
• -*050 191 MASSACHUSETTS INST cc TECH CAMORIDIE LAB FOR CO UTE—UC F/I 9/2A DYNAMIC DEBUGGING SYSTEM FOR MDL .(u)
IJAM 7$.9 N SUEZ N000ZS.75 CeOISl

inoni~a~nrnioo’

H _

II l.O ~~~L L
It _ _ _

~ L “~~~II 2.0

1.8
=

liii!’ 25

~~ HllI=’=~
MI~J~(n ~I Y RESULUIION T E S T (UA RI

NA I !(NAt bilk! A l t ~l A M . A l t ,i

- — .. . # .‘~ b.t~~V ’ t~~~~.t%r.flS

LABORA1DRY FOR
COMPUTER SCIENCE TECHNOLOGY

(formvrly Pvo,.cs MAC)

~~~~~

MIT/LcSf1Ti-~4
Q.

A ITYNf4IIC IIBUGGII*3 SYS1Th R3R P11

..- — .~-—
‘~: ..!~t

I ~U{cEs zI ‘aTe i~~

_ lllli~~~~uui~~JOEL MS~~ REZ ~~~ — A

DI3T~IBUT1ON STATtMT~~T A
JN1L~~~ 1~ 8 i eoe~~

Di.tith uüon Unlimited

THIS ~~SE8~Q1 1*5 F~ ~~ NICED
~ SEMcH PROJECTS ~~OICY CF TIE La~ ui~ ’
~~ I~FJlSE N~ 1*5 ~~Ib1~~~iY ~~~~I~~~~:

C F A V~~~~ EMDL(ER L~ONI~~~11b. kIIl~~~~C-O~1

I
545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETrS 02139

- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _________________



SECURITY CLAS$IYI CATION OY THIS PAGE (Wh~~ D .  XsWsr.~
D~~~ 1%~~1 ~~~~~I hA ~~II~~ ATII~IJ o ~~~ RZAD DSSTRUCTION S
n~~r ’J,~ U V’J%.YR~~ f~ U ~ U RP~’ ‘ “~~~ B~ ?ORE COSIPL.LTUIG PORM

I ~ cppwr NUMUER 2, GOVT ACCESSION NO I. NECIPICNT $ CATALOG NUMUR

G ~~~~~/LcS/Th—94 1 ____________________________

I. ?TT~~ (~~4 $ubUSI.) 5. TYPE OF REPORT S PVRIOD COVERED

a”~~
’i
~ynamic Debugging System for MDL S.B. T~ests

,

S. PERFORMING ORG. ~~~PoRT NuNCER

__________________________________________________ MIT/LCS/Th—94 -

7. AUTHO R (s) I. CONT R AC T OR GR AN T NUMSIR (S)

~~~ ~~~~~~re~J (
~

~~~~~~ l4-75-C-,p~6lj

ORG*NIZATION NAM E AND ADDRESS ‘8 hOGRAS Cl EMENT. PROJECT . TAS K
V AREA S WORK UNIT NuMSIRS

MIT/Laboratory for Computer Science
545 Technology Square
Cambridge , Ma 02139 ___________________________

4 % .  CON1’ROL.LING OFFICE NAME AND ADDRESS I7. REPORT OATS

2~~~~ n~~~~*~~~e~~~
iect8 Agency ~ ~i~an~~~~ ~~78 J

1400 Wilson Boulevard ‘...~~ ~F NU M SER O F P A O J~~~~\ç~~~~~—7
Arlington, Va 22209 55

IC ~~~ NITQWTN G ADLNCY NAME C AUWI~IWrWV.,.iI Ire. ConIvoUM5 Offle.) ti SECURITY CLA S . I.

Off ice of Naval Research
Depar tment of the ~~ Unclassif ied
Information Systems Program Ii.. ~~~~~~~~ I~’ICAtION/ DOWN GRA O IwC

Arlington, Va 22217 ___________________________
‘C DUITRIILI T1OP~ STATtME NT ,(OI mis R.p.fl )

Approved for public release; distribution unlimited

~7. DISTRISUTION STATEM ENT (.1*. .b.I , 1 snft ,.d Is Ii.. * 20, II ~~IIsv.eI Srs• Ripen)

IS. SUPPLEMENTARY NOTES

ii. KEY WORDS (C.sWMs. ., srsnss •I~ II s.rn..,y ,d i~~n1Sty by bi.ck ne.ben)

D.bugg tug MDL
Software High—level
Dieplay Multi—task
Graphics MEND

~~~~~~ It,,4.S~~ *AC? (C.sifr.as r.v.n .id N enen.e.v ~~d idSa.U*’ Sr SILOS ~~~~~~
‘ Program debugging is a t ime consuming process . Coventional debugging

techniques and aids typically give the user a narrow view of the program’s
operation , making debugging difficult. A debugging óysteu that would pr.eanv
a clear overall picture of a program’s behavior and would be both flexible
and simpl. to operate would be a valuable tool. Such a system was designed
and implemanted in and for MDL, a high—level applicative pro$ramaing

P language. This report discusses: the design alternatives considered during ...

I
_ _ _ _ _ _ _

DO JAN 73 1413 EDITION OF I NOV 51 1$ 05$Ob.ETE
S/N 0102•014• UO* I

$Ecul ~~tv C1.ASSIPICA?$OW OF tN$$ PA.. i~~ e. bar. ~~$.sS’

—. ..yirflt -~-
—.-.-‘-- .

.
. - —

CLAISIPICATION OF Twil P*WISI.. ~~~~~~~~~~~

P 20. the debugging system’s design and Imp lemsatation phases , the reasons
f or the resulting design choicss, and the system attri butes . A major
att ribute of the system (MEND) is that it does not simulate the program
being debugged but instead monitors it from another process . This
att ribute results in a robust and viable debugging system , because MEND
used not be modified in order to handle each new extension to MDL and/or
each new user-defined pr imitive.

14

- i .;

- ‘_

slI I ~~~ kdISI
1~~ ~

~•-~ tsdISI
~~%
DI
I

~~

- ~~~~.

,

$Sce*?Y C~*SSIPICA,,SN sc ~ sss ~assiae. Sam Si S

I

MIT/LCS/ Th—94

A DYNAMIC DEBUG GING SYSTEM FOR MDL

Jo& Msysr B.r.z

Jsmasry 1978

MASSAQIUSETTS WISTITUTE OF TECHNOLOGY

LADORATORY FOR ~~MPUTER SCIENCE

CAMBRIDGE MAS$AC*’PJSETIS 02139

— —. - — .-- - -- -

2

A DYNAMIC DEBUGGiNG SYSTEM FOR MDL

Joal~ Meyer Bsrez

Abstract

Program debugging Is a tim. consuming proc.ss. Convantlonal debugging
techniques and aids typically give th. user a narrow view of the program’s
operation, making debugging difficult A dsbugglng system that would pr.ssnt a
clear overall picture of a program’s behavior and would be both fIsxlb$. and
simpl. to op rat. would be a valuable tool. Such a.systs~n was designed and
implemented In and for MDL, a high-levol applicativ, programming languoge~ This
report discusses: the design alternatives considered during the debugging
system’s design and Impl.mentatlon phases, the rassons for the resulting design
choices, and th. system attributes. A major attribute of the system (MEND) is that
It does not simulat, th. program b.Ing debugged but Instead monitors It from
another process. This attrlbut. results In a robust and viable debugging system
b.caus MEND need not be modifIed in order to huds such new .actsnslon to
MDL and/or each new ussr-defined primitive.

Thi. report reproduces a thesis of the same Uti. a~mittsd to the Dspartmeat of
Electrical Engineering, Messschus.tts Institul. .1 Teslmol~~, in partial fsiIlIImai~of the r.qulr.msMs tsr the Dug.. .1 ~~~~ of . Sdence.

• 1

-~~~ —
U . —.~~.- -

.
- ..— - -.. O-~~~ _ - - - -~~ ________-- . - -

3

Acknowledgement s

I wish to thank Al Vezzs, for supervising this work and guid ing me
along th. road to wlnnage Stu Galley, for the original ldea Bruce Daniels and
Gerald Farrell , for laying some of th. groundwork I have built upon; Bri an
Berkowitz and Chris Re.ve, for patiently repairing my ailing MDL5 Marc Blank
and Tak To, for support work end for providing me with company during
all-night console sessions and ill of the other ITS end DyneMod hackers who
have built a system well wort h using,

This r...arch was support ed by the Advanced Resserch Projects Agency of
the Department of Defense and was manitered by the Office .f Naval R..eerch
under Contract No. N00014-79-C-O661.

r_- _

Table of Contents

Acknowled gements 3
Tabl e of Contents 4
I Introduction 5
LI Background 5
L2 MEND
1.3 PossIble Additional CharacterIstics 8
1.4 Design and ImplementatIon 9
lI TermlnaI OlspIay 11
ILl IMLAC Console Program 11
112 Terminal Independence 12
113 Control of Screen SectIoning 13
III USTACK : MEND’s Representation of the Control Stack 15
lii i Program Execution in MDL 15
111.2 MonitorIng Program ExecutIon 16
111.3 A Displayed Representation of Program ExecutIon 17
111.4 MEND Program Steps Vs. MDL Steps 18
81.5 What the User Does Not See 20
IV Issuing Commands to MEND 22
lv.! Typ.s of Commands 22
V.2 Immediate Int rrupt-L.val Commands 22
IV.3 MEND’s Command Level 24
IV.4 BreakpoInts 27
V Final Thoughts about MEND 29
V.1 Monitoring of Values 29
V.2 Control Stack Display 30
V.3 SImulation Vs. Multlprocsulug 31

-
I Vi Suggestions for Future Werk 33

V II Monitoring of Access 33
Vl.2 Other Unimplemanted Features 33
VL3 Immediat• Action Commands 35
Vt4 Terminal Handling 35
App~ tØ* A: Sa~~l. DisoI v 37
Appendix B Giossary of Terms 49
References 52

ii
~~~ 

