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Abstract: We develop a general approximation ‘ -~work for use in
optimal control problems governed by nonlinear ~nctional differ-
ential equations. Our approach entails only the use of linear

semigroup approximation results while the nonhinearities are

treated as perturbations of a linear system. Numerical results are

presented for several simple nonlinear optimal control problem

examples.
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1. Introduction

The purpose of this paper is to extend and provide proofs

for the theoretical results announced earlier in Ref s. 1 and 2 and

to demonstrate that the approximation method thus proposed is a

reasonable one for certain classes of nonlinear functional

differential equation (FDE) control problems by reporting some

of our numerical experience. The idea (which is fundamental to

our effor ts here) of approximating infini te dimensional FDE

systems by finite dimensional ordinary differential equation (ODE)

systems is not a new one and the reader should consult Ref. 3 for a

fairly complete summary of the previous literature on this idea.

In the presentation to follow we shall develop a theoretical

framework for nonlinear control problems and then offer sai~tp1e

numerical results for several simple examples. In developing

the theoretical foundations in sections 2 and 3, we shall demonstrate
that, for a reasonably generous class of interesting nonlinear

systems, approximation ideas involving only linear semigroup

theory (developed previously in Ref s. 3 and 4 ) are adequate for

development of an abstract nonlinear approximation framework.

These ideas are not at all technically complicated but rather

rely only on quite standard techniques from known ODE and FDE

theory plus frequent use of the Gronwall inequality.

Among other authors (Refs. 5—9) who have developed

directly related theoretical results for the approximation of

nonlinear FDE systems, only Repin does not make use of the

machinery of nonlinear aemigroup theory. But the assumptions in

the Repin presentation lead to results that are not directly

-
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applicable to control problems. Thus while there is some overlap

between our results and those found in each of the references

cited above, our treatment differs from each of those in some

essential aspects and it is accurate to say that our results

neither completely subsume nor are they subsumed by the results

(individually or collectively) of these authors.

A feature of our presentation is the simplicity of the

ideas and proofs involved , given the linear theory of Ref. 3.

Indeed, one should note the similarity between the classical

techniques for existence, uniqueness and continuous dependence

results used in section 2 (one could, of course , instead use

there standard - and perhaps more elegant - fixed point type
arguments) and those employed in the approximation arguments of

section 3. A disadvantage of our formulation in this paper is

that the present assumptions allow one to include discrete delay

terms — x(t—r) terms as opposed to x~ terms - only in the linear

part of the control system equations. We are currently investigating

to what extent our ideas can be further extended to treat general

nonlinear differential—difference equation control systems.

The notation employed in the sequel is quite standard.

L~ ([a .b1~ X) will denote the normed space of X—valued L~ “functions”

(we shall not distinguish between representatives and equivalence

classes since the meaning will always be apparent to the reader)

defined on (a,bJ and L(a ,b) (or L~(a~b) if v=l) will sometimes

be used when X — R~
’ where RV is Euclidean space. The class of

functions f with 1ffP locally integrable will be denoted by



3

L~
OC and those with p continuous derivatives will be denoted by

c~~ . Throughout , the space Z = R1
~xL~~(-r , O) will  be used with 

2the usual product topology, i.e. if z = (n,$)EZ , Iz I = m l  +I~ l
Here, as elsewhere, the general symbol is used for the norm

when no confusion will result. That is, unless otherwise stated

explicitly, x~ denotes the norm of xEX where the norm is the

one understood for the space X. The space of continuous functions

on [a ,b) into Z with the usual supremum norm will be denoted by

~ ‘( [a ,b],Z) and ACn [a,bJ will be the space of R~—valued absolutely

continuous functions on Ia ,bJ (with the supremum norm , i.e. ~~
‘

topology, unless otherwise specified). The vector space of nxm

matrices .~e~Rm ,RI
~) will be written as!I~ ,m . Finally for a given

measurable function s -* x(s), the symbol x~ denotes the

measurable function on [-r ,0J given by 0 -, x
~
(O) = x(t+0),

-r < 0 < 0. For vectors we shall not in general distinguish

between the column form and its transpose when the usage makes

clear our intended meaning.

.1:
_ _

_ _ _ _  

________________
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2. Abstract Formulation of the FDE Control System

We shall consider in the following discussions the basic

nonlinear control system

x(t) = L ( x
t
) + f(t,x(t),xt,u(t)), tE (O ,t1J

(1)
x(0) = r~, x

0 
= 4,

where t1 is finite, (ri,4,)EZ, and the linear part L is as given in

Ref. 3. That is, there are matrices ~~~~~~~~ and

DEL2U—r ,0J , ~~n n~ ’ 
and numbers h1, 0 = h0 < h1 < . . . < h =

such that

V 
0

L(4,) = 
~ 

A
~
$ (—hi) + J D(0)4,(0)dOi=o -r

for VE~~~(-r,0) (where, of course , the proper interpretation must

be given to the point evaluations of 4, if this “function” is

indeed only an L2 “function”). The nonlinearities of

the system are contained in the mapping f :R]xRr
~xL~ (_r ,0)xRm + R

n,

about which we make several fundamental standing assumptions for

the presentations in thia paper :

(Ml) The mapping (t y,q,,v) + f(t,y,4,,v) is continuous on

RlxRnxL~ (_r ,o) XR
m.

(H2) For any bounded subset~~~of Z there exist m1 = mi(2~~
,

mjEL~
0c, izl,2, such that for VERm, tER’, and

one has

< {m
1 (t)+m 2 (t)Iv I } (Ix -y J+ I$-4 ,I) .
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(113) There is a continuous mapping t -

~ 
B(t)E9

~,m 
such that

f(t,O,0,v) = B(t)v for all (t ,V)ER1XRm. Further , there

exist functions rniE L~
0c, i=l,2 such that

f(t,x,4,,v)~ < {r n1(t)+rn 2(t)IvI){~ x)+~ 4,~ ) + IB(t) IIv l

for all t ,v and all (x,4,) with f (x,+)I z sufficiently large.

(114) There is a continuous function g :R1xR’~xL~ (-r ,0) -
~ R~ such

that

If(t,x,4~,v)—f(t,x,4,,u) g(t,x,4,) I v—u I
for all (t,x,4,)ERlxRT1xL~ (_r ,O) and v,u E R m.

