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FOREWORD

As part of the on-going program in "Decision and Control : ;
Models in Operations Research," Mr. Richard Ehrhardt has developed
a number of formulae that give approximate values for the operating
characteristics of several classes of (s,S)vinventory policies.

The approximations are accurate and require substantially less
computational effort than exact calculation of the operating
characteristics. Many of the approximations are in a form that
make them particularly amenable to sensitivity analysis and systems
design studies.

Other related reports dealing with this research program are
given below.

Harvey M. Wagner

Principal Investigator
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ABSTRACT

OPERATING CHARACTERISTIC APPROXIMATIONS FOR THE
ANALYSIS OF (s,S) INVENTORY SYSTEMS

Richard Ehrhardt
University of North Carolina - 1977

The operating characteristics of (s,S8) inventory systems are often
difficult to compute, making sensitivity analysis a tedious and often
expensive undertaking. Approximate expressions for operating character-
istics are presented with a view towards simplified sensitivity analysis.

The operating characteristics under consideration are the expected
values of: Total cost per period, period-end inventory, period-end
stockout quantity, replenishment cost per period, and backlog frequency.
The approximations are obtained by using least-squares regression to fit
simple functions to the operating characteristics of a large number of
parameter settings. Accuracy to within a few percent of actual values
is typical for most of the approximations.

Potential uses of the approximations are illustrated for several

idealized design problems.
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1. (s,S) INVENTORY POLICY OPERATING CHARACTERISTICS

There are many situations in which an inventory systems designer can
use estimates of operating characteristics of the system. For example,
management may desire forecasts of inventory-on-hand, or system operating
costs. The systems designer may also confront questions such as

(a) What are the cost and service implications of consolidating

demand from several distinct warehouses into a single central

warehouse?

(b) How do parameter changes affect the system's operating

characteristics?

(¢c) By how much do costs rise when service is increased?

(d) What are the effects of changing the review-period length?

To facilitate analysis of design issues of this type, we seek simple
approximations for the following operating characteristics: average hold-
ing cost per period, average backlog cost per period, frequency of periods
without backlogs, average replenishment cost per period, and average total

cost per period. These characteristics are defined mathematically in

Section 2.1 of this report.

1.1 The Model

Throughout this report, we deal with a single-item inventory model.
We assume periodic review of an item's inventory level and employ a station-
ary, discrete-time stochastic process to describe the item's demand. The
demand sequence 51,52,..., consists of independent, identically distri-
buted random variables taking non-negative integer values.

Demands are met as long as stock on hand is sufficient; when a stock-

out occurs, the unfilled demand is completely backlogged until a stock

-
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replenishment eventually arrives.

Items kept in inventory are assumed to be conserved, there being no
losses by deterioration, obsolescence, or pilferage; disposal is not
allowed. Inventory-on-hand at the end of a period is the inventory from
the previous period plus any replenishment that arrives, less demand.
Negative inventory-on-hand represents the amount of backlogged demand.
Replenishments are assumed to be delivered a fixed lead time L periods
after being ordered. The time sequence of events in any period is taken
to be order, delivery, demand.

We assume no time discounting of costs and postulate an unbounded
horizon over which the item is demanded and stocked. We seek to minimize
expected total cost per period.

The cost of a replenishment quantity q 1is assumed linear with fixed
ordering cost K and constant unit cost ¢

X+ ¢q ftor - g > 0
c(q) =

0 for q =0
Items are not lost from inventory, so demand is completely filled.
Since costs are not discounted, the constant unit cost ¢ 1s not a factor
in choosing a minimum cost policy, and is suppressed hereafter.
The inventory holding cost is proportional to any stock on hand at

unit cost h

hi for 41.>0
h(i) = 3
0 for 1 =0 .,

and the unit penalty cost p 1is applied to any quantity on backorder

at the end of each period




0 for i

"
Cc

p(i) =
-pi for 1<)

The resulting total cost function, therefore, is linear in K , p ,
and h and we may scale these parameters so that the value of the unit
holding cost h is unity. Non-trivial changes in cost arise only with

changes in the ratios K/h and p/h .

1.2 Inventory Replenishment Policies

We postulate that control over replenishment is exercised by an (s,S)
policy: whenever inventory x on hand and on order at the start of a

period drops below the value "little s,"

an order is placed for a replenish-
ment of size S-x.

Given our assumptions, when the demand distribution and the economic
parameters are known, there is an optimal policy that has the (s,S) form
[1glehart (1963a,b), Veinott & Wagner (1965)]. When the demand distribu-
tion is not known, even though this is the only assumption relaxed, an opti-
mal policy may no longer be of the (s,S) form. Nevertheless, in this ex-
periment we employ an (s,S) policy, since it is in popular use in the
applied situation of incomplete information.

We seek approximations for the operating characteristics of three
(s,S) policy rules: optimal policies, Power Approximation policies, and
Statistical Power Approximation policies. For each policy rule we develop
simplified functions for approximating the operating characteristice. We
then fit the parameter values of the functions to the observed charucteris-

tics of a multi-item system using least-squares regression.
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bk o Optimal Policies

We develop approximate expressions for optimal policy operating
characteristics in Sections 2 and 3. The approximations are compared
with actual values of the operating characteristics, calculated with

the algorithm of Veinott and Wagner (1965).

L.2.2 The Power Approximation
The Power Approximation [Ehrhardt (1976)] is an algorithm for com-

puting approximately optimal values for (s,S) using only the mean u

and variance o of demand. The algorithm is executed as follows.
Let
g 2
(1) Dp = (l.463)n'564(K/h)°498[(h+1)u ]'069l
and

QALY w ¥ ™ o P a1

w
]

(2)

w

;. +
S Dp 5

b
[

where U(z) 1is given by

U(z) = .182/z + 1.142 -~ 3,466z ,

3) 3
» 2
e {u_xi‘i@iﬁi"_-

(1+ﬁ) [(t41)0" ] %92

If Dp/p fs greater than 1.5, let s =8 and S =S8, . Otherwise

compute

(4) $. = (1) » + v [t Y,




~ T

where v 1s the solution to

(5) o(v) = p/(pth),

and ®(+¢) is the cumulative distribution function of the unit normal
distribution. The policy parameters are then given by

minimum {s1 g Sz}

w
L}

(6)

S

minimum {Sl Z SZ}

1f demands are integer valued, S] . Dp , and 52 are rounded to the
nearest integer.

Approximate expressions for Power Approximation operating character-
istics are developed in Sections 2 and 3. The approximations are compared

with actual values of the characteristics, calculated using the methods of

Veinott and Wagner (1965).

1.2.3 The Statistical Power Approximation

Of course, in real applications, the mean and variance of demand are
not always known. For the situation where only sample statistics of pre-
vious demands are available, the Statistical Power Approximation described
below can be implemented. This decision rule implicitly assumes that de-
mand is stationary. Such a rule derived for stationary conditions may be
a reasonable approximation to an optimal rule when the demand process is
mildly non-stationary, provided that the policy parameters s and § are
revised periodically to meet the changing conditions.

We assume in this study that a demand history of fixed length is kept
to make each revision, and equal weight is given to each observation. This

is not optimal if the demand process is known to be stationary, for then

LA A s O P 3
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the entire history should be accumulated to give p;ogressively better
knowledge and performance. Even when demand is known to be non-station-
ary, but varying in a regular manner, such as by a trend or periodic cycle,
or both, an optimal decision rule would generally utilize the entire
history.

The decisign-maker usually is not in a position to know, however,
that conditions observed, even over the entire past history, will continue
to prevail. This provides justification for making frequent revisions,
placing greater weight on observations from the immediate past and less on
earlier history. For this study the admittedly arbitrary choice has been
made to keep a history of fixed length and give equal weight to all obser-
vations in this history. Let T be the number of periods between policy
revisions, which will be termed the revision interval; assume that a his*~
tory of T periods' demands is kept for use at each revision.

The statistics required by our decision rules are the sample mean

and variance of demand, £ and v , respectively. If t 1is a period at

the beginning of which revision is made, then

= P i W

oA Byt b

- - o B =2
Ve a0 6, D,

When using the Statistical Power Approximation we periodically obtain
values for (s,S) by substituting ¢ and v for u and o© in
equations (1) through (6).

We develop approximate expressions for Statistical Power Approxi-
mat ion operating characteristics in Section 3. The approximations are

compared with estimates of actual values of the characteristics, obtained

from computer simulation experiments.
6




1.3 Methods of Approximation

In Section 2 we develop "analytic" approximations for the operating
characteristics of optimal and Power Approximation policies. We
approximate the exact expressions with simplified functions, generalize
these functions, and then fit their parameter values to the observed
characteristics of 576 policies using least-squares regression. The re-
sulting approximations tend to be extremely accurate but rather diffi-
cult to evaluate. l

In Section 3 we develop "multiplicative'" approximations for fixed
and statistical policies. The approximations are based on simple function-
al forms that are motivated by empirical observations. The functions are
multiplicatively separable into simple expressions that each depend on
two variables at most. We use least-squares regression to fit the para-
meters of these functions to the observed characteristics of 576 fixed
policies and 288 statistical policies. The resulting approximations are
accurate and easy to evaluate.

In Section 4 we use the approximations to study sensitivity analysis
questions that typically confront systems designers. We also use the

approximations to draw graphs displaying the operating characteristics as

functions of system parameter settings.




2. ANALYTIC APPROXIMATIONS FOR FIXED POLICIES

In this section we develop approximate expressions for the operating
characteristics of fixed (specified) policies. We approximate exact ana-
lytic expressions with simplified functions, generalize these functions,
and then fit their parameter values to the observed characteristics of
576 items using least-squares regression. The 576-item system is formed

by using a full-factorial combination of the parameters in Table 2.1.

Table 2.1

System Parameters

Number
Factor Levels of Levels

Demand distribution Poisson (02/u = 1) 3

Negative Binomial (c2/y = 3)

Negative Binomial ©W?%/y = 9)
Mean demand 2, 4,8, 16 4
Replenishment leadtime ) R A S
Replenishment setup cost 32, 64 <
Unit penalty cost &y 9y 28y 99 4
Unit holding cost 1 i
Policy Optimal policy, 2

Power approximation policy

The approximations in this section are functions of ouly the economic
parameters, policy parameters, and the mean and variance of demand. We
obtain results for holding cost, backlog cost, backlog protection, replenish-
ment cost, and total cost. On the average, the approximations deviate from

the actual values of these characteristics by 0.7%, 4.1%, 0.7%, 0.1%, and

1.9% respectively.

————— -




2.1 The Analytic Derivation

Consider the model of Section 1.1 and assume that demand follows a
®
probability density ¢(+) and cumulative distribution ®(+). Let ¢ b 5
*
and ¢ n(°) be the n-fold convolutions of these functions. We consider

the following operating characteristics of fixed, infinite-horizon (s,S)

policies
H E'average holding cost per period
B = average backlog cost per period
(7) P = backlog protection, i.e., frequency of periods without
backlogs
R = average replenishment cost per period
T = average total cost per period.
Let

We have, as in Roberts (1962), the exact relationships

H h[1+M(D)]_l{fgfi_y(s—y—x)¢*(L+1)(x)m(y)dxdy

+ fi(s-x)¢*(L+1)(x)dx}

-]
[}

p[H/h + (L+1)u-S] + p[1+u(n)1'1f2ym(y)dy

*(L+1)(S)}

() P = (@] 0" D (seydminay + ¢

K[14MD)] "t

=
n

-3
]

B+ ™R 5

X

s RS e airrins SANGERE o B




where

It is difficult to obtain any insights from (8) regarding the sensitivity
of the operating characteristics to values of model parameters. Indeed

it is exceedingly complicated just to calculate values of the characteris-
tics for a given set of parameter values. We proceed to simplify the

form of expressions (8) by introducing approximations for the functions

¢*(L+l)

m{+) , M(+) , and ()

Replenishment frequency in (8) is given by [1+M(D)]~1. To

approximate M(+) we use the following result of Smith (1954).
M(x) = x/u + 0%/(2u?) - 1/2 +0(1) , x>= .
This yields the approximate value for replenishment frequency
) (1@ 2w/ (D + (o ?/w)/2] = o .

