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ABSTRACT

Buoy data provided clear evidence of mixed layer deepening and an
internal wave caused by Hurricane Eloise, September 1975. Logarithmic
temperature profiles below an isothermal mixed layer were assumed and
used to model thermocline oscillation and heat budget calculation as
influenced by Eloise over a 2l-day period. Results show that prior to
the arrival of Eloise at the buoy, the average mixed layer depth was
about 33m. As the winds increased due to hurricane approach, the mixed
layer deepened steadily to about 42m before upwelling to approximately
22m. The thermocline then undexrwent three distinctly large oscillations
of inertial periodicity, while the mixed layer continued to deepen. The
post-storm average mixed layer depth was about 52m. Values of mixed
layer depth were concluded to be accurate to within 2m. Vertical velo-
cities, calculated first by assuming zero horizontal temperature advec-
tion in the material derivative equation and second by finding the mass

transport necessary to balance the heat budget, show that in the upper
500m of the water colum dowrward vertical motion of lm/hr or less pre-
vailed during storm approach, followed by upward vertical velocity as
great as 5.35m/hr during the 12 hr immediately following hurricane pas-
sage followed by dowrsvard vertical velocity during the large thermocline
oscillations.
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I. INTRODUCTION

By a stroke of luck, the eye of Hurricane Eloise on 23 September 1975
passed over the National Oceanic and Atmospheric Administration's EB-10--
a forty-foot diameter data buoy anchored in the Gulf of Mexico. Numerous
instruments, both on the buoy itself and attached to the line anchoring
the buoy to the floor of the Gulf, gathered atmospheric and oceanographic
data throughout the three days before and 18 days after hurricane pas-
sage. The purpose of this thesis is to study the response of the upper
ocean to Hurricane Eloise and to report the results obtained.

The mechanisms that produce changes in ocean thermal structure in the
wake of severe tropical cyclones have been studied for some time. In
addition to the heat loss to the atmosphere, the oceanic processes of
vertical and horizontal advection plus turbulent mixing at the top of the
thermocline have been shown to contribute to cooling of the upper layers
in the ocean. Jordan [1964] reasoned that for typical mixed layer depths,
large temperature decreases could not be due to the heat loss to the
atmosphere but must originate from the thermocline layers through verti-
cal fluxes. Leipper [1967] reported what is probably the best-known
survey of oceanic thermal response. Black and Mallinger [1972] cambined
airborne expendable bathythermograph and conventional data to study the
effects of hurricane Ginger. Although a cammon shortcoming of the obser-
vational studies has been the sparsity of coincident before-after
sémd:l.ngs allowing determination of the changes due to the hurricane,
Fedorov [1973] used before and after soundings at ocean weather station
(OWS) Tango to calculate the temperature changes due to the passage of




14 typhoons. Elsberry et al. [1974] developed an empirical hurricane
boundary layer model for hurricane-ocean interaction studies. This
model, which was used recently to drive a mixed layer model of the upper
ocean [Elsberry et al., 1976] to simulate the thermal response induced
by a hurricane, emphasized the role of vertical fluxes by incorporating

a mixing-layer model similar to Kraus and Turner [1967] and Derman [1973].

In this thesis, logarithmic temperature profiles as suggested by Tully
[1953] were used to estimate the temperature structure. These profiles
were used to predict the depth of the mixed layer and to balance the
heat budget in the wake of the storm. Oscillations of the thermocline
predicted by Geisler [1970], documented by Black [see Sheets 1974] and
modeled by Grigsby [1975] were observed. The heat budget was calculated
producing the horizontal and vertical velocities necessary to account

for the observed temperature changes.

II. PROCEDURE

A. DATA

The buoy EB-10, located at 27°28'N, 88°01'W, in 1313 fathams of
water, gathered atmospheric data plus the temperature and hydrostatic
pressure of the water near the surface and at three subsurface depths
in the Gulf of Mexico during the passage of Hurricane Eloise. These
data were published by the NOAA Data Buoy Office in a report titled
Data Report: Buoy Observations During Hurricane Eloise (September 19
to October 11, 1975, November 7, 1975) (Withee and Johnson, 1975).

B. TEMPERATURE PROFILES
To study the nature and extent of influence of a hurricane on the
ocean, having the temperature of the sea water before, during and after
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hurricane passage at all depths would be optimal. But the system avail-
able provided temperatures with a maximm frequency of only once per hour
and recorded them only near the surface and at three sub-surface depths--
approximately 50, 200 and 500 meters. These are only nominal depths be-
cause of the vertical wandering of 10-12 meters due to periodic pulling
on the mooring line by the drifting buoy in the high winds and accampa-
nying waves. The near-surface temperature value was measured at a depth
of two meters and will be referred to throughout this thesis as the
surface temperature.