Remark 2.1. We observe that hypotheses (112) and (H3) together

yield that the following condition is satisfied by f :

(G) There exist 
~l’~ 2 

in L~
0c such that lf(t,y,~4’,v) I ~~.

+ IB (t)Hvj for all (t,y,~~,v) in

RlxRnxL~ (_r ,O)xRm.

n n
Let w 1,ir

2 
denote the coordinate pro)ections of Z = R xL2(-r ,O)

onto RX
~ and L2 respectively. That is, n1(r),4,) = n, ir~~( n ,4 , )  = 4,.

Define a mapping F :R1XZXR” Z by

F(t , z ,v) ( f ( t , n 1z ,w 2z ,v ) , 0) .

Several properties of the mapping F will be used in the sequel and

we list these here for later reference .

P1: For any bounded subset 9of Z there exist M1,M 2 (depending 
=

on 9)  in L1OC such that

(?(t,z,v)—F(t,w, v)f < {M 1(t )+M 2 ( t ) l v l f l z — w I

for all z,wE9 and t E R 1, V E R A’.

~~

— - 

—I
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P2: For any z E  ~‘([0,t1J,Z) and uEL~ (O,t1), the mapping

t + IF (t,z(t),u (t))l is in L1(0,t1).

Property P1 follows directly from (112) while P2 is a consequence

of (112) and (113).

We introduce next the solution semigroup S(t):Z ~ Z of the

linear part of (1) as used extensively in the discussions in Ref s. 3

and 4 . Thus for, (n,4,)EZ, we define S(t)(n,$) = (x ( t ) ,xt )

for t > 0, where x is the solution of (1) on [0,~~) with f E 0.

It is easily shown that {S(t)}
t>o is a C0—semigroup with

infinitesimal generator ~~~
‘ defined on ~~(~‘) = {(n,4,)I~ is

absolutely continuous with 4,EL~ (-r,O) and 4,(0) = n} by

= (L(4,),4,). Let M,B be constants such that

IS( t )  < H exp(Bt) for t > 0.

We shall be concerned with an abstract form of (1) given

by the implicit equation

z(t) = S(t)z0 + J S(t—~ )F(a,z(a),u(a))da . (2)

That this equation is in some sense equivalent to (1) is the

focus of the remaining discussions in this section.

Lemma 2.1. Under the hypotheses (Hl)-(H3), equation (2) defines

for each uEL~ (0,t1) and z0E Z , a unique function t ~ z(t) in

~((t0,t1J , z).

Proof: For any two continuous solutions a and w of (2) on E0,t1]

we have using P1 (since (z(t)),{w(t) } lie in a bounded subset of Z)
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z(t)-w (t) t

= J ~ (a) Iz ( a ) -w ( a ) ld a

where AEL1(0,t 1). Uniqueness of solutions thus follows from an

application of Gronwall’s inequality .

The proof of existence also involves only quite standard

karguments. Define for k=O ,1,2,... the Picard iterates {z } by

z°(t) = S(t)z0
(3)

z
k (t) = S(t)z0 + J S(t-a)F(a,z 1(a),u (~ ))da ,

for tE (0,t11. Clearly the iterates are well-defined and an

inductive argument employing the strong continuity of {S(t)}

and property R~ in the usual manner yield easily that

zkE~~([o ,t1],z) for k—O ,1,2 Using (G) in the second equation

of (3) one obtains

lzk(t)I < M  ew (Bt)tIzoI +J (2UI
~l
(a)+th2(a) Iu (a)IJlz

~~
’(a)l+IB (a)IIu (a)I)dc11

< M e x p ( ~t) {Iz t + y + J A(c,)fzk~~~a ldaJ

where y and 4 EL 2 are independent of k. A simple inductive ~~~~~~~~~~~~~

argument using this inequality can be made~ one obtains

,x k ( t ) I  < P 0M exp(8t1) exp(H(t1) J

_ _ _
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where p0 sup{IS(t)z01 + y : tE[0,t1]} and 11(t) = M e ~~ (8t
1

) fJ(c)do.

Thus {z k} is bounded in

Use of this boundedness along with property P1 allows us to

choose M11M2 in L,~,(0,t1) such that

for all k 1,2 This can be used to show that fzk } is in fact

a Cauchy sequence in ~~([0 ,t1J , z). Indeed , using completely

straightforward arguments one can obtain

k k k+l
—z 

_l
I < ~M exp (~ t1)~ q0 k!

ti t
where q0 E J IF(c~,z°(c~),u(o))ldci and p(t) E

By passing to the limit in (3) we find that the limit z of

the Cauchy sequence {z k} is the desired solution of (2).

Returning to system (1), we observe that for a given

uEL~ (0,t1) and $EAC~ (-r ,0), 4,(0) = r~, standard arguments can be

employed to establish (under hypothesis (Hl)-(H4)) existence of a

unique solution on finite intervals [0,t11. That such solutions

are continuous in ($ , u) can also be shown .

La~ina 2.2. c~risider the mapping ($,u) + (x(t;$, u ) , x~
(
~ ,u ))  fran

AC” (-r ,0) x L ~ (O , t1) -
~~ Z where x is the solution of (1) corre-

sponding to (4,,u) under hypothesis (H1)-(114). This mapping is

continuous.

I’~ ~T _________________________________

=
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Proof: Fixing (4,,u) in AC’~(-r,0)xL~ (O,t1) and denoting by

x=x($,u) the corresponding solution of (1) , we shall consider

arguments involving y=y(4,v), solutions of (1) corresponding to

(~~,v) in some bounded neighborhood B1xB 2 of (4,u) in AC
”(-r,0)xL~ (0,t1).

Using the linearity of L, the growth condition (G), and Gronwall’s

inequality along with quite standard reasoning, it is easy to show

that (y (t;’L ,v)ltEE0 ,t1),~I~EB1,vEB 2
} lies in a bounded subset of Rn .

That is, {(y(t;
~~
,v),y t(IiI ,v))ItE [0,ti),~FEB i,vEB 2

} lies in a

bounded subset of Z so that the local Lipschitz conditions of (H2)

can be employed with the functions m~ independent of the choice

(~ ,v) in B1XB 2 .

