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ANALYSIS AND MODELLING OF POINT PROCESSES IN COMPUTER SYSTEMS

P. A. W. Lewis and C. S. Shedler

Naval Postgraduate School, Monterey, California 93940
IBM Research Laboratory, San Jose, California 95193

ABSTRACT

Models of univariate and multivariate series of events (point

processes) and statistical methods for the analysis of point pro-

cesses have diverse applications in the study of computer systems.

We review these applications, which include the analysis and pre—

diction of computer system reliability and the evaluation of coin—

puter system performance , with emphasis on the latter . In addition

J I 

we describe recent results in the development of methodology for

the statistical analysis of point processes. We point out that the

analysis of multivariate point processes is much more difficul t

than that of univar ia te  point processes , and that methodology has

only recently been developed In a perforce fairly tentative manner .

The applications to computer system data illustrate the need for

new data analytic methods for handling large amounts of data, and

the need for simple models for non—normal, positive multivariate

t ime series. Some starts in these directions are indicated .
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ANALYSIS AND MODELLING OF POINT PROCESSES IN COMPUTER SYSTEMS

P. A. W. Lewis and C. S. Shedler

Naval Postgraduate School, Monterey, California 93940
IBM Research Laboratory , San Jose, California 95193

1. INTRODUCTION

In this paper we review applications of models for univariate

and mult ivariate series of events (point processes) in computer

systems and statistical met~ods for the analysis of these point
processes. There are many examples of such series of events. Typi-

cal examples include the following:
(i) occurrences of system failure. These events may be typed as

“hardware” failures or “software” failures, giving a bivari—

ate point process . They may also be typed by the physical

part of the system in which the failure occurred ;
(i i)  arrivals of requests to a storage subsystem. These events

may be marked by an identifier of the requested record ;
(iii) occurrences of exceptions in a system having hierarchical

storage. These events may be typed according to the level
of the hierarchy at which required information is found .

The applications to computer system problems of point processes

• methodo l ogy have been to computer system reliability and to computer

system performance evaluation. In Section 2 we review these appli-

cations, with  emphasis on the very broad area of performance

September 5, 1977
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evaluation . What emerges is the need for new data ana lyt ic  methods

for the particular problems encountered , and the need for simple
• models for positive multivariate time series when the data analysis

is used to suggest models or modify postulated models . Some recent

results in the development of methodology for statistical analysis

of point processes are described in Section 3. A final section

indicates some starts on the development of some new and particularly

suitable models for non—normal t ime series .

2. POINT PROCESSES OCCURRING IN COMPUTER SYSTEMS

2.1. Computer System Reliability

We describe first an application of point process methodology

• in computer system reliability studies, namely the analysis and

modelling of computer failure patterns.

2.1.1. Computer system failure patterns. The earliest application

• of point process methodology to problems associated with computer

systems is the analysis and modelling of computer failure patterns

given by Lewis (1964a). A primary motivation for the construction

of computer failure models is to analyze data from operationalr systems and to find ways of comparing and perhaps improving the

reliability of existing systems . Prediction and optimization of

the reliability of future systems is a second motivation.

Reliability models for complex systems which were current in

1964 predict that the failure pattern of a computer system should

form a Poisson process. This model is derived from the assumption

that the failures in each component position constitute independent

renewal processes. The failure pattern of the system is then formed

from the pooled failures of the components. Under the stochastic

assumptions that are made , it is known (Cox and Sinith , 1954) that

the pooled series of events will be indistinguishable from a Poisson

process over periods of time which are short compared with the mean

times—to—failure of the components. The data presented by Lewis

(l964a) show , however , that  the times—between—failures of large

2



computer syst ems are not exponential ly distributed and tha t success—

lye t imes—between—failures are correlated . Physically the observed

clustering of failures and the resulting departures from a Poisson

process arise from imperfect repair, i.e., because failed components

are not always located and removed the first time they cause system

failure, nor are the failed components always needed for correc t

system operation . Subsidiary system failures are then induced a
• short time later.

The Lewis ( 1964a) paper deals with the developmen t of a model

(the branching Poisson process) for computer failure patterns which

accounts for the observed departures from a Poisson process. The

probabilistic properties of the odel. are derived and used to

analyse three series of computer failures (consisting of 109, 186,

and 255 events respectively). Lewis (l964b) discusses implications

• of the model for the use and maintenance of computer systems.