_

~~~
-1I—

— - •~~~~~~~~ - ~~~~~ - -

-
- -~~~~~~~~~~~~ -

•~~~~~~ -
.

-

-

-

t S

5

I Introduction

Li Background

A time-consuming and frustrating aspect of computer programming Is the
debugging of faulty programs. Current debugg ing techniques Involve tracin g
through the present operation of the program and mentally comparing Its action
with one’s concept of what shoul d be hap pening. With few exceptions , an

- understanding of where the program falls to conform tø correct’ operation must
be made before the cause of the failure can be determined and corrective action
taken. This is where much of the difficulty occurs.

In conventional debugging, it is rar e for the programmer to have available
any more than the most basic aids. One usually has to extrapolate from a bare
minimum of Information (such as machine generated error messages) or one may be
burled under a large excess of Information , mostly Irrelevant (such as a core
dump). Even with the more advanced aids, -the programmer typically gets but a
small window into th. operation of the program thro ugh which, sooner or later, she
or he will locate the problem. A well-localized fault will be relativel y easy to spot
compared to a global problem that the programm.r may only catch g$Imps.s of
through the debugging window.

In a complier language, the progr .mmer’s best hops is to Insert statements
to print intermediate results or to try to separate the program Into
aslsr-to-ha.ds modules. Ther. me a few more advanced aids availab le’, but

their use Is limited. On. problem is that th. program is, in sffect, first translated
Into a lower-level language (generally machlne’ language) and then executed
Interpretively In that language. Th. original symbols and syntax of the sourc e
program are lost , or saved only with great difficulty, mak ing analysis and
manipulation of the executing program a very painful process.

If the pr ogrammer Is using an interpretive languag. with facilities for
Interact ion, things are considerably .asler. The common technique is to stop
.x.cutlon at strat egic points and examine the .t.t. of the nvtronmant Sinc, this
Is done interactively, with the source program still avallab i. in more or less Its

• ori ginal form, the caus. of th. problem can often be found In less time than It
could otherwise. On. of th. best examples of this approach Is the use of DOT
(Dynamic Debugging TooI/T.chniqus)~”DOT basically works with machine-language programs. However, by freely
tran&stlng between ruv~bor, and symbol. through the us. of a tabI. generated by

~~ - the assembler, DOT makes pro gr ams look to the prog rammer I lk, symbolic
assembly-language programs. The user of DOT can operate In free-run mod. or In
n-step (statement) mode, switching between them it wilL In alther cas• on. can
set a breakpoint at any statement, which wIN caus. execution to stop just befor.

IT _
~• -

6

the statement is executed Whenever stopped In DOT, the user can examine or
chan ge the content , of any location. This can be don. in several data mod., (e.g.,
unsi gned octal , full ascii, slxblt, etc.) including the use of symbols to represent
addresses. Arbitrary numeric expressions can also be evaluated without affecting
the program.

On. main advanta ge of DOT Is that the debugging environment is very
similar to the language environment the programmer used to write the program.
One has to learn only the DOT commands rather than an entirely new language.
Another advantage I. the user’s ability to mak, changes In the program and data
Interactively at execution time, with ready ability for viewing the results of the
changes. In addition, one can quickly see the results of the changes and act
accordingly.

The main deficiency of DOT Is tha t, although its name includes the word
“dynamic,” its operation is really stat ic. The app lication program can run freely,
but when the programmer wants to see what is taking place, the program must be
stopped. Althoug h the real interest may be about changes on a gross scale,
perhaps thousands of program statements, if one does not know exactly where the
program Is misbehaving, one may be required to suspend execution of it every few
Instruction, to xamine variables In order to obtain a true pictur. of th. program’s
behavior. Thus the programmer sees not wøat I. tafth~ piece, but bW~t ha. taken
place, and through small windows at that. This I. Inefficient, and the programmer
can become bogged down in detail that hinders the discovery of the true problem.
The situation can be improved with th. use of breakpoints that allow the program
to execute freely until a br.alipolnt Is reached, at which paint the program halts.
DOT is a powerful tool but .till leaves much to be desired in a debugging tool.

ESPU (Execution Simulator end Pree.nter) Is one solution to the static
problem. It really I. dynam ic In that large amounts of data me constantly being
displayed for the programmer while the program 1. beIng executed (actually,
simulated). The information is presented In graphic form to Improve readability and
reduce confusion. A user of ESP may watch m ess of the display wher. data of
particular interest vs being presented One also has many options including
control over the speed of execution, ths type end quantity of data displayed, and
special (more flexible than just a breakpoint) conditions for halting execution. In
this way one can structure and control the picture presented to more easily
understand whet the simulated program I. doing. And that Is one key step In the
process of debugging.

Uke DOT, ESP has deficiencies also. These are mainly In the are. of
.dltlng and DOT-ilk. examination of a faulty program. DOT Is a sephletlcatsd
language that ESP does not attempt to entirely replace. The flow in ESP is that it
Is not comp.tlbl. with DOT. Ideally both should be sImultaneously available to the
programmer, who can use features f each as the need dictates.

F- i

~~~~~~~~~~~~~~ — —



7

DOT and ESP work with a low-level language whose operation can be
shown fairly simply. For example , ESP often shows flow of control by just
displaying the actual section of program being executed and pointing to the current
statement 6. It also draws lines to show where branching has occurred and in some
cases even ind icates looping. This display philosophy can be readily extended to
higher level I a n gu a ge3 th at are line oriented , like BASIC , but it fails with
app licative ones, like LISP or MDL The latt er type does not use a linear control
flow , but uses a complex depth-first tr ee structure. Furthermore , quite
complicated data structures can be built (or thems elves executed) that bear very
iitt l. relation to the appearance of the program.

A good basic display for MDL was used In MUMBLE 7 (Gerald Farrell’ s
monitor and debugging aid) . The code being executed is shown in stack form.
Each line shows a piece of code being evaluated As each object In the bottom
line Is evaluated, It is replaced by a single downward-arrow symbol in this line and
then printed on a new line. In this way the evaluation can be followed from the
top level down to the current object being evaluated. Furthermore , after the
bottom is reached , the value returned by each line replaces its symbol in the
pr evious line. With this mechanism , the programmer can follow execution in a
natural and reasonably clear representation.

MUMBLE had some difficulties arising from the fac t that it simulated
execution rather than just watching It and letti ng it proceed naturally. Thi s caused
it to run slowly and to be complex and fragile. At the time MUMBLE was written,
the MDL compiler was not yet perfected and the language itself lacked some of
the multiprocessing features that would have made simulation unnecessary. Later
Farrell replaced MUMBL E with a debugger utilizing new software related to
single-stepping a process , which eliminated the simulation but also eliminated the
feature reflecting results of an evaluation back into the original code. Also, a
mode was added that allowed the programmer to attach conditions to parts of the
program which would stop execution when and If a condition was false. This Is as
far as MUMBLE ever progressed and it was not in use as of the time of the
proposal for the current work.

L2 MEND

After the MDL complier became operational and many additional new
software features became avaIlabl e, It appeared that It would be possibl e to
design and implement a debugging system that would be comprehensive, easy to
use, and reasonably fast. It was ther efore proposed that a debugging system for
MDL called MEND (Md l Executor , aNalyzer , and Debugger ) be designed and
implemented it has the following characteristic.. (A glossary of special terms,

-~~ 
—

~~~~~
-- - --— - -----

-,. ~~
.. _; - .- - ____________

•
8

those in all capital letters, used here and throu ghout the rest of this memo may be
found in Appendix B.)

1. MEND possesses a display similar to that of MUMBLE , including the
replacement of arguments In a FORM by their values as they are evaluated

2. Execution is monitored from anothe r process (as opposed to being
simulated as In ESP) using 1STEP end ralat.d featur es~

3. Execution speed is variable by the user Including a static single or
multi-step mode where desired

4. MEND allows execution to run freely below a certain depth of
evaluation or between certain points in the prog ram and to run controlled
elsewhere.

5. Unconditional and conditional breakpoints are available that can be
attached to any object to halt executIon before evaluation of that abject

6. The system Is capable of keeping track of programmer specified
condItions and of changin g modes or giving some visib le indication when the
conditions are met (or not met).

7. informatIon, such as the local value, of programmer specified ATOMs
and th. values of programer specified FORMs, is constantly displayed beneath the
main display.

8. Each line in the main display area is &-prlnted (abbreviated printi ng,
see glossary) and can be viewed in full at any time.

9. At any time, with execution stopped, the user can EVAL objects in the
ENVIRONMENT of the program. This means the user can examine the state of the
program or change It

13 Possible Additional Characteristics

Certain other characteristics were s.en as desirable for MEND but
possibly beyond the scope of this project If time permitted these features were
to be included in the system:

1. The IMLAC (see section (1) multi-screen capability would be used to
allow the user to repldy switch between the debugger display and the program’s
own output Other system output could also be put on additional pages.

2. The editor MED (an editor for MDL objects analogous to IMEDIT’) would
be tied into th. system to allow easy editing. PRINTTYPE and READ-TABLE.
would be used to allow breakpoints to be easily set and rsmoved In IMED as single
symbols. Other control codes and statements could also be inserted using this
editor. —

3. At the applications programmer’s option and within c.rta ln limIts,
executi on could be reversed either so that something different could be tried or

_ _
- ~

.

• 9

for purposes of reexami ning the process for something that may have been missed
the first time. Thi s feature could come in two possible form., the UNDO package ’°
to actually rever se execution or a simulation displaying Information previousl y
stored by the system.

(.4 Design and Implementation

MEND was designed with the intent of providing the application
progr ammer with many options so that debugging could proceed in the røo~t
suitable manner for each situation. In the normal running stat e, MEND di~pleys
several kind s of information on the screen. Most important is an area showing the
execution of the app lica tion program being debugged in stack form. The only other
area that is always present is a line or two of status information about the current
operation of MEND showing its current speed of execution (user adjustable) and
the state of each modifiable mode.

It was intended that the output of the application prog ram be saved by
MEND for later reference. The user of MEND could then elect to have the most
recent output constantl y displayed in a window on the main screen (see section on
future work). If multi-screening were available , the output could be kept on
another virtual screen. That screen could be displayed or made invisible .t the
user ’s option without stopping MEND.

Information such as programmer specified values of ATOMs , structured
objects , and , in gener a l , the value of any MDL expression may be constantly
display ed. MEND is also capable of displaying such information on an exception
basis according to some predescribed conditIon. Such information is &-pr lnted but
is viewable in full when desired.

It is important for a debugging system like MEND to be compatibl e with
and to take advantage of available software in related areas. One such area Is
editing. There were two MDL editors in use when the proposal for this work was
made, EDIT ” and MED. The main difference between them is that IMED uses the
local editing features of the IMLAC while EDIT does not. EDIT , however , has the
advantage of being the only one that possesses breakpoint capabilities.
Whichever proved to be most compatible with MEND (possibly both) would be
slightly modified to al low the setting and removing of certain MEND codes including,
In the case of IM ED, breakpoints.

MDL itself has many feat ur es that greatly aid the debugging process. One
of these i. FRAMES. Thi s function can be used to print the stack of functional
evaluations and applications when execution is halted .t any depth below the top
level. At thi s point It is also possible to get the values of objects In th. current
ENVIRONMENT and to change them. One can even restart execution at a higher

- -

-

~~~~~~~



10r

level after making such changes. Because the MDL debugging features are quite
powerful , MEND was designed to allow the user to stop execut ion (of the
applicati on program) and to use these aids or any others built in to MDL with the
MEND system itsel f transparent Evaluation would take place in the ENViRONMENT
of the application program.

