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I. Introduction

Reliability acceptance tests are conducted under a variety

of test schemes both in the military and in industry. Various

combinations of time and failure censoring are comeonly utilized.

In time censoring, n items are placed on test and observed

for a pre-chosen time t~ • In failure censoring, n items are

observed until the occurrence of the rth failure. These

procedures are sometimes denoted type I and type II censoring

respectively. These two schemes may be combined so that the test

terminates at min (t*
~
1
~r
) , where Tr is the time of the rth

failure in the sample. Sequential tests are also used where

acceptance, rejection, and continuation regions are defined in

the time-failure plane according to the theory of Wald [103 . The

sequential test may be further modified by time censoring, failure

censoring, or both. If a sequential test is censored at r0
failures and at time T0 , the resulting test is known as a

truncated sequential test scheme. Further variations are possible

by monitoring total accumulated tim. on test rather than actual

elapsed time in any of th. above schemes.

A reliability test is concerned with a paramete r e in
th. underlying distribution of lifetimes. In addition to an

accept or reject decision , it might bS of int.r.st to form an

int rval estimate of 0 at the tims of decision.

The objective of this rep ort is pr .cissly that . If the

reliability test terminates at time t., vs wish to form a

l00(l-Q) percent confidenc. interval for 0 at that tim.. :~
- I

1% 
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In this report we restrict our work to an underlying distribution

of lifetimes which is exponential with parameter 0 • This report

was motivated by a communication from the Office of Naval

Research concerning proposed revisions in MIL-STD-78l. This

standard gives detailed reliability acceptance procedures for

military use, employing schemes which combine type. I and II

censoring as well as truncated sequential tests. The underlying

distribution is assumed to be exponential with parameter e ,
which is the mean time between failures (NTBF). The communication

indicated a desire to form confidence intervals for 0 directly

from the testing procedures in MIL-STD-781.

- II.. Literature Review and Preliminaries

Much of the existing theory on reliability testing as well

a. estimation procedures, in the exponential case was developed

by Benjamin Epstein and Milton Sobel in a series of papers and tech- -S~-

nical reports. Epstein eventually unified these papers in a mono-

graph [4) in 1960.

In wha t follows it is assumed that all t s t  item. are
drawn at random and independently from a population where the
lifetime, T , of an item is exponentially distributed with density 

—

f(r;O) ~~•
t~0 , T� 0 , 0>0 (1)

0 , elsewhere .

Hence e is the expected lifetime of any item on test . Suppose
it item. are drawn at random from distribution (1) and placed on
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life test. Define to be the jth observed failure time.

