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FOREWORD

As part of the on-going program in "Decision and Control Models in
Operations Research,” Mr. Ronald Kaufman investigates the behavior of
multi-item inventory control systems in which the means of the under-
lying demand distributions vary in a cyclic manner, corresponding to
seasonal peaks for inventoried goods. Mr. Kaufman adapts the Ehrhardt
power approximation (Technical Report No. 7), which was originally de-
signed for stationary demand distributions, to the nonstationary
environment. Mr. Kaufman tests the behavior of the power approximation
in inventory systems where the demand distribution parameters are
estimated from a limited amount of historical information. Several
sections of this report parallel similar findings in earlier reports.

Other related reports dealing with the research program are given below.

Harvey M. Wagner
Principal Investigator
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ABSTRACT

(s,S) INVENTORY POLICIES IN A
NONSTATIONARY DEMAND ENVIRONMENT

Ronald Louis Kaufman
University of North Carolina-1977

Scarf (1960) proves the optimality of (s,S) policies for a class
of discrete review nonstationary inventory models. A considerable
amount of inventory literature concerns computation of optimal and ap-
proximately optimal (s,S) policies under the Scarf hypotheses. Little
research has dealt, however, with the case of nonstationary demands.
This investigation examines the situation in which demand distributions
are independent, but not identically distributed, and vary in a cyclic
manner. Products that experience seasonal demands are a typical example
of such a demand process.

A detailed analysis of the nature of optimal policies in the non-
stationary environment is presented. The behavior of selected operating
characteristics such as period-end inventory, backlogged demand, fre-
quency of stockout, replenishment frequency, and associated costs also
are examined. The above performance measures for an individual inven-
toried good are aggregated over all goods to provide an analysis of the
multi-item system behavior.

Approximately optimal (s,S) policies are derived for the nonstation-
ary environment. The policies are based on the power approximation of
Ehrhardt (1976), and require knowledge of only the mean and variance of
demand. The operating characteristics of approximately optimal policies
are compared with those of optimal policies.

The approximately optimal policy rule is examined in a statistical

environment that generalizes MacCormick (1974). Policy parameters are




revised periodically using a limited history of past demands to estimate
the mean and variance of demand. Each time the policy parameters are
revised, forecasts of system operating characteristics are calculated
from a retrospective simulation employing the same sample of demands
that was used to revise the policy.

The statistical phenomena are studied by means of a computer

simulation program using time series analysis techniques.
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1. INVENTORY MANAGEMENT WITH INCOMPLETE
DEMAND INFORMATION

This section describes the inventory model assumpticns and the
inventory operating characteristics that will be used to evaluate in-
ventory policies. The Ehrha:i 't power approximation is also presented,
and we will show how it can be successfully adapted to inventory systems
with nonstationary demands.

1.1 The Model
1.1.1 Structure

We consider a single-item inventory model in which the inventory
level is reviewed each period, and demand for the item is generated
by a discrete time stochastic process. The demand process is non-
stationary; Specifically, the demands are independent, but not identi-
cally distributed, non-negative integer-valued random variables. The
distributions used ta generate these demands are cyclic with period L.
Let

o G AR TR T e, R PRI TR TR L
represent the demand sequence: then the joint distributions of £nL+1,
‘o E(n+l)L and EmL+1""’ €(m+l)L are are assumed to be the same for
any integers m and n > 0. Since there are at most L different

demand distributions, ¢ for i = 1,...,L, denotes the distribution

1’
function for the ith demand within the cycle. We assume that demand
is met as long as there is stock on hand, and when a stockout occurs,

unfilled demand is backlogged until sufficient replenishment arrives.

L g

W
"
=
“



Units of inventory are conserved, there being no losses by de-
terioration, obsolescence, or pilferage, and disposal 1s not allowed.
Inventory on hand at the end of a current period is the inventory from
the previous period plus any replenishment that a-rives, less demand
in the current period. If inventory on hand is negative, the amount
represents backlogged demand. Replenishments are assumed to be de-
livered a fixed leadtime A after being ordered. The time sequence of
events within any period is taken to be order, delivery, and de-
mand.

The cost functions for the model are simple. With no discount-
ing over time and an unbounded planning horizon, a resonable criter-
ion is minimization of long-run average expected total cost per period.
The cost of a replenishment quantity is assumed to be linear with a
fixed ordering cost K. The inventory holding cost is proportional to
any stock on hand, at unit cost h, assessed at the end of each period;
a unit penalty cost m 1is applied to any quantity on backorder at the
end of each period.

The associated control problem is to make optimal replenishment
decisions for this model. We assume that control over replenishment
is exercised by an (Si’si) policy, for 1 = 1,...,L: Whenever in-
ventory x on hand and on order at the start of the 1th period, 1 <

i < L, within a cycle of length L, drops below the value s we

1.

place a replenishment order of size S ,~x. When the objective of con-

i

trol is to minimize long-run average expected total cost per period,

and the distributions and parameters specifying the structure of the

B T — e - - —~——
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model are completely known, it follows from the theory of dynamic pro-
gramming, [see Veinott (1966) and Karlin (1959)], that there is an
(Si’si) policy, for i = 1,...,L, that is optimal among all possible
policies.

When the distribution generating demand is not know, then
even though this is the only assumption relaxed, it may no longer
be true that a (Si’si)’ for 1 = 1,...,L, policy is optimal, using
the criteria of long-run average expected total cost per period.
Nevertheless, in this study we shall use such a policy, since it
is in popular use in the applied situation of incomplete informa-

tion. Information about the L demand distributions ¢ for

i!
i = 1,...,L, must be gathered by inference from a limited sample

of demands.

