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points of f~~is assumed to be finite any boi4ided set . I~ obi~ma belonging

to this class include those where the f 1~ are — norms (1 c p ~ c’) ; for

example , the linear approximation prob lem and both the minimax and minisum

problems of location theory. The algorithm is an extension of the work of

Dem ’yanov and . 

~,
We prove convergence of the algorithm to an c — optimal solution, and

(~~~~~~~trat 7*~s effectivene.~ by solving a number of problems from locat ion

theory and linear approxi mation theory . Our computational results are compared

with other solution methods.
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Abstrac t

In this paper , we present a sub gradient algorithm for the problem

Miii (F(x) ; x € R’1} where F(x) — Max {f ~ (x) ; I — 1, 2 , ..., m} and where

(x) — ~ f~~ (x) . Each f1~ Is assumed to be a proper convex function , and

the number of different subgradient sets associated with nondifferentiable

points of f~~ is assumed to be finite on any bounded set. Problems belonging

to this class include those where the f1~ are £ — norms (I < p < ‘°) ; for

example , the linear approximation problem and both the minimax and munisum

problems of location theory . The algorithm is an extension of the work of

Dea ’yanov and Malozeaoy (6 1.

We prove convergence of the algo~ithm to an c — optimal solution and

demonstrate its effectiveness by solving a number of problems from location

theory and linear approximation theory . Our computational results are compared

with othe r solution methods .
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1. Introduction

The munimax problem that we consider

(P) Min~F(x) . F(x) — Max {f 1(x) ; I — 1, 2 , ..., ml,
xeR

£
— ~ f~~ , f~~ convex not necessarily differentiable,

i—i

is a special case of an unconstrained nondifferentiable convex prograsining

problem. For in — 1, we minimize a sum of convex nondifferentiable functions

and we call this problem a ininisum problem.

To solve such nondifferentiable convex problems, it seems straightforward

to extend the steepest descent method , using the fact that the steepest descent

direction is given by the opposite of the element of minimum norm in the sub—

grad ient set. Unfortunately , it is well—known that this extended procedure

is in general not convergent [6 , 191. As is indicated in [4] , it is necessary

to consider a larger set than the subgradient set itself in order to guarantee

convergence .

The methods proposed in the literature to accomplish this can be divided

into two main families .

The fi rst family enlarges the subgradient set at any point and determines

a descent direction from this enlarged set . For example , Dem’yanov and

Malozeaov [6] solve munimax problems with continuously differentiable functions

by considering also ‘near binding ’ functions in the following way : to the

extreme points of the subgradient set (formed by the gradients of the binding

functions) they add the gradients of those functions which are almost bindi¼.

In another study , Bertsekas and Mitter (2] used the c—subgradient set to

calculate a descent direction . All of these methods require the knowledge

of the complete subgradient set.

By contrast , the second family requires only partial local information , •

in general only one element of the subgradient set • At each step , a subgr.di.nt



p is added to a ‘bundle’ of previous subgradients and a descent direction is

obtained from this bundle. At some steps, the bundle is reinitialized so

that it always consists of a limited number of subgradients. This idea has

been proposed initially by Lemar.chal [14] and Wolfe (19]. A nice feature

of these methods is that they are conjugate gradient methods [15] when

applied to smooth problems. However, it is well—known that conjugate

gradient methods require very accurate line searches Ill, 15], thus con-

siderable time has to be spent on the line search part of these algorithms.

Further extensions of these methods have been developed by Feuer [91 and

recently by Mifflin (16]. In these two works, the ides of bundling is

intimately related to the generalized gradient of Clarke [3].

Our approach is more related to the first class of methods in that we

require the same type of local information. However, we introduce the concept

of considering subgradients at neighboring points of the current iterate. Thus

in some sense, we anticipate nondifferentiability [4, p. 43).

As an overview of what follows, in Section 2 we introduce notation and

definitions. In Section 3, we discuss the outcome of the direction finding

optimization problem and show that we either find a direction of descent,

or we have attained a near optimal point. Then, after presenting the algorithm

in Section 4, we prove in Section 5 that it is convergent. In this section,

we combine the methods used in [4] and [6] but is is also necessary to rely

on the properties of the functions involved. Section 6 contains details for

a modified version of the algorithm, while Section 7 gives some computational

results. The following notations and basic definitions will be used in the

remaining sections.

• •

_ _ _ _ _ _ _ _ _ _ _  - — 
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We denote n—dimensional Euclidean space as R~ and J~ x JJ ~ as the £~~—norm

of x e R”, where l i x i l is the £2—norm. Given a point x € R~ , we denote the

Euclidean ball about x of radius r~ as N(x , n). In the case where x — 0 and

— 1, B N (0 , 1); that is , B is the Euclidean unit ball.

nGiven a function F, defined. on R , the subgradient set of F at x is

denoted as aF(x), and the directional derivative of P at x in the direction

y is F’(x, y).

Given a subset S c R~, we let Cony(S) be the convex hull of S and Nr(S)

be the element of mii~iminn Euclidean norm in S when S is closed and convex.

Given any function F defined on S, we let SF(S) U {BF(x) ; x € S}.

--- 

_  _ _ _ _ _ _



2. Definitions and Notations

We shall assume that the functions involved in the definition of

£
F(x) — Max {f i(

~
c) — 

~ i 1, 2 , ..., ml
i—i

are convex and f inite on R~ . For notational convenience, we write each

as the sum of exactly £ functions f~~ , assuming, if necessary , that some of

the ~~ are identically zero on Rn. Then it is clear that each is a con-

tinuous convex function and thus, F is a finite convex, continuous function on

R~.

Suppose c > 0 is given. At each point x, we consider the set of indices

R(x , c) (1 € (1, 2, ... , in) ;  f~(x) > F(x) — c}. (2.1)

In particular

R(x , 0) {i € {l , 2, ..., ml ; fi
(x) = F(x) }, and (2.2)

R(x , e,~) C R(x , c2) for 0 
~ 

C <  £2. (2.3)

We shall make use of the following property [17]:

aF(x) — Cony (u {af1
(x) ; i E R(x , O)}). (2 ,4)

We restrict our attention to the functions f~~ which belong to the class

• of functions defined below.

Definition 2.1 A finite convex function is LFS if, in any closed bounded

Euclidean ball, the number of different subgradient sets, corresponding to

the points of nondifferentiability of this function, is finite. (LFS i , an

abbreviation for the phrase’locally f initely subdifferen tiable’).

