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I. TINTRODUCTION

A major impediment in the study of the dynamics of a particular sub-
merged vehicle is a lack of accurate functional relationship between the
motion variables and the control inputs. In the uncoupled linear case
such relationships may consist of linear transfer functions. Although
their general form including the degrees of the denominator and numerator
polynominals is known [1], the coefficients of these transfer functions
are often unknown. They must be determined either through analytical
formulas involving hydrodynamic coefficients or through identification
algorithms performed upon experimental flight test data. The purpose
of this report is to present a new identification method 'GRAM Identifier'
and a computer program for its application to flight test data of sub-
merged vehicles.

The method discussed possesses the following advantages: a) it is
noniterative and therefore computationally fast, and b) it is noise-worthy[2]-[4].
Only the single-input, single-output case is considered in the present
report. It will therefore be assumed that the flight test data comnsist of
single input maneuvers, each caused by the actuation of a single control
surface while the remaining control surfaces are held at zero deflection.

To aid the engineer, a computer program entitled GRAM has been written that
performs the necessary computations. The program is suitable for analysis

of actual flight test data as well as for a simulation mode. In the latter
case the flight trajectories are first generated, incorporating synthetic
disturbance and measurement noise, and identification is then performed on

the simulated trajectories. The simulation mode is useful when, for example,
the approximate transfer functions of the vehicle are known (from hydrodynamic
computations) and it is desired to find efficient maneuvers so as to develop
a flight test plan.

The structure of the report is as follows. Section II presents the
theory of the GRAM Identifier. Section III gives a user oriented description
of the computer program. The results of some case studies, including those
performed on actual vehicles, are provided in Section IV. Appendix A includes
the 1isting and flow charts of the subroutines used by GRAM. Appendix B
provides a brief discussion on the equivalence of z-domain and s~domain
transfer functions and Appendix C deals with the solution of a key equation.

Tiis GocU™eT™® R DOOR appraved M
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II. GRAM IDENTIFIER

The identification problem is formulated with reference to Fig. 1.
The variable u represents a nonzero input variable -- the stern-plane
angle, the rudder angle or other control surface deflection. The cor-
responding response y represents one of the motion variables -- pitch angle,
yaw rate or some other. In part (a) of the figure is shown the vehicle,
the instrumentation for the input-output variables, and the necessary
samplers for digitization of these signals. Part (b) of the figure
provides a discrete-time interpretation of the identification problem,
which is stated as follows:

Given

i) the input and output measurements v(k), x(k), k=1,...,K,
ii) the integers n and r in the model

y(k) + aly(k-l) + ce.. + any(k—n) = bou(k) + ... + bru(k-r) 1)

iii) a statistical description of the noise processes w(k) and q(k),
find the unknown parameters a, and b, so that the model provides the best

fit (in some sense) into the measured data.

Note that the quantities aj, bj, y(k) and u(k) are in fact to be
estimated. Only x(k) and v(k) are directly available.

Remarks

The reader familiar with the principles of signal sampling may wish to
skip these remarks.

® Note that y(k) = y(k8), u(k) = u(kd), etc., where A is the sampling
interval.

® In terms of the z-transform variable the relationship of (1) can be
written as [5]
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Ef fect of disturbances

|
i

“=
y(t) X
VEHICLE
v (k)
Instr. Tt L—’ Instr. — x(k)
‘ Sampler Sampler
Noise Noise
w(t) q(t)
(a) Single-input, single-output maneuver
y(s)/u(s) = H(s)
u (] UNKNOWN v (k)
MODEL &
L, wighy - 9 % (K)

(b) Discrete time identification problem

y(z)/u(z) = H(z2)

Fig. 1. Single-input, single-output identification problem.
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y(z) _ B(z)
u(z) A(z)
-1 -
3 bo £ blz + . * brz
T e TR
1 n
-1 -1
bo(l—glz AR (1-3rz )
(1 0,2 YR B R e o 2 )

The system described by (1, or (2) is stable if and only if each

pole oy satisfies the condition |ai|< 1

(2a)

(2b)

(2¢)

A discrete-time model of the form (1) or (2) retains some infor-

mation about the original continuous time system.
sampling rate the greater the information retained.
thumb the sampling rate should be about ten times the highest
critical frequency of the vehicle function H(s) = y(s)/u(s).

When this condition is satisfied a correspondence between the
z-domain and s-domain functions may be achieved.

Specifically,

The faster the
As a rule of

the equivalent continuous-time model becomes (see also Appendix B)

60 (S+ql) LA A (S+qr)

H(s) = Tetp ) (s¥p)) - - - -(s¥p)

Where
9= %’ln (Bi) (or Bi=e-
P, = - %'ln (ai) (or ay =e

The relationship in (1), or equivalently (2b), may be written as

AT En y(z) = BTEr u(z)
where
AT=[lal.......an]

T
B by Byoe v br]

3

(4)
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En? = (1 z-l Ny L Dy z_n]

-1 e}
ErT R e e L r]

The super T denotes the: transpose of a vector or matrix. Equation (4)
should form the basis for modeling the vehicel dynamics. However, as

discussed later, the use of the vector signals & y(z), £ru(z) leads

to poor resulcs in identification. Instead G relies upon certain
measurement signals shown in Fig. 2 generated by means of first order

digital filters. Specifically, use is made of the vector signals

Y@ = [y (K), vy ®)se -« oy y (1T

A,
u(k) = [un_r(k)p . Un(k)]

consisting of the measurements at time instant kA. They will be called
output and input measurement vectors, respectively. Their z-transforms

are denoted as Y(z) and U(z).

It can then be shown that

yo(k)=y(k) P1 yl(k) P2 _ZQSE{. s Pn | yn(k)
e -1 -1 -n
1-Q, 2 1-Q,2 1-Q,z
u_ (k)=u (k) B u, () ) Y5 (k) B u, (k)
ﬁ —1 -1 Pr— 6 ® & —1 ﬁ
1-le 1—Q2z 1—an

Output measurement sequences: yo(k), o .,yn(k)

Input measurement sequences: un?r(k), 37y .,un(k)

Fig. 2.

Measurement filter system
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1 T
Y(z) —dn(z) c, &y (5a)
1 T
U(z) dn(z) Cr &ru(z) (5b)
where
o -i
dn(z) = ]I (l-Qiz )/Pi
i=1
%o i e SR
C =
n c 0
10
: ‘1l 0
cnO 0 0

and(:zj are the coefficients of the polynomial

n-j n

-2 -1
L 2% = 1 -z )
p=o ¥ =5

The matrix C is defined in a manner sinilar to C ; it is in fact
the (r+1)x(r+l1) dimensional top right corner submatrixTof Cn'

Measurement Filter Theorem [2]

If the signals y(k) and u(k) satisfy (4) for some parameter vector .
A and B, then the measurement vectors satisfy the orthogonality condition

[GT-BT] Y(k)| =0 for all k

U(k)
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where
a=C A (6a)

B=¢ *B (6b) ;

Proof The matrices C_ and Cr are upper triangular about the cross-
diagonal, the latter ﬁaving nonzero entries. Hence these matrices are
nonsingular. We can therefore rewrite (4) as

-1,.T . T -1 T
(Cn A) c, F,ny(Z) = (Cr B)Cr ErU(Z)

Substituting 6a and 6b and dividing through by d(z) one has {

1

[ T T 3
d(z) Cn EnY(z) -8 d(z) Cr gru(z) 1

o

Upon substituting (5a) and (5b) this equation yields

of -8%1frz) | =0
U(z)
The result sought by the theorem is obtained immediately upon taking the

inverse transform. QED

Corollary: Let

A= [aT -BT]T Synthetic parameter vector
e T P
! f(k) = [Y (k) U (k)] Model -measurement vector
1 then
ATE(k) = 0 for all k )

Measurement vectors

' As stated earlier, the sequences y(k) and u(k) are not actually
| available. Only x(k) and v(k) are, where

x(k) = y(k) + q(k)
' v(k) = u(k) + w(k)

Because the system of measurement filters in Fig. 2. is linear,
the following observation can now be made

=

T T T I Y Sy
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Suppose that instead of processing y(k) the cascade of filters
processes output noise q(k). Similarly, let the lower cascade
of filters process the noise sequence w(k). And, let the
resulting measurement sequences be denoted as qi(k) and wi(k),
respectively.

Then
xi(k) - ¥ ) & q4 (K)
vi(k) = ui(k) + v&(k)

where x.(k) and v, (k) are the data-measurement sequences obtained
by processing x(k} and v(k) by tke two cascades of measurement

filters.
Let
Qk) = [qo(k)’- o s e "qn(k)]
W(k) = [wn_r(k), S wn(k)]
X(k) = [xo(k)’ T ’xn(k)]
V) = [v _ (), . ., v (k)]
e(k) = [QT (k), WI(k)1T noise measurement vector
gk) = [XT(k), vI()]T data measurement vector
Then
g(k) = f(k)+ e(k)

For convenience, f(k), e(k) and g(k) will be called model-measurement
vector, noise-measurement vector and data-measurement vector, respectively.
To emphasize, the model-measurement vector f(k) is obtained by passing
the model sequences y(k) and u(k) through the measurement filters; the
noise-measurement vector e(k) by passing the noise sequences q(k) and v(k)
through the same filters; and the data-measurement vector by passing the
data sequences x(k) and v(k) through the system of mesurement filters.

Generalized Least-Squares Formulation of the Identification Problem

Given the data-measurement vectors g(k), k=1, . . ., K and the
noise-measurement vector covariance
K
R=EZI e(k) eT(k) (E: expected value operator)

k=1

find the synthetic parameter vector A that minimizes
K
-1
J=1 (gk) - £GR)IT R [g(k)-£(K)] ®)
k=1

under the constraint

AT E£(k) = 0 (9)
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Remark
(The reader may wish to skip this in the first reading)

1f q(k) and w(k) are stationary white noise processes with variances
0 = and ow2 respectively and cross-correlation coefficient p (which could

of course be zero) then

e 2
|
e -~ | ~
R G RCLAE ECUEGLEN
R = I (EkH) i
v St e MG
H0Q" oo, | WK (o,

Here, [Q(k),W(k)] = p(k) represents the measurement-vector sequences
resulting from unit pulse (8§, = {1,0,0,...}) stimuli at the measurement
filter input terminals. We skall call p(k) the pulse-measurement vectors.

® Note that R has the form

L
Bi1% 1F*12%% °w‘|

: T
where the matrices Rll’ R12 R21 , and R22 are known (without
the knowledge of oqz, cwz,andp). They are determined entirely

by the known measurement filters. When either oq or ow is zero,

the matrix R becomes known up to a scalar multiple.

Solution of the Identification Problem

?
The solution A and f(k) which minimize (8) under the constraint are
obtained by the Lagrange multiplier method:
F K 2 K T
%= 5 ||g)-£@) |7 + I v QAEK)) (11)
s k=1 R—l k=1
3
a* __ _ p7l i -
3£ (K) 2R “(g(k)-f(k)) + Vi A=20 (12a)
@)-£0)) = 5 v, R A (12b)
T 1 T
A (gk)-£(k)) = i-vk AT R A (12¢)

-0~
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9J* T
3Vk = X f(k) =0 (12d)

T

Equations (12c) and (12d) together yield

2
Yk _ ATe@) (12e)

Substitution of (12b), (12d) and (12e) gives the minima with respect to
f(k) and v,

K
K WV
= I (g0-£(0) A
k=1
K Vv
=1 £ g
k=1
I GO TR,
k=1 ATRA

By defining the Gram matrix of the data-measurement vectors g(k)

& T
G=I g(k)g (k) 13)
k=1
we may write
T
J* = ATGA
ATRA (14)

The problem now is to minimize (14) with respect toA . This is quite readily
shown to be the eigenvector solution of

(G-uR)X =0 (15)

corresponding to the smallest eignevalue ul.




Furthermore, it turns out that J

Remarks
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minimum u!and f (k) are given by

T
f(k)-g(k)-A—T-gSBl R A
ATRA

The actual solution of the eigenvector problem in (15)
is contingent upon the form of the R matrix. Three different
cases arise which are discussed in Appendix C.

The standard deviations oq and o, of the output and input noise

sequences are frequently unavailable. Under white noise assump-
tion they can be estimated approximately as follows. Suppose

that the useful signal frequencies are limited to the frequency band
[0,f1], then by high-pass filtering one can estimate the power-

density of the noise in the region f1 to fl + fz; call this
density S(fl). Suppose the standard deviation of the high-

pass filtered signal is 0, then the standard deviation of the
original noise signal may be estimated as

A2 “‘,2 0, ~2
g = 2fls(f1) + 0 and S(fl) =0 /(2fz)

As mentioned earlier, a judicious choice of measurement filters

can lead to rapid and successful identification of the vehicle
transfer function. The primary consideration in this choice is
that the resulting data~measurement sequences y, (k) should be

as linearly independent as possible (so that theé cross-correlations
between them are as small as possible). For, if the measurement
sequences were highly correlated, the matrix G would becomes
ill-conditioned. Correspondingly, the solution 4 would be
unreliable. For example if the measurement filters were chosen

to have Qi = 0 so as to have nearly all-pass characteristics

(compared to the vehicle's critical frequencies) than the
resulting measurement sequences have pair-wise correlations
approximating unity.

Another interesting case worth mentioning is that when
each measurement filter, instead of being chosen as a recursive
first order digital filter, is replaced by a unit delay. In
this event the formulation coincides with that considered by
Levin [6). If the sampling rate for discretizing the motion
variables is adequately high, which is usually true, the cor-
responding sequences ¥, (k) = y(k-i) are highly correlated,
rendering this choice undesirable [7]. Poor identification results
therefore accrue.

-1]=




M T — T

NCSL TM-204-77

Since the measurement filters (1-Q )/l-Qiz—l) have low-

pass frequency characteristics witﬁ unit'd.c. gain, a con-
venient way to control the correlation between the resulting
signals is to choose Qi so that the mean power of measurement

sequences diminish in a sensible manner. Call the mean power
of the output of the ith filter as P the Qi could be selected

so that
= nnidll ==
piﬁ—m—po w1 200000

This choice of measurement filters has been implemented in
the computer program GRAM as is available to the engineer on
a select option basis

As discussed earlier the minimum value achieved by the
criterion function J is given by fl , the smallest eigen-
value of the equation posed in (15). This value will be
called the algorithm error. However, since the engineer

is interested really in the fidelity of output reconstruction
a simple measure of fidelity may be used. Let $(k) be the
reconstructed signal obtained by processing the measured
input v(k) by the estimated transfer function (the true input
u(k) is used when simulation mode is used in the computer
program GRAM). Then the percent reconstruction error is
defined as

K 2, X 4
ESR =100/ £ (y(k) - $§(k))°/ T y (k)
Tl -

~12-
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IIT. PROGRAM DESCRIPTION

The purpose of this FORTRAN program is to determine a linear model
from flight-test data of a submerged vehicle. The method used is the 'GRAM
Identifier' discussed in Section II. The computer program is designed to work
under three different modes. When ISIM = 0 analysis of actual flight test
data is performed; with ISIM = 1 and IS™ = 2 flight trajectories are first
simulated and then identification is performed.

When ISIM is either one or two the input data is generated in subroutine
FILLV where the type of control input is specified by the parameter INPT. The
flight trajectory is simulated using the z-domain vehicle transfer function
when ISIM = 1 (subroutine RESPON) or using the vehicle impulse response
when ISIM = 2 (subroutine CONVOL). Once the flight trajectories are generated
the program uses the facility of adding synthetic white Gaussian noise (sub-
routine CORUPT) to the simulated flight trajectories. Next the model ident-
ification is performed based upon the actual or simulated flight trajectory
through the 'GRAM Identifier' method. The identified model is used to recon-
struct a flight trajectory which is compared to the actual or simulated flight

trajectory for analysis.

When ISIM = 1 it is possible also to simulate a feedback system as
shown in Fig. 3 wherein the vehicle transfer function,the input function
(via option parameter INPT), the compensator constants and the gain constant
are specified to the program.

The last of these is not read via data cards; it is entered directly in
the subroutine RESPON. Identification is then performed upon the vehicle
input-output. For reconstruction one may use open-loop reconstruction or
closed-loop reconstruction.

v Co=C.x

K EK b % il
‘ = r——“—-) >
1-C.z 3 b

Az

Fig. 3. Simulated feedback loop; Ci = COMPS(I), A = GAIN

The input data cards on the subsequent pages give a description of all
input variables, and in so doing provide an understanding of the program use.

