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Abstract: We develop a general approximation “ =-awork for use in
optimal control problems governed by nonlinear .nctional differ-
ential equations. Our approach entails only the use of linear
semigroup approximation results while the nonlinearities are
treated as perturbations of a linear system. Numerical results are
presented for several simple nonlinear optimal control problem

examples.
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1. Introduction

The purpose of this paper is to extend and provide proofs
for the theoretical results announced earlier in Refs. 1 and 2 and
to demonstrate that the approximation method thus proposed is a
reasonable one for certain classes of nonlinear functional
differential equation (FDE) control problems by reporting some
of our numerical experience. The idea (which is fundamental to
our efforts here) of approximating infinite dimensional FDE
systems by finite dimensional ordinary differential equation (ODE)
systems is not a new one and the reader should consult Ref. 3 for a
fairly complete summary of the previous literature on this idea.

In the presentation to follow we shall develop a theoretical
framework for nonlinear control problems and then offer sample
numerical results for several simple examples. In developing
the theoretical foundations in sections 2 and 3, we shall demonstrate
that, for a reasonably generous class of interesting nonlinear
systems, approximation ideas involving only linear semigroup
theory (developed previously in Refs. 3 and 4 ) are adequate for
development of an abstract nonlinear approximation framework.
These ideas are not at all technically complicated but rather
rely only on quite standard techniques from known ODE and FDE
theory plus frequent use of the Gronwall inequality.

Among other authors (Refs. 5-9) who have developed

directly related theoretical results for the approximation of

g
1in A

0 A
L :
x

nonlinear FDE systems, only Repin does not make use of the

T

machinery of nonlinear semigroup theory. But the assumptions in

3

the Repin presentation lead to results that are not directly




applicable to control problems. Thus while there is some overlap
between our results and those found in each of the references
cited above, our treatment differs from each of those in some
essential aspects and it is accurate to say that our results
neither completely subsume nor are they subsumed by the results

(individually or collectively) of these authors.

A feature of our presentation is the simplicity of the
ideas and proofs involved, given the linear theory of Ref. 3.
Indeed, one should note the similarity between the classical
techniques for existence, uniqueness and continuous dependence
results used in section 2 (one could, of course, instead use
there standard - and perhaps more elegant - fixed point type
arguments) and those employed in the approximation arguments of
section 3. A disadvantage of our formulation in this paper is
that the present assumptions allow one to include discrete delay 4
terms - x(t-r) terms as opposed to X, terms - only in the linear
part of the control system equations. We are currently investigating
to what extent our ideas can be further extended to treat general

nonlinear differential-difference equation control systems.

The notation employed in the sequel is quite standard.

Lp([a,b],X) will denote the normed space of X-valued Lp "functions"

(we shall not distinguish between representatives and equivalence

classes since the meaning will always be apparent to the reader)

defined on [a,b] and L;(a,b) (or Lp(a,b) if v=1) will sometimes

be used when X = R’ where R’ is Euclidean space. The class of

functions f with [£[P

locally integrable will be denoted by

Wb




Lloc
P

c(P)

and those with p continuous derivatives will be denoted by

. Throughout, the space Z = RnXLg(-r,O) will be used with

the usual product topology, i.e. if z = (n,¢) € 2, |z|2 = |n|2+|¢|2.

Here, as elsewhere, the general symbol |:| is used for the norm
when no confusion will result. That is, unless otherwise stated
explicitly, |x| denotes the norm of x€ X where the norm is the
one understood for the space X. The space of continuous functions
on [a,b] into Z with the usual supremum norm will be denoted by
%(la,b]l,2) and Ac"[a,b] will be the space of R"-valued absolutely
continuous functions on [a,b] (with the supremum norm, i.e. ¥
topology, unless otherwise specified). The vector space of nxm
matrices &ﬂRE,Rn) will be written as.S;’m. Finally for a given
measurable function s + x(s), the symbol X, denotes the
measurable function on [-r,0] given by 6 -+ xt(e) = x(t+0),

-r < 8 < 0. For vectors we shall not in general distinguish

between the column form and its transpose when the usage makes

clear our intended meaning.




2. Abstract Formulation of the FDE Control System

We shall consider in the following discussions the basic

nonlinear control system

x (t)

L(xt) + f(t.x(t).xt,u(t)). te [0,t11 ’

(1)
x(0) = n, x0=¢ ’

where tl is finite, (n,¢)€ 2, and the linear part L is as given in

Ref. 3. That is, there are matrices Aie_‘fn e and
’

D€L2([-r,0], _c/n'n), and numbers hi’ 0 = ho < hl AL hv =hip

such that

0
Vv
L(¢) = ] A;0(=hy) + Jo(ew(e)de
1=0
=T

for ¢€'.;;(-r,0) (where, of course, the proper interpretation must

be given to the point evaluations of ¢ if this "function" is

indeed only an L, "function"), The nonlinearities of

lanXLg (-r,0)xR™ + R",

about which we make several fundamental standing assumptions for

the system are contained in the mapping f:R

the presentations in this paper:

(H1) The mapping (t,y,y,v) » £(t,y,y,v) is continuous on
RlanXLg(-r,O)me.
(H2) For any bounded subset 2 of Z there exist m, =m (D,

m, € Lioc' i=1,2, such that for vER", tERl, and

(x,9),(y,V)ED one has
lf(taXprV)-f(t,YprV)l < {ml(t)ﬂnz(t)|vl){|x-y|+l¢-|p|}.




(H3) There is a continuous mapping t - B(t)e"(’,}x,m such that
f(t,0,0,v) = B(t)v for all (t,v)ERIXRm. Further, there
exist functions &iEELioc, i=1l,2 such that
|£0,x,0,v) | < {my(&)+my(£) [v]}Ix]|+]0]) + |B(O)||v]
for all t,v and all (x,¢) with |(x,¢) Iz sufficiently large.

1 1 such

(H4) There is a continuous function g:R XRnng(-r,O) + R
that
|f(t,x,¢.v)-f(t,x,¢.u) l £ g(t,x,9) ‘V'U‘

for all (t,x,9¢) ERIXRRXLTZ‘(-r,O) and v,u€ 2.

