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PREFAC E

The work effort reported herein represents an attempt to upgrade the
analytical solutions developed as part of a continuing technical effort
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C—0079. This effort is the result of the work done during the period
from October 1976 to September 1977 by the Department of Aerospace Engineer—
ing, Auburn University, Auburn , Alabama 36830, under contract r ~r— F08635—77—C—0002 with the Air Force Armament Laboratory, Armar. elop—
ment and Test Center, Eglin Air Force Base, Florida 32542. Progr~~.manager was Captain Robert A. Grow (DLJCA). This report constitutes the
final report for this contract.

This report has been reviewed by the Information Officer (01) and isreleasable to the National Technical Information Service (NTIS). At NTIS,it wi l l  be available to the general public, includ ing forei gn nations.
This technical report has been reviewed and is approved for publication.
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SECTION I

INTRODUCTION

During the past several years the authors have generated analytical
techniques for pred icting the mutual aerodynamic interference between
externally carried stores and between the stores and the aircraft (Ref-
erences 1 through 10). Although some solution techniques using surface
singularities are considered , the basic approach utilizes the Rankine
method of superposition of an axial source—sink distribution to form a
closed body. The interference flow fields are then superimposed on the
isolated solutions for the external stores (finned bodies of revolution)
and the aircraft components (fuselage, wing, and pylon).

The work previously performed in this general area has been limited
to solutions of the Prandtl—Glauert equation, a form of the governing
differential equation which was linearized by assuming inviscid fluid,
small velocity perturbations, and avoiding the transonic regime. Com-
parison of this analytical work with wind tunnel test data has shown,
however, that the linearized solutions will not predict accurately the
compressible flow effects at conditions approaching the critical mach
number. Further, in the case of the triple ejector rack (TER) with stores,
the pressures observed experimentally are indicative of large velocity
perturbations, i.e., near stagnation values forward of the bomb rack. It
is felt, therefore, that both transonic and large perturbations terms will.
have to be considered.

In addition to the large velocity perturbation and transonic terms,
it is very likely that the viscous effects will have to be included in
order to predict the loading for some configurations. This is particular-
ly true in the case of multiple weapons carriage such as with TERs and
multiple ejector racks (HERs). For example, in the case of three Mill
bombs on a TER, the boundary layers between bombs coalesce. Thus, the
usual simple boundary layer displacement corrections cannot be used. Also,
in the case of a shockwave—boundary layer interaction, the solutions for
the boundary layer and the potential flow are mutually dependent; there—
fore, the significant terms in the governing differential equations are
nonlinear.

While it is quite desirable to obtain a solution which includes all
of the nonlinear terms, more restrictive approaches are generally more
fruitful. Because of this, several approximate as well as exact approaches
were simultaneously pursued in this effort.

At the time that this effort was initiated, it was felt that the

t approach most likely to succeed for the inviscid flow case would be to



generate higher order effects based on the current image—system solution.
Basically, the approach would be to evalua te the effects of the nonlinear
terme which previously have been neglected from the governing differential
equation for inviscid flow. This would be done by the successive approx-
imation technique or by the more orderly method of asymptotic expansion.
Considerable effort was put into this approach, and the results are
discussed in this report.

Initially it was felt that the best approach for the viscous flow
problem would be to use the current potential flow solution (see References
I through 10) for the far—field boundary conditions and use an imbedded
numerical solution technique for the boundary layer and boundary layer—
shock wave solutions. This concept was pursued using classical nuine~ ical
marching techniques. It became evident, however , that a more general
numerical solution is required.

In addition, other numerical approaches have been studied which, along
with the efforts mentioned above, are discussed in detail in the following
sections of this report.

I

2
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SECTION II

APPROXIMATE SOLUTION S

INTRODUCT ION

The current solutions given in References 1 through 10 are limited
to the case of slender bodies for which the flow is all either subsonic
or supersonic. Specifically, this previous work represents solutions to
the Prandtl—Glauert equation which is the linearized velocity potential
equation given as Equation (1).

(l—M 2)~ + *~ + ~ = 0 (1)
~ xx yy zz

Noting that Equation (1) becomes the Laplace equation if the free
stream mach number is zero, it is seen that for this case the restriction
of small velocity perturbations can be removed . This is the so—called
zeroth solution and can be used as a basis for generating the compres-
sibility effects at higher mach numbers by a successive approximation
technique , or by the more orderly method of assuming a solution in the
form of a series. A classical series solution known as the Rayleigh—
Janzen method has been used in a nearly exact manner for a few simple
problems as noted by Shapiro (Reference 11). Although this type of solu-
tion technique has been greatly extended (see Reference 12) by other
investigators, it has been applied only to simple isolated bodies. It
was felt, however, that because of the current, closed form, analytical
solutions for aerodynamic interference (see References 1 through 10) the
Rayleigh—Janzen method could be used for this problem. In order to
verify this approach , several formulations of the solution were generated
for an isolated slender body as follows:

SLENDER BODY SOLUTION

The usual form of the velocity potential equation is written as
follows (for two dimensions):

(~2 - a2) xx + ~~~~~~ 
+ (+~ - a2) 0 (2)

where a is the sonic speed and can be expressed as



Equation (2) is the form of the velocity potential equation usually
found in the literature as the most general form (for two—dimensions).
For this study, however , it was found that a more useful form is given
by Equation (4) or its equivalent Equation (5).

— (__L) V4~ Va2 (4)y— l
or

V 24~ — — (—~-—) V~~Vln a2 (5)
‘r—l

which hold for both two— and three—dimensional cases.

Expanding Equation (4) in terms of the perturbation velocity
potential yields a nondimensional form (3 dimensions):

[1 — (1.~!) M2 (2~ + + + +2) ] V 2. =

M2

~~ ((+ 1) 
-
~~~~+ •y~~j+ +z ~~2+ + + + (6)

Since we are looking for the compressibility effects, we can set
c M~,, where c will be our perturbation parameter, 

and assume a solution
of the form

$(x,y,z;t) $~
0
~ (x ,y,z) + c • 

0
~ (x ,y,z) + £2 +~

2
~ (x ,y, z) + ... (7)

The assumed solution can be substituted in Equation (6) and (in
principle) each successive order of magnitude term can be solved. For
small perturbations, however, Equation (6) can be simplified by neglecting
velocity—squared terms in comparison to first—order terms and after some
manipulation reduces to

(1 — (i—i) M2 • J  a2V2$ — M2$ (8)

Pot slender azisymeetric bodies at zero angle of attack the body
boundary conditions can be expressed as

•y 
cos 8 + sin 8 — (1+$

~
)
~~ j 

(9)
body

4



Substituting Equation (7) into Equations (8) and (9) , and equating terms in
powers of r gives a set of order of magnitude equations . The first three,
zeroth , fi rst , and second orders , are given in Appendix A.

The numerical results of applying this solution to an M117 bomb shape
are presented as Figures 1 and 2. On Figure 1, the theoretical results
through the second—order terms are compared with the wind tunnel test results
of Reference 13. Figure 2 shows a comparison with experiment for the second—
order solution; there is very good agreement for mach numbers 0.5 and 0.8.
At mach nw’iber 0.8, however , the critical free stream mach number has been
exceeded as evidenced by a slight jump in the pressure distribution at an
axial station of about X/D — 1.5. A much larger pressure jump can be seen
for the mach number case of M 0.9. The pressure on the nose of the body is
predicted quite well, however, up to a value of X/D — 1.0 where the
local flow has become supersonic.

In principle , this solution can be applied to the multibody interference
solution as outlined in References 3, 6 , 8, and 9. In the case of three
large bombs mounted on a triple ejector rack , however , there will be nearly
stagnation pressures in the vicinity of the bomb racks, and , therefore, the
small perturbation assumption will be violated .

It was felt that a more exact solution would be needed in order to
obtain a valid solution in the vicinity of stagnation points; therefore , a
modified slender body solution has been formulated .

MODIFIED SLENDER BODY SOLUTION

A convenient form of the differential equation which is valid at stag-
nation points can be obtained by using Equation(S) which, written in terms
of the non—dimensional perturbation velocity potential, becomes

V2~ 
= —