1.1.2 Algorithms to Set (s,S) with Partial Knowledge

When the means and variances oi, Ear 4 % JiosvL; OF

"y
each demand distribution in a cycle are known, approximations to
the optimal policy are available. The approximations are based

on asymptotic theory that assume large unit penalty costs and large
replenishment costs. The algorithm adopted here is the power
approximation of Ehrhardt (1976), which is a generalization of

earlier policies based on the work cf Roberts (1962). Ehrhardt extend-

ed Roberts' work by generalizing the functional forms for s and S-s,

———————— S ——— —agp— — -
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4
and then fitting these functional forms to a larger set of known optimal
policies using least-squares regression. The power approximation was
designed by Ehrhardt for use in stationary environments; one of the
purposes of this study is to investigate adaptations of the power
approximation to nonstationary environments.

Let H§A+l)and Gf(x+l), for 1 = 1,...,L, denote the arithmetic
average of the next A + 1 demand means and variances, respectively,
starting in the ith period of the cycle. For example, if i = 5 and
A= 2, then ;(3) and 32(3) are the arithmetic averages of the means
and variances, respectively, of the demands in periods 5, 6, and 7. For
each pair of —ik+l) and Ei(x+l) the power approximation computes,

—(\+ . .4 2 A+ .069
(1) D, = (1.463) G )38 wrmy 0 [aenyag AP 06%
=g ()\+1) (A+1)4.416 20+1) = (A+1)
s, = (A+1) u + Lo, ) My )**%(2)
(2) Si =8 + Dp .
where U(z) is given by
U(z) = (.182/z) + 1.142 - 3.466z,
(3) —~(A+1), . 364 .498 &
(u ) (K/h)
Z =
~2(A+ .43
a + Do+ 201
(O +1)
;A /1 is greater than 1.5, let 8, = 8. and S, = §

i 1 i S

Otherwise, compute

—

e —
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_(A+1)
(4) 8, = (x+1)u1 + v [()‘-n)"c’i()wl)];5 .

where v 1is the solution to
(5) F(v) = n/(n+h) ,

and F(+) is the cumulative distribution function of the unit normal
distribution. The policy parameters are then given by

3,1

s; = minimum {sl » S,

(6)

S =
. minimum {Sl g SZ}

Since demands are integer-valued, we round s Dp, and S to the

115 2
nearest integer.

The policy (s,,S,) 1is utilized at the beginning of the 1*B period 1n
the cycle. The policy (si,Si), for i = 1,...,L, computed using the power
approximation, has been adopted in this study as the basic decision rule

in the case of limited information about the demand distribution para-

meters.

1.2 Experimental Design

1.2.1 Nonstationary Demands

In this study, we assume that an item's demand distribution in any
period is negative binomial. This distribution has parameters r and

p, where r>0 and O<p<l, with probability mass function

I'(r+x

r X
Foan) Ty (IP) P for x =0,1,...,

f(x) =
yielding mean X2 and variance -1
1-p 2
(1-p)
Note that the variance-to-mean ratio is I%; , which 18 a function of p ,
and throughout this study the variance-to-mean ratio is fixed at 3; thus

p = 2/3. We introduce nonstationarity by varying the parameter r
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cyclically. We select cycle length L = 12, corresponding to a yearly
demand cycle of 12 months' demands.

We select for study five general types of cyclic demand structures.
Figure 1.1 illustrates the movement of the demand distributions' means
in each cycle. Figure 1.1b displays a step model demand structure that
henceforth we refer to as model I. The mean demand level for this model
is o for the first nine periods of the cycle, and 2o for the last
three periods of the cycle.

A more gradual increasing mean ie shown for models II and III in
Figures l.l.c and 1.1.d, respectively. Both models maintain a constant
mean « for the first seven periods of the cycle. The mean gradually
increases to a maximum level in period 10 of 2a for model II and 5a
for model III. After period 10 the mean demand slowly decreases.

Model IV, depicted in Figure 1.l.e shows mean demand varying in a
sinusoidal manner where o 1is the lowest level of mean demand and 5a
is the largest level.

Throughout this study models I, II, III, and IV are compared with
the stationary model, depicted in Figure 1l.l.a. The stationary model
maintains a constant mean demand level o . The five models' values
of @ are selected to ensure that overall mean period demand for the

entire cycle is equal to values specified in Section 1.2.2.

1.2.2 Design Parameters

The single-~item model described in Section 1.1.1 is studied under
the range of input parameters given in Table 1.1. The demand distribu-
tion is negative binomial with variance-to-mean ratio fixed at 3. The
two mean values for demand are 8 and 16. Two values, 2 and 4, are
assigned to leadtime. Since the cost function is linear in the para-

meters K,h, and 7, the value of the unit holding cost is set at unity.
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Essential changes in cost arise only with changes in the ratios K/h

and 7/h. The stockout costs are n = 4 and 99, and the fixed cost

values are K = 32 and 64. All combinations of input parameters are ex-
amined in the study.

Each set of 16 input combinations is examined under each of the
five demand structures discussed in Section 1.2.1, resulting in five
separate inventory systems. The systems are labeled model I, model I1I,
model III, model IV, and the stationary model, corresponding to the
These five systems constitute

names given to the demand structures.

our basic experiment.

Table 1.1

System Parameters

Number
Parameter Parameter Settings of Settiqgs
Demand distribution Negative Binomial (V/y = 3) 1
Mean demand 8, 16 2
Unit holding cost 1 1
Unit backlog penalty cost |4, 99 2
Replenishment setup cost 32, 64 2
Replenishment leadtime s 4 2

1.2.3 Decision Rules

This study examines three decision rules: optimal inventory rules,

approximately optimal rules, and statistical approximation rules. The
computation of optimal policies is explained in detail in Section 2.1.
Approximately optimal policy rules are calculated using the power

approximation, discussed previously in Section 1.1.2. A third method
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is the statistical power approximation, which is explained in the
remainder of this section. Both the optimal and approximately optimal
policies are analyzed analytically in Section 2. Segtion 2 also inves-
tigates the effects of demand structure misspecification on the power
approximation. Computer simulation is used to investigate the statistical
power approximation, and the findings are presented in Section 3.

