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P; . SUMMARY

In this paper we analyze the probabilistic behavior of a two-echelon
inventory system. In this system primary demands occur at one of the lower
echelon locations called bases. Bases are resupplied only by the upper
echelon called the depot; the depot is resupplied by an external supplier.

All demands occurring when a base or depot is out of stock are backordered.

We first develop the probability distribution for the number of
backorders outstanding at a point in time when the bases follow continuous
review (Q,r) policies and the depot follows a periodic review order-up-to-S
policy. We next compare the expected number of backorders outstanding at each

point in time for two systems. In the first system, bases follow a continuous

review (s-1,s) policy and the depot follows a periodic review order-up-to-S
policy; in the second system, all locations follow a continuous review (s-1,s) %
policy. Differences in the performance for the two systems are illustrated using

Air Force data. Lastly we derive the probability distribution for the number

AR TR AYATRE 3, e

of backorders outstanding at a particular point in time at the bases when

all locations follow a periodic review order-up-to-s policy.
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I. INTRODUCTION

Our main objective in this paper is to analyze the probabilistic behavior
of a two-echelon, multi-item inventory system. Primary demands for any item
are assumed to occur only at one of the lower echelon locations,called a
base . Each base is resupplied only from the upper echelon,called the depot,
-dateral resupply between bases is not allowed; the depot, in turn, is resupplied
by an external supplier. Demands occurring when a base or the depot has no
on-hand stock are assumed to be backordered.

In the next section we will develop the probability distribution for the
number of backorders existing at a point in time at each base when the bases follow
continuous review (Q,r) policies and the depot follows a periodic review
order-up-to-S policy. We also assume that thé demand process at each base
is a Poisson process.

We will examine the important special case where the bases follow a
Q=1 or (s-1,s) continuous review policy in Section III. Specifically, we
will compare a system in which bases follow a continuous review (s-1,s)
policy and the depot follows an order-up-to-S policy to a system in which the
base policy remains a continuous review (s-1,s) policy and the depot follows
a continuous review (S-1,S) policy. Since continuous review models are often
used to approximate situations in which a periodic review policy is followed,
we are interested in measuring the difference in performance achieved in the
two systems. To accomplish this, we measure the expected number of backorders i
outstanding at any point in time at a base for a sample of 68 Air Force avionics
items. . The example system consists of 15 bases and a depot. Thus, we will be

concerned with measuring how this policy change at the depot affects performance

at the bases. While it is intuitive that performance in the periodic review

case should be inferior to that achieved in the continuous review case, it is




' : of interest to see at what rate and by how much performance changes with
differing review period lengths and times within the review period.
In the fourth section we derive the probability distribution for the
number of backorders existing at a point in time when all locations follow
a periodic review order-up-to-s policy. The development is quite general in
that no assumption is made concerning the nature of the discrete demand

distribution.
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!B o II. A PROBABILITY EXPRESSION FOR BACKORDERS WHEN BASES FOLLOW A CONTINUOUS
‘ REVIEW (Q,r) POLICY AND THE DEPOT FOLLOWS A PERIODIC REVIEW POLICY.

We will now develop the probability distribution for backorders at a
base at an arbitrary point in time when bases follow a continuous review (Q,r)
policy and the depot follows a periodic review (S-1,S) policy. The line of
reasoning used here is the same as used by Muckstadt in Ref. [1] where he
derived the probability distribution for backorders when all locations follow
continuous review (s,S) policies. We refer the reader to this reference to
obtain the details of the logic behind the development. For simplicity, we assume
we are dealing with an arbitrary item.

We begin by listing the basic assumptions..

(1) All bases have the same system parameters--demand rates and resupply

times -- and all bases follow the same continuous review (Q,r) policy.
(2) The depot follows a periodic review order-up-to-S policy with review

period length T and initial review time x.

e T ARSI A

(3) No partial fills of base orders by the depot are permitted. All Q
units of an order must be shipped simultaneously.

(4) A simple Poisson process with rate A generates demand at each base.

oy

(5) All unsatisfied demands at all locations are backordered.

(6) T, the base lead time given that the depot has stock on hand, is

¥
H
¢

constant and known.
(7) 1t', the depot lead time from the external supplier, is constant k
and known. L
(8) The base reorder point r is greater than or equal to -1l.

