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ABSTRACT

3 Models of univariate and multivariate series of events (point
processes) and statistical methods for the analysis of point pro-
cesses have diverse applications in the study of computer systems.
We review these applications, which include the analysis and pre-
diction of computer system reliability and the evaluation of com-
puter system performance, with emphasis on the latter. In addition 3
1, we describe recent results in the development of methodology for
the statistical analysis of point processes. We point out that the
analysis of multivariate point processes is much more difficult
than that of univariate point processes, and that methodology has
only recently been developed in a perforce fairly tentative manner. :

The applications to computer system data illustrate the need for

new data analytic methods for handling large amounts of data, and r
? the need for simple models for non-normal, positive multivariate
» time series. Some starts in these directions are indicated.
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ANALYSIS AND MODELLING OF POINT PROCESSES IN COMPUTER SYSTEMS

P. A. W, Lewis and G. S. Shedler

Naval Postgraduate School, Monterey, California 93940
IBM Research Laboratory, San Jose, California 95193

1. INTRODUCTION

In this paper we review applications of models for univariate

and multivariate series of events (point processes) in computer

systems and statistical metiiods for the analysis of these point

processes. There are many examples of such series of events. Typi-

cal examples include the following:

(1)

(ii)

(iii)

occurrences of system failure. These events may be typed as
"hardware" failures or "software" failures, giving a bivari-
ate point process. They may also be typed by the physical
part of the system in which the failure occurred;

arrivals of requests to a storage subsystem. These events
ﬁay be marked by an identifier of the requested record;
occurrences of exceptions in a system having hierarchical
storage. These events may be typed according to the level

of the hierarchy at which required information is found.

The applications to computer system problems of point processes

methodology have been to computer system reliability and to computer

system performance evaluation. In Section 2 we review these appli-

cations, with emphasis on the very broad area of performance
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evaluation. What emerges is the need for new data analytic methods
for the particular problems encountered, and the need for simple
models for positive multivariate time series when the data analysis
is used to suggest models or modify postulated models. Some recent
results in the development of methodology for statistical analysis

of point processes are described in Section 3. A final section
indicates some starts on the development of some new and particularly

suitable models for non-normal time series.

2. POINT PROCESSES OCCURRING IN COMPUTER SYSTEMS

2.1. Computer System Reliability

We describe first an application of point process methodology
in computer system reliability studies, namely the analysis and

modelling of computer failure patterns.

2.1.1. Computer system failure patterns. The earliest application

of point process methodology to problems associated with computer
systems is the analysis and modelling of computer failure patterns
given by Lewis (1964a). A primary motivation for the comstruction
of computer failure models is to analyze data from operational
systems and to find ways of comparing and perhaps improving the
reliability of existing systems. Prediction and optimization of
the reliability of future systems is a second motivation.
Reliability models for complex systems which were current in
1964 predict that the failure pattern of a computer system should
form a Poisson process. This model is derived from the assumption
that the failures in each component position constitute independent
renewal processes. The failure pattern of the system is then formed
from the pooled failures of the components. Under the stochastic
assumptions that are made, it is known (Cox and Smith, 1954) that
the hooled‘series of events will be indistinguishable from a Poisson
process over periods of time which are short compared with the mean
times-to-failure of the compénents; The data presented by Lewis
(1964a) show, however, that the times-between-failures of large
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computer systems are not exponentially distributed and that success-
ive times-between-failures are correlated. Physically the observed
clustering of failures and the resulting departures from a Poisson
process arise from imperfect repair, i.e., because failed components
are not always located and removed the first time they cause system
failure, nor are the failed components always needed for correct
system operation. Subsidiary system failures are then induced a
short time later.

The Lewis (1964a) paper deals with the development of a model
(the branching Poisson process) for computer failure patterns which
accounts for the observed departures from a Poisson process. The
probabilistic properties of the model are derived and used to
analyse three series of computer failures (consisting of 109, 186,
and 255 events respectively). Lewis (1964b) discusses implicatioms
of the model for the use and maintenance of computer systems.

We describe the branching Poisson process model briefly; in
the model times between original failures of compoments constitute
a main process {Xil. At each point of this process an attempt 1s
made to locate and rcpair the failure, the attempt succeeding with
fixed probability, independently of other attempts to repair main
failures. Otherwise the failure recurs at times Yl' Y1-+Y2, S
Yl +ooot YS+1 after the initial occurrence. Thus, S+1 unsuccessful
attempts are made in all to locate and remove the source of the
computer failure. The computer failure pattern is then the super-
position of the events in the main process and the events in the
subsidiary processes which the main events generate. The {Xi) are
assumed to be independent, identically and exponentially distributed

and the intervals Y in the subsidiary processes are assumed to be

mutually independentiand identically distributed. The branching
Poisson process model is also called the Barlett-Lewis cluster pro-
cess or a Poisson cluster process. Properties of the model have
been developed by several authors; see e.g., Lewis (1969), Oakes

(1975).
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The result of the statistical analysis given by Lewis (1964a)

f is the demonstration that the differing rates of failure in the three

systems under study is due to the adequacy or inadequacy of the main-~

tenance on each system. This was done by estimating (rather crudely)

the rate of failures in the main Poisson process and the expected 3
number, E(S+1), of unsuccessful attempts to fix an original failure. %
Then E(S+l) measures the adequacy of the maintenance of the system.

We know of no advance in the statistical analysis of Poisson cluster

i e i Wb v

b processes since the Lewis (1964a) paper.
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2.2. Computer System Performance Evaluation

Sl 088 el

Because of the complexity of existing and proposed computer

systems, detailed measurements of running systems are needed in order

S

to develop system models. This measurement and modelling comprises

just one facet of computer system performance evaluation. Ultimate

goals of performance evaluation include tuning of existing systems

and prediction (usually via simulations) of the performance of pro-

T TRy

posed systems. For example, it is desirable to have an airline

reservation system which is efficient from both the customers' and

T

airline's points of view in the sense that it should respond quickly

and reliably at a reasonable cost.