From (1) we obtain immediately for x=x(4,,u),y=y (~p, v)

~ l4 ,(O)-~~(0) J + i J L(xa
_y

a)da l

+
~J [f (

~~
,x ( o ) , x

~
, u( c ) )_ f (a , y(a ) ly

~
, v (c ) ) Jdc

I

= T1+T2+T3. 
(
~~

)

Using (112) and (114),we find

T3
<

I
+

t

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~

.4 1 ~~~~~~~~~~~~~~~~~~~~ + (x(a),xa) (y(
~
),ya) Ida

0
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From the form of L we obtain

VI I i~o A1(x(c7—h~ )—y (c7—h~)) + D(0) (x (c+0)_y (c+0)JdOJdo

~ I:~ II :(a)—y(a)I + ID I L Ix O
_y

O l L
}da

+ J ~ IA. l I x ( a ) — y ( c ) I d a
i=i. 1—r

<r (~ IA~I )Ix 0 Y0I~~+ J EI (x(a),xa)_ (y(a),ya)Jz da
where E 2{~ 1A 11 + DI] .

Using these estimates in (4) we thus have

~x(t)-y(t)~ 1 r l ,-~ I~~+ Ig(x ) I Iu-v l~ + J ( ~ç(c )+E )~~ (a) da

where A C e ) I(x (o),x0)-(y(a),y~)I~
. But since I X tI L < v’i9xtl

this implies

A (t) I ~~~~{r I $- * I + g(x)tIu-v~ +

With an application of Gronwall’s inequality we then obtain

6(t) 1 /r~~(r I ._~ I÷ Ig x I I u _ v t ) e xP {J ( $ç (7 ) + E ) d a J ~

from which the desired continuity follows easily once one notes

that the exponential term is bounded uniformly in v E B 2.
Arguments almost identical to those above (employing P1 instead

of (112) along with Gronwall’ s inequality) can be used to establish
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an analogous continuity result for the functions defined by (2).

We shall therefore only state this continuity property, omitting

the proof.

Lemma 2.3. The mapping ($(0),4,,u) + z(t;4,,u) where z is define

by (2) with z0 = ( 4 , ( O ) , 4 , )  is continuous on 9~ 1XL’~(0 ,t1) in

the Z x L 2 topology ~ nd hence in the RnX~~CL~ topology).

The preceding discussions allow us to establish with relative

ease a desired equivalence between systems (1) and (2).

Theorem 2.1. Suppose f satisfies (Hl)-(H4). Then for

(~~ , 4 , )  = ($(0),4,)E~~~~) and uEL
’
~(O,t1) we have

z(t;4,,u) = (x(t;
~~
,u),x

~
(
~~
,u))

where t ~ x (t;4,,u) is the solution of (1) and t -‘~ z(t;$,u) is

defined by (2) with z0 = (4,(0),4,).

Proof: We shall say that t -. r~(t) is a strong solution (in Z) of

~ (t )  = .~ ‘~it)  + F(t , r, ( t ) , u ( t ) )
(5)

c(0) = ( 4 , ( 0 ) , 4 )

if t • C(t) is continuous for t > 0, C~
1
~ for t > 0 with

~(t)E9L~ ) for t > 0 and the equation in (5) is satisfied for

t ‘ 0.

We first consider solutions for .ECU) and u E C ~
0
~ and define

t • w(t) by w(t) — (x ( t ;
~~

,u ) , x~~
(
~~,

u ) )  where x is the corresponding

solution of ( 1).  Direct computations for w (t )  in the Z-norm

show that w(t) —dw(t)+F(t,w(t),u(t)) and that the necessary

continuity requirements obtain so that t w(t) is a strong solution
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of ( 5 ) .  Next let t + C(t) be ~~~ strong solution of (5)

corresponding to ~~~~~~~ uEC~
0
~ and define A (a) = S ( t — a ) r ~(a )

for 0 < a I t. We observe then that the assumptions on f (see

(Hi)) imply that in this case a F(c7,t (a),u(a)) is continuous.

Again direct computations (e.g., for £>0, write ~ LX (a+c)-A (a)J =

S(t—a—c) (1(r,ia+c)--~~(a)] + ~[I—S(c)]C (a)} and take the limit as

~ + 0+ ) reveal that the right derivative A +(a) exists and equals the

continuous function a • S ( t — a ) F ( a , r~( a ) , u ( a ) ) .  It follows in the

usual manner that A exists continuously and indeed for t > 0

t t

X(t)—X (0) = X(a)de = I S(t—o)F(a ,t (a), u(O))da.

Since A (t) = S(0)t(t),A (0) = S(t)C(0) we thus find that ~~~

strong solution r~ of (5) corresponding to 4,EC~~~ ,uEC~~~ must

satisfy

~(t) = S(t)~~(0) + f S(t—a)F(a,~~(a),u(a))da .

By Lemma 2.1 we see tha t any such strong solution of (5) must

be the unique solution of (2) in~~’((0,t~,Z). But we saw above

that t • w(t) = (x ( t ) ,xt ) is a strong solution of (5) for $, u

so restricted. It thus follows that w(t )  = (x (t ) ,xt ) = z (t )

where a is defined by (2)  with — (~~(0),~~) and the desired

equivalence is obtained for 4 , E C W , uE C ~~~ .

Finally, from Lemmas 2.2 and 2.3 we see that for each t

the mappings ( 4 ( 0 ) , 4 , ,u) -. (x ( t ) , xt ) , ( 4 , ( 0 ) , $ ,u) z ( t )  from

are continuous btheR’~x .~’xL2 topology on 9(~1xL2.

This, combined with the denseness properties of the set

- ~~~ --~~~~- —~~~~ - -~ 
-
~~~

-
-~~~~~~~~~~~ -
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{(4,(O),$,u))$EC~~~ ,uEC~
0
~ } on which equivalence has already

been proven , can be used to establish the equivalence as claimed

in Theorem 2.1.