MEND now includes the main features of all the debuggers that have been
mentioned and enough other features that it should prove to be qult. useful for
the analysis and debugging of MDL programs. It should also serve as a good
example of the typ of debugging system that can be built around an applicative
type language.



.4 11

II Terminal Display

11. 1 IMLAC Console Program

One basic concern thr oughout the project was the display: how the
Information made available by MEND would be presented to the user. To a large
extent the physical characteristics of MDL, ITSIZ (Incompati ble Timesharing System,
the operating system used on the Dynamic Modeling System computer), and the
available terminals dictated what was reasonably possible.

The terminal most commonly used by users of the Dynami c Modeling
System Is the IMLAC PDS-1. This is a minicomputer capabl e of having programs
loaded into it from the POP- t O host computer. One program written for it by
Dave Lebling is MSC , a mult iple-screen terminal program. Up to four virtual
screens (or pages) can be created that wili individually operate like the actual
screen area of the standard terminal program (SSV’3) . Output may be directed to
any one of the screens and any screen may be visible or Invisible at any Instant of
time, at the programmer’s option. Selection of screen Is contro llable either by
progr am from the host or locally by the user. -

It was originally Intended that MEND would use MSC for Its normal display.
One page would constantly show MEND’s representation of th. control stack of the
application program. Output initiated by the program being debugged would go to
a second page. A third page would be used for interaction with MEND and would
show user typein along with any output from MEND that one was interested in
seeing. The latter would - include, by user request, full displays of both objects

• pr inted in an abbreviated form on the page containing the control stack of the
application program and values being monitored or traced. The user could switch
back and forth among the pages at will during the execution of the program. The
application prog ram would have a full standard screen to write onto, and ample
room would be available for the InformatIon to be displayed by MEND.

After a fair amount of testing, thi s proposal was discarded for the
following reasons. First, MSC was supposed to look just like SSV for individual
virtual screens. Unfortun ately new features added to SSV had not also been
added to MSC. A primary reason for this disparity wa, that the new features
encroached upon the IMLAC ’s character space. An SSV with all current features
can only hold about one and a half full pages of text, where a page Is the amount
that can be visible at one time. The overhead required for additional screen.
reduces it still further. Therefore, with all featur es included, four virtual screens
could each only average about one-third full. Without many of the current
features , people were reluctant to use MSC.

The second and perh aps most devastati ng problem with MSC is that it Is
not properly supported by ITS as Is SSV. Ordinarily the operati ng system will

— — 
-: — 

—.. r



12

keep track of where on the page the terminal’s cursor is and will properly handl e
such updating as deletions even in the face of random access performed (if don.
by request to the system). When using MSC, ITS does not realize that Information
is being written onto more than one screen and will therefore often move the
cursor to the wrong position.

MEND could completely control position ing for typ .out and echoing on
typ.ln but that would add the large overhead of havIng to run a non-trivial routine
for each character typed out on the display. Also, because MSC is not the
standard console program, requiring th. user to load It before using MEND might
discourage the use of MEND. (It takes between about 30 seconds and a couple of
minutes , depend ing upon system load, to load a new console program into the
IMLAC.)

From the outset it was Intended that MEND be used routinely by
programmers as debugging problems arose. Therefore it was decided that the
proper way for such a system to operate was to use, as far as possible, the
common environment so as to keep the overhead for Invoking MEND smell. This
philosophy, which had been seen to affect the success of many earlier projects,
decided between the alternatives and In this case led to the final decision to use
$SV Instead of MSC.

11.2 Term Inal Independence

The MEND terminal handling capabilities are actually quite general and
MEND does not depend exclusively on SSV. For the purp ose of dividi ng the
screen area into several sections, horizont al lines are sometimes drawn (see
Appendix A showing sample display). With an IMLAC and SSV these lines could be
drawn quite simply using graphics mode. However, for purposes of generality with
regard to terminals, these lines are instead formed by using underbar characters
(on a line of their own). By using no actual graphics MEND can be used with
almost any display terminal having random access. MEND outputs display
commands, such as clearing a line, as escape codes to ITS which ~hsn translates
these Into the appropriate commands for the terminal In use. ITS currently knows
about several types of display terminals In use at the Laboratory for Computer
Science, arid other types of terminals located at forei~~ sites on the ARPA network
may be handl ed by Interface software that simulates a known type. Naturally
MEND can tiaMe a large range of possible line and screen lengths. (The current
version of SSV provides four possible charactar sizes)

— -  
~~~~~ 

.-

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 

~~:~~~~
• - 

-



13

11.3 Control of Screen Sectioning

There still remained the question of how to handle th. multi-sectioning of
the displayed information. Originally three sections corresponding to the three
vir tual screens in the aborted MSC implementation were planned. The bottom
sectIon would hold user typeln and application program output. Three possible
methods of achieving this involved having ITS, i~iDL, or MEND do various amounts of
the work with increasing overhead and decreasing speed for those three ,
respective ly.

The most attractive solution utilized an IT S feature allow ing the
specification of an echo area at the bottom of the screen where echoed input
would always be printed (with the echoing handled by the system, which is the
normal case). After some experimentation this method of handling the typein and
application program output was rejected because typ.out and deletion are handled
by MDL which ignores the echo area MEND would effect ivaly have had to control
all typeout and monitor all typein, which would have made the echo area useless.

Experi mentation with the second solution, an indirect method, involved
monitoring of special MDL memory locations where information concerning
horizontal and vertical page positions is stored. it was soon discovered that MDL
becomes confused quickly, contains several bugs with respect to this position
information, and generally has a poor idea of where it is actually printing.

The third solution appeared to be the most painful from an Implementation
and e~flcIency point of view. MEND would need to control the printing of every
character on output and certain characters on Input , constantly checking page
positions by querying the system. Not only did this slow output, but also MEND
was forced to constantly move the cursor to a safe position In case MDL managed
to sneak some output past it, which it occasionally does.

Fortuitously the problem was neatly solved when a littl e known feature of
ITS was discovered It Is possible to open a channe l to the terminal in a mode that
would cause all output to appear in the echo area. By creati ng this echo area and
reopening MDL’ s normal terminal output channel in this mode, it Is possible to
cause MDL and the app lication program to think that the entire screen consists of
only the echo area. MI output including application program displ ay escape
commands is automatically routed by ITS to thi s echo area. MEND sends its output
to a second channel opened in the normal mode, thereby allowing It to use an area
of the screen unknown to and left untouched by the application program. The
physical cursor stays where the last used logical cursor left It, thereby eliminating
most of the unnecessary cursor movement , resulting in a more pleasIng visual
effect

As a result of this solution, the screen Is divided Into only two main
sections. All typei n appears in the lower section, whether it Is to the application

- — — —a——--— - —



14

program or to MEND. Application orogram output also goes to the lower secdon,
as does unstructured output produced by Interaction with MEND. The upper
section, in general, contains only those items that occiçy one line of the display
each. As will be explained later , these Items Include all output automatically
displayed by MEND during execution of the application program

— - — ~~~~~~~~~~~~~~~~~ ___________ — — — — ..



- 

15

Ill MSTACK: MEND’s Represent at ion of the Control Stack

111.1 Program Execution In MDL

MEND’. primary role Is to allow the applications programmer to visually
monitor the execution of a program. in a language like MDL, this I. most easily
accomplished by showing the programmer a plctur e of the control stack.

A MDL program consists of the evaluati on of a singl, object The object
is usually structured in some manner and Itself contains other objects. The most
common object is the FORM. This I. a list of objects in which the first is (or
evaluates to) some function and the rest ar e arguments to that function~ A FORM
Is evaluated by applying the functIon to its arguments, usually after the arguments
are themselves evaluated. This evaluatIon actually is initiated by the MDL
interpreter by applying the function EVAL to the original object EVAL takes an
object as its argument and returns the value to which it evaluates.

FIgure 1 shows a (simplified) static representation of the evaluation of a
MDL object. Staling with the FORM (list of objects in angle-brackets ) to be
evaluated, the flow of control/evaluation may be described as a depth-first search
through the tree pictured. The arrows represent values being returned to
previous levels. At the end of thi s ~~~~~ the FORM returns the value shown at
th. top

31
1’

A .B .C 5>

1 1 1 1 1
+ . A .B .C 5

1 1 1
6 8 1 2

Typically the control stack will start with on. object on It, the FORM to be
evaluated. This evaluation will first requite that the objects in the FORM (possibly
FORM. themselves) be added to the stack and evaluated EVAL recursively call.
It.&f for this purpose. The stack builds (downward, by convention) until some
object I. plac.d on lt which ls known by EVAL to need no further evaluation. This
object is returned as its own value to the previous level and values continue to

~~~ Ir.~~ - — --- -—

- .. ,.~~.. - - .—.
~~— I ~~~~~~~~ — —

16

be returned upward until a level is reached where another object must be
evaluated. in thés manna, the stack grows and *Inlis until the tc~imost (initial)
object returns a value.

11.2 Monit oring Program Execution

The manner In which the stack builds, the objects us evaluated, and the
values are returned Illustrate most of what th. program I. doing. Other factors,
Including side elf acts and complied code, will be discussed at the end of thi s
chapter. MEND’s main display therefore shows a representation of th. stack being
continuously updated as execution/evaluatIon proceeds.

There are essentially two ways that MEND could follow the flow of control
of the application program. The most direct way, as att. rspted by MUMBLE’ and
discussed In the last chapter , would be for MEND to execute the application
program by simulating the operation of MDL. This typ. of simulation has been
shown to require a complex end all too often fra gile structure. Th. debugging
program would need to be constantly updated to match changes and additions to
the MDL language , but more Important ly it would fail to properly handle
programmer-defined primitives, several varieties of which ar e provided for by
MDL.

A far more satisfactory method Is to allow MDL to execute the application
program in more or less Its normal fashion but to stand beck som.wher e and
watch. Fortunately MDL. contains a mechanism ideal for thi s, called multiprocessing.
Basically another control stack , or process , may be created (independent of the
first) that may be used to execute a different function with its own ..t of variable
bindings. One such process, in this case MEND, may place another, the application
progr am, into a single step mode where the latter will be stopped before each call
to EVAL and again as each call returns. The MEND process will at these points be
restarted and given information about what the application process I. doing. MEND
stores this information in a multi- level structure it creates called an MSTACK.

