintroduced into the flutter analysis by means of modal superposi-
tion.

In accordance with [12] during the test the control surfaces can be fixedly clamped to the adja-
cent wing or tail structure in such a way that relative deflections are suppressed. This implies
the elimination of the control surface degrees of freedom. The real vibration behaviour can be
completely described in the subsequent analysis by introducing the control surface degrees of
freedom in addition to the measured ones. The non-linear effects of the control mechanisme can
be taken into account using an analytical approach quite similar to the one described in [11],

As described in [13] the aircraft structure can be investigated in the ground vibration test with-
out control surfaces. In this way non-linear effects cannot be activated. The normal modes of
the control surfaces are separately measured. The mathematical model of the complete struc-
ture can be subsequently established by means of a modal coupling approach taking into account
the non-linear properties of the coupling mechanism.

Every one of the three procedures quoted above

8

10 requires the force deflection diagrams of the con-
ci o RESONANCE FREQU trol surface mechanisms., It has proved to be the

properties experimentally.

As to flight flutter test, concentrated non-line-
arities must be taken into consideration as inherent
properties of the test object. Manipulations as ap-
plied to ground vibration measurements in order to

o DAMPING most effective and accurate way to determine these

RESONANCE FREQUENCY [Hz )
2
&

facilitate them are not possible here.

\ 5
-Nﬁ The methods to interprete and evaluate flight
flutter test results reliably can be best improved by

%] 319NV 5507 INIdWV 0

gations on systems with realistic non-linearities,

\\ means of detailed analytical and wind tunnel investi-
\0 In the following the governing aeroelastic equa-

070

Fig. 9:

0 tions of an aircraft affected by concentrated non-li-
002 004 nea::tiieluwill : fo;mulat:;i in teruhx: of miodal ct::-

¥ racteristics. order to give an pression of the
REFERENCE AMPLITUDE mm] influence of some typical non-linearities on the flut-
Structural damping and resonance fre- ter stability the results of an analogue computer
quency of a typical F 104G normal flutter simulation will be presented. Furthermore,
mode versus reference amplitude the applicability of a slightly modified numerical
approach based on the principle of "harmonic ba-
lance" will be checked up by means of the results of
a wind tunnel flutter test on a non-linear wing ailer-
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o b KAz on model,

a 1= 16787 Hz

0 f= 12653H2 3,1 FORMULATION OF THE NON-LINEAR AERO-
O f= 8832Hz ELASTIC EQUATIONS

N

Provided that the ground vibration test is car-
ried out on an artificially linearized aircraft struc-
ture the governing equations can be written on the
REFERENCE AMPLITUDE basis of the measured modal data as follows

DAMPING LOSS ANGLE [ % ]
)

Ml‘ul'+ z Drlql+xrqf 2 Ql‘ i

(s) (1)
Lo-o r,e=12,,..,N

4 with
e

Mr generalized masses

0 Kl_ generalized stiffnesses

0 o1 02 03 04 D, generalized damping coefficients
REFERENCE AMPLITUDE (mm]
L generalized coordinates, §p(t), §p(t) denote
Fig. 10: Structural damping of a fiber reinforced the first and second derivation with respect
composite box spar as function of vibra- to time

tion amplitude and frequency




Q generalized unsteady aerodynamic forces depending on Q. QT . !ir , Mach number and
Reynolds number,

The generalized stiffness can be expressed by
2
K, =4 M 2)

with the normal frequency fr of the r-th normal mode. The solution qy of Eq. (1) can be retransformed
into the corresponding geometrical displacements u(P,t), which are defined as a function of time t and
of the structure points P, by means of the series expansion of the measured normal mode functions
un(P)

uP,t) = 3 u (Pt ; s=12..,N . (3)
(s)
As mentioned before, in the ground vibration test the non-linear stiffness elements characterized by the
force deflection functions F”(ﬂ“) are replaced by artificial linear stiffnesses C; . Subscript p indi-
cates the control surfaces taken into consideration and ﬁu denotes the hinge angle of the p-th control
surface,