For an arbitrary integer t, let G<t be the number of observed
demands during periods t-G to t-1l. In order to use the statistical power
approximation of Ehrhardt (1976) in a stationary environment, the sta-
tistics required are the sample mean and variance of demand, E and V,
respectively. If t 1s the period in which we decide to compute a

statistical policy, then

G
=0 ¢
T=] t-T1
G
V=0l DA
=1

When using the statistical power approximation, we periodically obtain
a new (s,S) policy by substituting £ and V for :{A+1) and gi(x+1)

in equations (1) through (6).

In a regression context £ and V are estimators of the regression
coefficient a and the variance of the disturbance term for the re-

gression model
y = ax + ® oL 2% 15.i000,

where, for the stationary environment

Yy ™ demand in period t-t
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o = stationary mean demand level

X = ]
| e 1
E(e ) =0 for all t>t
t-1
E(EC-TER-T) = ) ' for thk, ‘t>t, kT,
2
E(ti_r) =0 for all t>t .

In our nonstationary environment, however, x is no longer

=1
identically 1 for every demand period; now xt-r depends on the posi-

tion of period t-T within the demand cycle. We assume that we know

the cycle length, and we let each period's mean demand in the cycle be
represented as ;he product of the appropriate value of S and a ,
which is the smallest demand mean of the demand structure. We also
assume that the values of X, _p are known, but that o must be estimated.

The appropriate regression model is
y = ax + € for v = 1,...T(2E),

where
y = demand in period t-t
a = smallest mean demand level in the demand structure
X = appropriate constant such that a.xt_T is the mean
demand level in period t-t
E(e ) =0 for all t>t,
) =0 for ték, t>t, kT,

9 2
E(Ct-r) = oy(t-r) for all t>r,

= C for all o,

y(t-1) = appropriate demand structure index used in period t-t.
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y(t-1) identifies the demand distribution used in period t-Tt, relative to
the cycle. For example, if y(t=t) = 5, then period t-T receives demand
from the fifth period of the cycle, and the variance of demand in period
2
t-1 1is Og+
Table 1.2
Values for x
t~
Period in Cycle
1 2 3 4 5 [ 7 8 9 10 | 11 12
Stationary Model 1 | X 1 1 1 i 1 1 1 1 1
Model I 1 1 1 1 1 1 1 1 1 2 2 2
Model 1I 1 1 1 1 1 1 1 [1.33 |1.67 2 11.67 §1.33
Model III ¢ 1 )| 1 1 1 1 2.33 |3.67 5 3.67 12.33
Model 1V 2.60 [1.80 1 1 |1.80 [2.60 [3.40 |4.20 5 5 4.20 [3.40
The values of Xy within a cycle for each of the demand structures
studied are given in Table 1.2. Observe that x is 1 when the mean demand

] Sy

level in period t-1 18 a and 2 or 5 for the nonstationary systems when
the mean demand level in period t-t is at its largest value. Hence, in
models I through IV, a represents a base level of mean demand, and -
determines how much above that level the mean demand in period t-t will be.

The nonstationary‘regression model contains heteroscadastic disturb-
ances. However, dividing both sides of the regression equation by /E;:-
will eliminate the heteroscedasticity [see Johnston (1972)], and produce
a transformed model with disturbance variance equal to the variance-to-

mean ratio, which has been kept constant, times a . The resulting

least squares estimator of a is

r
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and a standard estimator of ca the variance-to-mean ratio times a , 1is

G
1 2
I = (y - x. )
82 P MR t-T1
G-1
~ P _— A+
Once a and 52 are obtained, we can estimate u£k+1) and Uf( l),

for ' = 1;...,ks DY
R+*.
] s a xJ
—'()\"'1) p I-R ’
My A+ 1
and
“2(A+1) 2—-(\+1) =
4 il Bl

respectively, where R 1s chosen such that Y(R) = i. These estimates are

A+1 6‘2 (A+1)

substituted for lii and 4 in equations (1) through (6) of

Section 1.1.2 to obtain the statistical policy (31'51)'

1.2.4 Policy Revision

In implementing a statistical inventory policy, in a real-life

environment, the policy parameters 8y and Si,

revised at regular intervals. With such revisions taking place, there

for 41 = 1,..:,L; would ba

are system design choices to be made concerning the length of history

kept and the amount of information stored. For the simulation experi-
ments in this study, a history of fixed length is kept for each re-
vision, and equal weight is given to each observation. This is not
optimal if the demand process is known to be stationary, for then the
entire history should be accumulated to give progressively better know-
ledge and performance. Even when demand is known to be nonstationary, but
varying in a regular manner, such as by a trend or periodic cycle, or both,

an optimal decision rule would generally utilize the entire history.
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The decision-maker usually is not in a position to know, however,
that conditions observed, even over the entire past history, will con-
tinue to prevail. This lack of complete information provides justifi-
cation for making frequent revisions, placing greater weight on observa-
tions from the immediate past and less on distant history. For this
study, an arbitrary choice has been made to keep a history of fixed
length and give equal weight to all observations in the history. In
this study, the revision interval and revision history length are both
24 periods, implying "monthly" demand data that are accumulated over the
same time interval. For a detailed discussion of demand generation,
system initialization, and output analysis, in the simulation experiment

see MacCormick (1974, pp. 52-58).

1.2.5 Item Operating Characteristics

We examine detailed operating characteristics of each item in the
five systems. These are the period-end inventory on hand, the period-
end stockout quantity, the frequency of period-end stockouts, the re-
plenishment quantity, the frequency of replenishment, and the total cost
incurred. It is assumed that the decision-maker is interested only in
the average performance of these characteristics between revisions,
corresponding to the practice adopted by accountants of makine reports
to management at periodic intervals.