4



14p
3. Approximation and Convergence

Having shown in the previous section that the control system

z(t) = S(t)z0 + J S(t-a)F(a,z(a),u(a))da (6)

is equivalent to our original system ( 1), we turn next to

approximations of (1) via approximations of (6). Let

{s~
’(t } ,  zN, ~N be a general approximating scheme as discussed

in the first part of section 3 of Ref. 3. That is, {SN (t)} is a family

of approximating C -semigroups satisfying l s~~t I  IN exp(8t) and the

convergence criteria sN(t)z + S(t)z, zEZ , uniformly in t on

finite intervals. The subspaces ZNCZ contain all elements of the

form (F ,0), ~~~~~~ and the linear operators P
N:Z • zN satisfy the

condition : pNz0 
+ z0 for all initial data of interest in studying

the control system (6) (or (1)).

An example of such an approximating scheme is the “averaging”

approximation scheme discussed in some detail in Ref. 3 (see also Ref. 4).

While our discussions in this section will deal with general

approximating schemes , we shall use the particular “averaging”

scheme of Ref • 3 to discuss nij ierical results for ncnlinear control

systems in a subsequent section of this paper .

Given a general approximating scheme (SN ( t ) } ,  zN , ~N as

described above , we consider the approximating system

ZN ( t) = sN (t )pN 20 + I SN (t_ a) F ( e , zN ( a ) ,u ( a ) ) d a . (7 )

Using arguments exactly as in the proof of Lemma 2.1, one can easily

verify tha t (7) defines, for each N, a unique function

1
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We shall show that for a given uEL~ (0,t1),

the solutions of (7) actually converge to the solution of (6).

Lemma 3.1. Suppose .~~~~
‘ is a bounded subset of L~ (0,t1). The

sequence (a 11) defined by (7) is bounded in

uniformly in uE .~’.

Proof: We have immediately from the assumptions on sN,pN that

a11 (t) < M  e~p(~t) 6 + J 14 ~~~~[B(t-a)) IF (a,z
N(a) ,u(a)) Ida

where 6 is independent of N and u. - — b cBut the condition (G) on f implies the existence of M1,M 2 in

such that

IF(t , z ,v ) I  < ( M 1(t)1.ui2 ( t ) Iv I} Iz I+ IB ( t ) I Iv I .

Thus we find

exp(8t) {6 + J ~B (o) 1 lu(a) Ida)

I exp (~ (t a) I {M1 (a) +f1
2

(a) Iu(a) J } J z (a) Jda

< M ~~~~~~~~~~~~~~~~~~~~~ + I ku(a)IZ N (o)fdo,
which upon an application of Gronwall’s inequality yields

tl
z11(t~ ~~~~~~~~~~~~~~~~~~~~ { J k (a)da).

Since k
~~

(o) M exp(8t 1) ( M 1(o)+M 2 ( o ) f u ( a ) ( ; ,  it is clear that
for u E .~~~~, the right side of this last inequality is bounded
uniformly in u and N.

L1
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Lemma 3.2. For ~~~
‘ bounded , {z 11} is Cauchy in

uniformly in u E ~~’.

Proof: For u€W and each positive integer j we denote by g3 the

function

g~ (a) f(ci,ir1z
3 (a),ir2z~~(a),u(a)).

Since ~gJ (a)~ I 2 {rn1(a)+rn2(a)Iu (a)I}Iz~ (a)I+IB (cJ)Itu (a) I

(see condition (G)) with mi EL~
0c and {z 3} uniformly bounded, it

is easily argued that g~ EL~ (0,t1) with

~gJ J IA
2

uni f ormly in uE,~’and j=l,2,...

Let T?J(t):R 11 
• and T(t):R~ + Z be defined by

T11(t)F s11(t)(~ ,O), T(t)E E S(t)(E ,0) where EE R ~.

From Lemma 3.2 of Ref. 4, one has that for every t, T11(t) + T(t)

in the uniform operator norm. In fact, one actually has for each

tE f O,t11
t tl

I lT~’(t—a)—T~”~(t—a) l
2da IJ lTN (tl

_a)_TN~~ (tl
_a)I

2da =

where c2 (N ,X )  ~ 0 as N,K + ~~~•

Furthermore, the convergence properties of {S11(t)) and

imply for Z E Z  a fixed initial value and t E [ 0 ,t11

I c1(N ,K)

where c1(N ,K) • 0 as N ,K • .

• 
~

.•
-. r~ •~c~

~1uliLjj_j i - -~~~~ - 

- 

~~~~~~~•
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Thus, for N,K > 0 and t E ( 0,t1J we may write

< I (SN (t)PN_S~~
K (t)Pt