Assumption A 1 The functions fi are LFSj

~~~~~~ The concept of LFS functions originated from the study of minimization pro-

blems in location theory, where functions involving norms are frequently en-

countered , such as lx — al  I~
, 1 < p < — . The function x l ‘1 

(for x € R2) is

not differentiable along either axis, but the total number of different sub—

gradient sets associated with *11 points of nondifferentiability is five.

4
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As an example, we note that piecewise linear functions are also LPS.

The representation of each function f~ as a sum of LFS functions may

be usef ul, because the sum of LFS functions is not always LFS. As an example,

consider x1
2 

+ x
2
2 

+ I lx i ~ 
x (x1, x2) e R2, which viewed as a single

function is not LFS. But f1 = x1
2 + x2

2 
and I Jx~~~ are each LFS.

In the next definition, we introduce the points of nondifferentiability

of a function f~~.

Definition 2.2

r~) {x} u {y; y € N(x, ri), f~~ not differentiable at y}.

We then define the set S, which is our enlarged subgradient set, obtained

by considering also neighboring points of nondifferentiability.

Definition 2.3

Si (x , ~~ (x, ri)), i 1, 2, ..., in , (2.5)
i— i

S(x, c, n) Cony (u ~~ (x, n); i € R (x , c)}) . (2. 6)

The following example illustrates Definii ion 2.3.

Exan~ple_1. Consider the problem

Miii2 Max (f
1

(x) , f2(x).}, f1(x) — 11x 1 1 1 — 1x11 + 1x 2 1,
x€R

f2
(x) - l ix  - (1, -1) li~ - 1x1 - 11 + 1x2 + ii .

Let 2. — 1, c — .2 and 
~ 

— 1. At x0 
— (.9, 1) we have

• f1
(x
0) — 1.9, f2(z0) — 2.1 — F(x0), R(x0, c) — {l , 2~ ,

af
1

(x
0
) — {(l,l)}, 3f

2(x0) — ((—1, 1)).

Furthermore, in N(x0, n), there are points of nondifferentiability

(a) for f1, along the axis 0 and at (.9, 0), and

(b) for f 2 , along the line x1 1.

These supplementary points yield two more different sets to include in 5,

Cony (((1, —1), (1, 1))), Cony (((—1, 1), (1, 1))).

5
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• Hence , S(x0, c , r i) is the triangle

Cony ({(—1, 1), (1, 1), (1, —1))).

On the other hand , suppose we choose £ — 2 with f 11(x) 1x11, f12(x) —

f21(x) = x1 
— i{,  f 22 (x) x~ + L i . En this case, it is easy to check that

S1(x 0, n) = Cony ({(l , 1), (—1, 1), (—1, —1), (1, -l))),

S2
(x0, n) — Cony ({(1, 1), (—1 , 1))).

Then S(x0, c, ri) is the square

S(x 0, c , n) Cony ({(l , 1), (— 1, 1), (-.1, —1) , (1, — 1) ) ) .

Remark. From Definitions 2.2 and 2.3 , it is clear tiat ~f~~ (x) E i1(Gi~
(x i n)),

j 1, 2, .. . , 2. , i = 1, 2, . . .,  in ,

and ,

£ 2.
af1

(x) = ~ ~f1 (x) 
C ~ ~~ (G1 Cx , f l ))  00 S~(x, n),

i—i i_i

j  1, 2, .. ., in. (2.7)

Since, by (2.3),

R(x , 0) C R(x , c),

• we get from (2.7)

u {~ f1(x) ; i € R(x , 0)1 c u {Si(x , ri); i £ R(x, 0))

C Li {S~ (x , ii); 1 c R(x , c) ) ,

and consequently,

f Cony ( u {afi
(x) ; i € R(x , 0)}) c Cony ( u (Si

(x, ii) ;  i E R(x, c)}). (2.8)

Then (2.4) and (2.8) imply

aF(x) C S(x, c, n). (2.9)

From Definition 2.3 , it is easy to establish the following property.

Property 2.1. S(x, c , n) is a nonempty compact convex subset of R~.

6



rroot. ~rom Assumption A.l, each set

— 1, 2, ..., ~~, j  — 1, 2, . . .,

is a finite union of nonempty compact sets, so that afj~ (G~~
(x

~ n)) is itself

a compact set. Hence, the finite sum

~ 
n ))  S~ (x, n), i 1, 2, ... , in,

j-l

is also a compact set and the set

u {S
1

(x , 11); i € R(x , c) }

Is a finite union of nonempty compact sets. Thus, this set is also a nonempty

compact set and Property 2.1 is a direct consequence of Theorem 17.2 of CL8]. II
S(x, c , n), which contains the subgradient set but also pertinent local

information , now replaces this subgradient set for the determination of a

descent direction and the corresponding directional derivative, provided

that they exist. These will be given by the next definition.

Definition 2.4. At any point x, let

~ (x , t , n) Mm (Ma x {(g, ci); ci € S(x, c, Ti) ; Hg)) < 1). (2.10)

• By compactness of S(x, c, r~) and of the Euclidean unit ball B, this

quantity Is always well—defined. Using a minimax theorem (Corollary 37.3.2,[lg])

since the two sets S(x, c, n)  and B are both non—empty compact convex sets,

we obt~i1n

Property 2.2

j ( x , C , Ti) I I N r ( S ( x , c, n))ll . (2.11)

• Proof . ~(x , c, ii) Mm (Max C(g, d); d € S(x, c, r~)}; g € 5)

Max (Mm {(g, d); g € B); d e S(x, c,

Max ( ( d , — d / J I d j I ) ;  d e S(x, c, r~)}

— Mm ( i l d l i ;  d e S(x, c , Ti) )

— — I ( ’Nr (s(x ,. C , n))Il . Ii

cas es that we consider in the next section .

As a consequence of Property 2.2 , we have ~ 0 or ~ < 0. These are two

7
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3. Study of the Alternative j ( x ,  C, n) 0 or *(x, C, n) < 0

As shown in Section 2 , ~,(x , C , Ti) is similar to a directional

derivative . Hence it is reasonable to expect that its value will give some

clue about the optimality of the point x. Before considering the two cases

• ji ( x , , q) = 0 and *(x, C , fl) < 0, we prove two le nas which will be useful

1n the sequel.

Lemma 3.1 Let X be a non-empty compact subset of k’s. Then the subgradients

~f the f unc t ions are uniformly bounded on the set x’ — {y; y N(x , “i),

x € X ) .  Tha t is , ~M , 0 < M < such that

given any y € X’ and any s €

Il s il < M , V i 1, 2, ..., in, VJ 0 0 1, 2, ..., 2. .

I’ r~~ . Since x is compact, X’ is also compact. Then, by Theorem 24.7 of

[18], )f
1~
(X’) is a non—empty compact subset of and consequently, the number

4 M1~ 
Sup {l I~ l I ; s € 

~~ij (x’
~~

is finite. Then

M = Max {M
ij: ~ 

1, 2, ..., ~~ j 1, 2, ..., LI

satisfies the requirements of the Lemma. Ii
In Lenuna 3.2, we shall consider the following piecewise linear function:

V(z) Max {(vk, z) — 

~~ 
k — 1, 2, ...q),

in which the are q given vectors of Rik and the 
~k 

are q real numbers.

Lemma 3.2 A necessary and sufficient condition that the infimum y* of V(z)

be attained is that there exists a convex combination of the wk 
equal to the

null vector , that is, 
~
Ak, k 1, 2, .. ., q, Ak > 0 such that

~~
A k 1 and

