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~r,tSS ~~~~~~~~~~~ WE ~~ A P~~LIATE SffiE ~~flW~ DIcUJSIcV~

AB~~R~~T

Internal stresses inside a prolate spheroidal izx~lusicn parallel to

a uniaxial applied stress are obtained by using Eshelby theory. Effects

of the elastic ~ ,dulus ar~ the aspect ratio of the inclusion are evaluated.

The ~~eee~t results are ocaipared with others, in particular, with Arg.n’ a

solution for a s1e~der rod.
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1. D~TW) WC’I’I~~
Wk~~t e3cteznal stress is applied to a oo~~oeite material, internal

stresses within the material are stru~g1y affected by the shape, ananganent,

ar~ elastic stiffness of the reinforcing ela~~ t . For cptium desi~ i az~
effective utilization of ccm~oeite materials, t~~~~~~ knowledge of the

stress concentration, especially at the interface, is essential . It is

pertinent to note that failure often init,iates at such stress OO fttLItLC fl.

In fiber reinforced ocaçoeite materials, the stress ccax~entration at the

er~s of disoontirwis fibers is of pr’in~ ia~xx’tance. This problen has been

considered by several investi~~~~s ti-i]. )‘bst recently , Ar’W~.m obtained

approximate solutions for stresses aro~u~ sla~1er elastic rods with ncck~li

different frcan ~~~t of the infinite elastic matrix (1]. Earlier, Edii~ rds (2]

evaluated the stress concentration due to a prolate spheroidal inclusion

~thich lies normal to the applied stress axis. Tanaka st al. (3] oonsidered

a prolate spheroidal inclusion parallel to the stress axis in the limit of an

infinitely long iix~lusion. While a prolate spheroid is a good apprcsdnaticn

for a fiber, no detailed study of the stress concentration has been mede. In

this study, ~~ report on the stress concentration produced by a prolate

spheroidal inc]i~sion, ~thich lies in an infinite elastic natrix parallel to

the applied stress axis. Effects of the shape ar~ the elastic ncduli of the

inclusion on the stress concentration are considered. Eshelby theory [4]

of t~enefo~,*t ion induoed stresses foxes the basis of the present study.

This approach is ooimon to our previous studies on the stress concentration

in ar~ arowxl an oblate spheroidal inclusion anbedded in the elastic-plastic

matrix (5,1].

2. 5 DICI~~I~ I MD A!L~~
D ~T~~88

In~~~ C~~t,u1sfl a dinates syatan, X1, X2 aud X3, a prolate spheroidal

iz~ lusIcn is lA sted within

(X~~+ X ) / e2 +~~ /c2 < 1 .  (1)



- - ~~~ V ___________I ’ .
• The aspect ratio k of the i~~luei~~ is defii~ d as c/a, er~ is ~~eater than

unity fcc’ a prolate spheroid. ~i. matrix ar~ Inclusion are aes’~~~ to be

elastically isotr opic. 1~s elastic stiffnessee ~~e given by

Cjj ]~ A61~&J~ + 
~*(~j j~6jt + 6iL6jk~

for the matr ix, ar~

A*6ij 6J~ 
+ U5(6~~6j  +

for the Inclusion, respectively. A andA* are the L~~s constants, and ~ ani ~*

are the shear ~~~ili of the matrix ~~~ inclusion, respectively . In order to

sisplify the presentation of ru.marioal results, ~~isson’ s ratios of the

matk ix and lrclusion,v and V5 are ass~msd to be equal to 1/3, unless otherwise

specified. In the following calculations, -
~~ eip].oy the ratio of shear n~dulzis

m :  u5/
~ w~er unia,dal applied stress 0* along the axis. 1~~ elastic

strain e~~ procboed by 0* can be ~~~tten as,

/-v o o \
A ..I 10*e
~j _ 1  0 —v O

,~~— (2)

\ o  0 1/

where E is the Y~ing’s nndulue of the matrix.

3. THEORY

Eshelby (Id obtained general solution for the inhmE~gsnity problen of 
V

an ellipsoidal Inclusion using the so-called .quivslent inclusion mat~r,d.

The Internal stress inside the Inclusion, which is unifox~ , is gi~~~ by

= + — .~,) 
~ ~~~~~~~ + •

~&~‘ 
(3)
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where the constraint strain e~~ is given In terils of Eshelby tensor, S1~~~, 
V

as, Here, is the elgen strain of the equivalent inclusion.

By solving (3) with respect to e~~, ~~ can obtain a~~. Because of the synsetry

of Eqs. (1) and (2) ,  ~~ takes the form of

/x o o\
x a )  (4)

\o o z j

~there X and Z are functions of the aspect ratio, k, and the ratio of shear’

ncdulus, m, as ~ u as 0*/E.

~~. RESULTS

Frcin Eq. (3), X a r~1 Za e f c u~d t o be

~~~=—  
(l - m) (( l-a ) r (k)-] j  • 0*

3((l - in)2f(k) - (1 — m)g(k) + 1] E

- —(1 — m) ((1 — zn) s(k) — 3] 0*
3((1 — in) f(k) — (1 — m)g(k) + 1]

where in is ~i*/~a, and

r(k) = S3333 +

s(k) = 

~~~~~ 
+ + 2S33u

= (S_ _fl + S~~~~2
)S

3~~~3 
- 2S,~ 33S3311

V 

g( k ) : S~~~~ + S ~~~~ + S 3333 .