Remark 2.1. We observe that hypotheses (H2) and (H3) together

yield that the following condition is satisfied by f:

(G) There exist r?tl,r?lz in Lioc such that |f(t,y,v,v)| <
{ﬁl(t)+&2(t)Ivl}{|y|+|w|} + |B(t)||v]| for all (t,y,y,v) in

RlxR“ng(-r,o)xam.

Let TyeTy denote the coordinate projections of Z = RnXLg(—r,O)
onto R" and L, respectively. That is, m,(n,¢) = n, my(n,¢) = ¢.

Define a mapping F:nlxzm“‘ + Z by
F(t,z,v) = (f(t,wlz,nzz,v),O).
Several properties of the mapping F will be used in the sequel and

we list these here for later reference.

P,: For any bounded subset 9 of 2 there exist M,,M, (depending
on 2) in L1°c such that
|[F(t,z,v)=F(t,w,v)| < {Ml(t)+M2(t)|v|}lz-wl

for all z,wEDP and tERl, veER™.

FR




P2: For any z€ Z([O,tll,z) and uELr;(O,tl), the mapping

t > |F(t,z(t),u(t))]| is in L, (0,t,).

Property P, follows directly from (H2) while P, is a consequence
of (H2) and (H3),

We introduce next the solution semigroup S(t):2 + Z of the
linear part of (1) as used extensively in the discussions in Refs. 3
and 4. Thus for, (n,¢)€ 2, we define S(t)(n,¢) = (x(t),xt)
for t > 0, where x is the solution of (1) on [0,») with £ = 0.

It is easily shown that {S(t)} is a C -semigroup with

t>0
infinitesimal generator ¥ defi;ed on 2@ = {(n,$)]|d is
absolutely continuous with &EL’Z‘(-r,O) and ¢(0) = n} by
Ae(0),4) = (L(¢).$). Let M,8 be constants such that
[s(t)| < M exp(Bt) for t > 0.

We shall be concerned with an abstract form of (1) given J

by the implicit equation

t
2(6) = 561z, + | S(t-0)F(0,2(0) ule))do (2)
o

That this equation is in some sense equivalent to (1) is the
focus of the remaining discussions in this section.

Lemma 2.1. Under the hypotheses (ll)~(H3), equation (2) defines
for each uEL';(O,tl) and zoez, a unique function t » z(t) in
Z(lo,t,1,2).

Proof: For any two continuous solutions z and w of (2) on [O,tll

we have using P, (since {z(t)},{w(t)} lie in a bounded subset of 2) B |




[z(t)-w(t) |

A

O *Y——c O*——gt

M exp[8(t-0) 1 {M, (0) +M, (0) |u(0) | } |z () -w(0) |do

A(0) |z (0)-w(o) |do

where jELl(O,tl). Uniqueness of solutions thus follows from an
application of Gronwall's inequality.
The proof of existence also involves only quite standard

arguments. Define for k=0,1,2,... the Picard iterates (zk} by

z° () s(t)z,

(3)

t
2X(¢) S(t)z, + J S(t-0)F (0,25 1(0),u(0))do ,
(o}

for t€ [O,tll . Clearly the iterates are well-defined and an
inductive argument employing the strong continuity of {S(t)}

and property R.Q in the usual manner yield easily that

zkESf(lo,tll,Z) for k=0,1,2,... . Using (G) in the second equation

of (3) one obtains

t
@1 cu ew@efiz] + [ @40 [ue 112 o) |+]8(0) | [uco) |)ac)

o

t
:Mexp(ﬁt){lzol + vy + [ j(o)lzk'lgo)lda}
o

where Y and 4 €L, are independent of k. A simple inductive

argument using this inequality can be made; one obtains

12X (£) | <pyM exp(Bty)explH(ty)]




P

8
t ~
where Py ° sup{|s(t)zo| .Y 2 t€[0,t1]} and H(t) = M exp(Btl) fj(c)dc.
o
Thus {zk} is bounded in %ﬂ[o,tll,Z).

Use of this boundedness along with property Pl allows us to

choose Ml'Mz in Lw(o,tl) such that
|F (0,25 (0) ,ul0))-F(o,25" L (0) ,u(0)) |
< (M) (0)4M, (0) [u(0) |}|2"(0)-2"" (o) |

for all k=1,2,... . This can be used to show that {zk} is in fact
a Cauchy sequence in %WIO,tll,Z). Indeed, using completely

straightforward arguments one can obtain

k
k+1 u(tl)

k__k-1
|27-2 ’g’i {M exp(Btlﬁ P

|
where q, = I IF(o,zo(c),U(O))ldo and u(t) =
o

{M, (0)+M, (0) |u(0) | }do .

O ———¢t

By passing to the limit in (3) we find that the limit z of
the Cauchy sequence {zk} is the desired solution of (2).

Returning to system (1), we observe that for a given
uEELg(O,tl) and ¢€Acn(-r,0), ¢(0) = n, standard arguments can be
employed to establish (under hypothesis (Hl)-(H4)) existence of a
unique solution on finite intervals [O,tll. That such solutions
are continuous in (¢,u) can also be shown.

Lemma 2.2. Consider the mapping (¢,u) +(xﬂn¢ﬂn.ﬁg¢ﬂn) from
AC" (-r,0)XL7(0,t,) + Z where x is the solution of (1) corre-
sponding to (¢,u) under hypothesis (Hl)~(H4). This mapping is

continuous.