~~~
A
kwk

_ 0.
k k

Furthermore, v~’ - I )kvk and if the A
k 

are unique,
k

V~ 
- I A kVk•

k

I8



•0

Proof. The infimum of V(z) is attained if and only [f the linear program

Mm v

s.t. (Wk, z) — 

~‘k 
— ~ < Ô k — 1, 2, ... , q

has an optimal solution. Its dual may be written

t 

Mm Vk Uk

s.t. 
~ 
u
k
w
k 0

X u .K l
k

U
k

> O ) k 0 0 l, 2, ..., q•

by duality theory , if the dual is not feasible, y* 00 
~~~~~~ Otherwise, v~ is

finite and for any dual feasible solution Ak, k — 1, 2, ..., q,

• v* > _

• k

If there is only one feasible solution, then

V* _  I A k’V’k. H
k

W~ now consider 4i(x, c, n) — 0. We call such a point x, at which

q(x , c , n) 00 0, a stationary point. Let F* F(x*) be the function value

at an optimal point x*, provided such a point exists. From the two previous

l emmas, we obtain the following theorem which provides a bound on the differ—

ence between ~* and the function value at a. stationary point.

Theorem 3.3 For any stationary point x of a com pact set X, we have

F(x) — C — 2m M  F* < F(:~’. (3.1)

Proof. Stationarity at x is equivalent to 0 € S(x, C , Ti).

_ _ _ _ _ _ _ _ _  

9



•
1 With S(x , e , Ti) as the convex hull of u {Si (X , n ) ;  i € R(x, c)}, 0 e S(x, C , fl)

if and only if there exists Ak, W
k 

such that

Ak
> O  , k 1 , . . ., q< n + l , (3.2)

w
k ~ 

u {S
i

(x, Ti); i € R(x, c)} (3.3)

where ,

~~A k
0 0 1  (3 4)

k—l

and 
-

X~w~ 0. (3 5)
k—l

For arbitrary k , 1 < k < q, we have that € S
h

(x , n) for some h € R(x, c). But

then from the definition of Sh(x , n), we have that — 
~ 

where
r—l

Wkr € af hr (Ghr (x , T i ) ) .  (3.6)

Let 
~
‘kr ~ 

Ghr
(X
~ 

n ) ,  where Wkr E 
~~hr~ ’kr~ 

for r 1, 2, ..., 2. .

From the subgradient inequality, Yr — 1, 2, ..., 2. ,

~hr~~~ ~ ~hr~
’kr~ 

+ (wkr , Z — 

~
‘kr~’ 

Vz€R1~. (3.7)

Furthermore for arbitrary 5hr ~ 
af hr (x),

~hr~ ’kr~ ~ ~itr~~ 
+ 

~~~~~ 
7kr - x). (3.8)

• Adding (3.7) and (3.8) yields

~ ~hr~~~ 
+ 
~“kr’ ~ 

— + 
~ hr’ 7kr — x).

With X € X, a compact set, from L~~~a 3.1, there exists M such that M >

and thus,

~%r’ 
Ykr — x) > — nM. (3.10)

I____ 10
- • — - --- — - — - -• .- ——  •- • .-• • - • .
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Using (3.10) and summing (3.9) over all r — 1, ..., 2.,

£ £ 2.

I 
~hr~~~ ~ ~~ ~hr~~ 

— LTiM + 
~ 
(wi ,  z — y~~ ),

r—l r—l r—l

or

2.
• . fh (z) 

~ 
— £iiM + 

~ 
(wkr, Z — 

~‘kr~~ 
(3.11)

r—1

Now, since h c R(x , C), fh(x) > F(x) — C and then from (3.11)

£
F(z) 

~ fh (z) ~ F(x) — C — Rfl M + I (wkr , Z —

r—1

or

£
F(z) > F(x) — £ — 2TiM + 

~ 
(w~~ , Z — 

~kr~ 
(3.12)

r—1

Since k is arbitrary, we obtain

F(z)  > F(x) — c — iriM + Max {~ (Vkr~ Z — 

~kr~’ 
k 1, . . . ,  q}.(3.l3)

r—l

2.
Letting 

~k ~ 
(Wk ,  ~~~ in (3.13), noting (3.2), (3.4) and (3.5) and taking

r—l

the minimum over s e on both sides of (3.13) we have by Lemma 3.2,

F* E M~n F(z) > F(x) — C — i~ M — A
kvk. (3.14)

k—i
2.

Decomposing 
~k 

I (wkr , ~kr~ 
intO

r—].
2. 2.

~ 
(wv ,  ~~ 

- x) + ~ (w~~, x)
r—1 r—l

and using the inequality

nM > (Vkr~ 7kr 
— x) , r 1, ..., 2. ,

we get

> —LnM -~~~(w~~, x) — —LnM - (Wk, x)

________________ 
11 

_________



But then ,

A~v~ ~ 
- X~ Lr~M - (X~v~, x). (3.15)

k—i k—i k—i

Using (3.4), (3.5) in (3.15) we get

A~v~ ~ £~M. (3.16)
k—i

Therefore (3.14) and (3.16) give

F* > F(x) — C — 2tTiM. (3.17)

We now present an example which illustrates Theorem 3.3.

Example 2. Consider the very simple problem

MIn2
F(x) , F(x) — 1 J x 11 1 — 1x11 + 1x 2 1 .

xcR

With ~ = 0 and n — 1, we look at two different for ilations of this problem.

(a) F(x) = 1 1 x 1 1 1 with in — i, £ a 1 and clearly M — ~~~. The point x0 — (1, 1)

is stationary since S(xo, C , n) is the convex hull of the three points

(—1, 1), (1, 1), (1, —1).