TR

Given the complexity of computer systems and the resulting

relative difficulty of carrying out meaningful performance evalua-

f tions and designs, the collection and analysis of measurement data
from representative systems to identify and characterize significant
perfbrmance phenomena is necessary. The availability of such meas-
urements presenté the possibility of obtaining thereby empirically

| valid, parameterized mathematical models for the workload of the

E system. For performance evaluation studies, in addition to workload
or program behavior models, the analyst needs a model for the com-
puter system or subsystem structure and frequently uses a network of
queues as a system model. Such networks provide a convenient means
of representing the interaction between the processing and input-

output resources of (multiprogrammed) computer systems and sub-

systems. There is a large literature dealing with queueing network
models; see e.g., Gaver (1967), Lewis and Shedler (1971), Buzen
4




pan -

(1971), Moore (1971), and Lavenberg and Shedler (1976). Under the
usual convenient, but not necessarily realistic, queueing-theoretic
assumptions (e,g., independent and identically. often exponentially,
distributed service times) analyses of queueing network models

based on a "numbers-in-queue' state space can be carried out; see
Jackson (1963), Baskett, Chandy, Muntz and Palacios (1975), Reiser
and Kobayashi (1975), Kelly (1975), (1976) and Gelenbe and Muntz
(1976). These analyses yield expressions for stationary queue length
distributions that can be evaluated numerically to provide measures
of system performance such as device "utilizations" and job "through-
put." All these models use global assumptions of independent; measure-
ments usually indicate, for example, that interarrival times are
correlated and incorporating this dependence in the model will some-

times give very different results; see, for example, Jacobs (1977).

Other measures of system performance (calculated as sums of
queueing times) involve the distribution of times for a job to
traverse a portion of the network. These times (in closed networks
complete circuits or loops, and in open networks times from source
to sink) are often interpretable as job “response times" and these
response times are likely to be particularly sensitive to workload
characteristics. Analyses based on the numbers-in~queue state
space yield expected values for response times, but do not yield
other characteristics of interest such as percentiles or quantiles.
Since alternative analyses to provide these characteristics are
in general not available, it is necessary to undertake simulation
studies of the queueing networks. Such simulations, and indeed
simultations of more complex queueing networks under more realistic
stochastic assumptions, are inherently difficult, and are likely to

be time-consuming and costly to carry out.
We describe three applications of point process methodology

in computer system performance evaluation: analysis of page excep-
tions in a two-level memory, analysis of exceptions in a three-
level storage hierarchy, and analysis of transaction processing in

a data base management system,
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2.2,1. Page exceptions in a two-level memory. The following brief

description provides the computer system context for the discussion
of page exception processes given below. We consider a system whose
memory resource (for storage of information) comprises a main memory

and an auxiliary memory, and assume that main memory is the execution

store, i.e., only information that is resident therein can be pro-
cessed. We also assume that the auxiliary memory is large enough to
hold all irnformation required by a program which is to be processed.
When such a system operates in a so-called paging environment,

units of equal size called pages partition all of the information
that is explicitly addressable by the single processor (central
processing unit). Similarly, page~size sections called Eagé-frames
partition main memory. It is possible to execute a program by
supplying it with only a few page-frames of main memory, as follows.
When the page containing the first executable instruction has been
loaded into some page frame, execution begins and continues until
the program requires some information not found in main memory. The
operating system fetches the page containing the missing information
from auxiliary memory (overwriting some page currently in main
memory), and execution of the program continues, and so forth. In
demand paging, information enters main memory only as a result of
an attempt (detected by the system hardware) to use information not
currently in main memory. A page exception is an instance of this
implicit '"demand'" for a page which is not in main memory. When
dealing with large programs or in a multiprogramming mode in which
main memory is shared among several programs it is usually the

case that main memory is filled when the system must fetch another
page from auxiliary memory. Consequently, it is necessary to choose
a page frame in main memory to be overwritten. The replacement
algorithm is the rule governing this choice. Most of the time,
before overwriting the chosen page frame, the system must save the
content of the page frame. (See Lewis and Shedler (1971) for an
analysis of aspects of resource contention in multiprogrammed

demand paging systems.)

£
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The frequency and pattern of page exceptions strongly influ-
ences the performance (in fact, the feasibillty) of a demand paging
system. Accordingly, the study of page reference patterns and page
exceptions (as a function of page size, main memory capacity, and
replacement algorithm) is of interest to the system designer who
must determine pertinent system resourcecs and select system control
algorithms and parameters; in particular he would like to choose
a page size, replacement algorithm and main memory capacity so as
(in uniprogrammed mode) to minimize the (long-run average) page
exception rate. Thus it would be useful to know the stochastic
structure of the reference process.

We can study several related stochastic processes in order to
characterize page reference patterns:

(i) reference strings {Ri}’ i.e., sequences of page references,
where Ri is the page referenced by the program at time i.
We can think of these as a multivariate point process (Cox
and Lewis, 1972) in discrete time, the multivariate aspect
being that the events (references to a page) which occur at

each time instant i are of several types (different pages);

distance strings (Di}, e.g., sequences of stack distances

for least recently used (LRU) replacement, as defined in
Mattson, Gecsei, Slutz and Traiger (1970), where D1 is the
total number of distinct pages referenced since the last
reference to Ri;

the point processes corresponding to page exceptions for
various (fixed) main memory capacities c, i.e. (discrete)
times i at which D, exceeds the main memory capacity.

i
Denote this process by {Tj(c);j=l,2,...}, where Tj(c) is

the time of the jth page exception in memory of capacity c.
As c¢ increases, fewer page exceptions (under LRU replace-
ment) occur; does this thinning result in a Poisson process
when ¢ 1is large?

It is not necessarily simple to go (probabilistically) from

one of these representations to another. It may, of course, be




that one of the representations is more convenient than any of the
others in a particular application. The distance string represen-
tation {Di} suppresses page names, which may be advantageous in
that the process should be more nearly stationary than the process
{Ri)'

The Lewis and Shedler (1973) paper describes analysis and
modelling of page exceptions as a univariate, unmarked point process.
The available data consists of the reference string {Ri}, a sequence
of approximately 8.8 million references to some 517 distinct 4,096
(4K) byte pages for a particular (relatively small) program. From
the reference string, the distance string was derived, and in turn
the sequence of times (in number of references) between page excep-
tions for each of several main memory capacities. For the smallest
main memory capacity, some 1807 page exceptions occur; for the
largest capacity, 517 page exceptions occur. The voluminous nature
of this data is characteristic of computer system data.

