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for estimating the exponential parameter from this combined scheme were first
considered by Epstein. Epstein established one sided confidence intervals for
this parameter. This report reviews Epstein’'s work and establishes two sided
confidence intervals. The confidence intervals are expressed in terms of time
on test and chi-square percentiles with the degrees of freedom depending on the
number of observed failures. An expression for the expected length of the
confidence intervals is also derived.
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I. Introduction

Reliability acceptance tests are conducted under a variety
of test schemes both in the military and in industry. Various
combinations of time and failure censoring are commonly utilized.
In time censoring, n items are placed on test and observed
for a pre-chosen time t* . In failure censoring, n items are
observed until the occurrence of the rth failure. These
procedures are sometimes denoted type I and type II censoring
respectively. These two schemes may be combined so that the test
terminates at min(t*,7.) , where t_ is the time of the rth
failure in the sample. Sequential tests are also used where
acceptance, rejection, and continuation regions are defined in
the time~failure plane according to the theory of wWald [10]. The
sequential test may be further modified by time censoring, failure
censoring, or both. If a sequential test is censored at o
failures and at time T, , the resulting test is known as a
truncated sequential test scheme. Further variations are possible
by monitoring total accumulated time on test rather than actual
elapsed time in any of the above schemes.

A reliability test is concerned with a parameter 6 in
the underlying distribution of lifetimes. In addition to an
accept or reject decision, it'niqht be of interest to form an
interval estimate of 6 at the time of decision.

The objective of this report is precisely that. If the

reliability test terminates at time t., we wish to form a »
100(1-a) percent confidence interval for 6 at that time.




In this report we restrict our work to an underlying distribution
of lifetimes which is exponential with parameter 6 . This report
was motivated by a communication from the Office of Naval

Research concerning proposed revisions in MIL-STD-781. This
standard gives detailed reliability acceptance procedures for
military use, employing schemes which combine types I and II
censoring as well as truncated sequential tests. The underlying
distribution is assumed to be exponential with parameter 6 ,
which is the mean time between failures (MTBF). The communication
indicated a desire to form confidence intervals for 6 directly

from the testing procedures in MIL-STD-781.

II. Literature Review and Preliminaries

Much of the existing theory on reliability testing as well

as estimation procedures, in the exponential case was developed

bv Benjamin Epstein and Milton Sobel in a series of papers and tech-
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nical reports. Epstein eventually unified these papers ir a mono-

graph [4) in 1960.

In what follows it is assumed that all test items are
drawn at random and independently from a population where the
lifetime, T , of an item is exponentially distributed with density

£(130) = %-o“_”, 120, 650 (1
0., elsewhere.

Hence 6 is the expected lifetime of any item on test. Suppose
n items are drawn at random from distribution (1) and placed on




life test. Define T, to be the ith observed failure time.
If rsn is preassigned for type II censoring, we have
T)STySeea ST, Failed items may not be replaced (sampling
without replacement) or they may be immediately replaced by a
new item from the same distribution (sampling with replacement).
Under these schemes the following results are well established
[4):

i) In the nonreplacement case the maximum likelihood

estimator of 6 is 6 = T /T , where

r r r
.= I 1. +(o-2)e_= T (a-d#4))(t;, ~%T, ,) = £ wu, .
Togep 4 T a1 TR e

Here 7,20 and u; = (n-i4l)(7; =74 _,) . T is in fact the

total accumulated time on test.
ii) The ug . i=1,...,r , are independent and identi-
cally distributed with common probability density function (1).
iii) 2u1/e is distributed as a chi-square random variable
with 2 degrees of freedom. Consequently 2'rt/e is distributed
as chi-square with 2r degrees of freedom (xgz) .
iv) In the replacement case the maximum likelihood
estimator of 6 is 0 = Tr/r + where now 'l‘r = nt_ . :
v) Also in the replacement case 2r6/0 = 2'1"./9 - xg .
From these results we can obtain one and two sided
confidence intervals for 6 , with or without replacement. From
(iii) and (v) we find that a 100(l-a) percent one sided confidence
interval for 6 1is
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2'1‘r
(—T~——.°) (2)
xa,zr
where x2 is such that P(X2 > x2 ) =a The corresponding
a,2r 2r a,2r s
two-sided interval is
2T 27T
r r (3)
X2 x2 a
%,2: 1-3.2r

In type I censoring, where testing continues until a
preassigned time t* , confidence intervals are not as easily
found. 1In this case, with n items on test with replacement,
we have a Poisson process with parameter n(%) . Hence, if k
is the number of failures observed in (0,t*) ,

nt*

D e .
r e 6 (24K
P(ksr|e) = I i .
k=0

By a well known relationship between the Poisson and chi-square

distributions we can write

g

P(ksr|6) = P(X3,,,

> 2nt*/0) .