The first goal of this thesis was to estimate the temperature at all
depths for any observational time knowing the temperature at only the
surface and three subsurface depths. Estimates of the above type were
made for 170 different observation times throughout the 21-day period
bracketing the passage of the storm over EB-10. A temperature structure
of the water was also estimated by the NOAA Data Buoy Office (NDBO)
[Withee and Johnson, 1975, page B-30]. A portion of NDBO's plot is shown
in Figure 1; the surface and three subsurface temperature values are
written for each observation time at the depth of the measurements. The
isotherms shown in Figure 1 were drawn assuming a linear temperature
change with depth. Black and Withee [1976] and Price [1977] used these
same data, and estimated the temperature change with depth for all times
with gradients basad on a single AXBT dropped near EB-10 on the day prior
to Eloise's passage over the buoy. In this thesis the positions of iso-
therms, as well as the depth of the thermocline, were calculated at each
of the 170 observation times assuming a logarithmic temperature change
with increasing pressure defined by the three observed subsurface temper-
ature values. Each logarithmic curve was then matched to a vertical line
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P_. representing an isothermal mixed layer having temperature equal to the
surface temperature observed at the respective observation time. This
procedure assumes the three subsurface temperatures were within the
thermocline. After passage of Eloise, the nominal 50 m observations
were occasionally equal to the surface temperature, indicating that the
mixed layer was greater than 50 m. In these cases only the two lowest
subsurface observations are available to define the logarithmic tempera-
ture profile.

1. Procedure For Calculating The Logarithmic Temperature Profile

Below The Mixed Layer At Any Given Observation Time

At 0900 MT', 21 September 1975, the data provided by EB-10 indi-

cated that the three following subsurface temperatures existed at the

given pressures: °

Tob P Inp
25.784°C 6.427kg/ e’ 1.8605
15.677 22.986 3.1349

9.055 52.148 3.9541

where T o is the observed temperature and p is pressure. A least-
squﬁres linear regression was calculated using the natural logaritim of
; pressure (ln p) versus Ty -
. Figure 2 shows graphically the best-fit curve through the three
sets of values being considered. The slope and intercept of the regrus-
sion curve for this case were calculated as ~0.125 and 5.092 respec-
tively. That is, the equation relating pressure and temperature is

SR oS T o

In p = -0.125T + 5.092 . @)

A similar equation was calculated for each of the 170 cbserva-
tion times using the Naval Postgraduate School IBM 360 computer

13
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? 8 12 16 20 24 28 T(°C)
- — " —

T7=25.78
1n p=1.860

T=15.677
ln p=3.135

T=9,055
1n p=3.954
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FIGURE 2. Example best-fit linear regression curve obtained
fram subsurface temperature and pressure values. This example
is for the observation time of 0900 GMI', 21 September 1975.
Curve has a slope of -0.125 and an intercept of 5.092.
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subroutine to calculate linear regressions. The slopes m and inter-
cepts b specify the thermocline temperature profiles throughout the
21 days under consideration. The general equation is

Inp=ol +b . (la)

To estimate the accuracy of equation (1), the three values of
the logarithm of pressure used in the regression can be used in equa-
tion (1) to calculate the regression temperatures (Tr) . The following

information was found:

Error =
2 o o o
p Gg/am) Ty (°C) T (°C) T, -Ty (°C)
6.427 25.819 25.804 0.015
22.986 15.677 15.627 -0.050
52.148 9.055 9.085 0.030

The largest error in temperature for this observation time is -0.05°C,
and is associated with the middle of the three subsurface temperature
measurements--a characteristic of drawing the best linear fit through
the three points. According to NDBO, the accuracy of the temperature
sensors was 0.05°C for the surface and two deepest subsurface sensors,
and 0.2°C for the sensor located near the 50 m depth. Consequently the
logarithmic profile technique fit the data at the three levels within
the expected accuracy of the temperature observations. A more camplete
description of temperature profile errors will be given later.

The next step in the procedure was to match the cbserved sur-
face temperature with the thermocline profile given by equation (1).
The surface temperature at 0900 GMI', 21 September 1975 was observed to
be 28.819°C. Entering this value for temperature in equation (1) gives

15
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P = 4.406. Using this calculated pressure value and assuming an isother-
mal mixed layer, the complete temperature profile can now be drawn fram
the surface to the point of the deepest observation. This complete pro-
file for 0900 QMI', 21 September 1975, is shown in Figure 3A. Figure 3B
shows the same profile, except that pressure was plotted linearly vice
logarithmically.

Figure 3C shows the profile assuming a linear temperature change
in depth as used by the NOAA Data Buoy Office when plotting Figure 1.
The profile in Figure 3B appears to be a much more realistic representa-
tion of conditions observed daily in the subtropical oceans. The point
of intersection of the vertical isothermal line with the regression curve
in Figure 3A or 3B is defined in this thesis as the hydrostatic pressure
at the bottam of the mixed layer, i.e. at the top of the thermocline.