~~~~~ 
(}— + V$ V)9,~ a

2 (10)

where a2 is the square of the nondimensional speed of sound and in terms of
the perturbation potential function can be expressed as

a2 — 1 — j-

~ 
M
~

(2
~~ 

+ + + •~
) (11)

For adiabatic flow , the non—dimensional speed of sound can be expressed in
terms of the local and free stream mach numbers and is given by

l + ~~!M
2

2 2 (12)
2
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Figure 1. Comparison of Theoretical Results and Experiment
Showing the Effects of the Order of Magnitude
Solutions
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Figure 2. Comparison of Theoretical and Experimental Pressure
Distributions f o r  Several Mach numbers, c~—0’7



From this expression it can be seen that the minimum value of a2 for sub—
critical speeds is given for M ’O and M,,.l. This gives a value of a2—0.8333.
Thus, an appropriate expansion for in a2 is given by the series,

9.n a2 — (a2—l) — 4(a2_1)2 + ~ (a2_ 1) 3 +... (13)

The maximum error in approximating 9.n a2 with the first term of the
series is 8.5 percent, and if the first two terms are used, the error is
only 0.82 percent.

It follows, therefore , that to good approximation, Equation (10) can
be e~pressed as

V2$ — (-—~-j)Ef~ + V~~VH (a
2—l) — .}(a2_l)2] (14)

Substituting Equation (11) into Equation (14) yields

H2
V2. — .~ if. + V~ .V][(2$ +$2+$2+ 2) +

j~~~~ (2+ +.2+$2++2 ) 2J (15)

Examining the differential operator on the right—hand side, it can be
seen that the coefficients vanish at stagnation points as described below:

The differential operator in expanded form is

— l+s
~ ~~ 

+ •y f~ 
+ -

~~~~
. (16)

At stagnation points the perturbation velocities are given by

— 1

0

(17)

Thus, the right—hand side of Equation (15) is sero, and the governing
equation at stagnation points is

8
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— 0 (18)

NOTE: Equation (18) holds at stagnation points whether the term,
tn a2, is or is not approximated with the truncated series.

It follows that the term on the right—hand side of Equation (15) has
negligible effect in the vicinity of stagnation points.

Now, if it is assumed that the velocity perturbations are small at
points a:~y from stagnation conditions, it can be assumed that

<< 2~ (19)x y z  x

To good approximation, therefore , Equation (15) can be expressed as

— [}— + V~ .V] [M 2 
x 
+ (%i) M~ •~

] (20)

Equation (20) properly accounts for stagnation conditions, small velocity
perturbations away from stagnation points, and conditions up to the critical
mach number. The Rayleigh—Janzen solution for this equation is developed
for the first—order terms in Appendix B. Comparisons of this result with
experiment and other analytical results are shown in Figures 3 and 4.

Before proceeding to a more complicated geometry or analysis, however,
it is of interest to note the following:

1. Comparison of the Rayleigh—Janzen results (this analysis, both
slender body and modified slender body) with the solution using Gothert’s
Rule indicates that little improvement can be expected by going to this more
complicated technique. This certainly seems true at least for bodies of
revolution at zero angles of attack and subcritical mach numbers as indicated
by Figures 3 and 4.

2. From the discussion leading to Equation (18), the Laplace equation
holds in the near vicinity of stagnation points. This implies that the
small perturbation solutions are not significantly in error near stagnation
points. This conclusion is borne out by the agreement between the theories
and experiments shown on Figures 1 through 4.

3. The analytical approaches discussed above are valid only for pure
subsonic flow. This can be seen on Figure 2. There is only a slight jump
in the experimental pressure coefficient at M,,” O.8 , but at N 0.9, this
jump is quite prominent. In fact, the discrepancy betvssn t?e analytical
and ezperlmental pressure coefficients is quite large for the M ”O.9 case.

.,

~~~ 1 ________________________
- -- . . . - - . - —
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It seems evident, therefore , that the Rayleigh—Janzen solution tech-
nique, at least through the second—order solution, will not be significantly
better at predicting the aerodynamic loads near and at the critical mach
number than the much simpler technique using Gothert’s Rule. It still may

be possible, however, to use the Rayleigh—Janzen solution at the critical
mach number if the higher order terms of the differential equation can be
retained and if the higher order solutions can be generated. An attempt to

retain the higher order effects is proposed as the next approach to the

problem.

SUCCESSIVE NUMERICAL APPROXIMATI ON

The actual analytical development of the higher order solutions by the

Rayleigh—Janzefl method is a horrendous job even for the most simple case.

Even for a single isolated body for which the zeroth solution is obtained by
determining the centerline source distribution, the third—order solution is

most unwieldy. It is proposed, therefore, that a numerical solution be
attempted as follows:

First, it is assumed that the zeroth solution has been obtained. This

solution is not limited to centerline sources and doublets, but can be

applied to any form of solution, including source panels , vortex panels, and
vortex sheets. Assuming the zeroth solutions and its derivatives are known,

a higher order solution can be generated as outlined in the following steps.

1. Write Equation (6) as

N2

v2
~ — -~- [i~ + V+•V1 [2~ + V+.V$~ 

(21)
2a ~~ x

where

a2 — i. — (9!) M~, ~2 x + v,•v+~ (22)

and • is the non-dimensional velocity potential for uniform flow in thex—direction.

If the usual Rayleigh—Janzen method were followed, Equation (7) would
be substituted into Equations (21) and (22) and the coefficients of powers
of the mach number equated. This, of course, would result in the ordered
solutions as previously considered. It is easily seen that the zeroth

solution would be the solution obtained by solving the Laplace equation

written as

— 0 (23)

12 
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The solution of this equation will also be taken as the first step in this
method. However, the actual method of solving Equation (23) is unimportant
to this approach.

2. The next (and all successive) steps will follow the usual successive
approximation method. Thus, to the next approximation, Equation (21) can be
written as

V2,
(]) 

— F(~~ °~ ) 
.. 

(24)

where the complete boundary condition is to be applied to the solution for

•
(l) and F(~~

0
~) is the right—hand side of Equation (21) expressed in(0)

terms of $

3. Write the first approximation as the sum of the particular and
complimentary solutions which can be expressed as

•
(l) 

— •
(l) 

+ •
(l) 

(25)

where the particular solution must satisfy the partial differen tial equation

V 2,(’)_ F($~°~ ) (26)p

while the complimentary solution must satisfy the equation

— 0 (27)

4 and Equation (25) must satisfy the boundary conditions .

The particular solution can be determined throughout the flow field by
numerical techniques. However , if the only points of interest for a single
body are those lying on the body surface, the size of the numerical grid can
be greatly reduced. If two or more bodies with mutually interfering flow
field. are considered , a grid system which envelop, all bodies must be used .
This system could still be two or more orders of magnitude smaller than that
required by other numerical techniques.