-13~
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CARD # 1

CARD # 2

Variable
Name
(Format)

N
(15)

MP1
(15)

IPLT
(15)

ISIM
(15)

IMRESP
(15)

NPULSE
(15)

NCSL TM-204-77

INPUT DATA CARDS
The first card is a title card. Columns 1 through
80 are available for an alphanumeric title.
First option card which contains eight variables.

Description Columns Preferred
Value (if any)

Order of system 1-5 -
Number of data points 6-10 o
Plotter option; 11-15 1

IPLT = 0 No plots
=1 Plots only on line printer
=2 Plots on printer and CALCOMP
plotter

Simulation option 16-20 -
ISIM = 0 Performs identification
upon flight test data

=1 Performs simulation using
z-domain transfer function
coefficients

=2 Performs simulation using
specified impulse response

h(k).

This variable is used only when ISIM=2 21-25 -
it specifies the type of impulse response
for the system being simulated.
IMRESP = 0 Impulse response HPULSE(k)
read from cards

IMRESP = 1 to 5
Synthetic impulse responses
generated (see subroutine
CONVOL)

Number of impulse response points 26-30 -

=G
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: INORM This option allows various matrices 31-35 1
to be normalized if INORM = 1

IX = 4 + 2% if ISIM= 1
2 + [NPULSE/8] if ISIM= 2

[X] is the function that rounds off to the nearest
integer greater than or equal to X.

These cards contain different types of data which |
is determined according to the option ISIM. Specif- |
ically if ISIM = O the output input data is placed in

these cards. This information is placed on the cards
in 8F10.1 fields with the odd positions containing

the output data and even positions containing the

. input data. If ISIM = 1 these cards contain the
z-domain transfer function coefficients. The number

: of coefficients must equal 2N+2 and must be entered

B as follows. The z-domain transfer function is of the
form shown below

3 =1 -7 -n
a5 - b1+b22 +b3z +....+bn+lz NUM(z)
. - -2 -n DENOM(z)
1+azz +a3z +....+an+lz

The coefficients should be entered each on a separate
1 card in a D22.15 format in the following order.

1, 8.2, 83:,-oc.,an+1,_b1, —bz, ‘b3,---',-bn+l

If ISIM=2 and IMRESP=(Q these cards contain the
impulse response. The length of impulse response
is determined by the option NPULSE. Eight data
points are placed on each card in an 8F10.0 format.

’ CARD # IX + 1 Second option card contains sixteen variables
E
i Variable Description Columns Preferred 1
| Name Value
(Format)
INPT Option to select a specific input 1-2 -
sequence (used only when ISIM=1 or 2)
INPT =1 Impulse
= 2 Step
= 3 Doublet
= 4  Squarewave

-15-

.
-




IREM
(12)

IZTS
(12)

QOPT
(12)

NCSL TM-204-77

INPUT = 5 Square wave followed by exponential
= 6 Exponential
= 7 Periodic impulse
=8 Triangular wave
= 9 Exponential + decaying sinusoid
= 10 Random noise
= 11-20 shifted functions 1-10
Option used to describe the order 3-4

of the numerator compared to the
denominator. This parameter controls
the numerator of the z-domain model
transfer function. Specifically, it
limits the numerator degree in z-1 to
N-IREM. For example if IREM = 1, then
the model seeks a numerator.

=(n~1)

-1
NUM(z) b1 + bzz +....+bnz

This option determines the type of 5-6

z domain to s domain transformation

that is performed.

IZTS 0 Z domain to S domain
conversion is not performed.
That is an equivalent continuous
time system is not found

=1 An equivalent continuous time
system is found (from the
discrete time transfer function
B(z) based on a logarithmic
zto s transformation).

=2 An equivalent continuous time
system is found (from the discrete
time transfer function H(z) based
on a pulse delayed z to s trans-
formation.

Option used to determine measurement 7-8
filter pole(s). If QOPT = 0 each of

the measurement filter poles is set

equal to the data value read as QSAV.

If QOPT=1 the measurement filter poles
are calculated in subroutine FINDQ.

=] G
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FDBACK
(12)

FDREC

ILEVIN

IDLY

(15)

MP1
(15)

NPRD
(15)

ISKIP
(15)

DELTA
(F5.0)

NCSL TM-204-77

This option allows a negative 9-10
feedback path to be added to
simulate a feedback system fér
which the vehicle is the plant.
FDBACK = 0 No feedback
= 1 Feedback is simulated
FDREC is the variable to determine 11-12
the type of reconstruction desired.
FDREC = 0 Open loop reconstruction

=1 Closed loop reconstruction

(Note FDREC must equal zero if FDBACK
equals zero)

This option is used when the LEVIN 13-14
identification technique is desired.

ILEVIN = 0 Gram identification
technique performed.

= 1 Levin identification
technique performed.

Delay introduced on input numeratqr 15-16
NUM(z) = z_IDLY(b1+....+b(n+1_IREM)*z—(N_IREM))
Order of model 21-25
Number of data points 26-30
Time scale parameter for input 31-35

signal (useful only when ISIM = 1 or 2)

This variable determines the sequence 36-40
of points plotted on the printer.

If ISKIP = 1 every data point is

plotted and if ISKIP = 5 every fifth

point is plotted, etc.

Sampling interval 41-45

«) 7=
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QSAV QSAV is the measurement filter pole(s) 46-50 0.8 to 0.95
(F5.0) used only if QOPT = 0 and disregarded if
QOPT = 1.
NSPQ Noise to signal power ratio of the 51~55 0.01
(F5.0) output sequence (used only if ISIM = 1 or 2).
NSPW Noise to signal power ratio of the 56-60 0.01
{F5.0) input sequence (used only if ISIM =
1 or 2)
CARD # IX + 2 This card contains the coefficients of

a first forder compensator in the forward
path preceding the vehicle. The general
form of the compensator is;

_ COMPS (2)- coMPs {3)z + (= £57by
1 -COMPS(1)z

C(z) 1 — gta

The coefficients are read in the form
of 3F10.1 fields. If no compensation
is desired a blank card should be
inserted in this position.

END OF FILE CARD

// Card on IBM 360 system.

MEMORY

The total storage required for the program is 152K bytes, or approximately
40K words, on an IBM 360/75 computer system. This will, of course, change if
the array dimensions are changed to meet the users test requirements. Presently
the program can accept up to one thousand data points each for the input and
output signals. The model sought (or the simulated model entered when ISIM = 1)
can be as high as ninth order. Under the third simulation mode (ISIM = 2)
the impulse response can be of a length up to sixty four data points. It is
important to note that the square matrices G and Z and the vectors GAMMA, XLAMDA,
and COEFF should have a dimension at least as large as (N+N+2 ) where N is the
order of the model.

=]
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OUTPUT
The first line of output is the title which is followed by a column of

program variables as follows:

STARTING SIMULATICN

SYSTEM (QPD:R = 4
M ¢ 1 = S50

INPT = 9

JIREM = 1

127S = 2

MSPQ = N N10nc)

“}SPH = Ue 1')!‘0(\(' |
SAMPLING INTERVAL = e SCOLIC

Q PARAMETER = [ e9)0F 00

q0PT = 1

IPLT = 1 :
FDBACK= 0 ]
FDREC= 3 §
ILLVIN= n s
IoLY = 1 :
INORM= 1

COMPS(I) = ~ o ol

The next portion of the output is a plot of the vehicle input and output.
On the left hand side three columns of printout list the serial number of the
data point, the instantaneous value of the output and the instantaneous value
of the input repectively. 1In case a feedback loop is employed (i.e. FDBACK = 1)
then the command input (i.e. the input to the feedback system) is plotted
preceding the vehicle input-output plot. Next the following title is printed

GRAM IDENTIFIER

The next output line lists the values of measurement filter poles (Q(I)). Note
that N measurement filters are used where N is the system order. All Q(I) are
equal if QOPT = 0. g

Following the Q parameters is the listing of the gram matrix G. This
is an NPNP2 x NPNP2 matrix where NPNP2 = N+N+2. The item printed next is the
noise correction matrix Z which is generated in the subroutine BUILDZ. This
matrix is also NPNP2 x NPNP2 dimensional. The next line of printout is the
Synthetic Coefficient Vector XLAMDA which is generated using the subroutines
SOLVEl, 2, and 3. Following the Synthetic Coefficient Vector is the trans-
formation matrix A (again an NPNP2 x NPNP2 matrix) which is premultiplied with
XLAMDA to obtain the desired parameter vector GAMMA. It is generated in the

=]10w
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The next value printed is the estimate of bias in data

subroutine BUILDA.
At this point in the output the following are

followed by the variable NN.

printed
a) the z-domain denominator, numerator and poles,

b) the s-domain poles, numerator constants of a partial fraction
expansion (available only when IZTS = 2 or 3), the denominator and

numerator.

The values of the denominator and numerator coefficients for both the

Z and S-domain are printed in ascending order of the degree of the term it
multiplies, starting with the constant term and ascending to the appropriate

highest order term. At this point the reconstruction from the model is
obtained via RESPON. The subroutine ERROR calculates and prints the re-

construction error

PZR CEZNT McAN POWER ERROR OF RECONSTRUCTION Ul

PER CENT OF SQUARE KOUT OF POWER ERROR IN RECUSTRUCTION Ce2

The last output is the plot of the true response (when ISIM = 1 or 2) or
actual flight test data when ISIM = 0 and the reconstructed response. The
same format is used as the previous one for the vehicle input output plot.

-20~
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PROGRAM GRAM
FLOW CHART:
START
ISIM = 0 READOUTPUT (XORG) 'AND INPUT (YORG) SEQUENCE

READ TRANSFER FUNCTION COEFFICIENTS, GENERATE
IMPULSE RESPONSE (CALL FILLV WITH INPT = 0 AND CALL
RESPON) AND PLOT IT

AND IMPRESP = 0 READ IMPULSE RESPONSE

o

READ PROGRAM VARIABLES

i

Yes

[ 1smM= 02 |

FILL INPUT ARRAY (VORG) ACCORDING TO
OPTION VARIABLE "INPT"
(CALL FILLV)

IA? No

FDBACK= 0 ? PLOT COMMAND
INPUT

< J
€

GENERATE OUTPUT SEQUENCE XORG(K)
ISIM = 1 CALL RESPON
& OL

V(I)=VORG(I) ;X(I1)=XORG(I) J

L

CORRUPT INPUT AND OUTPUT SEQUENCE IF DESIRED
(CALL CORUPT)

i

START IDENTIFICATION FROM INPUT OUTPUT DATA
(CALL GRAMII)

!

~2]1-
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E

IFD= 0 ? GENERATE INPUT (VORG)
(CALL FILLV)

CALCULATE RECONSTRUCTION ERROR
(CALL ERROR)

=2
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PROGRAM GRAM

DIMENSION X(1000),V(10Q0),XORG(LCOO},VORGI100D)} ,XREC(1000)
DIMENSION DATAL1G02,2),DATA2(1GC00,2) .BUFF(3000)

DIMENSION Gt20,20)+2(20+2C) ¢GAMMAL20 ,XLAMDAL20),COEFF(20)
DIMENSION HPULSEL64)

DIMENSION TITLE(BO)

COMMON NN

REAL#*8B Gely GAMMA,XLAMDA,COEFF,CCHMPS

REAL*8 DELTAyQ,QSAV,DELSAV,AVGQ+AVGW,SUMV2,XSAYV

REAL NSPQ.NSPHW

INTEGER QOPT,FOBACK, FDREC

EQUIVALENCE €Z(191)yBUFF(1))e(G(1,1),BUFF(150L1))
EQUIVALENCE (DATA(1,1),Xt1))¢(DATALL,2),V(1))

EQUIVALENCE (XORG(1)yDATAZ{1s1) ) {XREC{1),DATAR(L,2))
EQUIVALENCE TNSPQySIGQ) s (NSPWySIGH)

COMVMON /COMPEN/COMPS(1C)

COMMON /GKRD/ IGKR

WRITE(6+1022)

READ(5,1021)TITLE

WRITE(6+1021)TITLE

WRITE(6,1023)

MAXPIL.=1000

MAX=20

READ(5,1001) NeMPL,IPLTISIM, INRESP,NPULSE, INORM
NPNP2=NeNe2

RDEL=0.01
IF({ISIMeEQeOIREAD(5+6995) (XORG(K) ¢K=14MPL) o (VORG(K) yK=1,MP1)
IFCISIMeEQe 2 ANDo TMRESP.EQeOJREAD{5+6995) (HPULSE(K) yK=1,NPULSE)
IFCISIMeNE.LIGO TO 6622

READ DIFFERENCE EQUATION PARAMETERS

READIS, TOLoEND=1234)(COCFF(I)eI=14NPNP2)

CALL FILLVIVORG+MP1,0,KPRD)

CALL RESPON(X,VORGyNyCOEFF,XLAMDA,HP1,0)

IF(IPLT «NEe 2) GO YO 6622

CALL PLOPBIMPLy1yXyMAXPLCeO4RDELy3,
L17THIMPULSE RESPONSE_,
216HTIME [N SECONDS_,BUFF)

CONTINUE

KKKK=0Q

READ(S,1,END=1234) INPT,IREM,I12TS,Q0PT,FDBACK,FDREC,ILEVIN,IDLY,
INDELK ¢+ MPL1yNPRD, ISKIP,DELTAQSAV NSPQ,NSPHK
READ(5+6995)(COMPS(I)o1=1,43)

IF{N.EQ.10000)GO TO 4320

Q=QSAV
WRITE(691000IN,MPL oINPT, IRCM, IZTSeNSPQsNSPH,DELTA,C,COPT,
1IPLTFDBACK¢FDREC¢ ILEVIN) IGKRyIDLYs INORMy LLOMPS(1),1=1,3)
NM1=Nh=1

NP1l=N¢1

NP2=N¢2

"NPNP1=Ne¢N+1

NPNP2=N¢N+2

RHO=(,0

NN=N-IREM

S e o Mt
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IFUISIMEQ.0)GD TO 23

C FILLING THE INPUT ARRAY ACCORDING TO OPTION PARAMETERs INPT
CALL FILLVI(VORGMPL+INPT,NPROI
IF(FOBACK.EQe01GO TO 6626
D0221=1,MP]

V(1)=VORG(I)

22 X(1)=0.0
IF(KKKK.NE.O) GO TO 6616
CALL PLOTITIDATA ¢2,MP1,1,MP1,1SKIP,NAXPL,14140)

6616 CONTINUE
IFLIPLTANE.2 o+ORe KKKKoGTo0) GO TO 6626
CALL PLOPB(MP1,2,DATA (MAXPL,0eC,RDEL,3,

125HINPUT TO FEEOBACK SYSTEM_y
216HTIME IN SECONDS_BUFF)

6626 CONTINUE

C

c GENERATING SEQUENCE X(K}

IFCISIMeEQ. 11 CALL RESPCNUXORG ¢VORGoNCOEFF+ XLAMDA, MP1,FDBACK)
1F(1SIMeEQ.2)CALL CONVCL(HPULSE ) VORG ¢ XORGyNPULSEMPL ¢ IMRESP)

23 D0241=1,MP1
V{I)=VORG(I)

24 X(1)=XORG(I)

IFL(NSPQeNSPW)I®ISIM NE.OICALL CORUPT(X,V,SIGQ, SIGH,MPL)
IF(KKKK<.NE.O) GO TO 6611

WRITE(6,1003)

CALL PLOTIT(DATA 42¢MP1ls1+MPLoISKIP,MAXPLy14La0)

6611 CONTINUE
IFCIPLT NEe2 oORe KKKKoGTe0) GC TO 6633
CALL PLOPBIMP1,2,DATA ,MAXPL0sQ,RDEL 3y

127THCORRUPTED INPUT AND OUTPUT_,
216HTIME IN SECONDS_yBUFF)

6633 CONTINUE
N=NDEN

c STARY IDENTIFICATION FROM INPUT QUTPUT DATA

(%

-

CALL GRAMIT(XoV,MP1,SIGQ,SIGW RHC¢N,DELTA,QsQOPT,IREV,I2TS,GANMMA,
1XLAMDA Gy Z,MAXy ILEVIN, IOL Y INORM)

1FO=C

IF(FDBACK.GEel oANDs FDREC.EQ.1) IFD=FDBACK

IF(IFDeNELO) CALL FILLVIVORG,MP1,INPT,NPRD)

CALL ERROR(XREC VORGyGAMMA,MPL, Ny XLAMDAy XORGe IFD¢IDLY)

c PLOT RECONSTRUCTION
WRITE(6,66)
WRITE(6,1004)
IFCIPLYJEQeCY GO TO 6544
CALL PLOTITIDATA2,24MP1¢1¢MPL:ISKIP,MAXPLy]+1.0)
6544 CONTINUE
99 RDEL=DELTA
IFCIPLY.NE. 2) GO TO 6644
CALL PLOPB(MPL,2,DATA2,MAKPL+0«O¢RDEL 3,
140HTRUE RESPONSE VS RECONSTRUCTEC RESPONSE_»
216HTINE IN SSCOUNOS_+BUFF)
6644 CONTINUE

c
KKKK=KKKK+1
100 GO TO 4321
1234 CALL PICSIZ2(0+0+0.0)
1022 FORMATUZ/Z2I002000000 000000000080 00000008 0000080 8E0E000L000012¢021)
1021 FORMAT(80A1)

=24~
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1023

1001
701

1003
1004
66

6995
1000
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FORMAT (/21X ' 8220440000023 48800080 0840880880888 00500000%0000%¢",
1 S0V tittttttt sttt bttt dsttnvount)

FORMAT(OIS)

FORMAT(D22.15) .
FORMAT(BI2,4X,415,4r5,0) .