The initial basis for the analysis and modelling is available
theory on rare events and thinning of point processes (Daley and
Vere-Jones, 1972, Section 5.3) suggesting that these relatively
rare events (page exceptions) should form approximately a Poisson
process. An analysis of the data was undertaken to confirm or re-
ject and extend the model. The analysis shows quickly that the
Poisson model for page exceptions is grossly inadequate. A direct
examination of the distance string, as well as a spectral analysis,
indicates the presence of an alternation or two-state phenomenon
(a consequence of so-called locality of reference), and on this
basis a two-state univariate semi-Markov generated point process
model (Cox, 1963, Cox and Lewis, 1966, Ch. 7) for the process of
page exceptions is formulated and found to characterize the data
adequately. Unfortunately fitting this model to the voluminous
available data is not simple, partly because the marginal distri-
bution of times between page exceptions is a mixture of a discrete
random variable and a very skewed continuous random variable; see

Figure 1. We feel that some of the new models described in the
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section of this paper are more appropriate for this data than the

univariate semi-Markov generated point process.

2.2.2. Exceptions in a three-level storage hierarchy. A demand-

paged computer system may have a more general hierarchy of storage
than the two-level structure described above. In particular, it

may also have a very large store (a mass store) for data which is,
hopefully, infrequently needed. An analysis of exceptions in such
a three-level storage hierarchy, managed under LRU (least recently

used) replacement and in which data is staged between intermediate
levels (cf. Slutz and Traiger, 1972), is given by Gaver, Lewis and
Shedler (1974). Units of equal size called blocks, each of which
is further divided into units of equal size called pages, partition
the explicitly addressable information in the system. Similarly,
page size sections called page-frames partition level 1 of the
storage hierarchy (the execution store), and block-size sections
called block-frames partition levels 2 and 3 of the hierarchy; see
Figure 2. Two types of exceptions occur here, "hits to level 2"
and "hits to level 3," respectively.

In a hierarchy such as this encountered in practice, the
number of hits to level 2 is typically several orders of magnitude
larger than the number of hits to level 3. In the Gaver, Lewis
and Shedler (1974) paper the available trace data consists of some
34.7 million references to 166 distinct 32,768 (32K) byte blocks;
there are several hundred hits to level 3, but hundreds of thousands
of hits to level 2 for given pairs of capacities of levels 1 and 2
of the storage hierarchy. Thus, a complete description of the bi-
variate exception process consists of hundreds of thousands of
interval and point-type pairs.

Such a voluminous amount of data is not only difficult to
comprehend, it is also expensive to manipulate. As a result, the.
statistical analysis and modelling is based on sequences {Yi}
and (N(Yi)}-—respectively the intervals between successive hits

to level 3, and the counts of hits to level 2 between successive

10
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hits to level 3. The starting point of the analysis is a set of
scatter diagrams of points in the [Y,N(Y)] plane. These scatter
diagrams reveal the apparent existence of two distinct kinds of
referencing behavior. The capacities of levels 1 and 2 of the
storage hierarchy, in pages and blocks, respectively, are denoted

by ¢ and Cos together with b1 and b2, respectively, the page

1
size and block size in bytes, these are the basic hierarchy parameters.

For each pair of capacities ¢, and ¢, a striking two-line rela-

tionship is observed in the gr;phical display; see Figure 3. Points
in the [Y,N(Y)] plane appear to be of two types, and for each of
the two types, points of that type cluster about a straight line
(through the point Y = 1, N(Y) = 0). The analysis and modelling
in the Gaver, Lewis and Shedler (1974) paper proceeds from this

observed double-linearity.

2.2.3. Transaction processing in a data base management system. A

data base management system provides access for many users to a

(typically very large) data base managed by a computer system. Air-

line reservations systems, banking and inventory systems are familiar
examples. Such a system should respond to a query in a reasonably

short time, given the number of users and the nature of the user
environment. This should also be accomplished as economically as

possible, taking into account direct customer (waiting) costs and
computer system resource utilization. These two criteria, fast
response and low cost, are in general antithetical.

The Lewis and Shedler (1976) paper deals with methods for the
examination of nonstationary univariate point processes which can
be applied to obtain a graphical and mathematical description of
the behavior of a running data base management system. Such a
description provides a useful starting point for studies aimed at
workload characterization, a central problem in performance evalu-
ation of data base management systems. Stochastic models of the
kind obtained by Lewis and Shedler (1976) have application to the
detailing of proposed (e.g., queueing network) system models and

to the validation of such system models.

12
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Scatter diagram for bivariate exception process
in a three-level storage hierarchy; from Gaver,
Lewis and Shelder (1974).
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The analysis by Lewis and Shedler (1976) is of data obtained
from an IMS (Information Management §yscem) data base management
system, IMS (IBM Corp., 1973) is a processing program for the
implementation of large data bases accessed in common by several
applications. The IMS program executes under the operating system
of the computer system, and users can access the total data base
from remote terminals by entering messages called transactions.

A particular transaction uses, and thus uniquely identifies, an

application program which processes the message (transaction) and
accesses the data base. Data Language/I (DL/I) is the data manage-
ment facility of IMS. The execution of an application program gives
rise to a sequence of calls to the DL/I component of IMS. 1In a
computer system running IMS, the operating system occupies a portion
of memory. The IMS program also occupies a portion of memory.
Application programs reside in secondary storage in an application
program library. For execution an application program must be
loaded into one of several (typically three or four) regions in

memory called message processing regions. The data base resides

in secondary storage, and in response to tramsaction initiations,
data enter memory for processing.