Proof: Fixing (¢,u) in Ac“(-r,O)xL’;(o,tl) and denoting by

x=x(¢,u) the corresponding solution of (1) , we shall consider
arguments involving y=y(¥,v), solutions of (1) corresponding to

(Y,v) in some bounded neighborhood leBZ of (¢,u) in Acn(-r,O)ng(O,tl).
Using the linearity of L, the growth condition (G), and Gronwall's
inéquality along with quite standard reasoning, it is easy to show

that {y(t;¥,v)|t €[0,t;],VEB;,vEB,} lies in a bounded subset of i
That is, {(y(t;¥,v),y (¥,v))|t€E[0,t,],VEB,,vEB,} lies ina

bounded subset of Z so that the local Lipschitz conditions of (H2)

can be employed with the functions m, independent of the choice

(¢,v) in B, *B,.
From (1) we obtain immediately for x=x(¢,u),y=y(y,v)
£
Ix(t)-y ()| < |#(0)-y(0) | + II L(x -y )do|
(o]
t
A IJ (£(o,x(0),x ,u(0))-£(0,y(0),y,,v(0))]do
(o]
= T +T,+T,. (4)

' Sl s

Using (H2) and (H4), we find

T3_<_

t
f{lf(o,x(o),xo.u(o))-f(o,x(O),xc.v(o))|
(o]

+ |£(0,%(0) %, (0))-£(0,¥(0) ,yg,v(0))l}do

A

t

3 f
I{q(O.x(o),xc)Iu(o)-v(o)|+2[m1(o)+m2(0)|v(0)Iﬂ(x(c),xo)-(y(o).yo)'z}do A
(o]

t

Ig(x’ILZ(O,tl)'“'VILz(O,tl) + J'%@(o)'(x(o),xo)-(y(o),yc)ldo .
)

IA
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From the form of L we obtain

Z A (x(o—h )—y(o-h )) + J D(0) [x(o+08)~y(0+6)]d6|do

—_—
(e M a e B

[a;l[x(o)-y(o)| + |Dl l o-yolLZ}do

0‘—%(?‘ 0‘-—ﬁ

e
+ I ) IAi||x(0)-y(o)ldo

i=1
s
v )
< rtglAiIon-yolg, + [ E| (x(0) %)= (¥(0) ,y,)
o

Vv
where E = 2{] |a;| + |D|}.
o

Using these estimates in (4) we thus have
t
[x(t)=-y(t)| < r|¢-w|g+ Ig(x)llu-vle + J(%(OHE)A(o)do
o
4
where A(o) = I(x(o),xo)-(y(o),yo)lz. But since |xt|L2 < /letlg

this implies

%
() < /I+x {I‘N-WI + lgx) | u-v| + J(St(,(OHE)A(o)da} 5
o

With an application of Gronwall's inequality we then obtain

t
a(t) < /I+t{r|¢-w|+|g(x) | lu-vll exp { I(%(,(o)ﬂ:)do},
o
from which the desired continuity follows easily once one notes

that the exponential term is bounded uniformly in vEB,. i:-,
!
i

Arguments almost identical to those above (employing Pl instead

of (H2) along with Gronwall's inequality) can be used to establish




11

an analogous continuity result for the functions defined by (2).
We shall therefore only state this continuity property, omitting
the proof.

Lemma 2.3. The mapping (¢(0),¢,u) > z(t;$,u) where =z is definec

by (2) with ., = (¢(0),4) is continuous on _GJM)XL';(O,tl) in

the ZxL, topology @nd hence in the RnX%QLZ topology) .
The preceding discussions allow us to establish with relative
ease a desired equivalence between systems (1) and (2).

Theorem 2.1. Suppose f satisfies (H1l)-(H4). 'Then for
(n,¢) = (6(0),¢) € 2) and uGL';(O,tl) we have

z(t;d,u) = (x(t;¢.u).xt(¢.u))

where t + x(t;¢,u) is the solution of (1) and t -+ z(t;¢,u) is
defined by (2) with z, = (6(0),9).

Proof: We shall say that t » r(t) is a strong solution (in 2) of

L(t) = (t) + F(t,g(t),u(t))

(5)
z(0) = (4(0),9)

if t » ¢(t) is continuous for t > 0, c) for t > 0 with
t(t)EDY) for t > 0 and the equation in (5) is satisfied for
t > 0.

We first consider solutions for ¢EC(1) and uec(°’ and define
t + w(t) by w(t) = (x(tw,u),xtw,u)) where x is the corresponding
solution of (1). Direct computations for g‘t’ w(t) in the Z-norm
show that v.v(t) =Qfw(t)+F(t,w(t),u(t)) and that the necessary

0 [
AR T AR

continuity requirements obtain so that t + w(t) is a strong solution
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of (5). Next let t + I(t) be any strong solution of (5)
corresponding to ¢€C(1), uEC(O) and define A (o) = S(t-o0)¢ (o)

for 0 < 0 < t. We observe then that the assumptions on f (see
(H1)) imply that in this case 0 + F(0,%(0),u(0)) is continuous.
Again direct computations (e.g., for €>0, write %Noﬂ:)-)‘(o)] =
S(t-—o-c){%lc((ﬁc)-c(o)] + %[I-S(e)]c(o)} and take the limit as

e » 0%) reveal that the right derivative i+(o) exists and equals the
continuous function ¢ + S(t-o0)F(o,z(o),u(o)). It follows in the
usual manner that >\ exists continuously and indeed for t > 0

t t
A(t)-A(0) = I ).«(o)do = I S(t-0)F(0,5(0),u(o))do.
o o

Since A(t) = S(0)Z(t),A(0) = s(t)z(0) we thus find that any
(1) (0)

strong solution C of (5) corresponding to $€EC /JuEC must
satisfy
t
z(t) = s(t)g(0) + I S(t-0)F(o,z (o) ,u(o))do .
o

By Lemma 2.1 we see that any such strong solution of (5) must
be the unique solution of (2) in k’([O,tll,Z) . But we saw above
that t + w(t) = (x(t),xt) is a strong solution of (5) for ¢,u
so restricted. It thus follows that w(t) = (x(t),xt) = z(t)
where z is defined by (2) with R, . (¢(0),9) and the desired
equivalence is obtained for OEC(I),u EC(O).

Finally, from Lemmas 2.2 and 2.3 we see that for each t
the mappings (¢(0),¢,u) » (x(t),x.),(4(0),4,u) + z(t) from (5
D) xL';(O,tl)+z are continuous in the R x 2'><L2 topology on D(f)x L2'

This, combined with the denseness properties of the set
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(0)}

{(¢(0),0,u) ]9 ec(l) Ju€C on which equivalence has already

been proven, can be used to establish the equivalence as claimed

in Theorem 2.1.