4. Successive approximations can be generated by replacing the zeroth
solution , •~

0), with the first approximation •
(1), and r.p.ating steps 2

and 3.

13



The classical Rayleigh—Janzen method is valid only for subcritical mach
numbers. Conceptually , however , this approach could be made useful f or
transonic and perhaps supersonic flows by taking into account von Kármdn’s
Rule for Forbidden Signals.

An alternate formulation for this method which might greatly speed up
convergence for the subsonic case and help to implement the supersonic
solution is as follows:

1. Write Equation (21) as

— M~4~~ — M2 {4— [f- + V$.v][2$ +$2+p 2+$2]  — (28)

2. For the subsonic case, this results in the zeroth solution which
is the solution to the Prandtl—Glauert equation

(1—M ~,) • + $ + $ — 0 (29)

The solution of this equation using Gothert’s Rule is compared with the
Rayleigh—Janzen method in Figures 3 and 4.

3. For the supersonic case the zeroth solution is the solution of the
classical wave equation written as

(M2— 1) $ — — $ — 0 (30)
— xx yy zz

Several techniques are known for solving this equation.

Further evaluation of the use of Equations (28), (29), and (30) will
be required before their use in this successive approximation scheme can be
validated .



SECTION III

EXACT NUMERICAL SOLUTION , PURVIS METHOD

INTRODUCTION

The analytical approaches found in References 1 through 10 and the
methods discussed in the previous section do not seem to be adequate at
speeds approaching the critical mach number which is the speed range of
most interest for this study. This inadequacy seems to be due to the fact
that the previous methods have used linearized potential flow theory, and
at speeds approaching critical mach number, the neglected nonlinear terms
become dominant.

In this study, an attempt is made to provide an analytical foundation for
a method which may ultimately be used to solve the full nonlinear potential
flow field about any configuration. The problem is doubly complicated due to
the nonlinear partial differential equation (PDE) involved and the fact that
the domain is fully elliptic; i.e., disturbances at any point are felt every-
where in the flow field. Since the problem is nonlinear , it is felt that a
numerical scheme must be used.

The major numerical methods for solving a nonlinear PDE of this type
are Finite Difference (Relaxation and Time Dependent asymptotic approach to
steady state), Finite Elements, Method of Integral Relations , and Method
of Projections.

Comprehensive surveys and descriptions of these techniques and applica-
tions may be found in references such as References 14 and 15 and will not
be discussed here. Most of these methods have been eliminated from consider-
ation due to excessive computer run times or storage requirement. and com-
plexity of the coding.

The current work presents a much simpler numerical, method for solving
the full nonlinear potential equation than those found in the literature.
The ensuing analysis uses some of the more desirable concepts of several of
the above techniques to minimize solution time and complexity and simplify
the treatment of body boundary conditions

In general, the approach blends the finite element and finite difference
concepts into a method for solving the full potential equations in a conserva-
tion form. The problem formulation leads to a large system of equations
which is solved iteratively . The solution doss not require storing or invert-
ing a large coefficient matrix and proceeds in such a manner that disturbances
can propagat. and be felt at all point, in th. field during the solution.
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GOVERNIN G EQUATION

Under the assumptions of steady , adiabatic, inviscid flow, the equations
for conservation of mass, momentum, and energy and the ideal gas equation of
state may be combined into a single differential equation. A further re-
striction of irrotationality allows the introduction of the velocity poten-
tial. The governing equation may then be expressed as

V •  ( 0 V $ ) — O  (31)

where $ is the nondimensionalized total velocity potential . Since the flow
is isentropic , the non—dimensional density p may be expressed in terms of
the velocity potential as

- E~ + 9! M~ (1 - V$•V$)1~~~ (32)

Equation (31) , when expanded using the components of the del operator V and
put in terms of the non—dimensional perturbation potential, is the familiar
full potential equation.

DIVERGENCE INTEGRAL

To formulate the problem for a computer solution, the divergence theorem
is applied to the integral form of the governing Equation (31). Integrating
over an arbitrary volume V yields

f V.(pV$)dV — 
~ 

pV$~ndS 0
V S

where S is the boundary surface enclosing V and ~Ti is the unit outward normal
on S.

The surface integral form of Equation (33) is solved numeri~.~ally as
discussed in the following subsections.

GENERAL SOLUTION

As in other numerical methods, the domain in which Equation (33) is to
be solved i. subdivided with a rectangular mesh or grid , and initial values
of p are assumed at the center of each cell in the grid . The surface
integral form of Equation (33) is applied to each cell in the grid and Is
written in terms of the potential at the center of each cell. The resulting
system of equations is solved by successive over—relaxation and subject to
the usu*l boundary conditions of no flow norma l to body surfaces and uniform
flow at inf inity . The value. of $ thus found are then di! ferenced , and new
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values for p in each cell are obtained using Equation (32). This process is
repeated until values of p in each cell have converged to within a desired
percentage for several successive cycles.

CELL FORMULATION

For two—dimensional and axisyimnetric flows, the surface integral form of
Equation (33) as applied to cell (i ,j) ,  shown in Figure 5, is:

p
1u1S1 + p 2v2S2 — p

3u3S3 
— p4v4S4 

— 0 (34)

To obtain Equation (34) , the sign on Equation (33) was changed and the
integral was evaluated assuming a linear distribution of pu or pv along each
surface S.~ The values in Equation (34) are then the values at the center of
each surface, or , equivalently, the average of pu or pv along S.

Expressed in terms of values at the center of the cell , the terms in
Equation (34) are

p 1 
— 4 ~~~~~~~~ 

+ 
~i— l j~

and

— 
~~~~ ~~~~~~~ (36)

Equation (36) is the standard centered difference formula and is accurate
to order (~x)

2 . The areas in Equation (34) differ for 2—D and axisymeetric
flow. Referring to Figure 5, the areas for 2—D flow are

S1 y — y e
j

S2 — x  — x  (38)e~+1 e
~

where a unit depth has been assumed. For the 3—D axisymsetric case, the
areas are

2S1
— n y  — iry (39)ej+l j

S2 
— 

~
2
~ ’r ~~~ 

— (40)
j i+l i

*Equivalent to assuming a second—order distribution of $ along each cell
surface in the Finite Elsaent method.
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Using the appropriate forms of Equations (35) through (40), Equa tion
(34) can be rearranged into

Al$~_1,~
+ A2$

i,j...i
+ A3+i+i ~+ A4$~ j+i+AS4 i~~ 

— 0 (41)

where, for example,

Al — — 

~~~~~ 
+ 
~i—l j~ 

S
1

/2Ax (42)

and

A 5 -- (A 1 +A 2 + A3+A4) (43)

In matrix formulation, this is a banded , diagonally dominant matrix, and
thus an iterative method such as accelerated Gauss—Siedel (successive over—
relaxation) will always converge. Note that Equation (34) is exact in the
limit of vanishing cell size and that only 1st derivatives of the dependentV variable are required. The finite difference equations used for u and v are
accurate to order (Ax) 2 and (Ay) 2, respectively.