At x0, we have F(x0
) — 2 and since F* a 0, we verify

—O .82 2 - 2 ~~~v’Y< 0<2 .

(b) F(x) x1) + x2 1 with m — 1, £ — 2 and M — 1. *0 is also stationary

because S(x0, C , Ti) is the square

• 

. 
Cony (((1, 1), (—1 , 1), (—1, —1), (1, —l)}).

Then, Theorem 3.3 yields

—2 — 2 — (2 ) (2 )  < 0 < 2.

This examp le illustrates a general result . When each function f~ is itself

LFS, choosing 2. a 1 will give better bounds in the inequalities

F( x )_ € _ 2 L flM < F*<F (x).

2

I_ _ _ _ _  
_ _  _ _ _ _ _ _

.. . 4 .
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To see this result, write as 
~ ~ir 

and decompose any subgradient s~ of
r—l

at x into the sum

2.
I 5ir ’ 5ir ~ ~~ir

(*)
~ 

r — 1, . . . ,  2.  (3.18)
r—i

If we call M the bound on the norm of any subgradient of any function 
~ir

and M1 the bound for the subgradients of the functions f 1, i — 1, ...,

from (3.18) we obtain

2.
l ls~M HI 8irH < £11

r—i

and consequently

M1 
< 2.?!. (3.19)

Writing now the inequalities given by Theorem 3.3 in both cases, £ > 1 and L 1,

we have

P(x) — e — 2Li~l4 < F* < F(x), (3.20)

F(x ) — C — 2~M1 < F* < F(x). (3.21)

But inequality (3.19) indicates that

F(x)_ c_ 2 t r iM < F ( x )_ c _ 2 T~(1~~~F*

so that in general (3.21) gives better bounds.

j  

On the other hand, considering each f1 as a sum of 2 > 1 LFS functions f~~ ,

• could ease the task of determining the sets S~ (x, i’~). Hence, there is a trade—off

between accuracy and implementation .

• The set of stationary points does not seem to have any obvious property,

such as convexity. With the problem of Example 1, and choosing ~ a 1

Mm 
~~~ (lx~l + 1*21, lx~ 

— ii  + *2 + i i ) ,
(xi, *2)

the set of optimal points .is the line—segment joining the two points

(0 , — 1) and (1, 0). But, with £ — .2 and n — 1, the set of stationary points is as

sketched in Figure 1.

13
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We now consider the remaining case, 4i(x, C , fl) < 0.

Since x is not stationary, we are able to find a descent direction.

Theorem 3.4 If ~~x, C , Ti) < 0, then there exists a nontrivial descent direction

for F at x.

Proof. ji (x, C , Ti) < 0 implies the existence of a direction g0 for which

0 > j(x, C , Ti) — — IlNr (S(x, C , Ti))H

— Max {(d , g0) ; d € S(x, C, n)} (3.22)

— ll d 0 l t
— (d0, g0).

Thus, the property

F’(x , g0) — Max {(d, g0) ;  d € aF (x)}

and (2 .9) ,  (3.22) imply

F’ (x , g0) < 0. I I



_ _ _
4. Description of the Algorithm

Using the results of Section 3, particularly Theorems 3.3 and 3.4, it is

• clear how to construct a descent method for problem (P).

Choose £ > 0 , Ti > 0 and x0 a starting point. Set k — 0 and go to Step 1.

Step 1

At find F(x.K) and R(x.K, c). Calculate S(xk, c, n)  and 4s(xk, c , ~) .

Go to Step 2.

Step 2

If 4I(x
~K

, c , Ti ) — 0 , stop : xk is a stationary point . If *(x.~, C , fl) < 0 ,

therc exists for which

j~
(xk, t , Ti) — Max {(d, 

~~~~ 
d € S(x.K, c , n)}.

Line seareL : find t
k

such that

F(x k + tkgk ) — Mm F(xk + tg.~) .

Set 00 + ~~~~~~~ k a k + 1 and return to Step 1.

The next section establishes that this algorithm converges to a stationary

point for the class of problems studied in this paper.

I

‘
Aj t

S

16
- 

• 
•



S. Proof of Convergence

For the proof of convergence, we assume there exists some x0 such that

the level set x — {x; F(x) < F(x
0)} is bounded. Since P is continuous, we

deduce that the minimum value, F*, of F is attained at some x* ~ X.

Now suppose that the starting point is x
~
. The algorithm generates a

sequence of points (x.K} c X, since F(xk+l) < F(x,~) cF(x0) by Theorem 3.4.

If the algorithm terminates at some iteration k, by Theorem 3.3, we have an

estimate of F*. Otherwise, the infinite sequence {x.~} must have a limit point

x~ c X. Let K c (0, 1, 2, ...} be the set of indices such that -
~~

for k -+ and k € K.

We now show (by contradiction) that x
~ 
is a stationary point, that is,

j(x~, C , fl) 0.

Assume that I4 (x~~, C , fl) — —b < 0. First, we show that for k large enough,

~~~, fl) is uniformly negative, i.e., 41(x.K, C~ Ti) < c < 0. This follows

because in a neighborhood of x~, the sets S(x,~, c, ~~) approximate S(x~, C , Ti)

[4 , p. 43].

Lemma 5.1 There exists a number N
1 such that k € K and k > N1 implies

C) C R(x
~, 

C).

Proof. By Lemma 7.1 of (6, p. 92], 6 > 0 such that II x * 
— x ii c 6 implies

R(x , ~) c R(x
~, 

C).  Since -‘ x~ for k € K and k + —, we can f ind N.1 for

which k > N1 implies lI x k — x*I l  < 6 and consequently R(x.~, C) c R(x5, ~) .

Lemma 5.2 Let g: R~ -
~~ R be an LFS function and suppose {xk ; k € K} ~ x~ is a

convergent sequence. Then, for any y > 0, there exists N such that

~
g(G(xk, ~))c 38(C(x*, Ti))+ yB, Yk > N, k € K. (5.1)

Proof. For any x € Rn we define G’(x, Ti) G(x, n) /* so that G(x, Ti)

G’(x , i~) u (xl.



F’
From Corollary 26.5.1 of [181 there exists N’ such that Yk > N’, k € K we have

ag(x
k
) c ~g(x~) + yB. (5.2)

We now consider G’(xk, T i ) .  Define the set

H(s) u {ag (G ’(x k, ii) ) ;  k > 8, k .~ K}, s a 1, 2 (5.3)

From this definition, it is clear that

H(s) ag(u(C’(x~~ n ) ;  k > s, k c K)) (5.4)

and

H(s1
) C H(s

2) for < 5i. (5.5)

We suppose H(p) # 4>, Vp > N’ , p £ K for otherwise by choosing N large enough,

COck
, n ) Yk > N’and thus from (5.2) we are done. Since the sequence

[x
k
) is convergent , the set

u {G ’(x k, Ti); k > p, k € K)

is contained in a closed bounded Euciidean ball and thus with g an LFS function,

H(p) Is the union of a finite number of distinct subgradient sets for all p,

p = 1, 2 

I

The sets of the sequence H(p) are nonempty for all p. Therefore, there must

be a finite number of subgradient sets, say , 5r, r — 1, 2, . . . ,  q, each of which

occurs infinitely often in this sequence. In other words, there exists some

N” such that

H(p) C u{sr; r — 1, ..., qI , Vp > N”.

Consequently, we can find q index sets K
~
, r 1, . . . ,  q, where each K

r is

an infinite subset of K and — ag(Y ) for some 3’k ~ 
G’(xk, Ti), Yk e Kr•

We now show that H(p) c ~g(G’(x~, ri)). For fixed r, since the sequence

(xk; k K) is convergent, the sequence 
~‘k~ 

k € K
r
) is in a compact set

and thus has a limit point 
~r • Hence there exists a subsequence K’r ~ Kr

such that 
~
‘k ~ ~

‘r for k 
-~ a, k € K .

- • - •
~~~~ ~~~-