(9) The number of bases m in the system is large.
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(10) All demands are satisfied on a first-come,first-served basis.
A complete discussion of these assumptions and their implications is given in
Ref. 1.

Before we obtain the probability distribution of base backorders at a
point in time, we introduce the following nomenclature:

Il represents base J's inventory position at time t-T-1',

12 represents base J's inventory position at time t-T,

G represents the number of orders placed by all bases other than
base J for depot resupply during (t—T-T',ﬁ-T],

D represents the number of demands occurring during (t-T-1',t-1]
at base J,

B represents the number of demands occurring during (t-t,t] at
base J,

V  represents the number of satisfied orders placed by base J on
the depot during (t-T-1',t-1]--the orders are placed during
(t-T-T',t-T] and received at base J prior to t,

a(x,n) = e *x"/n!,
B(t) represents the number of backorders existing at base J at time
t,

U represents the number of orders placed on the depot during
(t-t-1',t-T] by base J that are unfilled at time t,

Y vrepresents the arrival rate of orders at the depot from all bases

except base J measured in orders per day,

N, ={n: n=Q- (i-k) + nQ, A = 0,1,2,..., and n < SOIQ} v {0},

1
Ny={n:n=k-1i4+ nQ, n = 0,1,2,..., and n £ So/Qs
N = {n: n=Q- (i-k) + nQ, n = 0,1,2,...} v {0},

. {n:n=k-4i+nQ n=0,1,2,...}, and

T(t) = (t-T-T'-x)mod T.

|
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The basic idea behind the derivation of the probability distribution for the
number of backorders outstanding at a point in time at a base can be obtained from

Fig. 1. When all locations follow continuous review (s,S) policies, we see

+ - .
t-T-T! t-T t

Time Sequence of Events in the Continuous Review Case

Figure 1.

that any orders placed at a particular base, say base J, prior to or at time

t-T-T' will be satisfied by time t. Hence, all backorders existing at time t

at base J are due to demands placed on base J during the interval (t-t-t',t].
In Ref. 1, Muckstadt used two events to obtain the desired probability expression.
Case A was defined as the event that the total depot demand during (t-t-1',t-t]
does not exceed the depot inventory position at time t-7-T', C(Case B was defined as
the event that the total depot demand during (t-1-1',t-T] exceeds the depot-
inventory position at time t-T-1'. With these events forming a partitiow, he

calculated the probability expression as

1 {B(t)=b} = P{B(t)=b; Case A} + P{B(t)=b; Case B}.

In the periodic review case we use the same argument. From the way that
T(t) is defined, we see in Fig. 2 that t-t-1'-T(t) is the closest depot review

time prior to or at time t-1-T', Then all base J demands occurring prior to or

| l

L l
I | | 1
t-1-1'-T(t) t-T-1! t-T t

Time Sequence When the Depot Follows a Periodic Review Policy
Figure 2.
at time t-T-7'-T(t) will be satisfied by time t. Hence all backorders existing

at time t at base J are due to demands placed on base J during the interval
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(t-t-t'-T(t),t]. Case A is now defined as the event that the total depot demand
during the interval (t-t-1'-T(t),t-1] does not exceed the depot inventory
position at time t-T-1'-T(t). Case B is defined as the event that total depot
demand during “t-t-T'-T(t),t-T] exceeds the depot inventory position at time
t-T-1'-T(t).

The remainder of the derivation closely follows that given in Ref. 1.
Consequently, we only present the final result below. However, there are two
important differences between the expressions for this case and the ones given in
Ref. 1. First, in the continuous review case, many terms need to be conditioned on
the probability distribution of inventory position at the depot at time t-1-1'.

In the periodic review case, the analogous time is t-T-T'-T(t). However, this time
is a depot review time. But, in this case the depot inventory position will always
be S at time t-T-T'-T(t). Hence the periodic review expression does not have
summation terms involving conditioning on the depot inventory position or factors
involving depot inventory position as an unknown quantity. In this sense, the
periodic review expression is computationally less burdensome. The second difference
between the two expressions involves stationarity. The continuous review expression
is independent of t so that probability of backorders at a base remains the same
throughout time. However, in the periodic review expression, this probability
distribution depends both on the review period length T and the time t.