FORMAT (/745X 'OUTPUT (*) AND INPUT (#)*,/)

FORMAT( /745X, *0OUTPUT (%) AND RECONSTRUCTION (¢)*y/)
FORMAT(//+2Xe *TRUE RESPONSE VERSES KECONSTRULY 0 RFSPONSE®,//)
FORMAT(BF10.0)

FORMAT (1HL ¢5NX, *STARTING SIMULATION®, /20X, *SYSTEM CRDER = *4154/,
120X, 'M ¢ 1 = *,15,//7/720X+*INPT = *,15,/,20X,
2VIREM = %, 15¢/420X,°127S = ¢, 15,//7/,20Xs 'NSPQ = *"4F10s6+/+20X,
IINSPH = "W FIN,64///,20X,* SAMPLING INTERVAL = *,F10.6,/20X,'Q PARAM
4ETER = *,F10ae6:1/¢20X,'COPT = ¢,15,/,20X,*IPLT = *,15,/,20,
S'FDBACK=",15,/420X,*FORFC= * 405, /20X, ILEVIN=",15,/20X,*IGKR = ¢,
615,/720X*IDLY = *,[5,/20Ko"INORM= *,15,/720X,"COMPS(I) = *43G17.10,
17

sSTOP

DEFINITION OF PARAMETERS USED IN THE SIMULATION OF A
LINEAR DYNAMIC SVYSTEM

X IS THE CORRUPTED CUTPUT SEQUENCE
V IS THE CORRUPTED INPUT SEQUENCE
GAMMA IS THE COEFFICIENT VECTOR

MAX = ACTUAL DIMENSION SIZE OF 2~DIM ARRAYS IN THE DIMENSICN
STATEMENT

N = ORDER OF SYSTEHM

THE MAXIMUM VALUE CF N IS MAX/2-1

MP1 = M+¢1l, THE TOTAL NUMBER OF SAMPLED POINTS IN EACH SEQUENCE

SIGQ = THE STANDARD DEVIATION OF THE OUTPUT NOISE SEQUENCE.Q(K)

SIGW = THE STANDARD DEVIATION OF THE INPUT NCISE SEQUENCE, W(K)
HOWEVER IN THE READ STATEMENT THE DESIRED NOISE TO SIGNAL POWER RATIO
REsEe R SEHSR LR RA BN AL R RRGA ST RO E
IS READ INTO SIGQ AND SIGW FROM WHICH THE TRUE STANDARC DEVIATIONS
ARE COMPUTED AND STORED BACK INTO SIGQ AND SIGW

RHO = EXPECTATION( W(K)*Q(K) )

DELTA IS THE SAMPLING INTERVAL

Q IS THE ODENOMINATOR PARAMETER OF THE KNOWN FIRST ORDER DIGITAL
FILTERS FOR THE GRAM II TECHNIQUE

QSAV IS THEIR CUTOFF FREQUENCY

IGKR=0 USE IS MADE OF THE FIRST ROW OF ADJOINT
1 DIAGONAL (NEGATIVE ENTRIES SET TO LERO)
2 ABSOLUTE VALUE OF DIAGONAL

ISIM=0 READ EXPERIMENTALLY MEASURED INPUT OUTPUT DATA
1 READ COEFFICIENTS OF H(Z)y, THEN SIMULATE INPUT-QUTPUT
2 READ IMPULSE RESPONSE HPULSE(K)y K=lseeesNPULSE AND SIMULATE

IREM = DEGREE OF DENOMINATOR MINUS DEGREE OF NUMERATOR
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IOLY = DELAY INTROOUCEDO ON INPUT NUMERATOR; 2£TA=1/1
2ETA*IDLY ( Bf))4oe 4B(N¢L-IREMI®ZETAZE(N=-IREM) )

IZTS = 0 PRINTING OF DISCRETE YIME TRANSFER FUNCTYION ONLY AND
THE POLECS OF THE 2 DOMAIN
= 1 IF LOGARITHMIC TYRANSFORMATICN IS YO BE CALCULATED
= 2 IF DELAYED PULSE INVARIANT TRANSFORMATION IS TO HE CALCULATED

INPT=1 [MPULSE, 2: STEP, 3: DOURLEY (DURATION NPUL)
4: SOWAVE (PERIOD NPUL), S5t SQC-EXP o 6: EXPy T: PRO IMPL
8: TR1 WAVF, 9: EXP40SC, 10: RANDOM

QOPT = 0 IF QUI)=QSAV
1 IF Q(I) GENERATED IN QFIND

FOR AN UNSYABLE SYSTEM FEEDBACK MAY BE PROVIDED BY SETTING
FEEDBACK=1,s A COMPENSATOR IN THE FORV.ELD PATH 1S
PROVIDEDL ON A NONOPTYIONAL BASIS, EXCEPT THATY
MHEN THE COMPENSATOR CARD HAS 2ERD ENVTRIES THE PROGRAM
AUTOMATICALLY SETS THE COMPENSATOR TO Cl?2)=1.0

FEEDBACK GAIN ES MANUALLY ENTERED IN SUBROUTINE RESPON

AS THE VARIABLE "“GAIN®
snsxskexTHE COMPS(I) COEFFICIENTS
OF C(Z)= (COMPS(21-CONMPS(32/2) / (1 ~COMPS{1)/1) MUST
MUST BE READ, A BILANK CAPD MAY BE PROVIDED IF
IF NO COMPENSATOR 1S CESIRED

FOREC =0 IF OPEN LOOP RULCONSTRUCTYICN IS DESIRED
MUST BE ZCRO IF FODBACK IS Z2ERO
1 IF CLOSED LOOP RECONSTRUCTION DESIRED

POLES OF THE CONTINULOUS DONMAIN MUST BE DISTINCT AND NON=-Z2ERO
FOR TRANSFORMATION YO BE VALIC

IT 1S IMPDRTANT TO NOTE THAT TH{E VALUCS OF THE CONRTINUCUS
SIGNALS SAMPLED AT TIME=(K=1)*DELTA ARE STORED IN THE KTH
SEQUENCE POSITICN OF THE ARRAYS

DATA DECK CONSISTS OF A READ CPTION CARD (N, IPLT),

THE Z=-DOMAIN COEFFICIENYS OF THE ORIGINAL VTRANSFER FUNCTION,
AND A PARAMETER CARD(NMPLoINPT,IGKMy IREMyISTZySIGQySIGH,
DELTA,QSAV,QOPT,NPRC,FDBACK,FCREC) .

PROGRAM READS SEVERAL PARAMETER CARDS. LAST PARAMETER CARD
MUST HAVE 1 IN COL 1 TO READ ANOTKHER TRANSFER FUNCTION AND
PARAMETER CARD SCT.

IPLT=0 NN PLOTS

IPLT=1 PLOTS ONLY WITH PRINTER
IPLT=2 PLOTS ON CALCOMP AS WELL AS PRINTER

END
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IV. APPLICATION EXAMPLES
Example 1

For a six-man submersible the transfer functions describing its
dynamics were obtained from the hydrodyunamic coefficients via a
computer program RGEORGE. The pitch vs. stern-plane dynamics will be
used here to demonstrate the application of GRAM Identifier (ILEVIN = O
in the program). Specifically the transfer function relating these

variables is

-0.3432052 ~-0.17384s ~0.,008631
Ha(s) = 7 3 7
s + 1.47989s™ + 0.11833s” + 0.02048s + 0.00102

~0.08348 + j0.48366 4 -0.08348-30.48366
s + 0.00919 + j0.11378 s + 0.00919-30.11378

0.1669%6 + 0.00002
s + 1.4057 s + 0.05579

+

For all practical purposes this is seen to be equivalent to
H4(5)= H3(s) = -0.34320s ;0.15469
s” + 1.58950s” + 0.26054s + 0.00306

-0.08349 + j0.48367 , -0.08349-j0.48367 i 0.16696

s+0.00919+j0.11378 % s+0.00919-30.11378 = s+1.4057

In this third order function the energy of the complex pole pair is 26.9
while the energy associated with the real pole is 0.0l; the latter thus
represents only 0.037% of the energy at the dominant complex pole pair.
Therefore, unless the input is such that its spectral content is rich in
radian frequencies around 1.4, this mode will be extremely feeble. We will
in fact call this mode a micromode [3]. When this micromode is not
appropriately excited the vehicle transfer function may be approximated as

-0.16698s + 0.10853
8% + 0.1838s + 0.01303

-0.08349+10.48367
§+0.00919+j0.11378

H4(S) = Hy(s) =

-0.08349-j0.48367
s+0.00919~j0.11378

+

Before describing the various experiments conducted, the z-domain description
of the pitch transfer function is first provided. The transfer function
H,(s) was transformed by the Leading-Edge-Pulse Equivalence method (Appendix
B). A sampling interval A = 0.5 second was used yielding

10™%) (0.207442"1-0.19065272-0.151792"3+0.137142"%)
1-3.455272 144.389522" 22411352 9+0.477 142

Hh(z) =
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In all of the five experiments performed 250 seconds of simulated data
(MP1 = 500) were used. This represents approximately 2 1/2 time constants
of the dominant mode.

Experiment 1

The function H,(z) is employed to simulate the discrete-time trajectory
8(k) to a given stern-plane input Jg(k) (INPT = 9, NPUL = 100). As stated
earlier 0(s)/8 (s) is effectively a third order function, however, a fourth
order identification was first performed without masking the data with noise
(NSPW = NSPQ = 0.0). The identification yielded the following H,(s) with the
option variables chosen as ISIM = 1, IREM = 1, IDLY = 1, QOPT = 1 and IZTS = 2:

~ _ ~0.34323s%-0.173945-0.00867

Bk = % 2 2
s +1.48029s°+0.11867s°+0.02049s+0.00103

ESR = 0.000 (see page 12)

Clearly this identification is good since the model found is almost identical
to the given H,(s). A comparison of the poles of the given H,(s) and the
identified poles is shown below.

H4(s) Poles Identified Poles
-0.00919 + j0.11378 -0.00919 + j0.11378
-0.00919 - j0.11378 -0.00919 - j0.11378
-1.4057 -1.4058
-0.05579 -0.05603

Although the vehicle transfer function was identified perfectly, any
quick conclusions as to the effectiveness of the identification method are
misleading. Because even the slightest amount of noise on the data will

mask the micro~-micro-~mode (gigg%%%7§) making its identification impossible.

Therefore the remaining experiments will pertain to third order identification
except the last one. The latter is a second order run demonstrating the
detection of the dominent pole pair.

Experiment 2
This run is identical to the previous one except that a third order model
was sought (N = 3). The transfer function found was
& -0.00435s2%-0,33603s-0.14986
igta = 3 2
s +1.3802657+0.03806s+0.01774
ESR = 0.447
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The identified poles are compared to the true poles below

H3(s) Poles Identified Poles

-0.00919 + j0.11378 -0.00919 + j0.11378 ’
-0.00919 - §0.11378 -0.00919 - j0.11378

-1.4057 -1.36187

Experiment 3

Ten percent rms noise was added to both the input and output data
(NSPW = NSPQ = (0.1)2). A third order identification was performed using
an input generated via option INPT = 9, NPUL = 100. The test failed due
to the extremely poor spectral content of the input. Specifically the input
signal did not have sufficient energy at radian frequencies around 1.4,
consequently it did not properly excite the pole at that location. A
different input was therefore used (INPT = 5, NPUL = 10, QOPT = 1). The
input and output signals are shown in Fig. 4a. The corresponding results
yielded by GRAM are as follows:

-0.5052152-2.752865-2.5146
85+1.76398524+0.047145+0. 02249
ESR = 5.275

ﬁ3(s) =

A comparison of the identified poles to the true poles is given below.

H3(s) Poles Identified Poles
-0.00919 + j0.11378 -0.00982 + j0.11312
-0.00919 - j0.11378 -0.00982 - j0.11312
-1.4057 -1.74435

This input signal contained sufficient energy around the radian
frequency 1.4 to excite the micro-mode just enough for identification
purposes. Figure 4b shows the reconstructed output comparing it to the
true output.

Experiment 4

This experiment demonstrates the importance of the choice of the
measurement filter pole(s). The measurement filter pole QSAV was varied
(QOPT = 0 to disable automatic filter pole selection) and its effect studied
on the identification algorithm. Each of the runs performed uses the options
INPT = 5, NPUL = 10, IREM = 1 and IDLY = O seeking a third order model.

Ten percent noise was added of the same manner as in Experiment 3.

The following results were obtained:
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Figure 4. Experiment 3 - Third Order pitch
vs Stern-Plane Identification

-30"




NCSL TM-204-77

QSAV (Percent Error tonggnal ratio RMS)

0.70 m :
0.80 33.986 f
0.85 14.374 |
0.90 3.947

0.95 4.556 ‘ j
0.98 5.696 '

This example should make the user aware of the flexibility provided
to the test engineer by the measurement filter pole(s). The value of the
measurement filter pole should be such that each successive measurement
filter attenuates the input signal by a reasonable fraction; in particular
the output of the last measurement filter should not be an order of magnitude
lower in power than the input signal to the first measurement filter. More
information on the choice of measurement filters is available in reference [2].

Experiment 5

This final experiment demonstrates the detection of the dominant pole
pair. The input (INPT = 6, NPUL =_200) and output signals were masked with
10% rms noise (NSPW = NSPQ = (0.1)2) and the following option parameters
were used: QSAV = 0.95 IREM = 1, IDLY = 0. The input used (INPT = 6) is
an exponentially decaying function whose time constant, and therefore the
cutoff of the power spectrum curve, is controlled by the value of NPUL
(Time constant = NPUL * DELTA). Therefore to identify the slow poles
(-0.00919 * 3j0.11378) an input rich in radian frequencies around 0.114 is
desired. A vlue of NPUL = 200 produces an adequate power spectrum. The
input and output signals are shown in Fig. 5a. The computer program

identified the second order mode as follows
H2 (s) = 0.223089+0 .09245
s+0.01904s+0.01318
ESR = 2,641
A comparison of the identified poles and the true poles is given below. 3
H,(s) Poles Identified Poles $
-0.00919+30.11378 ~0.00952+30.11439
-0.00919-30.11378 ~0.00952-3j0.11439
Figure 5b shows the reconstructed output comparing it to the true output. 4

The preceding experiments should help the user to better understand the
significance of the option variables (originally defined on pages 14-18).
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CORRUPTED INPUT AND QUTPUT
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Figure 5. Experimeant 5 - Detection of Dominant Complex Poles.
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Example 2

Flight tests on a towed-sonar vehicle (SMS2619--- one-third scale model),
designed by the Naval Coastal Systems Laboratory, were conducted at the
Naval Ship Research and Development Center, Carderock, Md. The test data were
recorded on magnetic tapes at a sampling rate of 30Hz. In this example the
results of two experiments are presented, one pertaining to pitch vs. stern-
plane deflection and the other pertaining to roll vs. rudder deflection. In
both cases the data were preprocessed by a 2Hz digital filter tc substantially
remove an undesirable 3.3Hz oscillation, suspected to be caused by an artifact
in instrumentation. The data were then sampled at 5Hz (Nyquist frequency = 2.5Hz
= 15.71 radian/sec) for use by the identification program.

For the pitch vs. stern-plane data & second order (N=2) identification was
performed which yielded the model

0.784(s + 0.028)
(s + 1.21)(s + 0.03)

ﬁz = 6(s)/8_(s) =

The reconstructed output is shown in Fig. 6 together with the cutput data

used for identification. It is worth mentioning that higher order models were
also attempted, however, the additionai poles found had insignificant energies
associated with them.