- - 
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Since X
k 

-
~ 
x,,~, it easily follows that

€ N(x~, , Ti). (5.6)

Furthermore, by Corollary 24.5.1 of (18] given C ’ > 0 , .
~N > N” such that

~ ag(~~) + C ’ B, Vk € K ’r~ 
k > Nr~

But ~ 3B(Yk) Yk € K’
r and thus (5.7) clearly implies that

S c ~g(y~ ).  (5.8)

Since 5r is not a singleton, from (5.8) we have that g is not differentiable at

and thus using (5.6)

c G ’(x ~,, ri). (5.9)

From (5.8) and (5.9) it follows that 5r ~ 3g(G’(x5 ii)) and hence, for

p > N” Max (N; r = 1, ..., q} ,

H(p) c u {Sr; r 00 
~~~, . . . ,  q} c ag(G’(x~ , n) ) .  (5.10)

Now, since ~g(C ’(x~ . n)) c H(p) Yk € K, k > p, defining N Max (N’ , N”},

we have from (5.2) and (5.10)

ag(G’(xk, Ti)) u ag(x.
K

) c ag(c(x~, ii) )  + yB, k € K, k > N,

or

~
g(G(xk, T i ) )  c ag(G(x~ , n))  + yE , Yk € K, k > N.

• LenmTa S.3 For any C ’ > 0, there exists a number N
2 such that k € K and

k N2 imply

S(x..
K, 

c , r i )  C S(x5, C , Ti) + € ‘B.

Proof. By Lemma 5.1, for k > N1, we have

C , ii) — Cony (u{Si(xk, n);  i £ R(x,~, e)) )

c Cony (u{S
~
(z
~
, n); i € R(x~, C ) ) ) .  (5.11)

For each I € R(x
~, C), Si(x

~a
, n) was defined to be

S
i(x.~

, Ti) 
~~~~~~~~~~~~ 

n)). (5.12)

I_ _ _ _ __ _ _
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From Lemma 5.2, we know that there is some number N21 such that for k c K,

k > N21 and for all j  — 1, . . . ,  2. ,

~
f
Ij
(G
ij

(xk. n)) c af
1~

(G
1~

(x
~~ 

r i ) )  + c ’B/2.. (5.13)

Thus (5.12) and (5 .13) yield

S.(x.K
, ri) c S1

(x5, ri) + c ’B, k € K, k > N21, (5.14)

f or all I € R(x
~
, C) .

Let N~ Max (N21; I R(x
~, C)) so that k € K and k > N~ imply

• u {Sj(x
k, Ti); i € R(x~, c) } C u {S

~
(x*, Ti); i ~ R(x~, , c )}  + c ’B. (5.15)

Taking the convex hull of both sides in (5.15), from (5.11) and for k in K,

k > N 2 Max {N1, N }

S(xk, C , n) C S(x
~
, C , Ti) + C ’B. II

Now, from Lemmas 5.1, 5.2 and 5.3, the uniform negativity of the quantity

P(xk, C , Ti ) is easy to establish.

Theorem 5.4. There exists a number N such that for k € K and k > N , the

numbers 4>(xk, ~ Ti) are uniformly negative and bounded away from 0, that is,

C, Ti) < —b/2 < 0.

Proof. In the result of Lemma 5.3, choose c ’ less than or equal to b/2 .  Then ,

for any g with I J g J I < 1 and k > N2,

Max {(d, g); d E SOck , c , n ) }  < Max {(d , g);  d S(x
~, C , Ti) + C ’B}

< M ax {(d, g); d c S(x*, C, Ti)) + C ’.

Therefore

C , Ti) — Mm {Max {(d, g); d c S(xk, C, Ti)); H~ l I .~~. 
1)

< Mm (Ma x {(d , g); d c S(x5, C , ?l)} ;  I i g i I ~~. 
1} + ~~

‘

• < 

~
i(x
~, C , fl) + C ’

~ *(x~, c, n) + b/2

. II
We also need the following three lemmas:

20
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Lemma 5.5 (Cullum , et al.[41) Let F be convex on R”. Let the sequences