We identify the quantity (S-y) in (8) as inventory-on-hand-plus-on-

order (after ordering), with stationary distribution F(+) given by

M(y)/[1+M(D)] , s 3 S-y<$§
(10) F(S-y) =
1 ’ S"y =S .

The probability density f(*) of inventory-on-hand plus-on-order (after

ordering) on the open interval [s,S) is
f(s-y) = m(y)/[14M(D)] .

We approximate f(*) by a constant ¢ on the interval [s,S) . To

fix the value of ¢ we normalize the approximated distribution

10




(11) fzc dx + Pr{(S-y) = S} = 1 .
Using (10) we find that
Pr((S-y) = s} = (14417,
and we solve (11) for c¢ , yielding
12) c={1- [1#M@)] 11D .
Finally, we use (9) in (12) to obtain
(13) c = m(y)/[1#M(D)] £ (1-p)/D , y € (o,D] .
We use (9) and (13) in (8) to get

2 L @=p)/0] [2137Y (s-y-0)8" 1) oy axay

=
(]

+ ofz(SFX)¢*(L+1)(x)dx}

(14) B = p[H/h + (L+1)u - S + (1-p)D/2]

p 2o o @ig - ra-pym 2o (syyay
R = oK .

Finally we approximate the demand distribution with a gamma distribu-
tion having density g('la,B) . Let
-1
M) x*exp (-x/8)/ [1'(a)8"] , %20
¢ (x) = g(x|a,B) -
0 s x<0
(15)

o" ) () 2 g(xa,B) = J% gtyla,R)dy

11




where
a - (L#1)u?fo?

& ‘2/“

We define the notation

(f (x) l: £(b) - f(a)

and use (15) in (14) to yield

2 ph[SG(S|a,B) - aBG(S

o
I

atl, B) ]

[h(1-p)/2D] {xzc(x|u.8) - 2u8xG(x|a+1,8)

o
+ (u+l)u{32 G(x|a+2, B) l:
(16)
B = p[H/h + (I+1) - S + (1-9)D/2]
P2 G(s|la,B) - [(1-p)/D){xG(x]a,B)
-a&(xh+h8)|§
R = ;’)K .

Observe that the approximations (16) depend on the policy parameters,
economic parameters, and the mean and variance of demand. The G-functions
must be calculated by a numerical procedure. We use a series expansion for
G(x!u,B) when x 1is less than 1 or PR , and a continued-fraction
expansion otherwise. The procedure is part of a package of computer
programs entitled "The IMSL Library'" which is marketed by the International

Mathematical and Statistical Libraries, Inc., Houston, Texas.

12




Despite the effort required to compute G , the expressione in (16)
are an enormous computational simplification over (8). In Section 2.8
we discuss the possibility of using a Normal distribution function in lieu
of the G-function; employing the Normal distribution would facilitate
manual computations of the approximations we derive below.

In the following sections we use expressions (16) to develop
regression models for the operating characteristics. We fit the
parameters of the regression models to the observed characteristics
of 576 items (Table 2.1). The approximations we obtain are labeled
with subscript "a'" when they are used for the entire 576-item system.

"

Subscripts "a,p'" and "a,o0" are used to label expressions for Power

Approximation, and optimal policies, respectively.

2.2 An Approximation for Replenishment Cost

We use (9) in (16) to obtain the expression for replenishment

cost
R & uK/[D + (uto?/u)/2]
We manipulate the expression to form a linear regression model

(uK/R) = A_ + A D+ A

2
0 1 2u+A3(o/u)+€.

where Ao,...,A3 are constants to be fit and ¢ 1s the error term. We
use least-squares regression to fit the model to the system of 576

inventory policies in Table 2.1. That is, for each of these policies we
use as data the actual values of uK/R , D, u, and 02/u . The result

is the following numerical approximation for R

13




(17) E.» Ku/ (1.003D+.4942u+.49900 7 /u—-.5339) ,

which has a coefficient of determination (fraction of variance explained)

of 0.9999 for the quantity upK/R .

To characterize the quality of the approximation we define

(18) AR) - 1007 x lRa—R|/R ;

In other words, A(Ra) is a percentage measure of the approximation

error for a particular item. The system of 576 items ylelds an average
value for A(Rj) of 0.1%. Table 2.2 gives the distribution of values

for A(Ra) . The approximation is clearly an accurate one for the system.

Table 2.2

Frequencies of A(Ra) in a 576-item System

Range Number Cumulative Percentage
for A(Ra) of Items of Items

[0%,2%) 574 1007%

[2%,4%) & 100%

The largest value of A(Ra) is 2.5% and it is attained by two optimal

policies: each has a variance-to mean ratio of 1, leadtime 0, mean
demand 16 and setup cost ratio 32. The unit penalty cost ratios are

24 and 99, yielding the optimal policies (16,39) and (20,43), respectively.

14




R %)

Since the coefficients of D, u, and 02/u in (17) are so close to

the theoretical values of 1, 1/2, and 1/2, respectively, we consider the

following regression model.

[WK/R ~ D = 1/2(u + 0/u)]) = A + ¢,

where A is a single constant to be fit and e 1is the error term. Using

least-squares regression to fit the model to our 576-item system we obtain

the approximation

R = Ku/[D+ (u + o2hl2 - .s121] .

Approximation R; provides essentially the same accuracy as (17). The

system of 576 items yields an average value of A(R;) of 0.1%Z and the dis-

tribution of values for A(R;) is the same as that given in Table 2.2 for
A(R ).
a

l4a




2.3 An Approximation for Holding Cost

We can treat the unit holding cost as a redundant (normalizing)
parameter in our model, and so we divide the holding cost expression in

(16) by h vyielding
H/h 2 p[SG(S|a,B) - aB G(S]at+l,R)]

+ [(1-p)/2D]{x%6 (x|, 8) - 2a8xG(x|a+l,8)
+ (a+1)af’6(x|ot2,8) |3
We take advantage of our improved estimate of replenishment frequency

from (17) and replace p with
(19) r Ra/K=u/(1.003D+.&942u+.49905‘/u-.5339)
The result is a quantity that we denote as W , given by

(20) W - r[SG(S|a,B) - afG(S|a+l,E)]
+ [(1-1)/2D){x%G(x|a,B) - 20BxG(x|a+1,s) g
+ (u+l)uﬁ2 G(x|a+2,8) 12 .
We calculated values of W 1in the 576-item system and in comparing them

with the actual values of H/h , we found a systematic variation with

respect to u and 0%/p . This motivates the linear regression model

H/h = A+ A W+ A

2
0 1 2u+A3(0/u)+c.

where A A are constants to be fit and ¢ 1is the error term.

e 3
As in Section 2.2, we use least-squares regression to fit the model to

the system of 576 items. The result is a coefficient of determination

of 0.9999 for the approximation

15




|

(21) H = h(W -.1512 u + .168402/u + .0689) .

We define A(Ha) as in (18). The system of 576 items yields an average
value of 0.7% for A(Ha) . The distribution of values for A(Ha) is
summarized in Table 2.3. Our approximation appears to be an excellent
one.

Table 2.3

Frequencies of A(Ha) in a 576-item System

Range Number Cumulative Percentage
for A(Ha) of Items of Items

[0%,2%) 553 96%

[2%,4%) 17 99%

[4%,6%) 5 100" %

[6%,8%) 0 100 %

[8%,10%Z) 1 100%

The largest value of A(Ha) is 9.2%, attained by an optimal policy with
variance-to-mean ratio 9, leadtime 0, mean demand 2, unit penalty cost

ratio 4, and setup cost ratio 32. In general, the largest errors appear
to occur for high values of variance-to-mean ratio and low values of all

other parameters.

2.4 An Approximation for Backlog Protection

Backlog protection is the frequency of periods without backlogs, that
is, one minus the backlog frequency. Since it is a critical measure of

service, it is of central interest to the inventory systems designer.

16




In Section 2.1 we obtained the following approximation for backlog

' protection
P2 G(S|a,B) - [(1-p)/D] {sG(S|a,B) - sG(s|a,B)
~ afG(S|at+1,8) + afG(s|a+l,B)}
We replace p with r , as given by (19), to obtain
P=V:=rG(S|a,8) ~ [(1-r)/D] {56(S|a,B) - sG(s|a,B)
- 2RG(S|a+1,B) + aBG(s|a+l,p)}

We form a linear regression model by adding terms for mean demand and the

variance-to-mean ratio of demand, as we did in our approximation for

e

holding cost

)2 - 2 .
(22) I AO + Al vV + A2 u o+ A3 (o<fu) + &

This model yields a coefficient of determination of only 0.669 when fit
to the 576-item system. We also fit (22) separately for Power Approxima-
tion and optimal policies, yielding coefficients of variation of 0.660
and 0.681, respectively. These poor results forced us to seek an
alternative approach.

We can revise the regression model by using a theoretical result.

When demand {is continuously distributed, an optimal policy yields

(p/h) / (1+p/h) for backlog protection. When the demand distributions

are discrete, (p/h) / (14+p/h) is a lower bound on P for optimal policies.

[t was observed In Ehrhardt (1976) that the Power Approximation and op-
timal policies differed in their backlog frequency performance. Therefore

we decided to fit the two policy rules separately.

&t
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We develop the revised linear regression model by multiplying (22)

by (1+p/h) to yield

(1+p/h) P = Ao + Al (p/h) + A2 vV + A3 (Vp/h) + A4 "

+Ag (up/h) + A, (02/u) + A, [(0?/u)(p/h)]) + ¢

This model dramatically improves the fit after only one step of a

stepwise-regression computer program. For optimal policies, the simple

expression

(23) Pa o™ (0.0857 + p/h) / (1+p/h)

’

yields a coefficient of determination of 0.99999 for (1+p/h)P . Ve
have the same coefficient of determination for Power Approximation policies

with
(24) Pa . = (0.0695 + p/h) / (1+p/h)

We define A(Pa) as the absolute value of the percentage error of
approximation when (23) and (24) are used. Table 2.4 is a summary of the
distribution of A(Pa) for the 576-item system. The average value of
A(Pa) in the system is 0.7Z. All items with A(Pa) larger than 4% have
Power Approximation policies with p/h equal to 4. The approximation
(23) is somewhat better than that in (24) as 40 of the items with devia-
tions larger than 2% are for the Power Approximation. All the items
with A(Pa) larger than 4% have Power Approximation policies with p/h
equal to 4. Of those items with deviations larger than 2%, 7 have ph

equal to 9 and 41 have p/h equal to 4. Our approximations are especially

18




accurate for large p/h

Table 2.4

Frequencies of A(Pa) in a 576-item System

Range Number Cumulative Percentage
for I(TJ) of Items of Items

[0%,2%) 528 92%

[2%,4%) 39 98%

[4%,62) 8 100" %

[6%,8%) 1 100%

The errors of approximations (23) and (24) display a mild dependence

upon the parameter K/h. We therefore seek an approximation of the form

P= (a + nlh/K + p/h)/( + p/h) ,

0

which suggests the regression model
Y o [P - p/(h +p)] = Ay + A (W/K) + c.

The model is fit to minimize relative squared error by first dividing by

the left hand side, yielding
L= A (1/Y) + A (W/KY) + €/Y

The transformed model is then fit using least-squares regression; {i.e.,
the dependent variable is set equal to one for each item and the intercept
is fixed at zero.

We obtain the following approximations for optimal and Power Approxi-

mation policies, respectively

s S TP
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P; ™ (.0543 + .9958 h/K + p/h)/(1 + p/h)

P = (-.0737 + 5.851 h/K + p/h)/(1 + p/h) .

a,p

We define A(P;) as the absoulte value of the percentage error of approxi-
mation. The average value of A(P;) in the 576-item system is 0.6%. The
distribution of A(P;) is summarized in Table 2.4a. Although approximation

P; does not appear significantly better than Pa on the average, it reduces

Table 2.4a

Frequencies of A(P;) in a 576-item System

Range Number of Cumulative Percentage
for (Pa) Items of Items
[0%, 2%) 529 92%
(2%, 4%) 42 99%
(4%, 6%) 5 100%
(6%, 8%) 0 100%

the number of items with errors in excess of 4% from 9 to 5. We recommend

aporoximation P’ for Power Approximation items with small values of p/h(<9).

o

2.5 An Approximation for Total Cost

We obtain an expression for total cost by summing cost components

H, B, and R, and using approximations (16) for B and R

T=H+B+R

= (1 +p/h) H+ p[(L+l)u - S + (1-p) D/2] + pK .