The equations of motion of the non-linear system can be established by adding to Eq. (1) the La-
grange term

"

2a,

with the stiffness energies AUp; and AU, stored in the non-linear and the linear springs. This opera-

tion is equivalent to the reestablishment of the real non-linear conditions by analytical means. The en-
ergy terms AU; and AUy are defined as follows:

(AUn,_-AUl) ; r=1,2,...,N (4)

1 2
Au, = > 2. C.8
AT W
(5)
AU 2 ;“F(ﬂ)dp 1,2 5
" H w=1l,4,..., )

Applying to ﬁ“ a series expansion similar to that formulated in Eq. (3) results in

al

B - Zp“sq- g R, e N (6)

b (e

where B,g stands for the hinge angle of the p-th control surface as measured in the s-th normal mode
of the linearized system.

Insertion of Eq. (6) into Eq. (5) leads to

1 2
Ay we B dSg ol ; peL,4,....L (1)
T “[(-) 8 ! it e
and with
d‘“ ' E) ﬁ“.dqs ;7 8=12,...,N (8)
to
M
av. = % [ r8) (X 8, 40 ]: u=12....L ©)
nl (») © ] [(.) us .]

s*l,%,...;N %

If the Lagrange operation is applied in accordance with Eq. (4) to Eq. (7) and (9) and the result is added
to Eq. (1) this leads to the aeroelastic equations of motion of the non-linear aircraft

qur i z Dl‘lql . qur ¥ z [’MrFM(BH) : C“ z ﬁ“'q.]' Ql‘ IS Rkl -
(s) (w) s R 7Y S T

Eq. (10) is based on the plausible hypothesis that the dynamic displacements of the non-linear system can
be formulated in the same way as those of the linear system, namely as a superposition of the normal
modes of the lnearized test configuration. This formulation is very advantageous because not only the
modal data My, Dpg and K, but also the unsteady aerodynamic forces Qr can be taken over from the
Unear system unchanged.

The equations can be solved

@ in the time domain by means of an analogue computer or by numerical step by step integration,
o in the frequency domain by means of iteration procedures.




The derivation of the governing Egs. (10), especially with regard to the unsteady aerodynamic forces,
is dealt with more in detail in [11],

3.2 FLUTTER SIMULATION OF A SIMPLE NON-LINEAR WING AILERON SECTION

In order to investigate the influence of control surface non-linearities on the flutter stability, in [11]
a real time flutter simulation by means of an analogue computer was carried out for a simple wing

Ag ZERO POSITION

T |

o—— -1

S ——

L'--1/2

S

Fig. 11: Sketch of a wing aileron section with
three degrees of freedom

aileron section with a span width of 100 cmm. The
unsteady aerodynamic forces were determined by
means of the incompressible strip theory including
Wagner's function for non-uniform motions. As
sketched in Fig. 11 the system is characterized by
the following degrees of freedom

wing normal deflection h
wing torsion o
aileron rotation B .

The modal characteristics M, , fr and the normal
mode shapes hyp, ap, By of the "linearized" basic
configuration are summarized in Table 1.

The aeroelastic stability curves resulting from
three different types of non-linear force deflection
characteristics are plottet in Fig. 12 to 14, The
stability boundaries are presented in form of the

ratio of the critical aileron hinge angle By to a reference angle B, versus flight speed. By way of
comparison, the flutter boundary of the linear basic system is demonstrated in form of a vertical line at

V~ 300 km/h.

Normal % M, . h,. @, B,
ode [Hz] [kg em] [cm] [rad] [rad]
-3 -3
r=1 3.58 10. 18 1 0.66 10 0.50 10
2 15. 33 26.01 1 -0.039 -0.21
3 18.13 116.72 1 - 0.045 1.17

Table 1: Modal characteristics of the "linearized" basic configuration of

the wing aileron section

As shown in Fig. 12 non-linear flutter resulting from a back-lash type hinge stiffness leads to a li-
mited amplitude flutter which is not explosive but may cause a long-term process of material fatigue.