(x
k
} and 

~~~ 
satisfy

F(x
k+l

) < F (x.~ + tgk ) ,  0 < t < T,

and x.K 
—+ x,~, k -~~ a.

Then i?
~(x*, g~

) > 0.

Proof. By definition ,

F’(x
~ , ~~ 

00 u r n  [F(x
* + tg~

) — F(x5)J /t .
t-’O~

But for any t € [0, TJ ,

F(x
* 
+ tg~) l

~
m ,, F(x.K + tg.~) 

-

.i ]4m F(x.~~1)
- 

> F(x
*
) (by continuity).

The desired result follows immediately. II
Lemma 5.6 There exists a number N

3 
such that for k > N3 and k K we have

R(x
~, 

0) C R(xk, C).

Proof. To prove this statement, we use continuity . Suppose that I .z R(x5 , 0),

i.e., F(x
~

) = f
~

(x
~). Since f1 is continuous, for k large enough , k >

we have

If 1(x
~
) — f j (xk ) I  < € 12 .

Thus

F(x~ ) — C/ 2  < fj(xk) < P(x~,) + C/2.

Similarly, since F ‘is continuous, for k >

F(x~
) — €/2 < F(x

~c
) < F(x5) + € 12 .

Therefore , k > N 3 — Max{Max{N 1;i € R(x
~
, 0)),  N~ } and k € K imply

f
i

(x
k
) — F(xk) > F(x~

) — c/2 — F(x5) — c/2,

or fi(x
k
) > F(x.K) — c , for all I e R(x5, 0). Thus,

I € R(x
k
, C ) ,  for all I C R(x5, 0). II

21
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Lemma 5.7 For any c ’ > 0, Vi € R(x
~, 
0) and Vs € af~

(x
~)~ there exists L

i

such that for any k > L1 in K , we can find 8 ’ £ S(xk, c, ri) satisfying

5 00 5 ’ + t, 11 t h < C ’.

Proof. By Lemma 5.6 , we know that for k € K, k > N3, R(x~, 0) c R(xk, c) and

then

k E  K , k > N
3~~~i £ R(x.k, C). (5.16)

Since f
1 

= ~ f1,4, by Theorem 23.8 of [181, we can write s as
j— l -‘

2.
s I Si’ Si € 

~
f
ii

(x
*). • 

(5.17)
j— l

For each j = 1, 2 , ..., 2., either is differentiable at x~ or it is not.

We consider these as two cases.

A. f .. is differentiable at x~, i.e., s1 ~
‘f
ij

(x
*

) and {Vf (x~)} =

Then, according to Corollary 24.5.1 of [1~8J, for any c’ > 0, there exists L
11

such that k c K and k > L~~ imply

af
lj

(x
k
) c 

~~ij
(x
*) + c ’B/t. (5.18)

Since 3f
~1

(x
*

) a {V f
11

(x
*

) } — {5j}~ (5.18) means that we can find

S’j ~ ~~~~~~ ~ ~~~~~~~~~~~ 
n))  such that

— s~ + t1, ~~~~~~~ < c’/&. (5.19)

B. f is not differentiable at x,~,. Then for k large enough in K, k > Lii,

x~ E N(xk, Ti) and x~ € Gij (xk, Ti). Hence for k>L 11, if Sj €

S
j  

C af
IJ

(G
ll

(x k, Ti)), i.e.,

s~ — s + t
j~ 

S

i 

— s,;~ ~1 
— 0. (5.20)

Choosing now k > Max {L~1
; ,j — 1, ..., £1, we obtain, from (5 19) , and

(5. 20) ,

£ 2. £ 1
5 S,~ ~ (s~ + t4) — ~ s + ~ t4, (5.21)

j — l ‘ j—1 ‘ ‘ j—i .‘ j—1 ‘

where

€ 3f
11

(Gjj(xk, Ti)), 11 t1 11 < c ’/L , .1 1, 2, , £ (5 22) ~~~~

~~~
22



Defining
2. 2.

5’ ~ s~, t — ~
i—i .1 j—l~~

H it is clear , from (5.21) and (5.22), that
2.

9 ’ C 
~ 

9f
ii

(G
ii
(X
k~ 

Ti)) — S
i

(xk, ti), (5.23)
i—i

and
£

11 t h II ~ 
t~1 1 < C .

i—i

Furthermore, for k >L
1 

— Max {L~, N3), (5.16) implies Sj(x
k~ 

ii) c S(x.K, 
C , Ti)

so that by (5.23) s’ € S(xk, c, Ti). Ii
— 

We now possess the results necessary for the main theorem of this section.

• Theorem 5.8 Any limit point x~ of a sequence generated by the algorithm is

stationary, i.e., i~(x~, € , n) 0.

Proof. Consider the sequence 
~~k

1 defined by

c, Ti) a Max {(d, d € S(xk, C, n)}, k € K.

Since r B, this sequence has a limit point g
~ 

€ B. We then have

x
k 

-* x~ , ~~ 
+ g

~
, for k ~~

. a and k € K’ C K.

We know that for some convex combination

X I ~ 1, A~ ~~ 0, S
i 

C 
~~i

()C
*), i € R(x~, 0)

the directional derivative F’(x~, g~
) is given by

— Max {(d , g5); d c aF(x~)}

(
~ ~~~~ g~) (by (2.4)).

• -

For each I of thIs convex combination , from Lemma 5.7, there exists L
i such

that for k >

Vt ’ > 0, 3 s such that s~ — s~ + t~ , s~ ~ S(x,~, C , ri) 1 l I t ~l l  < C ’.

Choosing k N4 
a Max (L

1
}, k € K, we obtain1: F ’(x 5, g~~) - (Z A1s~ , *

) + (I A 1 t~ , 1~
)

a (I A 1a~, ‘k~ 
+ ~~ Ais~~ 

g
* 

— 

~~~ 
+ (I A~t11 g5). (5.24)
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But ,

(1 ~~~~~ ~~ < Max {(d , 
~~ 

d e S(x,~, C , T i ) )  (by convexity of S)
I

< q,(x~, C, Ti) (by definition of and ~,)

-b/2 for k > N
2 (by Theorem 5.4).

Thus, from (5.24) and for k > Max {N2, N4
),

F’(x
~
, 

~~~ 
< —b/2 + (~ ~~~~~ g~ 

— g~ ) + (~ A 1t1, ga). (5.25)
I i

Since -‘ g~ for k € K’ , there exists N
5 such that k > N5 and k € K ’ imply

(
~ ~~~ g~ — sic) hl ~ Ais~j l  hI g h —

< M 
~~g5 

— 

~k ’ 1  < b / B.

Furthermore, choosing 0 < c ’ < b/8 , since

(

~ 

A i~ i, g~ ) < 
~~ 

A itill lI g~Il ~
(5.25) becomes

F’(x
~
, g~) < —b/4 < 0.

