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Subject: The Laminar Velocity Profile in a Flat Plate Boundary Layer
with _Surface Roughness

References: See page 10.

Abstract : The theory of Singh and Lualey for the effect of surface
roughness on a laminar boundary layer is applied to flow
past a semi—infinite flat plate where the roughness is a
randomly distributed small amplitude waviness characteristic
of Lhe manufacturing process . Distorted velocity profiles
are calculated for a range of parameters and comparisons are
made with results obtained by a phenomenological theory.
Pres ent results are nearly an order of magnitude smaller than

- 
- those predicted by the ph noseoological theory.
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• 1. Introduction

In the last few years considerable theoretical work has been done

by the groups at Flow Research Inc. and Physical Dynamics Inc. on the

effect of surface roughness on boundary layer transition. The basis

of this work is a phenomenological theory of distributed roughnesn

advanced by Merkie, Kubota and Ko (1]. In this theory the distortion

effect on the mean velocity profile caused by the roughness is treated by an

eddy diffusivity concept utilizing three empirical constants. The theory

is in the same spirit as the familiar zeroth—order closure methods (eddy

viscosity) of treating turbulent boundary layer profiles. A consequence

of this phenocienological treatment is that the roughness is characterized

by a single parameter, the mean roughness height .

Recently this phenomenological theory has been applied by Kosecoff

• et al. (2) to a heated flat plate boundary layer in water to determine

the effects of roughness and wall heating on the neutral stability curve.

One of the conclusions reached is that only a modest deviation from the

smooth wall (Blasiua) profile is needed to drastically change the stability

characteristics. Their results show that the eddy diffusivity roughness

model produces quite large deviations from the Blasius profile when

the mean roughness height is equal to the momentum thickness.

The ai. of the present investigation is to determine whether the

magnitude of th. distortion effects on the boundary layer profile predicted

by the phenossnological theory of Msrkle et *1. is reasonable. To

accomplish this objective we will compare the results of Kosecoff et al

with the rational theory of Siagh and Lualey (3] applied to a flat plate

• bomadary layer with small amplitude randomly distributed surface waviness.

The Simgh—Lualey theory is a perturbation approach for a quite general

- -~~~~~~~~~-~~.---- 
- -- --- -

~~~~--— _ _
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• roughness diatribution which proceeds directly from the equations of

motion and consequently does not suffer from empirical constants. Since

it is a perturbation theory , the results are restricted to values of

the expansion parameter much less than one. In the present application,

however, this does not seem to be a drawback. In contrast to the single

parameter characterization of roughness by the phenomenological approach,

the Singh—Lualey theory shows that the solution depends not only upon

the mean roughness height but on the Taylor Microscale of the roughness

distribution as well.

2. Flat Plate Boundary Layer with Small Amplitude Waviness -

The theory of Singh and Lumley treats randomly distributed roughness

• described by y”h(x,z) using a perturbation expansion in terms of a

€/X where t is 42>1/2, the mean spatial roughness height, and

A is the Taylor microscale of the roughness distribution. The assumption

is also made that h is a statistically homogeneous isotropic function of

the spatial variables. Characteristic of a perturbation expansion, the

expansion parameter is required to be small compared to unity, i.e.,

F 

. (1)

Physically, this is a restriction to roughness of small slope. The theory

then calculates by means of matched asymptotic expansions, through

O(c2/12), the effect of the roughness on the mean velocity profile

To obtain an order of magnitude estimate of the effects to be

expected from the Siagh and Lumley theory , we consider a roughness made

up of a single wave number & .  A single wave number simplifies the

_ _  
_ _ _ _ _ _  — __
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• calculations considerably and since the effects of distributed roughness

are expected to be of the same order as for the single wave number case,

the added labor of determining the spectral density for distributed

roughness does not seem worthwhile . A roughness characterized by a single
-t

wave number &~ corresponds to small amplitud e waviness distributed

randomly and isotropically. This type of waviness is commonly encountered

in practice and results from the manufacturing process.

The mean velocity in the boundary layer in the x (streamwise) direction

is given by Singh and Lumley as

— ~i(y) + (~
} ?

~
1
2>

(Y)  , (2)

where 11(y) is the velocity distribution for the smooth wall case and

*2~~av 
is the perturbation due to surface roughness and is found to

be given by

<W2> (y) 
— ~~ J (R 11~ 

_
)l/3 E(~) $(s)d& , (3)

where

-j
s — y(R 

I
&)1~3 ,

•(s) — influence function tabulated by Singh and
Lualey in their Table I,

• u~ — slop, of th. undisturbed velocity profil, at
the wall, y0, and

• roughness spectral density . -~~~
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The roughness spectral density E(&) is defined by

H
— J E(a)da . . (4)

For a roughness characterized by a single wave number, the spectral

density is given by

— ~
2 6 (a—a~

) 
‘ 

(5)

where 6(&—a~) is the Dirac delta function.

The expansion parameter c/A may be related to the roughness wave

number as follows: By definitionp
- 

1 2(~)2 — (~Z~)2 
•

- 

In the present case, the surface is described by y”h(x), independent of

z, and hence
I

2(~)2 - h’h’ a2 E(a)da , (6)

For discrete wave numbers for which the spectral density is given by

Eq. (5), Eq. (6) yields the simple relation

• 

. 

. 

. (7)

Th spectral density given by Eq. (3) also allows Eq. (3) for to

be valutsd by quadrature yielding the result

4
ft

55 — - —-‘-..- - - - -  — - ---
~~
- - — -

~~
--.- - —— - 
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0 

~~
21> 

• (R 11.~ &~)~~~ ~
2 