Throughout this thesis, pressure p Ckg/an2) was converted to
depth z (m) according to an approximation algorithtn suggested by NDBO
for the subsurface (more than 40m) data

z=(9.75p - 10) . (2)

Hence the mixed layer depth can be found for 0900 QMI, 21 September 1975
by substituting p = 4.406 into equation (2) giving MLD = 33.0m.

Temperature profiles extending from the surface to the deepest
observation, as well as the respective mixed-layer depths, were calcu-
lated for all 170 observation times as in the example above. A plot of
MDD vs time was made for studying the motion of the thermocline and the
deepening of the mixed layer during the three days before and 18 days
after the passage of Hurricane Eloise over EB-10. This plot will be
presented and discussed in a later section.
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FIGURE 3. Derived temperature profile from surface to point of deepest
observation for the observation time of 0900 GMI', 21 September 1975.
Pressure is plotted logaritimically in A and linearly in B; C shows the
profile for this observation time assumed by NOAA Data Buoy Office. An

isothermal mixed layer was assumed, i.e. a vertical line was drawn from
surface temperature to point of intersection with regression curve.
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" 3. Procedure For Calculating The Position of Isotherms

The depth z of, e.g., the 25°C isotherm, can be found for
0900 MT', 21 September 1975 by letting T = 25 in equation (1) and
solving for p and then substituting for p into equation (2). Doing
this gives a depth of 59.3m for the 25° isothemm at this time. For this
thesis depths were thus calculated for the 25, 23, 21, 18, 15, 12 and 9°
isotherms at all 170 observation times. A plot of isotherm depth versus
time was made for studying isotherm motion during the three days before
and 18 days after the passage of Hurricane Eloise over EB-10. This plot
will be compared to a similar plot made by NOAA's Data Buoy Office shown
in Figure 1 above.

C. CALCULATING THE HEAT BUDGET
The procedure used in this thesis to calculate the heat budget was a

simplified one. The problem was unique in that the heat budget was exa-

mined over a period of time with large amplitude oscillations on the

thermocline. The time change of heat content (cal/cmz) of a colum of . ¥

water under the buoy 500 meters deep and one square centimeter in cross ‘
‘ section is related to the time change of average temperature obtained
’ from the profiles derived above. That is,

‘ AH-onzA'rav €))

g |
£ 2 *
i where H = heat in cal/em

é’ p = density ofwater*lgn/an3

Cp = heat capacity of water at constant pressure * 1 cal/gm/°C

z = the height (cm) of the colum of water one square centimeter
in cross-section

T,, ™ &verage temperature (°C) of the colum of water, as calcu-
w using the logarithmic regression curves discussed ear-

18




RIS S S S O S Y (R

In terms of time derivatives equation (3) becomes

oH _ dTav
3_t: (.Cp r4 3t . (,38)

and will be called the storage temm. If the temperature change is mea-
sured in degrees Celsius per hour, the storage termm will have units of
cal/c’/br.

Fram the first law of thermodynamics, two mechanisms were con-
sidered as changing the heat content of the colum--the net flux of
latent, sensible and radiative heat transfer across the sea surface, and
heat flux by three dimensional advection. The formuilae used [see Husby
and Seckel, 1975] for obtaining the net flux of latent, sensible and
radiative heat Q) was

Q%% -%-Q “)
where Qs , the solar insolation term, was measured directly by EB-10,
and -7 4

Q = 1.14x107 (273.16+1, )
1
x(0.39-0.05e, /2y (1-0.6¢%) |
Q = 3,767C,(0.98e ~e )W , and
Q = 2.488C, (T, T )W

where e_ is the saturation vapor pressure (mb) of the
2 the height of ten meters calculated using the Goff-Gratdx
formulation of the Clausius-Clapeyron equation with the dew-

point temperature as the entering argument

e  1is the saturation vapor pressure (mb) of the atmosphere at
¥ the sea surface calculated similar to e exceptusingsea
Apmfamtmratmaadxemterlng

Cd is the nmdymuiaml drag coefficient equal to (0.63 +
0.66*W)*10~ Smith and Banke, 1975]

‘1'a is the temperature of the air in degrees Celsius
T, 1s the temperature of the water in degrees Celsius
W is the wind speed in meters per second

19




b and C, (the fraction of sky covered by clouds),
is 0.80 from 1200 GMT 20 SEP to 1800 GMT 22 SEP,
1.00 from 2100 GMT 22 SEP to 1200 GMT 23 SEP,
0.85 from 1500 GMT 23 SEP to 1200 GMT 24 SEP,
0.75 fram 1500 QMT 24 SEP to 1100 GMT 25 SEP, and
0.50 from 1200 QMT 25 SEP to 1200 GMT 26 SEP.

Herein Q (cal/cn’/hr) is called the surface flux term.

