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THROUGH FLOW ANALYSIS OF
VISCOUS AND TURBULENT FLOWS
-by_
Apostolos Goulas
and
Roger C. Baker

SUMMARY

. The matrix through-flow analysis is extended to cover turbulent and viscous
flows by solving the streamwise equation of motion to obtain a suitable entropy
field derived from the stresses.

The results of computation for straight circular pipe flows agree well
with published data for laminar flow with and without swirl and for turbulent
flow.

1. Eg;roduction

Matrix through-flow analysis is widely used for calculation of the flow
in turbomachines. It solves the equations of continuity, motion, energy and
state. For inviscid fluids these equations are sufficient to determine the
flow pattern. In order to simulate the flow of a viscous fluid, a loss model
was introduced in the form of a local polytropic efficiency by Marsh'0, The
equations remained those of any inviscid flow.

Marsh and Bosman’ derived equations which are consistent with the loss
model, assuming that a dissipative force exists, which opposes the velocity
vector. The loss model consists of either empirical data or equations
relating the change of entropy to the fluid, the flow and the blade geometry.

The present paper is an attempt to connect the changes of the entropy both
to the viscous terms of the Navier-Stokes equations and to the turbulence terms
of the mean flow Navier-Stokes equations, and to deduce the flow of a viscous
fluid without including empirical equations for the entropy. It is based on
the analysis presented by Marsh and Bosman'.

2. - Flow on a Mean Stream Surface

For a three-dimensional flow, the pattern can be found by solving the
equations of

(a) continuity
(b) motion (3)
(c) energy
(d) state.

These six equations are sufficient to determine the fluid properties and the
three components of velocity.

If the flow takes place on a prescribed stream surface, then there is a
geometric condition relating the three components of velocity, which must be
satisfied in order that the velocity vector lies on the stream surface.

This geometric condition can replace one of the equations of motion in the
solution for the flow pattern.
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The replaced equation of motion can be used to evaluate the body force
which must be applied for the flow to follow the prescribed stream surface.

If a rectangular co-ordinate system is chosen on the stream surface with
axes S along and N across the stream, then the third axis, n, is normal to E
the surface (Fig.1).

The body force F, which is necessary for the inviscid flow to follow the
stream surface, is normal to the surface. The equations of motion for the S
and N directions therefore do not contain a component of F. These two
equations are retained for calculating the flow pattern. The equation of
motion for the n direction, which is replaced by the geometrical condition,
contains the body force F and it can be used to determine the magnitude of
this force.

For a reversible adiabatic flow on a prescribed stream surface, the flow
pattern is determined by the following six equations

1. The continuity equation.

2a. The equation of motion for the N direction in a co-ordinate system
rotating with the blade row

NeW > (¥ V) = Ne(VI - TVs- D) (1)

or since NeD = 0
NeW > (V2 V) = Ne(VI - TVs) (2) i
2b. The streamwise equation of motion ¢

WeW =< (V xV) = We(VI - TVs - D)

and using the energy equation for steady flow we get a
Ds 1
P o = e WD (3)
Dt

2c. A geometrical condition relating the three components of velocity
expressed as

WF=0 (4)

3. Energy equation for steady flow

DI
- O (5)

assuming that it is valid for the individual streamlines in steady
irreversible adiabatic flow.

4. The streamwise equation of motion which will be used to calculate
the entropy field from the dissipation force D. This is given by
1

D = =(Ver) (6)

P
This is discussed in section 4.
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This approach differs from the one by Marsh and Bosman who determine the
entropy field from empirical data and use the streamwise equation of motion
to calculate the dissipation force.

Be Analytical Eguations

The treatment of the continuity equation, the equation of motion for the
N direction and the geometric condition is the same as the one by Marsh and
Bosman' (where the bar indicates special derivatives , so we will give here
only the final equations.

3.1 Continuity

) F]

— erVr>+— rBp Vz>= 0 (7) :

ar 7} 3 : 1
A stream function may then be defined as §

3 :

- = rB (o] Vz (83) . F

or §

:

= 1

¥ !