For the roll vs. rudder data the results of a sixth order (N = 6) identifi-
cation are presented. The model found is

ot ~0.096825+1 . 014345+0. 191378540, 048705240, 001325+0.00013
- 6 3 4 40.127438340.0264782+0.000785+0.00007

3

]

s +0.67744s7+0.64971s

-0.35521 * j0.79885 + -0.00106 + §0.00045 % -0.01183 * 0.01648
s+0.23747 + 10.66789 = s+0.01006 *+ 10.05316 = s+0.09119 * j0.19015

The reconstructed output is shown in Fig. 7 together with the output data.
However, the energies associated with the last two pairs of poles are quite

small so that a second order identification would therefore seem desirable.

In our analysis of the SMS vehicle we also conducted multiinput-multioutput
identification, and such analysis showed that the lateral dynamics is essentially
governed by two pole-pairs,one pole pair reasonably observable in the roll data
and the other in yaw-rate data. The multiinput, multioutput version of GRAM
identifier is discussed in [9].
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Fig. 6 Identi[icétion of longitudinal dynamics of SMS2(;19
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The following subroutines used by the GRAM Identifier program are described

in the appendix.

BUILDA
BUILDZ
CONVOL
CORUPT
ERROR
FILLV
FINDQ
GRAMII
IZTOS
POLCON
PRCVEC
PRMAT
PRVEC
RESPON
SOLVE1
SOLVE2
SOLVE3
ZTO0S

The subroutines
indicated below
package.

DOBINV

PLOP8

POLRT

NCSL TM-204-77

T

APPENDIX A

SUBROUTINES USED IN PROGRAM

R S ———————————

DOBINV, pLop8 and POLRT are not detailed. Their function is
and they can be substituted by standard routines from a scientific
Inversion of a square matrix

X-Y plotter (CALCOMP) routine
The subroutines called by PLOP8 are also not discussed here

Computes the real and complex roots of a real polynomial




SUBROUTINE:
PURPOSE:

EQUATIONS:

FLOW CHART:

NCSL TM-204-77

BUILD A
CALCULATES THE TRANSFORMATION MATRIX TO CONVERT SYNTHETIC

PARAMETER VECTOR TO THE DESIRED PARAMETER VECTOR

Q. A
& 5 i i-1,3+1 th
Aij Ai,j+1 Pj after 1lst row and (n+l) column

"A"'s are generated by other means with i = 2,3,...., nt+l;

j=a,n-1,....,1

PROD=1.0

CALCULATE TOP ROW
AND THE (N+1) COLUMN

4

CALCULATE REMAINING
ELEMENTS OF THE

ot CHIRGT.OE T |

SECOND AND FOURTH
QUADRANTS OF "A' MATRIX
ARE SET TO ZERO

4

THIRD QUADRANT OF
"A" MATRIX=FIRST
QUADRANT OF "A" MATRIX

D522,

DOUBLE PRECISION
"A" MATRIX
(CALL PRMAT)

NI T Y T

B S P R O R o Ty
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SUBROUTINE: BUILD A

DESCRIPTION: The "A" Matrix is formed in the following manner

where each quadrant is an @+) x (u+l)square matrix.

This matrix embodies the relationship between the synthetic
coefficient vector XLAMDA derived from the GRAM matrix and the
true coefficient vector of the systems transfer function,
GAMMA. This relationship is dependent upon the values used
for the measurement filters. Multiplying XLAMDA by a matrix
of order 2(n+l) with I in the upper left and lower right
quadrants, yields GAMMA.

PROGRAM VARIABLES: A "A" MATRIX
DEL ; MEASUREMENT FILTER NUMERATOR
MAX MAXIMUM ROWS PERMISSIBLE
N ORDER OF SYSTEM
Q MEASUREMENT FILTER POLE(S)

=i

i
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SUBROUTINE BUILDA(A,Q,DEL NsMAX])
REAL%B AIMAX,1),Q(1),DEL(L)PROD
NP1l=N#+, Y .
NPNP2=N+N+2
A(l1,NP1)=1,0000 3
PID=1.000¢C
DO312K=1,N
I1=NP1=K
PROD=PRID/DELI(T) A
All,1)=PROD
312 A(K+1,4P1)=0,00C2
003131=2,NP1
DJI313K=1,N
J=NPL =K
313 AlI,J)=(A11,3+1)=Q1J)*A11-1,J+1))/DELLS)
DJ3141=1,\NP1
D0314J=1,\P1
All,J#NP1)=D.0045C
A(I#NP1,J)=0.00020
314 ALI+NPLoJ#NPY)=A(T,4J) ]
WRITE(6,1005) ;
1005 FIIMATI1X,*A-MATRIX®)
CALL PRMAT(A,NPNP2,NPNP2,MAX) .
RETURN
END
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SUBROUTINE: BUILD 2 |

PURPOSE:  CALCULATE NOISE CORRECTION MATRIX "Z" j

EQUATION: MP1 j

z = Z) R GOR, () ;

FLOW CHART: ‘||!l||" 3

» R(1)=1.0 J

L

CALCULATE R(2) THROUGH R(N+1)

4

E INITIALIZE ¢
ZP(1,J)
2(1,J)

> K=1,MP1

CALCULATE ZP(I1,J)

¥

CALCULATE Z
Z(1,J)=2(1,J)+ZP(1,J)

|

' SET R(1)=0.0

RECALCULATE R(2) THROUGH R(N+1)

(11)-LOWER TRIANGULAR Z(ll)

4 |

CALCULATE VARIANCE OF INPUT AND OUTPUT
NOISE SEQUENCE

1

-A5=

M . s’ . i

UPPER TRIANGULAR Z
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SUBROUTINE:
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BUILD 2

4

2(22)=Z(11)*(STD. DEV. OUTPUT NOISE SEQUENCE)

. DESCRIPTION:

i

RHO=0,0? oo 2%V 200
No L__Z_le)'-'0.0

Z(12)=Z(1l)*p*SIGW*SIGQ
202005, (12)

CALCULATE Z(ll)

FOR OUTPUT NOISE

DOUBLE PRECISION "z"
(CALL PRMAT)

This subroutine calculates the contribution of the noise to

the gram matrix resulting from the measurement filter output.
The First

The total Z matrix is formed in four sections.

section (2(11)) is generated through use of the GAMMA matrix.
The second, third and fourth sections deal in optimizing the
estimate of the noise correction matrix.

PROGRAM VARIABLES:

DEL MEASUREMENT FILTER NUMERATOR

ILEVIN VALUE IS EITHER O OR 1.
0 GRAM TECHNIQUE IS PERFORMED
1 LEVEN TECHNIQUE IS PERFORMED

MAX DIMENSION SIZE
MP1 NO. OF DATA POINTS
N ORDER OF SYSTEM

~A6-




SUBROUTINE:

BUILD Z

RHO
SIGQ

SIGW

NCSL TM-204-77

MEASUREMENT FILTER POLE
COEFFICIENT VECTOR
EXPECTATION OF (W(K)*Q(K))
STANDARD DEVIATION OF OUTPUT NOISE SEQUENCE
STANDARD DEVIATION OF INPUT NOISE SEQUENCE
NOISE CORRECTION MATRIX

WORKING ARRAY
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SUBRCUTINE BUILDZ(Z+ZPsRyNyMPLy SIGW,SIGQRHOyDEL,QyMAK, ILEVIN)

SUBROUTINE FOR CALCULATING THE NOISE CORRECTION MATRIX, Z,

FOR GRAMI A'{D GRAMII

DIMENSION 2(MAX,1),ZP(MAX,1),R(1) ,Q(1),DEL(L)
DJUBLE PRECISION 2,2P4RyDELsQyDCON
NP1=N¢l

NPNP2=N#N+2

R(1)=1.00DCC

DO121I=1,N

REI+1)=R{I)*NEL(I)
IF(ILEVINGEQeL)IRII+1)=.0D00
CONTINUE

D011=1,\P1

DO1J=1,NP1

ZP(14J)=0,00"2

Z(19J)=3.205"

DJ2K=1,MP1

D33 I=1,NP1 !

DJ3 J=1,I
ZPUI,J)=2ZP(1+J)+R(T)%*R(J)

ULy 0)=2(1,JV42P(1,J)
IF(ILEVINGEQeDIR(1)=0,::D0!"
DO%I=1,N .
IFILILEVINGERe1)RII+1)=RI])
IF(ILEVINGEQ.1)G0O TO 4
ROI+L)=R(I+1)*Q(I)+R(I)*DEL(I)
CONTINUE

CINTINUE

DJ4DI=1,4N

1P1=1+!

D040J=1P1,NPY

Zil,3)=2(J,1)

SI1GQ2=S1GQ*S1GQ

SIGW2=SIGW*STGW

D35I=1,NP1

DO5J4=1,NP1
ZINPL4I,NP14J)=2(],J)%SIGW2
IF(RHD) 6,746

DJ81=1,NP1

DO8J=1,NP1

Z(I+NPLl,yJ)=0.0D00
Z(I,NP1+J)=0.00CD

GO TO 9

DOl11I=1,NP1

DO11J=1,4NP1
Z(I4NPL+J)=2(1,J)*RHO*SIGW#SIGQ
ZUI+NPLl,J)=Z(1,NPL4Y)
DJ10I=1,NP1

D01J4=1,\P1

Z(1,9)=2(1,J)%516Q2
WRITE(6,1000)

FIRMAT(1X,*NNISE CORRECTION MATRIXy 2°)
CALL PRMAT(ZoNPNP2,NPNP2yMAK)

RETURN
END

-A8-




SUBROUTINE:

PURPOSE:

EQUATION:

FLOW CHART:

NCSL TM-204-77

CONVOL

PERFORM CONVOLUTION OF HPULSE AND VORG

NPULSE
XORG = L VORG HPULSE
et k+1l-m m

No

IMRESP = 0?

GENERATE HPULSE ACCORDING
TO IMRESP OPTION
(1, 2, 3, 4, 3)

K=1, MP1

XORG(K) = 0.0

3

KK = NPULSE

o |

K < NPULSE

Yes

No
I=1, KK

J=KK+1-1

B

XORG(K) = XORG(K) + VORG(J) * HPULSE(I)




SUBROUTINE: CONVOL

DESCRIPTION:

and HPULSE(J).

NCSL TM-~204-77

This subroutine determines the convolution (XORG(K)) of VORG(I)

NPULSE is the length of the impulse response

and the variable IMRESP is the option used to specify the type

of impulse (HPULSE) response desired.

Specifically when IMRESP

equals zero the impulse response is entered as data.

PROGRAM VARIABLES: HPULSE
IMRESP

NPULSE
VORG

XORG

IMPULSE RESPONSE

OPTION TO DESIGNATE TYPE OF HPULSE TO

BE GENERATED

NUMBER OF DATA POINTS

NUMBER OF DATA POINTS OF IMPULSE RESPONSE
CORRUPTED INPUT SEQUENCE

CORRUPTED OUTPUT SEQUENCE

-A10-
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135
25
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SUBROUTINE CNNVOLIHPULSE , VORG »XORGNPULSE,MP], IMRESP)

PERFORMS CONYOLUTIUON OF HPULSZ AND VORG

XJ3G(K)= HPULSE(1)%VORGIK)+ ,000 #+HPULSE (KK)®VORGIK~KK+1),
WHERE KK=NPULSE OR K WHICHEVEZR SMALLER

DIMENSION HPULSZ(1),VORG(1),XORG(1)
IF{IMRESP.NE.Z)GD TO 2i.

D) S5 K=1,MP1

xazckxizo.u

KK=NPULSE

IF(KoLToNPULSE)KK=K

D] 41=1,KK

J= K+l-1
XORG(K)=XDRG(K) +HPULSE (1) *VORG(J)
CONTINUE

50 TO 13532

GO T2 (101.1“21103,1E4g105)oIMRESP

DI 21K=1,NPULSE

HPULSE(X)=1,"

GO TO 2

DJ 22K=1,NPULSE

HPULSE(K)=FLOAT (NPULSE+1-K) /NPULSE
GO TO 2

D) 23K=1,NPULSE

HPULSE(K1=COS(1l. 571?96*FLonTlNPULSEOI-K)/NPULSE)
G3 YO 2

D3 24K=14NPULSE
HPULSE(K)=EXP{=8.0%FLOAT(K¥K=2%K+1)/(NPULSE*NPULSE))
GO TC 2

DO 25K=1,NPULSE
HPULSE(X)=EXP (=4, 0*FLOAT(K~1)/NPULSE)
GO TO 2

RETURN

END

-All~
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SUBROUTINE: CORUPT

EQUATION: See attached sheet
FLOW CHART:

CALCULATE VARIANCES OF INPUT (V(K)) AND
OUTPUT (X(K)) SEQUENCES SUMV2 AND SUMX2
RESPECTIVELY

smMv2 = 0.07  PeS symy2 = 1.0
i Yes
SUMX2 = 0.0? SUMx2 = 1.0
W
CALCULATE SIGW
AND SIGQ
K=1, MP1

GENERATE NORMAL DEVIATE WK
[INPUT) ,QK (OUTPUT) (CALL NORM)

L

WK * SIGW
QK * SIGQ

&

CALCULATE SUMQ2,SUMy2, AVGW and AVGQ

v
V(K)=V(K) + WK
X(K)=X(K) + QK

v

K = MP1?
Yes

AVGW = AVGW/XMP1  AVGQ = AVGQ/XMP1

SUMW2 = SUMW2/XMP1 SUMQ2 = SUMQ2/XMP1

v

CALCULATE ERRX,ERRV

WK
QK

No

-Al2- i
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SUBROUTINE: CORUPT

MP1
EQUATION: AVGW = I WK Sample mean of input noise seq.
XMP1 k=1
1 MP1
AVGQ = —=—— I K Sample mean of output noise seq.
XMP1 =
3 B,
SUMQ2 = -—— I QK Sample mean of power of output noise
XMP1 k=1
e s
. SUMW2 = —— [ WK Sample mean power of input noise
; XMP1 k=1
g 1alinh 2
SUMX2 = ——— ¥  X(k) Sample mean power of output seq.
L XMP1 ke
3 M 2
SUMV2 = —— I V(k) Sample mean power of input seq.
XMP1 k=1
SUBROUTINE: CORUPT
DESCRIPTION: This subroutine calculates the standard deviation of Input
(SIGW) noise sequence and Output (SIGQ) noise sequence. The
values of the mean power of input and output noise along with
the mean power of input and output sequence are also calculated

; in this subroutine. The final calculation is of the noise to
signal power ratio of both input and output.
. PROGRAM VARIABLES: MP1 NUMBER OF DATA POINTS

SIGQ STANDARD DEVIATION OF THF OUTPUT NOISE
SEQUENCE Q(k) '

SIGW STANDARD DEVIATION OF THE INPUT NOISE
SEQUENCE W(k)

v CORRUPTED INPUT SEQUENCE

X CORRUPTED OUTPUT SEQUENCE
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SUBROUTINE CDRUPT(X,V,SIGQ,SIGW,MP1)
DIMENSION x(1),Vv(1)
REAL*8 SUMV2,SUMX2,SUMQ2, SUMW2,AVGQ,AVGHW

IX INITIALIZES UNIFORM RANDOM NUMBER GENERATOR (IBM SUBROUTINE RANDU)
RANDU IS CALLED BY SUBROUTINZ NORM WHICH GENERATES NORMAL DEVIATES

INITIATE YHE RANDOM SEQUENCE GENERATOR
IX=65543
XMP1=MP1
SUMX2=2,7D320
SUMV2e0,.2D00
DJ39K=1,MP1
SUMX2=SUMX2+X (K )*X(K)
SUMV2=SUMV2+V (K )*V(K)
CONTINUE
SUMVZ=SuUMV2/xMP L
SUMX2=35UMX2/XMP 1
IF(SUMV2.5Q."eGDD)SUMV2=1.0DC
IF(SUMX2,EQ.N.0DN) SUMX2=1.0DD

FOR INPUT=0, SIGW AND SIGQ BECOME STD. DEVe. CF NOISE

SIGW=DSQRT(SUMV2%*SIGW)

SIGQ=DSQRT(SUMK2%S1GQ)

WRITE(54897)SIGQySIGW

FORMAT(//32X,*SIGQ="¢G1lT7e10+5Xy *SIGW=",G17.10,//)
SUMQ2=U.2000

SUMWZ2=_.0000C

AVGQ=0.0D20

AVGW=0,0D0D

DJ40DK=1,4P1

CALL NORM(WK,IX)

CALL NORM(QK,IX)

WK=WK*SIGW

QK=QK*SIGQ

SUMQ2=SUMQ2+QK=%QK

SUMW2=SUMWN2+WK* WK

AVIW=AVGW+WK

AVGQ=AVGQ+QK

VIK)=V(K)+WK

X(K)=X(K)+QK

AVGW=AVGW/ XMPL

AVGQ=AVGQ/XMO1 =

SUMWNZ=SUMW2/XMP ]

SUMQ2=5uMQ2/YMPL

€AX=DSQRT(SUMQZ/SUMX2)%1"1.0
ERV=DSQRTISUMWZ/SUMV21*1: 2. C
WRITE(S5,10U1)AVGR 4 AVGW, SUQ2 y SUMW2 4 SUMX2 y SUMV2,4 ERR Xy ERRYV
FORMATI///+29%, *SAMPLE MEXN OF GUTPUT NOISZ SEQUENCE = 'yElleés/
1,20X,*SAMPLE MEAN OF IWPUT NOISE SEQUENCE = *yElle4y/y20X,y
2'SAMPLE MEAN POWER OF OUTPUT NOISE = Y,21le49/920X,y
3'5AMPLE MEAN POWER OF INPUT NOISE = '4ELlle44/+20Xy
4'SAMPLE MEAN POWER OF UUTPUT SEQUENCE = '4Elle%s/+20X,

505AMPLE MEAN POWER OF INPUT SEQUENCE = 9,E11444/,20X,

4£9132.0 TIMES THE SQUAR: ROOT OF THE NOISE TO SIGNAL POWER RATIO OF
7 THE OUTPUT = °'F7.3v/.251. N

8'103,0 TIMES THE SQUARE ROOT OF THE NOISE TO SIGNAL POWER RAT10 OF
9 THE INPUT = ',F7.3)

RETURN

END

=-Al4-




SUBROUTINE:
PURPOSE:

EQUATIONS:

FLOW CHART:

NCSL TM-204-77

ERROR
CALCULATE PERCENT MEAN POWER ERROR IN RECONSTRUCTION AND
PERCENT OF SQUARE ROOT OF POWER ERROR IN RECONSTRUCTION.