Considering now Lemma 5.5. with the sub—subsequences {x.
~
} and 

~~~~ 
k € K’,

T a + ~~, we have the desired contradiction . Thus, the assumption ~~x5, c, ri) < 0

Is not valid and x~, is a stationary point. I I

I
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6. The I~~lemented Algorithm

When actually executed on a computer, the result of the difference

F(x )  - C , appearing in the definition of R(x, c) ,  is not very different

from F(x) if F(x) is a large number since In general c is small. Conse-

quently, R(x, c ) migh t indeed be reduced to R(x , 0) through roundof I error and

this, in turn, could affect the convergence of the algorithm since, in effect ,

we no longer consider c—binding functions.

To avoid this numerical problem, we redef ine R(x , c) ,  as is done in

[6 j ,  and use instead

R ’(x , €) {i a 1, 2, . . . ,  m; fi
(x) > F(x) — c F(x)} .

It is also necessary to suppose F* > 0. Then, modifying in a straightforward

manner Definitions 2.3 and 2.4, we have S’(x, c, ri) and 4>’(x, C, Ti) replacing

S(x, c, n) and ~(x , ~~, ii).

Making the obvious modifications, most of the previous results need no

extra work, except for four of them that we consider now.

A. The inequalities in Theorem 3.3 should be modified as

(1 — t)F(x) — 2L~M < F < F(x). (6.1)

Hence, there is another appealing feature in the use of a “relative” c.

Rewriting (6.1) as

0 < (F(x) — * )/ ( )  
~ ~ 

+ 2trip~/p (x), (6.2)

suppose that the quantity c + 2LriM/F(x) is equal to ~~~~ where n is some

positive integer. Then F(x), whatever its magnitude, has at least n correct

d igits. This is best illustrated with an exa~~1e:

F(x) 1,000,010 , C + 22.riM/P(x) a 1O~~,

* — sF(x) — P < 10 F(x)

c 10.00010 and

1 ,000,000. .c < 1,000,010.

_ 
_  
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B. It is easy to check the correctness of the inclusion

R ’(x , £2) c R’(x, ci) for 0 
~ ~2 ~~

-

Then , we still obtain

R(x , 0) — R’(x , 0) c R’(x, e ) ,  Yc > 0.

Hence , in the remark following Example 1

3F(x) C S’(x, C , Ti )

remains correct.

C. It is necessary to rederive Lemma 5.1, using R’(x, c).

Lemma 6.1 There exists N
1 such that k € K and k > N 1 imply R ’(x k, c) C R ’(x~, c).

Proof. Using the same argument as Dem ’yanov [6 ], it is easy to establish

that

• 
~c ’ , 0 < c < c ’ such that R’(x5, t )  — R ’(x5, c’).

Since the f~ and F are continuous , we have

such that k c K and k > Nj  imply

lf l(xk) — f i (x5) I  < (c ’ — c) F(x
*

)/2 , I — 1, 2, ..., m , and

such that k € K and k > N~ imply

IF(xk) — F(x~)j  < (c ’ — c)F(x
~

)/2 ( 1 — c).

Thus for k € K and k > N
1 

— Max {N~ 1 N~}

F(x5) — (c ’ — £)F(z
~

)/2 (l  — € ) F(x.~), (6.3)

fj(X k) < f~ (x~) + (c ’ — c)F(x 5)/2. (6.4)

Multiplying (6.3) by 1 — c and considering also (6.4), we obtain

(1 — C)F (x
*) 

— (c ’ — £)F (x*)/2 < (1 — C)F(zk)

~~~~~~~ 
(if I £ R ’(x .~, c))

L f
1
(x
~

) + (e ’ —

thet is,

(1 — c ’)P(x5) < f~~(x5) Vi £ R’(xk, c). (6.5)

26

- ._. -. .—--- ‘ -•-- —— —- — !- - -.--- - . - — -----—- - •. __r__ —



p’ But (6.5) means that Vi € R’(xk, C), i € R’(x5, c ’). Since R’(x*, c’) a

R ’(x
~, c), f o r k >  N1, we have R ’(x k, c) CR’(x*, c). H

D. Lemma 5.6 needs also to be modified as follows:

Lemma 6.2 There exists N3 such that for k € K and k > N3, we have

R(x*, 0) R’(x
~
, 0) c R’(x.

K, c).

Proof. Choose any I € R’(x
5, 0), so that I i(X*

) a F(x*) 
a 

~~ 
Since f~ is

contInuous, there exists N~1 
such that for k e K and k > N

~ i,

J f ~
(x
~
) — fj(x.K)j < ~~~~~ (6.6)

Similarly, with F , 3N ’
~ such that fork>

IF(x
*
) — F(xk ) J  < cF,~/2. (6.7)

Hence, f or k > N 3 Max (Max{N i ; ~ € R’(x5, 0 ) ) ,  N ’s), we get from (6.6) and (6.7),

f 1(x 1 ) > f i (x
*) — £ F

~ /2

F* 
— c F

~ /2 , and (6.8)

—F(x.
~
) > —F(x,~) — c F*/2

> —F * — c F~ /2 . (6.9)

Adding (6.8) and (6.9) yIelds

- F(x.K) > - C

— c F(x.K
) (since F(x.K) >

that  i s ,

I € R’(x.K, c). H
These are the four principal modifications to signal and, mutatis mutandis,

the convergence proof remains valid.
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1. ComputatIon Results

We have Implemented our algorithm with the modification given in Section 6.

To f ind the point of minimum norm in S(xk. c, r i ) ,  we used , depending on

the problem considered , two different  algorithms . For the minimax problems

with in > 1 and 1, we used an algorithm of Wolfe [20] . Otherwise, for

minisum problems, where m — 1 and £ > 1, we employed an algorithm from Gilbert 110].

The line search was done with quadratic fits and worked well for most

problems. We modified it when dealing with piecewise linear functions, since

in this case a quadratic I it does not seem reasonable, and devised a different

line search which has performed satisfactorily.

We solved three types of problems: mininiax location, minisum location

and approximation problems . Description of the results are given below.

Mininiax location problems .

The problem to solve is

Mm Max {f
i(x); I 

a 1, 2 , ..., m}
x< 11

where I 
1

(x) may have one of the following expressions

a) w~ h l x k — a1j J ,  for some p , 1 < p <

b) w
1 I I X k — x

1 1 1 ,  for some p, 1 < p < — ,

and x — (x1, ..., ,x~, ~~~~~~ 
X
r
) € Ri’, X

~K 
e R5, k — 1, ..., r and n — sr.

The a~ are interpreted as known locations in R5 of existing facilities and the are

the locations of the new facilities, and where the are positive weights.

Results of the first minimax location problems solved are given in Table 1.

M indicates the number of existing facilities and N the number of new facilities

to be located. We ran three Type 1 problems involving £
2—no

rms, which were

randomly generated with weights between 1 and 100 and existing facility locations

in the square 1000 by 1000, Problem 2 was a selected minimax location problem

_____________ — —~~~~~~ — 
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posed by Love , Wesolowaky and l(~~aemer and considered in 17] . Problem 2 involves

L~-.norms . Problems 3 and 4 are £ 2 —n orm problems discussed in [7 ) .  The data in

Problem 5 Is Identical to the data in Problem 2, however 11—norms are used .

Finally, Problem 6 is a randomly generated problem using t1—norms.

For comparative purposes, we have included the execution times on

these problems using:

(a) The heuristic subgradient procedure of Hearn and Lowe [12 ] (all problems).