Each livel of an MSTACI(corres ponds to a level of the control stack being
monitored Each level contains the original object (actually, a pointer to It) being
evaluated at that level end a new object, celled the “displayed object”, that Will or
do.. contain the results of evaluating each of the arguments or elements of the
original. The displayed object is initially the same as the original (in a real sense,
It Is the original) but is systematically rebuilt as each element I. evaluated and
replaced by what it returns. Thus MEND can keep track of the relationsNp
between the changing display and the unchanging program. (Figure 2 shows the
various stag.. that the displayed object corresponding to the FORM being

revaluated In Figure 1 goes threi* Each stage would in fact be painted over the

Hit

_ _ _ _ _ _ _ _ _ _ _ _ _

____________H-
-~~~

-
~~~11 -

- -



17

previous one so that all of these stages represent only one line of the screen.
The down-arrow shown in some of the stages is a place-holder that represents an
object that is actually expanded on the next line of the screen.) A pointer Is also
kept showing which element is currently above this on the stack to be evaluated
mless, of course, this is the initial element of the stack.

<i .A .B .C 5>

<+ I . B .C 5>

<+

<+ 6

<i 6

<+ 6 8 4 5 >

<+ 6 8 1 2 5>

31

111.3 A Displayed Repres ent ation of Pro gram Execution

Th. printed representation of the stack occupies the top section of the
screen and Is the most prominent and I mportant characterIstIc of MEND. Most
often, in fact , it Is only necessary to watch this display as the application program
Is executed to ascertain where a bug I. located or to observe exactly how the
program operates. Therefore consIderable tim. has been spent making the
operation of the MSTACK and associated display as natural and Informati ve as
possible.

Using the collected Information described In the previous section, a
representation of the stack is displayed a number of lines, each corresponding
to one level. Each line shows a level number and the displayed object printed In
an abbreviated form (known “&-pr$ndng”, named for the printing function &‘~created by Greg Pflster ). Although strictly speaking the stack builds upward
(towards higher memory locations), It seams more natural to display and speak of

_ _ _ _ _
— — —



18
p.

the stack as building from the top downward, In the direction that printing normally
occurs. As each element of the bottom level ( the bottom line on thés section of
the screen) is placed on the stack for evaluation, a new line is added beneath the
previous bottom-level line showing that element, and the element Is replaced In
th. pr evious line by a pointer (“$“) marki ng its location. When the element finally
returns a valu e, the returned value will replace the pointer In the displayed
object

To avoid visual distraction, a minimum of updating i* done on the screen.
In most cases random access ii used to replace only those lines that have changed
In general the complete stack will not fit in the display area allocated for It (whose
size is user adjustable) so a scrollIng proce€kr e has been devised The complete
display area is rewritten whenever an atte mpt Is made to write past the bottom
or erase upward past a certain level while some lines ar e invisible because they
have been scrolled of I. The scrolling par ameters have been selected to optimize
the number of fines visible on the average vs. the frequency of scrolling. Level
numbers allow the user to see how much is hidden “above the screen” and how
deep the evaluation is nested.

114 MEND Program Steps Vs. MDL Steps

To make it easier for the programmer to follow what the appli cation
program Is doing, the speed of execution of the program must be controllable.
MEND does this by inserting a constant, user adjustable delay between program
“steps.” One MEND step Is not precisely the same as one MDL step. Remember
that a MDL step is one call to or return from EVAL Each M STACK level, and
therefore each displayed line, will have two MDL steps associated with It . At the
first step, MEND will create the level and add one line to the screen. At the
second step, MEND will erase that line and put the returned value back into the
previous line. For clarity MEND adds a thi rd step between these two which
actually occurs at the second MDL stop. Before substituting Into the previous line,
the current one is first replaced by the returned value, the normal delay occurs,
and then the “second” step occurs as described.

Some types of MDL objects are self-evaluatln EVAL will simply return
the object It was given. AlthougI~ nothing Interesting has happened, two steps
have occurred In this case MEND wlU avoid dutter by pretending that no steps
have occured. (MEND only does this with built-In types that MEND recognizes, and
the programmer should recognize, as being ssif- valustlng~ Programmer-defined
types that are salt-evaluating will generate the usual number of MEND steps.)

Another case of dispari ty betwein MDL and MEND stops Is mar. complex.
First some further explanations thu* MDL objects are needed Generally the

i€i
— ~.. • 

~~~~~~~~ 
—

—
~~~~~~~~~~~~~~



19

interestIng object s, the ones that generate MENO steps, are linear (usually list)
structures containing a number of other MDL objects, as are the FORMs described
earlier. Normally during evaluation of such an object the elements will be
evaluated one at a time from first to last However thi s sequence Is not always
followed by MDL MEND cannot directly determine which element is about to be
•valuated at each call to EVAL It is only given the abject to be evaluated itself
and not Its position in the parent struc ture , It is norma lly sufficient to do a
comparison of this object with th. elements of th. parent, starti ng with the first
element believed to not yet have been evaluated. Naturally, if the elements are
evaluated out of order , this procedure may fai l to find the desired match, because
a MDL object may contai n the same element in two or more positions. Thus It Is
possible to match the about-to-be-evaluated object to the wrong occurrence of it.
Further complications arise because some functions can sometimes back up and
re-evaluate their arguments.

A strong attempt was made to make MEND dependent only upon the
general characteristics of MDL functions and not upon specific exceptions and
Idosyncracies. It was felt to be desirable to make MEND Independent of both
future changes to the language and programmer-defined “primitives” that would
not be known to MEND. Besides, without actually simulating MDL it Is not possible
to always get the information MEND needs. It was felt that the “general rul e”
approach would take care of a sufficiently large number of cases without falling
into the simulator problem.

It was determined after some experimentation, however, that MEND could
not be made to work properly without some specific knowledge about several
Important cases in MDL Two functions, PROG and REPEAT, sHow for branching the
flow of control. They are normally first-to-last functions as describec~ above but
at times control may jump backwards to re-evaluate some elements. ME ”iD was
implemented so that I f it cannot locate an element In its normal search pat h, it will
start looking again from the beginning of th. struc ture. If It is then found, the
displayed object will be reinitialized to be as if evaluation had not yet proceeded
pest that point Evaluation will then continue normally.

Another phenomenon of MDL that we must discuss Is what this author
labels the “clause” behavior. A claus. is a list of objects given to a function as a
singi. argument Th. list is not itself evaluate d, but some or all of its elements
are evaluated The most common function Illustr atIng thi s beha vior is COND, a
general purp ose conditional function. COND’s arguments ar e all lists of objec ts. It
..qu.nces through these lists, evaluati ng the first object in each, until an
evaluated object returns something considered “true. ” Then the rest .f the
objects in that list are evaluated and COND returns what the last object In the list
r•turns. MEND’s normal search psth only looks at top-level elements and would
therefore never find the ones actually being evaluate d.



20

This phenomenon seemed to be more widespread than the PROG/REPEAT
one and could not be easily attributed to certain functions. The solution chosen
here was to in all cases do a nested search in elements that looked as if they
~mght be clauses. (The search actually goes one extra level deep to allow for
certain special cases.) When a match is found In a claus., MEND will for clarity
generate extra steps to make it appear to the user as if first the clause and then
Its appropriate element was put on the stack for evaluation. Th. clause will stay
on the stack until some element that I, not above it in the evaluation tree Is
evaluated At that time the clause will be removed In an orderly manner, and the
new element or clause plus element will be put onto the stack. To do thi s
smoothiy, up to six MEND steps may have to be generated for the on. MDL step.
(See the example In Appendix A.)

Ilt5 What the User Does Not See

MEND, In Its display of the MSTACk, atte mpts to show the user everything
of importanc. that is happening as th. program is executed. However certain
features of MDL cannot be captur ed in this sort of representatIon.

One such feature is the edstence of compiled code. Although MDL was
originally Intended to be a high-level interpretive language , an assembler was
wrItten~ , pro&clng machine code that executes in the MDL environment, to allow
programmers to create “prImitIves ” that perform functions not otherwise availab le
In MDL Once the assembler was written, It was natural that a compller~ followed.
It translates normal MDI. cod. into MDL assembly code which is then assembled.
Typically MDL programs are tested Interpretively and, when fully debugged ,
complied in order to obtain a major increase In speed of execution.

A call to a compiled (or assembled) function usually looks to the
programmer and to MEND like a call to a MDL prim itive. The operation of the
function is not seen except when it calls uncompiled functions. This does not
present a major problem to MEND since generally only uncoinpiled functions ar e
being debugged , and the compiled ones encountered are hop.fully perform ing
known functions properly.

One feature of MDL that MEND Is unabl. to cop. with Is the interrupt
system. The programmer may enable a large class of Interrupts and assign
handl ing functions whsrsver desired Examples Include Inter rupts for characters
being typed to a certain input channel and notification that the system i. about to
be brought down. (MEND us•s Interrupts t. catch singi. character command, and
to catch errors. )

Recall that MEND monitors application program execution by placing its
process into a singi.-stepplng muds. When MDL p : :  control to an interrupt

‘-S

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - - - -

— -- ~~—~rd ~~ it



21

handier, It temporarily causes the process to leave single-stepping mode. This Is
necessary partially because such a handl er may be specified to run In a process
other than the current one at the time of the interrupt. It unfortunately makes the
hard er invisIbl e to MEND. it is therefore not currently possible to use MEND to
debug interrupt herders.

There Is a whole series of side-effects, such as printing by the application
program, that are not directly seen In the MSTACK representation but are made
visible by vario us other features of MEND. These will be discussed where
appr opriate in later sections.

- ,



22

IV lssulni Commands to MEND

IV.1 Types of Commands

There Is a need in debugging systems similar to MEND for two types of
command, for controlling operation. One type is a set of short, immediate-action
commands that the user of th. debugging system may issue at any time, such as a
command to completely stop all activities of the debugging system and to exit
The other type Is the ~.t of all commands not belonging to the first set. This
includes commands that take arguments end those that can only be given while the
application program is suspended from execution.

IV.2 Immediate Int err upt-Level Commands

In MEND’ s normal mode, various actions occur automaticall y. Most
importantly, the applIcatIon program is executing and th. displayed representation
of the MSTACK is being updated correspondingly. Duri ng this time th. programmer
may type ahead to the applIcation program, but, sinc, there Is only one physical
cursor that is used by both MEND’s display and typeln echoing that must therefore
jump back and forth between the two text entry positions , a large amount of
typein is awkward. Therefor e, all immediate action command. that the user can
issue while MEND is in automatic mode are single characters. To minimize the
chance of conflict with typein that the executing application program might read
MEND immediate action commands ar e Invoked by typing certa in ASCII control
characters. Furthermore typing one of thes. control characters causes an
interrupt to occur which Is handled by MEND and allows Immediate response.

Not, that this arrang ement requirøs that ther. be cer tain reserved
characters , as listed below , that cannot be used to communIcate with tha
application program. Normally this presents no difficulty. An alternativ, method
was considered that r equired the reservation of only one control character.
However , the user would be required to type an additional character as an
argument signifying whet function is Intended There did not seem to be a great
advantage to this schema and it was considered after the first scheme had been
implemented. For this and other reasons stated later in thi s section, the

• alternative scheme was discarda~From the user’s viewpoint, the currently implemented interrupt-level
commands are as follows. (ASCII control characters are repr.s.nted by ”?”
followed by the corresponding letter.)

_ _  
_ _ _  

S

-~~~~~~~ .~d ~~~ • . . . 
-



23

IL clear screen , reprint stack and input
fQ Qui t from current MEND
CE End automatic mode
TB Begin automatic mode
tU Unprint (stop displaying stack)
IP Print (start displaying stack )
CO skip Over (completely evaluate ) current object
iN Next step (used when not in automatic mode)

The command invoke d by typing CL is for housekeeping purposes. It
causes extraneous information (e.g., old program output ) to be cleared from the
screen and all MEND-related constantly-displ ayed information to be reprinted.
Unread input is also reprinted.

The command invoked by typing CQ is used to exit from an invocation of
MEND. It has the effec t of stopping all actions related to monitoring the application
program and all owing the program to continue normally. In thi s way a programmer
may di scard MEND and continue running the application program without the need
for restarting it at the beginning.

The two commands invoked by typing CE and 18 switch MEND between
automatic mode, the only one described thus far , end non-automatic (command )
mode. Command mode will be described in the next section.

Sometimes i t is desirable for the sake of saving both computer time and
the application programmer ’s time to turn off printing of the MSTACK. MEND will
continue to monitor program execution and store the appropriate information but it
does not display it. Nor does It pause between steps In the norma l manner. This
is mainly useful when breakpoint s are present to turn on printing or switch to
command mode. At that time MEND will know how it got to the current level and
will be able to display the MSTACK as usual. Two commands invoked by typ ing CU
and TP toggl e the state of printing.

Whenever the programmer is satisf led that a particular call of a function Is
working properly or for some reaso n he or she is not interested in seeing the
details of evaluation of some object, typing tO just before the object’s evaluation
invokes a command that causes MEND to skip over that evaluation and continue
normal monitoring and disp lay immediately after a value is returned. Unlike turning
of f the printing, no monitoring is performed here at all so the evaluation proceeds
as fast as it would without MEND. This Is actually handled by causing MDL to
leave single-stepping mode during the evaluation of the object.

The last command, invoked by typ ing tN, Is special In that it is Ignored in
automatic mode. Its actions in command mode will be descrIbed in the next
s ctlon. It Is an interrupt-leve l command mainly for convenience and compatibility
with DEBUGR.

_ _ _ _ _ _ _ _ _ _  

_ _ _ _  _ _ _  
L



24

Bruce Daniels’ DEBUGR is the pr ototype MDL multiprocessing debugg ing
system. It provides a simple user interface to MOL’s single-stepping functions that
makes single-stepping through a MDL program appear similar to single-stepping
through an assembly-language program with DOT~ . The choices of characters for
Invoking many of the MEND functions were based upon the characters used to
Invoke similar functions in DEBUGR. Many of OEBUGR’s command invocation
characters were in turn based upon those in DOT. The object of all of this is to
build character/command associations in the user’s mind that may be carried over
from one system to the next.

Several other control-character commands are handled by MEND invisibly.
That is, the user may not be aware that they are being handled. Most of these
are commands that are already beIng handled by other subsystems but must be
intercepted by MEND to maintain consistency in Its environment. Two of this type,
invoked by typing CS and C G, are already set up in an Initial MDL and a third ,
invoked by typing iF , is set up by the subsystem EDIT, which is called by MEND as
described in the next sectIon. All three of these are used to escape to various
command levels. MEND has Its own command level (see next section) and must in
many cases escape to that one Instead to maintain control. UntIl a method was
discovered for having ITS sectIon the screen, It was necessary to also interrupt on
carriage-returns (tM, the new-line character) on input to Insure that typein was
kept In the proper section.

iV.3 MEND’s Command Level

Sometimes the user may wish to stop the app lication program at some
point to examine it in more detail or to alter It or Its environment in some way.
Alternatively the user may want to issue commands to MEND that require
arguments. A command level is provided for both of these activities.

The command level differs from the automatic mode described In the last
section in two ways. First, the application program Is not continually executing. It
runs one step at a time under the direct control of th . user rather than
automatically. Second, in non-automatic mod. typein Is normally passed to MEND
instead of the application program, even that class of type in which does not
pr~~~ e immediate action.

When the applicatIon prog ram is stopped , the user may either request a
service from the debugging system or examine and/or modify the program and/or
its environment. Since editing functions form a larg e part of the latter des. of
actions , It was decided that instead of requiri ng the user to Import” an editor,
MEND should provide an editor by making one available at ~oimn.nd leveL

It is generally believed end mplrkal evldenc indicates, that creating a

*

i 
~~~~~F