— =-rBp V (8b)

r
iz

In this way the continuity equation is satisfied.

3.2 Geometric conditions

The velocity components are related by

'} tan \ + Wb +W, tanp = O (9)

where by definition

F
tan A = x - -k (10a)
ng  Fo . e
He F { KT LI wu g
- R n— X ‘F—z :’fl:(l“‘t s i o (1%)
0 0 e 2

L1 =
RISTMRUTION /AYAILARILITY Comee
3.3 The N-direction equation of motion :

AL m,u SPECiAl

This finally takes the form: ‘ }#? 1

.These are defined as

n, % 2q dq %¢ n, 2

ar ar b a0 dz 9z rn, 26 ,
!

|

and they represent the rate of change of a quantity q with r or z on a stream
surface at a given value of z or r respectively.




i

By B 3 ) ax
-1+—1=v—(r3p)-Vr—(er)+(er)’—-
ar® az? % or dz dy
B ? 9s
" rBpT _s(v _wetanp.) - —(Vr-Weta.nX) +
w o ° oz
dJ F)
+pB[tan p—(rve) - tan 1—(pve).] (11)
ar iz

3.4 The S-direction equation of motion

This is given as
;o E I % (%)

where D is the dissipation force and it is opposite to the velocity vector,
then

D. D D
I SR SR K(W) (12)
W We W

r z

with K< O and equation (3) becomes
Ds

T —

Dt

- WK (W), (13)

So the entropy increases along a streamline.

If the fluid is inviscid the dissipation force is zero, and equation (13)
is reduced to s = const along streamlines.

L. The Dissipation Force

The dissipation force as shown in Appendix 1 is given as

)
D = = (Vor)e (6)

P

This can be calculated for every point in the field, provided that the
viscosity is known.

Theoretically equation (12) will automatically be satisfied.
In practice this is not always true, because of

(a) numerical errors involved in the calculation of the derivatives,

(b) approximations involved in the calculation in the numerical value
given for the viscosity.




In order to minimise the error the predominant components of the
dissipation force and velocity are used to calculate the coefficient K(w).
This is expected to give very good results in cases where there is a
predominant velocity but may cause problems in cases without it, e.g.
recirculating flows.

5. The Solution of the Equations

This includes the following steps:
(a) A distribution of the stream function ¥ is assumed.

(b) From equations (8) and (9) the three components of velocity can
be calculated.

(¢) Then the stress components can be calculated from equations (12) and
(8) respectively of Appendix 1.

(d) The streamwise equation of motion is solved in order to get the
entropy field as follows. (See Fig.2). Along a streamline
equation (13) can be integrated,

WK
S0 S = - f — dLo
B A T

Assuming that WK is constant between A and B, we get

Sg = 8§ - WeK- (AB)/T.

SA can be calculated as a function of the entropy of the

neighbouring points and (AB) from the geometrical definition of
the stream surface.

(e) The right-hand side of equation (11) can be calculated and
(f) a band matrix may be formed to solve equaiion (11).
(g) The resulting ¥ have to be compared with the initial ¥ , and if

the difference of the two ¥ is greater than a certain acceptable
value the whole procedure has to be repeated from the beginning.

6. The Flow in Axisymmetric Pipes

In order to check the whole procedure a computer program was written
to calculate the flow in a straight circular pipe.

6.1 Equations of the flow

For axisymmetric flows

The special derivatives are reduced to the usual partial derivatives.