19a
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We divide by h , replace p with r , as given by (19), and use

approximation (20) for H to obtain

(25) T/h = (1+4p/h)W + p/h [(L+1)u - S + (1-r)D/2] + rK/h .

As we discovered in obtaining a fit for holding cost, a group of related
terms should be added to (25) to obtain a good fit to the system's data.

The linear regression model we employed is

19b




T/h = AO + Al W+ A2 (Wp/h) + A3 [(L+1)up/h] + Ab (Sp/h)
+ A5 (Dp/h) + A6 (rbp/h) + A7 (rk/h) + Ag (p/h)

+ Ay (rp/h) + Ao [(L+1)u) + A,. S+ A

11 12 D+ Ay (PD)

2
+ AI4 r + Alsu + A16 (o4/u) + A, (up/h)

+ Alal(ozlu)(p/h)l * &

We fit the model to the system of 576 items using stepwise least-
squares regression. The following expression ylelds a coefficient of

determination of 0.998

(26) Ta = 1,110 hW - .001049 pW + .3364 Kr

- .2234 h + .3274 hD + .4476 h o?/u + .003062 p o?/u .

We define A(Ta) as in (18), namely, the absolute value of the per-
centage difference between '1‘a and T . The average value of A(Ta)

for the 576-item system is 1.9%. A summary of the distribution of

A(Ta) for the system is given in Table 2.5. The fit is rather good with

virtually all of the large errors occurring for large values of o?/u ,
and small values of L, u, and p/h . Of the 63 items having A(Ta)
greater than 4%, 52 are for the Power Approximation. We list the four

items with A(Ta) exceeding 10% in Table 2.6.

20




Frequencies

Table 2.5

of A(Ta) in a 576~item System

Range Number Cumulative Percentage
for L(Tu) of Items of Items
(0%, 2%) 383 66%
(2%, 4%) 130 89%
[4%,6%) 45 97%
(6%,8%) 13 99%
[8%,10%) 1 99%
[10%,12%) 2 100" %
(12%,14%) 0 100" %
[14%,162%) 1 100 %
[16%,18%) 0 100" %
[18%,20%) 1 100%
Table 2.6

Items with A(Ta)

exceeding 10%

Policy 02 /u L H p/h K/h Error
Power Approximation 9 0 2 4 64 10.3%
Power Approximation 9 0 2 9 64 11.5%
Power Approximation 9 0 2 9 32 14.6%
Power Approximation 9 0 2 4 32 18.2%
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The parameter settings contributing most often to large errors in
(26) are Power Approximation items with ; = 2 and p/h = 4. We deleted
all 18 items having their combination of parameter values and refit (26)
to obtain
Té = 1.111 hw - .00105 pw + .3370 Kr

= .2190 h + .3269 hD + .4775 ho’/u + .00306 po/u ,

which has an average value of A(T;) of 1.8% in the 558-item system. A

summary of the distribution of A(T;) is given in Table 2.6a.

Table 2.6a

Frequencies of A(T;) in a 558-item System

Range Number Cumulative Percentage
for A(T;) of Items of Items
[0%, 2%) 377 687%
[2%, 4%) 126 907
(4%, 6%) 42 987%
[6%, 8%) 11 100%
[8%, 10%) 0 100%
[10%, 12%) 1 100%
[12%, 14%) 0 100%
[14%, 16%) ] 100%
.3
|
2la é
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Although the approximatien appears to be accurate, we believe that
it will degrade for significantly non-optimal policies. The differences

between (25) and (26) and the pattern of values for A(Ta) suggest that

the economics of optimal policies is intrinsic to the approximation

obtained. The robustness of (26) is discussed explicitly in Section 2.7.

2.6 An Approximation for Backlog Cost

In Section 2.1 we obtained the approximation for backlog cost
B = p[H/h + (L+1)u - S + (1-p)D/2]

Using the approach of Section 2.3, we obtain the linear regression model

B/h = A0 + Al (Wp/h) + A2 [(L+1)up/h) + A3 (Sp/h)

+ A, (up/h) + A, [(e2/uw) (p/h)] + Ag (Dp/h)
+ A7 (xbp/lh) + €

where r 1is given by (19), and € 1is the error term. When fit to the
system of 576 items the result is a low coefficient of determination of
0.444, Splitting the 576-item system into a Power Approximation system
and an optimal policy system, and then fitting separately for each value
of p/h , does not yileld a significant improvement. The two systems
also were fit separately for each value of 02/u without success.

We obtain a better fit by employing the identity

B=T-H-R.

Our first attempt used (17), (21), and (26) in

B’ 2.0 il =-K
a a a
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Unfortunately, B' deviates from B by an average of 18%.
We form, instead, a linear regression model for B using all the

variables appearing in our models for T, H, and R
(27) B/h = AO + Al W+ Az (Wp/h) + A3 [(L+1)up/h] + Aa (Sp/h)

+ A5 (Dp/h) + A, (rDp/h) + A, (rK/h) + A8 (p/h)

6 7

[(L+1)u) + A, S+ A . D

#4 h) + A
e 11 12

9 10

+ A13 (Dr) + A,, T + AIS U+ A (62/u)

14 16

+ Ay, (up/h) + A, [(p/h) (6%/u)] + € .

When fit to the 576-item system, (27) yields a coefficient of determination
of 0.957. To obtain a reasonably accurate approximation, we further split
the data set into Power Approximation and optimal policies, and fit (27)

separately for each value of p/h .

We obtain average coefficients of determination of 0.999, and 0.998
for optimal, and Power Approximation policies, respectively. The fits

are of the form

(L+1)y + a, S+ a, D + a. Dr

(28) Bu/h =a W+a 3 4 5

1 2

r+a, Kr+a, u+a, 0?/u+a .

s 7 8

ap 9 10

We 1ist the fitted values of fa,,1=1,10} 1in Table 2.7a for cach of the

i’

eight regressions.
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Coefficient Values for Backlog

Table 2.7a

Cost Expression (28)

Policy p/h a, a, 1, a, ag ag a, ag ag ag

Optimai 4 3.23113.212(-3.210{ 1.680{-1.809] .19681-.1658] .2600}-.0127}-.3447

9 7.452)7.473|-7.470] 3.854(-4.046] .4851) .2325] .3638]-.0437]-.4972

24 17.39)17.37{-17.371 8.788]{-9.026] 1.034]-.2005{ .3445} .0336]-.7617

991 62.86]62.85(|-62.84f 31.56{-31.74] .9851|-.2572f .3412] .0927]-1.084

Power 41 4.248]4.276|-4.278] 2.141}-1.740]-1.272]~-.0758]-.1326]-.1099]-.0900
Approx. ;

918.21418.192]-8.194} 4.152]|-3.813|-.3054|-.1565]-.1044|-.0635]-.4659

24119.18119.141-19.14] 9.635|-9.228|-.3749|-.1844]~-.1606]-.0059]|-.6567

99170.16}70.18|-70.18| 35.22|-34.55| 1.428]-.2483|-.3159| .1841}]-1.327

As the high coefficients of determination indicate,

excellent in terms of absolute errors of approximation.

the fits are

To i1llustrate,

the average absolute error of approximation for 288 optimal policies is

0.17 as compared with the corresponding average backlog cost 5.69.

Nevertheless, because many of the backlog costs are numerically small

values and the magnitude of the approximation errors does not seem to

depend strongly on the magnitude of the backlog cost, the approximation

displays some '-rge relative errors. We define A(Ba) as in (18), the

absolute value of the percentage difference between Ba and B for a

given item. The average value of A(Ba) in the 576-item system is 4.1%;

more specifically, the average is 4.3% for optimal policies and 3.9% for

Power Approximation policies.

24
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in Table 2.8.

The largest values of A(Ba) occur when 04/y equals 1

and p/h equals 99. All 16 items having errors in excess of 20% have

7¢/u  equal to 1, and 13 of them
only those items with o2/p gre
y |

drops to 2.57%, but there are sti

exceeding 10Z. When we consider

have p/h equal to 99. When we consider
ater than 1, the average value of &(B])
11 11 out of 384 items with deviations

only those items with p/h less than 99,

the average value of i(Bq) drops to 2.4%.

To improve on the approximation when p/h equals 99, we exhibit in

Table 2.7b an approximation for

that also depends on ¢?/u . The

this value of the unit penalty cost ratio

average value of A(Ba) for this

approximation is 4.2%, with 16 of the 144 items having deviations in

excess of 10%.
We attempted to i.,.vo

relative squared error i1s in Sect

tion was less accurate than those

Since this approximation is
we have derived, we note that we

performance in our approximation

l'ab

Coefficient Values ftor

wtion by fitting £0 minimize
ion 2.4 (p.19). The resulting approxima-
reported above.
somewhat less accurate than the others

have a good alternate measure of backlog

for P , (23) and (24).

le 2.7b

Backlog Cost Expression (28)

with

p/h = 99

Policy |o4/u]l a a a

Optimal 1 §71.44}71,371~71.38
3 183.12183.15]-83.14

9 | 7S.13375.18)~75.13

I

35.76]-35.99] 2.246] -.1238] .2124}-.4770]-1.084
41.63]-41.96] 3.309]-.0362] .2961]|-.1453}-1.084

.1130] .0516] .0657]-1.084

37.62]|-37.50]1.764

Power 1 |59.44]59.42]-59.41
Approx.
3 180.31|80.34]-80.33

9 | 86.35|86.34|-86.35

29.71)-29.23{1.090]-.0428|~.3647] .4862}-1.327

40,21 |-40.0202.3605|-.0853|-.0832| .0467|-1.327

43.20 —42.6913.326 -.0577|-.2866|-.0224]-1.327
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Table 2.8

Frequencies of A(Ba) in a 576-item System

Range tor Number Cumulative Percentage
A(Bu) of Items of Items
[0%,2%) 275 48%
(2%,4%) 147 73%
[4%,6%) 51 82%
[6%,8% 27 87%
[8%,10%) 18 90%
[10%,20%) 42 97%
[20%,30%) 4 99%
[30%,40%) 6 100" %
[40%,50%) 1 100 %
(50%,60%) 0 100 %
[60%,70%) 0 100 %
[70%,80%) 1 100%

2.7 Measures of Robustness
We summarize our results by listing the accurate approximations derived

in this section.

B, =BV 1512 hy + .1684 ho?/u + .0689 h
P, = (0.0857 + p/h)/(L+p/h)
R &N (0.0695 + p/h)/f(1+p/h)
R = Ku/(1.003D + .4942u + .4990 02/u - .5339)
Bu = h[a1 W+ a, (L+1)u + ay S + a, D + ag Dr + ag r
2
+ a, Kr + ag ¥ + ag o Ju + BIO]
26
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T A

T = h(1.110 W + .3274 D + .4476 02/y - .2234)

+ p(~.001049W + .003062 o2/u) + .3364 rK ,
where

P 2R K
a

- )
i

r[SG(S|a,B) - aBG(S|a+l,8)]

+ [(1-1)/2D] &%C(x|w,B) - 2aBxG(x|a+l,8)

+ (a6 (x|at2,8) |3

[F(G)Bu]~1 fzym_lexp(—y/e)dy o X
G(x|a,B) =

0 = el
a = (L+1)u?/o?
B = o2/u ,

and the coefficients for Ba are given in Tables 2.7a and 2.7b.
Recall that “a’ Ra, and Ta can be ~nplied to both optimal and Power
Approximation policies.

In Tables 2.9 and 2.10 we summarize the multi-item system accuracy
of our approximations as a function of the parameter settings (see
Table 2.1). Each entry is the percentage excess of the sum of approx-
imate values over the sum of actual values for all the items having the
given parameter setting. The approximation we use for backlog cost
includes the improved fit for p/h equal 99 (see Table 2.7b). Observe
that when the approximations are aggregated over several parameter settings

that the errors cancel to a large extent so that most of the relative
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errors in these tables are well under 1%. Even for the backlog cost
approximation, the relative errors for multi-item aggregates are
tolerable.