One objective of the study is to make inferences about the dis-
tributions of these operating characteristics for each of the three
decisions rules (optimal policies under full information, approximately
optimal policies, and statistical approximation policies), that were

discussed in Section 1.2.3.




st

1.2.6 Forecasting

The method of MacCormick (1974) is used to forecast operating char-

acteristics when the system is controlled by the statistical power approx-

' this method takes

imation rule. Often termed 'retrospective simulation,'
the recent demand history for the items in the sample and estimates the
performance of the chosen policy for this history. Thus, the method uses
the same data twice, once to fix the policy parameters, and once to fore-
cast the performance. As a result, the forecasts are biased, and this
study investigates the extent of the bias.

At each revision, after the (Si’si) parameters, for 4 = 1,...,L,
have been set to new values, a forecast is made of the properties of the
system. A history of the latest g+A demand values is kept to make the
forecast. [We note that there are differences in information storage
requirements of considerable importance in practice. To make a forecast
of performance by retrospective simulation, the demands for the item in
each of G+A periods must be stored, whereas the statistical decision rule
may require only a handful of sufficient statistics to set the (Sl'si)

policies. Also, for multi-~item systems the cost of accumulating in stor-

age the data needed to make forecasts by retrospective simulation is

likely to be so high that histories will be kept for only a representative

sample of items from the system. ]
The forecasts are made every 24 periods by running the system, using

the new policy values of s, and Si , for 1 = 1,...,L, and observing

i
the operating characteristics as if these policy values had been in force
when the history occurred. Each time there is a policy revision, (every
24 periods), there is a forecast for each operating characteristic. The

simulation initializes the stock on hand and on order at the actual value

at the time of the forecast, that is, at the time of revision. As actual

16
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stock on hand is not recorded until the elapse of a leadtime after re-
vision, the same interval is allowed to elapse before recording it for
the forecast. The inventory on hand variable is therefore initialized
at the initial value for inventory on hand and on order less the first

A demands in the history of G+A demands.

1.3 A Multi-Item System

Scientific techniques for inventory control are generally applied to
systems of many items. This study combines the results from the five 16
single-item systems into five multi-item systems. Since management general-
ly assesses the performance of control techniques for a multi-item inven-
tory syvstem by observing indices that are aggregate operating characteris-
tics [Wagner (1962)], certain aggregate characteristics have been computed.

The operating characteristics of the multi-item system under statis-
tical control have been measured by aggregating the sample values of the
corresponding characteristics for each item in the system. When the
system is operated under perfect information, these characteristics are
computed analytically. The aggregate of average total cost per period is
computed as the arithmetic sum of the corresponding costs for each item.
The components of total cost for inventory storage, backlog penalty, and
ordering replenishments are similarly computed. The aggregate backlog and
replenishment frequencies are arithmetic averages of the corresponding
frequencies observed for each item in the system. Since the unit inven-
tory holding cost for all items is unity, the average number of units in
inventory at period-end is numerically identical to the aggregate average
holding cost per period. Finally, a weighted proportion of demand back=-
logged 1s computed as the ratio of a weighted sum of the average quantity
backlogged per period to a weighted sum of the (exact) mean values of

demand. The weights used in both the numerator and denominator of the
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2
ratio are the unit cost of backlogging demand for the respective ftem.
Throughout this study the nonstationary systems will be compared to
the system with stationary demands.
o pe— e g G e, = b a— - ————— e —
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2. SYSTEM CONTROL WITH FULL INFORMATION ABOUT DEMAND

Section 2.1 contains a detailed explanation of the analytical models
used to obtain optimal policies and evaluate the operating characteristics
of arbitrary policies of the (s,S) type. Sections 2.2 and 2.3 record
information descriptive of single-item and multi~item inventory systems
controlled optimally and approximately optimally with full information
about demand. The main intention of Section 2 is to establish bench-
mark values of the systems' operating characteristics for later comparison
with systems controlled using only statistical information about demand.
The data in this section also illustrates that the Ehrhardt power approx-

imation can be adapted to control nonstationary inventory systems.

2.1 Analytical Models Used to Obtain and Evaluate Optimal Policies

In Section 1.1.1 we denoted the length of the demand distribution
cycle by L. Hence if ¢i represents a demand density for the th
period in a cycle of L periods, then demand densities in successive

periods are

¢l’ ¢2’ Rl R ¢L’ ¢1’ ¢2’ c sy djll’ bl

Thus, ¢1 is the demand density in period 1, ¢2 is the demand
density in period 2, and ¢L is the demand density in period L.

In period L+1, the demand density is again ¢l’ and the cycle repeats.
We denote the v+l- fold convolution of successive demand densities by
®¥+1; that is, ¢;+]is the convolution of 1 and the next v densities
that follow 1 dn the cycls, for 1= 1,...,L.

When n periods remain in the finite horizon of a single-item

inventory model, an optimal (sn.Sn) policy 1is obtained by employing a

At

L e
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recursive relationship based on the results of Scarf (1960) and Veinott

(1966). We utilize the relationship for n > )\

x) = - + o ¢ - (¢
1”(K) m{n {K& (y X) H(y,Yy(n)) + 1 tn_l(y £)¢Y(n) EY |
y2x £E=0
where
X = inventory on hand and on order at the beginning of period n,
prior to the ordering decision
y = inventory on hand and on order after the ordering decision in
period n but prior to receiving demand in period n
n = number of periods that the item will be stocked
y(n) = the appropriate demand density index in the cycle when n
periods remain
0 for z =0
6(z) =
1l for 1z # 0
A = delivery lag
y :
A+1 . A+l f 0
hE (y-€) 6.7 0 (8) + mi (&-y) o () T
£=0 i &>y
H(y,y(n)) =
+ :
T (E-y) ¢l (€) for y<0
£>y ¥
£,() =0
Define
y e + & - £
G (y) = H(y,Y(n)) g.of“'l(y ,)¢Y(n)(£)

S = smallest integer that minimizes G (-) .
n

s = smallest integer such that G (s ) < K+ G (8 ).
n n' n n n
Then
K +
Gn(sn) for x < s,
f (x) =
n
Cn(x) for x 2 8
=2 — p— ——— ——
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and thus, (sn’sn) is an optimal policy when n periods remain.