We describe the branching Poisson process model briefly; in

the model times between original failures of components constitute

a main process (X
i
) . At each point of this process an attempt is

made to locate and repair the failure, the attempt succeeding with

fixed probability, independently of other attempts to repair main

failures. Otherwise the failure recurs at times Y1, Y1
+Y2, ...

~~~ after the initial occurrence. Thus, S+l unsuccessful

attempts are made in all to locate and remove the source of the

computer failure. The computer failure pattern is then the super-

position of the events in the main process and the events in the C

• subsidiary processes which the main events generate . The {X1
) are

assumed to be independent, identically and exponentially distributed

r and the intervals Y~ in the si~ sidiary processes are assumed to be

mut ually independent and identically distributed. The branchiag
• Poisson process model is also called the Barlett—Lewis cluster pro-

cess or a Poisson cluster process . Properties of the model have

been developed by several authors; see e.g., Lewis (1969) , Oakes

(1975).
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The result of the statistical analysis given by Lewis (l964a)

is the demonstration that the differing rates of failure in the three

systems under study is due to the adequacy or inadequacy of the main—

• tenance on each system. This was done by estimating (rather crudely)

the rate of failures in the main Poisson process and the expected

number , E(S+l), of unsuccessful attempts to fix an original failure.

Then E(S+1) measures the adequacy of the maintenance of the system.

We know of no advance in the statistical analysis of Poisson cluster

processes since the Lewis (l964a) paper.

• 2.2. Computer System Performance Evaluation

Because of the complexity of existing and proposed computer

systems, detailed measurements of running systems are needed in order

to develop system models. This measurement and modelling comprises

just one facet of computer system performance evaluation. Ultimate

goals of performance evaluation include tuning of existing systems

• and prediction (usually via simulations) of the performance of pro—

posed systems. For example, it is desirable to have an airline

reservation system which is efficient from both the customers’ and

airline’s points of view in the sense that it should respond quickly

and reliably at a reasonable cost.

Given the complexity of computer systems and the resulting

relative difficulty of carrying out meaningful performance evalua-

tions and designs, the collection and analysis of measurement data

from representative systems to identify and characterize significant

performance phenomena is necessary. The availability of such meas-

urements presents the possibility of obtaining thereby empirically

valid, parameterized mathematical models for the workload of the

• system. For performance evaluation studies, in addition to workload

or program behavior models, the analyst needs a model for the corn—

puter system or subsystem structure and frequently uses a network of

queues as a system model. Such networks provide a convenient means

of representing the interaction between the processing and input—

output resources of (multiprogrammed) computer systems and sub-

systems. There is a large literature dealing with queueing network

models; see e.g., Gayer (1967), Lewis and Shedler (1971), Buzen
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(1971), Moore (1971), and Lavenberg and Shedler (1976). Under the

• usual convenient , but not necessarily realistic , queueing—theoretic

assumptions (e.g., independent and identically , often exponentially ,

distributed service times) analyses of queueing network models

based on a “numbers—in—queue” state space can be carried out; see

Jackson (1963), Baske tt , Chandy, Muntz and Palacios (1975), Raiser

• and Kobayashi (1975), Kelly (1975), (1976) and Gelenbe and Muntz

(1976). These analyses yield expressions for stationary queue length

distributions that can be evaluated numerically to provide measures

of system performance such as device “utilizations” and job “through-

put.” All these models use global assumptions of independent; measure-

ments usually indicate, for example, that interarrival times are

• correlated and incorporating this dependence in the model will some—

times give very different results; see, for example, Jacobs (1977).

r Other measures of system performance (calculated as sums of

queueing times) involve the distribution of times for a job to

traverse a portion of the network. These times (in closed networks j ~complete circuits or loops, and in open networks times from source

to sink) are often interpretable as job “response t imes” and these
response times are likely to be particularly sensitive to workload

characteristics. Analyses based on the numbers—in—queue state

space yield expected values for response times, but do not yield

other characteristics of interest such as percentiles or quantiles.

Since alternative analyses to provide these characteristics are C

in general not available, it is necessary to undertake simulation

studies of the queueing networks. Such simulations, and indeed

simultatlons of more complex queueing networks under more realistic

stochastic assumptions, are inherently difficult , and are likely to

be time—consuming and costly to carry out.

We describe three applications of point process methodology

in computer system performance evaluation: analysis of page excep—

tions in a two—level memory, analysis of exceptions in a three—

level storage hierarchy, and analysis of transaction processing in

a data base management system.

L • •• . . • •~~
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• 2.2.1. ~~~~~~~~~~~~~~~~~~~ two—level memory . The following br ief

description provides the computer system context for the discussion

of page exception processes given below. We consider a system whose

memory resource (for storage of information) comprises a main memory

and an auxiliary memory, and assume that main memory is the execution

store, i.e., only information that is resident therein can be pro-

cessed. We also assume that the auxiliary memory is large enough to

hold all ir~formation required by a program which is to be processed.

When such a system operates in a so—called paging environment,
units of equal size called pajes partition all of the information

that is explici’ly addressable by the single processor (central

processing unit). Similarly, page—size sections called page—frames

partition main memory . It is possible to execute a program by

supplying it with only a few page—frames of main memory, as follows.

When the page containing the first executable instruction has been

loaded into some page frame, execution begins and continues until

the program requires some information not found in main memory. The

operating system fetches the page containing the missing information

from auxiliary memory (overwriting some page currently in main

memory), and execution of the program continues, and so forth. In

dem and paging, information enters main memory only as a result of

an attempt (detected by the system hardware) to use information not

currently in main memory. A page exception is an instance of this

implicit “demand” for a page which is not in main memory . When

dealing with large programs or in a multiprogramming mode in which

main memory is shared among several programs it is usually the

case that main memory is filled when the system must fetch another

page from auxiliary memory. Consequently, it is necessary to choose

a page frame in main memory to be overwritten. The replacement

algorithm is the rule governing this choice. Most of the time,

before overwriting the chosen page frame, the system must save the

content of the page frame. (See Lewis and Shedler (1971) for an

analysis of aspects of resource contention in multiprogrammed

demand paging systems.)

6 
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The frequency and pattern of page exceptions ~trong1y influ-

ences the pcrEormance (in fact , the feasibility) of a demand paging

system. Accordingly, th e study of page reference patterns aud page

exceptions (as a function of page size, main memory capacity, and

• replacement algorithm) is of interest to the system designer who

must determine pertinent system resources and select system control