The data on the processing of transactions in the Lewis and
Shedler (1976) paper was obtained from a computer system running
IMS for production control; entry of data into this system is on-
line and governed by the occurrence of events in the production line.
The epochs of time at which individual DL/I calls were completed
(i.e., control returned to the application program) were recorded,
along with information sufficient to identify the initiation times

of individual transactions.
In analyzing the transaction initiation data, there are a

number of prior assumptions that can be made about the data to
serve as a starting point. The purpose of the data analysis is

to confirm these assumptions or to point to suitable modifications.
Since the data was taken over six whole days (typically some

25,000 transactions per day), a time-of-day effect would be expected

14
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as activity builds up through the working day and then declines

during the evening. Thus any kind of initial analysis based on an
assumption of stationarity is inappropriate. The usual null model
is a non-homogeneous Poisson process; this could be reasonable

since the transaction initiation process is a superposition of in-
puts from a number of sources (users). Because each user's activity
is likely to consist of a (random) number of transactions after
initial sign-on, some clustering in the data might be expected. An

appropriate model here is the non-homogeneous branching Poisson

process or Poisson cluster process (Lewis, 1967). In this process
an initial primary (main) event generates a finite sequence of
secondary (subsidiary) events; the complete process is then the
superposition of the primary and secondary events, where a non-
homogeneous Poisson process generates the main events. If there
are enough primary events (high-activity) so that the number of
active secondary processes is large, the process is hard to dis-
tinguish from a non-homogeneous Poisson process.

Starting from these assumptions, the analysis of the data
proceeds as follows. A very rough, model-free procedure gives an
estimate of the rate function for the tramsaction initiation process
over the whole day. On the basis of this trend analysis, relatively
homogeneous high- and low-activity periods during the day are se-
lected, and an attempt is made to verify the non-homogeneous Poisson
process model or the cluster process model. Based on this local
analysis and modelling of the transaction initiation process, more
formal model-dependent procedures are applied to the transaction
rate function for the several days. The Poisson assumption is found
to be reasonably valid for high-activity periods; clustering becomes
more evident in low-activity periods.

3. STATISTICAL ANALYSIS OF POINT PROCESSES IN COMPUTER SYSTEMS

3.1. The Nature of Computer System Data

There are five important characteristics of data obtained

during the measurement phase of computer system performance studies.
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(i) The amounts of data available are staggering; often several
sequences or series of events are observed for times pro-
ducing millions of observations,

(ii) The times-between-events are often overdispersed relative
to an exponential distribution, and in many cases contain
discrete components. «

(iii) Stationarity is often not a reasonable assumption; frequently
when stationarity is reasonable it is because there is
random switching back and forth between several possibly
stochastic modes.

(iv) There are many situations in which there are fairly gross
inhomogeneities in the data; these can usually be tied to
external variables such as the number of users of the system,
or to the time of day.

(v) Sometimes the data suggests that there may simply be no
stochastic regularity involved. Of course, it could be that,
in line with (iii), not enough time is involved to show

emergent patterns.

As a consequence of (v) there is a procedural difficulty.
Consider starting a rough exploratory analysis of a series of events
by smoothing the data to obtain a graph of the event rate over time.
Suppose we observe that over the first 100,000 events the rate is
fairly constant and that beyond this it changes, a phenomenon which
can be seen by eye and validated by simple statistical methods.
Should we analyze the data in two parts, and if so, how do we
characterize the process in toto? Should we take more data and
hope to distinguish "all" the possible stochastic modes?

On the other end of the scale, when we examine the apparently
stationary segments of the data, questions of more microscopic
stationarity sometimes arise. This 1s reminiscent of the self-
similarity concept for physical data put forward by Mandelbrot (1967).

An unfortunate consequence of all of the above is that we can
seldom sample the data over time to achieve some compression. Even

in the best of circumstances, intelligent use of sampling techniques
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requires well-formulated questions; the tendency in computer system
measurement often is to feel that if an enormous amount of data is
collected, it will be possible to answer any question that may

arise!

3.2. Recent Developments

Lewis (1972) summarizes some of the recent developments in the
statistical analysis of point processes; see also Cox (1972) and
Brown (1972). There is also a book on point processes by Snyder
(1975) and a sequence of papers by Brillinger (1975a, 1975b).
Brillinger bases his work heavily on spectral methods for stationary
processes and his work has many points of contact with that of Cox
and Lewis. But Snyder (1975) does not reference any of Brillinger's
papers, and does not reference Cox and Lewis (1966). What then is
the point of contact between these lines of development in the
analysis of series of events?

The work of Cox and Lewis and that of Brillinger are fairly
complementary. The former is highly data analytic in the sense
that there is concern with validation of assumptions and models and
analysis of trends; the latter is concerned mainly with spectral
methods for stationmary (univariate and multivariate) point processes
based on models such as self-exciting point processes (Hawkes, 1972,
Hawkes and Oakes, 1974) which lend themselves easily to spectral
methods. Snyder (1975) bases his statistical methods almost entirely
on likelihood analysis, a strong assumption that the stochastic
mechanism generating the series of events is known and that it is
possible to write down the "sample-function density." We have
doubts that this approach will be useful in analyzing data from
computer systems, in particular since for this type of data there do
not appear to be any compelling physical models other than, in some
cases, Poisson and Poisson cluster processes.

Consider now some specific areas of development.

17
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3.2.1. Trend analysis and detrending of point processes. In many
fields of application, and particularly in computer system data, it
has become increasingly apparent that stationary point processes
are at best a convenient mathematical fiction. Most data exhibit
fairly subtle trends and methods for testing for these trends are
known (Cox and Lewis, 1966, Ch. 3); other data, however, exhibit
gross trends, e.g., time-of-day effects in the series of arrivals
at a queue, and techniques for the analysis and characterization
of such data are only now beginning to be developed.

The situation is analogous to that in ordinary regression
analysis and time-series analysis where we might want, for example,
to estimate parameters in an assumed (linear) function for the mean,
test the model for the mean function and then examine the model
which is assumed for the residuals. The latter could include
examining the residuals to test for independence, estimating the
spectrum of the residuals and testing the assumed normality of the
residuals. Techniques for these problems in the linear normal model
are known (see e.g., Hannan, 1970).