If r s n is preassigned for type II censoring, we have
� �

~~~
•• . Failed items may not be replaced (sampling

without replacement) or they may be immediately replaced by a

new item from the same distribution (sampling with replacement).

Under these schemes the following results are well established

[43:

i) In the nonreplacement case the maximum likelihood

estimator of 0 ii ~ — Tr/r , where

r r r
T E ri + (n—r) r £ (n—i+l)(t i — r i_j) — tr r i—i

Here r0 0 and Uj! (fl~j+].) (r j 
— tj.1) • T~ is in fact the

total accumulated time on test.

ii) The Uj • ial,...,r • are independent and identi-

cally distributed with common probability density function (1).

iii) 2u~/0 i~ distributed as a chi-square random variable

with 2 degrees of freedom. Consequently 2Tr/O is distributed

as chi-square with 2r degre.s of freedom (X
~r
)

iv) In the replacement case the maximum likelihood

estimator of 8 is O a T r/ r , where now Tr~~~ flTr •
v) Also in the replacement case 2r~/0 2Tr’0 - X~r

Prom these results we can obtain one and two sided
confidence intervals for 0 , with or without replacement. Prom

(iii) and (v) we find that a 100(1—a) percent one sided confidence

interval for 8 is 

-~ - -~~~~~~~~~~~~~ --—~~~~~~~~~ • --—

-
~
~!
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2T
(2)

a, 2r

where is such that P(X~ > 2 — a • The correspondinga,2r r a, r
two—sided interval is

( 2T 2Tr )
In type I censoring, where testing continues until a

preassigned time t* , confidence intervals are not as easily

found. In this case, with n items on test with replacement,

we have a Poiàson proces . with paramete r n(~ ) . Hence, if k

is the number of failures observed in (0,t*) ,

nt5-_~
_
~,nt* kr e 0

P(k~~rI8) 
a £ ki •
k 0

By a well known relationship between the Poisson and chi-square

distributions we can write

P ( k �r 18)  a P(X
~r+2 > 2nt*/0) • 

-

Clearly, if 0
~~2nt*/X~~2r+~~then P(k~~r) ~a • So, if we do

• in fact observe k— r  we are at least tOO (l—a) percent confident

that 2flt*/X~,2r+ 2
(6 . Likewise, by considering P(k � rIO ) ~

we may be 100(1-a) percent confident that, given we observed k a r  ,

_ _  --“  ~~~~~~~~~ - .--
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2nt*/X~_a,2r 
> 0 • As a consequence, one sided and two sided

100(1—a) percent confidence intervals for 0 , under this sampling

scheme, are given by 
-

(

2nt* 

)Xa,2r+2 
-

and

2nt* 2nt* -

2 ‘ I .
x x~_~~2 )
~.,2r+2 2’ r

This approach to confidence intervals for the Poisson parameter

was originally discussed by Garwood [83 . Note that if r— 0

only the one-sided interval is used since we have no information

on which to base an upper limit. -

If the type I scheme proceeds without replacement,
- 

corresponding results are not easily obtained. In this case

the distributicn of the maximum likelihood estimator was shown

by Bartholomew [2] to be a weighted sum of chi-square integral..

A clos.d form expression for confidence intervals from this is

unlikely. Epstein used a non-parametric approach [43 to this

problem by considering the number of failures observed in (0,t*),

but ignoring the actual times of failure. We may improv, our

position considerably here if we choose to monitor total time

on test rather than actual elapsed time. If at some time t ,

k failures have been observed, the total time on test is sen to be

- - - 
- - _ _  • • - - - •~_ _-

— • • •• • • • • - — -
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k
£ t + (n—k)t
i=0

Instead of an actual time of truncation t*, we preassign a total

time truncation point t . Again, Epstein [4] has considered

this approach and many resultant properties. Under this scheme

it can be shown that we are observing a Poisson process with

parameter A = for a length of actual time t~ . Therefore,

following the same reasoning that lead to (4) and (5), one-sided

and two-sided 100(1-a) percent confidence intervals for 0 are

2t 
,~~~ (6)

Xa,2r+2

and

(
~ 2

2t
~ 

~~~~~ 
) 

(7)

~,2r+2 ~~~~
, r

With this scheme, the objective of terminating the test before

an excessive amount of time has elapsed may still be achieved.

A more complex situation arises when types I and II are

combined. In a combined scheme, the test may terminate either

with r0 failures or at time t~ , whichever occurs first. If

we are testing H
~
: eaO o against N1: e — e 1 where e1< e 0 , 4

- - 
- 

we would accept if min(r ,t*) — t* and reject if a~tn(t ,t*) ar 0
tr It may be that r0 and t~ are prechosn  to satisfy

u,8 level requirements.

_ _  _ _ _ _ _  - - — 
-



fa ilures

- 
rejectr0 ~~~~~~~~1

I I__j I

I ‘ 
accept

r -~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  time

Figure 1. Possible sample paths in the combined test scheme.

Additional complexity in the stopping rule complicates

the formulation of a confidence interval at the time the test

terminates. The natural inclination here is to combine the

confidence intervals from the types I and XI. Epstein has done

this and showed [4) that the following rule gives, at least,

100(1-a) percent one-sided confidence intervals when sampling

with replacement:

2nt*
~~~~ if r >t* , k 0 ,l,...,r~-l (8)

V

a,2k+2 /

I
, if �t5

‘ 0

d
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If we sample without replacement we face the same problems as

above when monitoring actual elapsed time. If , instead , we

monitor total time on test and use total time truncation t~ ,

the following one sided 100(1-a) percent confidence intervals

for 0 were also given by Epstein [4): 
-

2
2t 

, if k=0 ,l,...,r0—1
Xa,2k+2 J

(9)
2tr \0 if k=r0

Xa,2r0 /

Here k is the number of failures observed when total accumu-

lated test time is t , and

r0
t a £ r4 + (n—r ,jr a total time on test at rAth failure.r0 ~~~~~~~ 

-~~ r0

Two sided intervals are considered in the next section.
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r
III. Extension to Two Sided Intervals

lila. Testing with Replacement

It would seem that an extension from one sided to two

sided intervals should now be simple and direct. In fact the

proof is not a simple extension from the one sided case.

Theorem 1 gives two sided intervals.

Theorem 1. Let r be the lifetime of an item having

distribution f ( r )  (l/O)e
_T/O 

, r � 0  . If it items from

this distribution are placed on test with replacement, and if

the test terminates at min(t*,rr ) , then the following rule
0

gives a two sided 100(1-a) percent confidence interval for 0 :

2nt* j f k 0 ,
x2 ja

(10)

2nt* 2nt*I ‘ I if k— l , 2 , . . . , r — 1
\x~,2k+2 l—~,2kJ

2nr 2nr
_ _ _ _  

V if t
a .  -a l—r,~ r

ft Here Ic is the number of failures in (0,t*). Epstein proposed

intervals nearly identical to these [4) with the exception that

- 
~;-

_  _ _  ------r----  --- ~~~~~~~~~~~~
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he used X2 .~ in the denominator when k = 0 • He was unable to

provide a proof of his conjecture. To prove the intervals (1)

are valid we need to show that, wherever 6 be in (0,~ ), the

-~ probability is at least 1-a that 0 is covered by one of the

intervals (10). The proof is somewhat tedious and requires

attention to figure 2. The endpoints of the intervals for : -

form a partition of the parameter space. The

proof consists of establishing the required probability of 1-cs

for each subset of the partition. Note first that the lower

endpoints of the intervals when k 0,1,2,...,r0—l are ordered

among themselves, the smallest when k— r 0-l , the largest when

k 0  . This is a result of the fact that > fora,k+l a,k

any fixed a , and any integer Ic . Likewise the upper endpoints

when k— l ,2,...,r0-l are also ordered, the smallest when

Ic a r0-l , the largest when k — 1 • The endpoints of the interval

when Ic a r0 are random since they are functions of cr , the

time of the r0th failure. However, t <t~ implies this randomr0
lower endpoint i. bounded above by the fixed lower endpoint of

the interval corresponding to k a r0—l , specifically

2nrr /X
~,2,2r ~ 2nt*/X~,2,2r . A lso this random upper endpoint

is bounded above by the fixed upper endpoint when kar0 , i.e.,

2nr /X~ ,.~ ~ � 2nt*/X2 ,~~ ~ • Note that if the smallestr0 .~~ a,6,6r 0 1

upper endpoint (k — r0-l) was always greater than the largest
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lower endpoint (k=0), there would then be a convenient overall

F ordering. Unfortunately this is not necessarily the case. The

partitioning of the parameter space may be complicated by what

I we shall refer to as a “cross-over”. A cross—over occurs when

an upper limit for one fixed interval crosses below the lower

I limit of another fixed interval. The first such cross-over will

I occur when 2nt*/X~ ~ 2 —2 becomes less than 2nt*/X 2 
,

1 

2’ r0

I 
that is when X~~~ ,2r —2 > Xcs 2 • This can occur if a is large

I 2 0

I enough or, more likely, if r0 is large enough for a fixed a

I - 

level. Clearly a vast number of possible configurations exist

• where upper endpoints are intermixed with lower endpoints. One

such configuration is illustrated in figure 3 below. In this
- 

illustration a= .l0 and r0 — l3

k;l2 k;ll k~~0 k~p k;8 k;7 k~~ k~~L [ J [ 
: I [ i j i  C

kl2 k 4  k 3  k—2 k—l k—0

Figure 3. Example of interval endpoints intermixed, a — .10, r0 
a 13.

All of these possible configurations may be reduced to the consid—

eration of a relatively few cases as indicated in figure 2. Clearly

- we cannot consider, individually, all possible subsets of every

possible configuration of endpoints in the partition. In each

4;-. 

— -_ -- - —
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conceivable case , however , the proof would utilize only a subset

of the cases below.

We first prove two short lemmas that will be used in the

general proof.

IcLemma 1. If x� 0 , then f(x) — e X x /kI is
k—0

monotonically decreasing in x .

k i  IcThe proof is direct. We have f~ (x) = e X 
~ (kx -x  )/k I

k—0

which is a telescoping sum. Hence f (x) -e~~ x~/n1 . Since

- 
- 

f~~(x) ~ 0 for all x� 0 , the result follows.

Li—~~~ 2. Let r~ ,...,r be the first r0 failure timesr0

out of it items on test, where each item has an exponential

~Ti/O
lifetime with parameter 8 • That is f ( c ~ ) — (1/8)e

- rj � 0 • Then Y — 2n-r /8 has a chi—square distribution with

2r0 degrees of freedom.

To prove this we write t — T  + ( r  -t  ) + . . . + ( t  - t  _ ).

Since we are observing a Poisson process with parameter A

it follows that r is the sum of r,~ independent, identicallyr0
distributed random variables with common exponential distribution

f (z) — ~~ e ’~~’~ , x � 0 • Consequently tr has a gamma

distribution with parameters a — r0 • B — 0/n . If we let

- - Y — 2nt /0 , the distribution of I is easily found to be

from the transformation on 

- - - —-
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Proof of Theorem 1. Case Ci) corresponds to region i

in figure 2.

Let 7 represent the family of intervals (10), and Ic

be the number of failures observed in (0,t*).

2nt*Case (1) : 0 �  ~
a

1-I.

Under this restriction on B , P(B 7) — P(no failures before t*)

nt*
— ~~~~~ , since we are observing a Poisson process with parameter

By the case (1) assumption nt*/e � a ./2 which giveso

—X~~4,2/2

Now we can make use of the well known relationship

P (X~~~ 2 >y )  — 
~ 

e
~~
”

k~~
n1F2) 

. (11)
k—0

a /2
Thus, with r — 0 , P (X ~ ‘ X~~a 2 ) — e 1 7,2 — i — ~~ . So

we have P( e c I )  � 1 -~~~ 1—~ which was to be proved for case (1).

2nt* 2nt*Case (2): —
~

— —--—-———�O<
~~~