.
i
|
1
{
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3. Approximation and convergence

Having shown in the previous section that the control system
t

z(t) = S(t)zo + I S(t-0)F(o,z(0),ul(o))do (6)
o

is equivalent to our original system (1), we turn next to
approximations of (1) via approximations of (6). Let

N, PN be a general approximating scheme as discussed

sNe)), z
in the first part of section 3 of Ref. 3. That is, {SN(t)} is a family
of approximating C,-semigroups satisfying |sN(t) | <M exp(Bt) and the
convergence criteria SN(t)z + S(t)z, z€2, uniformly in t on

finite intervals. The subspaces ZN(ZZ contain all elements of the

N N

form (£,0), £ ER", and the linear operators P ':2 - 2 satisfy the

condition: PNzo >z for all initial data of interest in studying
the control system (6) (or (1)).

An example of such an approximating scheme is the "averaging"”
approximation scheme discussed in some detail in Ref. 3 (see also Ref. 4).
While our discussions in this section will deal with general
approximating schemes, we shall use the particular "averaging"
scheme of Ref. 3 to discuss numerical results for nonlinear control
systems in a subsequent section of this paper.

Given a general approximating scheme {SN(t)}, zN, pN as

described above, we consider the approximating system
t
2 () = sN(e)eVz + I sV (t-0)F(0,2V(0) ,u(0))do. (7)
o

Using arguments exactly as in the proof of Lemma 2.1, one can easily

verify that (7) defines, for each N, a unique function

e ——— T b 1

PER T
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zNEff(IO,tl],Z),. We shall show that for a given uGL';(O,tl),

the solutions of (7) actually converge to the solution of (6).

Lemma 3.1. Suppose % is a bounded subset of Lr;(o,tl).
sequence (zV) defined by (7) is bounded in %T[O,tll,Z),

uniformly in ue€ & .

Proof: We have immediately from the assumptions on SN,PN that
t
12N(t) | < Mexp(pt)s + f M exp[B(t-0) ] |F (0,2 (0) ,u(0)) |do
o
where § is independent of N and u. lo

But the condition (G) on f implies the existence of Ml,M2 in L

such that
[Pt z,v) | < (M) (&) ity (t) [v]}]z|+[B(t) | ]v].
Thus we find

IzN(t)l <M exp(Bt){d + lB(o)Hu(o)ldO]

+ | M explB(t-0)] (M, ()M, (0) |u(0) | }|2"(0) o

Q ——ct O‘——r¢t

t
M em(st){é*rlall‘zlull.z) + I ku(o)lzN(o) |do,
o

which upon an application of Gronwall's inequality yields
t
1

12¥(8) | < M exp(Bt) (6+(B] [u] Jexp { [ ky (0)do].
o
Since k (o) = M exp(Btl)(ﬁl(oHﬂz(o) |u(o) |}, it is clear that
for u € &, the right side of this last inequality is bounded

uniformly in u and N.

B BT i

S NN, sbicien: e ta R
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Lemma 3.2. For ¥ bounded, {zV} is Cauchy in &f([o,tl],z),
uniformly in u €¥.
Proof: For u €Y and each positive integer j we denote by g:l the

function

gj (o) = f(o,nlzj (o) ,nzzj (o) ,u(o)).

Since Igj(o)l < 2{1;11(0)+m2(o)|u(o)|}|zj(o)|+|B(0)|IU(O)I

(see condition (G)) with miELioc and {zJ} uniformly bounded, it

is easily argued that gJG Lg(o,tl) with

lg3]. <A
L,

uniformly in u€¥ and j=1,2,... .

Let T™(t):R® » z¥ and T(t):R® » Z be defined by
™ (t)g = sN()(£,0), T(L)E = S(t)(£,0) where EER".

From Lemma 3.2 of Ref. 4, one has that for every ¢t, TN(t) + T(t)
in the uniform operator norm. 1In fact, one actually has for each

t €10,t,]
t
t 1
f | (t-0) -T"*K (t-0) | 2a0 < f |TN(t1-o)—TN+K(tl-o)|2do = €, (N,K)
(o] (o]

where ez(N,!() + 0 as N,K + =,

Furthermore, the convergence properties of {SN(t)} and pN

imply for 2, €EZ a fixed initial value and t€[0,t,]

SN+K N+K

18N (tr ez ~sMK (6 pM* ¥z | < €, n,x0)

where € (N,K) - 0 as N,K » =

s il
%

S
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Thus, for N,K > 0 and t E[O,tll we may write
12N )=z ey | < | isM e pN-s" K () pNE) 5 |
t
+ j 15" (t-0) (g" (0),0)-8"*K (t-0) (¢™*¥ (0) ,0) |0
(o]
t
< € (NK) + j | (t-0) N (0) =TV K (£-0) g"*K (0) | a0
(o]
t
< € (NK) + f L (N (t=0) -2 (£-0) ) gN (0) | a0
o
t
+ I |TN+K(t-0){gN(o)-gN+K(0)}|do
: |
t ;
< €, (N,K) + VESTN,K) |<;N|L2 + I M exp[B(t-0)] |gN(0)-g™K(0) |do ’
o
t
<€+ /A4 f M exp[B(t~0) ] [gN (0) ™K (o) [do, (8) 1
o

where €(N,K) = €, + v’q A+ 0 as N,K + », uniformly in ue &.

From the boundedness property of {zN} and property Pl' we have

IgN(0)-g

where nie L

we are thus able to rewrite the inequality (8) as

lzN (t)-z

< My (0)4My (0) [u(o) |} 2N (0) -2"*K (o) |

N+K

N+K

loc

w + Letting A, (0) =M exp(Btl){Ml(oHMz(o)|u(o)|},

()] < e(N,K) +

(o)) . ™ ]F(a,z"lo),ulo))-Fla.z
R

|

N+K(6) ,uto)) s

A, (0) | 2" (0)~2"*F (0) | 0.
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Once again appealing to the Gronwall inequality, we conclude
t

IzN(t)-zN+K(t)| < e(N,K) exp”,lu(o)do}.
)

It follows immediately that {zN} is Cauchy in Z((O,tl],Z),

uniformly in u € ¥.

