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STRESS CONCENTRATION DUE TO A PROLATE SPHEROIDAL INCLUSION

' ABSTRACT

v

Internal stresses inside a prolate spheroidal inclusion parallel to
a uniaxial applied stress are obtained by using Eshelby theory. Effects
of the elastic modulus and the aspect ratio of the inclusion are evaluated.
The present results are compared with others, in particular, with Argon's
solution for a slender rod.
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1. INTRODUCTION
' When external stress is applied to a composite material, internal
stresses within the material are strongly affected by the shape, arrangement,
and elastic stiffness of the reinforcing element. For optimum design and
effective utilization of composite materials, thorough knowledge of the
stress concentration, especially at the interface, is essential. It is
pertinent to note that failure often initjiates at such stress concentration.
In fiber reinforced composite materials, the stress concentration at the
ends of discontinuous fibers is of prime importance. This problem has been
considered by several investigators [18]. Most recently, Argon obtained
approximate solutions for stresses around slender elastic rods with moduli
different from that of the infinite elastic matrix [1]. Earlier, Edwards (2]
evaluated the stress concentration due to a prolate spheroidal inclusion
i which lies normal to the applied stress axis. Tanaka et al. [3] considered
a prolate spheroidal inclusion parallel to the stress ais in the limit of an
infinitely long inclusion. While a prolate spheroid is a good approximation
for a fiber, no detailed study of the stress concentration has been made. In
this study, we report on the stress concentration produced by a prolate
spheroidal inclusion, which lies in an infinite elastic matrix parallel to
the applied stress axis. Effects of the shape and the elastic moduli of the
inclusion on the stress concentration are considered. Eshelby theory [u]
of transformation induced stresses forms the basis of the present study.
This approach is common to our previous studies on the stress concentration
in and around an oblat_o spheroidal inclusion embedded in the elastic-plastic

matrix [5,6].
2.  INCLUSION AND ARPLIED STRESS
Inthe | coordinates system, X, , X, and X, a prolate spheroidal

inclusion is looated within
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' The aspect ratio k of the inclusion is defined as c/a, and is greater than
unity for a prolate spheroid. The matrix and inclusion are assumed to be
elastically isotropic. The elastic stiffnesses are given by

cijld. = XGijcu + u“ikajl + cilsjk)

for the matrix, and

®
Cisne

for the inclusion, respectively. A andA* are the Lame constants, and y and p#*
are the shear moduli of the matrix and inclusion, respectively. In order to
simplify the presentation of mumerical results, Poisson's ratios of the
matrix and inclusion,v and V* are assumed to be equal to 1/3, unless otherwise
| specified. In the following calculations, we employ the ratio of shear modulus
m = u%/y under uniaxial applied stress o along the X, axis. The elastic
muine%pmdmdbyo"‘omhemumas,

-v 00

A _ e -
ei.j = 0 =v 0 F (2)
0 01

| where E is the Young's modulus of the matrix.

3. THEORY

Eshelby (4] obtained general solution for the inhomogenity problem of
an ellipeoidal inclusion using the so-called equivalent inclusion method.
mmwummm,mnmmhumw
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where the constraint suaine;isgivmintamsofiishemtm, Sum,
”*‘fa'snm’:n Here, e isﬂneigensmmoftheequlvalentnnlusmn
Bysolvmg(3)mthmspecttoeij.waoanobmnoj Because of the symmetry

of Eqs. (1) and (2), e T, takes the form of

1]
X 00
¢
0 0 Z/

where X and Z are functions of the aspect ratio, k, and the ratio of shear
mdnlm,m,asuellasoAlE.