—

If i, j, k are unit vectors in the r, 8, z directions, the equations
of motion can be expressed in the directions

ixV, Px(i=xW, ¥

Again following the analysis by Bosman and Marsh’ the equations will be
(a) Continuity

2 d
— (r pvr) + —-(rpvz) = 0 (16)
or oz

and a stream function is defined as
ay
ar
oy
o

="p p‘v (175)

z
=-rop Vr (17b)

(b) Equation of motion for j x V direction

a’* a’* d /] HO
s Al g 7 N — (pr) - Y. — (pr) + (pr)? -
ar? 22 ar az
pripe as Js
- Vz L Vr e et
Vm’ L ar 9z
- il (Y ¥ —(rV):I (18)
g L T R B "
m
(c) Equation of motion for V direction
Ds
T— = - TV<D 1
pos (19)
(d) Equation of motion for Vx (5 x V) direction
D rV Ds
5]
~ treyrevs Ll g 0 2 (20)
Dt L Dt
or taking into account equations (12) and (19) we get
. ( ) 2 (v) (21)
=TV = rVy— = rV, KV 21
Dt 0 0 v 0

V4

which shows that the angular momentum decreases in the direction of flow.
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Equation (21) can be integrated along a streamline. The angular
momentum at point B (Fig.2) can be expressed as

v
) o« Bul st % (22)
6 6
B A
Assuming that K is constant between A and B we get
B
=T e
. (23)
rv) = (rV) e A 25
( Q)B 0% 5

Equation (23) is of the same form as the equation derived by Talbot (13) for
laminar swirling flows.

6.2 The computer program

This follows the steps described in section 5 with an extra calculation
for the solution of the angular momentum equation (e.g. 23).

6.2.1 The finite difference.- Figs.3 to 5 give the lattices
used for the finite difference, depending on the position of the point relative
to the boundaries.

The derivatives are replaced with the following expressions

Y 5 % 1 o6

axj 5 21 aij ¢i ¢b 21:315 ? = r :? z (24)
and

2. SRE S % (25)

e ol e }_“x*"i'% L’x

Coefficients aij or ay are calculated using Taylor's series.
The error in the calculation of the derivatives is of the order
*¢
&
ax4
J
6.2.2 The calculation of the flow conditions upstream of a point.-
In order to solve equations (1%) and (23) the conditions at the point A EFig.Z)
have to be calculated. Normally point A does not coincide with a grid point
so some approximations had to be made for the determination of

(a) entropy at A
(b) angular momentum
and (c) distance AB.
For the entropy it was assumed that

S = s(y).

A cubic-spline polynomial was constructed to fit the entropy at i-1
column and SA was deduced from that polynomial.




The tangential velocitbe was assumed to vary linearly between the
points which include A.

The distance AB was approximated by a straight line between A and B.

The radius ry was found again by cubic-spline polynomial fitting between
radius r and stream functiony.

7. Examples of the use of the Program

7.1 Laminar flow

7.1.17 Preservation of the profiles.- A fully developed two-

dimensional laminar profile was set as the initial profile at the entry of
the pipe.

7.1.1.1 Initial conditions.- The velocity is given by the relation

r2
V. w2l ( 1 = — > (26a)
z o ol
and ¥ .20, (26b)
r
Substituting e.g. (26a) to (17a) we get
oy r? (27)
ey v - — 27
ar P ( a? >

which can be integrated along the entrance of the pipe with the boundary
condition

¥y = O at r=0
to give
r? * :
= 2pV N 28)
: Pl 2 La2

Assuming that the total enthalpy I-Io is constant at the entry,

d H
—2 = o, (29)
dy
we get equation (18)
') Vz rpT s
V. +r = v, - V
P z P ar P 2z vz’ z a!‘
s | SO v.:
or - e s (.JE. > (30)
ar T or 2

and assuming that

e




=t -
we get

1
5(r,0) = ;;(4 - ) (31)

7.1.1.2 Boundary conditions.- Table 1 gives the boundary
conditions applied.

Table 1

Boundary conditions for the developed
laminar velocity profile

. Value on Value at
Quantily the axis the wall 3
Stream function
¥ ¥ = const. ¥ = const,
Axial velocity
Vz 2 Vo 0
Radial velocity
v 0 0
r
2 2
Tas 0 ZpVZwv a/(rw - a?) f
L (0} 0 f

It was assumed that the velocity near the wall has a parabolic distribution,

as a result of which the stress component Tes is given by the relation

Ty = 2p Vg va/(P - ).