Theorem 3.1. Let z,zN be defined by (6), (7) and let
%’CL';(O,tl) be bounded. ' Then zN(t;u) + z(t;u) as N > » , uniformly

in t on [0,t1] and in u € ¥ .

Proof: From the previous lemma we know that there exists
zGZ([O,tll,Z) satisfying zN (t;u) + z(t;u) uniformly in t and in
uEYW. We claim that this limit function is the unique solution
in Z([O,tll,z) of (6) guaranteed to exist by Lemma 2.1. This
follows immediately upon passing to the limit in (7) once one
has observed that F(a,zN(o),u(o)) + F(o,z(0),u{o)) and SN(r)

converges strongly to S(t) with both sequences being dominated.

To make practical use of the convergence results of Theorem 3.1
in optimization problems, one must argue a little more than is
promised in this theorem. More precisely, one wishes to replace
the control system (1) by an equivalent system (6) and then
solve the optimization problem governed by (6) (see Refs. 3 and 4).
To obtain an approximate solution, one solves the optimization
problem subject to (7). This results in a sequence {u""} of

(hopefully) approximating optimal controls and one desires, of

course, that zN(t:GN) + z(t;u) where u is the solution to the

optimization problem constrained by (6). The sequence {EN} is
often (e.g., see Ref. 4) bounded in L';(O,tl) so that weak convergence of { . l
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{GN} (or of a subsequence at least) to u can be argued. From

the inequality
12V (0% -z (t;0) | < [2V(ei0F) -z (6505 | + |z (tiu)-z(tiu) |

and the convergence results of Theorem 3.1, it clearly suffices
for our purposes to establish that z(t;ux) + z(t;u) whenever
uK—Jbu in Lg(o,tl). However it is not obvious from the implicit
defining equation (6) for z that the dependence of z on u is
even linear or afiine and thus it is not surprising that further
assumptions on f are required to obtain the desired results. For
nonlinear systems which are affine in the control terms we can,

as might be expected, show that uK-—\u implies z(t;uK) + z(t;u).

Assumption 3.1. Suppose that f:RlKl{&Lg(-r,O)me-ar has the form

f(t'er:V) =/’,1(toY"4’) + {/Vz(t,y,'b) + B(t)l}v

=-/’i(trYt‘p) + y(tIYIw)v

where B is continuous and _Ai:Rlxz o Rn,_Aalexz *.&; i catisfy:
’

(Al) The mappings (t,y,V) ->/'1(t,y,ny), i=1,2, are continuous.
(A2) For 2 a bounded subset of Z, there exist Lloc functions

©o

k, sk, (depending possibly on ) such that
L ey 0) = A (6% 0) [ ki (0) (o0 =(y, 00 |,

for all (x,9),(y,V)€ED, tER?, i=1,2.

(A3) /i(t,o,O) = 0, i=1,2 and there exist functions l: k

loc 1

10Ky in

L

-  such that for tE€R",
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1A (e, 0) | < ki (0) [y o0 |,

for all (y,¥) €2 with |(y,y)| sufficiently large, i=1,2.
It is not difficult to verify that any f satisfying

Assumption 3.1 will also satisfy hypotheses (Hl)-(H4) of section 2.

Theorem 3.2. Suppose f satisfies Assumption 3.1 and z is defined
for u€ELg(0,t1) by (6). Then uK;Jhu in Lg(o,tl) implies

z(t;uK) + z(t;u) as K » o ,

Proof: We first observe that {uf} bounded in L, along with
condition (G) and Gronwall's inequality (again!) imply that
{z (t;u5) |t e (o,t,1, K=1,2,...} lies in a bounded subset of 2
(see the proof of Lemma 2.2) so that we can employ the local
Lipschitz conditions of (A2) in our arguments. Letting
/;’1(1:,:) = A (t,my2,1,2),0), .é’(t,z)v = (At,my2,7,2)v,0),

zK(t) = z(t;ux), and z(t) = z(t;u), we have

]zK(t)-z(t)|

s(t—o){ii(o.zx<o))-Ji(o.z(o))ﬁ?(o,zx<o))ux(o)é?(o,z(o))u(o)}do'

M exp[B(t-0) ]k, (0) [zg(0)-2(0) |do

| A

+

S(t-O){[.V(o.zx(c))-_;'(o,z(o) ) luK(o)+.‘:l(o.z(o)) [uK(o)-u(o) ]}do

I

M exp (Bt) (k, (0) +k, (0) |u¥(0) |} |2z, (0) -2z (0) |do
1l 2 K

8(t=0) (8¢ (0 ,0)do] ,

+
Ot Ot Ot O*——t O ——t
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where A (o) = {4 (0,1 2(0),m,2(0)) + B(o) HuK(o)-u(o)}.

But from Theorem 3.2 of Ref. 4 we find that the operator

S:15(0,t)) > £(10,t,1,2) given by
t
Ag) (t) = j S(t-0) (g(0),0)do
o

is a compact linear operator; thus AK—é»O in Lg(o,tl) implies

.9«AK)(t) + 0 uniformly in t on [0,t;]. It follows that
t
|zK(t)-z(t)| L ey ¥ J M exp(Btl){k1(0)+k2(0)IuK(o)|}|zK(o)-z(o)|do
o
where FK + 0 as K-»= , so that one final application of the Gronwall
t
1
|2K(t)-z(t)| < g exp{J IK(U)dO}
o

inequality yields

and the right side of this inequality * 0 as K * ® , uniformly

in t on [O,tll.
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4. Numerical Results

One specific choice of (sN(t)), ZN, PN in the approximation
scheme described in section 3 leads to the so-called "averaging"
approximations that we have discussed in some detail in previous
efforts dealing with linear systems (see Refs. 3 and 4). We turn now
to a summary of some of our numerical results for nonlinear
systems obtained using these averaging approximations in connection
with the general nonlinear approximation scheme developed above.