25

new editor is ‘the kiss of death’ for a MDL subsystem. A number of MDL editor s
have been tried over the years and the only one that finally became generally
accepted (and is now pre -loaded In MD L) I. EDIT” . Members of the MDL
community will tolerate minor changes to EDIT , but they will not accept a new
editing system. The situation Is analogous to one of the major obstac les blocking
the acceptance of ESP. Programmers were accustomed to using DOT to examine
and modify their machine-language programs. ESP was not compatible with DOT
and therefore did not provide the familiar Interface desired.

In view of the situation, It seemed desirable to Incorporate EDIT into the
command level , essentially unaltered. EDIT uses a special reader that either
Interprets Input as a command to It or passes Input on to the normal MDL reader.
At first the task of superimposing a MEND rea der on top of both of these
appeared difficult. After much discussion with the current maintainer of PIT, a
very satisfactory solution was arrived at.

A general capability was added to EDIT allowIng the specification at
runtime of a table of EDiT-lIk e commands to be handl ed by programmer - defined
functions. Thi s table Is searched before EDIT’s command table and thereby
provides a capability to override standard EDIT commands. MEND basically use. an
invocation of EDIT as its command level with au MEN!) commands included in a
tabl e as described. EDIT-format commands are all one or two letters and may take
suffix arg uments. Currently the MEND tabl e Includes the following command s. (FIX
here means a MDL object of tyji. FIX, i.e., a fixed-point number. FLOAT means a
floating-point number. PPRINT Is a function that prints a MDL object in a format
which Indicates the positions of its elements and sub-elements in the tree

- ~~~~~~~~~ . -~~~-~~ ~• - - ~~.
~~~ ~~~ —



26

NAME ARG TYPE MEAPING
none type out short summary of MEND commands
none type out complete summary of all commands

O any
V non. toggle Verbosity

N FIX do Nextnstsps (Iike l N)
OV none skip OVer current object (like 10)

Q none Quit EDIT & return to automatic mod. (like 1 B)
QM none Quit MEND (like tQ)

SN FIX Set Number of iines used for stack display
SV FiX Set leVel below which MEND will not ISTEP
SO number Set Delay tIme (FIX or FLOAT) between steps

PD FIX Pprlnt Displayed object in level n
P0 FIX Pprlnt Original (actual) object in level n

Al any Add an item to the list being monitored
DI FIX Delete Item number n from the list
P1 FIX Pprlnt Item number n

What the user typos to the command level is Inspected by EDIT. If It
looks like an EDIT command, it I. looked-up In the MEND command table or the
EDIT one and handled as appropriate. Otherwise it is passed to the MDL reader.
in general any Interesting (useful) Input that MDL should read and evaluate Will not -

look like an EDIT command, so there I. no confusion.
As can be seen from the table, the MEND commands include general

information retrieval ones (? and ??), system tailoring ones (V, SN, SV, and SD), and
commends that allow objects to be accessed In special MEND locations (0, PD, P01
Al, DI, and Pfl. The 0 command Is special In that it allows en object known only by
its location In the PISTACK to be opined for examination and alteration by the
normal EDIT commands. The remaining commands duplicate control-character
commands except that they we reed it normal Input level rather than at interrupt
level.

The most powerful feature of this command level Is seen when MDL
objects are evaluated This level, and therefore the evaluation, uses stack space
below the application program and In the same process . NI bindings and pending
evaluations of the program are abov• the command level where they may be

_ _ _  4



27

examined and modified at will. Most of what constitutes MEND is in another
process safely removed and hIdden from the user. Even the small amount of
overhead constituting the command level function is hidden from functions such as
FRAMES ’3, which may be used to view the levels of the application program ’s
current control stack. The effect is much the same as that of MDL ’s listen ing loop
which is invoked at the current bottom of the stack in case of error, to allow the
programm er to run any program (evaluate any object) to find and correct the
probiem~Note that for critical examination of the program, the user may request
that it be continued for a limited number of steps (usually one) with control then
being returned to him or her at the command level. One normally would employ
such a feature when the program is executing statements near the area of
suspected trouble but It is not entirely clear how or why the pr ogram is
misbehaving.

IV.4 Breakpoints

Normally MEND operates in automatic mode wher. the application program
is running continuously. If one Is aware of a particular area of concern, one cannot
and should not have to see that area as it is reached and quickly type tE in order
to stop the program. One may have the program running with a very small delay
time or have the printing turned off.

In their simplest form , MEND breakpoints stop the program when
evaluated , putting the user In command mode if she or he was not already in it.
This is the MDL equivalent of DOT breakpoints, which stop a program at a certai n
Instruction. The breakpoints can also be conditional, where the evaluation of an
arbitrary object determines whether or not to actually break at that point

The breakpoints as so far described are very much like the break points
that can be set by EDIT. As a matter of fact, EDIT is used to set and clear these
breakpoints just as it would be in the absence of MEND. The only real difference
is that , when MEND is present , a MEND function Is called to handle the break
instead of an EDIT function.

MEND breakp oints would be useful even If they only did what was just
described. However they are more powerful. A standard EDIT-style breakpoint is
a call to the break function with a number of arguments. The first of these Is the
object at which the break point is set, which will be evaluated when the user
returns from the breakpoint and whose value wIll be returned by the break
function to the application progran~ The next Is the conditional object and the
rest are objects to be evaluated and printed at each break. MEND ’s break
functIon handles these as EDIT’s does but also looks for a recognized ATOM



28

(var iable name), which may come after or replace the conditional, if such an ATOM
I. found, it will cause a special action to occur instead of stopping the program :

ON printing will be turned on (like tP)
OFF printing will be turned off (like TLD
GO free-run the object (like tO)
PRINT just print arguments & continue

Other arguments will still be printed and all actions are still predicated upon the
value of the condi ti onal.

Th. first two special ATOMs (ON end OFF), perhaps coupled with manual
control, are used to allow the MSTACIC to be viewed only during areas of interest
while maintaining maximum speed In other places. The next one (GO) Is used to
avoid wasting time examining the details of a functional call that Is known to be
working and Is probably evaluated repeatedly. When the break function returns,
sIngle-stepping resumes as before the break The last special ATOM (PRINT) Is
used to give Information at key places that inight not otherwise be seen.