We now show how to determine the probability distribution for the number of

backorders outstanding at time t at a base. Clearly, P{B(t)=b} = P{B(t)=b; Case A}

+ P{(B(t)=L; Case B}. We will find P(B(t)=b) by determining separately
P(B(t)=b; Case A) and P(B(t)=b; Case B).
It is not hard to see that P{B(t)=b; Case A} can be stated as follows:
r+Q 2
P(B(t)=b; Case A} = [ P{B=i+b} - P(Case A; I°=i} when b2 1 and
i=r+l
r+Q

i
P(B(t)=0; Case A} = } ) P{Bsy) + P{Case A; 1231}. where
i=r+l y=0

A 1 e AV .= g e e e e At B e




' . P{¥ =1 +b} = a(AT,i+h), P{¥=y} = a(At,y), and

‘ i 8/Q - [(n-k+Q+r)/Q]
F{Case A; I2=i} = 1 ) )
) k=r+l neNl m=0

1/Q -a(y(t'+T(t)),m) - a(A(T'+T(t)),n)

r+Q $/Q - [(n-k+Q+r)/Q]
e )
k=i+l n£N2 m=0

1/Q - a(y(t'+T(t)),m) * a(A(T'+T(t)),n),

Furthermcre, one can see that

r+Q [(i+b)/Q]
P{B(t)=b; Case B} = I )
i=r+l u=0

P{D=i+b-uQ} - P{U=u|Case B; 12=1}

: P{I2=i; Case B} when b > 1 and

————E R

r+Q [(i/Q)] i-uQ
P{B(t)=0; Case B} = [ ) )}
i=r+l u=0 y=0

; P{B=y} - P{U=u|Case B; 1221}

’ P{Izsi; Case B},

00 $or  LesGooied




' In this case

P{B=i+b-uQ} = a(At,i+b-uQ), P{3=y} = a(At,y),

i oo
P{U=u|Case B; 1%=i} =}
k=r+l deN; g=(5/Q - [(d+Q+r-k)/Ql+1)*

P{Vv=[(d+Q+r-k)/Ql-u|D=d; G=g; Il=k; 12=i; Case B}

- P{D=d; G=g; I'=k|Case B; I’=i}

r+Q ®

ok g ) &
k=i+l deNé g=(S/Q - [(d+Q+r-k)/QJ+1)
; P{Vv=[(d+Q+r-k)/Ql-u|D=d; G=g; rt=k; 1%21; Case B}

- P{D=d; G=g; Il=k|Case B; I°=i},

P(V=v|D=d; G=g; I'zk; I°:i; Case B}

d g )
= Qil ( vQ-(Q-k+r)+w)(S/Q-—v-l - _8-(s/Q-v-1)
s S d+g : (g+d-(vQ-(Q-k+r)+w+S/Q - v-1)
(vQ-(Q-k+r)+w+S/Q-v-l)
e
o Y0 (Q-kin)-1 JAB/Q=V | . d-(vQ-(Q-k+r)-1) , and
d+g g+d-(vQ-(Q-k+r) + S/Q - v-1)
(vQ-(Q-k+r) +S/Q-v=-1

e e e . S ——— — e e g - - p——




o AT IR S

B e

10
1 2
P{D=d; G=g; I =k|Case B; I“=i}

0, if [(d+Q+r-k)/Ql+g < S/Q

or d(Ni when 1 > k

< or déNé when i < k

1
2 ’
P{Case B; I°=i}

a(A(T'+T(t)),d) *a(y(T'+T(t)),g) - 1/Q -

\
Finally,

i o0
P{Case B; I2=i} ) ) +
k=r+l neNi m=(S/Q - [(n+Q+r-k)/QJ+1)

1/Q - a(v(T'+T(t)),Mm) » a(A(T*+T(t)),n)

r+Q ®

e Gt

k=i+l neNj W=(8/Q - [(n+Q+r-k)/Q1+1)"
1/Q - a(y(t'+T(t)),m) * a(A(T'+T(t)),n).
Thus we have demonstrated how P(B(t)=b) may be calculated in the situation

where the m identical bases follow a continuous review (Q,r) policy and the

depot follows a periodic review order-up-to-S policy.




i III. A COMPARISON OF PERFORMANCE WHEN THE DEPOT FOLLOWS DIFFERENT POLICIES
.

