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ABSTRACT

In this paper we demonstrate that it is possible to extend Friedland's
(Ref. 1) bias estimation technique, as recently rederived in a constructive manner
by Mendel and Washburn (Ref. 8), to the problem of estimating dynamical states and

colored noise stttis. We have shown how to obtain an exact ‘mltuup decomposi-
tion not only for the state estimation equations, but also for the associated
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I. INTRODUCTION

In this paper, we extend Friedland's (Ref. 1) bias estimation technique, as
recently rederived in a constructive manner by Mendel and Washburn (Ref. 8), to the
important problem of estimating dynamical* states, x(t), and colored noise states,
2(t), for the following system:

X =~ ax+Bz+u ; x00 A
${ % = cz +ew ; 20); 0<esl 2)
I(t) = Ex+y 3

We do not show the explicit dependence of vector and/or matrix quantities on time,
for notational simplicity. In S, ;_ckn, Lck'nxn, Ceerr, g_ckn, gkr, !ckr, Blknxt,
yd', lclm, 102'; x(0) and z(0) are independent gaussian random variables; and,

8, ¥, and ¥ are gaussian white noise processes, for which

E{u} = 0, B{w} = 0, and E{y} = 0 (%)

R(a(e)a' (D} = Qué(e - © ‘ )

E{cw(t)w' (t)e} = ¢2Q26(t - 7) 6)

Ea(t)w' (1)} = 0 . )

E{z(e)z'(7)} = R8(t - 1) (C))
and*®

sity.xty ' , )

" Colored noise states, g(t), are described by a first-order Markov process which is
not affected by the dynamical x-states. Scalar parameter €, which ranges between

* Strictly speaking, x(t) and z(t) are both dynamical state vectors; however,
since it has become customary to refer to z(t) as colored noise, we shall
distinguish between x(t) and z(t) as indicated.

ﬂg. +poE{sh} =0.
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,zero and unity, is a useful art.;l.fico which permits us to reduce our results to
earlier results for which ¢ = 0, in which cases, 2(t) can be thought of as a bias
(a constant bias if C = 0). It also permits us to make the transition from truly
constant biases to "almost" constant biases. Finally, we wish to emphasize the
fact that colored noise disturbances ara quite common in practical applicationms.

In a launch vehicle application, for example, 2(t) would be a finite-bandwidth wind
process.

In the sequel, we will show that the optimum filtered estimate of x, £, and

its associated error covariance matrix Px’ can be expressed as

2 =3+VE+E (10)

L4 v (]
Px = P'xl + Pl + vplz + Plzv +V'sz (11)

where X is the colored-noise-free estimate of x, computed as if no Z states were
present in S; Z is the optimum estimate of the colored noise states; £ u the
estimate of an n x 1 residual random process; and V is a matrix which blends the
estimates X and % together with § to give the colored-noise corrected estimate of
X, X. Matrices rxl, P1» P12, and P_ are defined in Section II.

The multistage decomposition in Eqs. (10) and (11) is an extension of the
results presented by Friedland (Ref. 1), which were recently rederived by Mendel
and Washburn (Ref. 8) in a constructive mammer — constructive in the sense that
their derivation can be aspplied to more difficult situations, such as the one
considered h the mun:.pan. Friedland considered the case where ¢ = 0 and
C =0, so that 2 is a bias vector. Tacker and Lee (Ref. 2) extended Friedland's
results to the case vhere just ¢ = 0 (i.e., tilo-vu'yin; biases). Tanaka (Ref. 3)
treats the case we are considering in this paper, but for discrete-time systems;
however, his results are stated without proof, and, it is not at all clear how he
obtained them. A full-blown generalisation of Friedland's results to partitioned
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dynamical system, where x and 2z .suu equations are completely coupled, is given

in Wagshburn (Ref. 4) and will be rcpott;d on in a later publicationm. .
Our multistage filtering results, for colored noise and dynamical states, are

given in Section II. These results are al;o compared with the less general results

of Tacker and Lee, and Friedland. Suboptimal second-order filtering algorithms,

obtained via a perturbation technique, are described in Section III. Proofs for

_all theorems are given in the appendices.