One thing that was considered extremely Important was to neki MEND’s
breakpo ints compatible with those of EDIT. The problem is that a breakpoint
inserted outside of MEND might still be present when MEND is started and vice
versa. As has been stated EDIT breakpo ints work almost exactly as usual when
handled by MEND’s break function. The converse is not quite true. EDITs break
function will ignore the significanc e of a special ATOM end simply print it as a
normal argument . Fortunately, an ATOM evaluates to itself. If it is In the
conditional position it will always be considered tru? and no harm will be done.

It would be easy to extend this arrangement to other special ATOMs if
other functions were considered useful. The above seem to form a basic set In
this system. At least they are useful and no one has yet suggested another type
of breakpoint that would also prove useful.



29

V Final Thou ghts about MEND

V.1 Monitoring of Values

A feature that was originally considered to be Important, and Is present in
ESP4’5, is the constant monitoring of values. This feature has not been too happily
received in MEND, but that may be due more to the current Implementat ion than to
an inherent lack of utility.

Ideally one should not have t~ ~ee the object being monitored or its value
if one does not want to. The debugging system should be capable of performing
certain actions upon, for exampl e, a change In value, This would be analogous to
conditional breakpoints except that the test would be performed after each step
of execution of the application program rather than at certain arbitrary times.

One problem with the above scheme is the difficulty of testi ng for a
change in value (the basic test ). For example , the value of an object being
monitored may be some sort of structure. DurIng execution the appl ication
program may not explicitly change the value of the object but may change an
element of the structure that the object evaluates to. Assuming MEND had saved
a pointer to the structure, If it now evaluated the object being monitored, It would
again find that structure and assume that the value had not changed. However
since an element of the structure had changed, the program mer would probably
want to be notified

The only solution to the above dilemma Is to at each step save a complete
representation to all levels of the value of the object in some form that cannot be
affected by the application program. This can be don, by, at each step, unparsing
the value to be saved f or future tests into Its printed (string ) representation.
Then the comparison of current and previous values will simply be a string
comparison, not subject to sharing by the values. Unfortunately this may create
incredible amounts of “garbage. In fact, a circular list (quits legal) will produce a
string of infinite Iengthl

The solutIon finally chosen was to print the values of the objects being
monitored at each step and to let th. user visually compare versions. The values
are ti-printed as usual but may be examined in full at will.

When tested it became Immediately obvious that the constant repri ntIng
wasted time and was distractIn g. A feature was added to cause printing to occur
only at controllable intervals, but that produced other problems. Primarily the user
might not see a change that had occurred .t one step until some later step when
valuable informat I on had already been lost. One would also not have the
opportu nity to take immediate action.

What needs to be done at this point Is to reduce the emphasis on such
pathological cases as described above. Printing should only occur at well defined

- — -

— 
-

~~~~~~~~
—--—-

—
- - - ~~- - -~

30

moments (i.e., when requested or when some recognizab le condition occurs). Only
gross and easily testab le changes in value should be watched for (i.e., the value is
a new object, entirely). Conditional monitoring should be installed analogous to the
conditions of breakpoints. With all of this testing, a variety of Indications should
be availabl e as with breakpoints.

V.2 Control Stack Display

MEND’s display of the application program’s control stack has proven to
be b y i t se l f ah l gh l y useful debugging ald. This display can be and often is used
without any of MEND’s other features to debug a faulty progra m. it should also be
emphasized that a valid use of thi s display is to monitor a working prog ram in
order to understand its operatIon, In this case, where the user of MEND a
completely unfamiliar with the operation of the application prog ram, MEND’s
step-by-step display of program execution Is even more useful than in the normal
debugging situation.

One of the unique features of MEND’. ~tiice~ of the application program Is
that MEND shows both the code being executed and the results of that execution.
Since MDL is an applicative language, most of the results consist of values
returned by evaluated objects. By reflecting th. returned values back into the
original code, MEND shows intermediate results in an intuitive manner for the user.

Other programming languages could also benefit from thi s sort of display.
Too often a trace routine provided for debugging in a language show. only results
of execution , such as value assignments, without showing the corresponding
program steps , or it shows program steps but leaves it to the programmer to
Insert instructions to show Intermediate results. What the programmer r eally
needs to see Is a well integrated display of both program Instructions and results,
such as MEND provides.

MDL I. an exceptional language in that the MEND display was Implemented
fairly cleanly with ju st a package of MDL functions and without changes to the
Interpreter Itself. With suitable language snhancements, however, a similar display
could be provided for LISP or any other USP-Hke language. Although major
compiler modifications would be required, a stack-oriented display might also be
sultable for a block structured language like ALGOL

Especially In a block structured language, where instructio ns might be
treated in groups rather than Individually, but al.. In applicative languages , It
would be useful to be shown variable bIndings as they occur. MDL does not
provid, any information about the occurrence 4 bindings, so the programmer Is not
informed of such occurrences by MEND. However when major modifications are
made in a language to provide a display similar t MEND’., It would probably be a ~~~~~~

-

______ -

-

~~~~~~~~~~~~~~~~~~ - 

— —



31

mistake not to Include a provision for notifying the programmer of varIable bindings
and unbindings as they occur.

V.3 Simulation Vs. Multip rocessing

Besides its control stack di splay, MEND’ s other major feature , and its
major differenc e from debugging systems like E$P or the first version of MUMBLE,
is its use of multiprocessing rath er than simulation to follow applicatIon program
execution. (Even debugging aids that use multiprocessing often do not work the
way MEND does. While MEND is a program written in the same language and
running concurrently in the same Interpreter as the application program , some
debuggers , such a. DOT , are machine language programs running near the
application program, and others are simply complied into the language Itself .) Thi s
feature is perh aps the key to MEND’s success as a debugger. The choIce to avoid
simulation certainly reduced the size and complexity of MEND by two or three
times and similarly affec ted run time. What remains to be discussed are the
tradeoffs involved in the choice. The advantages Just mentioned heavily favor the
multiprocessing solution but there are other considerations.

If MEND had been implemented using simulation , It would for the
evaluation of each object determine which elements need evaluation; evaluate
those elements by recursively calling MEND’. own evaluation simulator; determine
whether some function should be applied determine the effects of the required
functional application , if any ; and cause those effects while displ aying some
rep resentation of them for the program mer. In short , MEND would duplicate the
actions of MDL while maintaining and updatIng its own information about those
actions. Therefore MEND would at all times know exactly what the application
program was doing and could never mis. some Important ef facts of execution or
be fooled by an unusual program. In the previous section It was stated that it is
desirable to show the occurrence of varIable bindings to the programmer. This
feature would be easy to implement In a debugging system that simulated
execution of the application program.

But what about a debugging system using multi processing? A
multiprocessing debugger , such as MEND , allow s the application program to
execute more-or-less freely in its own process while monitoring it from another
process. Since MEND I. not In direct control of the application program, it must
rely for it. information on whatever data It Is given by the multiprocessing
mechanism built into MDL and on Inferences based on examination of the
application program’s environment, it. knowledge of the general behavior of MDL
progr ams, and some specific knowledge of special cases. The occurrenc e of
var iable bindings is not decipherable from the information that MEND can gather.

! 
L 

- — —

~~~ 
-

—

32

Fortunately, as has been previously shown, MEND does have the Information
essential to the creation of It. display and the display I. a sufficient debugging
tool

Monitoring execution of the application program from another process
provides sufficient Information for a useful debugging system while simulation of
the application program provides enough Information for a more comprehensive
system. Therefore If speed and size of the debugger were not important factors,
then, although not a necessary choics, simulation would be the favored choice for a
debugging system except for one other factor.

The sImulator needs much mor. knowledge of specific details of the
behavior of program functions than does the monitor. In fact the simulator must
know exactly the effects of each function that might be used in the application
program. Uncompiled user-defined functions ar e no problem. They consist merely
of one or more applications of other functIons to given arguments. Complied
user-defined functions cannot be dealt with at all without actuall y creating a
simulator for machine language programs, a project comparable In magnitude to the
design and implementation of all of the other parts of the simulator combined! The
remaining functions are MDL ’. built-in prImitIves. They are will defined but
frequently change (usually upward compatibly). Furthermore new primitIves are
constantly being added A simulator for MDL programs would therefore quickly
become outdated

Given the problems of a simulator and the relatively few &awbacks of a
monitor, it I. clear now why MEND was Implemented as the letter. The same
arguments apply to debugg ing systems for other languages. Whenever the
appropriate multiprocessing features e,dsI, with sufficient Information aveilebis
about execution in another process, a debugging system based upon simulation of
th. application program should be rejected In favor of a monitor-type system.
MEND he. proven to be an effective debugging aid and should serve as a good
example of the latter type of system.

- i_ _~~:_ _ _i_
~~~~~~~~~~~~ — - -— 

..-., ~~~~~~~~~~~~~~~ - ~~~ ~~~~~~~~~~~~~ - i~~:~~~- -~



33

VI Sunestions for Fut ure Work

VI.! Moni toring of Access

Because of the problems described in Section V. 1 concernin g the
monitoring of values, there was not enough time to work on a related but more
Interesting feature for MEND. Frequently the main piece of information that Is
available about a bug In a program is that at some point a certain data area
(variabl e value, list slot, etc.) I. being dobb.red” by function(s) unknown.

Rather than watchi ng the program execution In detail to find the culprit, It
would be far more useful to set a break polnt on access to the locat Ion In
question. This could be done by having MEND redefine all data access functions to
watch for certain locations. Not only would that be messy, but it goes against one
of the basic philosophies of MEND. With good reason , as described earlier, MEND
tries to alter its environment as little as possible. (For example , what If the
applicatIon program redefined one of the functIons also?)

MDL again provides the answer. The code already exists for monitoring
read or write access to any standard data location. It Is only necessary to set up
the proper type of interrupt handler with a pointer to the location to be watched
Each time the specified type of access occur., the handier will be called with .11 of
the particulars.

MEND should have commands installed for creating and destroying such
handlers. For consistency and to facilitate remembering for the user, the possible
actions of thi s handler upon being called should be similar to those of breakpoints
and of monitorIng of values.

VL2 Other Unimplemented Features

Three other proposed features were not implemented due to an acquired
belief that the value of each of these feature s In relati on to the goals of this work
was not worth the time required to properly Implement it. However each of these
features has merit and may be desirable in some futur e, more comprehensive
debugging system.

The first such feature Involves savIng all output of the appli cation
pr ogram for the programmer to refer back to. This has the Implementation
difficulty that there is no easy way to separate application program output from
much of the MEND output All application program output and certa in MEND output
go.. to th. lower section of the screen utilizing the same output mechanism (I.e.,
standard MDI output to the prImary terminal output channel). No distinction is
made between the two kinds of output A distinction could be mad, by having

~i1

-~~~ 
T - T ~~~~~~~

- - _ - - 
—



34

MEND do all of its outp ut through yet another terminal output channel (a second
channel I. currently used for the upper screen section), but another consideration
made the effort seem not worthwhile. hi practice , programs that produce a lot of
output usually send it to a file and not to the terminal. Since only small amounts of
output are usually sent to the terminal, a short output history, such as that which
is present on the screen itself, is generally sufficient

The second unimplemented feature would have allowed the setting of
MEND breakpo ints using the editor IMED. This woul d have meant sendin g a
function out to the IMLAC wher , local editing would have been used to creat , or
delete such breakpo ints. PRINTTYPE ar id READ-TABLEs would have been used to
allow for s tting normal breakpoints and the special MEND types (ON~ OFF, etc.)
using one or two mnemonic characters.