The values of r , s, f ~~ d & have bean evaluated for k ~ 1 by using apçzvçriate

(7]. The xes~ltant in~~nal $tresees inside the inclusion can be ~a~itten

as, -~~~

_ _  _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _



- ~~ _____________________ - - -

i~k

(6)

The ni.marioa]. results are s1xsa~ in Figs. 1 and 2. The stresses are

ncr,nalized by 0*, and are plotted against k for selected values of m.

Results indicate that both and dT
~3 rapidly approach the asynptotic

values with inoreasing k and sigsi.fioant deviations are only fotn~ wI~~ k

is less than 10 to 30. For’ an Infinitely long inclusion a~~ al~’ay~s vanishes,

and 033 becaess nr~~. W)~~ nc inlulrlgeneity effect exist (m = 1), ~ obtain

CJ~3 = 0*, and 0 as expected. The shear nodulus of the incluR~on has a

larger effect on for a ~~ e elongated inclusion.

5. (X)P’PARISON WITh (TrIER SWrUDIES

5-1. The Results for an Infinitely long Inclusion (k =

Tanaka, Ibri and NaJ~~ip.za made a pioneering- contribution to inclusion

probleis by using Eshelby theory. In a~ of their papers (3] , the internal

stress due to the in~ Ia3geneity effect of an infinitely long fiber parallel

to the stress axis eras evaluated as,

~~ + — E) ((1 + -v) (1 — 2v)E + (1 — v)E5] 0*(1 — v2) ((1 — 2v)E + E5]E

Their result disagrees with the present calculation except when specific

values of in axe taken. Relevant r~ n-zero ccaçcnents of Eshelby tensor for

a ~~olate spheroidal inclusion parallel to X3 for k = are V

SL111 2222 U]. - v)

$
~1l22 22U B(l - v)

~~~~~~~~~~~~~~~~~~~~~~~~~ ,

_ _  _ _ _ _ _ _  * - - _ _  *
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fr E d c h w eh av e e~~~~ e~2 ( ~~
”2

~V, and e~3 = 0 .  Pr anEq . (3), we have

033 ( ] .
~~~~~ ) 

• (1 ~~~ +a)  ~~~~~~ v5 + m ( 1+ v 5) - 2w5] .0* (8)

or

- ~l. + 2E(v5 - v) 
0* (8) ’

33 - E(l — 2~’) (1 + VR) + E*(1 + vY

W1~~i the Poisson’s ratios axe equal, Eq. (8) ’ yields 0~3 = ni , but Eq. (7)

dues not. The present result is cor rect , since this case corresponds to the

isostrein (or Voigt) oculiticn.

5—2. I~ d—Shaped Fiber

Recently, Argon (2) obtained an apircaiuaate solution for U~~ stress

concentration due to a rod-shaped inclusion in an infinite elastic nedhin

when wdaxial external stress is applied along the rod-axis. He used

Eshelbv ‘s concept of stress-free tranefc*ination In order to evaluate traction

at intu irfaces. 1~~~, he eiployed a solution of elasticity for t~~ point

forces in an Infinite nrdiimi given by Ti~~e1~~)~ and G~odier [8] . The

interface trecticn wes L~4~-esented by the t~~ point fortes cor~ entrated at the

end of the rod-shaped inclusion. A rod having a large length-to-dianater ratio

is ~ 4i~4 -ay to a prolate ap)~~oidal incl~~i~on with a large aspect ratio. There-

fore , it is interesting to exanine differ~ences between re~~1ts obtained by

~~~~ and by us.

ItThen a rod-shaped Inclusion with a diama~~ ’ 2 r0 and length 2t , is

parallel ‘~o the a,d.s of external stress 0*, ft ~ m’s solution for 0~3 at the

V i  end of the rod ia ~~~ V 

-

$ 
~~~~~ 

(9)

I
_ _ _ _  
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S .

P w evisassuaedto be l/ 3,~~~~ a o o n s t an t ai s f ouJ~dt o b e l .4 l 2. Here,

the apeect ratio k’ is defined as k’ = t/r0. In Pig. 3, values of
obtained from Eq. (6) and Eq. (9) are plotted against k and k’ for m 6. (This

value of m corresponds to a steel reinforced co~~ete.) As can be seen in

Fig. 3 , a good agreen~nt wes obtained. When k (or k’) goes to infinity, both

results agree exactly. Differences are less then 3% for k (or k’) > 100 and

beoai~ greater with deoreasing k (or k’). I~wever, it is still less then
20% at k = 1. As pointed out by Argon, his netbod based on t~~ point forces

in an infinite nadhin is app 1fr~ab1e to the case of ver y large aspect ratios

of the rod-shaped inclusion. A part of the difference s~~~1d also be attri-

hxted to diffe~~~t gecvatr’ies.

This wor~c wes supported by the Hetallur’~ i Program of the Office of

Naval Researth under contract N0001Le_75_C_0889.
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FIGJRE~ CA?rIC~ S

Fig. 1. Internal stress inside the inclusion due to inlurogeneity effect ,

against k.

Fig. 2. Internal stress inside the inclusion due to i hmgeneity effect ,

against k.

Fig. 3. Internal stresS inside the prolate and rod-shaped inclusions

at m = 6.
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