We test the robustness of the approximations by using them in a
multi-item system with the parameter settings of Table 2.11. Note that

all the numerical parameters have values not found in the 576-item system.

Table 2.11

Factor Levels Number of Levels
Demand distribution Negative Binomial (0%/p = 5) 2
Negative Binomial (0?/p = 15)
Mean demand 0.5, 7.0 2
Replenishment leadtime 1 6 2
Replenishment setup cost| 16, 48 2
Unit penalty cost 49, 132 2
Unit holding cost 1 1
Policy Optimal policy, 2
Power Approximation policy

Each parameter has one interpolated value and one extrapolated value.

A full factorial combination of the values is used, yielding 64 items.
The system is a rather severe test of robustness since only two {tems
have all parameters with values within the ranges used to derive the
approximations. There are 10 items with one extrapolated parameter,

20 items with two extrapolated parameters, 20 with three extrapolations,
10 with four extrapolations, and 2 {tems with all five parameters extra-
polated.
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We compare actual values of H, P, R, and T for the 64 items with
our analytic approximations. Backlog cost B 1is not considered because
of the complexity of our approximation and the absence of an explicit
dependence on p/h 1in (28). The average percent deviations from actual
values of H, P, R, and T are 1.6%, 0.2%, 1.4%Z, and 2.6%, respectively.
The distributions of percent deviations are summarized in Table 2.12. Our
approximations are quite accurate considering the wide range of parameters
spanned by the system.

The holding cost approximation is extremely accurate for all cases

with u greater than 0.5 or o¢?/u 1less than 15. All items with deviations

greater than 4% have | equal 0.5 and 02/y equal 15. If we consider
only the items with fewer than two parameters extrapolated, the average
A(Ha) is 0.4%.

Table 2.12

Percentage Deviations of Analytic Approximations

in a 64~item System

AT I

Range of Holding Backlog Replenishment

Deviation Cost Protection Cost Total Cost
[0%,2%) 48 (75%) 64 (100%) 48 (75%) 30 (47%)
[2%,47%) 6 (84%) 8 (88%) 22 (81%)
[47,6%) 5 (92%) 0 (88%) 6 (91%)
[6%,8%) 3 (97%) 6 (97%) 4 (97%)
[8%,10%) 2 (100%) 2 (100%) 1 (98%)
[10%,12%) 1 (100%)
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The backlog protection approximation is excellent, with only one
item having a deviation in excess of 0.7%.

Our approximation for replenishment cost is also robust. All items
with deviations in excess of 4% have u equal 0.5, 0%/u equal 15, and
K/h equal 16. Items with fewer than two extrapolated parameters have
an average A(Ra) of  Q.1X.

Low u and high o02/uy are also sources of large errors for our
total cost approximation., All items with deviations in excess of 47 have
either u equal 0.5 or 0?/y equal 15, or both. Items with fewer than
two extrapolated parameters have an average deviation of 1.2%.

We commented in Section 2.5 that the approximation for total cost
may degrade for significantly non-optimal policies. The remark is
cqualiy valid for the backlog protection expressions (23) and (24), since
they are based on a theoretical result for optimal policies. We now
proceed to examine the accuracy of the approximations for non-optimal
policies.

Consider the following system of non-optimal policies. We choose
a base-case item with o0%/y equal 5, u equal 9, L equal 2, p/h equal

49, and K/h equal 48. The optimal policy for this item is (43,73). We

now use this policy on items with different parameter values. The new
parameters are obtained by increasing and decreasing each bas:-case
parameter value, one at a time, yielding 10 items; the parame‘'er values
of the system are displayed in Table 2.13. For each item we compare the

actual and approximate values of H, P, R, and T.
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Table 2.13

e

Lercentage Exrrors of Approximation for Non-optimal Policies
Percentage Errors of Approximations

Changed Holding Backlog Replenishment Total

Value Cost Protection Cost Cost

o2fu = 4 (-20%) .07% -.6% -.00% 6.0%

6 (+20%) ~-.05% o 4 .00% -5.0%

v - 7 (-22%0) -.11% -1.3% -.03% 13.7%

11 (+22%) -.047% 2.9% +03X ~22.2%

k = 1 (=50%) -.047% -1.6% .00% 12.6%

3 (+50%) <O2% b ¢ .00% -36.2%

p/h = 39 (-20%) -.01% -.5% .00% 3.9%

59 (+20%) -.01% IR .00% -2.2%

K/h = 38 (-21%) -.017% .0Z .00% 4.0%

58 (+21%) -.01% .0% .00% -2.2%

SRR D% 04% 1.3% 01% 10. 8%
Absolute Values 2 1

The approximations for holding cost and replenishment cost are very

accurate, with average percentage deviations of 0.04% and 0.01%,
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respectively. The approximation for backlog protection is somewhat less
accurate, with the largest errors occurring for large values of leadtime
and mean demand. The total cost appioximation does not perform well in
the system, deviating by an average of 10.8%. Thus we conclude that the
approximations for backlog protection and total cost should be used with
caution for significantly non-optimal policies. An approach to reducing
the errors might be gleaned from the pattern of deviations in Table 2.13.
Notice that when each parameter is larger than in the base case, the
approximation underestimates the total cost, and when the parameter is
smaller than in the base case, the approximation overestimates the total

cost. The reverse is true for backlog protection.

2.8 Topics for Future Research
In this final portion of Section 2 we suggest several extensions of
our research on analytic approximations.

Notice in the summary of the approximations in Section 2.7 that the

G-function is used directly only in the calculation of W . As we mentioned

in Section 2.1, the computation of G 1s complex, even on a digital

computer. As an alternative to W for manual computations, we could

calculate
W' = r[SN(S ) - aBN(S)]
+ [(1-r)/20] [°N(S) - 2a8SN(S)) + (a+1)aB’N(S,)
- azN(so) + 2a85N(sl) - (a+l)a82N(92)]
where N(*) is the unit Normal distribution function, and
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s, = I8 = () 1/ [(@)8’]
2.5
8, = [s = (a+i) 1 /7 [(a+i)BT] " .

Further research is needed to investigate how much degradation in the
approximations occurs if W' is used instead of W . Also, it would
be possible to refit the coefficients in the approximations for H, B,
and T wutilizing W' 1instead of W .
We now discuss an approach for improving the approximations for
P and B . Recall that these fits have some items with large relative
errors despite very high coefficients of determination. That is, the
regressions were very effective in minimizing absolute squared errors,
but several items with small values of P or B were left with large
relative errors. Additional research i1s needed to devise a method to fit
these approximations to data such that relative squared error is minimized.
A final research topic involves the potential use of the approx-
imations in forecasting the future performance of inventory systems. The
method of forecasting discussed in Ehrhardt (1976) is based on a retrospec-
tive simulation of system performance using a sequence of past demands.
In actual practice, this method can be very expensive since a time series
of demand data must be stored for every item involved in the forecasting.
If the approximations of this chapter are substituted for the retrospective
simulation, only the sample mean and sample variance of demand must be
stored. Additional research is needed to evaluate the accuracy of this

method of forecasting.
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3. MULTIPLICATIVE APPROXIMATIONS FOR FIXED AND STATISTICAL POLICIES

In Seation 2 we derived analytically-motivated approximations for
operating characteristics of fixed (s,S) policies. The approximations
are accurate but they lack the ease of interpretation and calculation
that we desire for sensitivity analysis of systems design issues.
Furthermore, they inherently do not treat statistically-derived policies,
because they are based on theory that is valid only for fixed policies.

In this chapter we develop approximate expressions for the operating
characteristics (7) of both fixed and statistical policies. We postulate
a functional form for the expressions from examining empirical observa-
tions and derive explicit approximations using least-squares regression.
The expressions are particularly attractive for sensitivity analysis
because they are products of simple-to-compute functions, each of which
depends on, at most, two parameters. Further, they do not require the
calculation of the replenishment policy itself.

As in Section 2, we obtain good approximations for holding cost,
backlog protection, replenishment cost, and total cost. On the average,
the fixed policy approximations deviate from the actual values of these
characteristics by 4%, 1%, 2%, and 3%, respectively. The statistical
policy expressions have average errors of 4%, 1%, 2%, and 3%, respec-
tively. Using the approach in this chapter, we have not found a good

approximation for backlog cost.
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3.1 Methodology

Our motivation here derives from the empirical observations found
in MacCormick (1974), Estey and Kaufman (1975), and Ehrhardt (1976).
In all these instances, multi-item systems were studied with a
full factorial setting of parameters, and constant demand variance-to-
mean ratio. For each of the systems, the average total cost of an item
appears approximately to follow a multiplicatively separable function of
the economic and demand parameters. The relationship has been observed
when the systems are controlled with optimal policies, approximately
optimal policies, and statistically-derived policies.

For an item controlled with an optimal or approximately optimal
policy, we postulate that the average total cost per period can be

approximated by a function of the form
(29) T/h & cfl(L,oz/u)f2(u.cz/u)f3(p/h.02/u)fA(K/h.Oz/u)

Expression (29) is consistent with the empirically-observed property of
multiplicative separability for a given value of 02/u . We allow o02/u
to enter all four functions because we have no reason to expect separa-
bility in this parameter. For subsequent analysis, we limit consideration
to functions of the form

Yi(x,ozlu)
(30) fi(x,oz/u) = x cxp[éi(x,oz/u)], I & TR

where yi(x,az/u) and Si(x,ozlu) are linear combinations of the variables

1, %, /=, o?lu, ule® ,
(31) xz, l/xz, (GZ/M)Z’ (u/02)2 ,
xo2/u, xu/o?, o?/ux, w/o’x .
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As in Section 2, we transform the characteristics (7) to H/h,
B/h, P(1+p/h), R/h, and T/h . We seek approximations for all five
quantities using linear least-squares regression on models of the form
(29), (30), (31). Given the multiplicative form in (29), we make a
logarithmic transformation before applying least-squares computations;
hence, in reporting below the resulting coefficients of determination,
we always shall be referring to the proportion of variance explained for
the logarithmically transformed variables. The 576-item system of
Table 2.1 provides the data source for separate fits for the character-
istics of optimal and Power Approximation policies.

For the statistical policy characteristics (see Section 1), we use
the 72-item systems of Table 3.1. We simulated the system with 0?/u
equal 3 using a 26-period revision interval. For the system with a2/

equal 9, we utilized revision intervals of 13, 26, and 52 periods. We

Table 3.1

72-item System Parameters

Factor Levels Number of levels
in each system

Demand distribution Negative Binomial (0?/u=9) 1
or Negative Binomial (oz/u-Bi
Mean demand 2, % 8y 16 4
Unit holding cost 1 1
Unit backlog penalty cost| 4, 9, 99 3
Replenishment setup cost | 32, 64 2
Replenishment leadtime ) e 3
38
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seek approximations for statistical policy operating characteristics by
performing separate fits for each of the 72-item systems. We use regres-

sion models of the form (29), (30) with Y4 and &, being linear

i

combinations of the variables

(32) L, %, 1/x,-x2. l/x2 A

For several operating characteristics we seek an explicit functional
relationship with revision-interval length T . These operating

characteristics are fit in the o¢?/y equal 9 system using Y4 and di

that are linear combinations of all the variables

(33) 1, x, 1/x, T, 1/T,

)
x2, VA IR

As we shall observe, several fits for individual Yi and Gi do not

do not require the presence of all these variables.

3.2 Approximations for Fixed Policies

In this section we describe approximations for fixed policy
operating characteristics. Since optimal and Power Approximation
policies are fit separately, we adopt the convention that a subscript
"o'" labels an optimal policy approximation, and a subscript "p" labels
a Power Approximation quantity. In some instances we use summaries that
combine results for optimal and Power Approximation systems. We use the
subscript "f" to label combined fixed-policy results.

3.2.1 Average Holding Cost per Period
The following approximation for optimal holding cost ylelds a

coefficlent of determination of 0.992 for the 288 data points
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.4788 .2509+.0147002/u~.1179u/¢?

H = 2.022 h exp(.0983502/u)y (L+1)

(p/h)_z.AJ’ /p- 04409u/02+.0155202 /s

(E/h) 2660026920/

On the average, HO is within 4.2% of H for the system.