The primary reason that this feature was not Implemented was that EDIT
wa, chosen to be the MEND editor instead of IMED. That choice was made partly
because EDIT is in many respects the more powerful of the two , but mostly
because EDIT Is the editor now used almost exduslvely by MDL programmers. In
fact, EDIT is now pre-loaded in MDL while IMED Is not. Another reason for
rejection of this feature was that it would have made MEND, or at least thi s part
of It, terminal dependent

In a different environment a similar feature might be quite useful. MED
still has th. large advantage over EDIT that by constantiy displaying the entire
function while the programmer moves the cursor around In it, creating and deleting
MEND “command symbols at will, the user is provided with a much better feel for
the debugging environment being ..t up than with EDIT.

Th. third feature would allow the user to reverse execution of the
appli cation program or to simply back up to some previous point. This was
suggested in two vari eties, an actual undoing of all effects of the program on a
step-by-step basis or simply showing pr•vlous stat.. of the MSTACK. Th. first
version would have used UNDO’°, a package of functions to actually beck up a
program to som, previous state. UNDO however violates a primary design goal of
MEND. It works by redefining every MDL function that has a side-effect, thereby
causing most of the negativ, effects of simulation that were previously discussed
Unfortuna tely the way UNDO works i~ really the only reasonabl e way such a
package could work, short of modifying MDL Itself, and even UNDO I. not foolproof.

The only practical way this feature could be implemented I. in It. second
variety. It would be possible t. star e (in s file, probably) information specifying
the state of the MSTACI( at each step and to allow the programmer to view
previous steps In some comfortable manner, The time required to Implement this
festive, though, put It outside .1 the scop. of this work.



35

Vl.3 Immediate Action Commands

!m pir ica l evidence suggests that one more interrupt -level Immediate
action command would be highly useful. Currently the user may skip over the
complete execution ni a singl e object by typing 10 Just after the object is placed
on the stack for evaluation. The user may also want to ra pidly complete the
evaluation of some object that is already executing. For example, one may have
watched the first few objects in a REPEAT loop being evaluated and now wants to
free-run the app lication program until the looping i. finished. For such a case, a
command should be available to skip over the evaluation of the current object and
all others at the same level (i.e., fini sh evaluation of the object on the previous
level).

Further use of MEND may Indicate a need for other interrupt-le vel
commands. (Perhaps certa in interrupt-level commands should somehow be able to
take arguments? )

VI.4 Terminal Handling

The MSC implementation of MEND was discarded because of problems
specific to the current operating environment. - In a suitable environment ,
multi—screening is still seen to be a useful feature for a similar debugging system.
It has even been suggested tha t something of the sort could be implemented using
two separate termina ls. One termi nal would look to the application program just
lIke the ter n inal it would have seen in the absence of MEND. The other term inal
would be used for communications with MEND. Not only would this eliminate
output conflicts between the application program and MEND , but with two
keyboards there would be no need to have a reserved character set for MEND
interrupt -level comma nds. Of course, it might be difficult for the user of such a
system to coordinate activities between the two terminals.

Another area where MEND might be improved is its knowledge of the
terminal being used. As has been previous ly discussed , it currently assumes
certa in basic display functions and relies upon ITS to understand the requirements
of the terminal. Althoug h ITS handles the j ob well, it Is not the only operating
system that MDI. may run under. This author, In fact, actively uses MDL under
TENEX, an operati ng system that lacks the terminal code to support MEND. To
properly work under most operati ng systems, MEND would have to be ta iloreble to
individual terminal codes arid requirements and would have to do much more of the
work than under ITS.

It has been proposed that MEND could be made to work In some fashi on
with the basic ASCII printing terminal , somethIn g that nearly all terminals and

1,

~~~ I

—

-
—~~-

36

operating systems can simulate. However it Is the opinion of this author that
MEND would lose much of Its value under such conditIons. Watching the stack
grow and StWIrIk , and seeing objects replaced by their values, gives the user more
of a f.el for what the applIcation program Is doing than a long stream of
sequent ially printed lines ever could.

_

__________________________ —

Appendix A: Sample Display

What follows is an excerpt from a sample MEND debugging session
showing the main display area (at the top of the screen) for a series of
consecutive steps. That which appears between the dotted lInes is what was
displayed at each step of the program. The program beIng so displayed is a simple
exponentiation functiot i being applied to 2 and a The definition of thi s function Is
printed in full (using PPRINT) before the sample displays.

The words printed on the separator line show the state of several flags.
Print, “auto, and “next mean that printing Is enabled, MEND Is in automatic run

mode, and MEND Is waiti ng f or the next object to be typed, respectively. The
numbers on the left show the depth of evaluation. The inItial object, as originally
typed by the programmer, Is placed at level 0. NMENOING N was returned by MEND
when the system was started. The next line shows the user’s type in of the initial
object (terminated by “ S) Below this line, in the last step MDL printed the
obIect that the initIal object returned Explanatory comments appear to the right
of semicolons.

Here is the definition of the exponentlation functlon
(O~F I$ E EXP (K Y)

(COND (O ? .Y> 1)
((* EXP .X (- .Y 1)> .X))))

.1

_
-

______ -.. -~~~~~~.

38

Several initial displays omitted

0 ((KP 2 3) InitIal object being evaluated.
1 CoNO (VALSE () 1) ~ ;Body of the ExP functlon is justa cCNDFORM.
2 (5) ~ Clause of the previous COPE being evelusteif
5 <* $.x Only element of the above deuee.
4 (

~)CP 2 2)
5 (COND (IFALSEO1) $)
$ Cs)
7
S (f .XP2$)

- .v 1> ; Most current element being evaluated.

prlnt_auto_
~M (NDING ; Message returned by function that starts MEND.
(EXP 2 3>S ;Gbjsct to be evaluated and debugged.

~~~~~~~~l

I

.ti 
___- — 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ iii ~ r ~~~~


• 39

o (1XP23)
1 (CONO (IFALSE C) 1) 5>
2 (5)
3 (* 5 K)
4 (EXP22)
5 (COND (OFALSE () 1) 8)
6 (5)
7
8 < E X P 2 $)
9 (- 5 1>
10 .Y

or lnt_sut
PtNDhI~~’

((XP 2 3)5

0 (E X P 2 3)
1 <COND (VALSL C) 1) 8)
2 (5)
3
4 < (KP22)
5 (COND (VALSE C) 1) 8)
6 (8)
7
8 ((X P 2 $>
S (- $ 1)

• 10 2

or lnt_suto_
1(ND I NG
<UP 2 3>$

-
- - —F -

- -- -
~~~~~

~

- -  -—- 
- .

~~~~ -~--—- ________- - —- - - - - - - - — - .-- _.. _ t_ - - - - - - - -a-- - - -~~~~


r 40

o (E K P 2 3 >
1 (COND (IPA LSL O 1) $)
2 (5)
3 (* $ X)
4 <EXP 22)
S <CONO CVALSLO1) $)
6 (8)
7 (* $. X)
8 <EX P2 $)
1 (-21)

~~sr 1nt_suto_
IUDINS
(EXP 2 3)5

0 <1XP23)
1 <CON((IFALSE () 1) 5)
2 (8)
3 (a 5 X)
4 (E X P 2 Z)
S (COND (IFAL3L OI) $)
• (8)
7
8 (EXP 2 $)
• 1

Drlnt

suto_

<UP 2 3)5

41

o (EXPZ3)
1 (COND (IFALSt () 1) 8)
2 (5)
3
4 (L K P 2 Z)
S (COND (UFALSE () 1) 8>
6 (5)
7 (*5~~)
8 (EX P 2 1)

__

~~

r lntsuto _

~(NO 1NG
(UP23)S

• (L X P Z 3)
I CONO (arALSE () t) $>
2 (8)
3 (*5 .X >
4 (EXP Z 2)
S CCOSIO (IFALSL () 1) $>
$ (5)
7
8 <IXP Z 1)
S couo (<5? .v 1) (<a V~ XC- .Y 1)) .X)

(LKP Z 3)S

j

~1II m~rL

.4 42

0 < I.XP Z3)
1 (CONO (VALSE () 1) 5>
2 (5)
3 (*5~~)
4 (EXP22)
5 <COIID (a rALSE O 1) $)
6 (8)
7
8 (E X P 2 1)
• < C c S m S (a < E X P . X — .Y 1~~ .X)>
10 (0 ? .Y 1)

<E XP 23 > S

• <(XPZ3)
1 <COND (IFALSE O 1) 5>
2 (8)
3
4 (tXP22>
S (COIl0 (VALSL OI) $)
6 (5)
7
8 (UP2I)
S (cOND$((a~ EXP .X (- .Y1~~ .X))
10 (5 1)
11 (ST Y)

(IX? 2 3)5

A
_ _ _ _ _ _ _ _ _ _ _ _ _

I

e
43

4 EXP 22 ~ Scrolling has occurred since the last display
5 <COND (~~ALSI () 1) 5>
• (8)
7 (*5~)()
8 (E X P 2 1)
• (COND 5((* (EXP .X (- .Y 1)) .E))
10 (8 1)
11 (0? $
12

Drtht auto
NN(NO ING N
(E X P 2 3 > S

4 ((XP22>
5 ~C0N0 (FALSE C) 1) 5)
6 (8)
7 (*5 .X)
• <LXP 21)
S (CONO $((* (EXP .X (- .Y 1)> .X~))
10 (5 1)
11 (51 5)
12 1

Drlnt sstI ..
NIND $N0’

(IX? 2 3)1

T

— t — — - -— - -~~~~~~~

— —

-
—r~ -, 1* — -

p 44

4 ((XP2 2)
5 (CONS (VALSE () 1) 8)
6 (8)
7
• (EX P Z L)
S (cc,m$((* (Lxp X C - .Y1~~ .X)
15 (5 1)
11 (0? 1)

NENOIN6’
(IX? 2 3>5

4 (EXP Z 2)
S COISD (SFALSIO 1) $)
6 (5)
7 (a $.X~
6 (IXP21)
• cOIm 5 (a v ~~. K . .Y 1)).b))
10 (0 1)
11 VALSE ()

•rlnt_.uto_
TMN(ND INS
(IX? 2 3)1

¶

-

~~~~~~~ , ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- 
—

~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ ____ ___ i____ __ ____ _ __ _

45

Several displays omitted

0 ((K P 2 3)
I <CONS (VALSE C) 1) 8)
2 (8)
3 < a 4~~)

orint_euto_
ØH(NDING N
<UP 2 3)1

0 < 1XP23)
1 <CONS (IFALSI () 1) 5>
2 (5)
3 8

irlnt_sut._
IIENO ING
(IXP23 > $

,

46

0 (IXP Z 3)
1 (CON0 (1FAL3101) $)
2 (a)

pr Int suto_
MMINDKN
cIXP2 3) S

0 1XP23)
1 (CONS (IFALSI 0 1) (6)>

(IX? 2 3)1

______________________ _______ ~~~~~

47

0 (IXP 2 I)
1 8

srffit __
suts_

N(NOING
(1XP 23 > S

O (IXP Z 3)

orlnt_svto_
PtND I N$’

~ -

-
~~~~ ~~

-

— 
________  

;-;- 
~~



• 
48

0 a ; Initlal object r.hwns thle valus.

rtht_aute_
ItNDI NS
(IX? 2 3)1

0 0

nsxt prlnt_sute
‘UDIN.
(IXP Z 3)$ -

• ;FInI value is returnad by MCI. ki oarract screen location.

ee—e—e— s——e————e—e——

H 

_ _ _ _ _ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~
. 1

_ _ _ - - - - - —

. - -

-
~~~~

-

,

~~~
-
~~

- -

Appendix B: Glossary of Terms

A function pr o-loaded in MDL th at prints objects in an
abbreviated form to fit in a programmer-specified number of

. character positions.