A major problem in comparing the continuous review model to the periodic
review model developed in Section II is determining what the review period
length T should be and when to examine the system's behavior. Since the number
of expected base backorders in the continuous review system is independent of time,
we have available a lower bound on expected system backorders for the periodic
review model at any time t. However, in the periodic review model, expected
base backorders depend both on T and the time t at which we examine the
system. To examine this situation, we must again refer to the variable T(t) =
(t-T-v'-x)mod T and Figure 3. First note that T(t) incorporates both T and
t. Also, by examining the probability expression derived in Section II, we see that

ah . ,

|
3 I o

-]

t-1-1'-T(t) t-1'-T t-T t

5 Time Sequence For the Periodic Review Model

Figure 3.

this single quantity is all that is needed (in addition to normal system parameters)
to determine a backorder distribution at any arbitrary time. In fact, expected

base backorders in the periodic review case monotonically increase as a function

of T(t) with 0 < T(t) <T. If T(t) = 0, then time t-T-t'-T(t) coincides with

time t-T-T' and expected base backorders is the same for both the continuous

O R Y R R Y L) N

and periodic review models. However, as T(t) becomes larger, the length of time for

s s

which backorders may exist becomes longer in the periodic review model and we
should'expect a rise in expected base backorders. This now solves the problem of
choosing values of T and t. Rather than choosing these values individually, we
calculate expected backorders by varying T(t) with T(t) > 0. For any given

T and t, T(t) can be computed and system performance can be easily found.
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We now present some results obtained when the continuous and periodic
review models were tested on a 68 item 15 base inventory system. As stated
earlier, all locations are assumed to follow an (s-1,s) policy (note that
the depot's order-up-to-S policy ic the same as an (S-1,S) policy). Our
goal is to examine the change in expected backorders for the periodic review
model with differing values of T(t). Nec attempt is made to quantify rigorously
the various factors causing the differences in performance among the items.

Rather, we will be content to obtain observations that our empirical evidence
indicates holds for all items in the system.

Initially, stock levels were computed for each of the 68 items using the
algorithm described in Ref. 2 for the case where all locations follow a continuous
review policy. The same system data and stock levels were then used for the case
where the depot follows a periodic review policy. The number of expected base
backorders was then computed for each item for values of T(t) = 0,7,14,21 and
28 days. The results obtained show that expected base backorders for the periodic
review model are monotone in T(t). Furthermore, this relationship appears to
be convex; the rate of change in performance was very nearly constant over the
region tested for all items. To illustrate this observation, we present graphs
of four representative items. The data for the four items is given in Table I.
Figures four through seven display the affect of time on expected base backorders.
Since the demand rate and stock level are the only rarameters that change among
the items, the differing ratés of change in performance are due solely to these
factors. As would be expected, the slope is sharper for high demand, low stock
level items. In general, the results show that when the review period length
at the depot is long (e.g. a month or more) the continuous review model (T(t) = 0)
provides a poor approximation to the periodic review model. Backorders are severely
underestimated in many cases as T(t) increases. However, when the review period
is short (e.g. a week) the approximation appears to be satisfactory for most items.
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Base Average
Transportation Base Depot

Base Daily Time Resupply Time Lead Time Base Stock Depot Stock

Demand Rate (in Days) (in Days) (in Days) Level Level
0.0408 12 15.3282 41 1 25
0.0341 12 17.7592 41 0 19

4. , 0.0077 12 22.8011 41 0 y

0.0096 12 15.7013 41 0 7

Data For Four Items

S,

T R A ARSI T

Table I
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Figure 7
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IV. A PROBABILITY EXPRESSION FOR BACKORDERS WHEN ALL LOCATIONS FOLLOW
(s-1,s) PERIODIC REVIEW POLICIES.

In this section we derive the probability expression for backorders ag a
point in time for a two-echelon inventory system in which all locations f?llow
periodic review (s-1l,s) policies. The number of restrictions and assumptions
made is small in order to obtain a general expression capable of being used in many
situations. Specifically, we make the following assumptions for the model
developed in this section:

(1) An (s-1,s) périodic review policy is followed at all locations.

At location i, we use an (si—l,si) policy with review period T

i

The initial review time is vy (Subsequently, the subscript i = 0
refers to the depot while i = 1,...,m refers to the bases.)