BODY BOUNDARY CONDITION S

One of the most difficult aspect” of finite difference methods to date
has been the treatment of body conditions, while the opposite is true in the
finite—element method since the body surface forms the sides of some elements.
The present formulation combines the simplicity of calculations of the finite—
difference method with the relatively simple but exact finite—element treat-
ment of body boundary conditions. Consider the cell cut by the body surface
as shown in Figure 6. The surface integral for this cell is around the
boundary shown by the double solid line. Since the body boundary condition of
no flow normal to the surface (~ •n—O) requires that there be no flow through

V 
surface AB, then the equivalent expression of Equation (34) is

— p 3u3S3 — p4v4S4 — 0 (44)

where S3 is now the area of segment BC. Note that this equation is exact
for any size cell , and that no interpolation, contour mapping , or other
scheme is required as with general finite—difference methods.

STRETCHED COORDINATES

Since it is desirable to keep the number of cells at a minimum, for some
problems it is necessary to employ nonlinear cell stretching to place the

V 
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outer boundaries at infinity. A stretched coordinate capability is provided
using

x tan~~ (45)

y tan O (46)

From the chain rule, the finite—difference derivatives become, for example:

= = -~ ~.ç. — ~~~~~~~~~~~~~~~ 1 47
x
1 

x 1 1 + x ~

Hence, a uniform rectangular grid in F ,8 can be used, and the difference
equations are accurate to order (Li~

)2, (AG)2, respectively . The areas of
the cell sides are the same as before , e.g.,

S s — x  (48)
2 e1+i e1

INITIAL CONDITION S

With any numerical method , the closer the initial guess is to the
answer, the faster the convergence. In the present scheme a simplified
form of Slender Body Theory, using superimposed solutions from the linear-
ized potential equation, is employed to generate initial values of $ and p
in the grid. Each centerline segment of the body lying in a cell is assumed
to be a constant strength source filament. The strength is proportional
to the value of the body surface alone as evaluated at the midpoint of the
segment. The Initial value of $ at any point is then the sum of the contri-
butions from each segment.

COMPARISON WITH EXPERIMENTAL DATA

Figures 7 through 10 present comparisons of theory with experiment for
several two—dimensional and three—dimensional axisymmetric bodies . The
figures have experimental and theoretical values of pressure coefficient
C~, plotted versus non—dimensional body lengths.

Figure 7 presents data for a 6-percent-thick parabolic arc airfoil in
two—dimensional flow . Figure 7(A) has a free stream mach number of 0.707,
and Figure 7(8) has M

~, 
equal to 0.817. The body is twenty cells long and

one cell high. In both cases the flow is subcritical, and the critical
pressure coefficient C~ * is listed on the figure and shown on the axis where
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Figure 7. Comparison of Numerical Solution Using Purvis Method
and Experiment for a 6- Percent Parabolic Arc Airfoil
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Figure 8. Comparison of Numerical Solution Using Purvis Method
and Experiment for Double Wedge Airfoil
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Figure 9. Comparison of Numerical Solution Using Purvis
Meth od and Experiment for Mill Bo~~ Shape V
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appropriate. The flow is close to reaching critical in Figure 7(B). The
agreement betweei~ theory and experiment is excellent in both cases.

Figure 8 presents the same type of data for two—dimensional flow over
a double wedge with a half—angle of 4.5 degrees. The body is twenty cells
long and one cell high . Note that even with this coarse grid the theory
attempts to predict the infinite C~ on the sharp corner at the center of the
wedge. In Figure 8(A), the critical pressure coefficient is reached near
the wedge maximum thickness. The agreement between theory and experiment
deteriorates rapidly in this region. The reason for this poor agreement is
that the current method has no mechanism such as upwind differencing to
properly account for the zone of dependence of the differential equations
and to enforce the directional property of the second law of thermodynamics.

Figure 9 presents data for the M117 standard bomb at free stream mach
numbers of 0.5, 0.8, and 0.9. The Mill is a fairly blunt axisymmetric body
consisting of a tangent ogive nose section , a cylindrical midsection , and a
straight—tapered boattail.  The body length is nondimensionalized with
respect to the body diameter d. In Figure 9(A), the body is 48 cells long
and in Figure 9(B) the body is 40 cells long; in both cases the body is
5 cells high. The effect of sting location on the pressure distribution is
illustrated comparatively in the two figures. The theoretical sting , shown
in the schematic below each plot , begins at different locations for the two
cases, 4.8 body diameters aft of the nose in Figure 9(A) and 4.0 body
diameters aft in Figure 9(B). The predicted and measured pressure distribu-
tions indicate that the sting actually begins at about 4.3 diameters. The
agreement between theory and experiment i~ excellent in both cases, even at
the high Mach number, and particularly over the nose of the body. In Figure
9(C) , the critical mach number has been exceeded and a shock wave has formed
at an axial position of about x/D - 1.6. As expected , the shock wave and
its associated pressure jump cannot be predicted by potential theory.

Figure 10 presents data for three—dimensional axisymmetric flow over a
maximum volume bomb at a free stream mach number of 0.5. The bomb consists
of a hemispherical nose, a straight cylindrical midsection, and a tangent
ogive faired into a straight tapered boattail. This configuration is a
severe test of the theory due to the nose bluntness and curvature . Overall
agreement between theory and experiment is excellent for this case particu-
larly on the nose. The slight differences on the aft section of the body
have been attributed to tunnel flow angularities. This particular configur-
ation best illustrates the versatility and accuracy of the method.

COMPUTATIONAL PARAMETERS

Further comparisons of significant computational parameters between the
various cases and two other finite-difference methods are given in Table 1.
The execution times for the bodies in Figures 7 through 10 varied from
3 to 10 minutes, depending on the body shape and free stream mach number.
The execution times generally increased as the free stream Mach number was
increased . The longest run time was for the maximum volume bomb ; this was
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Figure 10. Comparison of Numerical Solution Using Purvis Method
and Experiment for 16—Inch Maximum Volume Hemispherical
Nose Bomb
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attributed to the large velocity gradients in the nose region . In separate
V 

computer runs, the execution times for the Mll7 bomb decreased from ten to
twenty percent when Slender Body Theory was used for initial conditions
rather than starting the problem from free stream values.

For all cases shown, the grid size was 140 by 50 cells. The number of
cells along the bodies in the x—direction varied from 20 to 68. Separate
computer runs showed that coordinate stretching was unnecessary as long as
embedded supersonic regions did not appear in the flow.

COMPARISON WITH OTHER METHODS

Computational parameters for two other finite—difference methods are
also presented at the bottom of Table 1. Results from the pioneering work
of Murman—Cole (Reference 16) are shown for the same 6—percent circular arc
airfoil in Figure 7. The execution time is much greater even though their
method had fewer total grid points (or cells). The method used the
transonic small—perturbation equation rather than the full potential equa-
tion. Their method was also more complex and used nonlinear coordinate
stretching in both directions, circle—plane mapping and special treatment
of the far—field boundaries.

Results of South and Jameson (Reference 17) are given for a body
similar to the Mill bomb : a tangent ogive nose, cylindrical midsection,
and straight tapered boattail. No specific execution time for this case
was given so an average estimate was made based on given run times per
grid point and total number of iterations. The results include successive
mesh halving, although they state that without mesh halving the run times
increase by at least a factor of five and the accuracy decreases. The
method used three different coordinate systems on the various sections of
the body. It was, however , designed for transonic solutions and did solve
the full potential equation.