We first recall briefly the specific class of approximations
of interest to us here. We do this for the linear operator L
representing a simple differential-difference equation (for a

discussion of the general linear case, see Ref. 3) given by

L(¢) = A_6(0) + A,0(-r). (9)

For each positive integer N, let {t?} be the partition of
[-r,0] given by t? = - l% , 3=0,1,2,...,N, and define X? to be the

characteristic function of [t?,t?_l) for j=2,...,N and that of

(e),t5) = - £ ,01 for 3=1. rLet 2" = {(n,4)|n€ER",
SN T e N N NN
6= ] viXjs V4 ER } and P (n,$) = (n, ] ¢ Xy) where
I=1 oN
j=1
¢'; =3 [ 6 (s)ds.
N
*

Define the semigroups SN(t) = exp(j{Nt) where Q(N:z + 2 is given by

N
N N N N, N
dN(ﬂv¢) - Qoﬂ‘”\l"N: g r {¢j-1-¢j}x’)




23

with ¢§ = n. It is shown in Ref., 3 that these choices lead to
a scheme satisfying the convergence requirements of section 3.

Consider next application of these ideas to systems (1)

with L given by (9) and n = ¢(0). That is,

x(t) = A x(t)+A,x(t-r)+£(t,x(t),x,,u(t))
o 1 t
(10)
x(0) =n, x, = ¢
ris ; N _ N _ N s
Defining the functions e, = (1,0), ej = (O,Xj), =l 20 e N,
and letting zN(t) in (7) be represented by
N N N N N n .
z(t) = § wj(t)ej, where wj(t) ER, it is not difficult to argue
j=o

that the approximating system (7) for (10) can be written as an
ordinary differential equation for the "Fourier" coefficients wgl.

Thus, the approximation to (10) is equivalent to (see Ref. 4)

. N

wo (£) = A_wo+A wy (£)+£ (£,u) (£), % (t)x su(t))

W) = B N N 11
wi(t) = 2 {wy ;) (B)-wi(t)}, 3=1,2,...,N, (11)
W' (0) = col(¢(0),0), ... 0N

For f satisfying the hypotheses of section 2, ($(0),$) € 2(¥) and u € &,

the convergence guaranteed by Theorem 3.1 implies that wg(thx(t)

uniformly in t on [0,tl] and in u €%, where w:,x are the solutions of

(11) and (10) respectively. We first present results for an
example which illustrates this convergence of wg to x in a system

not subject to optimization.

e —

- ey

—




Example 4.1. Consider

;(t)

x(0)

-1.5x(t)-1.25x(t-1)+x(t)sin x(t), t > O

10041, =1 < 8 <0,

with corresponding approximating equations

(04
]

—
ﬂ
L}

N N N : N
-l.5w°(t)-1.25wN(t)+wo(t)51n wo(t)

N N ;
. i . t ’ =1’2'-
N{wj_l(t) Wy ( )} 3

.c,No

In Table 1 we list selected values for the variables

sponding to several values of N.
solution values x which were obtained using one of the block
methods (of fourth order) developed by Tavernini (see Ref. 10, pp. 77-78)

directly on the delay system.

These are compared to the "true"

24

WN corre
o

Table 1. Results for Example 4.1.

4

Time wg wés wgo wgz X

0.0 1.0000 1.0000 1.0000 1.0000 1.0000

0.5 3.1589 3.2363 3.2519 3.2754 3.2532

1.0 2.2586 2.2808 2.2871 2.2989 2.3856

- 0.6754 0.4929 0.4488 0.3755 0.3446

2.0 -0.6484 ~0.8157 -0.8503 -0.9026 -0.9137

2.5 -0.6967 ~0.7269 -0.7312 -0.7363 -0.7655

3.0 -0.2656 ~0.1766 -0.1524 -0.1106 -0.1060

3.5 0.1109 0.2418 0.2737 0.3257 0.3558

4.0 0,2454 0.3286 0.3463 0.3735 0.4017

4.5 0.1626 0.1547 0.1492 0.1377 0.1426

5.0 0.0137 ~0.0478 -0.0644 -0.0923 -0.1054 ;T
I
|
|
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The above example typifies some of the worst convergence
behavior we have observed in using the averaging approximations
to integrate nonlinear equations. In our efforts at Brown and
in numerical work in collaboration with F. Kappel and H. Froschl
of the University of Graz, we have applied these approximations
to a number of other nonlinear FDE examples (2 and 3-dimensional
vector equations and other types of nonlinearities typical of
those arising in several areas of applications). In these
insténces we found convergence of the approximations no worse than
that illustrated in Example 4.1 and in a majority of the cases
convergence was actually much more rapid than in the example
detailed above.

We have also used the "averaging" approximations to solve for
optimal controls in problems governed by nonlinear delay-differ-
ential control systems. Typical examples of interest are of the

form (for more general problems to which our framework in sections 2

and 3 is applicable, see Refs. 3 and 4):
Y
Minimize J = % x(tl)Gx(tl) + % I {x(t)Qx(t)+u(t)Ru(t) }dt
o

subject to (10) where u€%, % is a closed convex subset of
L?(O,tl). Here we assume G,Q > 0, R > 0.

The approximating problems (for the averaging approximations)

are given by: ¢
1 .
minimize ¥ = 1 Wepowliie)) + 3 I {wg (£)Qwp (£) +u (t) Ru(t) Jat ?ﬁ;

o i

subject to (11) where again ueE%.




26

Let EN be a solution of the approximating problem (while
standard existence arguments are applicable here, the usual
uniqueness assertions are not appropriate since JN is not
necessarily even convex in the control u) with index N. Denote
by XN (=W§) the corresponding trajectory and N = N@Y) the
corresponding value of the cost functional. Then under

Assumption 3.1 of section 3, Theorems 3.1 and 3.2 along with standard

arguments (see Theorem 4.1 of Ref. 3) can be employed to conclude
that a subsequence of {{GN,iN)} converges to a solution (u¥*,x*)

of the original problem governed by the system (10) (the sequence
{(GN,§N)} itself converges if the solution (u*,x*) of the original
problem is unique). We present results for several examples to

illustrate this use of the approximating scheme in such

optimization problems.