AXBED - XREC(1))2 4 100
63)

AVGW = T [

AVGQ = VAVGW * 100

CONSTRUCT XREC

| L RESPON) |
I=1, MP1

SUMV2=5XORG ()2

i

CALCULATE DEV. OF RECONSTRUCTION FROM
SIGNAL K AVGQ = XORG(I) - XREC(T)

|

AVGW = I AVGQ?

= I = MP1?
Yes

CALCULATE % POWER ERROR OF
CONSTRUCTION, AND % OF
QUARE ROOT OF POWER ERROR

N RECONSTRUCTION

'
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SUBROUTINE: ERROR

DESCRIPTION: The subroutine ERROR calculates the Output sequence from the

Input sequence and the GAMMA Matrix. The sequence called
* XREC is compared to XORG, the original output sequence. The
sequence XREC is generated in the subroutine RESPON. The
comparison of XREC to XORG consists of calculating the
percent mean power error and the percent of square root of
power error.
7 PROGRAM VARIABLES: FDBACK VARIABLE TO PROVIDE FEEDBACK IF DESIRED :
% GAMMA MEASUREMENT VECTOR é
s IDLY DELAY INTRODUCED IN INPUT NUMERATOR %
MP1 NUMBER OF DATA POINTS %
F N ORDER OF SYSTEM i
3 \'f CORRUPTED INPUT SEQUENCE
XLAMDA WORKING ARRAY
XREC RECONSTRUCTED OUTPUT SEQUENCE
b
|
_‘5
,;
-A16-
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SJBROUTINE ERROR(XREC ¢+VsGAMMA yMP1 4N, XLAMDA, XORG ¢ FOBACK, IDLY)
DIMENSION XREC(1)4V(1),X0RG(1)
DIMENSION vvv(2n)
REAL*8 GAMMA(1l) o XLAMDA(L) yAVGW, SUMV2,AVGO
INTEGER FDBACK
CALL RZSPON(XRECyVyNyGAMMA, XLAMDA,MP1,FDBACK)
AVGW=0,2000
SyMv2=3,000
DJ261=1,MP1
SUMV2=SUMV2+XORG(1)*X0ORG( I)
AVGQ=XORGII)=-XREC(I)
26 AVGW=AVGW+AVGQ*AVGQ
AVGW=AVGH/ SUMV2
AVGC=DSQRT (AVGW)
AVGO=100.0*AVGQ
AVGW=100,0%AVGHW
WRITE(6,27)AVGW,AVGQ ' o
27 FORIMAT(1X, *PER CENT MEAN POWER ERROR OF RECONSTRUCTION®,FBe34///,
11X, *PER CENT OF SQUARE ROOT OF POWER ERROR IN RECOSTRUCTION®yF8e3)
RETURN
END

Diak
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SUBROUTINE: FILLV

PURPOSE : GENERATION OF DISCRETE POINTS FOR A VARIETY OF WAVEFORMS
(For the correspondance of the waveshapes and input parameter
INPT see page )

FLOW CHART:

IF 11< INPT < 20
TSHIFT = 1

IF INPUT>20
INPT=INPT=10

i

Go o (1,2,3,4,5,6,7,8,9,10,11,12,13) INPUT

]

1) UNIT IMPULSE

-—-9{72) UNIT STEP

3) DOUBLET
PERIOD = NPUL

| 4) SQUARE WAVE
PERIOD = NPUL

5) SQUARE WAVE TO
B EXPONENTIAL DECAY

—"r PERIOD = NPUL

TIME CONSTANT=NPUL

6) DECAYING EXPON-
ENTIAL

TIME CONSTANT=NPUL

7) PERIODIC IMPULSE
PERIOD « NPUL

T A

-
S

-Al18-




R

SUBROUTINE: FILLV

NCSL TM-204-77

I 8) TRIANGULAR WAVE

PERIOD = NPUL

9) DECAYING EXP +
DAMPED SIMUSOID

DESCRIPTION: This subroutine builds an array of NPT points defined by the
choosen wave form and parameter (NPUL) of that waveform.
is useful in approximating input signals for excitation of

Tl = NPUL
T2 = 2*NPUL,
PERIOD=1.91*NPUL

btk

—

11), 12), 13)INDEPENDENT
RANDOM NOISE

GENERATORS

IF ISHIFT =1

REPLACES FIRST NPUL

WAVEFORM SHIFTS NPUL TO
THE RIGHT AND ZERO ]

[ ROINTS

»
D)

control system.

PROGRAM VARIABLES: INPUT
NPT

NPUL

v

GENERATED OUTPUT SEQUENCE

~A19-
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SUBROUTINE: FILLV

NCSL TM-204-77

1) UNIT PULSE f
l
2) UNIT STEP
] p————
3) DOUBLET le—e|
WIDTH = NPUL . l"]
Ta
4) SQUARE WAVE le—s| NPUL
PERIOD=NPUL 'bAonor
ogoag
5) SQUARE WAVE TO | NPUL
EXPONENTIAL DECAY 1
PERIOD = NPUL :H:H:L—'
TIME CONSTANT=NPUL
6) EXPONENTIAL
TIME CONSTANT=NPUL l\.
|
7) PERIODIC IMPULSE |e—| NPUL
PERIOD=NPUL t I t L
le——|
8) TRIANGULAR WAVE
PERIOD=NPUL 1 /\.
NV OV
|
: 9) DECAYING EXP +
DAMPED SINUSOID
T1 = NPUL
(2 = 2*NPUL, Periodl = 1.91*NPUL)
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SUBROUTINE FILLVIV.NPT,[NPUT,NPUL)
. ¢ FILLS THE ARRAY FOR INPUT ACCORDING TO INPUT OPTION DESIGNATED
DIMENSION V(1)
GO TO (192939 %15¢6974849410) ¢ INPUT
1 Vil)=1,9 IMPULSE ;
D3 101 I=2,NPT 4
101 V(1)=0,0 -
GO TO 999 ﬂ
2 03 132 I=1,NPT STEP
102 V(I)=1,)
G0 TO 999 '
3 DO 103 I=1,NPT DOUBLET
viI)1=2,0 :
IF(L.LT.NPUL/2IVIII=1,
IF(1eGE.NPUL<ANDeIsLTe NPUL) V(I)==1.0
103  CONTINUE
60 TO 999 "
. DI 10& [=1,NPT SQ WAVE
vil)=1.0
TPUL=1/NPUL
. IF(I-TPUL*NPUL+GENPUL/2) V(T)==140
{ 104 CONTINUE
) GO TO 993
s D3 105 I=1,NPT $SQ-EXP
v""l.’ 4
IF(1GE<NPUL/2+ANDoToLToNPUL) V(I)==1.0
IFU1oGEe(1o5)*NPUL.AND.ToLTo2%NPUL) V(I)==1.0
ARG1=2,5-FLOAT(I)/FLOAT(NPUL)
IF(I.GEe(2.5)#NPUL] V(I1)=EXP(ARG1}
105 CONTINUE
GO TO 999 )
6 D2 106 I=1,NPT ; EXP
ARG2==FLOAT(1)/FLOAT (NPUL) : .
. 166  VII)=EXP(ARG2)
‘ GO TO 999
7 D0 107 I=1,NPT v PRD IMPL
107  VI1)=0.0
N=NPT/NPUL
! L Vfl)-l.:!
D3 1071 J=1,N
J I=J#NPUL
: 1571 ViI)=1.)
3 . GO TO 999
8 D3 108 I=1,N°T . TRI WAVE
TPUL=1/NPUL
ITPUL=TPUL
VEI)=02.#FLOAT(1)/FLOATINPUL)=2,*TPUL )*(=1.0) = TPUL
IF(I-TPUL*NPUL.GE«NPUL/2) VII)=2%(14TPUL-FLOAT(1)/FLOAT(NPUL) )*(=1

led)*+lTPUL
108  CONTINUE
GJ TO 999
9 00 109 I=1,\PT . EXP+0SC

ARG3==~FLOAT(1)/FLOAT (NPUL)
ARG4==,5«FLOAT(I)/FLOAT(NPUL)
ARGS5=3,296*FLOAT(1)/FLOAT(NPUL)

Y

-A21-




_i

109
10

1152
1103

1101
110
999
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VII)=EXP (ARG ) ¢SXP(ARG4)*SINIARGS)
G) TO 999
[x=613227213

DI 110 I=1,NPT

A=D.0

D2 11Nl K=1,'2
IY=1X%65539
IFLIY)1122,1123,11:3
[Y=1Y4216T7483647+1
YFL=1Y
YFL=YFL*.4655613E~9
IX=1Y

A=A+YFL

CIONTINUE

VII)=A-6.0

CONTINUE

GJ Tu 999

CONTINUE

RETURN

END

-A22-
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SUBROUTINE:
- PURPOSE:

EQUATION:

FLOW CHART:

FINDQ

Hm(Z) u

NCSL TM-204~77

1

S

INITIALIZE ¢ SUM

Yoy

SUM = SUM + I (x(k))2

No

kil
L

CALCULATES MEASUREMENT FILTER POLE(Q) AND NUMERATOR (DEL).
DEL
1-Qz~

QS = (QBIG+QSMAL)/2.0

QL) = Qs

DEL = 1.0 - QS

4

CALCULATE PT

)

POW = PT/(100*SUM)

QBIG = QS

POW=TEM+. 5
Yes

No

OW>TEM?

L = N?

Yes__T

QSMAL = QS

G

=A23~-
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SUBROUTINE: FINDQ

DESCRIPTION: FINDQ determines the measurement filter pole and numerator.
The subroutine uses an iterative process of calculating DEL
and Q. The iteration is satisfied when the variable POW is
within + .57 TEM.

PROGRAM VARIABLES: DEL NUMERATOR OF 1lst ORDER MEASUREMENT

DIGITAL FILTER

MP1 NUMBER OF DATA POINTS

N ORDER OF MODEL

Q MEASUREMENT FILTER POLE

X1 COEFFICIENT VECTOR (same as Gamma)
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SUBROUTINE FINDQ(Q,0EL,X14X,MP1,N)}
DIMENSION X(1)

REAL#*8 Q(1),PEL(1),TEM,POW,PT,QS,QBIG,QASMAL»X1(1),SUM
SUM=9,3500

DDS6TK=1,MP1

SUM=SUM+ X (K)®2#2

NPl=N¢1

DJIL:X.M

LPl=L+1l
TEM=,.0).000/DFLOAT(NPL1)&DFLOATI(NPL~-L)
QBIG=1.7DC

QSMAL=(¢ )00

QS=(QBIG+QSMAL) /2,000

QiL)=QS

DEL(L)=1.D002-QS

FT-D.DDO

D04I=1,LPI

X1(1)=0,2D0 !
DO3K=1,MP1 t

X1(1)=x(K)

DaSI=1,L

XKL(1+1)=X1(1+2)*Q(1)eX (I)&DEL(I])
PT=PTeX1(LPLI=X1(LPY)
PIW=PT/SUM*1N0, D0
[F(PONsLEeLleNISDVXTEMANDoPONGE. TEM*0, 99500150 TO 1
IF(POWGT.TEMIGO TO 6

081G=QS

GO TO 109

QSMAL=QS

GO T2 10)

CONT INUE

RETURN

END
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SUBROUTINE:

PURPOSE:

EQUATION:

FLOW CHART:

NCSL TM-204-77

GRAMII

PERFORMS GRAM II TECHNIQUE WHICH YIELDS THE GRAM MATRIX (G),
NOISE CORRECTION MATRIX (Z) AND THE COEFFICIENT MATRIX (GAMMA).

MP1
= *i
i E GAMMAi(k) GAMMAJ, (k)
k=1
i -
IF IREM=0 JOPT = 0
#0 JOPT = 1
SET IOPT = 0 IF SIWW AND SIQQ # O
=1 IF SIWW = 0
=2 1IF SIQQ = 0; SIWW # 0
QOPT = 0 FIND Q (CALL FINDQ)
# 0 Q(I) = QsAv
EL(I) = 1-Q(1)

D
L

COMPUTE RMS OF CORRUPTED INPUT AND OUTPUT

T

COMPUTE RATIO OF RMS OF NOISE TO

RMS CORRUPTED SIGNAL

1

IF (SIWW=0 AND SIQQ=0) SIGQ =

1.0

INITIALIZE ¢
G, GAM, GAMMA

ko

CALCULATE AND PRINT
GRAM(G) MATRIX

(See flow chart on page

JLB

CALCULATE NOISE CORRECTION MATRIX "Zz"

(CALL BUILDZ)

l

-A26-
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SUBROUTINE : GRAMII

NCSL TM-204-77

|

L

L

.

JOPT=0.07  |es
I No
TLEVIN=1.0? V}___, FOR LEVIN TECHNIQUE
= REMOVAL OCCURS FROM
2 THE OUTSTIDE OF GRAM
FOR GRAMMIAN TECHNIQUE AT
REMOVAL OCCURS FROM THE
INSIDE OF GRAM MATRIX
[ NPNP 2=NPNP2-1 ]
Y
NOISE ON INPUT AND OUTPUT? = CALCULATE
Yo EIGENVECTOR
(CALL SOLVE2)
NOISE ON OUTPUT ONLY? | Yes T
No CALCULATE XMEAN
NOISE ON INPUT ONLY? J NR=NR-1
INTERCHANGE LAST TWO
COLUMNS AND ROWS IN g?é§g$€2$0R
GRAM MATRIX
x (CALL SOLVE2)
I T
CALCULATE EIGENVECTOR i
(CALL SOLVE3)
XMEAN=XLAMDA (NP2)
XLAMDA (NP1+T )=XLAMDA (NP2+1)
JOPT=0.07 |22
ILEVIN = 0 XLAMDA(NP1+I) = 0.0
=1 XLAMDA (I) = 0.0
[ GAMMA (1)=XLAMDA(I) |
[ 1eevine1.02 |
No
GENERATE A MATRIX
(CALL BUILDA)
[_7 RESET GAMMA(1)=0 J
1 \
-A27~ o
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L

GENERATE THE COEFFICIENT
VECTOR GAMMA

Yi=Ag 50y

!