CONCLUSIONS

The present method is computationally fast, accurate, and compares
well with experiment. Computation times are better than other methods when
all factors such as specific computer, number of grid points , and special
convergence techniques are accounted for. The computer program is simple
and involves no complicated numerical schemes or empirical techniques . For
all cases considered , coordinate stretching was found to be unnecessary,
although the method is restricted to flows with no embedded supersonic
regions. No problems were encountered for blunt body cases or near r~’O for
axisymmetric flows, and no special treatment was necessary for these regions
or for handling the boundary conditions on body surfaces.

RECOMMENDATIONS

The present method has proven to be suff ic ient ly fast , simple , and
accurate. For solving large problems such as two— and three—body inter-
ference flows, the following modifications are recommended :
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(1) Use of line relaxation to reduce storage and perhaps accelerate
solution convergence.

(2) Incorporate a successive mesh refinement scheme, such as that of
Reference 11 which could reduce execution time by a factor of
five.

(3) Use a linearized planar wing—pylon solution for wing—store inter-
ference -

(4) Use previous methods such as Reference 6 for initial conditions
and far—field boundary conditions.

(5) Add upwind differencing or some equivalent scheme to allow
extension of the method above critical mach numbers.
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SECTION IV

DISCUSSION OF BOUNDARY LAYER STUDY

INTRODUCTION

As can be seen by reading the literature, no one to date has solved
the three—dimensional turbulent boundary layer shock interaction problem.
The basic reason stems from two distinct areas: (1) the mathematical
modeling of the flow field and (2) the viscosity model for turbulent flow.
In spite of these problems, however, attempts to model the flow in the
present work were carried out using a simple eddy viscosity formulation.
Most of the work was done in generating an external flow field and coupling
the inviscid field to the viscous boundary layer. Because of computation
time and storage on the computer, techniques were used which would
require minimal time and storage. For this reason, solutions of the Navier
Stokes equations were eliminated from consideration at the outset. It was
also decided that (1) the general interference potential flow solution
already developed in past research efforts would be utilized to generate
the basic inviscid solution; (2) three—dimensionality must be considered;
and (3) compressible turbulent flow must be incorporated into the solution.
Because of these restrictions , the boundary layer equations approach was
used in the formulation of the viscous flow region. In this region, the
basic equations were taken from the work of Sasman end Cresci (Reference 18).

MATHEMATICAL APPROACH

The idea in the present work was to develop a technique which would
couple the present three—dimensional potential flow solution of the three
stores mounted on a triple ejector rack to a two—dimensional boundary
layer formulation. This concept is feasible if discrete streamlines
located at the edge of the boundary layer could be identified as shown in
Figure 11. Since the boundary layer is generally thin, the layer of
fluid ismiediately below the streamline, i.e., between the streamline and
the actual body surface, can be considered to be two—dimensional in nature
in which the two—dimensional boundary layer equations apply. That is ,
even though the streamline may curve around the body and the plan. defined

V 
by the streamline and the shadow of the streamline on the body is a curved
surface , the thickness is much less than the body characteristic dimension
and thus may be approximated by two—dimensional boundary layer equations .
Hence , a clear accurate definition of a streamline near the body surface
is essential to the problem solution.

The mechanics of generating this streamline is rather simple. First,
the potential flow solution is generated for the system of bodies chosen
to be analyzed. Than a point in space (x0,y0,z0) is chosen near the body V -
surface and near the nose of the body. A~ this point, using the potential
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solution already determined , the velocity components u ’ , v’, and w’ are
determined. Adding the free stream components appropriately, we then have

u — V c o s a + u ’ (49)

V — V s i n a + v ’ (50)

w — w ’ (51)

where a is the body angle of attack. Then it is assumed that over a very
small but finite time interval the new positional coordinates of the
streamline may be approximated by

x — x0 + ut~t, (52)

y — y  + vAt ,new o

and
z — z  +w~t•new o

Computation of the new fluid velocity at the new location is then
carried out, and the process is repeated. In this manner a matrix of
streamline coordinate locations is defined . This method suffers from one
major drawback. Any error induced in the coordinate location at any up-
stream point is carried to the next location and accumulates. However,
large error buildup can be avoided by the use of small time intervals, tat.
The coordinates of these points on the streamline are also used to determine
the step interval for the boundary layer computations, and the velocity at
the edge of the boundary layer is always known as well, as the external
free stream pressure.

This section of the program and analysis proved to be rather success-
ful in that discrete streamlines beginning anywhere near the body surface
were identified. Problems were encountered near the aft end of the bodyV 

where the streamline deviated from the body and trailed off in the free—
stream direction. This problem was attributed to the characteristic nature
of point source solutions for the potential flow field in which the induced
velocity component u tends to oscillate.

Boundary layer c~,mputations using this scheme were carried out withsome degree of success. However , the interaction problem using this
approach has not been solved.
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CONCLUSIONS

After several computer runs , more literature studies, and much thought,
it is believed that the approach taken here will not yield the desired
results. This conclusion is based on the following observations:

1. The shock boundary layer interaction is strongly dependent on its
three—dimensional geometry -

2. In the boundary layer equations approach, the boundary layer only
reacts to its external flow field; hence this field must be very accurate if
accurate results are obtained. Provisions using this scheme must be made
for transmission of disturbances upstream in the boundary layer or in
regions where M < 1.0 (elliptic equations in the potential field) and must
obey the hyperbolic equations for regions where M > 1.0.

3. At present , the Navier Stokes solution approach requires toc much
computer time and storage.

4. Turbulent mixing models are indequate to model the shear stresses
in the interaction region .

5. It appears that much more work in viscous aerodynamics will be
required before adequate results will be obtained by pure analytical
methods.

J
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SECTION V

DISCUSSION OF FINITE ELEMENTS STUDY

INTRODUCT ION

The analysis of subsonic flow requires the solution of partial
differential equations of the elliptic type. The solution of these
equations can be obtained by the traditional Finite Difference Methods,
as mentioned in Section III. One of the inherent difficulties with the

V Finite Difference Method , which is not significant in the finite element
method , is that special differencing techniques must be incorporated to
handle irregular or curved boundaries. Since the difference formulas used
for these boundaries are usually of lover—order accuracy than the formulas
used fo r the rest of the flow field and since in subsonic flow disturbances
at any point in the flow region are felt throughout the flow region, the
overall accuracy of the solution is reduced. This inexact treatment of the
boundaries is a limitation to the Finite Difference Method although very
accurate solutions may be obtained by using a large number of grid points
or by using higher order difference formulas. However, the incorporation
of more accurate formulas in the Pinite Difference Method usually compli-
cates the treatment of the boundaries.

In the last decade much effort has been directed toward the application
of the Finite Element Method to fluid flow problems. Although it was
originally developed in the aircraft industry for solution of complex
structural problems, the Finite Element Method is readily applicable to
all types of boundary value problems (see Reference 19). An application of
this method to incompressible inviscid potential flows is given by Martin
(Refi~rence 19). Zienkiewicz (Reference 15) gives an application to
incomp~essible viscous flow problems. Huebner (Reference 20) devotes an
entire chapter to various methods which have been successfully used to
solve both viscous incompressible and inviscid compressible flows. Ref-
erence 21 presents numerous analyses of fluid flow problems which have been
solved by the Finite Element Method .