By comparison, in point processes we might want to:

(1) estimate the rate function A(t), using either specific
functional models or smoothing techniques;
(1ii) test specific functional models for A(t);
(iii) detrend the point process, examine the 'residual' process
and test the usual hypothesis that the events are generated

by a homogeneous Poisson process.

When dealing with non-homogeneous Poisson processes, the most
appropriate detrending technique (Lewis, 1970, 1972) seems to be to
transform the time-scale so that the ith event occurring at time
t now occurs at time

i
t

7 ey I . A(u)du ,
0

where A(t) 1is some estimate of the rate function A(t). Note that

if A(t) 1is known, the {Ti} process is a Poisson process of
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rate one. When A(t) is estimated from the data, the distribu-
tional problems associated with determining properties of the {11}
process are difficult.

Results for estimating parametric rate functions are given by
Cox (1972) and Lewis (1972). These methods are developed by Lewis
and Shedler (1976) and applied to the statistical analysis of
transaction processing in the data base systems. It is probably
best to deal with fairly regular point processes by using log trans-
forms of the intervals between events and then using ordinary time-
series methods (Cox and Lewis, 1966, Ch. 3). It is still difficult
to deal with non-homogeneous processes which are overdispersed
relative to a Poisson process, e,g., a non-homogeneous Poisson
cluster process; some work has been done by Lewis and Robinson

(1974) .

3.2.2. Spectral analysis of point processes. By spectral analysis

of a point process (Barlett, 1963) we mean the second-order spectrum
of the counting function N(t) of the point process (the count
spectrum). Brillinger (1972) has put this spectral analysis on a
firm footing in the context of a general spectral theory for sta-
tionary interval functions such as N(t). He has also proposed
the use of higher-order spectra.

We can think of the spectral analysis of a point process as
an ordinary second-order spectral analysis of a function dN(t)
which is a series of delta functions occurring at random times {Ti]’
the times-to-events; see Lewis (1970) for a heuristic interpretation.
Note that the second-order count spectrum completely specifies a
renewal process. This spectrum, g+(w), is, in fact, essentially
the Fourier transform of the renewal density or the intensity func-

tion. Note that this spectral analysis is not a second-order

spectral analysis of the intervals between events X, =T, - T, ,.

The latter spectrum, denoted by f+(w), is useful for differentiating
between renewal processes (for which it is flat) and non-renewal

point processes. The spectrum of intervals may, in fact, be

19

staiiie s




preferable to higher-order spectra of counts (Brillinger, 1972) in

that it should exhibit fewer sampling fluctuations; in general our ;
feeling is that a spectral analysis of the counts and the intervals

should be tried beforz going to higher order spectra. The esti-

mated spectrum of intervals f+(w) for the page exception process

of Lewis and Shedler (1973) is shown in Figure 4. The underlying
spectrum f+(m) is clearly not flat (i.e. equal to 2 for all w)

so that the process is neither a Poisson process nor a renewal
process. The spectrum of a mixed moving average-autoregressive

process (ARMA(1,1)), where the orders of the moving average
and the autoregression are both one, fits the estimated spectrum

well. We return to this in the next section; the two-state semi-
Markov generated point process model used by Lewis and Shedler (1973)
and several of the models defined in Section 4 have this spectrum.
The fitted interval spectrum is shown in the figure¢ The estimated
spectrum of counts, along with the fitted spectrum of counts of
the two-state semi-Markov generated point process for the page ex-
ception process data of the Lewis and Shedler (1973) paper are
shown in Figure 5.

One drawback to the spectral analysis of point processes is
the large amount of time required for computation of spectral esti-
mates. Only recently have French and Holden (1971), in an important
paper, found a way to use the fast Fourier transform (FFT) in this
context. There are some problems with this technique, e.g., it is
not bias-free but it appears to be of great value.

We shall return to Brillinger's higher-order count spectra in

the discussion of new models. In most cases involving computer
system data there is a problem in applying spectral techniques
because of lack of stationarity. Used with care, however, spectral
techniques can indicate a switching of levels or some kind of quasi- . é

cyclic behavior in a system (see e,g., Lewis and Shedler, 1973).

3.2.3. Multivariate point processes. In almost all applications

in computer systems we are interested in interactions between
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stochastic processes occurring at different places in space and time.

We have given some examples above; additional examples are the
following:
(i) arrivals of requests to the several spindles of a disk
storage device;
(ii) times of occurrence of references to different programs in
multiprogrammed computer system;
(iii) times of job start and termination by region in a multi-

programmed computer system (Hunter and Shedler, 1977).

These examples are by no means exhaustive but illustrate
important applications. We shall discuss multivariate point pro-
cesses (Cox and Lewis, 1972) which we think of as point processes
in which qualitative marks associated with each event partition the
sets of events. Note that Brillinger's work (Brillinger, 1972)
encompasses more general situations. Cox and Lewis (1966, Ch. 8,
1972), Perkel, Gerstein and Moore (1966) and Brillinger (1972,
1975a, 1975b) discuss the analysis of multivariate point processes,

and we will make only general comments here.

a) Dependencies between two stationary processes are usually
handled via spectral methods, i.e., second-order cross-spectra
which when normalized give quantities called coherences. This
is Brillinger's approach. It is not at all clear, however, how
useful second-order spectra are for point processes (univariate
and multivariate), which are a long way from normal processes
in which the second-order spectra completely specify the
dependence.

b) There is a problem of specifying what kind of dependency
structures occur in multivariate point processes. We can, for
instance, generate many bivariate Poisson processes, i.e., bi-
variate point processes in which the individual (marginal) pro-
cesses are Poisson. Cox and Lewis (1972) give a start at
examining these structures; also see Lawrance and Lewis (1975)
and Oakes (1976).
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c¢) The above leads to questions of suitable models for multi-
variate point processes; Cox and Lewis (1972) address this in a
tentative way, but there is much more to be done. Mutually
exciting point processes (Hawkes, 1972) are being used, but are
not well understood and are, we believe, very untractable. Some
recent work (Lawrance and Lewis, 1977, Jacobs and Lewis, 1977a)
discussed below, when extended to multivariate processes, gives
promise of simpler models.

d) Spectral methods are only one of many tools for examining
dependencies in point processes and we have already expressed
our reservations about their use for this problem. There is a
paper by Cox (1972) which is important and offers techniques
based on likelihoods which need further exploration. They
might, in particular, be useful for analyzing dependencies in
non-stationary point processes such as considered by Lewis and
Shedler (1976). Note that spectral methods are not applicable

to non-stationary point processes.

e) Finally, the value of graphical data analytic methods should be
appreciated and their use explored before shotgun methods (e.g.,
spectral analyses) are used. This 1is particularly true in

: applications to computer system data since it is not completely

4 evident that there is always stable stochastic structure in tne

processes encountered.