A CALCULATE BIAS VALUE XMEAN
i NORMALIZE COEFFICIENT VECTOR GAMMA

GAMMA (1)=GAMMA (I)/GAMMA (1)
GAMMA (1)=1.0

r—l—ﬁ_ ' No GAMMA (I+IDLY ) =GAMMA (1)
IDLY=0.0? GAMMA (I+NP1)=0.0
]
Yes

CALCULATE EQUIVALENT
CONTINUOUS DESCRIPTION
(CALL IZTOS)

SUBROUTINE: GRAMII

PROGRAM VARIABLES:

DELTA SAMPLING INTERVAL

GAMMA MEASUREMENT VECTOR

G G MATRIX
: IDLY DELAY INTRODUCTED ON INPUT NUMERATOR
i ILEVIN VALUE IS EITHER C OR 1. 0 GRAM

TECHNIQUE IS PERFORMED. 1 LEVIN
TECHNIQUE PERFORMED.

IZTS SEE SUBROUTINE ZTOS

MAX DIMENSION SIZE OF 2 DIM ARRAYS IN
THE DIMENSION STATEMENT.

N ORDER OF SYSTEM

QOPT MEASUREMENT FILTER OPTION. QOPT=1 Q(I)
GENERATED IN FINDQ QOPT=0 Q(I)=QSAV

QSAV MEASUREMENT FILTER POLE

RHO EXPECTATION OF (W(K)*Q(K))

SIQQ STANDARD DEVIATION OF OUTPUT NOISE SEQUENCE

SIWW STANDARD DEVIATION OF INPUT NOISE SEQUENCE

-A28~




NCSL TM-204-77

SUBRUUTINE: GRAMII

PROGRAM VARIABLES CONTINUED:

CORRUPTED INPUT SEQUENCE
CORRUPTED OUTPUT SEQUENCE
EIGENVECTOR

NOISE CORRECTION MATRIX
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SUBROUTINE: GRAMII

CALCULATION OF GRAM MATRIX "G'"

ILEVIN=1.0?

Yes

]

¥

IF K-IDLY<0.0 GAMMA(NP2) = 0.0
>0.0CAMA (NP2) = V(K-IDLY)/FAC
““GAMMA (1) = X(K)/FAC

v

GENERATE GAM(I) BY PASSING
UNIT STEP THROUGH MEAS. FILTERS

CALCULATE REMAINDER OF GAMMA
VECTOR VIA MEASUREMENT FILTERS

L

GAM(1)=....= GAM(NP2)=1.0
IF (K-IDLY-I<0) GAMMA(I)=0.0

GAMMA (1)=X (K+1-1)/FAC
GAMMA (I+NP1)=V (K+1-IDLY-I)/FAC

-
-~

=i

GAMMA (NPNP 3)=GAM (NP1)

4

CALCULATE GRAM (G) MATRIX
G(i,3)=GAMMA(i)*GAMMA(])

No

I

K=MP1?

(continue)
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SUBROUTINE GRAMII(X,VoMP1l,SIQQsSIWWsRHOsN(DELTA,QSAV,QOPT,IREM,

LIZTS,GAMMA XLAMDA9GoZ yMAX+ILEVIN, IDLY o INORM)

THIS SUBROUTINE PERFORMS THE GRAM II TECHNIQUE
DIMENSION X(1)¢V(1),G(MAXs1),Z(MAX,1),GAPMALL), XLAMDA(1),Q(20),

10EL(20)

DOUBLE PRECISION G¢2yGAMMA, XLAMDA,DELTA,DEL,PROD,Q,QSAYV
INTEGER QOPT
REAL*8 XMEAN,GAM{25),FAC
REAL*8 S,FyS1,52,VARQ, VARW,GI
COMMON /MATRIX/S(20,20),F(20,20)+G1(20,20),51(10,10),52(10,10)
HAX2=MAX/2
WRITE(6,1000)
FORMAT(1H1,20X, *THE GRAM 11 TECHNIQUE®)
JOPT = O IF OIRECT TRANSMISSICN IS ASSUMMED
JOoPT=0
JOPT = 1 TF NO OIRECT TRANSMISSION IS ASSUMMED
IFCIREMeNEO)JOPT=]

IOPT = 0 NOISE ON BOTH INPUT AND CGUTPUT IS ASSUMED
IOPT = ) NOISE ON OUTPUT ONLY IS ASSUMED
IOPT = 2 NOISE ON INPUT ONLY IS ASSUMED

{0PT=0
IF(SINWeEQ.0.0)10PT=1
IF(SIQQeEQe0cO0cANDSINWNE.O0.0)ICPT=2

DEL IS THE NUMERATOR OF THE KNOWN FIRST ORDER DIGITAL FILYERS
IF(QOPT.NE.O) GO TO 21
DO19I=1,N
DEL(1)=1,000N=QSAV
Q€ I1)=QSAV
GO T0 22
CALL FINDQ(Q,DELGAMMA+XsMP1¢N)
CONTINUE
WRITE(6,2020) o
FORMAT (30X,°Q PARAMETERS®)

CALL PRVEC(QyN)

NP1l=Ne¢l

NP2=N+2

NPNP2=NeN+2

NR=NPl=IREM

NPL1PIR=NP1+IREM

VARNW=0.0

VARQ=0.0"

00300[=1,MP1
VARW=VARWeV(T)I*V(])
VARQ=VARQ+X(I)eXx(1])
VARQ=DSQRT(VARQ/MP1)
VARW=DSQRT(VARW/MP1)
SI1GQ=S1QQ/VARQ

SIGW=SIWW/VARW
IF(SINNCEQeDe0«ANDSIQQeEQe0.01S1GA=1,0
NPNP2=NPNP2+1 ,
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NR=NR+1
D0101=1,NPNP2
GAM(1)=0.000
GAMMA(1)=0.,0D00
DOL1NJ=1,NPNP2
G(1,J)=0.0000
GAM(1)=1.,000

CALCULATING THE G MATRIX
DDO50K=1,MP1
IFCILEVIN.EQ.1)GO TO 31
IF(K-IDLY)25,25,+24
GAMMA(NP2)=0.,0D000
GO TO 26
FAC=1.0
IF( INORMeEQe1)FAC=VARW
GAMMA(NP2)=V(K=IDLY)/FAC
FAC=1.0
IF( INDRM.EQ.1)FAC=VARQ
GAMMA(1)=X(K)/FAC
CONTINUE
D0301=1,N
GAM(I+1)=GAM(I+1)*Q(I)+GAM(I)*DEL(I)
GAMMA(I+1)=GAMMA(T )*DEL(T)+GAMMA(I+1)%Q( 1)
GAMMA(T14NP2)=GAMMA(I1+NPL1)*DEL(I)+GAMMALTI+NP2)#Q(I)
GO TO 35
CONTINUE
D0 32 I=1,NP1
GAM(1+1)=GAM(I)
IF(K=IDLY=1.LT<0) GAMMA(I)=0.0000
IFI{K=IDLY=1.LT.0) GAMMA{I+NP1)=0.0000
IF(K-IDLY=1.LT.0) GO TO 32
FAC=1.0
IF( INORM.EQ.1 ) FAC=VARQ
GAMMA(1)=X(K+1-1)/FAC
FAC=1.0
IF(CINORM.EQ.1)FAC=VARNW
GAMMA(T#NP1)=V(K+1-IDLY=1)/FAC
CONT INUE
CONTINUE
GAMMA(NPNP2)=GAMINPL1)
DO40I=1,NPNP2
D040J=1,NPNP2
GUIsJ)=G(1yJ)+GAMMA(I)*GANMMA(J)
CONTINUE
D0601=2,NPNP2
K=[=1
0060J=1,K
GLI,J)=6(Js1)
WRITE(6,1002) '
FORMAT(20X,*THE G MATRIX®)
CALL PRMAT(GyNPNP2,NPNP2,MAX)

CALCULATING THE NOISE CORRECTION MATRIX Z BY SUBROUTINE BUILDZ
CALL BUILDZ(Z+S,GAMMAsNyMPLlySIGW,SIGCyRHOsDELsQoMAX, ILEVIN)
IF(JOPTITO0,90,70 4
CONTINUE
IFCILEVINGEQ.11GO TO 81
D080J=1,NPNP2
D0B8OI=14NR
ZINPL+1,J)=2(NPL1PIR¢I,J)




|
r

85
81
82

83
90

617

605

618

550

551
552
. 553

554
555

556
606
120
122

123

NCSL TM-204-77

GINPL+1,J)=GINPLIPIR+I,J)
NPNP2=NPNP2=-1REM
DD35J=1,NPNP2

00851=1,NR
Z(JIoNPL+I)=20J,NPLPIRS])
GUJIyNPL+T1=G(J,NPL1PIR®I)
G0 TO 90

DO 82 J=1,NPNP2

LUNP1¢NR+1,J)=GINPNP2,J)
GINPL#NR+1,J)=GI(NPNP2,J)
NPNP2=NPNP2-1REM
DD831=1,NPNP2
LCIoNPLeNR+L)I=2(I,NPL1+NPL+1)
GUIsNPLeNR+1)=G(I,NPL14NP1+])
CALL PRMAT(GsNPNP2,NPNP2yMAX)
NPNP2=NPNP2~1
IF(I0PT-10617,605+618

NOISE ON BOTH INPUT AND QUTPUT
CALL SOLVE2(2,G,GAMMA+XLAFDA¢NPNP2¢1MAX)
XMEAN=XLAMDAINPNP2+1)
NR=NR=1
GO TO 606

NOISE ON OUTPUT ONLY

*CALL SOLVE2(2,GyGAMMA , XLAMDA ¢NP1¢NR¢MAX)

XMEAN=XLAMDA(NPNP2+1)
NR=NR-1
GO TO 606

NOISE ON INPUT ONLY
NPP=NPNP2+1
NR=NR=]
D05501=1,NPP
GAMMA(I)=G{(I,NPP)
D0551J=1,NR
JJ=NR=J+1
DO5511=1,NPP
GUINP2+4JJ)=G(I,NP14+JJ)
D05521=1,NPP
G(I,NP2)=GAMMA(L)
D05531=1,NPP
GAMMA(I1=G(NPP, 1]}
D05541=1,NR
II=NR=1+1
D0554J=1,NPP
GINP2+411,J)=GINPL+II,J)
D05551=1,NPP
GUNP2, [ )=GAMMA( 1)
CALL SOLVE3(Z,G,GAMMA, XLAMDA (NP2,NR¢MAX) 4
XME AN=XLAMDA(NP2) v
DO5561=14NR : ‘
XLAMDA(NP1+1)=XLAMDA(NP241)
IF(JOPT)120,13C,120
NPNP2=NPNP24IREM
IFCILEVINGEQ.1)GO TO 124 .
D01221=14NR
XLAMOA (NPNP2=141)=XLAMDA(NP2+NR=1)
00123K=1, IREM
XLAMDA(NP1+19=0.0000
GO 70 130

=A33-




124

125
130

301
1001

150

160
165
655
200

i
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NN3MIR=NPNP2+1~IREM
DOL1251=NN3MIR,NPNP2
XLAMDA(1)=0."000

CONTINUE

FAC=1.0

IF{ INORM.EQ.1)FAC=VARQ/VARNW
DO301I=NP2,NPNP2
XLAMDA([)=XLAMDA(I )*FAC
WRITE(6,1001)

FORMAT (10X, *THE SYNTHETIC COEFFICIENT VECTORy XLAMDA, IS5°¢)
CALL PRVEC(XLAMDA,NPNP2)

DD 15C 1=1,NPNP2
GAMMA(T)=XLAMDA(I)
IF{ILEVING.EQ.1)GO TO 165

GENERATING GAMMA FROM XLAMDA
CALL BUILDA(S,Q,DEL,N,¥AX]}
DD160I=1,NPNP2
GAMMA(11=0.,0000
FAC=1.0
IFU INORM.EQ.1)FAC=VARQ
DD160J=1,NPNP2
GAMMA(T)=GAMMA(I)+S(1,J)*XLAMDA(J)
KMEAN=XMEAN*S {1 NPL1)}®FAC/GAVMMA(L)
CONTINUE
WRITE(64655)XMEAN
FORMAT(/1X,*MEAN COEFFICIENT 1S *,D13.6,//)
D02001I=2,NPNP2
GAMMA( I )=GAMMA(1)/GAMMA(1)
GAMMA(11=1.0000
IF(IDLY.EQ.O0VGO TO 172
IDLY1=I0LY+1l
00 170 II=IDLYLl,N"1
I=NPHP241=-11
GAMMA( I+IDLY)=GAMMAL(L)

00 172 [=1,I0LY
GAMMA(I+NP1)=0.0D0C
CONTINUE

CALCULATING THE EQUIVALENT CONTINUQUS ODESCRIPTION
CALL 1ZTOS({GAMMA4N,DELTA,IZTS)
WRITE(6,1003)
FORMAT(///21%,1Q001H=)5/+1X,100(1H=))
RETURN
END

-AY4~




SUBROUTINE:

PURPOSE:

EQUATION:

FLOW CHART:

IZTOS

SEPARATES THE NUMERATOR FROM THE DENOMINATOR PARAMETERS IN

GAMMA .

DENOMINATOR; X1
NUMERATOR ; X2

NCSL TM-204-77

(I) = GAMMA(I)
(I) = GAMMA(NP1 + I)

DENOMINATOR
X1(I) = GAMMA(I)

|

NUMERATOR
X2(I) =-GAMMA (NP1+I)
No

I = NP1?

Al Yes

CALCULATE CONTINUOUS

DOMAIN DESCRIPTION
(CALL Z TO S)

o

IZTS=IXTS+l

1ZTS=4? }—x“——-

No

-A35~
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SUBROUTINE: IZTOS
DESCRIPTION: This subroutine takes the coefficient vector GAMMA and

separates the vector into the numerator (X2(I) array) and

denominator (X1(I) array).

PROGRAM VARIANCE: DELTA SAMPLING INTERVAL
GAMMA COEFFICIENT VECTOR
IZTS = 0 Z DOMAIN TO S DOMAIN CONVERSION NOT 3
PERFORMED ‘
=1 LOGARITHMIC TRANSFORMATION IS PERFORMED ;
= 2 PULSE DELAYED TRANSFORMATION IS PERFORMED
N SYSTEM ORDER

-A36-
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SUBROUTINE IZTOS(GAMMAN,DELTA,I2TS)

IZT0S SEPARATES THE NUMERATOR FROM THE DENOMINATOR PARAMETERS
IN GAMMA

DIMENSION GAMMA{1),X1(10),X2(10)
DOUBLE PRECISION GAMMA,X1,X2,DELTA
NP1=Nel

D031=1,NP1

X1( I1)=GAMMA(T)

X2( 1)==GAMMA(NP1+])

CALL 2TOS{X1¢X24NyOELTA,12TS)
127S=127S+1 ‘
IFU1ZTS<.EQe4) GO TO 200

RETURN

END
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SUBROUTINE: POLCON
PURPOSE: CONSTRUCTS POLYNOMIAL FROM ITS ROOTS

FLOW CHART:

INITIALIZE ¢
! R2(I)
A SET R2(1) = 1.0

MULTIPLX (S+C(I))
WITH THE POLYNOMIAL
R2(I)*S**(I-1)

NO

I =N?

DESCRIPTION: This subroutine constructs a polynomial from its roots and
the polynomial coefficients are stored in an array R2(I)
in ascending order.
?ROGRAM VARIABLES c ROOTS USED TO FORM POLYNOMIAL
K OPTION WHICH SUPPRESSES POLYNOMIAL CONSTRUCTION
WITH SPECIFIED ROOT(S)

N ORDER OF SYSTEM

R2 COEFFICIENTS OF POLYNOMIAL
-A38-
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SUBROUTINE PALCON(CT,)R2yKyN)
A POLYINOMIAL CONSTRUCTION PROGPAM NEEDED FOR ZT0S

DIMENSION C(Y),R2(1)
CIMPLEX®16 CsRZ,COMP
REAL=®8 DZ(2)

EQUIVALENCE (COMP,DC)
NPLl=N+.

DJI121=2,NP1

R2(1)=0.0D090

R2(1)=1.00D32

DJ4I=1,N :

CIMP=C(I)
IF(I1eEQe<eORe(DCI1)4EQeVe’DUANDeDC(2)4EQedeIDDIIGO TO &
D02JJ=1,1

J=1=-JJ+1
R2(J+1)=R2(J+1)1*C(T)+Rc(J)
R2(1)=R2(1)=C(1])

CONTINJE

RETURN

END
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SUBROUTINE: PRCVEC

PURPOSE: This subroutine prints out a complex single dimensioned array.
4 EQUATION: Complex number A + BJ is printed (A, BJ)
3 FLOW CHART:

COMPLEX * 16 A

1

WRITE A(I) I=1,N

DESCRIPTION: This subroutine is called in the ZTOS subroutine when the
poles and zeroes in the S domain are needed.