4. RESULTS
From Eq. (3), X and Zare found to be

xe—Gom (- r00 -1 o
3001 - MFO) - (L -mg(k) +11 E
7:-1-mIQ-wst-31 & &
A - WEG - (L - mglo + 1] E

where m is y®*/u, and
r(k) =8
s(k)
£(kx)

3333 ¥ 350933

B * B * By
£00 = iy T P - Buntan
80 = 81931 * 81392 * 53333 -
The values of r, 8, f and g have been evaluated for k > 1 by using appropriate
Sigs (7). The resultant internal stresses inside the inclusion can be written
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The numerical results are shown in Figs. 1 and 2. The stresses are

mrmlizedbyd",axﬂareplottedmjmtk.forselectedvalues of m.
Results indicate that both dtu and 623 rapidly approach the asvnptotm

values with increasing k and significant deviations are only found when k

is less than 10 to 30. For an infinitely long inclusion oL, always vanishes,

andcgsbeeamsnrﬁ When no inhomogeneity effect exist (m = 1), we obtain

33 cﬁ andaI =z 0 as expected. The shear modulus of the inclusion has a

large::'effec:t:c:nag3 for a more elongated inclusion.

5. OOMPARISON WITH OTHER STUDIES
5-1. The Results for an Infinitely long Inclusion (k = )

Tanaka, Mori and Nakamura made a pioneering’ contribution to inclusion
problems by using Eshelby theory. In one of their papers [3], the internmal
stress due to the inhomogeneity effect of an infinitely long fiber parallel
to the stress axis was evaluated as,

s B-DIAV A-2WE+A - VBN, A o
(1 = v [(1 - 2V)E + E*]E

meirmultdiwwj.ﬁ\ﬁnmtcalc\ﬂatimmptm»eciﬁc
values of m are taken. Relevant non-zero components of Eshelby tensor for
amlausphuoidalimlmimmnoltoxafork=om
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When the Poisson's ratios are equal, Eq. (8)' yields o§3=ndA, but Eq. (7)
does not. The present result is correct, since this case corresponds to the

isostrain (or Voigt) condition.

5-2. Rod-Shaped Fiber

Recently, Argon [2] obtained an approximate solution for the stress
concentration due to a rod-shaped inclusion in an infinite elastic medium
when uniaxial external stress is applied along the rod-axis. He used
Eshelby's concept of stress-free transformation in order to evaluate traction
at interfaces. Then, he employed a solution of elasticity for two point
forces in an infinite medium given by Timoshenko and Goodier [8]. The
interface traction was represented by the two point forces concentrated at the
end of the rod-shaped inclusion. A rod having a large length-to-diameter ratio
is simi.ar to a prolate spheroidal inclusion witha large aspect ratio. There-
fore, it is interesting to examine differences between results obtained by
Argon and by us.

When a rod-shaped inclusion with a diameter 2 r_ and length 2%, is
m_pmmammuscﬁ.m'smmmnfwagaatm
end of the rod is
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where v is assumed to be 1/3, and a constant a is found to be 1.412. Here,
the apsect retio k' is defined as k' = #/r_. In Fig. 3, values of oL,
obtained from Eq. (6) and Eq. (9) are plotted against k and k' for m = 6. (This
value of m corresponds to a steel reinforced concrete.) As can be seen in
Fig. 3, a good agreement was obtained. When k (or k') goes to infinity, both
results agree exactly. Differences are less than 3% for k (or k') > 100 and
become greater with decreasing k (or k'). However, it is still less than

20% at k = 1. As‘pointedwtwm,‘hismtmdbaaedmtmpointfomes
in an infinite medium is applicable to the case of very large aspect ratios
of the rod-shaped inclusion. A part of the difference should also be attri-
buted to different geometries.
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FIGURE CAPTIONS

Fig. 1. Internal stress inside the inclusion due to inhomogeneity effect,
GL/JA , against k.

Fig. 2. Intermal stress inside the inclusion due to inhomogeneity effect,
o34/, against k.

Fig. 3. Internal stress o,/d, inside the peclate and rod-shaped inciusions

atm= 6.
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Fig. 1. Internal stress inside the inclusion due to inhomogeneity effect,

ow.p\a) against k.
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Fig. 2. Internal stress inside the inclusion due to inhomogeneity effect,

awu\o>. against k.
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Fig. 3. Internal stress nwu\o> inside the prolate and rod-shaped irclusions

atm = 6.
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