2

Clearly, if 6 < 2:11-.1"'/x‘l 2r+2
4

then P(ksr)sa . So, if we do

.

in fact observe k=r we are at least 100(l-a) percent confident

that 2:\1;"/x;‘;'2,.,‘.,2 <® . Likewise, by considering P(k 2r|e) ,

we may be 100(l-a) percent confident that, given we observed k=r ,

#
3




2nt*/x§_a 2r > @ . As a consequence, one sided and two sided
’

100(1-a) percent confidence intervals for 6 , under this sampling

scheme, are given by

2nt*
(.T_. i (4)
xa,2r+2

and

* *
( 22nt: ; 22nt ) . (5)
X

X.28
$i2re2 1730 %F

This approach to confidence intervals for the Poisson parameter
was originally discussed by Garwood [8]. Note that if r=0 ,
only the one-sided interval is used since we have no information
on which to base an upper limit.

If the type I scheme proceeds without replacement,

corresponding results are not easily obtained. In this case

g
3
3

the distribution of the maximum likelihood estimator was shown

by Bartholomew (2] to be a weighted sum of chi~-square integrals.

A closed form expression for confidence intervals from this is
unlikely. Epstein used a non-parametric approach (4] to this
problem by considering the number of failures observed in (0,t*),
but ignoring the actual times of fai;urc. We may improve our
position considerably here if we choose to monitor total time

on test rather than actual elapsed time. If at some time ¢t ,

k failures have been observed, the to;al time on test is seen to be




k
I Ty + (n-k)t .
i=0
Instead of an actual time of truncation t*, we preassign a total
time truncation point t° . Again, Epstein [4] has considered

this approach and many resultant properties. Under this scheme

it can be shown that we are observing a Poisson process with

parameter A = % for a length of actual time t° . Therefore,
following the same reasoning that lead to (4) and (5), one-sided

and two-sided 100(l-a) percent confidence intervals for 6 are

3 ¢ ® (6)
X
a,2r+2
and
e, 8 - i
xa xl-“ 2r
3¢ 2r+2 - g

With this scheme, the objective of terminating the test before
an excessive amount of time has elapsed may still be achieved.

A more complex situation arises when types I and II are
combined. In a combined scheme, the test may terminate either

with Lo failures or at time ¢t* , whichever occurs first. 1If

we are testing Hy: 6 -60 against Hix ) =0, where 01 <9° ¢
we would accept if min(rt

To 0
rro . It may be that Iy and t* are prechosen to satisfy
a,B8 level requirements.

+t*) = t* and reject if utn(tr t*) =




R S

T S T

il R s

failures

accept

SRR

time

Figure 1. Possible sample paths in the combined test scheme.

Additional complexity in the stopping rule complicates
the formulation of a confidence interval at the time the test
terminates. The natural inclination here is to combine the
confidence intervals from the types I and II. Epstein has done
this and showed [4]) that the following rule gives, at least,
100(1-a) percent one-sided confidence intervals when sampling

with replacement:

1—3’—‘-2—,0 if 1 > t* ’ k-O,l,.-.,r

# -1 (8)
X3, 2k+2 0

h1 a
o
e

8
-
L)
-
Wn
(34
»
°




I1f we sample without replcecement we face the same problems as
above when monitoring actual elapsed time. If, instead, we

monitor total time on test and use total time truncation t° ,
the following orie sided 100(1l-a) percent confidence intervals

for 6 were also given by Epstein [4]:

2t ,a| if k=0,1,...,54-1

Xq, 2k+2

= (9)
Lo

;2-———, © if k=ro o

c,2ro

Here k is the number of failures observed when total accumu-

lated test time is t° , and

r

0
t. = I 7t,+(n-rj)t_ = total time on test at r th failure.
£y Lt 0 I, 0

Two sided intervals are considered in the next section.
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III. Extension to Two Sided Intervals
IIIa. Testing with Replacement

It would seem that an extension from one sided to two
sided intervals should now be simple and direct. 1In fact the
proof is not a simple extension from the one sided case.