The entropy increase along the wall is proportional to the dissipation
force of the nearest internal point or

Sg

S, - Dz(Az)/T

7.1¢1.3. Exit conditions.- It was assumed that Vr = 0 which in
turn means that

It is assumed that entropy varies linearly with distance z.




S0 =
7-1.1.4. The results.- Fig.6 gives the calculated profiles and the
analytical ones.

For a distance of 20 diameters the velocity profile changes by about
2.5% of the analytical value.

This deviation can be attributed to the fact that the order of magnitude
¥
of the error of the finite difference approximation is O [7] and
d

this is not zero as can be seen from equ-tion (28).

7.1.2 The development of laminar flow.- An initial uniform velocity
profile was set at the entry of the pipe and the development of the flow profile
was predicted.

7.1.2.1 Initial conditions.- The distribution ci velocity across
the entrance is

vV =V (32a)

V. =0 (32b)

Substituting equation (32a) into (17a) we get

a

ar

The above equation can be integrated along the entrance of the pipe with the
boundary condition ¥ = 0 at r = O

to give 2

¥ = pVy— (34)

Across the entrance of the pipe we again take

H = const.
o

and for the entropy
s(r,0) = O.

7.1.2.2 Boundary conditions.- Table 2 gives the boundary conditions

applied.

It is assumed again that the velocity near the wall has a parabolic
distribution.




e

Table 2

Boundary conditions for the
development of laminar flow

: Value on Value at
Quantity the axis the wall
Stream function
¥ ¥ = const, ¥ = const.
Axial velocity a Vz
v =0 0
z or
Radial velocity
\' 0 0
7
L 0 2 Vg, Va/(r: =tar)
vV, (141) "%(1)
T2z B R o
P Az
Increase of 0 A "rz Tray
entropy o &

7.1.2.4 The results.- Fig.7 gives the calculated axial velocity
profiles at different distances from the entry, w1th the corresponding
experimental profiles by Nikuradze in Schlichting e,

There is a discrepancy of about 6% for the values of the velocity at a
distance of 5 diameters which is reduced gradually to almost zero at distances
higher than 25 diameters. We think that this is due to the inaccuracy of
calculating the shear stresses near the wall at the first few stations downstream
of the entrance of the pipe.

Nevertheless, the values of the velocity at the centreline are 1dent1ca1
with those calculated by Boussinesq as they are given by Schllchtxng on the
graph with Nikuradze's date.

7.1.3 Effect of swirl on fully developed laminar flow.- A
tangential velocity is superimposed on a fully developed laminar flow at the

entry of a pipe, and the development of the flow profile is given.

4
¥
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7.1.3.17 Initial conditions.- The axial velocity is given by the 3
relation ]
r2 ﬁ
= - — 3
, W RE 8 (1 .> (25a) :
a !
|
vV, = 0 (35b)

Yoo =i ¥ (35¢)

pallassadat to i gL s Sl

The stream function distribution is given by the relation

ra r4
L a2 7 (-;-E) (28)

The total enthalpy is

H = const.
[o)

and the distribution of entropy is
: 1 ¥ r? o
s(r,0) = —[hv —<1-—->-m’r’~' 29
3 L © a2 2a3

7.1.3.2 Boundary and exit conditions.- These are the same as for
the fully developed laminar flow, except that at the axis we now have

av
Z

dr

or the axial velocity at the centreline is equal to the velocity at the nearest
point with the same z.

7.1.3.3 The results.- Fig.8 gives the axial velocify profile for
an initial swirlw= 4 at a distance of 5 diameters from the entry of the pipe.

At the axis the velocity is reduced and the velocity towards the pipe
wall is increased.

Similar behaviour is shown theoretically by Talbot13, although he predicts
smaller values for the velocity at the centreline.

Fig.9 gives the flow profiles for a distance of 25 diameters and for w= &.

The axial velocity profile becomes flatter at the centreline as the
angular velocity increases.