An example of a very fruitful, simple graphical analysis of a
bivariate point process (discussed above) appears in Gaver, Lewis,
and Shedler (1974); the plot in Figure 3 is striking in that it con-
? sists (within statistical fluctuations) of two separate straight

! lines. The main thrust of the paper is to model this phenomenon. i

This illustrates the way data analysis should be used: to suggest

models or modify postulated models.
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4. MODELS AND MODELLING OF POINT PROCESSES IN COMPUTER SYSTEMS

In the previous section we discussed characteristics of point
process data observed in computer systems; here we discuss some
aspects of modelling point processes of this kind. One reason for
discussing modelling in this context is that the pecularities of
the data have, in a fairly insistent way, led us to develop the
new models described below. Why do we need new models, in particu-
lar, to describe the internal complexities of a computer system?
The physics and data analysis of the computer reliability problem
led to an important model (the Poisson cluster process) which has
application in many other contexts. There 1s, however, usually no
such physical imperative in the internal computer processes, and
the data analysis typically reveals enormous complexity which is
difficult to match to characteristics of the usual point process
models (e.g., cluster-processes, doubly stochastic Poisson processes,
etc.). Besides non-stationarity, which we ignore here, complexity
of the modelling is apparent from an analysis of data on the mar-
ginal distribution of times-between-events. In the analysis of
page exceptions given by Lewis and Shedler (1973), the marginal
distribution is found to be highly skewed and to have a discrete
component (Figure 1). None of the common point process models can
describe the marginal distribution of such data, let alone its
dependency structure.

Models for computer system performance evaluation have
the following requirements:

(i) First, there is a need for descriptive and structurally
simple point process models analogous to the linear pro-
cesses used in the usual time-series analyses (e.g., Box-
Jenkins techniques). These should be easy to fit to the
data, and simple to generate on a computer, since the models
are often used in simulation studies of computer system
performance.

(ii) Second, there is a need for models in which the marginal
distribution of times-between-events is specifiable in a

manner which is as independent of the specification of the

dependency structure of the model as is possible.
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With regard to the second point, the computer system data
studies described in this paper have made us aware of the extent to
which the usual point process models are primarily concerned with
the dependency structure of the model. (The analog in ordinary
time series analysis is that in defining linear models we usually .
assume that the random variables are normally distributed, or ignore
this aspect of the problem altogether.) The distribution of times-
between-events, however, is one of the most easily observed aspects
of a point-process, and can be just as informative as, say, the

i spectrum of counts. The estimated marginal distribution of the
page exception process given in Figure 1 has a discrete component
at x = 1024; this artifact of the data can be related in an in-
formative way to the paging process.

We describe now some recently developed stochastic sequences
which are useful as models for point processes. We intend no impli-
cation that the constructions are unique. The sequences do have
properties, however, which make them very useful in modelling point
processes in computer systems. In particular, the marginal distri-
bution of the variables is an integral part of the specification k

of the stochastic sequence.

4.1. Interval Models.

Univariate point processes can be described equally well
through the structure of the intervals between events {Xi} or the
counting process {N(t)}, where N(t) gives the number of events
in (0,t]. We discuss the modelling of the intervals {Xi} first.

4.1.1. The first-order autoregressive exponential model (EAR1). In

e

a Poisson process the intervals {xi} are independent and identi-
cally distributed (i.i.d.) with exponential ()\) distribution

Fx(x) =] - e-kx : A>O0; x>0 ., (4.1)

Several attempts have been made to generalize the Poisson process

by making the X, dependent, but with exponential or conditionally .

i
exponential marginal distributions (Cox, 1955). The simplest and
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only really successful attempt in the sense of broad applicability
(Gaver and Lewis, 1977), gives a process called the EAR] model,
derived from the following consideration.

A first-order autoregressive stochastic sequence is defined

by the stochastic difference equation

X, =pK, ., +€E . 1 =0,41,#2,...; |p|] <1, (4.2)
where the e, are assumed to be an i.1.d. stationary random
sequence. If the e, are normally distributed, so are the Xi.
What must the distribution of the €4 be in order for the Xi

sequence to be stationary with an exponential (}) distribution?
The answer is surprisngly easy (Gaver and Lewis, 1977).

Let 0 <p <1, and {Ei} be an 1.i.d. exponential (})
sequence. Now let €, be equal to zero with probability p and

i

equal to E, with probability 1-p, Then we have

i
pxi_1 probability o
X1 = (4.3)
pxi_l + Ei probability (1-p)
=0X , * ViEi ’ (4.4)

where {Vi} is an i.i.d. pinary sequence with Vs 1 with prob-

ability (1-p). Moreover if we let X = 0° and define X, as

in (4.3), the resulting sequence is stgtionary for i = O,If... .
The point process with the interval structure (4.3) is called
the EARL point process. It is a tractable model, and most of its
important properties are given in Gaver and Lewis (1977). 1In
particular we have that p(k) = pk. This model is in a sense
degenerate because it contains runs of X1 in which values are
exactly p times the previous value; it could, however, be a
reasonable model for point processes observed in computer systems

(e.g., inter-arrival times of requests to a storage subsystem) in
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which the intervals have exponential marginal distributions but are
dependent. Note that as defined the model can only provide sequen-
ces {Xi} with positive serial correlations. We can, however,
define the process to include negative correlations.

Simple generalizations of this Markovian exponential process

are the following.