algorithms and parameters; in particular he would like to choose

a page size, replacement algorithm and main memory capacity so as

(in uniprogrammed mode) to minimize the (long—run average) page

• : exception rate . Thus it would be useful to know the stochastic

structure of the reference process.

We can study several related stochastic processes in order to
• characterize page reference patterns:

• (i) reference strings {R.}, I.e., sequences of page references,

where R. is the page referenced by the program at time i.

We can think of these as a multivariate point process (Cox

and Lewis, 1972) in discrete time, the multivariate aspect

• being that the events (references to a page) which occur at

each time instant i are of several types (different pages);

(ii) distance strings fD
1
}, e.g., sequences of stack distances

for least recently used (LRU) replacement, as defined in

Mattson, Gecsei, Slutz and Traiger (1970), where D
i 

is the

total number of distinct pages referenced since the last

reference to R .;
1

(iii) the point processes corresponding to page exceptions for

various (fixed) main memory capacities c, i.e. (discrete)

times i at which D
i 

exceeds the main memory capacity.

Denote this process by {T~(c);J=l~2~ ...}~ where T~(c) is

the time of the jth page exception in memory of capacity c.

As c increases, fewer page exceptions (under LRU replace-

ment) occur ; does this thinning result in a Poisson process

when c is large?

It is not necessarily simple to go (probabilistically) from

one of these representations to another. It may , of course, be

7
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that one of the representa t ions  Is Inor&~ convenient than any of the

others in a particular application . The distance string represen-

tation {D
1~ 

suppresses page names, which may be advantageous in

that the process should be more nearly stationary than the process

{R
1
}.

The Lewis and Shedler (1973) paper describes analysis and

modelling of page exceptions as a univariate, unmarked point process.

• The available data consists of the reference string (R
i
), a sequence

• of approximatel~ 8.8 million references to some 517 distinct 4,096

(4K) byte pages for a particular (relatively small) program. From

the reference string, the distance string was derived , and in turn

the sequence of times (in number of references) between page excep—
• tions for each of several main memory capacities. For the smallest

-: : main memory capacity, some 1807 page exceptions occur; for the

largest capacity, 517 page exceptions occur. The voluminous nature

of this data is characteristic of computer system data.

The initial basis for the analysis and modelling is available

theory on rare events and thinning of point processes (Daley and

Vere—Jones, 1972 , Section 5.3) suggesting that these relatively

rare events (page exceptions) should form approximately a Poisson

process. An analysis of the data was undertaken to confirm or re-

ject and extend the model. The analysis shows quickly that the

Poisson model for page exceptions is grossly inadequate. A direct
• examination of the distance string, as well as a spectral analysis,

indicates the presence of an alternation or two—state phenomenon

(a consequence of so—called locality of reference), and on this

basis a two—state univariate semi—Markov generated point process

model (Cox, 1963, Cox and Lewis, 1966, Ch. 7) for the process of
• page exceptions is formulated and found to characterize the data

-

• 
adequately. Unfortunately fitting this model to the voluminous

available data is not simple, partly because the marginal distri—

bution of times between page exceptions is a mixture of a discrete

random variable and a very skewed continuous random variable; see

Figure 1. We feel that some of the new models described in the

8
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section of this paper are more appropriate for this data than the

univariate semi—Markov generated point process .

2.2.2. Exceptions m a  three—level storage hierarchy. A demand—

paged computer system may have a more general hierarchy of storage
than the two—level structure described above. In particular, it

may also have a very large store (a mass store) for data which is,

hopefully, infrequently needed. An analysis of exceptions in such

a three—level storage hierarchy, managed under LRU (least recently

used) replacement and in which data is staged between intermediate

levels (cf. Slutz and Traiger, 1972) , is given by Gayer, Lewis and
Shedler (1974). Units of equal size called blocks, each of which

is further divided into units of equal size called pages, partition

the explicitly addressable information in the system. Similarly,

page size sections called page—frames partition level 1 of the

storage hierarchy (the execution store), and block—size sections
called block—frames partition levels 2 and 3 of the hierarchy ; see

Figure 2. Two types of exceptions occur here, “hits to level 2”

and “hits to level 3,” respectively.

In a hierarchy such as this encountered in practice, the
number of hits to level 2 is typically several orders of magnitude

larger than the number of hits to level 3. In the Gayer, Lewis
and Shedler (1974) paper the available trace data consists of some

34.7 million references to 166 distinct 32,768 (32K) byte blocks;

there are several hundred hits to level 3, but hundreds of thousands
of hits to level 2 for given pairs of capacities of levels 1 and 2

of the storage hierarchy . Thus, a complete description of the bi—
r variate exception process consists of hundreds of thousands of

interval and point—type pairs.

Such a voluminous amount of data is not only difficult to

comprehend, it is also expensive to manipulate. As a result, the

statistical analysis and modelling is based on sequences {Y~)

and {N(Y~)1~~ respectively the intervals between successive hits
to level 3, and the counts of hits to level 2 between success ive

10

• S - — • • 

- 
• • •



- -

.1

F capacity c1I Level 1 (in pages)

• page size b1
(in bytes) 

_____________________

Level 2 CapaCity C
2

] (in blocks)

block size b2
(in bytes)

Level 3

I-

FIG. 2.

Staging of data in a three—level storage hierarchy.
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hits to level 3. The starting point of the anaiysis is a set of

scatter diagrams of points in the [Y ,N(Y)J plane. These scatter

diagrams reveal the apparent existence of two distinct kinds of

referencing behavior. The capacities of levels 1 and 2 of the

storage hierarchy, in pages and blocks, respectively, are denoted
by c

1 
and c

2
; together with b

1 
and b2, respectively,  the page

size and block size in bytes , these are the basic hierarchy parameters.

For each pair of capacities c
1 

and c
2 

a striking two—line rela—

• tionship is observed in the graphical display ; see Figure 3. Points

in the (Y ,N(Y)1 plane appear to be of two types, and for each of
the two types, points of that type cluster about a straight line

• (through the point Y = 1, N(Y) 0). The analysis and modelling

• in the Gayer, Lewis and Shedler (1974) paper proceeds from this

• observed double—linearity.

2.2.3. Transaction processing in a data base management system. A
- 

• data base management system provides access for many users to a

(typically very large) data base managed by a computer system. Air—

• line reservations systems, banking and inventory systems are familiar

examples. Such a system should respond to a query in a reasonably

short time, given the number of users and the nature of the user

environment. This should also be accomplished as economically as

possible, taking into account direct customer (waiting) costs and
computer system resource utilization. These two criteria, fast
response and low cost, are in general antithetical.

The Lewis and Shedler (1976) paper deals with methods for the

examination of nonstationary univariate point processes which can
r be applied to obtain a graphical and mathematical description of

the behavior of a running data base management system. Such a
• description provides a useful starting point for studies aimed at

workload characterization , a central problem in performance evalu-

ation of data base management systems. Stochastic models of the

kind obtained by Lewis and Shedler (1976) have application to the

detailing of proposed (e.g., queueing network) system models and

to the validation of such system models.