(2) Partial fills of base orders by the depot are in effect.

(3) The sequence of base requisitions is totally ordered.

(4) Orders placed on the depot are satisfied on a first-come, first-served
basis according to the arrival sequence.

(5) Ti’ the lead time for location i, is constant and known.

(6) All unsatisfied demand at all locations is backordered.

(7) The demand distribution at each base is an arbitrary discrete

distribution.

As before, our objective is to compute P{B(t)=b}. To carry out the derivation
we first define

To(t) = (t-tJ-to—vo)mod To and

TJ(t) S (t-tJ-TO-To(t)-VJ)IOd TJ <




L  { | T |
I £ T g5 L

SN R S = A R ol =T =T
¢ J 0 To(t) TJ(t) ¥ J 0 O(t) ' J 0 . J *

Time Sequence of Events When Both the Depot and Bases Follow
A Periodic Review Policy

Figure 8,

Observe from Fig. 8 that t-TJ-to-To(t) is the last depot review time prior to

or at time t-T,-T,. Similarly, t-TJ-TO-TO(t)-TJ(t) is the last base J
review time prior to or at time t-TJ-TO-To(t). Any base J demand occurring
prior to time t-TJ—to-To(t)-TJ(t) will be satisfied by time t. Hence, any
backorders existing at base J at time t are due to demands placed at this
2 location in the interval (t-TJ-to-To(t)-TJ(t),t]. Also note that base J
orders placed in the interval (t—TJ,t] will not help in satisfying demand
by time. t. This is also ;he case for any depot orders placed in the interval
é (t-tJ-To,t]. Next, let

X, = {vi+nTi|n o e - PRCSE SR B S RINRRD S

m |
Y(t) = 1:1 (xi n (t~tJ-1o-To(t).t-fJ]) 3
Z(t) = Y(t) v {t-to-tJ-To(t)-TJ(t)}-

Z(t) contains all base review times in the interval (t-TJ-to-To(t).t-tJ]

plus the base J review time t-to-tJ-To-Td(t). Let 2Z(t) = {zo.zl.....z.}

with Zy < oo <z. and Z, = t-tJ-To-To(t)-TJ(t). where zi <zj

i arrives prior to order j in the arrival sequence. Note that although z‘ may

implies order

SRR N R R SRS S L2 = RN
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ﬂ . equal Zj we have assumed--Assumption 3--an ordering of the arrivals is predeter-
mined. Also let {Z“ ,...,Zn } be the subsequence of 2Z(t) that consists of all

0 k
base J review times. Note that Z0 = Zn in all cases. Before proceeding with

0
the calculation of P{B(t)=b}, we must compute the probabilities for the

following events.
Let

Eq be the event that Zq is the first time in the interval (t-TJ~T°-To(t).t-1J]
m
that ; S Di(x-T.,x) > 8

i=1 xexin(t Ty O-To(t) zZ ]

is the demand occurring at base i in the interval (@,B], q = 1,...,e, d

0 where Di(a,s)

and
m

E . be the event that [ : D,(x-T,,x) < 5.
e i=1 xeX, n(t-t T i -T (t) zZ, ] 4 .

Eq is the event that cumulative depot demand in the interval (t- IJ IO-T (t).t-t ]

first exceeds s, at time Zq, Q= l,.000e, B is the event that cumulative

0 e+l

depot demand in the interval (t- s e 0 To(t) t-T ] does not exceed So°

Also, let

F be the event that base J orders placed at times Z_,Z2 ,...,2
P n0 nl np

are all completely satisfied by time t, p = 0,1,...,k,
G be the event that Z is the first base J order placed in
- J-to-To(t) t-t ] pvhich will not be completely satisfied by
time t, p=1,...,k, and

(t

G,,; De the event that all base J orders placed in (t-‘lJ-to-To(t),t-TJ]

will be completely satisfied by time t.
One can easily see that the probabilities for the events 51'5«'1, and F_o
are given as follows: :

—g— —ve. e —— . -
e TS . g A A .l o S P &




s easadios Lhe e LS

e e e

m
PE}=P(] 1 D, (x-T,,x) > s},
i=1 xeX;n(t-T;-T-T (1),2,] SR 9

P{E

fe—
"