The 500-meter deep colum was then divided into five layers,
each 100 meters deep, and vertical and horizontal velocities were calcu-
lated that satisfied the heat budget. The first attempt to obtain these
velocities was the commonly used assumption that the material derivative
of temperature was zero and that there was no horizontal temperature
gradient. Starting with the equation

%-o-%+vu-vr+wg—§ (5)

setting VH * I =0, and solving for w gives
(Sa)

Both 3T/3t and 3T/3z were directly available from the 170 tempera-
ture profiles obtained as discussed earlier. The values of w were
thus camputed at 100, 200, 300, 400 and 500 meters. These values of w
were related to the vertical mass flow rate into or out of each layer

of the colum by the equation

PRy TSR PN S W O Y . B

M, = ow 6)

where M, is directed positive upward in accordance with the positive
z axis.

20
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Fram the continuity equation the horizontal mass flux into or
out of the colum was calculable from the vertical mass fluxes. The net
horizontal mass flow must compensate for the difference in vertical mass

fluxes. Let

2
M= V4 dz )

where MH = the horizontal transport of mass per unit width of vertical
surface

Vg - the horizontal wvelocity,
g andzr- the depths in meters at the bottom and top of the colum.
For incompressible flow in a constant-density fluid,

fzrv-oVHdz+jzr p%;l dz=0
7 7

Canbined with equations (6) and (7), the above equation gives

it s ik . 8
=, M, ®

Horizontal mass flow is defined as positive if directed out of the
colum.

There was some question whether the w's obtained using equa-
tion (5a) could be accurate, since the assumption of zero horizontal
temperature advection seemed unlikely. This was checked by using the
calculated vertical velocities and the storage and surface flux terms
in the heat budget. The total heat flix (THF) across all faces of a
water colum due to three-dimensional advection was defined as

THF = M;SCPTB - HZ-CPTT - MHcpTw ¢))

21




where T o is the average temperature of a 100m-deep colum of water
with cross-section equal to one square centimeter, 'I‘B and TT the
temperatures at the botton and top respectively of the same 100m-deep

colum, and MzB, M‘r and MH are the mass transports across the

bottom, top and horizontal faces, respectively, of the colum. Substi-
tuting equation (8) into (9) and adding the storage and surface flux terms
give the full equation used in analyzing the heat budget,

A Pav o cu (T. -T )+CM (T_ -T.) -
3t °szat Pz B av) PzZp av T'r Q -

Rearranging provides the equation

1 %
o, [-EPSE-MZI(’Lr-TaV)--C;]/(TW-TB) (10)

Cambining equation (10) with equatia. (6) gives
M 1 M % i
welalomdl- g M O Tyt | [Ty Ty [ /e (102
P P
While M was considered to be, by the kinematic boundary con-

?—r

dition, equal to zero at the sea surface, Q, was considered to be
equal to zero at all depths except the surface. Because the MzB,Mzr
and HH are mean quantities averaged over the time increment between
cbservations, the contribution of turbulent motions on smaller time
scales is not considered.

As an example consider the problem of calculating the vertical
velocity of 100 m as given, first, by equation (5a) and second by equa-
dm(mt)fotdnd:mdmdm(tob) of 1500 GMI', 23 September 1975:

22
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1. Calculation of Vertical Velocities Assuming Zero Horizontal
Temperature Advection

The values of slope m , intercept b, pressure at the bottam
of the mixed layer py and MLD in the following table were obtained
from the respective regression curves plus equations (la) and (2), while
the surface temperature T .. was obtained from the published buoy data

for 23 September 1975.

(o]

t m b A, MLD Tete T100m
QT (kg/cm™) (m) (°C) (1C)
1200 -0.152 S.985 .01 22.47 27.226  19.205
1500 -0.153 5.33, 3.280 21.98  27.166  19.072
1800  -0.145 5253 3,793 26.40 27.166  19.532

The mumerator of equation (5a), refers to a single level, say
100m, and is evaluated at 1500 GMI, using a centered finite difference,

as
(19.532 - 19.205)°C/éhr.

The denaminator in equation (5a) was approximated by using the 1500 GMT
regression temperature profile over an increment one meter above and below
the 100 meter level. Thence the calculated value of vertical velocity

w was -0.91lm/hr. Similar calculations produced the values for this
method's vertical velocities at each of the deeper levels. The left-
hand set of arrows in Figure 4 shows the values calculated..

2. Calculation of Vertical Velocities Not Assuming Zero Horizontal
Temperature Advection

To solve for the mass transport at the 100 meter level for 1500
GMT' 23 September 1975 using equation (10), we must calculate the aver-
age temperature in the upper l00m of the ocean in the vicinity of the
buoy for each of the three cbservation times listed in paragraph 1
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FIGURE 4. Vertical velocities at 100m depth increments in the left
colum were obtained using equation (5a), i.e. assuming zero hori-
zontal temperature advection. Values of M_/p in right colum were
obtained using equation (10a), i.e. not as zero horizontal
temperature advection. These vertical velocities are for the obser-
vation time of 1500 GMI', 23 September 1975.
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above. Assume the general equation is
g 0-100m = FLPTgge) + (L00MD) (T oy, 100,110 an