12
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The analys is by Lewis and Shedler (1976) is of da ta ob tained
from an IMS (Information Management System) data base management

system. IllS (IBM Corp., 1973) is a processing program for the
implementation of large data bases accessed in common by several
applications. The IMS program executes under the operating system
of the c mputer system , and users can access the total data base
from remote terminals by entering messages called transactions.

A par ticular transac tion uses, and thus uniquely identif ies, an
application program which processes the message (transaction) and

accesses the data base. Data Language/I (DL/I) is the data manage-

ment facility of IMS. The execution of an application program gives
• rise to a sequence of calls to the DL/I component of INS. In a

• computer system running INS , the operating system occupies a portion
‘S 

of memory. The IMS program also occupies a portion of memory.

Application programs reside in secondary storage in an application

program library. For execution an application program must be

loaded into one of several (typ ically three or four) regions in
memory called message processing regions. The data base resides

• in secondary storage, and in response to transaction initiations,

data enter memory for processing.

The data on the processing of transactions in the Lewis and

Shedler (1976) paper was obtained from a computer system running
IMS for production control; entry of data into this system is on—

• 

*
.~ line and governed by the occurrence of events in the production line.

The epochs of time at which individual DL/I calls were completed

(i.e., control returned to the application program) were Lecorded ,

along with information sufficient to identify the initiation times

of individual transactions.
In analyzing the transaction initiation data, there are a

number of prior assumptions that can be made about the data to
serve as a starting point. The purpoBe of the data analysis is
to confirm these assumptions or to point to suitable modifications.
Since the data was taken over six whole days (typically some
25,000 transac tions per day) , a time—of—day effect would be expected

14
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as ac t i v i t y  builds up through the working day and then declines

during the evening. Thus any kind of initial analysis based on an

assumption of stationarity is inappropriate. The usual null model

is a non—homogeneous Poisson process; this could be reasonable

since the transaction initiation process is a superposition of in—

puts from a number of sources (users). Because each user’s activity

r is likely to consist of a (random) number of transactions after

t . initial sign—on, some clustering in the data might be expected. An

appropriate model here is the non—homogeneous branching Poisson

process or Poisson cluster process (Levis, 1967). In this process

an initial primary (main) event generates a finite sequence of

secondary (subsidiary) events; the complete process is then the

superposition of the primary and secondary events, where a non-

homogeneous Poisson process generates the main events. If there

are enough primary events (high—activity) so that the number of

active secondary processes is large, the process is hard to dis—

• tinguish from a non—homogeneous Poisson process.

Starting from these assumptions, the analysis of the data
proceeds as follows. A very rough, model—free procedure gives an
estimate of the rate function for the transaction initiation process

over the whole day. On the basis of this trend analysis, relatively
homogeneous high- and low—activity periods during the day are se—

lected, and an attempt is made to verify the non—homogeneous Poisson

process model or the cluster process model. Based on this local

analysis and modell ing of the transaction initiation process, more

formal model—dependent procedures are applied to the transaction

race function I or the several days. The Poisson assumption is found

to be reasonably valid for high—activity periods; clustering becomes

more evident in low—activity periods.

3. STATISTICAL ANALYSIS OF POINT PROCESSES IN COMPUTER SYSTFI4S

3.1. The Nature of Computer System Data

There are five important characteristics of data obtained

during the measurement phase of computer system performance studies.

15
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(i) The amounts of dala available are staggering; often several

• sequences or series of events are observed for times pro—

ducing millions of observations.

(ii) The times—between—events are often overdispersed relative

to an exponential distribution, and in many cases contain

discrete components.

(iii) Statlonarity is often not a reasonable assumption; frequently

when stationarity is reasonable it is because there is

random switching back and forth between several possibly
stochastic modes.

• (iv) There are many situations in which there are fairly gross
inhomogeneities in the data ; these can usually be tied to

ex ternal variables such as the number of users of the system,
- • 

or to the t ime of day.

(v) Sometimes the data suggests that there may simply be no

stochastic regularity involved. Of course, it could be that,

in line with (iii), not enough time is involved to show
emergent patterns.

As a consequence of (v) there is a procedural difficulty.

Consider starting a rough exploratory analysis of a series of events

by smoothing the data to obtain a graph of the event rate over time.

Suppose we observe that over the first 100,000 events the rate is

fairly constant and that beyond this it changes, a phenomenon which

can be seen by eye and validated by simple statistical methods,
Should we analyze the data in two parts , and if so, how do we
characterize the process in toto? Should we take more data and

hope to distinguish “all” the possible stochastic modes?
On the other end of the scale , when we examine the apparently

stationary segments of the data, questions of more microscopic
stationarity sometimes arise. This is reminiscent of the self—

similarity concept for physical data put forward by Mandelbrot (1967).

An unfortunate consequence of all of the above is that we can

seldom sample the data over time to achieve some compression. Even

in the best of circumstances , intelligent use of sampling techniques

16
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requires well—formulated questions ; the tendency in computer system

measurement often is to feel tha t if an enormous amount of data is

collected , It wi]l be possible to answer any question that may

arise!

3.2. Recent Developments

Lewis (1972) summarizes some of the recent developments in the

statistical analysis of point processes; see also Cox (1972) and

N Brown (1972). There is also a book on point processes by Snyder

(1975) and a sequence of papers by Brillinger (l975a, l975b).

Brillinger bases his work heavily on spectral methods for stationary

processes and his work has many points of contact with that of Cox

and Lewis. But Snyder (1975) does not reference any of Brillinger’s

papers , and does not reference Cox and Lewis (1966). What then is

the point of contact between these lines of development in the

analysis of series of events?
The work of Cox and Levis and that of Brill inger are fairly

• complementary. The former Is highly data analytic in the sense
that there is concern with validation of assumptions and models and

analysis of trends; the latter is concerned mainly with spectral

methods for stationary (univariate and multivariate) point processes

based on models such as self—exciting point processes (Hawkes, 1972,
Hawkes and Oakes, 1974) which lend themselves easily to spec tral
methods. Snyder (1975) bases his statistical methods almost entirely

on likelihood analysis, a strong assumption that the stochastic

mechanism generating the series of events is known and that it is

possible to write down the “sample—function density.” We have

doubts that this approach will be useful in analyzing data from

computer systems, in particular since for this type of data there do

not appear to be any compelling physical models other than, in some

cases, Poisson and Poisson cluster processes.

Consider now some specific areas of development.

17



pr • ‘ ‘~~~~~~~~~r — — r  •— - - •  - • • • —~ • - - — ~~-~~--——- — ,—•• -—— - ~~~~~~~~~~~~~~~~~~~ _ r
~~~~~~ ’-~~~~