A particular formulation given by Heubner (Reference 20) has been used
by a number of researchers to obtain solutions to inviscid compressible
flows. This formulation, in a slightly modified form, has been chosen in
this study to obtain solutions to two—dimensional flow over a circular arc
airfoil for mach numbers where compressibility effects are significant. The
governing equation and the basic iteration are the same as those used in
Section III of this report. The formulation and numerical technique, how—
ever, are significantly different.
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GOVERNING EQUATIONS

The governing equations in this study are the same as used in
Section III. Repeated here for continuity , the conservation equations
for steady, adiabatic , inviscid flow of an ideal gas may be combined to
g ive the equations

V . (pV 4 ) ) 0 (55)

and

p — [1 + ( .
~ ) M’~ (1 — V4)•V4~) ]~~~ (56)

where 4) is the nondimensional velocity potential , and p is the nondimen—
sional density .

SOLUTION PROCEDURE

Equat ions (55) and (56) are the basis of a rapidly convergent
iterative method for solution of compressible flow problems. The first
step involves assuming p — 1 throughout the flow field as an initial
estimate. Then Equation (55) is used to derive a system of linear alge-
braic equations which may be solved for values of velocity potential 4).
The resulting values of 4’ are then numerically differentiated to obtain
values of the velocity components which are used in Equation (56) to
compute new values of density which, in turn,are used in Equation (56) and
the process is repeated. The iteration is continued until the densities no
longer change from one iteration to the next . The pressures are then
computed using Equation (57) .

C~ — —~—- {[l + ~~~~ M2 (1 — V4’.V4’)] 
y—l 1) (5;?)

yM2

which is the usual expression for pressure coefficient for compressible flow.

FINITE ELEMENT FORMULATION

The flow field in which the so1 Vj tiO fl is obtained is an infinite domain
s~irrounding a two—dimensional 6—percent circular arc airfoil.  The far—field
domain is approximated by placing the computational boundaries three body
lengths away from the body in all directions and forms a rectangular region
enclosing the body. The far—field boundary condition used is that of
uniform flow in the x direction and expressed in terms cf the velocity
potential is given by Equation (58)

4 ) — T x  (58)
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P
The body boundary condition is the usual flow tangency condition expressed
by Equation (59)

— 0 (59)

where n is a unit  vector normal to the body surface.

For computational purposes , these mixed boundary conditions are
formulated as given by Equations (60) and (61).

p V4 ) .i~ — f (x ,y, z) on S2 (60)

and

+ — g(x ,y, z) on S1 (61)

where S1 and S
2 
are portions of the boundary and f and g are prescribed

functions of position (see Figure 12).

The finite element solution technique is based on a variational
principle derived from the calculus of variations which , when expressed in
terms of the velocity potential, minimizes the functional

1(4)) — -
~ 5 pV4).V4) d~ — 5 4)f dS2 (62)

S2
and satisfies Equations (55) , (56) , and (61) .

V To apply this method , the rectangular region is subdivided into
triangles and the values of 4) are interpola ted over the area of the
triangle by means of a set of Lagrangian interpolation functions. These

V 

interpolation formulas are most conveniently represented in terms of the
natural coordinates (sometimes called area coordinates) defined by the

V equations

x — L
1 
x1 + L2 x2 + L3 x3 (63a)

• 
y - L1 y1 + L2 y2 + L3 y3 (63b)

1 — L1 + L2 + L3 (63c)
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where (x 1,y1
, (x ,,y2) , (x3,y.~) are the vertices of the triangle in plain

rectangular coorainates. Solving Equations (63a, b c) for L1, L2, and
L3 

yields the general form

V — ai + bi x + ci y,  i — 1, 2 , 3 (64)

where a~ 1 ~~~ and c~ are constants.

For linear interpolation between ver tices of the triangle, the inter—
polat ion functions are given by

Ni
Lj (65)

For second—order interpolation they are given by

N1 — L~ 
— L1(L2+L3

)

N2 — L~ — L2 (L3+L1)

N 3 - L~ - L3(L1+L2)

(66)
N4 — 4L1L2

N 5 — 4L
2L3

N6 — 4L
3
L
1

where the node numbers 1 to 6 are shown in Figure 13.

The nodal values of + are used to define the variation of $ over a
triangular element by the following ezpreesion

• 

•
(e) 

— ~ N~ +~ 
(67)

V 

, After the interpolation functions are chosen , they are substituted into
Equation (62) and then che minimization process is carried out on an

V element—by—element basis. This is done by requiring that
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r
aI(4~

e)
) — 0 ; J — 1, 2 , 3,. . ., r (68)

a

where r — 3 for linear interpolation and r — 6 for second—order interpola-tion .

Af ter performing the indicated differentiations , there is obtained
for each element a set of equations of the form

[K]{ $) — {R} (69)

where is an r x r matrix of influence coefficients relating the nodal

variables 4)~~, which is an r x 1 column vector of nodal values of velocity

potential , and R1 is an r x 1 column vector of forcing functions. For this

case r1 
0 since f(x,y z) — 0 on the body surface. The k—matrix is

obtained by first deriving the element matrix equations and then assembling
these elements into a system matrix containing the suum~ation of all of the

• element contributions to each nodal variable.

The resulting system of equations must be modif ied to incorporate the
nodal boundary conditions as defined in Equation (61). To apply a known
value of 4) at the ith node, the ith system equation is cleared to zero.
Then the diagonal entry is set to one and the known value placed on the
right—hand side of the system equations in the ith position . This forces
the solution of the system to obey the specified boundary conditions at the
ith node.

After application of the boundary conditions to the system, the equa-
tions are solved by means of a banded Gauss elimination procedure. The
band width of the system matrix is highly dependent upon the nodal number-
ing scheme and is dependent solely upon the maximum difference in nodal
numbers within any given element taken over all the elements. It was found
that the run time and core storage requirements were significantly reduced
with no loss of accuracy by taking into account the banded nature of the
system matrix. All of the calculations were performed on an IBM 370/158
computer in single precision mode .

Afte r solving for new values of 4) , the results were numerically
differentiated by means of the interpolation functions . For example,

(70)

then the resulting velocities are used in Equation (56) to obtain new values
of density at every point . The process was then repeated until convergouce ~ Y?JII
was attained . ~~

,. 
• 

- - ~~ . - - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Afte r the velocities were obtained from the final iteration, the
pressure coeff icients were obtained from Equation (57)

RESULTS AND CONCLUSIONS

For the case of the 6—percent—thick circular arc airfoil at M~, — 0.707 ,
the results are shown in Figure 14. Figure 14(A) shows the results for the

- - •  V second—order 4n-t.rpolaUon functions. The• -first—order solution appears to
be very smooth and follows the experimental trends well even though the
finite element grid is quite coarse. It would be expected that this solu—
tion would approach the true solution asymptotically as the grid is refined.
This, of course , would require a much greater computer core and time.

An alterna te method for improving the accuracy of the solution is to
use second—order interpolation functions. This technique was implemented
with the results shown on Figure 14(B).
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0 EXPERIMENT (REFERENCE 16)

0_
0.4 0 6  0 8  10

(A). First—Order Interpolation Function
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V

—0.4 (B). Second—Order Interpolation Function

(C). Schematic of Body Profile

Figure 14. Comparison of the Pressure Distribution for a 6—Percent
Parabolic Arc Airfoil Computed by the Finite Elements
Method with Experimental Results, N, — 0.707
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SECTION VI

SUMMARY OF RESULTS WITH COMMENTS AND RECOMMENDATIONS

SUMMARY OF RESULTS WITH COMMENTS

The Rayleigh—Janzen solution was generated through the second—order
terms for small disturbances and through the first order for a modified
small disturbance formulation. Although it had been anticipated that this
type of solution would be more applicable to flow conditions near the
critical mach number, the resulting pressure predictions are no better
than those obtained by using Cothert’s Rule. In addition, it was found
that although small disturbances are assumed, both methods predict quite
well the pressures in the vicinity of stagnation points. The computer time
and core requirements are about the same for the R.ayleigh—Janzen solutions
as for the solutions using Gothert’s Rule, approximately three to five
seconds on a CDC 6600 computer.