II. EXACT MULTISTAGE FILTERING RESULTS

Our main results are stated in the following:
Theorem 1. For system S, if Pn(O) = 0, then the multistage minimum—-variance

filter estimator-equations are:

£ - g+vi+d | az

£ = cR+E[y(r) -8B -®VE-BEl ; 200 a3

£ - U - & D+ Klz() - 5 - g - B8] 5 £O) (14)
and

= G- X DE+E [ -8 20 | as)

where the gains are

v ~U-K DY +3-5; V(0) =0 (16)
- 4 ygrp=-l

K, = (Pl +2 V)E'E e an

K =0 + Py v )EY? (18)

- tp=1 19
:‘1 rxlnr a9)




+1s computed from

P o~ mP+ 7y - Famym 413(1|V)i" }
(o |
+ g2
l‘QzV' I Q2 : an
0 0 .
P |

H = (22)
e
The error covariance matrix, P, for'utiumg and z, defined as
5 el
P = (23)

PHEW

is computed, using P, as

filv)_(z]|w
P =3 + P ] ' e (26)
2 e}t ol

where




The proof of this theorem, which is patterned after the comstructive
derivation of Friedland'sresults given by Mendel and Washburn (Ref. 8), is sketched \
inv Appendix A.

! Comments: (1) Equations (15), (19), and (26) comprise a filtering system for the
1 estimation of x €S when colored noise states, z, do not exist. As such, with z-

states present, _i_ is not optimal in any sense, since the true measurement, y(t), which

contains effects due to z, is used to obtain X.

(2) signal i is an estimate of an nxl residual noise process, §, which

satisfies the following state equation (see Appendix A for derivatiom):

£= G-K DE-cW ; £0) =0 (27)
Observe that for ¢ = 0, the unique solution for § is

E(t) =0 ®t20 (28)

This result is motivation for a suboptimal series expansion of the Theorem 1

equations about £ = 0, the details of which are given in Sectiom III.

(3) Observe, in Egs. (17) and (18), that Kz and K. depend on elements

3
P, and Py, of error covariance matrix P. It can be shown that

'.
™ 4+ 29
B B AR, tP (29)

?lz = P "'r:

gz 18 7 . )

vhare x; is associated with the artificial system %; = Ax; +gandz‘(t) -
Bx; +¥, in which srtificial messurement y (t) is nomexistent since it is predi-
cated on the artificial assumption that the measurement is not affected by z.

This notion is extramely useful for analysis purposes. We wish to emphasize the
fact that X and X; are quite diffarent; for during the development of £ we use
2(t) which is affected by 2, vhersas in the development of X;, wa use y (t) which
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+1s unaffected by z. The two estimates are related however.

(4) Matrix P is of dimension (otr) x (n+r);hence, we have been led to
the computation of a large-scale matrix Riccati equation, (21), just as we would
have been had we followed the usual procedure for obtaining X and Z by applying the
Kalman filter equations to Equations (1) and (2). This obviously represents a
serious limitation of our general results, and points out a shortcoming of this
multistage decomposition approach far colored noise states. In Section III, we
obtain a suboptimal filter that does not requ:l;:e the computation of a large-scale
P matrix.

(5) For € = 0, we have the case considered by Tacker and Lee (Ref. 2).

It is straightforward to show that, for ¢ = 0

Py 0 ¥Ft>0 ‘ ' (31)

P12 = 0 Vtz_o : (32)

This is a direct conscquince. of Eqs. (28), (29), and (30). In this case, we

obtain:
Corollary 1. For ¢ = 0, the Theorem 1 results reduce to:
§ = 2+% | (33)
= 4 ;
R +K [3(t) - WVE - BE] ; £(0) : ' (34)

m:cthnuins.m

V = (A-xxln)v+n—vc ; V() =0 (35)

K, = P;(EV)'R7 : (36)

The error covariance matrix P, is computed from




E ; 2

i B ' -1 A

CP, +PC pzom'x cmm»z ; P (0) (37
and

P_sve ’x; +vrzv' (38)

il (39)

where le still satisfies Eq. (26).

It 1s of 'interest to compare our results, in Eqs. (33) - (39), with those in
Tacker and Lee (Ref. 2). Their results are limited to a constant C matrix; our C
matrix can be time-varying. They also require some extra calculations, which we
do  not. Their gain matrix Vb [Eq. (12) in Ref. 2] must be computed and inverted to

obtain a gain matrix comparable to our matrix V. They also compute a matrix M

[Eq. (13) in Ref. 2] which has no physical meaning, and from which they can compute
Px and sz" A complete comparison between these results is found in Washburn
(Ref. 4).