_ -_ - —~~~ 
— -

3.2.1. Trend analy~ is and detr endin~ of polnt processes . In many

fields of application , and particularly In computer system data, It

has become increasingly apparent that stationary point processes

are at best a convenient mathematical fiction. Most data exhibit

fairly subtle trends and methods for testing for these trends are

known (Cox and Lewis, 1966 , Ch. 3); other data, however, exhibit
gross trends, e.g., time—of—day effects in the series of arrivals
at a queue, and techniques for the analysis and characterization

of such data are only now beginning to be developed.

The situation is analogous to that in ordinary regression

analysis and time—series analysis where we might want, for example,

to estimate parameters in an assumed (linear) function for the mean ,
• test the model for the mean function and then examine the model

which is assumed for the residuals. The latter could include

examining the residuals to test for independence, estimating the

spectrum of the residuals and testing the assumed normality of the

residuals. Techniques for these problems in the linear normal model

are known (see e.g., Hannan, 1970).
By comparison, in point processes we might want to:

(i) estimate the rate function A(t), using either specific

functional models or smoothing techniques;

(ii) test specific functional models for A(t);

(iii) detrend the point process, examine the ‘residual ’ process
and test the usual hypothesis that the events are generated
by a homogeneous Poisson process.

When dealing with non—homogeneous Poisson processes , the most
appropriate detrending technique (Lewis, 1970, 1972) seems to be to 

•

transform the time—scale so that the ith event occurring at t ime

t~ now occurs at time

t
r i = f ~ A(u)du ,

0

where A ( t )  is some estimate of the rate function A ( t ) . Note that

if A(t) is known, the (T
i
} process Is a Poisson process of
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rate one. When \ ( t)  i~ est imate d f r o m  the data , the d i st r ibu—

tional problems associated with determining properties of the {1 j }

process are difficult.

Results for estimating parametric rate functions are given by
Cox (1972) and Lewis (1972). These methods are developed by Lewis

and Shedler (1976) and applied to the statistical analysis of
transaction processing in the data base systems. It is probably

best to deal with fairly regular point processes by using log trans—

forms of the intervals between events and then using ordinary time—

• • -~~
- series methods (Cox and Lewis , 1966 , Ch. 3). It is still difficult

to deal with non—homogeneous processes which are overdispersed

relative to a Poisson process, e.g., a non—homogeneous Poisson

cluster process; some work has been done by Levis and Robinson
(1974) .

~~ 1 3.2.2. Spectral analysis of point processes. By spectral analysis

of a point process (Barlett, 1963) we mean the second—order spectrum

of the counting function N(t) of the point process (the count

spectrum). Brillinger (1972) has put this spectral analysis on a

firm footing in the context of a general spectral theory for sta—
• tionary interval functions such as N(t). He has also proposed

the use of higher—order spectra .
We can think of the spectral analysis of a point process as

an ordinary second—order spectral analysis of a function dN(t)

which is a series of delta functions occurring at random times

the times—to—events; see Lewis (1970) for a heuristic interpretation .

Note that the second—order count spectrum completely specifies a

renewal process. This spectrum, g+(w), is, in fact, essentially
the Fourier transform of the renewal density or the intensity func—

- 

• 
tion. Note that this spectral analysis is not a second—order

spectral analysis of the intervals between events X~ Ti 
— Ti_ 1.

The latter spectrum, denoted by f
+

(w) , is useful for differentiating
between renewal processes (for which it is flat) and non—renewal

point processes. The spectrum of intervals may, in fact, be

19
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preferable to hi gher—order spectra of counts (Britlinger , 1972) in

that it should exhib It fewer sampl ing fluctuations ; in general our

feeling is tha t a spectral analysis of the counts and the intervals
should be tried befora going to higher order spectra. The esti-

mated spectrum of intervals f
+

(w
~ 

for the page exception process

of Lewis and Shedler (1973) is shown in Figure 4. The underlying

spectrum ç(w) is clearly not flat (i.e. equal to 2 for all w)

so that the process is neither a Poisson process nor a renewal

process. The spectrum of a mixed moving average—autoregressive

process (ARMA(l,l) ),  where the orders of the moving average
and the autoregression are both one, fits the estimated spec trum
well. We return to this in the next section; the two—state semi—

Markov generated point process model used by Lewis and Shedler (1973)
and several of the models defined in Section 4 have this spectrum.

The fitted interval spectrum is shown in the figures The estimated

spectrum of counts, along with the fitted spectrum of counts of

the two—state semi—Markov generated point process for the page ex-

ception process data of the Lewis and Shedler (1973) paper are

shown in Figure 5.

One drawback to the spectral analysis of point processes is

the large amount of time required for computation of spectral esti-

mates. Only recently have French and Holden (1971), in an important
paper , found a way to use the fast Fourier transform (FFT) in this
contqxt . There are some problems with this technique, e.g., it is

not bias—free but it appears to be of great value.

We shall return to Brill inger ’s higher—order count spectra in
the discussion of new models. In most cases involving computer

system data there is a problem in applying spectral techniques

because of lack of stationarity. Used with care, however , spectral

techniques can indicate a switching of levels or some kind of quasi—

cyclic behavior in a system (see e .g., Lewis and Shedler , 1973).

3.2.3. Multivariate point processes. In almost all applications

in computer systems we are interested in interactions between

20
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stocti~istI processes .i t -urr ing at diffL rt~nt places In  space and time .

We have given Homt~ exa m p ics above ; additiona l examples are the

following :

(i) arrivals of requests to the several spindles of a disk

storage device;
• 

- (ii) times of occurrence of references to different programs in

multiprogrammed computer system;

(iii) times of job start and termination by region In a multi—

programmed computer system (Hunter and Shedler , 1977).

These examples are by no means exhaustive but illustrate \

important applications. We shall discuss multivariate point pro—

cesses (Cox and Lewis, 1972) which we think of as point processes

in which qualitative marks associated with each event partition the

sets of events. Note that Brillinger’s work (Brillinger, 1972)
encompasses more general situations. Cox and Lewis (1966, Cli. 8,

1972), Perkel, Gerstein and Moore (1966) and Brillinger (1972,

1975a , l975b) discuss the analysis of multivariate point processes,
and we will make only general comments here.

a) Dependencies between two sta tionary processes are usually

handled via spectral methods, i.e., second—order cross—spectra

which when normalized give quantities called coherences. This

is Brillinger ’s approach. It is not at all clear, however , how

useful second—order spectra are for point processes (univariate

and multivariate), which are a long way from normal processes

in which the second—order spectra completely specify the

dependence.

b) There is a problem of spec ifying what kind of dependency
structures occur in multivariate point processes. We can, for

instance, generate many bivariate Poisson processes, i.e., bi—

variate point processes in which the individual (marginal) pro—

cesses are Poisson . Cox and Lewis (1972) give a start at

examining these structures; also see Lawrance and Levis (1975)

and Oakes (1976) .
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c) The above leads to questions of ~uttab 1e models for multi—

variate point processes; Cox and Lewis (1972) address this in a

tentative way , but there is much more to be done. Mutually

exciting point processes (Havkes, 1972) are being used, but are
not well understood and are, we believe, very untractable. Some
recent work (Lawrance and Lewis, 1977, Jacobs and Lewis, l977a)
discussed below, when extended to multivariate processes , gives

promise of simpler models.

d) Spectral methods are only one of many tools for examining

• dependencies in point processes and we have already expressed

our reservations about their use for this problem. There is a

paper by Cox (1972) which is important and offers techniques
based on likelihoods which need further exploration. They

might , in particular, be useful for analyzing dependencies in
non—stationary point processes such as considered by Lewis and
Shedler (1976). Note that spectral methods are not applicable

to non—stationary point processes.
I’

e) Finally, the value of graphical data analytic methods should be

• appreciated and their use explored befo:e shotgun methods (e.g.,

spectral analyses) are used. This is particularly true in

applications to computer system data since it is not completely
evident that there is always stable stochastic structure In tne

processes encountered.