~~~)z0I

+ J ls
N t_a (gN (a) ,O)_S~~K (t_a) (gN+X (a) .0) Ida

I E 1(N ,X) + J  JTN (t_a)gN (a)_T K (t_a)gN+K (a)Jd a

I c1(N,K) + J I ( T 11(t~a)_T
11
~~(t_a))g

11(a) Ida

+ f IT11 (t_a){ gN (o)_ g N
~~ (a)} fda

I £1(N,K) + 1c2 (N ,K) igN I~ + J H exp [~ (t-a)] I~~
(a)
~~~~(a) Ida

j I c1 + A + I ! te ~~ (8 (t- a) J (g 11(a) -g~~ < (o) f d c , (8)

where c (N ,K) = £1 + A • 0 as N,X • ~~, uniformly in UE~~’.

From the boundedness property of (a 11] and property P1, we have

—

( {Ml (a)+M 2 ( a ) J u ( a ) J } I z N ( a)_ z N
~~

C (a) I

where E L~~
C Letting 

~u ~~ 
N exp (8t 1) 

~~l ~~ 
+M2 (a) I U (0)  I

we are thus able to rewrite the inequality (8) as

I c (N ,K) + J Au( 0 )1 5 0 5 0 ) J d a .

I
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• Once again appealing to the Gronwall inequality, we conclude

I ~(N,K) exptJ4u (a)da).

It follows immediately that (Z
N ) is Cauchy in

uniformly in u E ~~~
‘.

Theorem 3.1. Let z,z11 be defined by (6), (7) and let

~~CL~ (0,t1) be bounded . Then zN (t;u) ‘ z(t;u) as N • , uniformly

in t on [0 ,t1) and in u EW .

Proof: From the previous lemma we know that there exists

zE~~
’(I0 ,t1],Z) satisfying z

N (t;u) + z(t;u) uniformly in t and in

uE~~’. We claim that this limit function is the unique solution

in ~
‘([0,t1J , Z) of (6) guaranteed to exist by Lemma 2.1. This

follows immediately upon passing to the limit in (7) once one

has observed that F(a,zN(a),u(a)) • F(a,z(a),u (c~)) and S
11(r)

converges strongly to S ( r )  with both sequences being dominated.

To make practical use of the convergence results of Theorem 3.1

in optimization problems, one must argue a little more than is

promised in this theorem . More precisely, one wishes to replace

the control system (1) by an equivalent system (6) and then

solve the optimization problem governed by (6) (see Refs• 3 and 4 ) .

To obtain an approximate solution, one solves the optimization

problem subject to (7 ) .  This results in a sequence fu N ] of

(hopefully) approximating optimal controls and one desires, of

course, that zM (t;uN) • z ( t t ~~) where ~i is the solution to the

optimization problem constrained by (6) . The sequence (~1N } is
ofte’i (e.g. , see Ref. 4) bou~ ed In L~(0,t1) so that weak convergence of : 1

LL _
_ _
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(or of a subsequence at least) to ti can be argued. From

the inequality

I z N (t ;u ~o )_ z ( t ;u ) I I j z N(t ;uK)_z(t;u~
o
)l + l z ( t ; u K )~~z ( t ; u) (

and the convergence results of Theorem 3.1, it clearly suffices

for our purposes to establish that z(t;uK) + z(t;u) whenever

uK._~..u in L~ (0 ,t1). However it is not obvious from the implicit

defining equation (6) for z that the dependence of z on u is

even linear or afline and thus it is not surprising that further

assumptions on f are required to obtain the desired results. For

nonlinear systems which are affine in the control terms we can,

as might be expected, show that ~~~~~~ implies z(t;u
K) z(t;u).

Assumption 3.1. Suppose that f : R1X 1~~ I~ (-r , 0) 
X R” + has the form

f(t,y,~p,v) =Aj ( t ,y, q )  + {._ .V2 (t ,y ,~p) + B (t ) }v

= _4j (t,y,ip) + Y(t ,y, tp )v

where B is continuous and Aj :R
1x Z  • R~ , A~ :R1xZ 

~~~~~~~~ 
satisf y:

(Al) The mappings (t,y,~~) -‘Aj(t,y~i1i), i=1,2, are continuous.

(A2 ) For ~J a bounded subset of Z , there exist L~ OC functions

k1, k2 (depending possibly on 91) such that

L.ç(t,y ,~ ) — Aj (t .x~$) I I k~ (t) I (x , 4 , ) — ( y , 4~) ~
for all (x , $ ) , ( y , *) E9, t E R 1, i—l ,2.

(A3 ) #~(t ,O ,0) — 0, i—l ,2 and there exist functions k1, k2 in

L~
OC such tha t for t E R 1,

- _I___1.I_.____ — - 
—

~ S ~
• - -,

~
‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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I k1(t)I (y,~
1)) I z

for all (y,~~) EZ with I (y,I’) I sufficiently large, i=l,2.

It is not di f f icult to verify that any f satisfying

Assumption 3.1 will also satisfy hypotheses (H1)— (H4) of section 2.

Theorem 3.2. Suppose f satisfies Assumption 3.1 and z is defined

for uEL~ (0,t1) by 
(6). Then u1<-~-~r~u in L~ (0,t1) implies

z(t;uK) -‘ z(t;u) as K

Proof: We f i rs t  observe tha t (u~< } bounded in L2 along with

cond ition (G) and Gronwall ’s inequality (again!) imply that

{z(t;u1
~)ftE (0 ,t1], K=l,2,...} lies in a bounded subset of z

(see the proof of Lemma 2.2) so that we can employ the local

Lipschitz conditions of (~2) in our arguments. Letting

.1V
1(t ,z) (.~#j(t,vr 1z,vr 2z),0), Y(t,z)v (~ (t,n1z,1T2z)v,0),

zK (t) = z(t;uK), and z(t) = z(t;u), we have

kjç(t)~~~(t) I

U ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
I f M exp($(t-a)]k1(a)fz~~(a)-z(o) Ida

+ 

~J S(t_a)([Y(a,zX (a))_ ~~(a ,z(a))JuK (a)+Y(a,z(a))IuK (o)_u (a)1Jdo l 

~~~~~ 4 V

I J M exp(Bt){k1(o)+k2(0) Iu
’
~
(o)I}Iz

~~
(o)_z(a) fda

o

+ JJ S(t—a ) (6x (a)
~~0)d aJ ‘
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where A
~~
(a) {A~ (a ,ir

1
z(a),1T

2
z(a)) + B(a)1{uK(a)_u (a)}.

But from Theorem 3.2 of Ref. 4 we find that the operator

V~L~ (0,t1) •~g’([0,t1~~ Z) given by

~~(g)(t) = J S(t-a)(g(a),0)da

is a compact linear opera tor ; thus 
~~~~~~ 

in L~ (0,t1) implies

Ct) • 0 uniformly in t on (0,t1). It follows that

IzK~
t - z t I  

~ 
+ J N ~xp(~tl){kl(a)+k2(a)Iu

K (a )I }Iz K (c)_z(a) f da

where • 0 as K-~~ , so that one f in al appl ication of the Gronwall
inequality yields t1

Iz
~~
(t)—z(t) I < C

K 
exp f I ~~‘K((~)d0 )

and the right side of this inequality • 0 as K • , uniformly

in t on [0,t1).
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4. Numerical Results

One specific choice of tS11(t)}, ~
N, ~N in the approxima tion

scheme described in section 3 leads to the so-called “averaging”

approximations that we have discussed in some detail in previous
efforts dealing with linear systems (see Refs. 3 and 4). We turn now

to a summary of some of our numerical results for nonlinear

systems obtained using these averaging approximations in connection

with the general nonlinear approximation scheme developed above.