Theorem 1 gives two sided intervals.

Theorem 1. Let 7t be the lifetime of an item having
distribution £(t) = (l/e)e"T/9 r T20 . If n items from
this distribution are placed on test with replacement, and if

the test terminates at min(t*.rt ) + then the following rule
0

gives a two sided 100(1~a) percent confidence interval for 6 :

2nt*

: , ® if k=0,
¢ X
: %’2
(10)
* *
_zznt ’ zznt if k‘l,z,.o"ro-l ’

Xj_ 8
o % B i

e L e e S S

2nt 2nt
To To &
;(T—_ ) . if rro ste ,
a 1 e 2T '
Ilzro 0

Here k is the number of failures in (0,t*). Epstein proposed
intervals nearly identical to these [4]) with the exception that

SRS e I AT 3 e e — e R ———
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he used Xg 5 in the denominator when k=0 . He was unable to
’

provide a proof of his conjecture. To prove the intervals (1)
are valid we need to show that, wherever 6 be in (0,«), the
probability is at least 1l-a that 6 is covered by one of the
intervals (10). The proof is somewhat tedious and requires
attention to figure 2. The endpoints of the intervals for
kﬁ=0,1,....r°-l form a partition of the parameter space. The
proof consists of establishing the required probability of 1l-a
for each subset of the partition. Note first that the lower
endpoints of the intervals when k-o,l,z,...,ro-l are ordered
among themselves, the smallest when k-ro-l ,» the largest when

2 2

k=0 . This is a result of the fact that xa,k+1 > xa.k for

any fixed o , and any integer k . Likewise the upper endpoints
when k-1,2....,ro-1 are also ordered, the smallest when
k-ro-l , the largest when k=1 . The endpoints of the interval
when k=-r° are random since they are functions of Ty @ the
time of the r PN failure. However, Tro*<t* implies this random
lower endpoint is bounded above by the fixed lower endpoint of
the interval corresponding to kéro-l s specifically

2 2

Xa/2,2r 0/2,2r,

2nt_ / Also this random upper endpoint

r, s 2nt*/X

0
is bounded above by the fixed upper endpoint when k-to v 1.e.,

2
s 2""’*1-«/2,2: . Note that if the smallest

2
ant_ /X5
ro l-a/2,2x 0

0

upper endpoint (k-ro-l) was always greater than the largest

O e R Ay B S S A
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lower endpoint (k =0), there would then be a convenient overall
ordering. Unfortunately this is not necessarily the case. The
partitioning of the parameter space may be complicated by what
we shall refer to as a "cross-over". A cross-over occurs when
an upper limit for one fixed interval crosses below the lower
limit of another fixed interval. The first such cross—ovér will

- becomes less than 2nt*/x: ‘

occur when 2nt*/Xi_g 2r
2’ 0 ‘2’:2

2

3 2
that is when x1-92‘-,2r -2 > X% 2 * This can occur if a is large
[

0

enough or, more likely, if X, is large enough for a fixed a
level. Clearly a vast number of possible configurations exist
where upper endpoints are intermixed with lower endpoints. One

such configuration is illustrated in figure 3 below. In this

illustration a=.10 and ro =13 .
r r [_ k:%z [_ kg%l k:%o [_ k:? k:? k:? k:f k:}
A AL l : : : : : l— : : 2t
L boogos b S U P e ’
TR TR e Dl i R e e

Figure 3. Example of interval endpoints intermixed, a=.10, r, =13,

0
All of these possible configurations may be reduced to the consid-
eration of a relatively few cases as indicated in figure 2. Clearly
we cannot consider, individually, all possible subsets of every

possible configuration of endpoints in the partition. 1In each
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Pﬁ conceivable case, however, the proof would utilize only a subset
of the cases below.
We first prove two short lemmas that will be used in the

general proof.

n
Lemma 1. If x20, then £(x) = | e X x/k! is
k=0
monotonically decreasing in x .

(kx™"1 - x*) /x1 ,

k=0

n
The proof is direct. We have f£°(x) = e * ) i

which is a telescoping sum. Hence £°(x) = -e ¥ xn/n! . Since

£°(x) s 0 for all x20 , the result follows.

Lemma 2. Let Tl""'Tr be the first r, failure times
0

out of n items on test, where each item has an exponential

-T1./6
lifetime with parameter 6 . That is f(-ri) = (1/0)e i/ ’

L 20 . Then Y = 2ntr /6 has a chi-square distribution with
0
2:0 degrees of freedom.