The average temperature for any layer of water having a logarith-
mic temperature profile and lying between pressure surfaces Py and

Pr is given by
P

el 9
Coti s e | OB (12)

Cambining equation (la) with (13) gives

i 1In p-b
(T B ——e _.2_._) =
a’ Pr "Pg  PpPr s ke
m(PT’PB) [PB(]-n pB_pB-pr)- p.r(ln pT-pT—pr)] (13)

Equation (13) can be used to get the average temperature fram
the bottom of the mixed layer to the 100m depth, which for 1200 GMT,
23 September turns out to be 22.422°C. This value can then be used in
equation (11) to get the average temperature for the layer 0-100m, which
is 23.501°C in this example. In an analogous way, the average tempera-
ture for the upper 100m of water at 1800 GMI, 23 September 1975 is found
to be 23.849°C. Using this information and equation (3a) finite'dif-
ferenced about 1500 QMI', 23 September 1975, the change in heat content
of the 100m colum is calculated as

M AT
( 3 ) 1500@t = 5% FE 1200-180001T

-1 - Lol - 100000 (B:83B.0D .« sgocal/ca’ hr
an
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The suxface flux term calculated from equation (4) was 45 cal/cmzlhr.
The only remaining variables needed to solve for the mass transport at
100m are (T_),__jgom @4 Tp for 1500 QMT. These are available
from, respectively, equation (11) and the regression curve computed for
1500 MT' and are equal to 23.378 and 19.072°C. Since MZr is assumed
to be zero at the ocean surface, equation (10) can now be solved for
Mo
.

M = =380 - 45

‘zB 23.378 - 19.072

= -146 gn/c:mZ/hr, which, for the colum one

Square centimeter in cross-section corresponds, since p was fixed at a
value of one in equation (10a), to a downward velocity of 1l.46m/hr. This
is the downward velocity necessary to advect the heat to produce the change
observed in the logarithmic temperature profiles. For the mass transport
values at the 200m and all deeper levels, the value of Qn in equation
(10) is zero. The value for MZT in the 100--200m layer is simply the
value of MzB in the 0--100m layer immediately above and the Tav is
obtained from equation (13). The right-hand set of arrows in Figure 4
shows the values of vertical velocity calculated using equation (10a) at
each level for the observation time under consideration.

In sumary, the vertical velocities at levels of 100m increments
were calculated for 1500 QMT 23 September 1975 two ways, first using
equation (5a) and then using equation (10a).

Only the right-hand set of values in Figure 4 satisfies the heat
budget, and may be compared with the left-hand set to estimate the
effect of amitting the horizontal heat flux as in equation (5a). A
similar set of calculations, using both the equation (5a) method and the
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equation (10a) method was made for each of the 55 observation times fram
1300 GMT, 20 September to 1200 QMT, 26 September 1975, which is when the
meteorological sensors on the buoy were turned off. Due to the finite
differencing scheme in time, this period was expanded, for averaging
purposes, to 1230 GMI', 20 September to 1330 QMT, 26 September 1975--a
span of 145 hr.

III. RESULTS

A. RESULTS OF THE MIXED LAYER DEPTH STUDY

Table 1 is a list of the estimated values of MLD versus time for
the period 1200 GMTI', 20 September to 1200 GMT', 26 September 1975. The
colum in Table 1 headed DIG gives the day of September by the first
two digits and the GMI hour by the last two digits. Figure 5 shows the
same variables graphically for the period 1200 GMI', 20 September 1975
to 1200 GMT, 11 October 1975. The ordinate in Figure 5 is positioned
at the time of passage of Eloise over EB-10--0300 GMI, 23 September 1975.
Notice that according to this graph, the average depth of the mixed
layer was roughly 33 meters prior to storm approach and deepened grad-
ually as the hurricane winds increased. An upwelling of the thermocline,
i.e. a decreasing of mixed layer depth began at the time of hurricane
passage. At 1500 QMT, 23 September 1975, or about 12 hr after eye
passage, the MLD reached a minimm of 21.98m as calculated from the re-
gression temperature profile for this observation time. Following that
time the MLD swung through at least three distinct oscillations with
nearly perfect inertial cycle periodicity ( the inertial period at the
latitude of EB-10 is 26.0 hr). These oscillations are superposed on a
continued deepening trend before finding an equilibrium vacillation
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with a cambined inertial-diurnal period centered around a depth of about
52m. Thus the net mixed layer deepening due to storm passage was about
19m. Notice in Figure 6 the amplitude of the first three wave peaks
following passage of the eye of the storm over EB-10. All three of
these oscillations of the thermocline are significantly larger in ampli-
tude than those either before or after the storm. If the average ampli-
tude of the post-storm oscillations is subtracted fram the amplitude of
the three largest, the amplitude of each successive oscillation decreases
by roughly el
approximation of the zero crossing is drawm through the oscillations, a
rough curve of c.==‘kt is produced. The rate of dampening of these large
oscillations is important for predicting the duration of the storm wake

of the prior value. Also, as shown in Figure 6, if an

and for verification of numerical models.