—-————

rh
PLL/ (-r failures b fore t*)J — Z P(r failures in t*)

nt~ rh e  C—) .
B -
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By case (2) assumption, nt*/9 ‘ xi$,2h~ 2/2 which implies

—X 1 a 2h+”2 2h B nt* r h e  ~~7’ (X a /2) r
e l—-~,2h+2 a

ri ri  a l — . ~~

r—0 r—O

The inequality follows from Lemma 1 and the equality from (11).

Hence, again, P ( O c I )  > 1—a

Case (3) :  2nt* 
~ o < 2nt* 

-

X x1 a~a 2

Thi, is included in the more general case (6) with d—0 and

s — r n .

2nt~ 2nt*Case 4,: —r—-————— ~ 0 ‘C

Xl~~~2ml 2 X~

Again, this is included in case (7) with d— 0, s — r n  .

Case (5) :  ~~~~~~~~~~~~~~

~,2s+4 ~,2s+2

- 

- 

Note here that we necessarily have s � d+l . Otherwise , if

s.d  • we would have 
X~~~~;d 

~ or xii,2d > 
~~ 2dI’ 2d
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which is clearly not possible. Now within case (5),

P (0 € 7) — P Cr failures in t*) P(r failures in t*) a
Lr— +1 J r—z+l

nt* nt* nt*
e ° (!~~~) ’~/rI — I e U (nt*) r,rl — I e ( !!f) ’~/r !

r—z+l r 0  raO
- 

2nt5 nt*By case (5) assumption e > —r———— and so
x
1i’28

s—i ,2s/2 2- 

• Consequently the first sum is > e (X 1~~ 25/2) n/rI — i4
r—0 2’