For values of we/Vy > 1 for Re between 20 and 2000 the computer program
breaks down. This is due to the fact that during the computation reverse
flow appears at the axis which moves towards the entry from iteration to iteration.
The program breaks when the reverse region reaches the entry, because a
discontinuity of velocity appears at the entry with which the initial conditions
cannot cope.
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Fig.10 shows the decay of the tangential velocity profile. The profiles
are similar for different w, or the ratio

VG/ D
is independent of the angular velocity w.
The profiles are similar to those given by Lavan et al3 ~
Fig.11 gives the diétribution of the radial velocity at a distance of
8 diameters from the entr§, for 3 angular velocities. The profiles are similar

to those given by Talbot’

- 7.2 Turbulent flow

The equations of motion as described in vector form by equation (1) or
in analytical form in Appendix 1, remain the same for the mean velocities.
The only difference is that the dissipation force now contains derivatives of
the Reynolds stresses due to turbulence, and an extra problem appears, namely,
how to calculate these extra stresses.

One basic assumption made by those who have used numerical models for
turbulence is that the turbulence is isotropic. Hence it follows that there
is a scalar turbulent viscosity Mt which satisfies the relation

auj

(36)

i [aul
- u., 0, = +
? . e J H ax" axi

and also links the stresses due to turbulence with the mean velocity gradients
of the flow at each point.

For the pipe flow an initial mean velocity distribution is assumed

i/
aNi=
G Vz T Vom ( > b (37)
a

The distribution of the stream function across the entrance of the pipe

will be 19/ 19/,

9vo (a-1r) & W Tag
¥ = p EI: - —(a-1r) +— ] (38)

the boundary condition for ¥ being that
¥ = 0 at. r =00 ‘and 'z2o=40%

The initial distribution of entropy is given by equation (31)

1
s(r,0) = —; Vo; - V;). (29)
2 .

The boundary conditions and the exit conditions are the same as for the
fully developed laminar flow, with the exception of the stress L at the wall.
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7.2.1 Solution with given Mt.- As a first step towards a solution
of the turbulent flow in a pipe, the distribution of the turbulent viscosity was
taken as

W, = cau (40)

where c takes the following values

¢ = 0.07 (a - r)/a for O<a-r1r<0.25a (41a)
and e .=+ 0,07 for 0.25 a<a-r<a (41b)
2 = 0.035 Vo

These were taken from Hinze9 based on data by Laufer for Re = 50 000.
The wall shear stress is

Tag' ®p u'? (42)

7.2.1.17 Results.- Fig.12 gives the profile of the axial velocity
across the entrance of the pipe and also after a distance of 6 diameters.

The maximum deviation is of the order of 0.4%.

7.2.2 The K -€ model for turbulence.- A more elaborate model for
turbulence is the K -€ model proposed first by Harlow and Nakayama®.

Hanjalic6 developed two transport equations, one for the kinetic energy of
turbulence K, and one for the rate of dissipation of turbulence.

In cylindrical co-ordinates for axisymmetric flow and for high Reynolds
numbers the equations are:

De 1~1 0 g, r 9¢ 9 s i, 9\ M, € c?
Dt pbr or O, or 0z O az /_ pK K
DK 1 1 o9 r 9K a M, 0K W

Dt pLr or Oy or 9z \ o) a9z /| p

where

3

aV_ .2 oV Qv 8-V «n V_ .2
badiep L e R .. 1
2z ar ar 2z r

T e 5

and the turbulence viscosity will be

Mg = ©, P K*/e (45)
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The various constants appearing in these equations, as given by Launder and
Spaldins" y are

c 0.09, c 144, c

M 1 2
1 5 o a8 (.

1.92

= 0008.

%k D

Equations (43a) and (43b) have to be solved for each iteration of the stream
function.

The initial conditions are

&.(avz )‘ Ve

ar

K

e = Cp KT /e

taken from Launder and Spaldings.

For points near the wall it is assumed that the velocity profile follows
the logarithmic law,

b= . ) o/
= = ey [9 u,(a - r p}
Up 0.4 x il

Then the kinetic energy of turbulence will be

= 2
K, = uT/b.B
and the rate of dissipation will be

— o018 1.8 %
e, = . K*® /[0.41 (a r'] .