An example of a very fruitful, simple graphical analysis of a
bivariate point process (discussed above) appears in Gayer, Levis,
and Shedler (1974); the plot in Figure 3 is striking in that it con—

sists (within statistical fluctuations) of two separate straight

lines. The main thrust of the paper is to model this phenomenon .

This illustrates the way data analysis should be used: to suggest

-
• models or modify postulated models.

H 24
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4. MODELS ANI) M ODF L LI N C OF POIN T PROCESSES IN COMPUTER SYSTEMS

In the previous section we discussed characteristics of point

process data observed in computer systems ; here we discuss some

aspects of modelling point processes of this kind . One reason for

discussing modelling in this context is that the pecularities of

the data have, in a fairly insistent way, led us to develop the

new models described below . Why do we need new models, in particu—

lar, to describe the internal complexities of a computer system?

The physics and data analysis of the computer reliability problem
led to an important model (the Poisson cluster process) which has

application in many other contexts. There is, however , usually no

such physical imperative in the internal computer processes, and

the data analysis typically reveals enormous complexity which is

difficult to match to characteristics of the usual point process
- • models (e.g., cluster—processes , doubly stochastic Poisson processes ,

etc.). Besides non—stationarity , which we ignore here , complexity
of the modelling is apparent from an analysis of data on the mar—

ginal distribution of times—between—events. In the analysis of

page exceptions given by Lewis and Shedler (1973) , the marginal

distribution is found to be highly skewed and to have a discrete

component (Figure 1). None of the common point process models can

describe the marginal distribution of such data, let alone its

dependency structure .

Models for computer system performance evaluation have

the following requirements:
(i) First, there is a need for descriptive and structurally

simple point process models analogous to the ltnear pro—

cesses used in the usual time—series analyses (e.g., Box—
I

• Jenkins techniques). These should be easy to fit to the

- 
•

: data, and simple to generate on a computer, since the models

are of ten used in simulation studies of computer system

performance.

(ii) Second, there is a need for models in which the marginal
distribution of times—between—events is specifiable in a

manner which is as independent of the specification of the

dependency structure of the model as is possible.

25
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With regard to the second point , the computer system data

studies described in this paper have made us aware of the extent to

which the usual point process models are primarily concerned with

the dependency structure of the model . (The analog in ordthary

time series analysis is that in defining linear models we usually

assume that the random variables are normally distributed , or ignore

this aspect of the problem altogether.) The distribution of times— 
. 

-

between—events, however , is one of the most easily observed aspects
of a point-process, and can be just as informative as, say , the

spectrum of counts. The estimated marginal distribution of the

• page exception process given in Figure 1 has a discrete component

at x = 1024; this artifact of the data can be related in an in-

formative way to the paging process.

We describe now some recently developed stochastic sequences

which are useful as models for point processes. We intend no impli—

cation that the constructions are unique . The sequences do have

properties, however, which make them very useful in modelling point

processes in computer systems. In particular, the marginal distri-

bution of the variables is an integral part of the specification

of the stochastic sequence.

4.1. Interval Models.

Univariate point processes can be described equally well

through the structure of the intervals between events {x 1) or the

counting process {N(t)}, where N(t) gives the number of events

in (0,t]. We discuss the modelling of the intervals {x~
) first.

4.1.1. The first—order autoregressive exponential model (EARl). In

a Poisson process the intervals (x1) are independent and identi—

cally distributed (i. i .d . )  with exponential (A) distribution

• Fx (x) — 1 — e~~~
C 
, A > 0; x > 0 . (4.1)

Several attempts have been made to generalize the Poisson process

by making the X
1 

dependent, but with exponential or conditionally
exponential marginal distributions (Cox, 1955). The simplest and
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only really successful attemp t in the sense of broad applirability

(Gayer and Lewis, 1977), gIves a process called the EARl model,

derived from the following consideration .

A first—order autoregressive stochastic sequence is defined

by the stochastic difference equation

X~ = pX~~1 + 
, 

I — O,±l,±2,...; I~ I < 1 
, 

(4.2)

where the are assumed to be an i.i.d. stationary random

sequence. If the L~ are normally distributed , so are the X~.
- 

- What must the distribution of the c~ be in order for the

sequence to be stationary with an exponential (A) distribution?

The answer is surprisngly easy (Gayer and Lewis, 1977).

Let 0 < p < 1, and (E
1
} be an i.i.d. exponential (A)

sequence. Now let L
1 

be equal to zero with probability p and

• 
equal to Ei 

with probability 1—p. Then we have

probability 
~

X~ = (4.3)
pX11 

+ E
1 

probability (l—p)

= pX~~1 
+ V

1
E
1 
, 

(4.4)

where {v1} is an i.i.d. sinary sequence with v~ = 1 with prob-

ability (l—p) . Moreover if we let X
0 

— E0, and def ine X~ as

-
• in (4.3), the resulting sequence is stationary for i — 0,1 

The point process with the interval structure (4.3) is called

the EARl point process. It is a tractable model, and most of its

important properties are given in Gayer and Levis (1977). In

particular we have that p(k) — This model is in a sense

degenerate because it contains runs of X~ in which values are
exactly p times the previous value; it could , however , be a
reasonable model for point processes observed in computer systems
(e.g., inter—arrival times of requests to a storage subsystem) in
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which the intervals have exponential marginal distributions hut are

• dependent. Note that as defined the model can only provide sequen-

ces {x 1} with positive serial correlations . We can, however ,
define the process to include negative correlations.

• Simple generalizations of this Markovian exponential process

are the following.

4.1.2. The moving average exponential model (EMAk). We define

another stationary sequence {x
~
}, using the 1E~} sequence above,

according to

(4.5)

X~ — 8E~ + Ui
Ei.1, i 1,... ; 0 < B < 1 

, 
(4. 6)

- 

:•
•
~~ 

where {u1} is an i.i.d. binary sequence in which — 1 with

probability (1—8). This is a first order exponential moving aver—

age process (i.ziAl) (Lavrance and Lewis, 1977) which is one—dependent ;

in particular

p(l) = 8( 1—B) - 
(4.7)

p(k) = 0 
, 

k = 2 ,3 (4.8)

Properties of the EMA1 process are given by Lawrance and Lewis (1977).