4.1.2. The moving average exponential model (EMAk). We define

another stationary sequence {Xi}, using the {Ei} sequence above,

according to
X =E (4.5)

X =GB +DE ., 1el,...7 8<fcl, (4.6)

where {Ui} is an i.1.d. binary sequence in which U, =1 with
probability (1-g). This is a first order exponential moving aver-
age process (EMAl) (Lawrance and Lewis, 1977) which is one-dependent;

in particular
p(1) = B(1-B) ; (4.7)
p(k) =0, ) (SR N (4.8)

Properties of the EMAl process are given by Lawrance and Lewis (1977).

It is easy to see that we can make E in (4.6) a random

i-1
linear combination of Ei-l and E1-2 to get an EMA2 process, and
can continue the process back k steps to obtain an EMAk process.

In addition, by making E autoregressive over the previous E

i-k i’
we obtain a mixed kth order moving-average, first order autoregres-

sive process which we denote by EARMA(1,k).

4.1.3. The EARMA(1,1) model. Consider explicitly the case k = 1.
The first order moving-average and first order autoregressive pro-
cess EARMA(1,1) is given by

X, = BE, + UA, _, (4.9)

with

A (4.10)

Rad T Plgls? VeBuls
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This sequence of random

variables is not Markovian.
The second-order correlation structure of the process is given
by

p) = %1 ¢8,0) , (4.11)
where

c(B,p) = B(1-B) + p(1-B) (1-2B) . (4.12)

The point process whose intervals have the EARMA(1,1) structure is
discussed in detail in Jacobs and Lewis (1977a). In particular,

for B =1 it is a Poisson process. The process is very simple to
generate on a computer and is very useful for modelling dependent

sequences in queuing systems. It is possible to give an extenstion

to processes in which the X, are Gamma distributed, but not much

beyond this. In fact a nece:sary condition to ensure that we can
find an €y in the fundamental relationship (4.2) to give a
specified distribution F(x) for X, 1is that F(x) be
infinitely divisible.

We discuss now a possibly broader but more complex model for

point processes having a specified interval distribution.

4.1.4. The semi-Markov generated point process with fixed marginal

distribution. The question arises as to whether there are interval
processes {Xi} with exponential marginal distributions and
ARMA(1,1) second-order correlation structure and which cover a
broader range of correlation than the EARMA(1,1) process (though
perhaps at a cost of more complicated structure).

We discuss briefly one such process. It is a special case of
the semi-Markov generated point process introduced by Cox (1963)
and extended by Haskell and Lewis (1977). We first describe the
two-state semi-Markov generated model. In this model there are
two types of intervals with distributions Fl(x) and Fz(x).
sampled in accordance with a two-state Markov chain for which the

one-step transition matrix
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1 1
P = (4.13)
1-a2 02
and
( 1-a, l-a,
e 2-a,~a, * 2-a1—a2) ; (4362

When we form the point process we assume that no information is

available about the type of interval, i.e., that in the actual bi-
variate point process of transitions we suppress knowledge of the
type of transition. Then the distribution of an interval between

transitions (events) X1 in the stationary point process is

Fe(x) =m F,(x) + m,F,(x) (4.15)
and the correlation between Xi and xi+k is
gl » B i Al Tl (4.16)
where M 1s a positive constant and B = @, +a, - 1= al(l—az).

Thus the correlation structure is that of an ARMA(1,1) process. For
a derivation of this result see Cox and Lewis (1966), Ch. 7, 194-196,
Lewis and Shedler (1973) use this process to model the page exception
process. The problem is to deal with the mixture distribution
(4.15) for the marginal distribution of intervals; this seems to
limit the utility of the model.

To obtain an exponential marginal distribution, consider the

following device (Jacobs and Lewis, 1977a). Fix x,, where

0
0 < Xy < ®, and let
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< 1 -e
Fl(x) =
1 X > X, ;
\ 0’
(4.17)
0 Xf_xoa
-Fz(")' g
[ P
X
0
-lxo » %o 3
e

then Fx(x), the marginal distribution of an interval, is expo-

nential (1) if we set W, =1 - exp(-kxo). There is one degree

of freedom left in the matiix P; in addition to A, we have free
parameters T, (or xo) and a. What then is the range of B8,
and can it be negative?

Straightforward manipulation shows that

T -

8 - %—7—;—1 , (4.18)
which lies in absolute value between zero and one but can be
negative; therefore the serial correlations can be negative. Thus
the model appears to be broader than the EARMA(1,1) model. The
question of comparing the two models when B 1is positive has not
yet been explored; it requires higher order interval correlatioms,
as discussed by Brillinger (1972).

By letting Fl(x) and Fz(x) be a partitioning as in (4.17)
of any specified distribution F(x) we obtain a point process whose
marginal interval distribution is the specified distribution F(x)
(discrete, continuous or mixed), and which has ARMA(1,1) type
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second-order interval spectrum and known count spectrum. We note
that there is a choice of X0 which gives a geometrically decaying

p(k), but unlike the EARl process, the resulting process is not

Markovian.

b i e

By performing the same type of truncation on an n-state semi-

PRI

Markov generated point process (Haskell and Lewis, 1977) it is
possible to obtain a point process with specified marginal distri-
bution, almost any ARMA-type second-order interval correlation
structure (i.e., spectra which are ratios of polynomials in cos w)
: and known count spectrum, In fact this seems to be the only point

process model for which all these characteristics are known and

easily computable. Properties of this model have not yet been
fully explored. The one disadvantage of this model viz-a-viz the
exponential models described in the previous section is that, since

the model is not a probabilistic linear combination of random vari-

¥
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=
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ables, it is not easy to relate to intuitive considerations when
used in computer system models. We return to this aspect of the

! modelling below when we discuss multivariate point processes.

4.2 Models for Counts

It is not always possible to observe the exact times of events 4

in a point process and in fact,with respect to computer system data,
such data gathering can be very expensive. What is more usual is
to observe the counts of events in successive intervals of a fixed
length A, We denote the differential counts of events in succes-~
sive intervals by Ni' i=0,1,... . To model the {Ni} sequence
f we need, in general, models for dependent sequences of positive
valued, discrete random variables. Of course if we observe a
Poisson process the {Ni} are independent and Poisson distributed,
Otherwise, we know of no model, defined in terms of exact occurrences ;

of events, for which the characteristics of the N, process are

i
simple or known.