7.2.2.1 Results.- The initial mean velocity profile does not
change along the pipe by more than -0.3% for a distance of 6 diameters downstream
of the entrance.

8. Conclusions
A new approach to the use of the dissipation force in through-flow
analysis is discussed which permits more accurate calculation of a flow field

when no data for the entropy exists.

The dissipation force is calculated taking into account the viscous and
turbulence terms of the Navier-Stokes equations.

A computer program was written and different cases of pipe flow were
checked.

The fully developed laminar flow profile remains unchanged to within
2.5% for a distance of 20 diameters.




! The development of the laminar flow is predicted satisfactorily.
The effect of swirl on fully developed laminar flows is predicted, but
because of lack of suitable experimental data it has not been possible to
compare the results with experiments.
In the case of turbulent flow, two models for the Reynolds stresses were :
used, both with very satisfactory results. 3
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Nomenclature
B integration factor for the continuity equation ?
D dissipation force per unit mass .
F body force per unit mass
h enthalpy
Ho stagnation enthalpy
Eh rothalpy, I = Ho -wrVy
K ratio of dissipation force to velocity
K kinetic energy of turbulence
n normal to stream surface
N normal to streamline
r radius
8 entropy
S streamwise direction
i s temperature
v velocity vector
W relative velocity vector
z axial direction
0 circumferential direction
A H angles defined by equations (10)
) angular velocity
T stress tensor
L distance along a streamline .‘
£ length scale of turbulence
v meridional velocity




Re

v
om

Subscripts

w
CL

i,3:k

- T ——————"
R e

- 17 =
stream function
coefficients for the calculation of the derivatives
mean velocity of the laminar flow
radius of the pipe
kinematic viscosity
a representative variable
avy

Reynolds number, Re = —
4

maximum velocity at the axis for turbulent flow
turbulent viscosity
rate of dissipation of turbulence energy

Cartesian space co-ordinate

point near the wall
point on the axis

subscripts denoting Cartesian co-ordinate directions.




- |F

10

11

12

13

1h

- O

-

References

Author(s)

C. Bosman and H. Marsh

J.H. Horlock
Z. Lavan, H. Nielson and
A.A. Fejer

B.E. Launder and
D.B. Spalding

B.E. Launder and
D.B. Spalding

K. Hanjalic

K. Hanjalic and
B.E. Launder

F.H. Harlow and
P. Nakayama

J.0. Hinze

H. Marsh

T.H. Moulden and J.M. Wu

H. Schlicting

L. Talbot

C.H. Wu

Title, Date, etc.

An improved method for calculating
the flow in turbomachines including a
consistent loss model.
Journal of Mech. Eng. Sci., Vol.16,
No.k. 1974.

On entropy production in adiabatic flow
in turbomachines.
J. Basic Engg., Trans. ASME Series D,

Vol.93, pp.587-593. 1971.

Separation and flow reversal in swirling
flows in circular ducts.
Physics of Fluids, Vol.12, No.9. 1959.
The numerical computation of turbulent
flows. Computer methods in Applied
Mech. Engg. 3. 1974.

Mathematical models of turbulence.
Academic Press, London. 1972.

Two-dimensional asymmetric turbulent
flow in ducts.
Ph.D. thesis, University of London. 1970.
A Reynolds-stress model of turbulence and
its application to asymmetric shear flows.
J. Fluid Mech., 52, pp.609-638. 1972.

Transport of turbulence energy decay rate.
Los Alamos Science Lab., University of
California, Report LA-3854.  1968.

Turbulence. McGraw-Hill, Second Edition.

1975.

A digital computer programme for the
through flow fluid mechanics in an
arbitrary turbomachine using a matrix
method. ARC R&M No.3509. 1968.

An outline of methods applicable to viscous
fluid flow problems.
Army Missile Command, Redstone,
RE-TR-71~4. 1971.

Boundary layer theory.
McGraw-Hill, 6th edition.  1968.

Laminar swirling pipe flow.
Journal of Applied Mechanics, Vol.21, p.k.

1954 .