(6) For € = 0 and C = 0, we obtain the situation comsidered by
Friedland (Ref. 1) and Mendel and Washburn (Ref. 85. In that case, we obtain:

Corollary 2. For € = 0 and C = 0, the Theorem 1 results reduce to:

X = x+Vz (40)
and

2 = K [y(c) - EVE-BE] ; 2(0) ‘ (41)
vhere

V = (A- K, BV + B (82)
and

B, = 2,@)'RI@EVE, ; P(0) (43)

The equations for Kz.. Px’ and P — those given in Corollary 1.
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These results are identical to those obtained by Friedland and Mendel and

Washburn.
III. A SUB-OPTIMAL SECOND-ORDER MULTISTAGE ESTIMATOR

As discussed in Section II, the exact multistage filtering results for adding
colored noise states includes the calculation of (n+r) x (n+r) matrix P, where
otr = dim(x,2). In this scctiol:} we develop a sub-optimal multistage estimator
by means of a perturbation technique which can be found in numerous references
(Refs. 5, 6, and 7 for example).

To begin, we review the e;aence of the perturbation technique. Given the

differential equation

ACt,e) = £(Q,e,t) & A(0) (44)

-

where t ¢ [0,T] and O < ¢ <1, and, f is analytic in (A,e,t); then, for

sufficiently small ¢, the following McClaurin series converges to A:

A = Z‘ % Ag“) > te[0,T] (45)
a0 °
whera : .
(n) ) I
A - —— (46)
. ac™ e=0
which can be computed using the following system of equdtioms,
- ‘ ) s
Kgn) - d—a f(A’:’t) ’ e S 0’1’2’000‘ (A7) !
de e=0 :

It is difficult to quantify what is meant by "sufficiently small ¢," since
the bounds needed for ¢ to be small are functions of the Aé‘). n=0,1,2,..., and
these quantities are very difficult to compute a priori. An example which
illustrates the range over which the preceding approximation is valid is given at




the end of this sectiom.
Applying this perturbation technique to our results in Theorem 1, one obtains

the following results, which are proven in Appendix B.

Theorem 2. For system S, if PnCO) = 0 and € is sufficiently small, then sub-
optimal multistage minimum-variance filter estimator equations are given by
Eqs. (12) - (19), where now

P, = e21'§- , v (48)
P12 = e?pd, (49)

and .
. i»’z + e2r§ (50) ]

.‘2 = - 2 2 - f ’ 2 - E
Pl A xxlg)pl + Pl(A K xIE) + Vsz 5 P1 (0) (4} 1) 3
3 . g 2 20" -pP2 AP -P2A P - 2 -
212‘ @A leﬂ)Plz 5 Plzc PIZAZPz P1A12Pz VQZ' 2 212(0) 0 (52)
- SEERE el R -
Pt C?z + ch PzAzrz 4 Pz(o) (53)
. -3 2 2(c - P vt o p2 3 »
Pz (c PzAz)pz = Pz‘(c PzAz) PleIZPz
- P r 2- z = ‘
P‘Al 2?1 2 + Qz o !z(O). Q | (54)
where
A, = ° “lyg (55)
p=1 56
12 = HR'RT‘HV (56)
and
A, = @) 'R~lgv (57)

B T —
s~




Figure 1 depicts the order of computations for these equations. Observe, that
we no longer must solve an (m+r) x (m+r) Riccati equation. Equations C§1). (52),
and (54) are Lyapunc;v-type equations, whereas Eq. (53) is a Riccati equation, but
it is only an rxr equation. At each stage, the quantities shown in the boxes, in
Figure 1, can be computed for all t ¢ [0,T] using quantities at earlier stages.

We refer to our suboptimal estimator as a second-order suboptimal multistage

estimator because we have expanded Pl’ Pl 2° and Pz in a three—-term expansion, like

"Eq. (45); and, a threa—cém expansion includes €2 terms. Observe that for the

colored noise case, as we have defined it, we must g0 out to at least a second-
order approximation. There are no e-terms in this expansion. This result is a
peculiarity of our particular problem. Washburn has considered the application of
this perturbation technique to weakly coupled systems, and, in that application
first-order expansions are possible (Ref. 4). Observe also that we have a sub-
optimal multistage estimator rather than a suboptimal estimator because our

starting point was Theorem 1 instead of an augmented Kalman-Bucy filter.