5

S

AMPLITUDE RATIO B/
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100

200
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Fig. 12: Effect of back-lash on the flutter
stability of a wing aileron section

In case that the force deflection curve is cha-
racterized by a combination of back-lash and solid
friction the flutter boundary line is shifted to con-
siderably higher speed values, see Fig.13. This
stabilizing effect is characteristic for all hystere-
sis type hinge stiffnesses.

In contrast to that, flutter resulting from de-
creasing or softening non-linear springs can be
much more dangerous. It can be seen from Fig, 14,
that this spring tab type hinge stiffness is very in-
sidious, because flutter does not start until a cer-
tain critical amplitude limit is exceeded, for in-
stance in consequence of a gust excitation. Above
this critical limit the vibrations are steadily in-
creasing until destruction of the aircraft.

As described in [14] in a qualitative manner for
a great number of examples, the flutter behaviour of
systems with non-linear control surface mecha-
nisms is highly dependent on the manner the criti-
cal flutter speed of the appertaining "linearized*
systems varies against changes of the linear hinge
stiffness as shown in Fig. 15 for the above investi-
gated wing aileron section. Functions of that kind
can help towards a first qualitative asessment of

s A S
ViR wa.m‘mummw £ St
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the flutter stability of non-linear systems.

3.3 FLUTTER ANALYSIS AND WIND TUNNEL TESTS ON A NON-LINEAR WING AILERON MODEL |

Recently, in the DFVLR/AVA low speed wind tunnel flutter tests were carried out on a half span |
wing aileron model with a non-linear aileron hinge stiffness. The main dimensions of the model can be
F seen from Fig. 16. In accordance with the above described procedure the ground vibration test was per-
formed on a basic configuration with a "linearized" aileron hinge stiffness. The measured modal cha~
racteristics Mp, fr, the damping loss angles ¥r and the appertaining normal mode shapes are sum-
marized in Fig. 17. The relation between the logarithmic decrement 8, of a decaying oscillation and

the loss angle ¥, is s :
Ye —;5 G (11) ;
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Fig. 17: Normal mode characteristics of a wing aileron
wind tunnel test model
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Fig. 18: Non-linear force deflection diagram of the aileron of the
wind tunnel test model

The force deflection curve of the wind tunnel test configuration shown in Fig. 18 is characterized by
back-lash of ¢ 3mm in combination with a small hysteresis.

Fig. 19 shows the flutter boundary of the non-linear wind tunnel test model in comparison with cal-
culated results in form of the critical amplitude ratio fy /B, of the aileron as a four valued function of
velocity V. The two full lines indicate so-called limited amplitude flutter, whilst the dashed lines des-
cribe indifferent states only to be determined by calculation. Thus, along the upper dashed flutter bound-
ary even extremely small external disturbances result in increasing or decreasing vibrations converging

against one of the full lines.
: * According to the strength of external disturbances due to gust or mancevre loads the limited ampli-
o tude flutter turns up along the upper or the lower full line.

: : During the tests it turned out that the damping values were highly dependent on the momentary vi-
i il bration amplitude so that a reliable damping measurement was impossible. This non-linear effect can be b
2 » observed in flutter tests on wind tunnel models as well as in flight flutter tests, irrespective of the damp- 2
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ing measurement method applied.