nt*
and P(0 c I) > 1 -~~~~~ 

- J e U(nt*)r,rl . But

> /2 and so
~ ,2z+2 j

Z e
~~~~~

(flF)
~

’/ri c ~ e ” 12
~

224 2’2 (X 2 ,2) r,rl —
r 0  r—0 - ~,2z+2

Finally P( 0 I) > 1 — — — i — a  .

I-

- - , L
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2nt* 2nt* 2nt* 2nt*Caie (6) :  ‘C
ij~2s+2 

~ , 2d+ 2 l—~ ,2s

r -
~ nt*

P(8 c 7) — PfJ (r failures in t*) — e ~U(nt*)r/rl a

~r d  j r-d

_nt* nt* - -

~ 
e (nt*)r,rl — 

d—i 
e~~~~(a~._)

r/ri >

r—0 r—0

I
, —X~..a,25+2/2 2 d—l —X

~,2,26
/2 

2
> e 2 (X

11,25~2
,2)r,rI — 

rL 
e (X~~~~,2)

T/r1

The last inequality follows from case (6) assumption which implies

2x
nta 1—~,2s+2 nt* 

_ _ _ _ _

2 and 
~1~

> 2

Consequently P(0 c 1) > 1 - - — 1 - a.

2nt~ 2nt~Case (7) : 8 ‘C —p————
X1~~,25~2

P(e c 1) a (r failures ~n —

L”~ ’
• nt* nt*

— ! •~~~~(
nt*)r,ri I . r(nt*) r,ri >

r 0  B r 0
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r 2 2s 9j .2s+2 2(X 1 ,25+,,2) r,ri

2—x
w, +

— Z e (X a /2 ) /I l
r—0 ~,2d+2

Again the inequality follows from the restriction on 0 which

implies nt*/O � X~~~ ,25~ 2/2 and nt*/B > Xa/2 ,2d4 2/2 • So

again P ( O e I )  l - ~~~-~~~— l - a . It is noteworthy here to

consider this case when d— 0 , e a rn ,  which is merely case (4)

as prev iously cited . The proof here relies on the fact that

9 < 2nt*/X~ • But in Epstein’s conjectured intervals, this

partition point would be 2nt*/X~~2 , which gives P (0 1)

1 - - a — 1 - . Problems arise if 2nt*/X~,,2,2 < 0< 2nt*/X~,2.

For example , it can be shown that for the simple case with r0 
a 2 ,

with 0 in this small interval, P ( O c l )  ‘C 1 — a

2nt~ 2nt* -

Case (8):
X142~,+2 Xlj 2v -

• v *

P( 0 ( T )  — 
~ P(r  failures before time t~ ) a

r—d+1

. .

_ - 
-___ 

- - -~~~~~~~~~~~~~~~ . -- 

t
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nt* nt*

~ e ’(~f) r /r i - I e o
O?f)

r/rI >
r—0 r—0

.
~ 

—X ~~2 ,2~ +2/2 
2 d ~X~,2,2d+2/2 

2
I e (X 1 a /2)r/r I - e CX

r—0 2’ raO ~.,2d+2 -
:

Again thi s follows from nt*/e s X~~~ ,2~ 4 2 and nt*/0 > Xa/2,2d+2

So, for case (8), P(8 £ 7) > 1 — — — 1— a

Case (9): 2nt* 
~ ~ ‘C 2 

2nt*
Xa 2w+2 

Xlj,2r
_2

Note that now we must include the possibility of coverage by the

random interval corresponding to Ic — r0

r0-1 2flt r
— I P(r failures before t*) + P(r0 fail and ~~ 2 

0
r—w x al—~ ,2r0

_ 2r-l nt* OX a
— :L e~~~~~(!?f)r,ri + P( 

l—~,2r0 T � t~)

It follows from Lemma 2 that we can write this second term as

• 

OX
112 

tr ~ t*) — P (X
~j 2r  ‘ ~ ‘

• r — l  nt~
— F~(2nt*/0) -~~~~~— 1_

~~
-P ( X~~ > 3!!~ ) — l-~~- Z  •

r(fl~~)r,rJ
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P r —1 nt* r0— 1
P (0 £ I )  — ~ e ~ fi~~irt  + 1 - - I e ( !if~)’~/rI

r=w r 0

1 nt*
a 1 - - 

w 
e O (nt*)r,r! .

r—0

But, by assumption, 0 < 2nt*/X~,~22w 
and so nt*/0 > X~,,2 2,,,,2

which then implies P ( 0  € 7 )  > 1 - — 1— a  .

__________ 
2nt*

Case (10): � 0 <  •

cz/2,2y+4 Xa/2,2y+2

r —l~ 
2nt

- - 

~ 7) — ~ P(r fail in t*) + P(r0 fail and 0 � 0

r—y+l X~~c1 2-
~~~~, r~ -~

r - 1  nt*0 
~~U n t* r 2 2nt*

— e (—i-—) /rl + P (X 1_~ 2r ~ I ) as in case (9).
r—y+1 2’ 0

By the same reasoning as in case (9),

flt*
p (8€T ) — l — ~~~—~~~~~e ~~(~f)

r/r i and since,

nt*/9 > /2 , P( 0 t T ) > 1 —  a 
— 

~~ i — a
~~~•, y+

1- -- 
- - —--  • - - -~~~

_ — --— - - -  — -
~~~
— - -------———--__*- 