B. RESULTS OF THE ISOTHERM POSITION STUDY

Figure 7 is a graph of seven isotherms within the thermmocline during
the three days before and 18 days after Hurricane Eloise passed. In
camparing this graph with Figure 1--NDBO's version assuming linear
temperature gradients--it can be seen that overall, the general trend
of the upper isotherms is the same, each graph having three distinct
oscillations followed by a net deepening after hurricane passage. One
notes in Figure 7 that the isotherm depths are relatively uniform prior
to hurricane passage. The first three upwelling cycles are distinct
and nearly uniform throughout the upper thermocline. Following this
period the oscillations are much smaller in the upper thermocline, in
agreement with the estimated mixed layer depths in Figure 5. However,
the oscillations continue with considerable amplitude at greater depths.
It is important to note that over the entire period the mean depth of
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DTG MLD (m) DTG MLD(m)
o 2012 31.03 2309 36.44
2013 33.26 2312 22.47
2015 33.68 2315 21.98
2018 30.12 2318 26.39
2021 31.74 2400 41.90
2100 3%.14 2403 49.31
2103 33.27 2406 50.14
2106 33.59 2409 48.90
2109 32.95 2412 43.83
2112 31.70 2415 35.05
2115 33.75 2418 35.41
2118 33.05 2421 40.42
2121 33.41 2500 44.91
2200 34.27 2503 52.02
2203 34.20 2506 53.67
2206 37.55 2507 53.74
2209 35.60 2508 53.56
2212 36.60 2509 53.16
2215 35.47 2510 52.30
2218 35.29 2511 51.20
2221 35.77 2512 50.12
2222 35.35 2515 46.20
2223 37.16 2518 39.53
b 2300 38.47 2521 42.24
2301 39.31 2600 43.37
2303 41.85 2603 46.92
2306 39.08 2609 54.04
2612 53.34

TABLE 1. Depth of mixed layer with time. Left-hand colum gives the
day of September by the first two digits and the QMI' hour by the last
two digits. Values of mixed layer depth in the right-hand colum were
found by entering the respective regression equation with the surface
temperature to get the pressure at the bottom of the mixed layer, and
then converting from pressure to depth in meters.

™

29

il i e e GRS e Pl e,

S o e ol A W



o -100

Time (hours)

:
:
.‘,
4

_—

-,

g

® 00 2o 300 Loo
3
Q] _——1500 GMT 23 SEP 75

|
]

39

L 1500 GMT 25 SEP 75
§ /2100 GMT 26 SEP 75 \
Lo Vi W"J
il V"\AWAV
a

.

Graph of mixed layer depth vs. time. Ordinate shows depth

ters and is positioned along x-axis at time of hurricane passage.
The average mixed layer depth was roughly 33m prior to stomm -

a 1Zhr period of upwelling began, followed by
llations of the thermocline. Average depth of the

layer after these three distinct oscillations was roughly 52m.




. Time (hours)

-100 6 100 200 300 400
‘j S ' 4 1
T
(.,
: KillA
Mw
{
3\‘2 s
’g y 4
gt V4t ,\/‘
£
8

AU . PO

FIGURE 6. Decay of internal wave amplitude and mixed layer
rate. A rough approximation of the average post-storm amplitude of
thermocline oscillation was subtracted from the amplitude of the three
distinct oscillations immediately after hurricane passage. The re-
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pt each isotherm does not change significantly, which is equivalent to
stating that the mean temperature in the colum does not change signifi-
cantly. Nevertheless, there is a net depression of the isotherms for
about 10 days following hurricane passage. In this period there must be
a net dowrward vertical motion. Further investigation of these isotherms
and the meaning of their changing position in time applies to the prob-
lem of balancing the heat budget, the results of which are discussed

next.