PROGRAM VARIABLES: A ARRAY TO BE OUTPUT

N NUMBER OF ELEMENT IN ARRAY

-A40-
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SUBROUTINE PRCVEC{A,N)

THIS SUBROUTINS PRINTS JUT A COMPLEX SINGLE DIMENSIONED ARRAY

A COMPLEX NUMBER OF THS FORM A + B J IS OUTPUTTED IN THS FORM
( Ay 8 J) WHERE J = SQUARZ 00T OF =1

DIMENSION A(Y1)

CIMPLEA*]16 A

WRITEL6,2)

WRITELO, 1) (ALT) 4 I=1,N)

FORMAT(1X1H(4D1T7e1091Hy4GL7e1G53H J))

WRITE(6,2)

WRITE(6,2)

FORMAT (/)

RETURN

END
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SUBROUTINE:  PRMAT
SUBROUTINE OUTPUTS DOUBLE PRECISION DOUBLE DIMENSION ARRAY

PURPOQOSE:
FLOW CHART:
DOUBLE PRECISION A j
WRITE A(I,J) J = 1,M 1
B 3
L
DESCRIPTION: This subroutine is called in GRAM II and takes an

array of two dimensions and gives an output of the same two

dimensional array in double precision. :
i

PROGRAM VARIABLES: A OUTPUT DOUBLE PRECISION ARRAY

M MATRIX “A" COLUMN DIMENSION
N MATRIX "A" ROW DIMENSION
NMAX DIMENSION SIZE OF TWO DIMENSIONAL ARRAY

-A42-
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SUBROUTINE PRMAT(A,NyM,NMAK)
DJUBLE PRECISION A

THIS SUBRDUTINZ OUTPUTS DOUBLE PRECISION DOUBLE DIMENSIONED ARRAY
DIMENSION A(NMAX,1) ;
WRITE(641)

DJ21=1,N

WRITE(5,3) (ATL,J)9Jd=1sM)

FORMAT (1X,12013.5)

WRITE(6y1)

WRITE(6,y1)

FORMATI(/)

RETURN

END




NISTROSSSRSp——
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SUBROUTINE: PRVEC

PURPOSE: SUBROUTINE OUTPUTS DOUBLE PRECISION SINGLE DIMENSION ARRAY
FLOW CHART:
DOUBLE_PRECISION A
WRITE A(Y), TI=1,N
DESCRIPTION:

This subroutine is called in GRAMIT and other routines to print

one-dimensional arrays in double precision.

PROGRAM VARIABLES: A ARRAY THAT IS OUTPUT IN DOUBLE PRECISION

N NUMBER OF ELEMENTS IN ARRAY

~A44-
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SUBROUTINE PRVEC(A,N}

THIS SURROUTTNE OUTPUTS DCUBLE PRECISION SINGLE DIMENSIONED ARRAY
DIMENSION ALY)

DIUBLE PRECISION A
WRITE(E,31)

WRITZ(Gs1) (ALT),1=14N)
FIIMAT(1X,410D01345)
WRITE(6y31)

WRITE(5431)

FORMAT(/)

RETURN

END
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SUBROUTINE:  RESPON
PURPOSE: CALCULATES RESPONSE (X,) FROM COEFFICIENT VECTOR (GAMMA)
TIMES THE ARRAY XLAMDA.
EQUATIONS:  [X,, (XLAMDA)] [ GAMMA ] = 0
o Komm il aaady o Bgese o Ve 1o f2)
(N2
also X, = ~ (XLAMDA)' (GAMMA)
FLOW CHART:
P
Vd ~
rd \\ N)
Fo—=--- MCOMPS (2)=0. =% -4
| ) ~ ,, |
) \)' i
INITIALIZE ¢ XLAMDA , ' .
XSAV : rocd2_,
———- M | COPS(2)=1.0
----- g | cops(1)=0.01
XLAMDA(J) = XLAMDA(J-1) + | COMPS(3)=0.0, |
XLAMDA(1) = XSAV ' b b aid
|
XLAMDA (NP1) = V(K) ' I
— |
) gF = V-~ =
l i INITIALIZE ¢, |
. Bl e SRl
XSAV = 0.0 T | | EKM1 genian
XSAV=XSAV- (XLAMDA) " (GAMMA . ¢ WMl
i ! bLmeq ==
[
|
' %
X(K) = XSAV I o il
r | Yes 4 »
k-« =2 - - <foBack,LT.1>
e
A b ~ “
| _INO
: :—EK = V(K) - GAIN * XSAV 1'
WK=COMPS (I ) *WKM1+COMPS (2)
L e o ~COMPS (3) *EKM1 |
|ERML = EK |
(WKML = WK

Sl s bl iz
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SUBROUTINE: RESPON

DESCRIPTION: Subroutine RESPON determines the response of

1 -2
+ bzz T e B bnz

b + b,z .

[} 1
-1 -2
1+llz +azz +....+anz

H(z) = to the

input sequence V(K). The coeffieints are entered as an NPNP2 =

N + N + 2 vector GAMMA = (l,a a, - bo. Sy -bn).

prrecee 8,

PROGRAM VARIABLES: FDBACK NO FEEDBACK FDBACK = 0
NEGATIVE FEEDBACK FDBACK = 1

GAMMA COEFFICIENT VECTOR
MP1 NUMBER OF DATA POINTS
N MODEL ORDER

v INPUT SEQUENCE

X OUTPUT SEQUENCE
XLAMDA WORKING ARRAY

FEEDBACK AND COMPENSATION:

=-A47-




SUBROUTINE:

wmummm:tx,>mmmmmumxrxm.

THIS ADDITION TO SUBROUTINE RESPON INCORPORATES THE FLEXABILITY
OF ADDING NEGATIVE FEEDBACK AND CASCADE COMPENSATOR IN THE
FORWARD LOOP FOR OPTIMIZATION.

it Bl T

WK = WKML * COMPS (1) + EX * COMPS (2) - COMPS (3)+ExMl

(See flow chart for RESPON the dotted section is for Feedback

and Compensation network.)
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BEST AVAILABLE CCPY

SUBAUTINGE RESPO I E W, o GAMNA  KLAMDA WP FDRACK)
DIME S 0% 0V Vil oGaAmA(L I, RLANDALLY

REALSA RSAV SAMMA, (LAMLA,GALY

IaTEota FORMA"

TAELE CARDS FOR DETERRINIIG & STAMLE -‘uuu SYSTE
FREDSALE GAIN CMLED 'BALe TERmINLD

REALSE LU 00N Gue, TEm, ACOFL20)ADDTRIZ0) 0071201 CO0 020
REAL*s LOwpy

LamEy stoesenscOmegIL )

LA TR L

L LU

W iene

18T

e e

WL e,

LA LAE T L]

LA LTERTE Y |
IR IR L 3]
cunuuuogzcv
IFIE P i R Nha s 160 0 M
LaeRsi sl

:)‘tuhz..
[+ LA TR LR N
COet s
Savey, 0000

Taw) e,

st D,

LB ABLERTYL ]

IFIFOR LT lien 10 210

farwin ) =GAlNeasayY

WEAL ML L ewaNLaLONPS (2 105 u-CONRSI DIORRN]

LI

e kn

Vi) run

SR RREATR L

JeNpl -]

CLAMDA( JIma MDA y-1) .
DI221w i

FER LT PR

ALAMDAL ) maLAMDALY=))

CLAMCALL ) =aSAY

CLAMUAINPL ) »V IR

l!AVOO.ODOQ

DI231=1,NPNPY

(SAVE=ASAV=GAMMA( [+l )ouLAMDAlT)

IFIDABSIXSAV) GT41,0011G0 YO 27

KIK)=XSAY

RETURN

DO281=K,MP} '
X(11=0,0

RETURN

END




SUBROUTINE:

PURPOSE:

SOLVEl

FINDS MAXIMUM EIGENVALUE AND CORRESPONDING EIGENVECTOR OF

(Z-E*G) *V=0

NCSL TM-204-77

GI=G

¥

-]

- "

CALCU'I..tTl S

_.ﬂ.tl_

IMPROVE S THROUGH ITERATION
(REDUCE COMPUTATION ERRORS)

F=(G#S-7

V=(¢

1178220+ 98,51/8q

___Jlﬂftﬂ__-.

E=1.0
NMN=N*N
ITER=1.0
ICNT=1.0

UIPDATE EIGENVECTOR
V=VV/VV (1)

NEW EIGENVALUE
E1=VV(1)

=A50~-
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SUBROUTINE: SOLVEl

4
!

ERROR CRITERIA
SUM=| (E1-E) /E1]

E=El

No

ERROR CRITERIA
SATISFIED?

T

PERFORM 3 EXTRA ITERATIONS
SO LONG AS ITER<NMN

DESCRIPTION: Subroutine SOLVEl uses the first quadrant of the GRAM matrix

and noise correction matrix " "

to calculate the output portion of

the EIGENVECTOR (N+l1 elements) plus the maximum EIGENVALUE .

PROGRAM VARIABLES:

MAX

s21

FIRST QUADRANT OF GRAM MATRIX
MAXIMUM ROWS PERMISSIBLE

N+1 (ORDER OF SYSTEM + 1)
COEFFICIENT MATRIX
EIGENVECTOR

NOISE CORRECTION MATRIX
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SUBROUTINE SPLVEL{Z+G4521sViNsMAX)

FINDS MAXTMUM EIGENVALUZ AND CORRESPONDING EIGENVECTOR OF

{2 -E* ) «V=2¢

WHERE 2 AND G ARE N X N MATRICES

E IS THE SIGENVALUE AND V THE CORRESPONDING EIGENVECTOR
REAL*8 Z(MAXy1)oG(MAXe2)sS22(1)¢VIL)sSsFsGIoVVyS2)SUMyE,EL
CIMMON /MATRIX/S(2),20),F(22,20)461(20,20),VV(100),+52(10,1))

CALCULATE S=(G INVERSZI*Z

DI1I=1,N

D3lJ=1,N

GI(1,J)=G(1,J9)

CALL DOBINVIGI¢NyMAX)
DJ2I=1,N

DO2J=1.N

S(1,4)=2.000

DJI2K=1,N
SUIsJ)=aSUIJI4GI(14K)I%2(K,yJ)

IMPROVE S THRU ITERATION
F=G%5-1
$=S-(G INVERSE)*F

ND2=N

DO1J0ZITER=1,ND2

DO31I=1,N

003J4=1,N

SUM=0,TD)

DO4K=1,N

SUM=SUM+GII,<)*S(KyJ)
FllsJ)=SUM=2114J) .
DOSI=1,N .
D05 J=1,\N

SUM=C. 200

DI6K=14N

SUM=SIM+GI(T+K)*F(KyJ)
S(14J)=S{14J)=SUM

CONTINUE

INITIALLY V=(S(1s1)y o o ov SINyNII/S(1,1)y E=1
ITERATE: EVFC VV=S*V, EVAL El=VV(1)

DITI=1,N
ViI)=S(I,1)/S(1,1)
E=1,000

NMN=N&N

ITER=]

IoNT=1

ITER=ITER+]
03391=1,N
wWil)=0.000
DJ39J4=1,N

VLT =vV(1)+S11,0)%Vi))
DO1DI=14N

VII)=vv(T)/VW(l)

El=vv(l)

SUM=DABS((E1-E)/ELl)

E=El

[F{SUMeGTo1."D=8,AND.ITER.LT.NMN)GO TO 8
TCNT=1CNT+1
IF(ICNT«LT«5¢AND.ITERLLT<NMNIGOD TO 8
WRITE(6411) ITER4E9SUM
FIRMAT(10X,*TTER=*,13,% MAXEIGENVALUE='yD13.6,* ERROR=',D13,6)
RETURN ;

END
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SUBROUTINE: SOLVE2

PURPOSE: CALCULATE MAXIMUM EIGNEVALUE AND EIGENVECTOR

FLOW CHART:

s1a 22

CALCULATE ZI ]
21622

(CALL DOBINV)

!

CALCULATE S2

sl

i

(22) 7, (21)

4

IMPROVE S2 THROUGH ITERATION
(REDUCE COMPUTATION ERRORS)

S$2=G

b
£ (225 (2 4 (21)_(21)
52=52-6(22) “ap
s 9

carcuLate New ¢ 1)
UL BN O e

CALCULATE FIRST (N+1) VALUES OF EIGENVECTOR

AND MAXIMUM EIGENVALUE
(CALL SOLVE1l)

4

CALCULATE REMAINDER OF EIGENVECTOR
XLAMDA (NP1+I) THROUGH XLAMDA (NP1+NR)
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SUBROUTINE: SOLVE2

DESCRIPTION: Subroutine SOLVE2 calculates the maximum EIGENVALUE and EIGENVECTOR
when noise is present on both input and output or the noise is present
only on the output. SOLVE2 uses subroutine SOLVEl to calculate the
first (M1) EIGENVALUES and the maximum EIGENVALUE. S“LVEZ uses
an interation process (similar to SOLVEl and SOLVE3) to reduce

computation errors.

TIPSR

PROGRAM VARIABLES: ]

G GRAM MATRIX

GAMMA COEFFICIENT MATRIX f

é MAX MAXIMUM ROWS PERMISSIBLE j
| NP1 ORDER OF SYSTEM+1 (N+l) ;
}

MR NP1-IREM §

XLAMDA EIGENVECTOR

z NOISE CORRECTION MATRIX i

§

i

RSP
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BEST AVAILABLE COPY

Biew o

SUBROUTINE SNLVE2(ZyGoGAMMA . XLAMCAJNPL,NRyMAX)
REAL®8 2(MAXy1)GIMAK,1) s GAMMA(L) 9 XLAMDA(L) 4SUMW,S,21,S1452,F
CIOMMON /MATRIX/S(2 9200 9oF(23925)921122420),S51(10910),52(135,10)
D0%2:1I=1,N\R
DJI620J=1,4NR
ZI(1,J)=G(NPY4+],NPL+J)
S1(1,0)=21(1,4)
CALL DOBRINVIZIyNR,MAK)
DJ62iI=1,4,NR
D0621J=1,NP1
S2(1,J)=",0:D"
DJI621K=1,NR

CALCULATE S2=G(22) INVERSE =* G(21)
S2(14J)=S2(19J)+ZI(I,K)I*GINPL+K,J)

IMPROVE S2 THRU ITERATION
F=5(22)%52-G(21)
§2=52-(G(22) INVERSE)*F

D05241ITER=1,"R
DJ6221=1,\R

D0622J=1,NP1

SUMW=0,00C

DJ523K=1,4NR
SUMW=SUMN+S1(I,K)*52(K,J)
FII,J)=SUMW=G(NPL¢+I,J)
DO6251=1,NR

DJ6254=1,NP1

SUMKW=0,2D0

DD625K=1 4 NR
SUMW=SUMW+ZI(1,K)*F(KyJ)
§201,J)=S2(1¢J)=SUMW
CONTINUE
D056271=1,NP1
D0627J=1,N\NP1
SUMW=(0.9D3
DJI528K=1,NR
SUMW=SUMW+G{ T yK+NP1)%S2(K,J)
GlI4J)=G(I,J)~SUMW

CALCULATE XxLAMDA 1 (CALL SOLVE 1)
CALL SOLVEL(Z,G,GAMMA,XLAMDA,NP1yMAX)

CALCULATE xLAMDA 2

0J36291=1,NR

K=NP1l+I(

XLAMDA(K)=0."DJ

DJ6294=1,NP1

KLAMOA(K) =XLAMDA(K)I=Z2(1,J)*XLAMDALJ)
RETURN ;

END
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SUBROUTINE: SOLVE3

PURPOSE: CALCULATE MAXIMUM EIGENVALUE AND CORRESPONDING EIGENVECTOR
(NOISE ON INPUT ONLY)

FLOW .CHART:

=X
z1=6 1)
(CALL DOBINV)

4

CALCULATE §2
s2=¢ (11 " (12)

V'

- IMPROVE S2 THROUGH ITERATION
(REDUCE COMPUTATION ERRORS)
F=c (1 agy-c12)

an e

$2=52-G

caLcuLaTe New ¢

D) _(22)_(2D) 4o,

.