We obtain the following approximation for Power Approximation

holding cost

»; 2
H = 2.598 h exp (120402 /)y * 7076~ 0049640%/y

n i e "
(L+1).2L87+.014720 /u~.0900u/0

(p/h)—3.040h/p+.0113702/u—.07292u/02+.03355(02h/pu)

- 2 2
(K/h)'3057 .026670</u+.03058u/0 :

which yields a coefficient of determination of 0.994 and is within 3.9%
of H , on the average.
The distribution of errors for the optimal and Power Approximation

fits are so alike that we summarize them as one system. Define A(Hf)
as in (18), the absolute percentage difference between Ho or Hp and H

for an item. Table 3.2 is a summary of the distribution of A(Hf) in the
system. The largest values of A(Hf) occur consistently for a variance-
to-mean ratio 9, leadtime of 0, unit setup cost ratio of 32, and penalty
cost ratios of 4 and 9. This is a pattern we noted also in Section 2.3
for the analytic approximation of holding cost.

We attempted to improve the approximation by refitting separately for

each value of leadtime L. The resulting approximations were not signif-

icantly better than "0 and Hp.
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Table 3.2

Frequencies of J(Hf) in a 576-item System

—-RJnﬂv for Number Ay Cumulative ;;:;:;;;;;m'_“
J(H?) of Items of Items o

[0%,2%) 164 287

[2%,47) 181 607%

[4%,6%) 101 77

[6%,8%) 57 87%

[8%,10%) 39 947

[10%,127%) 20 987

[12%,14%) 7 99%

[14%,16%) 3 997%

[16%,18%) 2 100 %

[18%,20%) 0 100 %

[20%,22%) 1 100 %

[22%,24%) 0 100 %

(24%,26%) 0 100 %

[26%,28%) 0 100 %

{28%,30%) 1 100%
3.2.2 Average Backlog Cost per Period

We have not found a very good multiplicative fit for backlog cost.
The result is not surprising since a multiplicative form is not obser
empirically for this characteristic.

In fitting a multiplicative mode! of the form (29), (30), (31) to
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backlog cost, we obtained coefficients of determination of 0.976 and
0.952, respectively, for optimal and Power Approximation policies. An
improvement resulted when we ran the regressions separately for each
value of p/h. We obtained average coefficients of determination of
0.988 and 0.981 for optimal and Power Approximation policies with a
function of the following form

) b.-b.c%/p c1+c.,02/u+c3u/o2
Bt/h = a(o4/n) u =

d,+d, u/o? e 02/u+e2u/a2

(L+1) s (K/h) .

e are listed in Table 3.3 for

Values of the coefficients a, bl""’ 2

each policy and each value of p/h .

Table 3.3

Values of Coefficients in Bf

Policy hl h2 €1 ¢, Cq d1 d2 e e,
Optimal 1.003} -.0100} .5240] -.0119} .0056| .4239]-.1792]-.0008}.2891
.7796] .0034} .4909] -.0185}-.0321| .2999] .0528] .0034].1063
1.706{ -.0350( .3310f-.0104) .1854| .2318f .1799f-.0033].2646
1.580]-.0303] .2786|-.0104] .1669| .1739| .2939}-.0020}.1378
Power 1.167|~-.0806].3775] .0070}-.0296| .3174|-.0074] .0280}.2748
Approx.
1.226]}-.0596} .3711}] .0043} .0168) .3870}-.0018] .0162].2557
1.520}-.0456] .3759]-.0111] .1135] .3237] .1619] .0077}.2296
2,235|-,0875|.2144)~-.0258 | .4537 |-.0614| .7401) .0240(.1297
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On the average, approximation Bf deviates from actual values of

B by 6.2%. 1In Table 3.4 we summarize the distribution of percentage
deviations in the multi-item system. We see that the approximation is
not accurate, with 18% of the deviations exceeding 10%, and 5% of the

deviations larger than 20%. The pattern of errors is similar to that

Table 3.4

Frequencies of A(Bf) in a 576~item System

Range for Number Cumulative Percentage
A(Bf) of Items of Items
[0%,2%) 164 287
[2Z,4%) 116 497
[4%,67) 85 637
[6%,8%) 53 713%
[8%,10%) 52 827
[10%,20%) 78 95%
[20%,30%) 22 997
[30%,40%) 5 100" %
[40%,50%) 0 100" %
[50%,60%) 1 100%

noted in Section 2.6 for the analytic approximation for backlog cost.
The largest errors occur for items having high p/h and low 02/u
We tried improving the approximation by fitting separately for each
combination of values of p/h and o0“/u , but the results did not

improve significantly.
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We improve the approximation by fitting to minimize relative squared

error as in Section 2.4 (p.19). We obtain a separate fit of the following

form for each combination of values of p/h and oz/u

Be/h = ad ity ot .

The results did not improve for items with czb = 1 but the average per-
centage errors dropped to 5.7% and 3.3%, for items with 02/u equal to 3
and 9, respectively. Values of the coefficients a,b,c and d for 02/u
equal to 3 and 9 are listed in Table 3.4a and the distribution of percent-

age errors is summarized in Table 3.4b.

Table 3.4a
Values of Coefficients in Bf’
i,
a3 a*ln =3
Policy p/h a b c d a b c d
Optimal 4 .7164] .5123] .3958f .1614}{3.029 L4356 .4267{-.0369

9 1.747 .4236} .3115]{-.0175f] 3.550 «3113] 3072 .Q345
24 1.455 .3525] .3001} .0563]]4.870 .2512] .2355| .0067

99 2.031 .2851] .2660{-.0079{|5.643 .1975] .1986] .0035

-

Power 4 .8282| .3927] .2867| .2349 .9887! .4456( .3352] .2714
Approx. 9 L4450 .4280] .4255| .3302||1.722 +A233] .3892 .1332

24 1,171 «37751 .39381 .09321]3.115 .2864] .3250] .0814

99 1.015 .2790] .1934 .1870{14.237 .0288| -.0093] .2013
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Range
f«n‘xﬁ(Bf')

[6%,8%)
[8%,10%)
[10%,12%)
[12%,14%)
[14%,16%)
[16%,18%)

[18%,20%)

Table 3.4b

Frequencies of A(Bf’) in a 384-item System

Number of ltems

of Items
I tems Items A1l Items Items All
,with Swith [tems with with I tems
0" Ju=3 [0 /u=9 o /u=3 |o"/u=9
34 74 108 187% 39% 287%
42 55 97 40% 67% 53%
38 34 72 597% 85% 724
25 14 39 12% 92% 82%
29 7 36 887% 967% 927%
10 6 16 93% 997% 967
5 2 7 95% 100% 987%
5 5 987 997
3 3 99% 100%
1 ] 100% 100%
e s vies
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We examined other ways of approximating backlog cost with multi-
plicative expressions. The quantity [1-B/(up)] was fit to our data
without success. Even with separate fits for each value of p/h our
coefficients of determination were only of the order 0.93. We also

examined the quantity

Bf Tf - Rf = Hf ’

where Tf 3 Rf s and Hf are our fixed-policy multiplicative expressions

for total cost, replenishment cost, and holding cost, respectively. This

approach also was unsuccessful; B.' deviates from B by an average of 17%.
f

3.2.3 Backlog Protection

To obtain a multiplicative expression for backlog protection, we
used the quantity (l+p/h)P as the dependent variable in a regression
model of the form (29), (30), (31). For optimal policies we obtain a
coefficient of determination of 0.99995, and, dividing by (1+p/h) ,

we have

-7.324h/p

(34) P = 49.47 (p/h) exp(.01045p/h) / (1+p/h)

For Power Approximation policies we have a coefficient of determination
of 0.99986 with the expression

-7.353h/p

(35) Pp = 49.74 (p/h) exp(.01041p/h)/ (14+p/h) .

We define A(Pf) as the percentage deviation of (34) or (35) from
the actual value of P for an item. Table 3.5 is a summary of the

distribution of A(Pf) in the 576-item system. The average value of

A(Pf) in the system is 0.7% with fewer than 1% of the items deviating
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Table 3.5

Frequencies of A(Pf) in a 576-item System

Range for Number Cumulative Percentage
A(Pf) of Items of Items
[0%,2%) 525 917%
[2%Z,4%) 43 99%
[4%,6%) 7 100" %
[6%Z,8%) 1 100%

by more than 4%. The pattern of errors is quite similar to that noted
for the analytic expressions Pa in Section 2.4. The largest deviations
occur for items with small p/h . Items with p/h equal to 4 account for
all errors greater than 4%, and 44 of 51 items with deviations greater
than 2%.

The pattern of errors for P is nearly identical to the pattern

f
noted for P1 (23), (24) in Section 2.4 Since Pa is much easier to

(5

compute, we suggest that it be used rather than Pf

3.2.4 Average Replenishment Cost per Period

The following approximation for optimal replenishment cost yields a
coefficient of determination of 0.996 and an average deviation of 2.2%

from actual values of R

, 2
R = .6050h exp(".0854902/u)u'5126+'0043330 g

(8]

- . 2 - +. 2
(1+1) 03847-.0061470 /u(p/h) 09095h/p+.02130u/0

2
(K/h).5107+.014920 /v

Table 3.6 1s a summary of the distribution of percentage errors for R
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Table 3.6

Frequencies of A(Ro) in a 288-item System

Range for Number Cumulative Percentage
A(RO) of Items of Items
s
[0%,2%) 163 57%
[2%,4%) 88 877
[4%,6%) 21 94%
[6%,8%) 11 98%
[8%,10%) & 997%
[10%,12%) 0 99%
[12%,14%) 1 100" %
[14%,16Z%) 1 100%

in the 288-item system. The two items with values of A(Ro) exceeding

10% have a variance to-mean ratio 9, ieadtime 0, mean 2, and unit penalty
cost ratio and unit setup cost ratio of 4,64 and 99,32, respectively.

We obtain an even better fit for Power Approximation replenishment
cost. The follov’nrg approximation has a coefficient of determination of

0.999 and an average percentage deviation of 1.4% from actual values of R

- & frga 2
Rp = .5763h(02/y) .2774u.4959+.0079060 /u-.003856u/0

.05744 .6046~.,065631 /0

(L+1) " (K/h)

There are no significant outliers in the distribution of A(Rp) . We
find 74%Z of the 288 {items with A(Rp) in [0%,2%) and all the remaining
items have values of A(Rp) In" 12X, 4%)
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The reason for Rp having smaller errors than Ro is that the

Power Approximation has a simple multiplicative formula for setting
(S-s). The multiplicative nature of the formula and its independence
of the parameter p/h make the associated cost a natural candidate for
a regression fit of this type.

3.2.5 Average Total Cost per Period

We would expect to obtain good multiplicative approximations for
total cost because of the empirical observations described in Section 3.1
We also would expect the Power Approximation and optimal policy fits to be
similar because actual total cost values for these policies are nearly
equal. Both of these conjectures are correct.

The following approximation for optimal total cost yields a coeffi-

cient of determination of 0.994 and an average percentage deviation of 2.7%

.4947-.00479202/

(36) T = 2.663h exp(.097840%/p)u
(L+1) - L479+.012680%/u-. 067574/ 07
(p/h)-l.143h/p—.02488u/02+,0130202/U
(K/h).4093—.0237602/u

The following approximation for Power Approximation total cost yields a

coefficient of determination of 0.994 and an average percentage deviation

of 2.8%
2
. g .4564~,0052090° -
(37) T - 2.438h(02/ 1) 3836 15 64~,00520902 / (o/h) .9230h/p+.015080 /u
2 A 2
(L+l).1498+.012310 /u=.07050u/0
3095-.013100°/1+.10730/0"
(K/h)* - AAT o u/o
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The distributions of percentage deviations for the two approximations

are nearly identical. We summarize them as onc system in Table 3.7 The

Table 3.7

Frequencies of A(Tf) in a 576-item System

Range for Number Cumulative Percentage
A(Tf) of Items of Items
[0%,2%) 272 47%
[2%,4%) 176 717%
[4%,6%) 69 90%
[6%,8%) 31 95%
[8%,10%) 22 997
[10%,12%) 1 99%
[12%,14%) > 100%

largest errors are consistently associated with small leadtime and large
varlance-to-mean ratio.