To prove this we write o Tyl =t) +... 4 (Tro 'Tro-l) .

: Since we are observing a Poisson process with parameter A = n/6

it follows that T is the sum of r’o independent, identically
o .

distributed random variables with common exponential distribution

.-nx/e :

f(x) = %— x20 . Consequently Tt has a gamma

o
0" .B-O/n « If we let
Y= 2’“: /9 , the distribution of Y is easily found to be X
0

distribution with parameters a=r

2

2:0

from the transformation on o 3
0
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Proof of Theorem 1. Case (i) corresponds to region i
in figure 2.
Let 1 represent the family of intervals (10), and k

be the number of failures observed in (0,t*).

Case (1): 6 2 —%95:— ¢

x1-5,2
Under this restriction on 6 , P(6¢l) = P(no failures before t*)

nt*
=e U , since we are observing a Poisson process with parameter

. By the case (1) assumption nt*/0 < xi 2/2 which gives
2’

|

nt* 2
- -XJ a ,/2
e 2 e 17202

Now we can make use of the well known relationship

-y/2
02 .,y = —E-}XLL (11)

2
=X /2
Thus, with r=0, P(x2>x§l_ ) = e 1"’7'2 1-%, So

we have P(6e¢l) 2 1-%'> l-a which was to be proved for case (1).

2nt* 2nt*
Case (2): S 8 < S s
X1-2,2n+2 X1-2,2
"l‘o ‘1‘0 h
h h
P(6 «1) = B[\ / (r failures before t*)| = | P(r failures in t*)
r=0 r=0
~nt*
y o ¥ (":')
2 Tl

r=0
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2
By case (2) assumption, nt*/9 < xl—%.2h+2/2 which implies
2
nt* -XJ a /2
-— 1w, 2h+2 2 r
* 2z’
h é e (n_g_)r h e (X -%.2h+2/2) g
z rl . z i ni=g »
r=0 r=0

The inequality follows from Lemma 1 and the equality from (11).

Hence, again, P(6¢l) > 1l-a .

2nt* 2nt*

Case (3): 3 se<-—2——-—.
X X5 @
a 5 1-5,21:\
!"

This is included in the more general case (6) with d=0 and

s=m .
Case (4): T_Z_n;t_*__‘ 0 <£’2’3‘-:-.
X1-2, 2m+2 a
.}-' 1-,2

Again, this is included in case (7) with d=0, s=m .

2nt* 2nt*

Case (5): 'XT-——S 9<?———— ”
%.2:« 2242

Note here that we necessarily have s 24+l . Otherwise, if

s=d , we would have —!3-95—.- < -%-'-‘-t-.- or xi_g_ 2a > x:
Xl_g_ 24 Xc . !0 24
. !0 2d

A P T AT SR T
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which is clearly not possible. Now within case (5),
s~ s-1
P(Bel) =P (r failures in t*)| = J P(r failures in t*) =
r=7+1 r=z+1
nt* nt#* nt#*
s-1 -— s-1 g =——

- 1 YT - [ e O YT m - Je © @GHTm .

r=z+1 r=0 r=0

2
X, a
1-3,28
By case (5) assumption 6 > 2nt? and so n:* < z' .
X1-3, 2s
2
sl X1-%2,2e72 , . .
Consequently the first sum is > | e (X].8 2¢/2) /xl =1-3,
r=0 2’
% nt*
®
and P(0el) >1-3- [ e 8 B9 %/rt . But
r=0

. 2

nt*/0 > X /2 and so
F02242
nt* 2

§ oy s X /2

] e (efi)t/r! < Je a/2,22+2 (x2 /2)%/x1 = % s

r=0 r=0 , e 2242

Finally P(8 ¢ 1) >1-§-§--1-a.

:
|
4
H
i
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2nt* 2nt* 2nt* 2nt*
Case (6): —7——————-< " e s 0 < < :
x1-° 28+2 xu ;2-° 28 x:
2’ 302042 2’ 3024
. T 'E§: x
P(6el) =P (r failures in t*)| = ] e (Eé—)r/rl =
[;‘é ] r=4
nt* nt*
I e @~ ] e P &M
r=0 r=0
2 2
: 'xl-%.23+2/2 g . d-z-l Xas2,2d/%
> e (X3_a /2)"/xrl - e (X
r=0 1-3.28+2 r=0 %, 2a/2

The last inequality follows from case (6) assumption which implies
2

2 X
X5 a a
nt* 1'!’2'+2 s nt#* E 7,2&
) 2 st el

Consequently P(8eI) > 1 -g--g-- 1-a.