4~~~I
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2nt*Case (11): ~ ‘C 2
x

~~~~, r~

r2nt 2nrr
€ 1)  — 

V e

[~ 1~r0 
Xl~~,2r

[2  2
1 0X 1_~12 , 2r BX a/2 , 2r0

2n ~~
tr S 2n~~~

— püc2 a 2 � x~ � ) — 1— al—~, r~ r~ a.1
£ V V

These cases cover any possible subset of every partition. A formal
proof of this claim is found in Appendix 1. The proof of Theorem 1

is complete.

IIIb. Expected Interval Length

It is of some interest now to derive an expression for
the expected length of the confidence interval under this scheme .
There is a positive probability of observing no failures, in which

case the interval length i, infinite. To avoid this situation

we will condition on one or more failu res . Denote the length of

the interval by L and consider the following two possibilities:

— — ----- - — -—-- _ _
-

__ 
— --
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If I > t* then L = 2~r2 1 
— 

2 1 — , say.r0 [Xl_~,2k X j

Here k is the number of failures observed with 1 �Ic

If t � t* then L 2n 2n 1 ~ — cr , say .
IX ~~ a .  i r0
~ ..—- ,~~r,, a .~L £ V

Note that in the first case the length is discrete while in the

second it is a continuous random variable. Consequently the

unconditional distribution of L is of the mixed type with jumps

at tk’ k 1 , 2,...,r0—l . So,

i/c
PU) a f f (t ) dt  + 

~ 
P(k failures in t*) if L<ct*

0 I c A

— I f (t)dt + 1 P(k failures in t*) if t�ct*
0 kcA

where f is the density function of -r and A — {k:r0

From Lemma 2 we have that -t — gamma (a a r0, B — 0/n), andr0 -

P(k failures) - e e (itt )k/kL . We want E (LIL< ) which is

• 

- E(L jk ~~ 0) since L — —  if and only if k— 0 . We need now the

• conditional distribution of L • We can write

P(L~~ L I L < . )  a P(L�L ~ L-c .)/P(k~~0) . Now if £ i~ finite,

L_

_ _  

_ 
_ _ _ _ _ __ _ _ _  - - -•-• -- 0~~~~~~ -- —- - -- - - - - ---—-— -—- . - —---- — ---- - - -- - -- -- - - - 

~---~ --~~~~_ _ _ _ _ _ _ _ _ _
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(L -� t) c (L< ) which then implies P ( L � t  ‘~ L < - )  — P(L~~t)

On the 0th-er hand , if £ is infinite, (L-<~~) c ( L � L )  and
P(L~~t ~ L<— ) P(L <~~) . Thus

F ( t l L c o ’)  p -s- if £ is finite

— 1 if £ is infinite.

Consequently, E(LIk~0) I £dF (L~kj’O) a 

~~~ 
,~ 

£ d F ( L )

nt*
where P (k~I0) l - e  . Thus,

[r0
_l 

ct* 1
E(L$k~0) — P(k~o)

[J1 
tkP(k fail in t*) + 

~~ 

£~~(t )dLj

rr0-i
a 
P(k~’0)’ 

I £JçP(k fail in t*) + J cr 
~~

-rr )drk— i r-0 0 r0

To evaluate the integral :

rta t* 0
c f  y f ( y ) d y - c f  —y

1 -  0 0

• 1_!~ r0 •  (_ l) kr 1y
ro•~k~~

— 
r(r0)(~)

1’0 [ JO (ro
_k) 1 (_ ~ ) 1

~4 1j 
y—O I 

. -- . .
- - - - . - - - - - . - . -.~



c 3 0  [~-:~ 
e T

~~f~~
] 
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Thus,
r nt* nt* 

*r
~

— 1 e ( !1~~.) k e cr
E(L~k~’0) — 

l_e
~~~~[~~~ 

tk ki + 
k—~~+1 

kI (l2~

where tk — 2nt* [2 - 

2 
1 1

[X11. 2k 
X
a

2k+2j

a n d c _ 2 n [ 
~. — ~ 1.

L hil 2r o ~ ,2r0 J

I
Several questions may come to mind concerning the expression for

E(L~k,’0) . For instance, if we take the limi t as r0 + • in (12),

do we obtain the E(L~k~0) for the type I censoring scheme?

If we take the limi t as t~ ~ , do we obtain the E(L) for

the type II censoring scheme? It can be shown quite easily that
the answe r to both questions is yes . In the pre ceding deriv ations

we have placed no restrictions on t~ and r0 other than to say

they are censoring, or truncation, values . In pra ctice the values

4-

_ _ _ _ _ _ _ _  — - -~~~--~- - - - -  — -  --

—i- —~~~~~~~~ - •--- ----- —~ — - -a-
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of t* and r0 are determined by the test procedure which

provides the data for estimation . MIL-STD-781 is concerned with

testing H0: ~~~~ 
against H1: O a O~ where ei eo • If a

test combining type I and type II censoring with P(reject ff0(01) — a

is desired. Epstein (5] has shown that t* — 2 /2n
~~ ~~. a,

If in addition we require P(accept H
1

10
1
) ‘ 8  , Epstein has

shown this may be achieved if we choose r0 to be the smallest

integer such that

00 B, 2r
—

~~~~~~~~~
— 

.