We attempted to improve the approximation by fitting separately for
each value of ©¢%/y , but the approach was unsuccessful.

The approximation does improve when we fit separately for each value
of leadtime. We obtain coefficients of variation averaging 0.996 and an

average percentage deviation of 2.1% with expressions of the form
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g

’ C1+C2’J;/.LJ
(38) T;/h = g exp(blo//u+b2u/02)u

u/o? e.+e, 02/u

d h/p+d. o?/u+d
. (K/h) 1e

(p/h) ’

Values of the coefficients in (38) are given in Table 3.7 for each policy

and each value of L . We summarize the distribution of errors for (38)

Table 3.7

Coefficient Values in Expression (61) for T!

Policy |L a b b, e e d d d e -

Optimal| O ||2.084].0798}~.0153].4929|~-.0033|-.8398].0158]-.0198].4601]|-.0218

2113.212).1196]~.0584) .4955|-.0054)~2.226].0124] -.0282|.4024]-.0249

P
&

.216).1289|~.1042|.4958]-.0057(-1.377].0108f{~.0280(.3652|~-.0246

N

Power 0 .095]1.07911~-.0198] .4951|-.0041|-.8052].0160] -.0159].4552]|-.0212
Approx.

2113.2161.1198]~.0606| .4976|-.0058|-1.211].0125|~-.0266 |.4003|-.0248

4114.216).1296]~.1098] .4968|-.0058|-1.358|.0109|~.0258 |.3644|-.0248

in Table 3.8. The number of items having deviations within 2% has increased
by more than a third, and the number of items with deviations exceeding 6%
has been nearly halved. The four items with deviations exceeding 10% are

listed in Table 3.9.

3.3 Approximations for Statistical Policies

We consider four 72-item systems (see Table 3.1) controlled with

the Statistical Power Approximation (see Section 1). One system has a
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Frequencies

Table 3.8

of A(T%) in a 576-item System

Range for Number Cumulative Percentage

A(T;) of Items of Items

[0%,2%) 364 637%

[ 2 ) 145 88%

&4 € } ﬁb 95%

f 13 97%

M2 14 99%

({10% 4 100%

Table 3.9
Items with A(TE) Exceeding 10%
Policy o?2/u]l L M p/h K/h Error
Optimal 9 0 2 99 32 ~-11.8%
Power Approximation 9 0 2 99 32 ~11.5%
Power Approximation 9 0 2 4 32 10.9%
Optimal 9 0 2 4 32 10.9%
50
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variance-to-mean ratio of 3, and revision interval length equal to 26
periods. The other three systems all have a variance-to-mean ratio of 9,
with revision interval lengths of 13, 26, and 52 periods.

We develop separate operating characteristic approximations for
each of the systems using regression models of the form (29), (30), (34).
We label a quantity with subscript (x,y) when it pertains to a system
with o?/u equal x , and a y-period revision interval. For example

H is the holding-cost approximation for the system with o?/u  equal

3,26
3, and revision interval equal 26 periods.

We also develop approximations that explicitly include revision
interval length T as a variable. For these approximations we use
regression models of the form (29), (30), (33) on the systems with
variance-to-mean equal 9. We label these approximations with the sub-
script (9,T)

When we summarize error distributions we combine the systems into
one 288-item system. The subscript "s" is used to label the system.

Recall that our statistical policy data contain random simulation
errors. Hence, we can expect that the quality of the regression fits
will degrade as compared with those for fixed policies.

3.3.1 Average Holding Cost per Period

We obtain the following approximations for statistical policy holding

cost
Hy o ® 4,968y " 4881 (1.41) + 2679 (5 )y =3+ 394N0/p (1 1934
b 10
H9,13 ~ 3 P gy AT o Y S B ety
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H X 10.40hu'4824(L+1)'}722(p/h)_5'730h/p(K/h)'09987

4
H, .. = 10.2780° Y98 141y

. 3645 ~3.7 09743

6 (p/h) 3 Ajh/p(K/h) 09743
The approximations have coefficients of determination of 0.989, 0.990,
0.992, and 0.994, respectively. Average percentage deviations from
actual values of H are 5.0%, 5.4%, 4.7%Z, and 4.3%, respectively, as
compared with 3.97 for Power Approximation fixed policies.

The percentage deviations are distributed similarly for the four

systems. We summarize the deviations in Table 3.10. Unlike the fixed-

policy fits, we find no general pattern in the parameter settings of

Table 3.10

Frequencies of A(HS) in a 288-item System

Range for Number Cumulative Percentage
A(HS) of Items of Items
[0%,2%) 63 227
[2%,4%) 76 50%
[4%,6%) 59 667%
[6%,8%) 43 81%
[8%,10%) 23 89%
(10%,12%) 11 97%
[12%,14%) 12 100 %
[14%,16%) 1 100%
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outliers. Nearly half of the items with deviations larger than 107% have
p/h equal to 99.

We also performed separate fits for each value of p/h , and explicitly
included revision interval length T as a variable in the o¢?/y equal 9

system. The average percent deviation decreases to 3.8% for the

approximations ‘
1.365hu'4905(L+l)'2076(K/h)'2319 , pfh = &
H23,26) = 2.lSéru'A861(L+1)'247A(K/h)'2082 paplil, =19
6.792hy" *877 (La1) 2988 (/) 1400 pyn < 99
2.7/Oh“.A655+.00033T(L+1).2902+1.409/T(K/h).1155 =4
H;g‘T) i A.OOOh“.4587+.00042T(L+]).2994fl.250/T(K/h).1280 , plh=9
9.698hu'A6SA+‘00047T(L+1)'3935+1'183/T(K/h)'0566 Tl e

Although the stepwise regression program permitted the variables T and 1/T
to enter every exponent, notice that T and 1/T each enter only once
oo N

We summarize the distribution of errors for the approximations in
Table 3.11. The distribution is closer to 0% than in Table 3.10, with
277% more items with deviations less than 4%.

3.3.2 Average Backlog Cost per Period

We encountered serious difficulties in fitting multiplicative expres-
sions to statistical policy backlog costs. When we use the model (.29),
(30), (32) on the four statistical systems we obtain coefficients of

determination averaging 0.80.

W
—~
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Table 3.11

Frequencies of A(H') in a 288~item System
1 s J

R —

Range for Number Cumulative Percentage

'(HL) of Items of Items

)% 427) 96 33%
[2%,47%) 80 617
[4%,6%) 48 78%
[6%,8%) 36 90%
[8%,10%) 18 97%
[10%,12%) 3 98%
[12%,14%) 4 100 %
[147,167) 1 100%
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We obtain improved results by fitting each system separately for
each value of p/h , yielding expressions of the form

b.-b./u cl+c2(L+1) dh/K
B =ah exp(bl/u)u (L+1) (K/h)

5

In Table 3.12 we list values of the constants a,...,d for each

statistical system and each value of p/h . The quality of the fit is

Table 3.12

Values of Constants in BS

_—

System p/h a b] b2 b3 y cy d
(3,26) 4 6.355 -.6755 .2258 -1.067 .3691 .0087 -3.989
9 2.599 ~-.3709 .3581 .0952 .4952 . 0066 -2.697
99 L4842 1.568 6172 2.856 .3656 § -.0132 -1.380
(9,13) 4 1.983 -.1610 .5620 1.012 .6015 |} -.0171 -1.609
9 3.319 -.3796 .4052 4183 .5499 .0070 -+3021
99 <1781 2,833 1.294 6.461 .3405 | -.0008 -.6803
(9,26) 4 7427 .8536 L2346 -.7821 .5433 | -.0105 -2.791
9 1.380 .4098 .6079 1.464 .5070 .0066 ~.2855
99 %.251 .8241 + 8735 2.513 w8 .0207 ~1.120
(9,52) 4 4,428 -.4380 .3681 -.1355 .5166 | -.0126 ~2.763
9 4.376 ~.2043 .3079 -.0763 L4799 | -.0031 -1.333
99 7.242 .1 L0630 1.690 .0555 .0082 -1.030

A
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rather good for p/h equal 4 and 9 , with an average deviation of 4%
from actual values of B . The approximation for p/h equal 99 ,
however, deviates by an average of 10%Z. We summarize the distribution of

deviations in Table 3.13.

Table 3.13

Frequencies of A(B$) in a 288-item System

Range for Number of Items Cumulative Percentage of ltems
;(BS) [tems Items ITtems Items
; with with All with with All

p/h<99 p/h=99 Items |} p/h<99 p/h=99 Items
10%,2%) 72 10 82 387 10% 28%
(2%,4%) 48 11 59 627% 22% 497
[4%,6%Z) 37 8 45 827 30% 657
[6%,8%) 16 9 25 90% 40% 73%
[8%,10%) 6 12 18 93% 52% 80%
[10%,20%) k3 36 49 100% 90% 97%
[20%,30%) 9 9 997 100 %
[30%,40%) 1 1 100% 100%

We caution that the approximations may not be robust, One reason
is that we used only 24 items to fit the seven constants in each regression.
Another reason is that most of the coefficients in Table 3.12 do not vary
monotonically with the three values for p/h ; interpolating coefficient

values for other settings of p/h would not be warranted.
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3.3.3 Backlog Preotection

Recall our observation in Section 3.2.3 that for fixed-policy backlog
protection, the easy-to-calculate expressions (23) and (24) are as accurate
as the complicated multiplicative expressions (34) and (35). Therefore we
fit functions of the form (23) and (24) to the statistical-policy data.

We have average percent deviations of only 1.3%Z for the following

backlog protection approximations

['(3’26) = (-.0925+.9995p/h)/ (1+p/h)
r(()’”) = (-.0057+.9853p/h)/ (1+p/h)
Plg.26) = (.0167+.9904p/h)/ (1+p/h)

P(9,52) = (.0511+.9943p/h)/(1+p/h) .

We summarize the distribution of errors in Table 3.14. We see the same
pattern of errors as with the approximations for backlog protection in
Sections 2.4 and 3,2.3. The largest errors are due to items with low
values of p/h , for example, fifteen of the twenty items with deviations

greater than 4Z have p/h equal four or nine.

Table 3.14

Frequencies of A(PS) in a 288-item System

Range for Number Cumulative Percentage
A(Ps) of Items of Items

[0%,2%) 223 17%

[2%,4%) 45 93%

[4%,67) 18 99%

[6%,8%) 2 100%

27
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lhe approximation is improved by fitting to minimize relative squared
error as in Section 2.4. Revision interval length T 1s also introduced
)

as a variable in the systems having 0°/u = 9. The result is the following

approximation which has an average percentage error of 1.3%

PE; ey ™ (-.272 + 5.66 h/K + 1.003 p/h)/(1 + p/h)
Plg.py = (--081 + 5.42 h/K - 1.119/T + .994 p/h)/(1 + p/h)

We summarize the distribution of errors for this approximation in Table

3.14a. Although P' has the same average percentage error in the 288-item
S

Table 3.l4a

Frequencies of A(P') in a 288-item System
s

Range for Number Cumulative Percentage
A (P;) of Items of Items
————— i ~—f~-~4—1[—‘—' ———
(0%, 2%) 220 76%
[2%,4%) 53 95%
[4%,6%) 15 100%

system, there are fewer items with large percentage errors using

approximation P'.




3.3.4 Average Replenishment Cost per Period
We obtain the following approximations for statistical policy replen-

ishment cost

o A AR o 610N . 5818
3,26

B u * 2RTEES T ey Y gy SATO
9,13

g e B 526 0y 07238 L 6269
9,26

Ry s, = .3012hy 2263 (1.41) 7+ 06014 (/- 6165

The approximations have coefficients of determination of 0.999, 0.989,
0.998, and 0.999, respectively. Average percentage deviations from
actual values of R &re 1.1%, 4.0Z, 1.6%, and 1.2%, respectively, as

compared with 2.0Z for Power Approximation fixed policies.

aiklle . oamt o

We summarize the distribution of errors in Table 3.15. Of the 34
items with deviations larger than 4%, 28 are from the (9,13) system. All
of the items with deviations larger than 10Z are from this system, and also
have L equal 4 , and p/h equal 99

We also performed separate fits for each value of p/h , and explicitly
included revision interval length T and its reciprocal 1/T as variables
in the o?/u equal 9 system. The average percent deviation decreases

from 2.0%Z to 1.6% for the approximations

.Az.znm'5155(L+1)"°586(K/h)'576l » p/h = 4
5175 .05 L5790
5k, 2i)” 53660 22 2T PV iy 20 e =y
RLSEN .r'll,vl.(! ) L) .’I !I‘).r)()l)". 2 3,
58
T
%‘ e
8, i : g2 k.