2nt* 2nt*
Case (7): 5 < 0 < SRTTE a

X2 a X
1-302842 %, 2a+2

s :
P(ee1) = P| \U (r failures in time t-):| =

r=d+1
z s _g%: . a nt* .
% = {o e (5%-)t/r! - 1 e F (AT /e >
r=

)r/r! .
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2

s X1-%,2042/% iy
e x3_a 2)%/r1
2l 1 2.2s+s

~X
a $,2a+2/2 -
- J e (X

)r/r! 5
r=0 g, 2a+2”/2

Again the inequality follows from the restriction on 6 which

2 2
implies nt*/6 < xl-—%,zs+2/2 and nt*/6 > x°/2'2d+2/2 - So

again P(6 1) 1~ % - % = 1~a . It is noteworthy here to

congsider this case when d=0, s=m, which is merely case (4)

as previously cited. The proof here relies on the fact that

0 < Znt*/xz . But in Epstein's conjectured intervals, this
5,2
2'

partition point would be 2m-.*/x: 2 ? which gives P(0 ¢ 1)
a S e 2 2
l - z - 1l 5 - Problems arise if Znt.*'/)(mlz'2 <0< 2:\1:"/)(3,2 .

Por example, it can be shown that for the simple case with r_=2,

0
with 6 in this small interval, P(0¢l) < 1-a .

2nt* 2nt*

Case (8): -T————$0<—r—-——.
x1-%‘-.2v+2 xl-g-.zv
v
P(6el) = | P(r failures before time t*) =
r=4+1
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nt#* _nt*

.y - 4 =
e O @Y~ § e © &Y%
r=0 r=0

2 2
v -xl-%.2v+2/2 2 4 a ~Xas2,2a+2/2

> J e (X].8 5y4272) /21 = | e (X
r=0 - r=0

2

/) /rt.
%,2d+2

Again this follows from nt*/6 < xi_a

}-,2v+2 and nt*/6 > X

2
a/2,24+2 °

So, for case (8), P(8el) > 1 -'% - % =1l-qa.

Case (9): —2RE° < < - 2ET
X s
2, 2w+2 G e o

Note that now we must include the possibility of coverage by the

random interval corresponding to k-ro .

ro-l 2n1.’r ;

P(6ecl) = ] P(r failures before t*) + P(r, fail and 6 s——o—-) :
0 2 2

r=w X;.2 7

o s !

r,-1 _nt* ox2 o 2

¢ 70 ,nt*.r % ol el - :

B (=) /x1 P(——in——Strost). |

It follows from Lemma 2 that we can write this second term ‘u

0x2_g '
1-3,2r >
p(__!%_'__g s tro S t*) = in-gﬂro s Ys 3!‘8‘_..)

a a 2 2nt*, ° a ® ,nt*.r
= !'Y(Znt*/e) g I-I-P(X2r°>—-€—) mangw I e (=) /zt .

e A S - £ . e o -
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ro-1 _nt* ro-1 _nt*
* 6 *
T, MPORL ('—‘%—)‘/:: +1-5-1 e (9-:—)"/:1
r=w r=0
w-1 -n_tl .
=1-%-1 e ° E/m .
r=0

: 2 2
But, by assumption, 8 < Znt*/xu/z'zw and so nt*/§ > Xa/2,2w/2

which then implies P(8el) > 1 - % - % =1l-a.

Case (10): -—2—3!‘-5*—— s 0 < —z'lxlg——' .
Xa/2, 2y+4 Xa/2,2y+2
rofl. 2ntr
P(8el) = | P(r fail in t*) + P(r, fail and & s —5—2)
0 2
r=y+1l X1-2 2
e
ry-1 _nt* .
6 *
= ] e (Eg-)r/rl + P(xi_g 2r S Y5 3%%—) as in case (9).
r=y+l 2770

By the same reasoning as in case (9),

nt*
P(Bel) =1 - % - § \ (£§:)r/r! and since,
=0
nt*/p > x2 /2 ,P(8el) >1-%-%=1-a.