Example. Here we present a numerical example which demonstrates the accuracy of

our second-order suboptimal multistage estimator. Our system is:

X = =x+z+u (1)) (58)
S${ 2 = -z+ ew . _ (59)
y = x+v gl e : (60)

where all signals are scalars, and, q; =q, =1, and r= 1/3.

In order to evaluate the performance of our suboptimal estimator, we computed
the exact s:eady—sfatc error covariances for S and have compared these valuss with
their ‘nuoru 2 counterparts. The exact steady-state error covariances were
obtained by solving the nonlinear coupled algebraic Riccati equations for S using
an extended Newton-Raphson iteration technique. We obtained the following steady-
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b oo

.n-

~ state values for P.» sz and P from Eqs. (48) - (54):

3\

i A SR

Px 3+125
1

sz -Eez } (61)
-l 2

L s J 3

Quantities Px’ sz, and Pz. are depicted in Figs. 2, 3, and 4. Both the approximate
(solid curves) and exact (dashed curves) results are given as functions of ¢.
Observe that the second-order results appear to be quite good for e¢ as large as 1/2.

.Our suboptimal multistage filter equations are:

e 2wt (62)
Fe-dn-Lat-Lieltye . 3O (63)
R e T e L B S TO N 10 (64)

of course,\- X must’ be coulpixted for the first-order Kalman-Bucy filter equations
(s), (19), and (26).

IV. CONCLUSIONS

We have demonstrated that it is indeed possible to extend Friedland's (Ref. 1)
bias estimation technique to the probldl of estimating dynamical states and colored
noise states. We have shown how to obtain a multistage d‘conﬁui:ian not only for
the state estimation equations, but also for the u-ociatod' error covariance
equations. Additionally, we have related our results to Friedland's and Tacker
and Lee's (Raf. 2). |

' Our exact decomposition, in Theores 1, can be viewed from a mmber of points
of view. As a structural result, it shows us how estimates of a lower-order
systen (i.e., £ must be modified when colored-noise states are added to the
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description of that system. As such, this knowledge can be used to increase our

understanding of the interactions between estimates of dynamical and colored noise
states. It also suggests passibilities for further approximations, which can be
used to reduce the complexity of the exact results. As a computational result, it
shows us that there does not seem to be any way to avoid having to solve a larger
matrix Riccati equation. As such, the exact decomposition is disappointing; but,
we have also shown how to reduce computations (at least with respect to having to
solve the larger matrix Riccati equation) by means of a perturbatiom technique.
One can also view onr Theorem 1 results in the context of decentralized
estimation theory. Signal % is estimated at ome level, then % and { are estimated
at the second level, after which coordination takes place at a third level to
provide us with X. Sandell, et al. (Ref. 9), mention that in decentralized
control, when the coordinator has access to full knowledge (i.e., at each
instant of time, each iocal subsystem. transmits :Lﬂatam:ly and without error its
measurements and controls to the coordinator, and the coordinator has perfect
recall) his optimal strategy is to cancel the locally computed controls and
substitute the global optimal controls. Perhaps this same phenomenon is happening
in our Theorem 1 results. This would explain the need for £ and the resulting
(atr) x (otr) Riccati equation for P. We are presently studying this conjecture.
"Extensions of our ruulcl.to much more general partitioned dynamical systems
can be found in Washburn (4).

—




Appendix A. Proof of Theores 1

Our proof of Theorem 1 is patterned after the comstructive derivation of
Friedland's results, givem in m.'a, and in Washburn's dissertation (Ref. 4).
Due to page limitations, we give only a brief sketch of the proof, since the details
are lengthy and can be found in Ref. 4.

Our approach is to assume the existence of the decomposition for £ in Eq. (10),

and, to assume that

z = BE + B,Z + BaX + By(t) ; 2(0) (A-1)
and
.é. w CE +CoZ +Cax + Cuy(t) : £ (A=2)

wvhere matrices B;, Bz, B3, Bg,: C1» C2» C3, and C, remain to be determined. Ve
then require that X, Z.  and £ be unbiased estimates of x, z, and £, respectively.
Unbiasedness determines the form of V, in Eq. (16), and it constrains B;, B, and
B3 to be spccific functions of B, and Cys Cg, and C3 to be spcc:l.fic functions of
Cy. As such, the requirement for unbiased estimates reduces the number of unknown
design matrices in Eqs. (10), (A-1), and (A~2) from nine to two, B, and Cy..