Our algorithm calculates (sn,Sn), for n s kA + 1, A ¥ 2 ices
recursively. Due to the cyclic nature of the demand structure, an
optimal inventory policy consists of L, possibly distinct, (s,S)
policies: that is, one for each period in the cycle. We terminate
the algorithm when no further change in the policies occur. The just-
ification for employing this approach is mainly heuristic, since we are
not aware of any convergence theorem for this recursive process. In
fact, the computer program used to implement the algorithm occasionally
does not converge to a set of policies but cycles between sets of

policies. An example is given in Table 2.1, which shows § cycling

12n
between 94 and 95. Note, however, that the difference in total cost
per period between these two inventory policies is negligible.

The operating characteristics of a specified inventory policy are
calculated by extending the methods of Wagner (1969), who considered
the stationary environment, to our cyclic environment. Wagner (1969)
solves a Markov chain to determine the stationary distribution of

inventory on hand and on order after ordering. These probabilities are

denoted
r(y), for il S,...,S,

where (8,S) is a stationary inventory policy in use.

When demand distributions vary periodically, another dimension must
be added to the Markov state space, namely, the period in the cycle. Thus,
our state space is (y,i) and represents the state of having y wunits of
inventory on hand and on order after ordering at the beginning of the 1th
period of the demand cycle. Since the policies used each period may vary,
y can assume values from s1 to §, where s1 is the reorder point used

in the ith period of the cycle and S 1is the maximum Si of all L




Table 2.1

Optimal n~Stage Policies (sn, Sn)

Model 11
Mean = 16, mw = 99, K = 64, \ = 2
n s, Sn n s, Sn n s, ~§;_“
1 56 73 25 61 96 49 61 96
2 i 93 26 71 105 50 71 105
3 88 XS 27 87 121 51 87 121
4 92 231 28 92 132 52 92 132
3 85 138 29 85 137 53 85 137
6 68 112 30 68 112 54 68 112
7 59 94 31 59 94 55 59 94
8 54 100 32 54 100 56 54 100
9 35 90 33 55 90 LY 55 90
10 56 90 34 56 90 58 56 90
11 55 93 33 55 93 59 55 93
12 55 94 36 55 94 60 55 94
13 61 96 37 61 96 61 61 96
14 71 105 38 71 105 62 i 105
15 87 121 39 87 121 63 87 121
16 92 132 40 92 132 64 92 132
17 85 E37 41 85 137 65 85 137
18 68 112 42 68 112 66 68 112
19 59 94 43 59 94 67 59 94
20 54 100 44 54 100 68 54 100
21 55 90 45 35 90 69 55 90
22 56 90 46 56 90 70 56 90
23 55 93 47 35 93 71 55 93
24 55 35 48 55 993 72 55 95
TOTAL COST WITH S12n = 94: 68.39679
TOTAL COST WITH S12n = 95: 68.39684

22
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periods in the cycle. In order to calculate replenishment probabilities,
the states (Si,i), for i = 1,...,L, are decomposed into states
(Si(order),i) and Si(no order),i), for i = 1,...,L. The state
(Si(order),i) represents entering period i with inventory on hand
and on order before ordering less than Sy» 8O that an order occurs in
period 1i. The state (Si(no order),i) represents already having S1
units of goods on hand and on order before ordering, so that no order
occurs in period i.
Due to the cyclic nature of the model, the probability of entering
state (+,j), for 1 £ j < L, given that the last state is (.,1), for
1 <1< L, is zero for j # 1 + 1, unless 1 = L and j = 1. Thus, the
general structure of the transition matrix may be presented by examining
only the transition probabilities from any period i to period 1 + 1,
for 1 < 1 < L - 1, within the cycle. Such a matrix is shown in Figure 2.1.
The structure depicted in Figure 2.1 assumes that 8y < Si +1 < Si
< Si +1° Note in Figure 2.1 that the structure of this matrix is simi-

lar to an upper triangular structure, when the last s S, rows are

i1+l 3
ignored. If Sy 3»51 +1° then the upper triangular structure would appear
only in the first S - 8, + 1 rows of the matrix.
Let

r(Si(no order),i) i n o e (CANR,

r(Si(order),i) for 1w F 000k

r(y,1i) for £ = 1,...;L and

y = si,...,§

y # 5,5

denote the stationary probabilities for the Markov chain. For notational

convenience, we also define

R
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r(Si,i) E r(Si(order),i) + r(Si(no order),1) far 1= 1....,L,

After solving the Markov chain for r(+,+), we can compute the

operating characteristics:

Expected Stockout Quantity

Expected Period-End Inventory

Replenishment Frequency

Stockout Probability

Expected Replenishment Cost

Expected Holding Cost

Expected Backlog Cost

Expected Total Cost

I
Iy, @y @]
i=1 yﬂs1 Q>y
L & y
I I -0, @]
i=1 y=s Q=0
L
L r(Si(order),i)
i=1
R y
1=% 2 riy, 2 ¢:+1(Y—J))
1-1 y=si j.o

K(Replenishment Frequency)
h(Expected Period-End Inventory)
m(Expected Stockout Quantity)
Expected Replenishment Cost +
Expected Stockout Cost +

Expected Holding Cost.