We first recall briefly the specific class of approximations

of interest to us here. We do this for the linear operator L

representing a simple differential-difference equation (for a

discussion of the general linear case , see Ref. 3) given by

L(~ ) A04(0) + A1~~(—r). (9)

For each positive integer N, let {t } be the partition of

[-r ,0) given by t~ = - , j=0,l,2,...,N, and define to be the

characteristic function of (t~ ,t~_1) for j=2,...,N and that of

(t~ ,t~] = F— ,01 for j=l. Let =

N N
• = ~ vNx

N, vN ER and P11(~ ,~ ) = (n, ~ 4,~x~) where
j=l ~~~ 1Ntj_1

= 

~ f 
•(s)ds.

Define the semigroups sN Ct) — exp(d11t) where s111
:z  • Z is given by

— (~0n+A1~~~, ~ ~~
. {.~~—s~}4) t I
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with r~. It is shown in Ref. 3 that these choices lead to

a scheme satisfying the convergence requirements of section 3.
Consider next application of these ideas to systems (1)

with L given by (9) and n = t (0). That is,

,c( t)  = A0x(t)+Aix(t_r)+f(t,x(t),xt,u(t)) (10)

x(0) = rj, x~

Def in ing the functions e~ = (1,0), e~ = (O.4)~ j 1 ,2,...,N,

and letting z11(t) in (7) be represented by

N
zN (t) = ~ w~ (t)e~ , where w~ (t)ER ’

~, it is not difficult to argue

that the approximating system (7) for (10) can be writ ten as an

ordinary dif ferential equation for the “Fourier ” coefficients w~ .

Thus, the approximation to (10) is equivalent to (see Ref. 4)

W
N ( t )  = A0w~+A1w~ ( t ) + f (t ,wN (t ) , I w~ (t)X~ ,u(t))

w~ (t )  = ~ {w _1 (t)— w~ (t)}, j=l,2,...,N, (11)

wM (O) = ~~~~~~~~~~~~~~~~~~

For f satisfying the hypotheses of section 2, (~ 
(0) ,~~

) E 91(j~’) and u E ~~ ‘,

the convergence guaranteed by Theorem 3.1 implies that w~ (t)-~x (t )

uniformly in t on [0 ,t1] and in uE .~ where w~ ,x are the solutions of

(11) and (10) respectively. We first present results for an

example which illustrates this convergence of w~ to x in a system

not subject to optimization .
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Example 4.1. Consider

x(t) = —l.Sx(t)—l.25x (t—l)+x(t)sin x(t), t > 0

x(0) = 100+1, —1 1 0 I 0,

with corresponding approximating equations

w~ (t) = -l.5w~ (t)-l.25w~ (t)+w~ (t)sin w
N (t)

w~ (t) = N{w~_1 (t)—w~ (t)}, j 1 ,2,...,N.

In Table 1 we list selected values for the variables w~ corre-

sponding to several values of N. These are compared to the “true ”

solution values x which were obtained using one of the block

methods (of fourth order) developed by Tavernini (see Ref. 10, pp. 77-78)

directly on the delay system.

Table 1. Results for Example 4.1.

Time w8 w16 w~° w~
2 x

0.0 1.0000 1.0000 1.0000 1.0000 1.0000

0.5 3.1589 3.2363 3.2519 3.2754 3.2532

1.0 2.2586 2.2808 2.2871 2.2989 2.3856

1.5 0.6754 0.4929 0.4488 0.3755 0.3446

2.0 —0.6484 —0.8157 —0.8503 —0.9026 —0.9137

2.5 —0.6967 —0.7269 —0.7312 —0.7363 —0 .7655

3.0 —0.2656 —0.1766 —0.1524 —0.1106 —0 .1060

3.5 0.1109 0.2418 0.2737 0.3257 0.3558

4.0 0.2454 0.3286 0.3463 0.3735 0.4017

4.5 0.1626 0. 1547 0. 1492 0.1377 0 .1426
5.0 0.0137 —0.0478 —0.0644 —0 .0923 —0.1054

__ 
2
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V
The above example typifies some of the worst convergence

behavior we have observed in using the averaging approximations

to integrate nonlinear equations. In our efforts at Brown and

in numerical work in collaboration with F. Rappel and H. Fr~schl

of the University of Graz, we have applied these approximations

to a number of other nonlinear FDE examples (2 and 3-dimensional

vector equations and other types of nonlinearities typical of

those arising in several areas of applications). In these

instances we found convergence of the approximations no worse than

that illustrated in Example 4.1 and in a majority of the cases

convergence was actually much more rapid than in the example

detailed above.

We have also used the “averaging” approximations to solve for

optimal controls in problems governed by nonlinear delay-differ-

ential control systems. Typical examples of interest are of the

form (for more general problems to which our framework in sections 2

and 3 is applicable, see Refs. 3 and 4):
tl

Minimize J = ~~
. x (t 1) G x (t 1) + 

~ I {x(t)Qx(t)+u(t)Ru(t)}dt
subject to (10) where uE3~, °k is a closed convex subset of

L~ (0 ,t1). Here we assume G,Q > 0, R > 0.

The approximating problems (for the averaging approximations)

• J are given by:

Minimize ~N 
- ~ w~ (t 1)Gw~ (t 1) + 

~ I t ~~~~~~
t

~~~
u t Ct

~~~~
t

subject to (11) where again u E *.

_~~~~~
_
F ~~~~~~~

--

- 

-

~~~~~~~~~~

- 

•

-

- -~~~~~~~~~~~~~~~~~
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Let u11 be a solution of the approximating problem (while

standard existence arguments are applicable here, the usu3l

uniqueness assertions are not appropriate since is not

necessarily even convex in the control u) with index N. Denote

by ~~ (=~~~
) the corresponding trajectory and = JN(~N) the

corresponding value of the cost functional. Then under

Assumption 3.1 of section 3, Theorems 3.1 and 3.2 along with standard

arguments (see Theorem 4.1 of Ref. 3) can be employed to conclude

that a subsequence of ~ i 11)} converges to a solution (u*,x*)

of the original problem governed by the system (10) (the sequence

itself converges if the solution (u *,x*) of the original

problem is unique). We present results for several examples to

illustrate this use of the approximating scheme in such

optimization problems.

Example 4.2. Take as the original problem the task of minimizing

• 
J = ~~~x(2)

2 +~~~
J
u(t)2dt

over u = L2 (0 , 2) subject to

x(t) = sin x(t)+x (t—l)+u(t), 0 
~ 
t 1 2,

(12)
x ( 8)  — 1, —l 

~ 
0 
~ 
0.

The corresponding approximating problem entails minimization

of
2

— ~ [w~ (2)J 2 + 
~ J u (t ) 2dt

°

-I _____

— — -- - — -  
— -

~
- 

— •. -.
~~~~ •
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over the same class of con trols bu t subject to

w~ (t) = sin w~ (t) + w~~(t )  + u ( t )

w~ (t) = N { w~_ 1 ( t ) —  w~ (t) } j =l , 2 , . .., N , ( 13)

wN (o) = col(l,l,...,1).