In ordcr to perform the unbiasedness analysis just described, it is necessary
to obtain the following interesting decomposition of state vector X:

X = Mz +Hhz+As . ‘ a-3)

where A;, Az,ahmxymmmfmm equations and X; is

associsted with the artificial system (see comment 3 after Theorem 1 for furthar
discussions).
# = Atz x0 R

7, = Bty (A=S)




'Also needed is the following relationship between non~optimal estimator j_ and

optimal estimator of x;, X°
2 = & +hz+ym +14, (A~6)

where A, X3, and X, also satisfy certain linear differential equations, which are
driven by A;, A, and A3. It is important to understand the distinction between
% and £). Estimator %) is truly optimal; for, it is associated with the
artifictal system in (4—6) and (A-5), and that system knows nothing about th‘c
colored noise states, z. Measurement b 5 does not exist, of course, since the real
system's -measurement is affected by those states even when colored noise states
are suppressed from the real system's state equation. Estimate X is obtained for
the system £ = Ax + By, y = BXx + ¥ — but, y is affected by z.

By means of Eqs. (A-3) and (A-6), it is then possible to express x - z - z,

x, - @-@*V@-Q*-G.-i) @-~7)

vhere, interestingly emough,”

£ = Ay- Ay : ‘ (A-8)
and
V = Az°xz : (A~9)

Each of the ut:lnn; in (A-7) is an optimal estimate [thisz would not be the case
for £]. Equation (A-7) is used to study unbiasedness.

To determine gain matrices By, and Ci, the trace of the error covarisnce matrix -
for £ and Z is minimized, using gradient matrix calculations. This yields Eqs.
(17) aad (18). Using these optimal values, we also obtain the expressions for P
and P, given in Eqs. (21) and (24).

We have assumed, a priori, that our estimators are linear. Thus far we have

* Equation (27) can be obtained from Eq. (A-8) and the differential equations
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not used the fact that our noise processes are gaussian. Using this informatiom, .
it follows via uniqueness of solution of the matrix Riccati equation that i and i,
obtained via Theorem 1, are the optimal estimators of x and z.
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Appendix B. Proof of Theorem 2

Equations (48) - (54) are obtained by applying the Eq. (45) perturbation

technique to P in Eq. (21). Our counterpart to Eq. (47) is:

£ ] :
- 3—‘;{ §,? + FH) - Pa|n'a'rlia|np
i e de
e | B
el iy
¥ (3-1)

-sz! QZ J e=(

We truncate the infinite-series expansions for PI, 1’12. and 1’z after three terms,

1.0:, *
= S
P, % P +eP+ o202 (B~2a)
5 + 2p2
Py, ¥ P, +eP, + P2, (B-2b)
and
P . 2p2
Pz ¥ Pz+dz+ ‘Pz ; (B-2c)

In order to obtain initial conditions for Eq. (B-1), we are led to the
following underdetermined set of equatioms:

2,0 = F(0) + 2]+ 2220 = 0 )

5 L)
P1,(0) = P.,(0) +¢P,,(0) + c2P2,(0) = O }

P,(0) = F (0) +e2(0) + ¢222(0) = 0

S

m!mo!imaamclmmmrdtmotuchmimmm
abeorbed into the matrix in that term.




Many different solutions of Eq. (B~3) are possible. We have found that the follow-
ing solution, which is independent of ¢, is very useful:

(0 = P (0 (B~4a)

All other initial matrices (e.g., sz(O)) are zero (B~-4b)

A direct consequence of Eq. (B-4b) is, that: Py(t) = 0, P} (t) = 0, Pjo(e) = 0,
Piz(t) - 0, and P:(:) = 0, ¥t > 0 [each of these matrices satisfy a homogenecus
differential equation, and, for zero initial condition, each matrix is identically
zero for ¥t > 0]; hence, Eqs. (B~2a), (B-2b), and (B-2c) reduce to Eqs. (48), (49),
and (50), respectively. Equations (51) - (54) are obtained directly from Eq. (B-1).

e —
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