RN e S e

A
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P
*
Case (11): 6 < —-2"1!‘5— ;
Xy
202r,
2mro 2ntr°
P(6el) = Pl———"5 0 § ~—m—muu—o
X2 x2 [*]
%’2!,0 1--2':21':0
2 2
ex1-a/2,2r° exc/2,2ro
= P ST S —
2n ro 2n
2 2 2
= P(X;_2 % s X )= 1lsa .
1-3+2r5 = "2r, $i2x,

These cases cover any possible subset of every partition. A formal
proof of this claim is found in Appendix 1. The proof of Theorem 1

is complete.

IIIb. Expected Interval Length

B

It is of some interest now to derive an expression for
the expected length of the confidence interval under this scheme.
There is a positive probability of observing no failures, in which
case the interval length is infinite. To avoid this situation
we will condition on one or more failures. Denote the length of

the interval by L and conaider the téllowing two possibilities:

P i i o et e T —
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ST
2

%, 2k+2

If T > t* then L = 2nt* 3

r
0 Xl_%,2k X

= Rk s Say.

Here k is the number of failures observed with 1 sk,sro-l .

2n 2n

* = - =
If e s t then L =2 3 Tt ctr ¢ Say.
0 a X 0 0
1-32r o 3r
b ikt

Note that in the first case the length is discrete while in the
second it is a continuous random variable. Consequently the
unconditional distribution of L is of the mixed type with jumps

at lk, k*l,Z,...,to"l . SO,

L/c
F(L) = [ f£(t)dt + ] P(k failures in t*) if & <ct*
0 keA
t*
= [ f£(t)at + ] P(k failures in t*) if fL2ct* ,
0 keA

where f is the density function of T and A = {k: Lk'sz} .
0

From Lemma 2 we have that T, ~ gamma (u-ro, 8 =6&/n), and
0 s
_nt*

P(k failures) = e ° (Egi)k/kl . We want E(L|L <®) which is

E(L|Ik#0) since L=« if and only if k=0 . We need now the
conditional distribution of L . We can write

P(Ls2|L<w) = P(Ls® N L<w)/P(k¥#0) . Now if £ is finite,
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(Ls®) ¢ (L<=w) which then implies P(Lsf® N L<®) = P(Ls<2) .

On the other hand, if 2 is infinite, (L<e®) ¢ (Ls2) and

P(L<f " L<w) = P(L<*) ., Thus

F(2

F(L|L<») = B if 2 is finite

= ] if £ is infinite.

i 1
Consequently, E(L|k#0) = [ 2dF(2|k#0) = —ETT! LdF(2)

-nt*
where P(k#0) = 1-e ¢ « Thus,
3 Fo~l ct*
E(L|k#0) = BRAO) k{l 2, P(k fail in t*) + Io Lg(L)ds
=
To-l t*
- I & P(k fail in t*) + [ cr_ £(r. )dr
P (k#0) k=1 k 0 Ty Iy r,
To evaluate the integral:
n ;
te e* "o,."'él
c [ yf(yldy=c [ —’—Tra-dr
0 0 r(r,) (;‘-)
t*
-k

r

. - ';:o- -1)%r 1y 0

o s lgla 1 e 1
r(rg) (70 k=0 (rg=k)1(-2)"**

y=0

WAL A

RSORE T ) adve .
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n
cr, 0 o 5Btk
e 0
» n 3 - Z k! "
k=0
Thus,
nt* nt*
-t g nt* k
| 1 IO{]' e (-'1:;'—*-)k ecr, e{ e ( 8 )
E(L|k#0) = ————-o L +
_n:* k=1 K k! n k-r°+1 k!

l-e

where £, = 2nt* l— 3 - A
k 2 2
X1-2,2k Xy
- §,2k+2

and c = 2n 3 1 - =3 1 .

X3 a

l-5,2r a

Several questions may come to mind concerning the expression for
E(L|k#0) . For instance, if we take the limit as r, * = in (12),
do we obtain the E(L|k#0) for the type I censoring scheme?