Preliminary work indicates that the iterative, numerical, successive
approximation method outlined in Section II (based on the Rayleigh—Jauzen
method) may give a very fast way to correct any incompressible solution
(zeroth solution) for compressibility effects up to the critical mach
number.

The Purvis cell method is a numerical technique based on an integral
form of the conservation equations for irrotational flow. Even though this
solution is iterative in nature, the computational time is an order of
magnitude faster than finite difference methods. An additional and
significant reduction in time can be obtained by using Slender Body Theory
for predicting the initial estimate; however, this method still takes an
order of magnitude longer than Slender Body Theory. The agreement with
experimental results is excellent for mach numbers up to and slightly
greater than the critical value. This method is applicable to any general
body shape and , therefore , should be quite useful for future applications. 4

The state—of—the—art of viscous flow analysis does not seem to be 
V

suitable for use on complicated flow fields such as associated with triple
ejector racks , at least within the constraints of limited computer core and V
computational time.

The finite element method seems to work quite well for potential and
some viscous, incompressible flow cases . The application required for
mutual interference — compressible , viscous f low, however , has not been
successfully fo rmulated .

42 

V :



RECOMMENDATIONS V

Several approaches investigated in this work warrant additional study
as suggested below~

1. The successive numerical approximation outlined in Section II
should be investigated . This technique could be used to correct any
incompressible flow solution for compressibility effects.

V 2. The Purvis cell method should be expanded to include the general
three—dimensional problem. Further, it is recommended that a coordinate
transformation to rec~angu1ar arrays be considered in order to simplify
the utilization of this method for arbitrary curved bodies.

3. The potential flow solution should be modified so as to include
shock jump effects.

It should be noted that, although the Purvis method takes an order of
magnitude longer computer time than the Rayleigh—Janzen or Gothert solutions,
the velocities on the body surface are computed as part, of the solution.
Thus, the complete pressure distribution is available as part of the solu-
tion. On the other hand, the times quoted for the Rayleigh—Janzen and
Gothert solutions are for the basic solution giving the strength distribu-
tion of the source singularities. When these basic solutions are used to
compute the complete body pressure distribution, the computational times are
the same order of magnitude as for the Purvis method.
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APPENDIX A

RAYLEIGH-JANZEN SOLUTION FOR SLENDER BODIES

The velocity potential equation can be written in a form useful in
this study to yield

— — (~~~f
) V$•Va (A—l)

where

a2 — a2(l+(9A)M2(l_v $.v,)J (A—2)

Expanding Equation (A—l) in terms of the nondimensional, perturbationvelocity potential yields

—

+ + 
z frL2,~ + + + s~~~1 (A-3)

Using c — N2 as the perturbation parameter, an assumed series solution
of the form

•(x ,y, z ;t) — ~~~~~~~~~~~~~ + ~~~~~~~~~~~~~~ +

+ £ 2,
(2)

(X ,Y , Z) + ... (A—4)

will be considered as follows. V

The assumed solution can be substituted into Equation (A—3) and, in
principle, each successive order of magnitude term can be solved. For V

small perturbations, however, Equation (A—3) can be si.aplif led by neglecting
V velocity squared terms in comparison to first—order terms and Equation

(A—3) reduces to

(1 — (y—l) M~ $~ J y2, — M
~
((
~~

+1) 
~~ 
+ + •z frI ~
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The right—hand side of Equation (A—5) can now be rewritten into the
equivalent form given by Equation (A—6)

+ •
2 +

E l —  (Y 4) M~~$x] v2 $ _ M ~~fr ( $~~+ X )‘ Z (A—6)
2

Again neglecting second—order velocity terms in comparison to the

first—order terms yields

El — (y—l) M~, •x~ 
V2+ — M~ 4,~ 

(A—i)