The modified semi-Markov generated sequence of Section 4.1.4

yields a simple model for counts by letting F(x) be a discrete
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distribution. It would be interesting to see how closely we can
approximate the differential count process «f a Poisson cluster
process this way.

An even simpler model for counts follows. Its main drawback

is that, as defined, only positive correlations are representable.

4.2.1. The discrete mixed autoregressive-moving average DARMA(1,N+1)

process. Although analogous in definition to the EARMA process,
this process is very different in structure and much broader. Let
the sequences {Ui} and {Vi} be as above, and {Ei} be an i.i.d.
sequence with any distribution II(x). Then the DAR1 process defined
by

i SuEhd by BT T

is a first-order Markov process in which the Ni have distribution
II(x). Since successive values of the Ni can be identical, the
model is useful for discrete valued processes such as the differ-
ential count process {Ni}' The process is a Markov chain with

transition probabilities

(1-p) w(R) for k # 2,

P{N = £|Ni = k} = P(k,R) =

i+l

p+ (1-p) (L) for k = 2.
Observe a difference from the usual Markov chain modelling. The
marginal distribution II(x) of the Ni is specified first and
then the dependency structure is specified by the single parameter
p. The model has the same drawback as the EAR1l model; the correla-
tions are all positive, although this is not an enormous drawback
when analyzing sequences of positive valued random variables.

It is possible to generalize the model to give a mixed moving-
average autoregressive dependency structure. This generalization
is the DARMA(1,N+1) model in Jacobs and Lewis (1977b, 1977c) defined
as follows:

Let {Yi} be a sequence of independent real valued random
variables having a common distribution w. Let {Ui} and {Vi}
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be indepeadent sequences of 1{0,1} random variables such that
P{uj=1t = 8 and P{v =1}l =p,

where B and p are fixed constants with 0 < B <1 and 0<p < 1.
Finally, let {Sn} be a sequence of independent random variables
taking values in {0,1,...,N} with distribution F, where N 1is

a fixed non-negative integer. Let

X, = uivi_s1 RSN et i e

where

Ag= VA L+ QY)Y i = -N,-N+l,... .

Perhaps the most interesting characteristic of the model is
that if we transform the variables Ni’ the resulting process has
the same dependency structure as the {Ni} process. This is because
the model is a mixture of random index model and each Ni is a
randomly chosen member of the {Ei} sequence. This model therefore
gives the ultimate in independence of the marginal distribution and
the dependency structure. In this and other ways it is very much
the analog of the normal linear processes.

Although we have introduced the DARMA(1,N+l) sequence as a
model for the differential count process, it has also been used in
Shedler (1977) to model sequences of event marks in multivariate
point processes. In this context, event types generally provide
qualitative information about the multiprogrammed processing of
jobs (e.g. job start, job termination, jobstream identity) whereas

event marks provide quantitative workload information.

4.3. Multivariate Processes and Systems Modelling.

The use of multivariate point process models in computer
system evaluation studies is quite recent. Hunter and Shedler
(1977) have defined particular marked multivariate point process
models and used them for the prediction of response times in multi-
programmed systems. To illustrate another approach, we discuss use

of the exponential processes EARMA(1l,k) to model a single-server
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first-come-first-served queue in which the service times and inter-
arrival times have exponential marginal distributions. We choose
this queueing structure for simplicity of exposition; it illustrates
the power of the random-linear structure of the EARMA(1,k) model in
modelling queues with dependence. Moreover, it is possible to use
the technique to incorporate realistic workload characteristics

into networks of queues used as models for the structure of computer
systems. We can also use the resulting bivariate process of

service and interarrival times as a model for a bivariate point
process or a highly correlated univariate process in which there

are quantitative marks associated with each event.

Let Si denote the service time for the ith arrival at the
queue, and Xi denote the time between arrival of the ith and
(i-1)st customer. If these are i,i.d. exponential random variables
with parameters A and a respectively, we have an M/M/1 queue.

Now for ‘1 %0,%Y, ), et {Ei} be exponential ())
and independent, and {e;} be exponential (o) and independent.

In addition the {Ei} and {El} sequences are mutually indepen-
dent. We want a queue with autocorrelated and cross-correlated
service and arrival times such that it gives the M/!f/1 queue as a
special case, and proceed as follows.

Let {Si} be an EARMA(q,k) process over (Ei"% E;,-% E;_l,...)
where ¢ =0 or 1, and k = 0,1,2,... . Then if xi=£i. i=0,
+1, +2, ... , we have that {Si} is EARMA(q,k) and also cross-
correlated with X, = Ei; although {Xi} is still a Poisson pro-
cess, {Si’xi} is a bivariate sequence of random variables with
exponential marginal distributions.

More general schemes are possible, but the above scheme has
the following simple interpretation. We have positive correlation
between Si and, most particularly, the previous k interarrival
times. If the Ej’ and consequently the xj, j=1, i-1,... , i-k-1,
are short, then S, will tend to be short. Thus this scheme models

i
the case where the server tends to speed up if the queue gets long.
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Investigation of such schemes in simple qucueing networks is
underway; see Jacobs (1977). In particular we know that correlation
does affect quantities associated with the queueing networks.
Specific analytic results are hard to obtain, but the simplicity

of the EARMA models makes it easy to simulate the queues. ’i

4.4, Conclusions

We have presented in this section a number of models for
positive valued time series with continuous or discrete ranges
which should be useful in modelling the interval or differential
count processes of point processes which occur in computer systems.
Although the models are not motivated by an underlying physical
structure, they have simple probabilistic structure, and therefore
should be convenient in modelling and simulating computer systems.
Their structural simplicity should also make them easier to fit
to data than most standard point process models. In particular,
the fact that the specification is in terms of easily measured
marginal distributions and second order autocorrelation properties
should make rough validation and fitting quite simple, More
detailed statistical methods are under development; see Jacobs
and Lewis (1977c). Differentiating among related models, for
example the three models having exponential marginal distributions
and ARMA(1,1) correlation structure, will probably entail use of

higher order interval and count spectra,
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