If we take the limit as t* + » , do we obtain the E(L) for

the typell censoring scheme? It can be shown quite easily that
the answer to both questions is yes. In the preceding derivations
we have placed no restrictions on t* and Ty other than to say

they are censoring, or truncation, values. In practice the values

(12°
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of t* and r, are determined by the test procedure which
provides the data for estimation. MIL-STD-781 is concerned with

testing HO: e-eo against le 6-91 where 6 <9° v EE B

1
test combining type I and type II censoring with P(reject Holel) =q
is desired, Epstein [5] has shown that t* = 8.X} . /2n .
0

If in addition we require P (accept Hllel)s 8 , Epstein has
shown this may be achieved if we choose o to be the smallest

integer such that

2
0 xa,zro

AR ’
1 Xq,2r,

Then we may decrease B if we increase Iy - It seems reasonable
that an increase in r, » or a decrease in 8 , would result in

a corresponding decrease in E(L|k#0) . An attempt at a direct
analytic proof using (12) was not successful. We then programmed
(12) and generated E(L|k¥0) for various combinations of 8,9,
and a. The value of r, was increased for each combination.

The results, somewhat surprisingly, show that for some combinations
of e,eo and a , the expected length increases initially before
it does decrease with increasing Ky o Partial results of this
computer work are given in Table 1. We have, thus far, beeh

unable to provide a satisfactqry explanation of this behavior.




27
>
Table I. Expected Lengths for Increasing Truncation Values,R
0 = 1.00 eo = 3,00
a = 0.05 a=0.10
R= 2 E(L) = 25.7057 R= 2 E(L) = 14.6718
R= 3 E(L) = 26.1465 R= 3 E(L) = 11.1729
R= 4 E(L) = 15.0962 R= 4 E(L) = 5.6256
R= S E(L) = 6.9176 R= 5 E(L) = 2.8950
R= 6 E(L) = 3.4234 R= 6 E(L) = 1.9311
R= 7 E(L) = 2,2408 R= 7 E(L) = 1.5818
R= 8 E(L) = 1.8238 R= 8 E(L) = 1.4094
R= 9 E(L) = 1.6299 R= 9 E(L) = 1.2954
R=10 E(L) = 1.5034 R=10 E(L) = 1.2071
R=11 E(L) = 1.4068 R=11 E(L) = 1.1351
R= 12 E(L) = 1.3266 R =12 E(L) = 1.0745
R=13 E(L) = 1.2590 R=13 E(L) = 1.0223
R= 14 E(L) « 1.2001 R= 14 E(L) = 0.9771
R=15 E(L) = 1.1490 R=15 E(L) = 0.9374
6 = 2.00 eo = 3.00
a= 0.05 a= 0.10
R= 2 E(L) = 33.8920 R= 2 E(L) = 22.2509
R= 3 E(L) = 53.1913 R= 3 E(L) = 28.8162
R= 4 E(L) = 54.6214 R= 4 E(L) = 25.6829
R= § E(L) = 44.3260 R= § E(L) = 18.7492
R= 6 E(L) = 30.9006 R= 6 E(L) = 12.2808
R= 7 E(L) = 19.6450 Rs 7 E(L) = 7.7827
R= 8 E(L) = 12.0050 R= 8 E(L) = 5.1069
R= 9 E(L) = 7.4825 R= 9 E(L) = 3.6492
R=10 E(L) = 5.0097 R=10 E(L) = 2.8815
R= 11 E(L) = 3.7223 R= 11 E(L) = 2.4700 ﬁ
R= 12 E(L) = 3.0517 R=12 E(L) = 2.2326 3
R=13 E(L) = 2.6882 R=13 E(L) = 2.0790 :
R= 14 E(L) = 2.4717 R= 14 E(L) = 1.9683
R=15 E(L) = 2.3277 R=15 E(L) = 1.8805 3
6 = 4.00 8y = 3.00
a = 0.05 a=0.10
R= 2 E(L) = 38.6661 R= 2 E(L) = 27.0906 :
R= 3 E(L) = 73.4801 R= 3 E(L) = 44.5701
R= 4 E(L) = 97,9833 R= 4 E(L) = 54.0796
R= § E(L) =109.0797 : R= § E(L) = 56.0089
R= 6 E(L) =108,3810 R= 6 E(L) = 52.4240
Rs 7 E(L) = 99,3520 Re 7 E(L) = 45.7010
Re g E(L) = 85.6724 R= 8 E(L) = 37.8212
R= 9 E(L) = 70.4874 R= 9 E(L) = 30.1389
R= 10 E(L) = 55,8853 ‘ R=10 E(L) = 23.4156
R= 1] E(L) = 43.1227 ’ R= 11 E(L) = 17.9371
R= 12 E(L) = 32.6525 R= 12 B(L) = 13.6968
R= 13 E(L) = 24.4603 R= 13 B(L) = 10.5338
R= 14 E(L) = 18.3067 R= 14 B(L) = 8.2472
R= 15" E(L) = 13.8143 Re= 15 B(L) = 6.6256




’ IIIc. Testing without Replacement

The second testing scheme we are considering terminates

at .ain(tt +t”), where failed items are not replaced. Recall

that the truncation value t° now refers to the total accumu-

lated test time. At the time of decision the following rule

gives a 100(1-a) percent confidence interval for 6 :

(;35- : -) if k=0,
g2
; (12t ’ ;72: ) if k‘l,z,.o-,ro-ll (13’
$o2ke2 132
27 27
r r
T o ] *L 1: k =r .
X x2 0 .