Frequencies of A(Rs)

Table 3,15

in a 288-item System

Range for Number Cumulative Percentage
L(Rs) of Items of Items

[0%,2%) 202 70%

[2%,42) 52 88

[4%,6%) 20 95%

(6%,87) 6 97%

[8%,10%) 4 997

[10%,12%) 1 99%

[12%,14%) 0 99%

[14%,16%) 2 100" %

[16%,18%) 0 100" %

[18%,20%) 0 100" %

[20%,22%) 0 100° %

[22%,24%) 0 100 %

[24%,26%) 1 100%
_2903hu.5470(L+1)—.0638-.1269/T(K/h).6344 ol

REg,T) 3 .2872hu.5540(L+1)-.0568—.3930/T(K/h).6333 R

.2852hu.5766(L+1)—.0363—1.351/T(K/h).6227 ol

L}

99 .

Observe that in the stepwise least-squares fitting procedure, the revision

interval entered only through a single term in

for any of the other coefficients.

1/T , and was not selected

e A —— A — e S S e




We summarize the distribution of errors for the approximations in
Table 3.16. The distribution is better than in Table 3.15, with outliers
still coming from the (9,13) system. All the items with deviations greater
than 6% come from this system. They also tend to have L equal 4 , p/h

equal 99 , and small

Table 3.16

Frequencies of A(Ré) in a 288-item System

Range for Number Cumulative Percentage
A(R;) of Items of Items

[0%,2%) 208 72%

(2%,4%) 63 94%

[4%,6%) 1L 98%

[6%,8%) 2 99%
[8%,10%) 2 99%
[10%,12%) 1 100 %
[12%,14%) 0 100" %
{14%,16%) 1 100%

3.3.5 Average Total Cost per Period

We obtain the following approximations for statistical policy total cost

L4702

2.370hu (L+1)'1958 1560

(p/h) (K/h)'3022

)
u

L4387 .3346

3.776hy (141) S

L1843

-3
L}

(K/h)

L4309 .3024 2550 «1917

-3
L]

3.798hy (L+1) (p/h)°

«2397

(K/h)

L4405

3.758hy P M

.1964

-3
n
W

(p/h) (K/h)
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The approximations have coefficients of determination of 0.989, 0.987,
0.983, and 0.985, respectively. Average percentage deviations from
actual values of T are 3.8%, 5.1%, 5.4%Z, and 4.9%, respectively, as
compared to 2.8% for the Power Approximation fixed policies.
We summarize the distribution of percentage deviations in Table 3.17.
The patterns of percentage errors are quite similar in all four systems,
with large errors tending to occur for items with large p/h and small u
We also performed separate fits for each value of p/h , and
explicitly included revision interval length T as a variable in the

3“/u  equal 9 system. The average percent deviation drops from

Table 3.17

Frequencies of A(Tg) in a 288-item System

Range for Number Cumulative Percentage
A(Th) of Items of Items

[0%,2%) 83 29%
[2%,4%) 69 53%
[4%,6%) 39 66%
[6%,8%) 43 81l%
[8%,10%) 19 88%
[10%,12%) 16 93%
[12%Z,14%) 11 97%
[14%.16%) 7 100 %
[16%,18%) 0 100 %
[18%,20%) 1 100%

4,87 to 2.6% for the following approximations
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T(3,26) =

.I‘zg'r[v)

We summarize the distribution of errors for the approximations in
Table 3.18. The distribution is markedly better than that in Table 3.17.
The number of items with deviations smaller than 4% has increased by more

than half, and all 35 items that previously had deviations greater than 10%

now are within 107%.

Frequencies of A(T;)

2,200k 902 gy 158 o 30

ST TSR T N

6. 607t 4393 (1.01y - 2870 13y -2266 1 = 99

3. 79004961 (La1y - 2403+ BATI/T (s 25724.0400/T

6. 0021+ 4680 41y - 2659+.9762/T (1 2008+, 111S/T 1 g

19.20hp.3461(h+1).2757+1.131/T(K/h).088]+.4356/T , p/h = 99

Table 3.18

in a 288-item System

e

- . ——

Range for Number Cumulative Percentage

A(T;) of Items of Items
{0X;2%) 130 4L5%
[2%,4%) 100 80%
[4%,67) 49 97%
(6%,8%) 4 100™ %
[8%,10%) 1 100%

62




3.4 Measures of Robustness

In this section we analyze the robustness of our multiplicative

approximations for fixed- and statistical-~policy operating characteristics.

We use the approach of Section 2.7 to examine the aggregated behavior of
the approximations and to investigate their accuracy when parameter values
are extrapolated.

In Tables 3.19 and 3.20 we summarize the accuracy of our fixed-policy
approximations llf 3 Bf s Pf 5 Rf s 80d Tg as a function of the parameter
settings in the 576-item system. Each entry is the percentage excess of
the sum of approximate values over the sum of actual values for all items
having the given parameter setting. As we noted in Section 2.7, most of
the large errors tend to cancel when the ltems are aggregated in this way.
Even the large errors we found for backlog cost with p/h equal 99 do not
appear in Tables 3.19 and 3.20. The largest systematic errors appear for
the Power Approximation holding cost when o?/u equals 1 . This pattern
did not appear in Section 3.2 when we examined single-item behavior.

Table 3.21a is a multi-item summary of errors for the statistical-
policy approximations HS > Bs ¥ PS ’ Rs , and TS . We summarize the
multi-item behavior of Hé - R; , and Té in Table 3.21b. These tables
exhibit the same property noted above that the large single-item errors
tend to cancel when the items are aggregated. Approximations H; “ R; "
and T; appear to be more accurate than Hs 5 Rs , and Ts , regpectively,
in all systems except for the o2/ equals 9 systems where RS has
smaller errors than R; . The largest systematic errors appear in the
total cost approximations TS for p/h equal to 99 and u equal to 2.

We test the robustness of our fixed-policy approximations by using

them in the 64-item system of Table 2.11. The parameter settings are

63
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interpolated and extrapolated in such a way that no item has any one
parameter with the same value as in the 576-item system used to derive
the approximations. We examine errors of approximations Hf - Rf , and
Tf only. We already have a simple, robust approximation for P that was
analyzed thoroughly in Section 2.7. Our approximation for B is not
tested here because of its inaccuracies and lack of an explicit dependence
on the parameter p/h .

We summarize the distributions of percent deviations of Hf s Rf s

and Tf in Table 3.22. Optimal and Power Approximation policies display
similar patterns of errors, so we summarize them as one 64-item system.

The approximations clearly lack the robustness that we noted in Section 2.7
for the analytic approximations. Even if we confine our attention to items

with fewer than two extrapolated parameters, we find average errors of

7.8%, 4.5%, and 5.47% for holding cost, replenishment cost, and total cost,

Table 3.22

Percentage Deviations of Multiplicative Approximations
in a 64-item System

Range of Number of Items (Cumulative Percentage)
Deviation Holding Cost Replenishment Cost Total Cost

H—
[0%,10%) 12 £19%) 31 (48%) 31 (48%)
[10%,20%) 16 (44%) 23 (84%) 12 (67%)
[20%,30%) 21 (77%) 9 (98%) 14 (89%)
[30%,40%) 12 (95%) 1 (100%) 6 (98%)
[40%,50%) 2 (98%) 1 (100%)
[50%,60%) 1 (100%)

68




respectively. The worst single-parameter extrapolations for all the
approximations are o¢?/u equal to 15 and u equal to 0.5 . We conclude
that the multiplicative approximations should be used only with great
caution when parameters are extrapolated beyond the ranges of the 576-item
system (Table 2.1).

We also examine the behavior of the statistical-policy approximations
B -8} RS , and TS for interpolated and extrapolated parameter values.
We are unable to extrapolate these approximations for values of a?/u
so we use the l6-item system of Table 2.11 with o02/up fixed at 9 . The
results are similar to the fixed-policy results. In Table 3.23 we summarize
the distribution of errors for the l6-item system using the approximations
for a 26-period revision-interval length. Remember that the deviations are

a composite of the error introduced by using a multiplicative form as well

Table 3.23

Percentage Deviations of Statistical Policy Approximations

in a l6-item System

Range of Number of Items (Cumulative Percentage)
Deviation Holding Cost | Backlog Protection| Replenishment Cost | Total Cost
[0%,10%) 8 (50%) 16 (100%) 9 (56%) 7 (44%)
[10%Z,20%) 4 (75%) 1 (62%) 3 (62%)
[20%,30%) 3 (94%) 2 (75%) 3 (81%)
[30%,40%) 1 (100%) 1 (81X) 2 (94%)
[40%,50%) 1 (88%) 1 (100%)
[50%,60%) 0 (88%)
[60%,70%) L (94%)
[70%,80%) 1 (100%)
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as a random component from the statistical aspect of the data. Backlog
protection has an average deviation of 0.4%X. If we consider only items
with fewer than two extrapolated parameters, the average deviation is
only 0.2Z%.

The holding cost approximation H8 has an average deviation of 13%,
which drops to 4% when items with more than one extrapolation are ignored.
The worst single-parameter extrapolation is for u equal 0.5 .

The replenishment cost approximation Rs has an average deviation of
18%. If we consider only items with fewer than two extrapolated parameters,
the average deviation is only 3%. The worst deviations occur for u
equal 0.5 .

The total cost approximation TS has an average deviation of 16%,
which drops to 5% when only siungle-parameter extrapolations are included.
The worst single-parameter extrapolations are for u equals 0.5 and p/h
equal 132.

We conclude that the statistical-policy approximations should not be
used for extremely small values of u , and that multiple-parameter

extrapolations should be considered cautiously.
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4. THE SENSITIVITY OF OPERATING CHARACTERISTICS
TO PARAMETER VALUES

In Sections 2 and 3 we developed approximate expressions for the
operating characteristics of fixed-policy and statistical-policy in-
ventory systems. Now that we have the approximations, we are in a
position to perform analyses that were hitherto intractable. In this

chapter we will make simple statements about the following questions:

it

. What are the cost and service implications of a change in
mean demand?
2. What are the effects of consolidating demand from several
distinct warehouses into a single central warehouse?
3. DBy how much do costs rise when service is increased?
4. How much is it worth to obtain quicker delivery of
replenishment orders?
5. What are the cost implications of a change in unit holding
cost?
6. What are the effects of changing the review period length?
For each question we present calculations based on a simplified
model to illustrate the uses of the approximations in Section 3. In
many cases, our assumptions will be unrealistically simple for the
systems planner who may require extensive analyses of such questions.
Nevertheless, our results indicate general trends and illustrate the
potential uses of the approximations,.
In Sections 4.1 through 4.5 we discuss the sensitivity of Power
Approximation and Statistical Power Approximation operating character=-

istics to mean demand p, unit penalty cost ratio p/h, leadtime L, setup
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cost ratio K/h, unit holding cost h, and review period length. In each
section we present a simple analysis of one or more of the above questions.
We also include graphs displaying the operating characteristics of Sec-
tions 2and 3 as functions of parameter values. Throughout these sections
we assume that o?/u equals 9, and in the graphs we examine single para-
meter variations about the settings u equals 8, L equals 2, p/h equals
9, and K/h equals 48.