It is easy to see that we can make E
u 

in (4.6) a random

linear combination of E
i 1  

and E~.2 to get an EMA2 process, and

can continue the process back k steps to obtain an EMAk process.
In addition, by making Ei_k autoregressive over the previous E1,
we obtain a mixed kth order moving—average, first order autoregres-

sive process which we denote by EARMA(l ,k).

4.1.3. The EARMA (l,l) model. Consider explicitly the case k — 1.

The first order moving—average and first order autoregressive pro—

cess EARNA(l , l) is given by

— 8Ei + U
i
A
i 1  

(4.9)

with

~~i—2 
+ V

1
Ei_i (4.10)
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for I = 1, 2, 3 . -n-id A
1 

E
1
. This sequence of random

variables is not Markovian .

The second—order correlation structure of the process is given

by

p(k) = ~k 1  
c(8,p) , (4.11)

where

c(8,p) = B(l—8) + p(l—B)(l—2B) . (4.12)

The point process whose intervals have the EARNA (1,l) structure is

discussed in detail in Jacobs and Lewis (l977a). In particular,

for B = 1 it is a Poisson process. The process is very simple to

• generate on a computer and is very useful for modelling dependent

sequences in queuing systems. It is possible to give an extenstion

to processes in which the are Gamma distributed , but not much

beyond this. In fact a necessary condition to ensure that we can

find an in the fundamental relationship (4.2) to give a

specified distribution F(x) for X~ is that F(x) be

infinitely divisible.

We discuss now a possibly broader but more complex model for

point processes having a specified interval distribution.

4.1.4. The semi—Markov generated point process with fixed marginal
distribution. The question arises as to whether there are interval

processes {x~} with exponential marginal distributions and

ARMA(l ,l) second—order correlation structure and which cover a
broader range of correlation than the EARMA(l,l) process (though
perhaps at a cost of more complicated structure).

We discuss briefly one such process. It is a special case of

the semi—Markov generated point process introduced by Cox (1963)
and ex tended by Haskell and Levis (1977). We first describe the

two—state semi—Markov generated model. In this model there are

two types of intervals with distributions F
1
(x) and F

2
(x) ,

sampled in accordance with a two—state Markov chain for which the

one—step transition matrix

29
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~l 
1—a

1
— (4.13)

l_
~2 

a
2

and

ii — — ( 2—a1—cz~ ‘ 2_c1
1
_a

2)  

. (4.14)

When we form the point process we assume that no information is . 

-~

available about the type of interval, i.e., that in the actual bi—

variate point process of transitions we suppress knowledge of the

type of transition. Then the distribution of an interval between

transitions (events) In the stationary point process is

Fx(x) 7r
1F1(x) + 112

F2(x) (4.15)

and the correlation between and XJ÷k is

p(k) ~~k 
, k — 1,2,... , (4.16)

where M is a positive constant and 8 — a
1 

+ a2 
— 1 — a

1
(l—a

2
).

Thus the correlation structure is that of an ARMA (l,l) process. For

a derivation of this result see Cox and Lewis (1966), Ch. 7, 194—196.

Levis and Shedler (1973) use this process to model the page exception

process. The problem is to deal with the mixture distribution

(4.15) for the marginal distribution of intervals; this seems to

limit the utility of the model.

To obtain an exponential marginal distribution, consider the
following device (Jacobs and Lewis, l977a). Fix x0, where
O < x

0
<~~~ , and let
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Ae~~
’du

——-c— 0 < x < x 0,

1 — e

• F
1
(x) —

1

(4.17)

o x < x ~~,

-• F2 (x)
x 

Ae~~~du
xO

e~~
”0

then F
x
(x) , the marginal distribution of an interval, is expo-

nential (A) if we set if
1 

— 1 — exp(—Ax0
). There is one degree

of freedom left in the matrix P; in addition to A , we have free

• 

- parameters it
1 

(or x
0
) and a

1
. What then is the range of 6,

and can it be negative?

Straightforward manipulation shows that

it -a
~• 1 18 —  — l  

(4.18)
1

• which lies in absolute value between zero and one but can be

negative; therefore the serial correlations can be negative. Thus

the model appears to be broader than the EABM&(l,l) model. The

question of comparing the two models when B is positive has not

yet been explored; it requires higher order interval correlations,

as discussed by Brillinger (1972).

By letting F
1
(x) and F

2
(x) be a partitioning as in (4.17)

of any specified distribution F(x) we obtain a point process whose

marginal interval distribution is the specified distribution 1(x)

(discrete, continuous or mixed), and which has ARMA (l,l) type



--

second—order interval spectrum and known count spectrum. We note

that there is a choice of x
0 

which gives a geometrically decaying

p (k) , but unlike the EARl process, the resulting process Is not
Markovian.

By performing the same type of truncation on an n—state semi—

Markov generated point process (Haskell and Lewis, 1977) it is
possible to obtain a point process with specified marginal distri—

bution , almost any ARMA—type second—order interval correlation

structure (i.e., spectra which are ratios of polynomials in cos w)

and known count spectrum, In fac t this seems to be the only point
process model for which 

~Jj. 
these characteristics are known and

easily computable. Properties of this model have not yet been

fully explored . The one disadvantage of this model viz—a—viz the

• exponential models described in the previous section is that, since
the model is not a probabilistic linear combination of random van —

ables , it is not easy to relate to intuitive considerations when
used in computer system models. We return to this aspect of the :1

modelling below when we discuss multivariate point processes.

L •~:~ 
________________________4.2 Models for Counts

It is not always possible to observe the exact times of events

in a point process and in fact,with respect to computer system data,
such data gathering can be very expensive. What is more usual is

to observe the counts of events in successive intervals of a fixed

length ~~~. We denote the differential counts of events in succes-

sive intervals by Ni, i — 0,1,.., . To model the {NiI 
sequence

we need, in general, models for dependent sequences of positive
valued, discrete random variables. Of course if we observe a

Poisson process the {N
i
) are independent and Poisson distributed ,

Otherwise, we know of no model, defined in terms of exac t occurrences
of events, for which the characteristics of the N

1 
process are

simple or known.