One can apply the necessary cond itior~ for nonlinear d i f ferentia l

equation control problems along with standard computational

routines (gradient, conjugate-gradient) - see Ref.  11 and Chapter X

of Ref. 12 - to obtain extremals (uN,~~) for the approximating problems

This was done (in a manner described in more detail below) to

obtain the values reported in the tables presented in this paper.

One can, on the other hand , use the necessary conditions for

optimality of delay system problems (see Ref. 13, Theorem VII.2.3l)

and work directly with the original optimization problem. If

(u*,x*) is a solution of this problem, these necessary conditions

guarantee the existence of a multiplier A such that u~ maximizes

H = — 
~~
. U

2 
+ A (sin x*+x*(t_l)+u ) (i.e. u*=A ) where A satisfies

A (t) — —A(t)cos x*(t)_A (t+1), 0 < t 1 2, J
A Ct) = 0, t > 2 , (14)

A (2) = _x *( 2 ) ,

• with x~ the solution of (12) corresponding to u=u *=A . Thus , we

see that direct solution of the minimization problem for extremal

pairs (u *,x *) requires solution of the mixed advanced-delayed

system two—point boundary value problem (TPBVP) consisting of (12)

I _ _ _ _ _ _ _

-~ ••-
~~~ •
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(with u X )  and (14). In the results listed below (for this

and other examples), we have given values for an approximate

numerical solution of the associated TPBVP under the columns

headed x~ and X* . These values can be used as a rough but

independent check on the convergence of the trajectories and

controls where (~iN,~~~) are the computed extrema l pairs for

the approximating problems. In Table 2 we give a summary of

selected values for the controls and in Table 3 we give

corresponding trajectory values along with the optimal payoff

values YM. For this example we see that the approximate

solution for N=4 is a reasonably good one.

f. -
_• .J_ _ . T;:~~— - -I-
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Table 2. Results for Example 4.2.

Time ~
j.8 ~2 0 * u *

0.00 —3.5737 —3.5704 —3.5663 —3.5686

0.25 —2.7615 —2 .7706 —2.7769 —2 .7779

0.50 —2.0473 —2.0594 —2.0664 —2.0561

0.75 —1.4938 —1.5052 —1.5073 —1.4849

1.00 —1.0889 —1.1018 —1.1041 —1.0577

1.25 —0 .8030 —0.8226 —0.8371 —0.8197

1.50 —0.6067 —0.6337 —0.6558 —0.6400

1.75 —0.4722 —0.4994 —0.5180 —0.5010

2.00 —0.3751 —0.3981 —0.4112 —0.3938

Table 3. Results for Example 4.2.

Time ~8 ~20 x*

0.00 1.0000 1.0000 1.0000 1.0000

0.25 0.6381 0.6372 0.6367 0.6270

0.50 0.4098 0.4081 0.4059 0.3880

0.75 0.2882 0.2932 0.2948 0.2743

1.00 0.2396 0.2581 0.2749 0.2747
1.25 0.2360 0.2661 0.2961 0.3172

1.50 0.2599 0.2932 0.3231 0.3415
1.75 0.3043 0.3336 0.3558 0.3672

2.00 0.3709 0.3939 0.4099 0.4187

YN 2 .8759 2.9176 2.9437

• S

— — .•- _p
_ _

_ • - -  -s
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Example 4.3. In this example and the next, we choose a system

with nonlinearity satisfying a local but not global Lipschitz

condition. In the case where the approximation to the initial

data is good, the approximation method is quite good for low

values of N. The problem is to minimize

2

J = 
~~
. x ( 2 ) 2 + 

~~

. J {x(t)
2+u (t)2]dt

over uEc*= L2(0,2) subject to

x (t )  = x (t ) s i n  x ( t ) + x ( t — 1) + u ( t ) ,  0 $~ 
t 

~ 
2,

(15)
x(8) = 10, —l I 0 I 0.

The approximating problem is one of minimizing

= ~ [w~ (2)J 2 + 
~ J {w~(t)~ + u ( t) 2 )dt

over ~ but subject to

v~(t) = w~(t)sjn w~(t)+w~ (t)+u(t)

w~(t) — N(w~_1 (t)—w ~(t)} j=1,2,...,N, (16)

wN (o)  = col( 10 , ..., 10) .

In Table 4 we give values for ~~~~~, ~~ and x *,A * only since this
suffices to demonstrate the approximation scheme as applied to
this example. We also made computations for N = 16 and 32 and
obtained values for ;i6,~ 32,~ 16,~ 32 that differed only slightly
from ~~~~ and x~ ,u*. Values for the payoff were
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58 = 162.019, jl6 
= 162.018, 532 

= 162.015. Graphs of and u~

reveal strikingly good qualitative agreement between these two

functions (see Figure 1).

Table 4. Results for Example 4.3.

Time A *~u*

0.00 —1.4959 —1.5159 10.0000 10.0000

0.25 —1.7215 —1.7275 10.3038 10.2700

0.50 —1.7683 —1.8690 10.3399 10.3214

0.75 —1 .7787 —2.0592 10.3470 10.3164

1.00 —1.7465 —1.6550 10.3589 10.3184

1.25 —1.6812 —1.6677 10.3790 10.3750

1.50 —1.7365 —2.0244 10.3927 10.3770

1.75 —2.5597 —3.3634 10.3485 10.2916
2.00 —9.8694 —9.9181 9.9181 9.9174
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Example 4.4. This example is exactly the same as that in

Example 4.3 except for a change in initial data. In (15) we

choose initial function x0 = • where

110(0+1) —1 1 1 — •~~~

•(0) = 1
t— lOO — .5 1 0 1 0

with a corresponding change in (16) given by

wN ( o)  = col($(0),4~5...,$~ ).

Our numerical results are presented in Tables 5 and 6. The

approximate numerical solution A* ,x* to the TPBVP for the

original problem is not a particularly good one (one should have

= _x*(2) and we have a relative error here of about 5%)

but it is adequate for an independent check that the method is

producing solutions converging to an extremal for the original

problem .

The averaging method does not approximate this initial data

particularly well for low values of N and as one might expect ,

somewhat higher values of N are required to obtain an approximate

solution of accuracy comparable to that in the previous example.