Regarding the risk of life and safety of an aeroelastic system resulting from limited amplitude flut-
ter Fig.19 demonstrates that the flutter amplitude ratio varies from By/Ba~ 2.5 at V=12m/s to
Bx/Ba~ 5 at 15 m/s and finally reaches the asymptotic case fi/Ba* @ at V =19 m/s predominant-
ly defined by the stiffness c, beyond the flat hysteresis part of the force deflection curve in Fig. 18,
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Fig. 19: Comparison of the measured and the calculated Fig. 20: Sketch of a hysteresis type
flutter boundary of the non-linear wind tunnel force deflection diagram
test model

The calculation of the non-linear flutter boundary was performed on the basis of the principle of the
"harmonic balance" by means of a rather simple numerical approach. In accordance with [15] the
elastomechanic properties of a non-linear force deflection diagram can be approximately described by
equivalent lnear coefficients, an equivalent stiffness coefficient Ce¢(B) and an equivalent damping loss
angle Ye(Bf), which can be calculated from

A

2n
C.(8) = ;% f F(Bcos¢, -Buwsing) cosp dp
¢=0
27 ’ i
7,(3) . ,—,—cl—em f F(Bcosy, -Buwsing) sinpdy .
¢=0 )

The integration variable of these amplitude dependent functions is defined by ¢ = wt with w = 2«f,

The solution of the integrals for a hysteresis type force deflection diagram like that sketched in
Fig. 20 yields

c, (8 = ?li' [2Fg(stng, - cosg,) - 28,¢,(s1n @, + cosgy) +

+ %(e2 - cl)(-mz¢o+ -mz¢1+ 2¢, - 2¢,) + g— 1(020 cl)]' .
> (19) g
y (8 = Tp'EI:(ﬁ ['"o("“"x’“"’o’ +28_c,(cos g, - sing)) - ‘

- %(cz-ol) (con2w°+ cuﬁwl)]

with \
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The equivalent aileron hinge stiffness of the non-linear hinge mechanism of the wind tunnel model is
plotted in Fig.21 as a function of the amplitude ratio B8/B8a. A further important result indispensable
to the determination of the flutter boundary of the non-linear system is given in Fig,22 illustrating the
variation of the flutter speed against hinge stiffness, which is assumed to be linear for this calculation,

Finally, the flutter boundary of the non-linear wing aileron system as shown in Fig. 19 could be de-
termined from a comparative evaluation of Fig.21 and Fig. 22,

Calculated and measured results agree very well and thus demonstrate that the application of the
principle of the "harmonic balance" is very efficient even in case of highly non-linear systems.

The "harmonic balance" approach can also be applied to systems with more than one concentrated
non-linearity, Starting from the general equations of motion (10) this problem can be solved by numeri-

cal iteration,
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4. CONCLUSION

Both a survey and a classification of structural
non-linearities as occurring on aircraft have shown
that a variety of non-linear effects have to be taken
into account in the course of aeroelastic investiga-
tions. The physical properties of distributed and
concentrated non-linearities have been exemplified
by means of a number of typical results measured
on real aircraft structures. Possibilities to over-
come detrimental non-linear effects on ground and
flight flutter tests have been discussed.

The influence of some different types of aileron
hinge non-linearities on the flutter stability has
been illustrated by the results of a flutter simula-
tion carried out on a simple wing aileron section in
the time domain., Furthermore the flutter behaviour
of a wing aileron wind tunnel model with a non-li-
near aileron hinge mechanism has been investigated.
The test results have been successfully compared
with calculated ones obtained by a numerical proce-
dure on the basis of the principle of the "harmonic
balance",

As to future investigations emphasis should be
placed on the following problems:

e Improvement of the ground vibration test concept
for instance by artificial linearisation of the test
structure and by subsequent introduction of the
non-linearities into the aeroelastic equations.

e Investigation of the non-linear and frequency de-
pendent dynamic properties of power operated
controls; incorporation into the aeroelastic equa-
tions,

e Investigation of weak distributed non-linearities
as to their effect on ground vibration test (with
special regard to modern experimental-numeri-
cal methods) and flight flutter test.

e Amendment of flight flutter test methods aiming
at a more reliable detection of the non-linear
flutter boundaries.

o Further development of numerical methods to
solve non-linear flutter problems with several
intensively interacting concentrated non-lineari-
u.-.

e Elaboration of suitable methods to predict unstea-
dy aerodynamic forces due to arbitrary motions
for real wings with finite aspect ratios and for all
flight speed ranges,
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