The modified seini—Markov generated sequence of Section 4.1.4

yields a simple model for counts by letting F(x) be a discre te

32
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• d i s t r i bu t ion .  It  would be interesting to see how closely we can

approximate the differential Count process ~f a Poisson cluster

process this way .

An even simpler model for counts follows. Its main drawback

is that, as def ined , only positive correlations are representable.

4.2.1. The discrete mixed autoregressive—moving average DARMA (l,N+l)

• 

I 

. process. Although analogous in def inition to the EARMA process ,
this process is very different in structure and much broader . Let

the sequences (U
1
) and {v

~
} be as above, and (E

1
} be an i.i.d.

• 
sequence with any distribution 11(x). Then the DAR1 process defined

by

N
i 

— y
iN1 1 + (1—V1

)E
1

is a first—order Markov process in which the N
i 

have distribution
a. fl(x). Since successive values of the N

i 
can be identical, the

1 
- model is useful for discrete valued processes such as the differ—

L ential count process {N }. The process is a Markov chain with
i

transition probabilities

(l—p) itU) for k ~ 9.,
P{NI+i L~ N~ = k} = P(k ,L) —

p+(l—p) ii(L) for k = 9..

Observe a difference from the usual Markov chain modelling. The

marginal distribution ll(x) of the N
i 

is specified first and

then the dependency structure is specified by the single parameter

p. The model has the same drawback as the EARl model; the correla—

tions are all positive, although this is not an enormous drawback
when analyzing sequences of positive valued random variables.

It is possible to generalize the model to give a mixed moving—
average autoregressive dependency structure. This generalization

is the DARI4A(1,N+1) model in Jacobs and Levis (1977b, 1977c) defined
as follows:

Let {Y
1
} be a sequence of independent real valued random

variables having a common distribution 11. Let (U
1
) and {v1}
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be independent s eqIJ eIJees  of (0,1) random variables such that

P {U
1

l~ B and P{V
1
—l } — p

where B and p are fixed constants with 0 < B < 1 and O < p  < 1.

Finally, let (S
n
) be a sequence of independent random variables

taking values in {0,1,...,N) with distribution F, where N is

a fixed non—negative integer . Let

X1 — U
1
?
1 s + (l_U

i
)A i_N_l , i = 1,2, ...

where

— 
I 

A1 — V
1
A
i 1  

+ (1—V
1
)?
1 , 

i — —N,—N+l 

Perhaps the most interesting characteristic of the model Is

that if we transform the variables N1, the resulting process has

the same dependency structure as the (N
i
) process. This is because

the model is a mixture of random index model and each N~ is a

randomly chosen member of the {E
1} sequence. This model therefore

gives the ultimate in independence of the marginal distribution and

the dependency structure . In this and other ways it is very much

the analog of the normal linear p rocesses.

Although we have introduced the DARNA(1,N+l) sequence as a

model for the dif f e rential count process, it has also been used in
Shedler (1977) to model sequences of event marks in multivariate
point processes. In this context, event types generally provide
qualitative information about the multiprogrammed processing of

jobs (e.g. job start, job termination, jobstream identity) whereas
event marks provide quantitative workload information.

4.3. Multivariate Processes and Systems Modelling.

The use of multivariate point process models in computer

system evaluation studies is quite recent. Hunter and Shedler

(1977) have defined particular marked inultivariate point process - --

models and used them for the prediction of response times in multi—

programmed systems. To illustrate another approach , we discuss use • 
-

of the exponential processes EARMA(l,k) to model a single—server
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f1rst—c ome—first—serv&~d queue in which the service times and in t e r—

ar rival times have exponential marginal distributions . We choose

this qucuelng structure for simplicity of exposition ; it illustrates

the power of the random—linear structure of the EARMA(l ,k) model in

modelling queues with dependence. Moreover , it is possible to use

the technique to incorporate realistic workload characteristics

into networks of queues used as models for the structure of computer

systems. We can also use the resulting bivariate process of

- 
- 

• service and interarrival times as a model for a bivariate point

process or a highly correlated univariate procers in which there

are quantitative marks associated with each event.

Let S1 denote the service time for the ith arrival at the

queue, and X~ denote the time between arrival of the ith and

(i—l)st customer. If these are i,i.d. exponential random variables

with parameters A and a respectively, we have an M/M/l queue.

Now for 1 = 0,+l, . . ,  , let {E
~
} be exponential (A)

and independent , and {~~~} be exponential (a) and independent.

In addition the {E
i

} and {t~
} sequences are mutually indepen-

dent . We want a queue with autocorrelated and cross—correlated

service and arrival times such that it gives the M/~ /1 queue as a

special case, and proceed as follows.

Let {s1
} be an EARI4A(q,k) process over (E

1, 
-
~~~ (~~, 

-
~~~ ~~~~~~~~~

where q = 0 or 1, and k 0,1,2,... , Then if X
1 

= 
~~~ 

I = 0,

+1, ±2, ... , we have that {s1
} is EARMA (q ,k) and also cross—

correlated with X
1 

= 
~~~; 

although fX1
} is still a Poisson pro-

cess, (S ,x } is a bivariate sequence of random variables with
i i

exponential marginal distributions.

More general schemes are possible, but the above scheme has

the following simple interpretation. We have positive correlation

between S~ and , most particularly, the previous k interarrival

times. If the and consequently the X~, j = 1 , i—l ,... , i—k—l ,

are short , then S~ will tend to be short. Thus this scheme models

the case where the server tends to speed up if the queue gets long.
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Invesii gation of such schemos in simple qu~ueing networks is

underway ; see Jacobs (1977). In particular we know that correlati~n

does aifect quantities associated with the queueing networks .

Specific analytic results are hard to obtain , but the simplicity

nf the EARMA models makes it easy to simulate the queues.

4.4. Conclusions

We have presented in this section a number of models for

positive valued time series with continuous or discrete ranges

which should be useful in modelling the interval or differential

count processes of point processes which occur in computer systems.

• Although the models are not motivated by an underlying physical

structure , they have simple probabilistic structure , and therefore
should be convenient in modelling and simulating computer systems.

Their structural simplicity should also make them easier to fit

to data than most standard point process models. In particular ,

the fact that the specification is in terms of easily measured

marginal distributions and second order autocorrelation properties

should make rough validation and fitting quite simple, More

F detailed statistical methods are under development; see Jacobs

and Lewis (1977c). Differentiating among related models , for

example the three models having exponential marginal distributions

and ARMA(l ,l) correlation structure , will probably entail use of
higher order interval and count spectra.
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