• (b) A dual formulation solved by CRC [7), In the case of £2-norme (Problems1 through 4).

(c) Another dual procedure studied by Dearing and Francis [5], in the case
of £

1—norms (Problems 5 and 6).

(d) The subgradlent algorithm (all problems).

We have also listed the number of iterations using the subgradient algorithm.

In those cases where the last iterate was not a stationary point, the line

search could not generate a point to improve the objective function value.

Problem Execution Time Iterations
(a) (b) (c) (d)

1) Random data , P~2—norm 1.66s 2.03s — 3.558 25

H = 50, N —l 1.15s l.57s — l.52s 11*
.95s 2.28s - — 2.528 16

2) Love at al , £
2—norm .39s 2.06s — .66s 14*

M — 5 , N — 2

3) Triang le #1, £ 2—norm .64s 5.5s — l.lla 16*
M = 3, N — 3

4) Triangle #2 , Z2—norm .80s lO.5s —  l.40s 20*
M 3, N — 3

5) Love et al , £1—norm .24s —  2.40s .17s 6*
M 5, N — 2

6) Random data, £
1
—norm l.16s** —  2.89s 6.94s 15

N — 20, N — 10

* The last iterate is a stationary point

** Used a fixed step length.
~~
- - -it 

~.

Table l
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For the problems of Table 1, the value chosen for c was SxlO
6 and we

—6 —5set~~~ — 1 0  or lJ

We also devised a problem of our own which involved mixed norms. The

problem scenario reads as follows. Two ships have to be located In the CaribLean

sea and must be ready to intervene, in case of trouble, at any one of nine given

cities of the Caribbean Islands. Trouble may occur according to estimated

probabilities which are used as weights. Furthermore, the two ships must be
-

• able to conmiunicate and we must consider their mutual distance (Euclidean distance

with weight 1). Thus, the problem is

Mm 2 Max tw 111 x1 
- a111 11, w12 11 x 2 - a1II~~ 2~ l J x 1 

- x2 11 }.
x cR i—1, . . . ,91 2
x2~

R

The c i t ies  and their locations are displayed in Table 2. For some cities ,

the distance to a shi p Is weJl represented as Euclidean distance. But if one

city is on the opposite side of the island with respect to the ship location,

we can no longer use Euclidean distance but an t
n
—distance where p is chosen

between I and 2 (see Table 2).

cities locations 1st shi1 2nd ship

V12

Colon (Panama Canal) 11.4, 11.6 2.0 2.0 1.0 2.0

Caracas—LaCusira (Venezuela) 35.3 , 13.5 1.0 2.0 2.0 2.0

Havana (Cuba) 8.80 , 37.2 1.5 1.1 1.0 1.4

Guantanamo (Cuba) 20.9 , 30.6 1.5 1.5 1.0 1.9

L 

Port—au—Prince (Haiti) 25.5, 28.0 1.5 1.4 1.5 1.2

Santo Domingo (Dos. Rep.) 29.7, 27.7 1.0 2.0 1.5 2.0

San Juan (Puerto Rico) 36.2, 27.8 0.5 1.8 1.0 1.7

Fort—dc—France (Martinique) 45.5, 21.3 0.5 2.0 0.5 2.0

Montego Bay (Jamaica) 15.8 , 28.2 0.5 1.1 0.5 1.8

Table 2

30



)
The optima l locations are (13.817 , 24~ 358) T and (25.818 , 22 454) T with

= 26.0836. This solution was found after 40 iteratIons and 3.l5s of CPU

t ime. As a final check, we used the locations for the ships given by the

algor i thm and measured the £ —  distances between the ships and ports and the

£~—distance between the ships. All £~—distances approximately agreed with

the £~—distances used in the algorithm with one exception. The £~—distances

from the ships to Port—au—Prince were not in agreement with the £ —distances
p

used in the al g o r i t h m , but t h i s  wa s not important in our

problem since at the optimal solution, the functions involving Port-au—Prince

were not binding.

Minisum location problems.

The objective function to minimize has the form

F(x )  — ~ f 1(x ) ,  x C R0,
i

where the f
1 are as in the minimax location problem .

Among many minisum problems that we solved , we give here the numerical

results for two problems:

a) The 24 cities problem of Kuhn and Kuenne [13].

Starting from the center of gravity of the 24 existing facilities,

a (47.47945 , 34.35616), the algorithm generates the result x~ — (47.70779,

35.10391) in 6 iterations and .46s of CPU time , giving F* — .9528840.

After 5 iterations, the procedure of Kuhn and Kuenne reaches the result

(47.60, 35.32), which corr esponds to an objective function value of .9541373.

b) A problem from Eyster et al. 18 J ,  with five existing and two new

facilities. ~~~

- - 31
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U

The starting point is x0 = (0 , 0 , 0 , 0) and a f ter  23 iterations we got

— (2.840055, 2.686639, 5.129290, 6.388482) with F* — 67.23856. The CPUp 
time for this problem is l.07s. The HAP procedure used in [ 8 1,  s tar tIng also

at x0, stopped after 45 iterations and gave x~ = (2.840 , 2 .687 , 5.126 , 6.383) .

= 67.239

—5
In both problems a and b, we chose n — 10

l..inear_ Approximation Problems

A linear approximation problem can be formulated as follows

Him K(Ax — b), where A is an m x a matrix and b is a vector of gmnx~R
and where K is some norm in ll~ measuring the discrepancy between a desired

• point, b, and an approximation, Ax, of thia point .

Popular choices for K are the t
1—norm and the £,,—noru~ SO that we solve either

m
Mm 

~~ 
(Ax) 1 

— b1j,
xcR 1=1

or

Mlfl Max {I(Ax)
1 

— bi t ;  i a 
~~, 2, ..., m}.

xER

W Ith the t —norm , and thus a minimax problem, we solved the examples given

by Barrodale and YouiLg [1, p. 1151. For these problems, we chose ~—l0~~ and rr”l0
16.

The results are presented in Table 3. The solutions we found are in total

agreement with those of [1 ]. Barrodale and Young did not report any computation

times or numbers of iterations.

Problem Execution Time Iterations Optimal Value

1) Example 1 .85a 12* .6733 x l0~~m 3 3 , n 3

2) Example 2 9.90s 58* .1514 x 10~~in 41, n — 6

• 3) Example 3, Case 1 2.54s 41* .1039 x 10~~m — 51, a — 5 ~

• 4) Example 3, Case 2 2.86s 39* .1757 x l0~~
in — 51, n — 5

* The last iterate is a stationary point .

- • - 
Table 3
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