1—a, 2r0

Then we may decrease B if we increase r0 . It seems reasonable

that an increase in r0 , or a decrease in B , would result in

a corresponding decrease in E(L~k~I0) . An attempt at a direct

analytic proof using (12) was not successful. We then programmed

(12) and generated E(L~k~’0) for various combinations of 0.80
and a • The value of r0 was increased for each combination.

The results, somewhat surprisingly, show that for some combinations

of 0,00 and a , the expected length increases initially before

it does decrease with increasing r0 . Partial results of this
computer work are given in Table 1. We have, thus far, been

unable to provide a satisfactory explanation of this behavior .

~~~~~~~~~~~~~~~~~
- - --

~~~
-- 

‘~~~~~
——- -- - - - - - - -
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Table I. Expected Lengths for Increasing Truncation Values,fl

0 — 1 . 0 0  0 — 3.00

o—0.05 a—0.10
I — 2 1(L) — 25.7057 R — 2 1(L) 14.6718
I • 3 1(L) — 26.1465 1 — 3 1(L) — 11.1729 —1 — 4 1(L) — 15.0962 R 4 1(L) — 5.6256
1 — S 1(L) — 6.9176 1 • 5 1(L)  — 2.8950
1 — 6 1( L)  — 3.4234 R • 6 1 ( L )  — 1.9311— 7 1(L) — 2.2408 1 — 7 1(L)  — 1.5818
I — 8 1(L) — 1.8238 R • 8 1(L)  — 1.4094
a • 9 1(L) a 1.6299 R — 9 1(L) — 1.2954
a — 10 1(L) — 1.5034 a — 10 1(L) — 1.2071
I • 11 1(L) a 1.4068 R • Li 1(L) — 1.1351a — 12 1 ( L)  — 1.3266 R — 12 E(L) — 1.0745
P — 13 1(L) a 1.2590 a — 13 1(L) — 1.0223
K — 14 1(L) ~

- 1. 2001 a a 14 1(L) — 0.9771
a — 15 1(L) — 1.1490 a — 15 1(L) — 0.9374

0 — 2.00 Oo — 3.00
a — 0 . 0 5  a— 0 . 10

1 — 2 1(L) — 33.8920 R — 2 1(L) — 22.2509
P — 3 1(L)  a 53.1913 P — 3 1(L) — 28.8162
a — 4 1(L) — 54.6214 a — 4 1(L) — 25.6829
a a 5 1(L) 44.3260 — ~ 1(L) 18.7492
K — 6 1(L)  — 30.9006 P — 6 1(L) — 12.2808a a 7 1(L) — 19.6450 P — 7 2 ( L )  — 7.7827
1 — 8 1(L) a 12.0050 1 — 8 1(L)  — 5.1069
P — 9 1(L) — 7.4825 R a 9 1(L) — 3.6492
1— 10 1(L) — 5.0097 R—  10 1(L) — 2.8815
P — 11 1(L) a 3.7223 1 — 11 1(L) — 2.4700
R 1 2  1(L) — 3.051? R 1 2  1(L)  — 2.2326
P — 13 1(L) — 2.6882 1 — 13 1(L) a 2.0790
P a 14 1(L) — 2.4717 P — 14 1(L) 1.9683
P a 

~~5 1(L) a 2.3277 P — 15 1(L) — 1.8805

0 — 4 . 0 0  e~~
a 3.0o

a—0.05 a—0.l0
1 • 2 1(L) a 38.6661 1 — 2 1(L) — 27.0906
P — 3 1(L) — 73.4801 P — 3 1(L) — 44.5701I 4 1(L) — 97.9833 1 — 4 1(L) a 54.0796
a — 5 1(L) —109.0797 1 — 5 1(L) a 56.0089
I — 6 1(L) —108.3810 1 — 6 1(L) a 52.4240
• 7 1(L) a 99.3520 1 — 7 1(L) — 45.7010

1 — 8 1(L) — 85.6724 1 — 8 1(L) — 37.8212
• I — 9 1(L) — 70.4874 1 — 9 1(L) — 30.13891 • 10 1(L) — 55.8853 1 10 1(L) a 23.4156

* 
11 1(L) — 43.1227 • 1 — 11 1(L) — 17.9371I • 12 1(L) — 32.6525 1 — 12 1(L) — 13.6968

1—1 3 1(L) • 34•4~~3 1—13 1(L) • 10.5338
R 1 4  E(L) 18.3067 1 1 4  1(L)— 8.2472
R• 15 1(L) — 13.8143 1. 15 1(L) a 6.6256 