~~~~ ~ (8)

With the aid of Eqs. (5) and (7) the mean velocity given by Eq. (2)

becomes

- 11(y) + f (ca’ 110(R 11~ a~)1~ ~
2 

~~~ (9)

We note that Eq. (9) is written in terms of dimensionless variables with

reference quantities as yet unspecified.

To compare with the results of Ref. (2), the basic flow is chosen to

be the Blasius flat plate solution which can be written in terms of

similarity variables as, cf. Rosenhead, p. 222, [4],
I

• 11 — f’(i~) , (10)

• where the similarity variable r~ is related to x, y and R by

~~— V ’R/2x y . (11)

Then ~~~~
‘ in Eq. (9) is given by

~~~— 1R/2x f”0

For a Blasius profile Eq. (9) becomes

• (D>1~~(n) — f ’ (~) + f 2/3 
(~o”)4’3 a~

13 
~‘ •(Kri) , (12)
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• where

K — (2x f0” ~~~~~ , (13)

and from Rosenhead, Table V.1, f0’~ O.469OO.

To compare with Ref. (2), we take as the reference length the

boundary layer momentum thickness 0. The Reynolds number is based

on 0 and y as given by Eq. (11) is made dimensionless by 0. The

present theory is therefore characterized by the three parameters Re,

and £ plus the restriction that the the

c a  < < 1• C *

Since 0 is taken as the characteristic length, x in Eqs. (11) — (13)

is not arbitrary but is determined by the definition of momentum thickness

which in Blasius variables is

0 — /2x/R J f’(l-f’)dn . (14)

From Rosenhead , Table V. 1

f’(l—f’)dn — 0.46960 ,

and hence th. relation between x/0 and R~ from Eq. (14) is
0

• P
c ~~ — 2.267323 R~ . (15)

_ _  _ _ _ _  _ _



—8— 11 May 1977
CH}I:JLL:jep

P • Furthermore , the relation between y/0 and n, from Eq. (11), now

reads
p

~~~~ _ n
0 0.46960 P

3. Results

Kosecoff et al. (23 in their calculations of flat plate mean velocity

profiles, the results of which are plotted in their Fig. 1, use values

of R~
u’175 and c/O—0.3, 1.0 and 2.0. The curve for c/0—O.3 is indistinguishable

from the Blasius profile, however, significant departures occur for the

cases c/O—l and 2.

• Calculations were performed for the Siugh and Lumley theory using

Eqs. (12) and (13) together with Table I of Ref. 3 for R ‘.175 and c/0 l0
• and 2. Values of the roughness wave number were chosen in the range

0.05 to 0.20 keeping in mind the restriction ca
~
<<l. Comparison of the

mean velocity profiles for the two theories are shown in Figs. (1) and

• (2) for c/O—l and 2 respectively. To show more clearly the differences

in predictions of the two theories, the disturbance velocity ratio

6u/u~ is presented in Figs. (3) and (4) for the same values of dO. The

latter two figures show quite clearly that the Singh and Lumley theory

predicts a velocity profile disturbance nearly an order of magnitude

smaller than the phenomenological theory of Merkle et al.

We note that in Figs. (2) and (4) the curves for a~
.o
~1 are beyond

the limits of validity of the present theory because is no longer

• _ I much less than one. Also, the negative velocity predicted by the Singh: •
I P c

_ _  

_______

• 
•• 

and Lualsy theo ry near the vail is evidence of the theory breaki ng

down in this region because of linearizing the boundary condition there.
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• The reason for the large difference in the predictions of the

Kosekoff et al. theory and that of Singh and Lumley is almost surely
P

not the fact that one is ~~ j~~ while the other is exact, but rather

the fact that the former is calibrated against typical sand roughness

drag coefficients, corresponding to c/A >> 1, while the latter is valid

for c/A << 1. Hence, the theories are not, properly speaking, comparable.

The theory of Kosekoff et al., however, particularly as regards its

stability predictions in the presence of heating, is being put forward

as relevant to small axisymmetric underwater vehicles. The type of rough-

ness present on such vehicles is due to the manufacturing processes used,

and since every effort is made to produce a smooth finish, it is most

likely to be a small—slope waviness, rather than a large—slope sand

roughness. Hence, we would expect the theory of Singh and Lumley to be

applicable to these bodies, and consequently that a given roughness height

would be far less detrimental than the theory of Kosekoff et al. would

suggest.
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