'E CALCULATE FIRST (N+1) VALUES OF EIGENVECTOR |
AND MAXIMUM EIGENVALUE
(CALL SOLVEl)

'

| SET XLAMDA2 =XLAMDAL 7
(NOTE XLAMDAISFIRST(W+1) VALUES OF EIGENVECTOR)

‘ XLAMDA2 IS THE REMAINDER OF EIGENVECTOR

SET XLAMDA1=0.0

i

CALCULATE NEW XLAMDAJ.
XLAMDA1=-S2*XLAMDA2

l
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SUBROUTINE: SOLVE3
NORMALIZE EIGENVECTOR (XLAMDA)
< XLAMDA=XLAMDA/XLAMDA (1)
XLAMDA(1)="
K
DESCRIPTION: SOLVE3 is used to calculate theEIGENYECTOR when the system has

noise only on input.

EIGENVALUE and the (N+1) EIGENVALUES .
elements are calculated in subroutine SOLVE3.

SOLVE3 uses SOLVEl to calculate the maximum

The remaining EIGENYVECTOR
SOLVE3 uses an

iteration process (similar to SOLVEl an SOLVE2) to reduce computation

errors.

PROGRAM VARIABLES:

GAMMA

NP1

XLAMDA

GRAM MATRIX
COEFFICIENT MATRIX
MAXIMUM ROWS PERMISSIBLE
SYSTEM ORDER +1, (N+1)
NP1-IREM

EIGENVECTOR

NOISE CORRECTION MATRIX




WO~

10

11
12
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SUBROUTINE SOLVE3(Z,G+GAMMA, XLAMDA,NP1,NRyMAX)
REAL*8 Z(MAXy1),G(MAKs1) 9 GAMMA(L1) ¢ XLAMDA(L) ySUMMW,S¢Z1,+51,524F
COMMON /MATRIX/S(22420),F(20,2C),21(20,20),S1(10,1C)+52(1C,10)
NPNP2=NPL+NR

DO11I=1,\P1

001J=1,\P1

LI(1,J)=G(1,J)

CALL DOBINV(ZI,NP1,MAX)

DJ21=1,NP1

D02J=1,N\R

S2(1,J)=2,00"

DD2K=1,NP1

S2(1¢J)=5S2(19J)+21(1,K)*G(KyJ+NP1)
DO3ITER=1,NPY

D0&I=1,NP!L

006J=1,NR

SUMN=D,0D0

DI5K=1,NP1 ¢
SUMN=SUMW+G(T K )*S2(K,J)
FlI,J)=SUMW=G(I,J+NP1)

D061=1,NP1

D06J=1,yNR

SUMW=0, 000

DO7TK=1,NP1 ;
SUMW=SUMW+ZI(I,K)®F(K,J)

S2(14J)=S2(1+J)=-SUMW

CONTINUE

DOB8I=1,NR

008J=1,NR

SUMW=0.0D0

DI9K=1,N\NP1

SUMN=SUMW+G (T +NP1yK)#S2(K,yJ)
GlleJ)=G(I+NPL,J+NP1)=SUMN

CALL SOLVEL(7+GyGAMMA , XLAMDA,NR,MAX)
DO101I=1,NR

XLAMDA(NPL+I)=XLAMDA(T)

DO11I=1,NP1

XLAMDA(I)=0,"D3

0011J=14NR
XLAMDA(I)=XLAMDA(I)=S2(1,J)*XLAMDA(J+NPL)
DJI121=2yNPNP2 ¢
XLAMDA(I)=XLAMDA(I)/XLAMDA(1)

XLAMDA(1)=1,"DU

RETURN

END

-A58~
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SUBROUTINE: ZTOS

PURPOSE: CONVERTS A DISCRETE TIME TRANSFER FUNCTION H(Z) TO A
CONTINUOUS TIME TRANSFER FUNCTION H(S).

FLOW CHART:
b
£
(LOGARITHMIC) 2 o (DELAYED PULSE INVARIANT)
‘r 1 Z;IS 2
CALCULATE Z DOMAIN DC . DECREASE NUMERATOR
CONSTANT (CALCULATED WITH COEFFICIENTS BY z-1
z=1) (BOTH) ‘i
| FINDS ROOTS OF DENOMINATOR
POLYNOMIAL - CR(I
FINDS Z DOMAIN ROOTS OF . (1
NUMERATOR AND DENOMINATOR (SUBROUTINE POLRT)
POLYNOMIALS
CALCULATE S DOMAIN ROOTS
(SUBROUTINE POLRT) BY:
Pt ek
S = == LN(Z(DELTA))
CALCULATE S DOMAIN ROOTS
BY: Jb
1 FINDS PARTIAL FRACTION COEFFICIENTS
S BY S = 5prralN(Z(DELTA)) AND CONVERTS THEM TO S DOMAIN BY
CAA(TI) = CA(I)(CR(I))/
(1-eCR(D) (DELTA)
FORMS S DOMAIN POLYNOMIAL
FROM ROOTS FOR BOTH
NUMERATOR AND DENOMINATOR JL
CONVERTS PARTIAL FRACTION
(SUBROUTINE POLCON) COEFFICIENTS TO POLYNOMIAL
COEFFICIENTS
. CALCULATE S DOMAIN DC
GAIN CONSTANT FORMS DENOMINATOR
COEFFICIENTS FROM ROOTS
SCALES NUMERATOR
COEFFICIENTS BY THE DC
CONSTANT
-A59-




SUBROUTINE ZTOS

DESCRIPTION:

PROGRAM
VARIABLES:

NCSL TM-204-77

This subroutine uses the H(Z) transfer function in
polynomial form and finds the continuous time domain

transfer function.
the parameter IZTS. If IZTS = 0 no Z to S trans-
formation is done.
formation is donme.

Four options are available under

If IZTS = 1 a LOGARITHMIC trans-
When IZTS = 2 a PULSE DELAYED

transformation is performed. The fourth option
(IZTS = 3) performes both the LOGARITHMIC and PULSE .
DELAYED transformations.

A

NUMERATOR POLYNOMIAL
DENOMINATOR POLYNOMIAL
SAMPLING INTERVAL
ORDER OF SYSTEM

ORDER OF NUMERATOR

OPTION TO

IZTS = 0

DESIGNATE TYPE OF TRANSFORMATION DESIRED

PRINTS Z DOMAIN NUMERATOR AND DENOMINATOR
AND POLES OF Z DOMAIN. (DOES NOT PERFORM
Z TO S TRANSFORMATION).

LOGARITHMIC TRANSFORMATION
PULSE DELAYED

BOTH LOGARITHMIC AND PULSE
DELAYED TRANSFORMATIONS ARE
PERFORMED.
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SUBROUTINE 2TOS(B,A,N,DELTA,12TS)

¥ COMMON NN
¢
c CONVERSION OF A DISCRETE TIME SYSTEM H(2) TO A CONTINUDUS TIME SYSTEM H(S)
c
[+ .
c HE2)=(A{1) ¢ A(2)%2ETA *ecee)/l]l ¢ B(2)%2ETA 4scee)
g LETA = 1/2
Cc HUS)=(A(1) & A(2)%S + ceccnee ¢ AINSLI%SHEN)/DENOM
c
c DENOM=B(1) ¢ B(2)%S + cecee + B(Nel)eSo2N
c
[ B(1) = 1 ALWAYS
c
c

DIMENSION B(9),A19),TEFP(20),RR(20),RI(20),CR(20),CAL20),CAAL20),
1CA1(20),CB{(2"),CF(20),CF1(20),CG120) :
COMPLEX*16 CA,CAA4CAL,CBsCR,CONL1,CON2,CONT,FAC,AL,A2+B1,B2,AA1,B81
1CG,CF1,CF
REAL#*8 By;AsTEMPsRR,RI,0ELTA
CONT=0,0000
I0RP=1ZTS
NP1=N¢]
; NNP1=NN¢1
3 = Al1=0.000
81=0.000
DO 301I=1,NP1
IFC1.LE.NNPLVAL=AL+A(T)
30 8l=81+8(I})
WRITE(65989) NN,NNP1
989 FORMAT( 10X, *NN=°,15,5X,*NNP1=%,15)
b 999 FORMAT(///)
WRITE(6+999)
‘ WRITE(6,1000)
| 1000 FORMAT(®* Z~DNMALN DENOMINATOR®)
| CALL PRVEC(Be«NP1)
i WRITE(6,1001)
| 1001 FORMAT(®* Z-DOMAIN NUMERATOR®)
CALL PRVEC(A,NPL)
IF(127S5.EQ.0) GO YO 909
| » IF(IZTS.EQ.1) GO TO 20C
E IF(IITS.EQ.2) GO TG 250
| IF(12ZTS.EQ.3) GO TO 200
| IF(IZTS.EQ.4) GO TO 250

! 200 CONTINUE

c

(4

c LOGARITHMIC TRANSFORMATION
c

c

c WORK ON NUMERATOR

c

c

~A6l1-
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IF(NN.EQ.0)GO TO 469

CALL POLRTU(A,TEMP o NNoRRoRI,IER)
0015 [=1,NN
CACI)=DCMPLXIRR(I)(RICLIND

00 7 I=1,NN
CA(IN=(+1.0/DELTA)*COLOG(CA(I))
IF(NN.EQ.N) GOTO471

CONTINUE

DO 470 I=NNP1l,NP1

CAA(1)=0.000

CA(1)=0.000

CONTINUE
IF(NN.EQ.0)CAA(1)=1.000

NOW THE FIRST NN ENTRIES OF CA CGONTAIN THE S-DOMAIN ZEROES OF NUMERATOR

AND THE REAMINING ENTRIES ARE ZEROED OUT.
IF(NNoNE.O)CALL POLCONICA+CAA+ON)

WORK ON DENOMINATOR

CALL POLRT(B,TEMPoNoRR,RI,IER)
DD16 I=1,N
CREI)=DCMPLX(RR(TI),RICI))
CF(1)=1.ND00/CR(1)
WRITE(6+41002)

CALL PRCVEC(CF,N)

IF(IZTS.EQ.0) GO TQ 90C

D06 I=1+N
CR(II=(~-1.0/0€ELTA)*COLOGICR(]I))
WRITE(64240)

FORMAT(®* LOGARITHMIC TRANSFORMATICN®)
WRITE(69999)

WRITE(6,2000)

FORMAT(* POLES IN S DOMAIN®)
CALL PRCVECI(CRyN)

0030001I=1,N

CRUI)==CR(I)

CALL POLCON(CRyCB¢OyN)

ADJUST DC GAIN CONSTANT

A2=CAA(1)

82=C8(1)
FAC=(A1/81)%(B82/A2)
00 603 I=1,NNP1
CAALI)=CAAL]IY*FAC
GO TO 2010

DELAYED PULSE INVARIANT TRANSFORMATION

SHIFTS NUMERATOR COEFFICIENTS FOR OELAY
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CONT = A(1)

DO 300 I=1,N :
A(I)=A(I+1) —CONT*B(I+1)
A(NP1)=0.0

CALL POLRT(BsTEMPyNoRRoRI,IER) :
00611=1,N j
CRUT1)=DCMPLXIRRIT)RI(I))
CF(1)=1.0D00/CR(I) ;
WRITE(6+1002)

FORMAT(1X,°'THE POLES OF THE 2-DOMAIN®)
CALL PRCVEC(CF,N)

PARTIAL FRACTION EXPANSION

D031=1,N

CON1=1.0000

CON2=0.0000

D04J=1,N
CON2=CON2#*CR( 1) +A{N=J+1)
IF(1=J)5:4,5
CON1=CON1%(1.0000-CR(I)*CF(J))
CONT INVE ]
CA(1)=CON2/CON1 :

TRANSFORMATION OF DENOMINATOR AND NUMERATOR

D021=14N :

CON1=CDLOG(CR{I))/DELTA .
CAC(1)=CA(I)*CR(I)*CONL/{CR(1)~1.0000)
CR{1)=CON1

WRITE(6,241)

FORMAT(®* DELAYED PULSE TRANSFORMATION®)
WRITE(6,999) 3
WRITE(6,1004) :
FORMAT(®* NEGATIVE OF THE POLES IN THE S-DOMAIN®)
CALL PRCVEC(CR,N) E
WRITE(6,1003)

FORMAT (1X, *NUMERATOR CONSTANTS OF FACTORIZED H(S)*)
CALL PRCVEC(CA¢N) v

CALL POLCON(CR+CBsOsN}

00711=1,NP1

CAA(1)=0.,0000

009K=1,N

CALL POLCON(CR,CFl,KyN)

D09J=1+N

CAA(J)=CAA(JY +CFL{JI*CA(K)

CAA(NP13=0.0000

CONTINUE

D0450I = 1,NP1

CAA(I)= CAA(I)+CONT*CB(I)

WRITE(6,1005)

FORMAT(® S-DOMAIN DENOMINATOR®)
CALL PRCVEC(CB,yNP1)
WRITE(6,10061

FORMAT(®* S=DOMAIN NUMERATOR®)
CALL PRCVEC(CAA,NP1)
00201=14NP1

8¢ 1)=CB(1)

Al1)=CAALT)

RETURN

END (Reverse Page A64 Blank)
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APPENDIX B
z TO s EQUIVALENCE TRANSFORMS

Logarithmic Equivalence

Equation (3) on page 4 describes a simple way of finding an s-domain
transfer function H(s) corresponding to a z-domain transfer function H(z).
It is implemented in the computer program whenever IZTS = 1. The basis
for this correspondence lies in the logarithmic mapping s = - %.Zn(z) of the

poles and zeros from the z-plane to the s-plane. Appropriately, it is called
the Logarithmic Equivalence Transform. The inverse mapping is similarly
defined and we note that the left-hand-side of the s-plane maps into the
interior of the unit circle in the z-plane.

The primary advantage of the logarithmic equivalence transform is that
it preserves the degree of the numerator from the z-domain to the s-domain.
However, it does not yield a good degree of invariance of the output between
the continuous-time and discrete-time equivalent systems [8]. As a consequence,
this method requires a finer sampling interval compared to the 'pulse inter-
polation' method (described below) in order to achieve a satisfactory invariance

of the output.

Leading~Edge-Pulse Equivalence

Strictly speaking this objective cannot be achieved for every arbitrary in-
put because the sampled input signal loses some of the information of the
orginal signal. Suitable restrictions must therefore be placed on the class
of inputs for which the output invariance is sought. For example it is
assumed that the bandwidth of the input signal and the highest frequency of
the passband of the system are small compared to the sampling frequency (say

one-tenth or smaller). Under such an assumption the input may be approximated i

by a train of rectangular pulses:

This method aims for invariance of the output at the sampling instants. q

we) 2ae) 2 F | uta)p(eka)

where 1
p(t) = for 0 < t <A
0

Invariance of the outputs of a) H(z) excited by u(kA) and that of b) H(s)
excited by u(t) can then be achieved by equivalencing H(z) and H(s) in the

following manner:
n

n Y r
H o i <=> 7 i = H(s)
s 1=1 1-a,z” i=l $%p; ;
1
Py g Gy

YiPy

L 5 T-a))

-Bl—
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This method yields a high degree of invariance between the outputs of
a) H(z) excited by u(kd) and b) H(s) excited by the actual u(t). In this
respect its superiority over the logarithmic equivalence method has been
demonstrated by case studies on several Navy vehicles. However, it suffers
from the disadvantage that the degrees of the numerators in the z-domain
and the s-domain do not, in general, equal each other.
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APPENDIX C
SOLUTION OF A KEY EQUATION

As stated in Section II three different cases for equation (15) arise
depending upon whether Oq’ O,» OF both are nonzero. The solution for these

different cases is discussed below.

Case 1: Noise on Both Input and Output (NSPQ # 0O, NSPW # 0)

Equation (15) may be written as
(uI ~ ¢l =0 (c1)

so that the desired solution A is the eigenvector of G-lz corresponding
to its largest eigenvalue.

Case 2: Noise on Qutput Only (NSPQ # 0, NSPW = 0)

By partitioning the matrix G into four (n+l) x (n+l) blocks and
correspondingly partitioning A one obtains

o
Gll G12 I 0 A 0
-8 . (€2)
(2)
G21 G22 0 0 A 0
which is equivalent to solving the pair
=1 21 S
6 . -1 (1) ‘
A o Gy Gy h (c4)

The first part is solved as a usual eigenvalue problem. The eigenvector

A (D) corresponding t? the minimum eigenvalue is selected, and, then, from
the second equation A 2) is obtained. The desired parameter vector is
finally obtained as

(D

oy 1
L S e — (€5)

Case 3: Noise on Input Only (NSPQ = 0, NSPW # 0)

This case is quite similar in nature to case 2 above and is treated
accordingly.

(Reverse Page C2 Blank)
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