----—- - —-— — .~~~- - - - - - — - --—-—--- -- ----- 
-—
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p 
-

IlIc. Testing without Replacement

The second testing scheme we are considering terminates

at ain(rr ,t), where failed items are not replaced. Recall
0

that the truncation value t now refers to the total accumu-

lated test time. At the time of decision the following rule

gives a 100(1-a) percent confidence interval for B

~~~~ 
_ ) if k a 0 ,

- 
1 - .-.~~~-—-. , if k—1,2,...,r0—1, (13)

Xa 2k+2 
X11, 2k

( 2?

2 if kar0 .Xij,2r

Here k is the number of failures observed when the total time
on test reaches t~ , and T is the total time on test at ther0 -

time of the r0
th failure . This rule is nearly identical to that

conjectu red by Epstein (4],  wjth again the only change being the
use of a/2 rathe r than a when k — O  • The proof of (13)
becomes si~~le when we realise that this scheme may be viewed as 

— ~~~~~ ---- ~~~~~- - -~ -- -
~~~~~~~ *

‘~~~~~~~~~~-
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a Poisson process with parameter 1/0 which we observe for

actual time t • To see this, let Tk be the total time on

test when the kth item fails. Then

k k k
— + (n—k)r~ — 

~ 
(n~i+l)(t~~

_ t
~~1) — I u~i—i i—l i—l

where we have previously noted the are independent and

identically distributed as exponential (~ ) . It follows that

T~~- gamea ( a -k ,  8—8) . We may write

P(k failures in total time t’) — P(Tk+l t )  
~

P(Tk > t )  . Fro m

direct integration we find that

P(Tk+l >t )  — 

r~0 
.T(t ) k/kl

P(Tk > t
~

) — 
k—l 

e ( ~j-)
”/k1

r 0

and P(k failures) — e (t~ ) k
/kl . Hence , to prove (13) we need

only duplicate the proof of (10) substituting t for t* and

1/0 for n/B . The derivation of E (L ~k~ O) for this scheme

follows in the same manner. The result is -

t 
1(L I k,’O) — 

1_e t c ’r0~~~1 
~~~~~~~~~
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where tk 2t .(2 ~ — 
1 

— ) 
k a l,2 ,...,r0-l ,

l—~,2k ~,2k+2

and c# _ 2  
2

1 
— 

2~~~~~X
~.,2r

0
J

Other results from the previous scheme carry over similarly.
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Appendix I

We now give a proof that the cases considered in Theorem 1

do in fact cover every subset of the possible partitions of the

parameter space determined by the fixed interval endpoints.

With the exception of cases (1) and (11) (regions 1 and 11

in figure 2), each possible subset in the partition will be bounded

above and below by a left or right interval endpoint. Consequently

there are only four possible subsets:

(i) 
[ [ 

(ii) 
[ ] 

(iii) 
] [ 

(iv) 
J J

We consider each of these and show how each is covered in Theorem 1.

s sf1 a s—ir
(i) I 

L ° L— _:

In the most general situation this is case (5) of Theorem 1. The

arrows indicate the bounds on e which are necessary for the

proof of case (5). It is possible that there is no right endp oint

below the left endpoint determined by k—s+l . In this event we

have s-i — r0-1 and we are then in case (10) of Theorem 1.

(ii) I E —o d~j .

In general this is case (6) of Theorem 1. Again the arrows
indicat, the boundary points necessary for its proof. If there

is no right endpoint corresponding to . k — s+1 , it must be that L. ~::;-;

- —~~-~-:--~~ 
-- -- -- - -——-— — - - -  - 

~~~~~~~~~
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s— r 0-l and we have case (9) with d— w . If there is no left

endpoint indicated by d-1 we have the situation where d—0

and s—rn which is case (3). If neither of the points indicated

by s+l and d-1 are found, we must have the situation where

no crossover occurs. Then we are in case (9) with w—0
d+1 sf1 d s

“.~~ C. ‘ 
]
~j~ ,

[ - -. 
I

This is case (7) in general and its proof is dependent only on

the actual boundaries of the subset. No other considerations

are necessary.

d+l v+1 v s+1
(iv) [--

~ ]~,~jj]~~
In general this is case (8) of Theorem 1. If the endpoint
indicated by k - s+1 is not present, we must be in case (2)
with d+1—0 and v—h

By adding regions (1) and (11) in figure 2, we see that

Theorem 1 covers all possible subsets . Cases (3) and (4) are

included only for clarity in figure 2 and may be omitted, since

they are special cases of (6) and (7).
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