1STEP ’ A built-in MDL function used by one progra m to single-step
another for debugging purposes.

ATOM1 A MDL variable.

COND’ A built-in MDL function providing a general conditional capability.
The arguments to CONO are lists. MDL evaluates the first
element of each list in turn until an element returns a non-false
value. Then the rest of the elements in the current list are
evaluated and CONO returns what the last element In the list
returns.

DOTU A program used to debug assembly language programs.

DEBUGR A progr am utilizing MDL ’. single-stepping functk~ns to show a
programmer the step-by -step execution of a program. DEBUGR
I. an attem pt to provid, a DOT-Dike d.bugpr f o r MDL programs.

EDIT” A pro-loaded editor for MDL objects. EDIT works within MDL.
by restruct uring the object being EDITed according to the
specIfications of the programmer. EDIT allows one to define
one’s own commands or to redefine those of EDIT.

ENViRONMENT5 A MDL object which specifies a particular set of variable bindings.
An ENViRONMENT Is normally cumulatively built i.ç as the control
stack of a pr ogram builds and AT OMs are bound. The
ENVIRONMENT actually corresponds to a par ticular point on the
control stack A program may have an object evaluated In an
ENVIRONMENT specIfying the current state of another running
program. The effect is as if the latt er program had evaluated the
object

ESP~’ A debugging system for assembly-language programs.

EVAL5 A built-In MDL function that eval uates an object and returns the

L f

i__ -i__ — — - -
- - -

~~~~
.
~~~~~~~~~~~~~~~~~~~

-
-

-

50
p

value of that object

FIX’ A MDL object that Is an integer.

FLOAT’ A MDL object that is a floating-point number.

FORM’ A list of MDL objects which is evaluated by applying the first
element (some functIon) to the rest of the elements (its
arguments). Execut lon In MDL generally refers to the
evaluation of a FORM. The evaluation of that FORM will often
requ ire the evaluation of other FORMs (the arguments to the
function or FORMs in the body of the function).

FRAMES’ 4 A pro-loaded funct ion that shows the programmer a printed
representation of the control stack of the current program.

IMED An editor for MDL objects that works by outputting an object to
the IMLAC where local editing functions are used.

IMLAC A minicomputer with a keyboard and CRT display used as an
Intelligent terminal.

ITS” A general-purpose time-sharing operating system developed by
the Arti ficial Intelligence Laboratory at M.LT.

LVAL5 A built-In MDL functi on that returns the local value of a given
ATOM. The local value Is that which was last bound to the
ATOM In the current ENViRONMENT.

MOL5 An applicativ e programming language used to inclement MEND.

MEND Mdl Executor, aNalyzer, and Debugger. The subject of this
report

MSC Multi-Screen Console prog ram for an IMLAC. This gives the
IMLAC used as a terminal a capability for having several virtual
screens that may be accessed and displayed independently.

MSTACK A structure that MEND builds to contaln a representation of the
control stack of the application program.

-
- -3 -

_

-.••~t 1~
— — -

, —

— -e~~ —~ —.~j~~~-’ — ~~.- *.&-~~ —

51

MUMBLE7 An early debugg ing aid for MDI. programs providing a display of
the app lication program’s control stack.

PPRIN T’4 A pro-loaded MDL func tion that “Pretty -PRINTs an object In a
format which indicates the positions of Its elements and
sub-elements in the tree hierarchy.

PR$NTTYPE’ A built-in MDL function allowing the programmer to specify exactly
how any particular type of object should be printed. May be
used to output characters that will be Interpreted as specIal
commands on input. See READ-TABLE.

PROG’ A built-in MDL function used for sequential execution of MDL
objects (generally FORMs). This function provides for binding of
ATOMs to be used within the PROG’s scope and then evaluates
each of the objects In It . body, usually in order. It is possibl e,
however, to alter the flow of control by branching forward or
backward to another part of the PROG body. See REPEAT.

READ-TABLE’ A table that may be set up In MDL. to specify how any character
should be treated on input. See PRINTTYPE.

REPEAT’ Like PROG except that when the end of the body of objects is
reached, control returns to the beginning.

SW’3 The normally used IMLAC console program. See MSC.

LJNDO~ A MDL program that stores Information about the execution of an
application program so that the execution may be backed up to
some previous point at any time.

- -‘

I

— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-

52

References

(1] G.A. Mann, “A Survey of Debug Systems”, Honeywell Computer JournaL 1973,
volume 7, number 3, pages 182- 198

(2] Digital Equipment Corporation , “DOT~1O Prog rammer ’s Reference Manual ”,
Assembly Language Handbook, OEC-1O-NRZA-D

(3] B. Bressler , DOT: A Debu ggIng Aid, SYS.06.OI , Programming Technology
Division Document, Laboratory for Computer Science, M.LT ., November, 1971

(4] S.W. Galley, Debu gging with ESP -- Execution Simulator and Presenter
SYS.09.O1, Programming Technology Division Document, Laboratory for Computer
Science, M.LT. , November, 1971

(5] S.W. Galley and R.P. Goldberg, “Software Debugging: The Virtual Machine
Approach ”, Proceedin gs of the Association for Computin g Machinery Annual
~~~~~~~~ November, 1974k volume 2, pages 395-401

(6] M.H. Liu, DETAIL: A Graphical Debugging Tool. S.B. Thesis, Department of
Electrical Engineering, M.I.T. , February, 1 972

(7] G.J. Farrell , A System for MDL ProgrammIng, MS. Thesis , Department of
Electrical Engineering. NUT., August, 1973

(8] S.W. Galley and G. Pfister , MDL Pro gramm ing Language Primer and Manuel.
Laboratory for Computer Science, M.I.T., May, 1977

(9] J. Haverty , IMED IT -- Editor Program for Use with the lmlac Terminal s.
SYS.08.01.OZ Programming Technology Division Document, Laboratory for Computer
Science, M.I.T., August, 1972

(10] a Berkowitz, ’~~~ Undergraduate Research Reportj Programming Technology
Division, Laboratory for Computer Science, M.I.T., December, 1974

(11] Pt Ryan, EDIT: The MDL Editor~ SYS11.14, Prog rammin g Technology Division
Document, Labor atory for Computer Science, M.I.T., August, 1974

(12] 0. Eut l ke, R. Greanblatt, J. Holloway, 1. KnIght, and S. Nelson, j~~JJRsf~r nci Mani4 Memo No. 161A, Artificial Intelligence Laboratory, M.LT1 July,
1969 -

~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~~~~~~~~~ 

—_ _ _ _



53

(13] P.D. Lebling, SW User’s Manual. SYS.52.O7, Programming Technology Division
Document, Laboratory f or Computer ScIence, M.LT., (In preparation )

(14] S.W. Galley, Pre-loaded Pure MDL R SUBRs. SYS.11.28 , Programming
Technology Division Document, Laboratory for Computer Science, M.LT., November,
1 975

(15] B. Daniels, The MDI. Assembl,~~ SYS.11.07, Programming Technology Division
Document, Laboratory for Computer Science, M.I.T., (in preparation)

(16] C. Reeve, The MDL Compiler, SYS.11.25, Programming Technology Division
Document, Laboratory for Computer Science, M.LT., (in preparation)

~~~

-

~~~~~

- - 
— - 

—
~~~

-—v

~~~~~~~~~~ :- ~~ c~~ ~~~~~~~~~~~~~~~ ,. .~~~.



Officia l Dis tribution List

Def ense Documenta t ion Center New York Ar ea Office
Cameron Station 715 Broadwa y — 5th floor
Alexandria , Va 22314 12 copies New York , N. Y. 10003 1 copy

Office of Naval Research Naval Research Laboratory
Infor mation Systems Program Technical Information Division
Code 437 Code 2627
Arlington , Va 22217 2 cop ies Washington, D. C. 20375 6 copies

Office of Naval Research Dr. A. L. Slafkosky
Code 1021P Scientific Advisor
Arlingto n , Va 22 217 6 copies Commandant of the Marine Corps

(Code RD-i)
Washing ton, D. C. 20380 1 copy

Office of Nava l Research
Cod e 200
Arlington , Va 22217 1 copy Naval Electr onics Laboratory Center

Advanced Sof tware Technology Division
Code 5200

Office of Naval Research San Diego, Ca 92152 1 copy
Code 455
Arl ington , Va 22217 1 copy

Mr. E . H . Cleissner
Naval Ship Research & Development Center

Office of Naval Research Computation & Mathematics Department
Code 458 Bethesda, Nd 20084 1 copy
Arlington , Va 22217 1 copy

• Captain Grace N. Hopper
Office of Naval Research NA ICOM/M IS Planning Branch (OP .-916D)
Branch Office , Boston Office of Chief of Naval Operations
495 Summer Street Washington, D. C. 20350 1 copy
Boston , Ma 02210 1. copy

Mr. Kin B. Thompson
Office of Naval Research Technical Director
Branch Office , Chicago Information Systems Division (OP— 9lT)
536 South Clark Street Office of Chief of Naval Opera tion s
Chicago , Ii 60605 1 copy Washington , D. C. 20350 1 copy

Office of Naval Research
Branch Office , Pasadena
1030 East Green Street
Pasadena , C~. 91106 1 copy

iTi~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

—
~~
, 

~~~~~~~

- - - - - ~~-L~