Note that each of the L periods in the cycle contributes to the ex-

pected value of the operating characteristic. Hence, when we refer to,

for example, expected total cost, we are not referring to the expected

cost incurred in a specific period of the cycle, but rather the average

value per period for an arbitrary period in the cycle over the infinite

horizon.

In the stationary environment Veinott and Wagner (1965) prove that

if an (s,S) policy is optimal, the stockout probability is bounded above

by h/(h + n). This upper bound is valid also in the cyclic demand

environment, as shown next.

.

(e . =iﬂm¢,y‘_‘mf¥v-i‘-c .




Let (si + €, S1 +C), for i = 1,...,L, represent an inventory policy
in a cyclic demand environment of cycle length L. The policy

(Si +C, Si + C) is used in the ith period of the cycle. The total

expected cost of such an inventory policy over an entire cycle can be

expressed as
L L
(1) A, r(Sl + C(order),1) + 2
i=1 1=

g
P AESC ~ 34008 4+ C - y.1)

where

S = max {S,}
. i
ﬁi -8y p, for A Vosa sl

We seek an integer C such that total cost with respect to the policy
(si + 0, Si +C), for 1 = 1,...,L, is minimized. Since shifting every
(s,S) policy in the cycle by C can not change replenishment frequency,
minimizing (1) with respect to C is equivalent to minimizing

S T 4

L T H(B +C = y,t)r(8 '+ ¢ = y,1)

i=1 y=0
with respect to C.
It is easily verified that H(S + C - y,1) is convex in C. Thus we

seek the smallest C such that

e
I I"HE+C+1-y,{)r,S+C+1-~y,1) -
1
i=1 y=0
L o R "
&8 RE+C~-y9,1)r,(8 ¥C = y,1) 20,
2
i=1 y=0

where rl(',') and rz(',') are the stationary distributions associated with

O % ki for X & L.veisk; sl (0, G S, 1),

policies (sI +C+1, 8 "

i i

for 1 = 1,...,L, respectively. But since shifting all the (s,S) policies
in the cycle by a constant can not affect the stationary distributions

rl(z + 1, 1) and r2(z,1) are equivalent, for z = g, + C,...,§ + C and for

i
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all 1i. Hence, we can use r'(z,*) to denote rl(z + 1, ) and r2(z,-).

Veinott and Wagner (1965) express H(§ +C+ 1 ~9, 1)

~H(S+C~y, i) as .
W =
(h + 1)) L@ ve- 1) i

where z
A+1 A+
o = 1 oMW
v=0

Therefore, we seek the smallest integer C such that

L Di A+l = ¢ 1S

I " {th+m ¢, "(S+C -y, 1)r S+C-y, 1) -xxr S+C-y, 1)} 20
i=1 y=0 ;
or

L D
z Zi ®A+l(S +C -y, 1)r'(S+C ~y, 1) 2 n/Ch + wn).
i=1 y=0

The left hand side of the above inequality is, for the minimizing value

of C, the probability of having O or more units of inventory in stock.

Hence, the stockout probability is bounded above by 1 - w/(h + m) or

h/(h + w).

Since this proof is valid for arbitrary (s,S) policies, it is

' '
valid for the class of policies (s1 + C, Si B 8); ford @ 1,¢..h;
L] A

where (s1 5 Si ), for i = 1,...,L, differ from the optimal policy by

C. Hence, the proof remains valid for optimal policies.

2.2 Optimal Control with Full Information: Multi-Item Systems

We let each item in the l6-item systems described in Section 1.2.2
be controlled by using optimal replenishment policies. Table 2.2 lists
the resulting expected values of average total cost per period and its
components for the 16-item negative binomial systems with variance-to-

mean ratio of 3. Each component's percent of total cost is shown in

parentheses.
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Table 2.2

Average Costs Per Period for a Multi{-ltem
Negative Binomial System Optimally Controlled

| statiomar MODEL MODEL MODEL MOEL
_COST COMPONENT |  MODEL | 1 LT 131 L
INVENTORY 439 (57.8) 433 (58.0) 438 (58.2) 429 (59.7) 434 (58.6)
BACKLOG 109 (14.4) 106 (14.2) 106 (14.2) 102 (14.1) 104 (14.1)
REPLENISHMENT | 211 (27.8) 208 (27.8) | 208 (27.6) 188 (26.1) 202 (27.2)
760 (100.0) 747 (100.0) ‘L 752 (100.0) 718 (100.0) 739 (100.0)

Observe that the stationary model's total cost serves as an upper
bound for the nonstationary models. Appendices A to E reveal that the
total cost of each individual case in the stationary system also provides
an upper limit for the corresponding cases in the nonstationary systems.
Further experimentation is required to determine if stationary costs can
serve as useful upper bounds for nonstationary models. Models I1II and
IV, which have the largest variation in demand means, have the lowest re-~
plenishment and total costs of all the models examined.

The apportionment of expected average costs for various classifica-
tions of the items in each multi-item system i1s shown in Table 2.3 which
gives the distributions by percentage of the expected average total cost
per period. Aggregate values of other operating characteristics for the
varlous classifications are set out in Table 2.4. The classifications are
one~-way in the sense that items in the system are grouped according to the
value taken by a single input parameter.

Table 2.3 reveals that the relative distributions of cost are virtu-
ally the same for the five models that we studied. This suggests that the
cost parameters, the leadtime, and overall demand mean are the dominant
factors in determining the distributions of system cost, whereas the na-

ture of the nonstationarity has l{ttle inf ucnce on the cost distributions.

With the exception of the replenishment frequencics of models LII and IV,
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the aggregate values of operating characteristics in Table 2.4 of the
nonstationary systems are similar to those of the stationary model.