A general theory of three-dimensional flow
in subsonic and supersonic turbomachines of
axial, radial and mixed flow types.




Appendix 1
! The Calculation of the Dissipation Force

1. The Navier-Stokes Eguations

The momentum equations in cylindrical co-ordinates are given by Moulden
and Wull! for steady flows

av V, aV av | 54 1 op 1 '
ar r 20 9z r p or [
' vV, aV ' vev 1 dp 1
v e + _e 2 + Vs 8 + E g ST S e (V'T)e (A1b)
oo r a0 2z r rp 0 o
av Vv, oV Qv 1 op 1
ar r a0 iz p 0z p _
Using the relations
- - - ’ o=
I =H -wrV, = h+3V wrV, (a2)
1
and Vh = TVs +-=Vp
P
we get
1
=V = VI -TVs -3VV?+ wv(rvy) (43)
P
Equations (A1) will become ‘
w d ' 2V oV
R G Yy). < e 'vz[ o z:|=
r ar 20 0z or
(Aka)
a1 ds 1 ord
= == a Te= a = (V7 ’
ar ar P i | j
i
v ) oV V2V F) |
r ar 20 r P[] 0z i 3
Ahd
1 a1 T 0s 1 ( )
T S LS (WS SO SIS S (V'T)e !
r a6 r 96 P | t




|
|
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&[avr
r iz

W av 2
r

a6 a9z
I ds 1

= = - T = =(Ver),
9z a9z P

The equations of motion as used by Bosman and Marsh1 are

'0 a
ar
v 2
- =| —=(rvy -
or 0

r 9z ar

&[avr 2 av,

avr:|_V avr_avz]_
26 2L oz or

a1 ds
= e e~ Dr
ar or
av v av
r] + =2 —2- —(rve):] B
a9 s a6

1 oI T ds

i

r 96 r 96

Il

20
a1 as
= R e Dz
2z 2z

Comparing equations (A4) and (A5) we get

or in a vector form

1
-(V°r)r = D

r

P
1
"(V"r)e = DO
p
1
‘-(V-T)z = Dz
p

- 1

b = = (ve7)

(k)

(a5a)

(A5c)

(A6a)

(46b)

(abc)

(A7)
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o o The Goggonents of the Stress Tensor

According to Moulden and Wuw the expression (Ver) is given by the
following relations:

o o TR R

9 1 9 d T =7
(V.'r)r = a—z. PP -; ‘a—e' s # ; i w _r_z_'_:_gg (48a)

2 1 2 2 - :
(V--r)e = -;: Teg * : -a—e Teg *+ -;; Te * 2-:' (A8Y)

] SRR a Tea
(ver), = . ¥ - 2 Tz0 * = Trz * j 5 Cilte)

The strain tensor is given by the relations

i ie o e e

1 : vr
z e = (A9a)
g ar
: s 1 9 We Vr
! ey =~ s (a10b)
E o r a6 r
1 # Vz
z e = — (A10¢)
zz 9z
oW 1 9V
6,9 = — g (A11a)
2z r 96
av Qv
6 = Z £ (a11Db)
ar 2z
1 9V oW w
Sy » = ==} 2 -2 (a11c)
r 96 or r
; For fluids which follow Stokes' law the stresses are given by the
following relations
Top = ° 2 u(vV) + u . (a12a)
Tegg = - % M (V%) + u °,, (a12¢)

T — — IR—




720 = Heg,

Tro Tor = HCop

where the divergence of the velocity vector

av 1 aW Qv v
V-V = 3 o - e + r + —r o
az r a6 ar r

 For incompressible fluids the divergence of the velocity can be set
equal to zero from the contimuity equation.

So if p = const.




Figure 1, See Section 2.
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Lattice points

. : 2 have been numbered

I in all 3 figures.

Fig. 3. Main Lattice.
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— analytical solution
X profile after 10d
© profile after 30d

Fig. 6.

Laminar flow profile.
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Radial velocity profiles at z/d = 8
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Fig. 12. Turbulent velocity profile at Z/d = 6
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