C. RESULTS OF THE HEAT BUDGET STUDY
Figure 8 shows the calculated logarithmic temperature profiles for a

pre-storm (solid line) and a typical post-storm (dashed line) observa-

tion time down to the 200m level. As expected, there was a cooling and

deepening of the mixed layer. The warming of the water colum below the

mixed layer supports the net isotherm lowering observable in Figure 7

and is suggestive of heat transport by dowrward vertical velocities. It

was desired to solve the heat budget to calculate these vertical velo- 4

cities. But an oscillating thermocline requires averaging vertical |

velocity over an integer muber of cycles, otherwise the heat budget is

obscured by apparent heat storage. Hence it was decided to solve the

heat budget in four parts (see Figure 9), the first part being the !
. nearly three-day period of storm approach, the second part being the |
, period of tremendous upwelling from the time of hurricane passage until
1330 GMI', 23 September, dndtirdpmbomgdupoﬁodfrmui)aﬂ.
23 Septenber to 1630 QMI', 25 September (a Slhr period at a latitude
where inertial cycles are 26.0hr, chosen because of the distinctiveness
of the periodicity), and the fourth part being the period from 1630 QfT,
25 September until 1330 GMI, 26 September--one and one-half hours after
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the meteorological sensors on the buoy were turned off. The total length
of averaging time was l45hr. Vertical velocities for each of the 55 ob-
servation times during this 145hr period were calculated two ways, using
equation (5a), and using equation (10a). Table 2 shows the values ob-
tained through equation (5a) under the colums headed w and the values
cbtained through equation (10a) under the colums headed Mz ol The
values are given for five depths for all 55 observation times considered.
The mean values for each of the four parts of the heat budget were cal-
culated by weighting each value with the appropriate time interval in
the far-right colum, which is one-half of the time span between the
previous and the subsequent observations.

Figure 10 shows schematically the mean values over the entire period
listed in Table 2 for the five levels considered. The corresponding
horizontal mass transports were obtained using equation (8). Individual
values of w vs. Mz/p at all depths in Table 2 together with the in-
formation supplied by Figure 10 illustrate the following points regarding
the four parts of the heat budget.

1. Part One

During this period the vertical velocities deduced by both
methods are generally similar in sign and magnitude. Larger vertical
motions are found by both methods during the 24 hours prior to the end
of the period (time of hurricane passage), particularly at lower levels.
These values are several times the mean values over the period, which
are generally dowrsard.

2. Part Two

This period was selected to illustrate the rapid upwelling just
after hurricane passage. Average values of 5m/hr for this 12-hour
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period are not uncamon. The w values from equation (5a) without
horizontal temperature advection effects included have a more uniform
vertical profile (left side of Figure 10, Part 2) than those calculated
from equation (10a). However, as noted before, the values on the left
side of Figure 10 do not satisfy the heat budget.
3. Part Three

During this period the thermocline region is oscillating from
its highest upward excursion. It may be noted in Table 2 Part 3 that
the positive and negative vertical motions are not in phase after about
0300 GMI', 24 September 1975. As indicated in Figure 10 Part 3, the
lower level mean vertical motion becomes upward at 500m whereas the

levels nearer the surface are still experiencing dowrward vertical motion.

4. Part Four

This portion of the record contains the third oscillation of the

thermocline following the hurricane passage. It appears that the ver-
tical motion oscillation at 100m is about 90 degrees out of phase with
that at 500m by 0900 QMT, 26 September 1975. Rather large mean verti-
cal motion values (Figure 10 Part 4) are shown at several levels be-
cause not a camplete inertial cycle is included in the period. The
vertical structure of altemating inflow and outflow with depth on the
right side of Figure 10 Part 4 contrasts with the more uniformly
varying inflow/outflow vertical structure deduced fram vertical motion
as calculated via equation (5a).

D. ERROR DISCUSSION
According to Withee and Johmson [1976], the data were accurate to

within O.Ikg,/alz in pressure, representing about one meter in depth, and
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FIGURE 10. Mean values of vertical velocities at five depths (four- |
part heat budget). Part 1 is on this page and Parts 2, 3 and 4 are N
on the next three . Values of w in left colum were obtained

using equation (5a), i.e. assuming zero horizontal temperature advec-
tion. Values of M /p in right colum were obtained using equation
(10a), i.e. not as zero horizontal temperature advection. The
corresponding values of horizontal mass transport were obtained using
equation (8), represent the total mass transport across all vertical
faces of the colum, and have the units of hectograms per hour.
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FIGURE 10, Part 3
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#0.05°C in temperature except near the top of the thermocline where
the accuracy dropped to 10.20°C. Ideally then, the errors induced by
the regression temperature profiles should fall within these tolerances.
Table 3 shows the observed and regression temperatures and the error
for each of the times used in Parts 2,3 and 4 of the heat budget calcu-
lation, all of which were more erroneous than part 1. Since the colums
headed '1’50. TZOO
subsurface sensors on EB-10, it is emphasixed that these measurements

and '1‘500 are the temperatures observed by the three

were made as the sensors migrated above and below these nominal depths
in response to buoy movement.

The root mean square regression temperature error for the three
colums are shown in Table 3. Note that at 50m the temperature ranges
from about 23°C to 26.7°C, the largest error in fitting the profile is
about 0.25°C. Whereas the error values are samewhat outside the ex-
pected accuracy of the instruments, it should be noted that the storage
term in equation (10) depends more on the temperature gradient than on
the absolute value of temperature. The smooth variation in time of the
temperature profiles derived by this method were important for the heat
budget calculations.