The sensitivity of operating characteristics and policy parameters
is summarized in Table 2.5, which has been constructed by observing any
monotonicity in the relation for a multi-item system. With the exception
of the stationary model's decreasing relationship of backlog frequency
with leadtime, the relationships of operating characteristics to input
parameters are identical for the stationary system and all non-station-
ary systems, suggesting that the nature of the nonstationarity does not
play a major role in the sensitivity of operating characteristics to in-
put parameters.

Policy parameters s and S also follow identical relationships
for those systems studied; however, the difference S-s, which is denoted by
D, does not generally maintain the same relationships for each system. For
example, while D increases with respect to leadtime in the stationary
system, no such simple relationship exists in any of the nonstationary

systems. The only monotonic relationship for D that all systems have

in common is that with respect to replenishment cost.

Finally, we explore one other point, an approximation well-known
to writers on inventory control, which is potentially of great practical
use. As proved in Section 2.1, for an optimally-controlled multi-period
inventory model with linear costs, the probability of a stockout occuring
is no larger than h/(h + 7). Inspection of Tables 2.4 shows that the
backlog frequencies are close to their upper bounds for every system. For
example, the 8 items having m = 4 in the model I system have a combined

relative backlog frequency of .192, compared to the upper bound of .200.




Table 2.5a

Sensitivity of Input Parameters of Operating Characteristics
of an Optimally Controlled Inventory System When
Demand Has a Negative Binomial Distribution

INPUT PARAMETERS

C(OUT)/C(IN) C(FIX)/C(IN)

LEADTIME MEAN DEMAND

STATIONARY MODEL

OPERATING CHARACTERISTIC

E(COST) i
E(PERIOD-END INVENTORY) 4
E(BACKLOG COST) V

E(BACKLOG FREQUENCY) ¥
PROPORTION DEMAND BACKLOGGED +
E(REPLENISHMENT COST) ®
E (REPLENISHMENT FREQUENCY) 1

POLICY PARAMETERS

D
s

S

MODEL I

OPERATING CHARACTERISTIC

E(COST) t
E(PERIOD~END INVENTORY) t
E (BACKLOG COST) ¥
E (BACKLOG FREQUENCY) v
PROPORTION DEMAND BACKLOGGED +
E(REPLENISHMENT COST) 1

E (REPLENISHMENT FREQUENCY) +

POLICY PARAMETERS

D
8
S

¥
’
*

« =+ > > > > >

> > > > > >

¥
4

+ t
+ $
‘. 4
+ )
4 +
¥ t
¥ +
t +
1 t
4 1
i 1
t 4
* t
4 t
4 +
+ t
¥ t
? ?
1 t
¥ t

t indicates
+ indicates
v indicates
7 indicates

relation is monotone increasing
relation is monotone decreasing

relation 1s approximately constant

no conclusion can be drawn from the data
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Table 2.5b

Sensitivity of Input Parameters of Operating Characteristics
of an Optimally Controlled Inventory System When
Demand Has a Negative Binomial Distribution

INPUT PARAMETERS

STATIONARY MODEL

OPERATING CHARACTERISTIC

C(OUT)/C(IN) C(FIX)/C(IN) LEADTIME MEAN DEMAND

E(COST) 4 4 ' "
E(PERIOD-END INVENTORY) + v 4 ¢
E (BACKLOG COST) ¥ 4 »
E (BACKLOG FREQUENCY) ¥ 4 ¥ t
PROPORTION DEMAND BACKLOGGED + # t +
E(REPLENISHMENT COST) s 4 ¥ t
E(REPLENISHMENT FREQUENCY) t ¥ v t

POLICY PARAMETERS
D ‘ 4 4 t
s % ¥ 5 4
S t t t t

MODEL II

OPERATING CHARACTERISTIC
E (COST) N R N N
E(PERIOD-END INVENTORY) 0 t : t
E (BACKLOG COST) + + ¢ t
E (BACKLOG FREQUENCY) ¥ 1 £ t
PROPORTION DEMAND BACKLOGGED + t ¢
E(REPLENISHMENT COST) L + ¥ 4
E (REPLENISHMENT FREQUENCY) 4 ¢ +

POLICY PARAMETERS
D ? 4 ?
8 t + ) t
S $ t t t

t+ indicates relation is monotone increasing

+ indicates relation is monotone decreasing

" indicates relation is approximately constant

? indicates no conclusion can be drawn from the data
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Table 2.5c

40

Sensitivity of Input Parameters of Operating Characteristics
of an Optimally Controlled Inventory System When
Demand Has a Negative Binomial Distribution

INPUT PARAMETERS
C(OUT)/C(IN) C(FIX)/C(IN) LEADTIME MEAN DEMAND

STATIONARY MODEL

OPERATING CHARACTERISTIC

E(COST) + 4
E(PERIOD-END INVENTORY) 4 ¢
E(BACKLOG COST) ¥ +
E (BACKLOG FREQUENCY) + ¢
PROPORTION DEMAND BACKLOGGED + 4
E (REPLENISHMENT COST) t #
E (REPLENISHMENT FREQUENCY) + ¥
POLICY PARAMETERS
D ¥ 1+
8 4 ¥
S 4 4
MODEL III
OPERATING CHARACTERISTIC
E(COST) t t
E(PERIOD-END INVENTORY) t ¥
E(BACKLOG COST) + +
E(BACKLOG FREQUENCY) + t
PROPORTION DEMAND BACKLOGGED ¥ 4
E(REPLENISHMENT COST) t t
E(REPLENISHMENT FREQUENCY) * ¥
POLICY PARAMETERS
D ? t
8 t ¥
S 1 +

D t
4 t
4 t
¥ t

¥
+ +
‘ t
4 t
4 1
t ¢
4 t

t
3 t
t t
t !
¢ t
v t
? ?
4 t
t t

- - >

indicates relation 1s monotone increasing
indicates relation 1s monotone decreasing
indicates relation 1& approximately constant
indicates no conclusion can be drawn from the data