O P

Here k is the number of failures observed when the total time
on test reaches ¢t , and 'rr is the total time on test at the

R e s

0
time of the roth failure. This rule is nearly identical to that

conjectured by Epstein (4], with aquh the only change being the
use of a/2 rather than o when k=0 . The proof of (13)
becomes simple when we realize that this scheme may be viewed as

hTEN

IS Ls PR Bk AL
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a Poisson process with parameter 1/6 which we observe for
actual time t° . To see this, let Ty be the total time on
test when the kth item fails. Then
j ;i i
T, = T, + (k)1 _ = (n=i+l) (t, -1, _,) = U
k i=1 i k i=1 i i-1 i=1 i

where we have previously noted the Ui are independent and
identically distributed as exponential (%) . It follows that
T, ~ gamma (a=k, B=6) . We may write

P(k failures in total time t°) = P(Ty,, >t”%) -P(Ty >t°) . From

direct integration we find that

t‘
x .
PNy >t = e % (&%

P(Tk>t) =

¢
P

and P(k failures) = e (T')k/k! . Hence, to prove (13) we need

only duplicate the proof of (10) substituting t° for t* and
1/6 for n/6 . The derivation of E(L|ky¥0) for this scheme

follows in the same manner. The result is

1’ ‘sb: I3 | .s‘:
t - t‘ t‘ k
0 e (=) - e " (%)
1
E(L|k¢0) = - L —E?:— + c’r,0
1-e 70 k-z-x . S x-Eon kT

e et el % i o

&
3
3
3
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where !vk = Zt' 2 1 - 2 1 k = 1,2,...,!0-1 '}
Xl_g 2k xa
2' » 2k+2
and c’ = 2|— 1 - 1 .
xi-3.2r xi
2 0 I,Zro

Other results from the previous scheme carry over similarly.
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Appendix I

We now give a proof that the cases considered in Theorem 1
do in fact cover every subset of the possible partitions of the
parameter space determined by the fixed interval endpoints.

With the exception of cases (1) and (l11) (regions 1 and 11
in figure 2), each possible subset in the partition will be bounded
above and below by a left or right interval endpoint. Consequently

there are only four possible subsets:

We consider each of these and show how each is covered in Theorem 1.

.8 z+l z s-1
(1) — —f

In the most general situation this is case (5) of Theorem 1. The
arrows indicate the bounds on‘ @ which are necessary for the
proof of case (5). It is possible that there is no right endpoint
below the left endpoint determined by k=2+1 . In this oyont we
have s~1 = ro-l and we are then in case (10) of Theorem 1.

(i1) !{1 Igﬂ -‘] d-?l
E T R

In general this is case (6) of Theorem 1. Again the arrows

indicate the boundary points necessary for its proof. If there
is no right endpoint corresponding to .,k =s+l , it must be that

A v AR
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a-ro-l and we have case (9) with d=w . If there is no left
endpoint indicated by d-1 we have the situation where d4=0
and s=m which is case (3). If neither of the points indicated
by 8+l and d-1 are found, we must have the situation where

no crossover occurs. Then we are in case (9) with w=0 .
d+l s+l d

(141) ——

S Jf,fi:*L.

This is case (7) in general and its proof is dependent only on

i-4 -0

the actual boundaries of the subset. No other considerations
are necessary.

a+l v+l v g¥1
—5-

(iv) [ 1/‘ ] j

In general this is case (8) of Theorem 1. If the endpoint

indicated by k=s+1 is not present, we must be in case (2)
with d+l1=0 and v=h .

By adding regions (1) and (11) in figure 2, we see that
Theorem 1 covers all possible subsets. Cases (3) and (4) are
included only for clarity in figure 2 and may be omitted, since
they are special cases of (6) and‘(7).
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