For the Power Approximation we draw graphs using the analytic ap-
proximations Ha (Section 2.3), Pa.p (Section 2.4), Ra (Section 2.2),
and Ta (Section 2.5). We note that approximations Ha’ Ra’ and '[’a are
discontinuous functions of the parameters yu, oz/u, Ly Py Ky and h. This
is because the approximations depend on the policy parameters s and D
which are rounded to the nearest integer. We have drawn smooth curves
for the characteristics by omitting the round-off procedure for s and D
in the computation of Ha’ Ra’ and Ta. We perform sensitivity analyses
for Power Approximation policies using approximations Hp (Section 3.2.1),
Pa 5 (Section 2.4), Rp (Section 3.2.4), and Tp (Section 3.2.5). With

2
o /u equal 9 we have

] .35 o + .094: L0691
= 7.678 by 4629 . 15 3)12(p/h) 2.738 h/p 0942\ /) +069
P o (.0695 + p/h)/ (1L + p/h)
(39) ;
R = 3133 b L+5666 (| L 1)=0574 5 .5973
: .25: -, 92 o .203
T, = 5.663 hy 8695 o & 1)*2938 ppyr 9230 h/p 1357 tw) 4

We consider the statistical policy with a 26=period revision interval
2
and o /u equal 9. We draw graphs using two sets of approximations. When

p/h is held constant at 9 we use HS " (Section 3.3.1), Rs‘ (Section 3.3.4),




and TS' (Section 3.3.5). We draw the remaining graphs and perform

sensitivity analyses using the following approximations from Section 3.3

. 4824

« 3227 -3.7: ”
Hig gy = 10-40 b u N ¥ Mol 1 Bhbaiad 0 3] ¢ st
P(9,2h) ( .0167 + .9904 p/h) / (1 + p/h)
(40)
R . = .2949 h “.5526 (L + 1)"0724 (K/h)'bz°9
(9,1!))
e 267 = 3.798 h “.4309 (L + l).soza (p/h).zsso (K/h).191, :

We do not use the approximations for backlog cost in this chapter
because of their complexity and their inaccuracy for certain paramcter

settings.

4.1 Sensitivity to Mean Demand

Consider a situation in which mean demand My changes to the value
(41) M2 = a W)

and all other parameters remain unchanged. From (39) and (40) we sce
that backlog protection will be approximately unchanged for both policies
since the expressions for P are independent of the parameter . All other

cost expressions are of the form
” . L
(42) Cost = cu ',

where ¢ and a are independent of u. Let CosL1 and Cost, be values of a
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cost component when u equals y; and u, respectively. Then (41) and (42)

yield

L
Costz/CDstl - a

that is, the ratio of approximate costs is a function of the ratio of the

two mean demands, and the exponent of u in the cost approximation. In

Table 4.1 we display approximate percentage changes in operating characteris-
tics for several values of the parameter a. Similar behavior is exhibited

by the fixed policy and the statistical policy. All three cost components

are roughly proportional to the square root of p, with replenishment cost

Table 4.1

Approximate Percentage Changes in
Operating Characteristics

LS e SIAE Ot R :
Policy e e o Holding Backlog Replenishment Total
Anprrdnd Cost Protection Cost Cost
in
| Iy
107% 4.5% 0% 5.5% 4. 4%
Power
25% 117 0% 147% 117
Approx.
50% 21% 0% 26% 20%
i, o s Arkehome ST | (s e e
Statistical 10% 4. 7% 0% 5S4k 4.1%
Power 25% 11% 0% 13% LO%
Approx. 50% L 22% 0% 23R 19%
R ) ISP J— PRS—— - i_ - - ‘,__J

being slightly more sensitive than the other costs to changes in u.
Now we consider a situation in which demand from n independent and
identical warehouses is consolidated into a single central warchousc.

Let (,'ustl be the sum of values for a cost component over the n warchousces
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(before consolidation), and let CosL2 be the value of the cost component

after consolidation. Using (42) we have

. o
Cost. = n ¢ |

o
e fn'y)

I e

Cost,
Combining these expressions, we have

Costz/CosLI S~

which is independent of all parameters except for the number of warc-

houses before consolidation, and the exponent of p in the cost approximation.

Table 4.2

Approximate Percentage Decreases for
Operating Characteristics

iy S SRS ¢ R e s B - R § TR S
Policy = i Holding Backlog eplenishment Total
} Cost Protection! Cost Cost
'ff::f:fil;;i‘fﬁ::::?iifif:Z"::TZTT;?;_:T'if:"”'"'l‘—"" s e ol
, 2 l 31% 0% 26% 32%
Power ’ {
a ! 52% 0% 457% 534
Approx. ‘
8 ' 677% 0% 59% 68%
e - ~1--——'——- e S -—T——- ————t— -~
2 30% 0% 27% 33
Statistical 4 51 0% 46 55%
Power ‘
Approx. NEE 667 0% 617 69%
|
A P T SRS IR e TR OOV, T MTIRE e, T ey X
13




RS

Since the values of a in (39) and (40) are all less than 1, we know that
Cost2 will be less than COSt1 for all values of n greater than 1. In n
Table 4.2 we list approximate percentage decreases in costs for scveral
values of n. The savings are considerable for both fixed and statistical
policies.

Finally we consider consolidating demand from two warehouses that
differ in one respect. Let the mean demand in one warehouse be much
smaller than that in the other warehouse. That is, the item is a "slow
mover" in one location and not in the other location. Let the ratio of
mean demand at the two locations be a, with a less than one. We use

(41) to calculate the total cost Tl at the two warehouses before

consolidation, yielding

T1 < c[ e, o a u)a] .

After consolidation we have total cost T2 given by

T, =c [+ au]® .

After combining the two expressions we have
T,/T, = (1 +a)%/ (1 +a%) .

We also consider the ratio of the marginal total cost of the small demand
after consolidation to its total cost before consolidation, given

approximately by
(TZ- cuu)/(u u)(l; L + u)u- l]/.‘lu
In Table 4.3 we list approximate values for total cost reductions for

several values of a when the Power Approximation is used. The reduction in
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Table 4.3

Approximate Percentage Reductions in
Power Approximation Total Cost

Ratio of Small Demand ] Combined Marginal Cost

to Large Demand

sl i | ; i i

System of Slow Mover

0.1 i 23% 88%
0.25 | 28% 80%
0.50 ’ 31% 73%

total costs for the combined system is quite large even when the ratio of
mean demands is only 0.1. The percentage reduction in the marginal cost
of the slow mover is quite dramatic, especially for the lowest valuc of
a. The results for statistical policies are nearly identical.

In Figures 4.1, 4.2, and 4.3 we present graphs of the approximations
for holding cost, replenishment cost, and total cost, respectively, as
functions of mean demand. The fixed- and statistical-policy approxi-
mations exhibit similar behavior. The statistical policy has higher
values and slightly greater sensitivity to p for holding cost and total

cost. Replenishment cost values are nearly identical for both policies.
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4.2 Sensitivity to Unit Penalty Cost

Consider a situation in which a systems designer wants to assess the
cost implications of increasing the level of service. The designer does
this by assigning a value to backlog protection P and computing the corre-
sponding value of the unit penalty cost ratio p/h. Approximate values for

the operating characteristics are then calculated using this value of p/h.

Expressions (39) and (40) for backlog protection are of the form
P=2(a+b p/h) /(1 + p/h)
We solve for p/h, yielding

p/h = (P - a)/(b - P)

Suppose backlog protection is increased from PI equals 0.90 to PZ equals

0.95. For the Power Approximation we have

N

pl/h = 8.
p2/h = 17.3,

and for the Statistical Power Approximation we have

pl/h 9.8
pz/h = 23.1

For both policies the unit penalty cost ratio increases more than two-fold.

We list the approximate percentage increases in the operating

characteristics in Table 4.4.
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Table 4.4

Approximate Percentage Increases in Operating Characteristics
When P Increases from 0.90 to 0.95

Polic Holding Backlog Replenishment Total
y Cost Protection Cost Cost
Power Approximation : 38% 6% 0% 20%
i Statistical Power 447 67% 0% 25%
Approximation i
1 sl

Replenishment costs remain approximately unchanged since the expressions
for this characteristic are independent of p/h. All other costs rise by
20% to 44%, with the statistical policy displaying larger increases.

In Figures 4.4, 4.5, and 4.6 we present graphs of the approximations for
holding cost, backlog protection, and total cost, respectively, as
functions of p/h. All the curves are concave over the range of values
plotted. The holding cost curves display higher values for the statis-
tical policy than for the fixed policy. The curves for backlog protection
are nearly parallel, with larger values of P for the fixed policy. For both
policies we see that backlog protection is much morc sensitive to p/h for
small values of p/h. The total cost curves show that the statistical
policv has higher values of total cost and greater sensitivity of total

cost to p/h for all values displayed in the figure.
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4.3 Sensitivity to Leadtime and Setup Cost

In this section we consider the fourth question raised at the begin-
ning of the chapter. Suppose a quicker means of replenishment delivery is
being considered. What is it worth? We assume that a quicker delivery is
paid for by means of a higher setup cost. Therefore we are confronted with
a trade-off decision where leadtime L is decreased and setup cost K is
increased.

For simplicity, we assume that the time betwcen ordering and deliv-
ery (Ll + 1) is an even number of periods and that it can be reduced to
(Ll + 1)/2 periods. The setup cost is simultaneously increased from Kl
to aKl, where a is greater than 1. We assume that all other paramcters
remain unchanged. From (39) and (40) we see that total cost per period

is of the form
T2c¢ L+ 1D (k/mP

where ¢, a , and § are independent of L and K. The total cost TI before

L and K are changed is approximated by
T, = ¢ (L. ¥+ 1)u (K /h)ﬁ
1 1 1 Y
and after L and K are changed we have

T, & c [+ 1)/2]“caxllh)3.
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We estimate that the reduced leadtime will realize a savings in total

cost if

T,/T, = R i B 08

In other words, approximate total cost is reduced if

a ia*= 20‘/B

We interpret a® as an approximate break-even point. That is, if the
setup cost corresponding to the quicker delivery is less than u*K, then
the quick delivery method has lower total cost. Using values of o and 8
from (39) and (40) we see that a* equals 2.4 for the Power Approximation
policy and 3.0 for the statistical policy. Therefore, it is worthwhile
to pay more than double the setup cost for a delivery scheme that is
twice as fast.

We calculate numerical results for the case of a equals 2. ‘the

cost components in (39), (40) are all of the form
Cost = ¢ (L+1)® /nf .

Let Cost1 be the value of a cost component before changing L and K, and

let Costz be the value after the change. Then we have

5 £ SB=a
Cost2/(,ost.1 F .

Specifically, for the Power Approximation we have

. =-,282
= 2
”2/"1 2

R,/R 2'655

% &

2—.049

T,/T, '
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and for the statistical policy we have

-.272
HZ/HI = 2

R, /R, = 2°%9

-.111
2/Ty 2 .

We list numerical results in Table 4.5. The quicker delivery reduces

Table 4.5

Approximate Percent Changes in Operating Characteristics
T +D/@, +D =1/ K /K =27

Holding |Backlog Replenishment'Total
Policy / '
Cost Protection‘ Cost | Cost
|
|
)|
Power Approximation -18% 0% 57% -3%
|
Statistical Power Approx. -17% 0% 62% ! -7%
|

total cost by 3%Z for the Power Approximation and by 7% for the statistical
policy. These are impressive savings since we assumed that the quick
delivery was twice as expensive as the normal delivery. Backlog protec-
tion is approximately unchanged since the expressions for P are independent
of L and K. The quick-delivery system has lower holding costs and higher
replenishment costs.

In Figures 4.7, 4.8, and 4.9 we present graphs of the approximations
for holding cost, replenishment cost, and total cost, respectively, as

functions of leadtime. Although the curves are plotted as if leadtime
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were a continuous variable, we note that leadtime is required to be
integer-valued in our model. The curves for holding cost and replenish-
ment cost differ only slightly for fixed- and statistical~policy
approximations. Replenishment cost is especially insensitive to changes
in leadtime. The curves for total cost display a greater sensitivity

to leadtime for the statistical policy than for the fixed policy. The
statistical policy curve also has larger values of total cost for all
values of leadtime except for a small region near L equals 0. In this
region the values of total cost may be considered essentially the sawe
since the difference never exceeds 2% which is less than the average
errors of approximation for total cost.

In Figures 4.10, 4.11, and 4.12 we present graphs of the approxi-

mations for holding cost, replenishment cost, and total cost, respectively,

as functions of K. The replenishment cost curves are nearly identical
for statistical- and fixed-policy approximations. For holding cost, the
statistical-policy curve has higher values and a steeper slopc¢ than the
fixed-policy curve. The total cost curves are essentially two parallel
lines, with the statistical-policy curve aoout four units above the

fixed-policy curve.
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