The accuracy of calculating the MLD using the logarithmic tempera-
ture profiles deserves camment. Of course the accuracy of the MWD is
limited by the accuracy of each regression curve. Given an accurate

regression curve and a surface temperature accurate to within 0.20°C,
the MLD as calculated in this thesis would be known to within :2m.
The accuracy of the MLD is certainly governed by the accuracy of the
method, 1i.e., the very idea of calculating the MLD assuming an isother-
mal mixed layer above a logarithmic temperature profile. This model
has not been used in the past.
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2303 26.727 -0.118 16.462 0.324 9.810 -0.205
2306 26.916 -0.109 17.159 0.291 11.027 -0.182
2309 25.887 0.033 16.417 -0.080 10.094 0.047
2312 23.334 0.164 15.009 -0.376 9.547 0.211
2315 22.936 0.247 14.612 -0.543 9.171 0.296
2318 23.332 0.193 14.586 0.439 8.860 -0.245
2400 25.549 -0.124 15.788 0.342 9.348 -0.217
2403 26.290 -0.085 16.282 0.225 9.696 -0.141
2406 26.181 -0.023 16.216 0.058 9.600 -0.035
2409 25.776 -0.088 15.268 0.232 8.309 -0.144
2412 25.160 0.017 15.071 -0.044 8.400 0.026
2415 24.143 0.152 14.842 -0.353 8.705 0.200
2418 24.137 0.036 14.936 -0.089 8.888 0.053
2421 24.799 0.057 15.336 -0.139 9. 157 0.082
2500 25.294 -0.008 15.487 0.021 9.072 -0.013
2503 26.240 -0.084 15.821 0.224 8.968 -0.139
2506 26.647 -0.078 16.052 0.205 9.048 -0.127
2507 26.736 -0.059 15.961 0.154 8.850 -0.095
2508 26.731 -0.054 15.778 0.141 8.568 -0.086
2509 26.618 -0.078 15.622 0.206 8.426 -0.128
2510 26.483 -0.101 15.538 0.272 8.323 -0.170
2511 26.363 -0.112 15.505 0.299 8.276 -0.187
2512 26.155 -0.119 15.466 0.320 8.343 -0.201
2515 25.555 -0.098 15.267 0.261 8.431 -0.163
2518 24.672 -0.039 15.007 0.102 8.682 -0.063
2521 25.295 -0.097 15.389 0.263 8.920 -0.165
2600 25.450 -0.044 15.540 0.114 9.065 -0.070
2603 25.943 -0.070 15.660 0.184 8.890 -0.114
2606 26.647 -0.038 15.807 0.100 8,753 -0.061
2609 26.986 -0.061 15.807 0.160 8.526 -0.098
2612 26.828 -0.137 15.424 0.378 7.983 -0.240
RMS 0.102 0.255 0.153

TABLE 3. Error in regression temperatures as compared to observed tem-
peratures. Error (ERR) is defined as regression temperature ('1’1_) minus
observed temperature (T) . Both T _ and T are for sensor

depth (which varied), although the ° nominal depths of 50, 200 and
500m were used in naming these variables. Root-mean-square of the three
colums of errors is given.




IV. SUMMARY AND CONCLUSIONS

The buoy EB-10 measured the temperature at the surface and three time-
varying subsurface depths during the passage of Hurricane Eloise. In
order to study mixed layer deepening, themmocline response and the heat
budget, temperature profiles were needed that represented the thermal
structure of the ocean from surface to depth following storm passage.
These profiles were calculated assuming an isothermal mixed layer above
a thermocline with temperature proportional to the natural logarithm of
hydrostatic pressure. The resulting graph of mixed layer depth (MLD)
versus time showed that prior to the arrival of Eloise at EB-10, the
average mixed layer depth was about 33m. As the winds increased due to
hurricane approach, the mixed layer deepened steadily to about 42m before
upwelling to approximately 22m. The thermocline then underwent three dis-
tinctly large oscillations of inertial periodicity, while the mixed layer
continued to deepen. The post-storm average mixed layer depth was about
52 meters.

Vertical velocities, calculated first by assuming zero horizontal
temperature advection in the material derivative equation and second by
finding the mass transport necessary to balance the heat budget, show
that in the upper 500m of the water colum dowrsvard vertical motion of
lm/hr or less prevailed during storm appraoch, followed by upward verti-
cal velocity as great as 5.35m/hr during the 12 hours immediately follow-
ing hurricane passage. Next, during a 51-hour period in which the ther-
mocline underwent the first two of three large oscillations, dowrsvard
vertical velocity on the order of 0.5m/hr prevailed in the upper 300m of
the water colum with slight upward velocity at the 400m and S00m levels.




The heat budget could not be solved during the entire period of the third

large oscillation of the thermocline because the meteorological sensors
on the buoy had been shut off, but during the first half of the third
oscillation, i.e., the dowrward stroke, calculated vertical velocity was
generally dowrvard, as great as 1.27m/hr.

Although the time-averaged values of vertical velocities obtained by
neglecting horizontal temperature advection were generally in good agree-
ment with those obtained considering horizontal temperature advection in
all four parts of the heat budget study, when camparing the individual
values camprising the averages of the two methods, one sees that the mag-
nitudes of the velocities differ significantly. The values cbtained by

considering horizontal advection are assumed to be more accurate.
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