Example 4.2. Take as the original problem the task of minimizing
2
J=3x?+3 I u(t) Zat
o

over u €% = L,(0,2) subject to

A
o+
A

x(t) = sin x(t)+x(t-1)+u(t), 0 < 2,
. (12)

x(8) = 1, -1 < 0.

A
D
Ia

The corresponding approximating problem entails minimization

of

—

2
Moe %[wg(z)lz + % I u(t)2at
o
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over the same class of controls but subject to

‘N e N

wo(t) = sin wo(t) + wN(t) + u(t)

o PR e L

wj(t) N(wj_l(t) wj(t)} $21 .2, 00l (13)
wh(0) = col(1,1,...,1).

One can apply the necessary conditioms for nonlinear differential
equation control prcblems along with standard computational
routines (gradient, conjugate-gradient) - see Ref. 11 and Chapter X
of Ref. 12 - to obtain extremals (HN,WN) for the approximating problems
This was done (in a manner described in more detail below) to
obtain the values reported in the tables presented in this paper.

One can, on the other hand, use the necessary conditions for
optimality of delay system problems (see Ref. 13, Theorem VII.2.31)
and work directly with the original optimization problem. 1If
(u*,x*) is a solution of this problem, these necessary conditions
guarantee the existence of a multiplier A such that u* maximizes

2 + Msin x*4x*(t-1)+u} (i.e. u*=)) where ) satisfies

H= - % u
A(t) = -A(t)cos x*(t)-A(t+l), 0 < t < 2,
A{t) = 0, e > 2 (14)

A(2) = -x*(2),

with x* the solution of (12) corresponding to u=u*=)\. Thus, we
see that direct solution of the minimization problem for extremal
pairs (u*,x*) requires solution of the mixed advanced-delayed

system two-point boundary value problem (TPBVP) consisting of (12)
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(with u=1) and (14). In the results listed below (for this

and other examples), we have given values for an approximate

numerical solution of the associated TPBVP under the columns
headed x* and \*. These values can be used as a rough but

independent check on the convergence of the trajectories ﬁg and

controls Y

where (GN,GN) are the computed extremal pairs for
the approximating problems. In Table 2 we give a summary of
selected values for the controls and in Table 3 we give
corresponding trajectory values along with the optimal payoff
values EN. For this example we see that the approximate

solution for N=4 is a reasonably good one.
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Table 2. Results for Example 4.2.
Time G‘ T 620 A* x
0.00 -3.5737 -3.5704 -3.5663 -3.5686
0.25 -2.7615 -2.7706 -2.7769 -2.7779
0.50 -2.0473 -2.0594 -2.0664 -2.0561
0.75 -1.4938 -1.5052 -1.5073 -1.4849
1.00 -1.0889 -1.1018 -1.1041 -1.0577
1.25 -0.8030 -0.8226 -0.8371 -0.8197
1.50 -0.6067 -0.6337 -0.6558 -0.6400
1.75 -0.4722 -0.4994 -0.5180 -0.5010
2.00 -0.3751 -0.3981 -0.4112 -0.3938
Table 3. Results for Example 4.2.
: —4 —8 —20 g

Time Y, wo wo X

0.00 1.0000 1.0000 1.0000 1.0000
0.25 0.6381 "0.6372 0.6367 0.6270
0.50 0.4098 0.4081 0.4059 0.3880
0.75 0.2882 0.2932 0.2948 0.2743
1.00 0.2396 0.2581 0.2749 0.2747
1.25 0.2360 0.2661 0.2961 0.3172
1.50 0.2599 0.2932 0.3231 0.3415
1.75 0.3043 0.3336 0.3558 0.3672
2.00 0.3709 0.3939 0.4099 0.4187
3 2.8759 2.9176 2.9437

i
s
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Example 4.3. 1In this example and the next, we choose a system
with nonlinearity satisfying a local but not global Lipschitz
condition. 1In the case where the approximation to the initial
data is good, the approximation method is quite good for low

values of N. The problem is to minimize

2
3= % x(2)2% + % I {x(t)2+u(t)?)at
(o]

over UEYX = L,(0,2) subject to

x (t)

]

x(t)sin x(t)+x(t-1)+u(t), 0 <

A
ct
A
N
-

(15)
x(6) = 10, «1 <8 < 0.

The approximating problem is one of minimizing
2
- [ )2 + uwrdyae
o

N = Jl@1? 4

over % but subject to
i (t) = wh(t)sin wh(e) +ull () +u(e)
N N N
wy(t) = Nlwy_) (£)-wy(e)) 3=1,2, ...N, (16)
wh(0) = col(10,...,10).

In Table 4 we give values for Vg, 68 and x*,\* only since this

suffices to demonstrate the approximation scheme as applied to

this example. We also made computations for N = 16 and 32 and gﬁ%
3
obtained values for ;:6';:2'616'532 that differed only slightly E;g ‘

from v'F:,u and x*,u*. Values for the payoff were
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8 =16 32

J° = 162.019, J°° = 162.018, J°° = 162.015. Graphs of 68 and u*
reveal strikingly good qualitative agreement between these two

functions (see Figure 1).

Table 4. Results for Example 4.3.

-8

Time u Akun* Gg x*

0.00 -1.4959 -1.5159 10.0000 10.0000
0.25 -1.7215 -1.7275 10.3038 10.2700
0.50 -1.7683 -1.8690 10.3399 10.3214
0.75 -1.7787 -2.0592 10.3470 10.3164
1.00 -1.7465 -1.6550 10.3589 10.3184
1.25 -1.6812 -1.6677 10.3790 10.3750
1.50 -1.7365 -2.0244 10.3927 10.3770
1.75 -2.5597 -3.3634 10.3485 10.2916

2.00 -9.8694 -9.9181 9.9181 9.9174




i
3
%
§
)
g

32

Example 4.4. This example is exactly the same as that in
Example 4.3 except for a change in initial data. In (15) we

choose initial function xo = ¢ where

10(6+1) -1 € 8 £ =.5

$(8) =
-100 -.5<8 <0

with a corresponding change in (16) given by
W (0) = col(6(0), 6}, ..., 00 .