L
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Table 5. Results for Example 4.4.

Time ~j8 ~l6 ~32 ~ 48

0.00 —2.3083 —2.3073 —2.3032 —2 .3015 —2 .3321

0.25 —2.1804 —2.2375 —2.2706 —2.2833 —2 .3238

0.50 —1.9855 —2.1114 —2 .1972 —2.2316 —2.2768
0.75 —1.5751 —1.6470 —1.6908 —1.7064 —1.7374

1.00 —1.1446 —1 .1417 —1.1318 —1.1252 —1.1245

1.25 —0.8173 —0.7891 —0.7697 —0.7622 —0.7702

1.50 —0.5967 —0.5761 —0 .5667 —0 .5642 —0.5691

1.75 —0.4401 — 0.4321 —0.4327 —0.4347 —0.4374

2.00 —0.3125 —0.3098 —0.3147 —0.3162 —0 .3144

Table 6. Results for Example 4.4.

T ime ~i6 ~ 32 ~48 x*

0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0 .25 —0.1062 —0.1684 —0.2056 —0.2188 — 0.2506
0.50 0.1351 0.1308 0.1245 0.1209 0.1086

0.75 0.3456 0 .4290 0.4917 0.5167 0.5831

1.00 0.4120 0.4976 0.5550 0.5767 0.6406

1.25 0 .3805 0.4130 0 .4232 0 .4244  0.4286
1.50 0.3269 0.3161 0.2966 0.2869 0.2586
1.75 0.2988 0 .2803 0 .2644 0.2578 0 .2421
2.00 0.3106 0 .3078 0 .3115 0.3144 0.3313

:1 5N 2.1765 2.3105 2.4012 2.4371 

• .

_____ -
. 

- 
—— 

- 
-— 
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All computations for the numerical results presented in

this paper were carried out on the IBM 360/67 at Brown University .

We are grateful to Mr. Douglas Reber for his assistance in making

these computations. Indeed Mr. Reber developed with care and

patience the software packages that were used for the examples

discussed above as well as for some preliminary numerical studies

Un our joint efforts with F. Rappel) of other examples involving

use of several spline type approximations in an abstract frame-

work similar to that discussed in sections 2 and 3 above and Ref. 4.

We give now a brief description of the computational procedures

followed in producing the results detailed above.

We employed an iterative optimization scheme that combined

gradient (G) and conjugate-gradient (CG) steps in computing the

extremals ~~~~~~ for the approximating ODE problems. For the

results reported above, the first, fourth, seventh, etc.

iterative steps were G steps while the remaining steps were CG

steps formulated (a continuous problem version) according to the

scheme given in Chapter X of Ref. 12. Integration of all ODE’s within

these steps was performed by a standard modification (Gill’s) of a

fourth-order Runge-Kutta method.

Iteration was continued until a convergence criteria (for

changes in J~) was satisfied. In the examples above this resulted

in at most 10 iterative steps in each computation of a ~~~~~~
for Example 4 .2 , at most 5 steps in those of Example 4.3 and at

most 13 steps in Example 4 .4 .  CPU time required for these

computations in the optimization package ran from 82 seconds for

of Example 4 2 to a max imum of 578 seconds for (ii48,~~
8)
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in Example 44. As one might expect, higher d imensional

examples require increasingly higher amounts of CPU time.

Integration of the A and x equations in the TPBVP ’s for

the original problems (e.g., see (14)) was carried out via

the same block method used in integration of the delay system

in Example 4.1.

Our experience with examples suggests that when employed

with a reasonably efficient optimization scheme, the averaging

approximations for nonlinear control problems enjoy about the

same computational behavior as that already demonstrated by

extensive studies on use of this method for linear control

problems (see Ref s. 3 and 14).
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5. Concluding Remarks

The effor ts involved in implementation and the convergence

results obtained in practice with a number of examples lead us

to believe that the approximation ideas of sections 2 and 3 are indeed

reasonable possibilities when one is optimizing delay system

problems. The framework developed here is an effective means of
reducing the d i f f i cu lties associated with certain nonlinear FDE

control problems to those for nonlinear ODE control problems.

While there are still a number of d i f f iculties associated with

these latter problems, a great deal more in the way of specific

techniques is available in the literature for these problems

than in the case of FDE problems.

The assumptions underlying development of the ideas in section 2

are not so restrictive as to preclude treatment of nonlinear

systems of a type arising frequently in applications. Assumption

(112) is a local Lipschitz condition in (x ( t ) ,xt ) in the Z-norm

while (H4) is a growth condition not unlike those often imposed

in ODE theory when one wishes to guarantee existence of solutions

on any fixed finite interval. Among nonlinearities that fall

within the restrictions of (Hl)-(H4) are those (see Ref. 2) arising

in enzyme kinetics, certain nonlinear protein

synthesis models, particle accelerator models and

bilinear control systems. Al so included are nonlinearities
involving terms of the form 

•9
~y1(t )  J y2(t+8)y(0)dO

-rf ( t ,y ( t ) ,y ~ ) — ____________________ •

K + f y2 ( t + 8 ) y ( 0 ) d O
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which have been employed in vector system models (y=(y1,y 2))

for low growth chemostats (Ref. 15). We are in fact currently using

some of the approximation ideas from this paper to study the

qualitative properties of such chemostat models.

V
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