P{ X ) D,(x-T ,x) <s }, and

e+l i=1 xex n(t- tJ-t -T (t) z ] i

[

P{Po} =
Next we find P{Eq}, for q = 2,...,e. It is not hard to see that

P(E } = Z P(E| X ) D, (x-T,,x) = d}
T g0 Vi1 xex, (e T T-To(),2 ]

m
3 X D,(x-T,,x) = d},
1=l xeX;n(t=T =T0-T (1), ] ¥

where

m
el o] D, (x-T,,x) = d}.
i=1 xexiﬂ(t-IJ—TofTo(t),Zq_l]
r
{ 0, d > 80
Vil o
P{ D.(x-T,,x) > s -d}, d <s_.
= C Adallr b ¢ (St S e
i=1 xcxin(zq_l.zq]

\

With P{E } known for q = 1,...,e+l, we can now proceed to obtain P{Fp}
e+l

for p = 1,...,k. Clearly P{Fp} = P{P IE }P{E }. We can evaluate this
q=1

expression by recognizing that

A




P{FplEq} = < 0, q € {nl,...,np},

LP{DJ(r(q),an) = 0}, np >q and q ¢ {nl,...,np},

where r(q) = max{Zn |Zn £ 0 BT Ly ikl
- ar

Next, let us calculate P{Gp}. Observe that

6 =F nF; PR Xaviiake

'_ i Then
| g )
c c
P{G = P{F nF = P{F_|F P{F .
(6} = P(F,_) nF} = PIELIF ) IPCF, )
Furthermore,
- et+. &
P{F_|F = P{F_|E ;F P{E_|F
4 and
g
P{D.(2Z S 0 5 TR T T
J'"'n n -1
SUpel P P
0, § Ry

P(F:lﬂqirp_l} = < P{DJ(zn l,zn ) > 0}, np-l <q<n_
P- P

l, q'n"

0 ; N
14 ’ q P
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Also,
P{F_  |E JP(E )}
P{E IF -l} = p'l q q 5
St s »e 4
p-1
where
f‘
l’ np’l‘< q,
P{Fp_l|Eq} = J 0, q € {nl,...,np_l},
P{DJ(r(q),an-l) = 0}, np_l >q and q ¢ {nl,...,np_l}.

\

Since P{Eq} and P{Fp_l} have already been determined, we have found P{Gp}
for p = 1l,...,k. Finally, note that P{Gk+l} = P{Fk}.

Clearly

k+1
P{B(t)=b} = § P{B(t)=b|G }P{G } for b2 1.
pel PP

To find P{B(t):b|Gp} we require an additional definition. Let Hup be the
event that u (> 1) units of the order placed by base J at time Zn

p
cannot be filled. Then

= - P = 4 G = REEE LY
P(B(t)=b| G } u£1 {B(t) b|Hup G IP(H | R T k

But

f

4 0b, lgbgu,

P(B(t)=b|H 3G} =
P(DJ(Zn yt) = lJ+b-u}, BEaOEl

P

\

TR,

> Fnj:ii P

P VU SO R

% Sy srsono
A R



Also,
e+l
P(H |G } = P{H |E ;G _}P{E |G }
tHyp! Op? q§1 up! q'p ql?
where
(
0, n < =
P q
m
P{Huplﬂq;Gp} = G 1 Di(x-Ti,x) =d;
d§§0 i=1 xeXin(t-Tj-To—To(t),Zq_l]
D _(Z ,2 =zuts -d)} , n
n 0
POAE 2 )= i :
s = U, n > gq,
J
np_1 np P
.
|
| P{G_|E }P{E }
P 2 P{quGp} = P_9 ., axd
P{G
| { p}
roo np < q,
PG IE = 1, 2
pIFq { é G
P{D_(r(q),2 0; D (2 20l on >
L J np-l J p-1 "p P
Also,
= = = > 1,
P{B(t) ble"’l) P(DJ(an.t) 'J+b}’ b-&d

Combining these results we have shown how to find P(B(t)=b),

24

for b .o

-
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Furthermore,

P{B(t)=0)} = 1 - I P{B(t)=b} .
b2l

e el i

SRR,

e v

—_——

Pty IR 3 e S RS R
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o policy.” WeSpext-compare™the expected number of backorders outstanding at each
*“‘?AH point in timé for two system¥. In the first system, bases follow a continuous
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