Our numerical results are presented in Tables 5 and 6. The
approximate numerical solution \A*,x* to the TPBVP for the
original problem is not a particularly good one (one should have
A*(2) = -x*(2) and we have a relative error here of about 5%)
but it is adequate for an independent check that the method is
producing solutions converging to an extremal for the original
problem.

The averaging method does not approximate this initial data
particularly well for low values of N and as one might expect,
somewhat higher values of N are required to obtain an approximate

solution of accuracy comparable to that in the previous example.
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Table 5. Results for Example 4.4.

Time as uté a2 gio A#zu#

0.00 -2.3083 -2.3073 -2.3032 -2.3015 -2.3321
0.25 -2.1804 -2.2375 -2.2706 -2.2833 -2.3238
0.50 -1.9855 -2.1114 -2.1972 -2.2316 ~-2.2768
0.75 -1.5751 -1.6470 -1.6908 -1.7064 -1.7374
1.00 -1.1446 -1.1417 -1.1318 -1.1252 ~1.1245
1.25 -0.8173 -0.7891 -0.7697 -0.7622 -0.7702
1.50 -0.5967 -0.5761 -0.5667 -0.5642 -0.5691
1.75 -0.4401 -0.4321 -0.4327 -0.4347 -0.4374
2.00 -0.3125 -0.3098 -0.3147 -0.3162 -0.3144

Table 6. Results for Example 4.4.

T ime ﬁg Gis ;22 Ggs x*
0.00 0.0000 0.0000 0.0000 0.0000 0.0000
0.25  -0.1062 -0.1684 -0.2056 -0.2188 ~0.2506
0.50 0.1351 0.1308  0.1245 0.1209 0.1086
0.75 0.3456 0.4290  0.4917 0.5167 0.5831
: 1.00 0.4120 0.4976  0.5550 0.5767 0.6406
! 1.25 0.3805 0.4130  0.4232 0.4244 0.4286
: 1.50 0.3269 0.3161  0.2966 0.2869 0.2586
1 1.75 0.2988 0.2803  0.2644 0.2578 0.2421
2.00 0.3106 0.3078  0.3115 0.3144 0.3313

N 2.1765 2.3105 2.4012 2.4371
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All computations for the numerical results presented in
this paper were carried out on the IBM 360/67 at Brown University.
We are grateful to Mr. Douglas Reber for his assistance in making
these computations. 1Indeed Mr. Reber developed with care and
patience the software packages that were used for the examples
discussed above as well as for some preliminary numerical studies
in our joint efforts with F. Kappel) of other examples involving
use of several spline type approximations in an abstract frame-
work similar to that discussed in sections 2 and 3 above and Ref. 4.
We give now a brief description of the computational procedures
followed in producing the results detailed above.

We employed an iterative optimization scheme that combined
gradient (G) and conjugate-gradient (CG) steps in computing the
extremals (EN,GN) for the approximating ODE problems. For the
results reported above, the first, fourth, seventh, etc.
iterative steps were G steps while the remaining steps were CG
steps formulated (a continuous problem version) according to the
scheme given in Chapter X of Ref. 12. Integration of all ODE's within
these steps was performed by a standard modification (Gill's) of a
fourth-order Runge-Kutta method.

Iteration was continued until a convergence criteria (for
changes in JN) was satisfied. 1In the examples above this resulted
in at most 10 iterative steps in each computation of a (a",w")
for Example 4.2, at most 5 steps in those of Example 4.3 and at

most 13 steps in Example 4.4. CPU time required for these

computations in the optimization package ran from 82 seconds for

(G‘.?‘) of Example 4.2 to a maximum of 578 seconds for (648.348)
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in Example 4.4. As one might expect, higher dimensional
examples require increasingly higher amounts of CPU time.

Integration of the X and x equations in the TPBVP's for
the original problems (e.g., see (14)) was carried out via
the same block method used in integration of the delay system
in Example 4.1.

Our experience with examples suggests that when employed
with a reasonably efficient optimization scheme, the averaging
approximations for nonlinear control problems enjoy about the
same computational behavior as that already demonstrated by

extensive studies on use of this method for linear control

problems (see Refs. 3 and 14).
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5. Concluding Remarks

The efforts involved in implementation and the convergence
results obtained in practice with a number of examples lead us
to believe that the approximation ideas of sections 2 and 3 are indeed
reasonable possibilities when one is optimizing delay system
problems. The framework developed here is an effective means of
reducing the difficulties associated with certain nonlinear FDE
control problems to those for nonlinear ODE control problems.
While there are still a number of difficulties associated with
these latter problems, a great deal more in the way of specific
techniques is available in the literature for these problems
than in the case of FDE problems.

The assumptions underlying development of the ideas in section 2
are not so restrictive as to preclude treatment of nonlinear
systems of a type arising frequently in applications. Assumption 1
(H2) is a local Lipschitz condition in (x(t),xt) in the Z~norm
while (H4) is a growth condition not unlike those often imposed
in ODE theory when one wishes to guarantee existence of solutions
on any fixed finite interval. Among nonlinearities that fall
within the restrictions of (Hl)-(H4) are those (see Ref. 2) arising
in enzyme kinetics, certain nonlinear protein
synthesis models, particle accelerator models and
f bilinear control systems. Also included are nonlinearities

involving terms of the form 0 : «

uyl(t) J yz(t+e)v(e)de
-r

f(t'Y(t).Yt) Ll )
K + I yz(t+0)y(6)de
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which have been employed in vector system models (y=(yl,y2))
for low growth chemostats (Ref. 15). We are in fact currently using
some of the approximation ideas from this paper to study the l

qualitative properties of such chemostat models. f
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FIGURE |. EXAMPLE 4.3 '
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Figure 1. Controls for Example 4.3