The body boundary conditions for axisyiximetric bodies at zero angle of

attack can be expressed as

$ c o s 8 + + ~~ Sin O hh1 (l+4 )
~~~ 

(A—8)
Y X “ body V

Substituting Equation (A—4) into Equations (A—i) and (A—8) , and equating
terms in powers of e gives the first three orders of magnitude equations as
follows:

ZEROTH ORDER

V 2 
•

(O) 
— 0 (A—9a)

(0) cos 0 + •
(0) 

sin 0 — (l+ p~
o

~ ) ~~ (A—9b )
y Z “ body

FIRST ORDER

V 

V2,(
~~ — •

(o) (A—lOa)

,(1) cos 8 + ~(l) sin 0 — ,(1) ~~ 

- 

(A—lob)
body

SECOND ORDER

— ,
(0) $ (0) 

+ •
U) (A—lla)

,
(2) cos 0 + •

(2) sin 8 • •
(2) 

~~ (A—llb )
V 

I X “ body
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SOLUTION FOR AXISYMMETRIC BODIES (a 0)

For axisyninetric bodies at zero angle of attack, the solution, in-
cluding the image system for mutual interference, can be expressed as the
sum of the source singularities as given by Equation (A—l2) for the zeroth
solution.

—C
— 

~ H (A— 12)

where

R~ 
_
~~
f
~~

.x
i)
2 + (y—y

1
)2 + (z—z 1)

2 (A—l3)

and the source strengths C0 , are determined so as to satisfy the body
boundary conditions. I

The first—order solution which satisfies Equation (A—b ) can be
expressed as

C
0 21 i (x—x )• — ~ R ~ + 

— i (A—l4)
j  j  i R~

3

where the source strengths, C1 , are determined by satisfying the first—
order boundary conditions. j

After using Equations (A—12) and (A—14) in (A—ll), the second—order
solution can be found to be

C—c c C 0 2

k R,~ l2~~~R~ 6
1
R
1 

l2~~ R~

C1 
(x.

~ )
2 C (x~xj)’l ç j  3 ç 0i -

~~6 L
j R3 i R5

V I i

C (x—x~) C (x- x~) 2

+ ( 1 )  ~ 1 1 (A—l5)
I Ii I

The source strengths, C2 , must be found so as to satisfy the second—
order boundary conditions. k
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The constants, C11 
and C2k , are the source singularity strengths for

the complimentary solutions of Equations (A—b ) and (A—il), respectively .
It is Dossible, however, that in addition to (or rather than) the sources,
doublet singularities may be required in order to satisfy the boundary
conditions. If that is the case, Equations (A—14) and (A—15) will require
terms such as given by Equation (A—16).

~‘ (y—y ) ~ (z—z )
+ y n n (A— 16)+

doublets £ R~ m R 3 fl

The three terms In Equation (A—l6) are for doublets with their axis
along the x— , y— , and z—d irections, respectively .

AXISYMMETRIC BODY AT ANGLE OF ATTACK, o -

For axisymmetric bodies at angle of attack, the solution can be ex-
pressed as the sum of source singularities plus the sum of doublet singular-
ities which are needed in order to satisfy the body boundary conditions due
to the cross—flow. In this case, the body boundary conditions can be
expressed by Equation (A—li).

dr
• cos 0 + ($ + sin a) sin 0 — ($ + cos cz) —I (A—li)y z x d x

V body

The order of magnitude boundary conditions obtained by substituting
Equation (A—4) into Equation (A—li) becomes, for the first three terms,

dr (A— 18)cos o +(~
(o

~ + sin a) sin 8 — ($~ O) + cos o) 
dxlbodyy

B + •
(l) sin 0 

(1) ~~
z ~x dx

~body 
(A—19)

~(2) cos e + •
(2) sin e — 

(2) dr
y Z X exibOdY 

(A-20)

The zeroth solution for this case can be expressed as Equation 
(..~ -

—C ~.i (z- z~)0 0

•
(0) 

— + ~ _1 
~P—2l)

i i j  H
1

where the singularity strengths must be found so as to satisfy Equation
(A—18). Note, however, that the ‘eroth order solutions can be obtained by
solving the axisy aetric— flow problem and the cross—flow problem. Splitting
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the body boundary conditions into the axial and cross—flow components
yields for the axial flow problem ,

•
(0) 

cos e + ~~0) sin e (~
(0) 

+ cos a) (A—22)
body

where only the source singularities are considered.

For the cross—flow, the body boundary conditions are expressed by
Equation (A—23) where only the doublet singularities are considered.

,
(O) cos 0 ~(~ (0) 

+ sin a) sin e - •
(O) 

~~ (A—23)
body

The axial—flow solution remains the same as that found by Equation
(A—li) except that the boundary condition equation must be corrected by
using the axial component of the free—stream speed as given by Equation
(A—22).

The cross—flow solution is now given by Equation (A—24) where Equation
(A—23) is used to determine the doublet singularities.

~ 
(s—a 1)

•
(o) 

— (A—24)
I

cross—flow -‘ j

The first—order equations can also be solved by considering the axial—
f low and the cross—flow solutions. As in the zeroth solution, the axial—
flow solution is the same form as given by Equation (A—14).

The governing equations for the cross—flow problem are found by
substituting Equation (A—24) into Equation (A—lOa ) and yields

i (z—z ) ~ (z—z )2

$
0.) 

— ~ 
1k k 

+ ~ 
0~ 3 

(A—26)
cross—flow k 2 

~

The second—order equation Esee Equation (A—lla)) contains nonlinear
terms and, therefore, cannot be solved by separating the axial—flow and
cross-flow solutione. Hence, the governing equations for this case is
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C (x— x~ ) 3u (z— z ) (x— x )

— (y—1) (~ 
°

~ +~~ 

O
Vj 

~~ I 
x

I R~ 3 R~

3(x—x ) 2 5(x—x ) 2

(~~c E — ~
— —  ~ ~~~~~~~~ (z— z ) [-~ -— — ~

1 °i R~ R~ ~ 
O~ ~ R~ R~

C
1 

3C
1 
(x—x 1

)2 2C 15C (x—x~)
2 l5C (x—x 1

)~
I i _ 1 +

I R5 2~~ R 3 R 5 R 7
i i I i

2~~ (z
~

zk ) lSM 1 
(z_ zk) (x_x

k ) 2 l5
~~k

(z_z
k

) (x_xk)
~

_ _ _ _  - k +
k R ~ R~ R~

3 2 25(x—x )2 35(x—x )~
V + — ~i (z—z )[— — -i—- + (A—28)

2 4 04 ~ R 5 R7 H9
J J I I I
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The general solution for the second—order term can be expressed as

V 

—C2 ~j2
(z—z )

•
(2) ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~

i R ~ j

c
C
0 

(x_ x~) ~, 
(Z_ Z

j
) ( X~~Xj

)

+ (y— l) ( ~ + ~ LI -) 
~i j

½C0
(x—x 1

)2 
~ 

(x~x3
)2(z~z1

)
i + . ~ -~~~~---~ )

I R~ j

C
1 
(x—x )~ C (x—x1)~ C

+~~~ [~ 
I 3~~

i R~ I R~ i

+ ~ 1
k - 2 l k R ~ V

3 ~o ~~~~~~~~ 
i~1,

( —~~~ -~ I (A—28)

H5I I
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APPENDIX B

MODIFIED SLENDER BODY SOLUTION

The governing partial differential equation which properly accounts

for stagnation conditions, small velocity perturbationa away from
stagnation points , and conditions up to the critical mach number (given
in Section II as Equation (20)] is given here as Equation (B—i).

— [L+ V$’V][M2 x + 
(~ri) M~ •~] (8-1)

Equation (B—i) in a slightly more convenient form becomes 
V

= M~ [l +(y—1) M~ • ] [ $ + V$ .V $ I (8—2)

The solution of Equation (8—2) can now be generated by the Rayleigh—
Janzen method as follows:

Assuming the solution

• — •
(O) + M~,

2 
•
(l)~ M~ •

(2) 
+ ... (8—3)

yields
(0) V 2.(°) 

— 0 (B—4 t)

(1) 
~
2,

(l) 
— , (O) 

+ ~~~~~~~~~~~ (B—4b)

(2) V 2.~~ — •
(1) 

+ ~~~~~~~~~~~~~~~~~ +

+ (i—i) •
(0) V2$(1) (B— 4c)

. 1

V 52

-~~~~~~~ 

- 

- —-



The body boundary conditions are :

(0) ; ,
(0) 

cos 0 + (.
(0) 

+ sin a) sin B — ($
(O) 

+ cos cz) (~
L

~b d  (B— 5a)

(1) ; •~
1) cos 8 + •~~) 

sin 0 — •~
1 

~~~ body 
(B—Sb)

(~~) ; •~
2) 

cos e + •
(2) 

sin e — •
(2) 

~dx~body (B5c)

The zeroth solution expressed in the usual manner as the sum of sources
and doublet yields

•
(O) 

— ~ (~
(O) ) + ~ (~

(O)
) (8-6)

i i 1 1 1
For the fi rst-order solution , we need to satisfy the equation I

— + ~~~~~~~~~~~ (B—i)

Consider first the following expression

• — ($
(O) $(0) ) (B— 8)

which can be expanded to give

— •
(0

~ V2~~
(°) + •

(0) 
~2.(°) + 2V$~°~ •V.x~°~ 

(8-9)

But
— V2~ — 0 (8-10)

Therefore

— ~~~~~~~~~~~ 
(B—li)

For the ~~~ — term, it can be shown that

V V 
~

~i
..

V V

•_ VV~
V

~~~~~

- 
V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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P V2[— ~ 
~ ~~~~~~ •

o _ 3 
(x—x ~)~ 

•
(O)

I — ~~~ 
(8—12)

i R~ i j R2

Thus, the particular solution f or sources and doublets can be written 
as

— — 

(~ _~~~) 2 

•
(0) 

— 
3 

(x—x
1

) 2 
(0) 

+ -~~ 

~ ~~~ •~°~ (8—13)

I R~ i j H2 
X

where the zeroth solution •
(0) 

is

~ $~~
) + ~ 

(8-14)

and

•
(O) 

~ •
(0) 

+ ~ •
(0) (~~15)

~ ~i ~ LI

The complementary solution can be written as

- ~ + ~ .
(l) (8-16)

i i  i i

and the first—order solution becomes

•
(l) 

— [$
~~~~I~ 

+ (s0.
~I~ 

( B—l i )
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