B SR

Table 2.5d

Sensitivity of Input Parameters of Operating Characteristics
of an Optimally Controlled Inventory System When
Demand Has a Negative Binomial Distribution

INPUT PARAMETERS

C(OUT) /C(IN) C(FIX)/C(IN) LEADTIME MEAN DEMAND
STATIONARY MODEL
OPERATING CHARACTERISTIC
E(COST) } t t t
E (PERIOD- INVENTORY) t t t 1
E(BACKLOG COST) v 1 t t
E(BACKLOG FREQUENCY) v " v t
PROPORTION DEMAND BACKLOGGED + n t /
E (REPLENISHMENT COST) ¢ 4 ' 4
E(REPLENISHMENT FREQUENCY) 4 ' v '
POLICY PARAMETERS
D y n 4 4
s + ¥ + 1
S n n 4 t
MODEL IV
OPERATING CHARACTERISTIC
E(COST) " ¢ '3 '
E(PERIOD-END INVENTORY) t + ¢ .
E(BACKLOG FREQUENCY) v + t t
PROPORTION DEMAND BACKLOGGED + 4 " b
E (REPLENISHMENT COST) ¢ n " ;
E(REPLENISHMENT FREQUENCY) 4 } } 1
POLICY PARAMETERS : ? ; ’
D ? t ? .
q t ¢ 1 t
S t 1 t 4

* indicates relation is monotone increasing
¥ indicates relation is monotone decreasing
v indicates relation is approximately constant
? indicates no conclusion can be drawn from the data
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2.3 Optimal Control with Full Information: Single-~Item Systems

Summary information about the performance of single-item systems under
optimal control with full information is tabulated in Appendices A to E.
Two single-item cases are selected for the collection of more detailed in-
formation. Operating costs are examined for each period of the 12 month
cycle. For convenient reference, the cases are labelled A and B, and the
input parameters are set out in Table 2.6. These two cases are chosen be-
cause they best illustrate the effect of the nonstationary demand structure
on the operating characteristics. To facilitate the analysis, Figure 2.2
displays the A + 1 fold convoluted demand means for both cases. Note that

(2+1)
the convoluted means differ from My only by the factor 1/() + 1) and

+
are denoted by pfA 1).

Table 2.6

2 Single-Item Cases

i — -
! Demand
Case | Structure MEAN LEADTIME |, C(FIX)/C(IN) |C(OUT)/C(IN)
FESCEIE SIS SR ST AT S Pl T
A Model I 16 2 32 99
B Model IV 16 2 32 99

Figure 2.3 shows the monthly cost contributions to average total cost
per period and its cost components for case A. Replenishment costs for
month { are the result of orders made at the beginning of month 1.

Since an order decision at the beginning of month 1 can not affect the
system until the order arrives A periods later, we assoclate the backlop
and holding costs incurred at the end of period 1 + A with period 1.
Thus, backlog and holding costs graphed in Figure 2.3 actually occur A
periods later. Table 2.7 lists case A's optimal (Si’si) policy, for

E IR T R

ettt e e o e - - T —— - A —————————
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The most striking property of Figure 2.3 is the presence of two
large spikes in each of the cost components. This phenomenon is best
explained by examining each period's order probability, which is propor-
tional to its replenishment costs, and the optimal policy.

Table 2.7 reveals that 8y is relatively stable for the first

seven periods of the cycle. Similarly, S1 is relatively constant for

the first five periods of demand but begins to decrease in periods 6 and
7. The policy employed in period 8 deviates sharply from this pattern.

The policy parameters s and S increase greatly over previous values.

8 8
10~ 25.6 , which is twice the value of
(3)

the first nine demand means in the cycle. Thus, “8 is the first convo-

This is caused by the value of u

luted demand mean in the cycle to reflect the presence of larger demands.
In anticipation of the increased demand, Sg greatly exceeds the first

seven values of S5 in the cycle, so that the probability of ordering

(3)
i

in period 8 increases sharply. As u, increases, so does Si» both

reaching maximum values in period 10. The parameter Si also increases
roughly with ui(B), but the maximum value for Si occurs in period 9,
one period before the largest convoluted mean is encountered. Hence, the
movement of optimal policies for case A can be analyzed by examining the
behavior of the convoluted means, shown in Figure 2.2.

Since 8g is several units preater than S7, there is a high proba-
bility of ordering in period 8. The increase of S8 over past values
results in an increase in expected inventory costs and a corresponding
decline in expected penalty costs. If we assume that an order has taken
place in period &, then we enter period 9 with an expected value of
108 - 12.8 = 95.2 units of inventory on hand and on order, which greatly
exceeds 8, = 86. Thus, the order probability in period 9 decreases,

9

causing a decrease in expected holding cost and an increase in expected

O —— R — —— L ——




Table 2.7

Optimal Policy for Case A

Period in
Cyeley 1

8
i A e B R e

1

2

IS

14

Si
57 82
57 83
57 82
57 82
57 84
59 77
55 67
72 108
86 130
105 128
89 112
7 95
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penalty cost. Assuming that no order is placed in period 9, we then

enter period 10 with an expected 95.2 - 12.8 = 82.4 units of inventory

on hand and on order, which is significantly less than s_,= 105. Hence,

16

we again see an increase in order probability that increases expected
holding costs and reduces expected backlog costs. After period 10's
demand the expected on hand and on order level is, assuming an order

occurs in period 10, S.. ~ 25.6 = 102.4.

10
[t is important to note that in explaining the structure of the

cost components in the demand cycle, we have assumed a deterministic
pattern in the order policy. Nevertheless, this deterministic approach
approximates the actual probabilistic model well enough to explain the
presence of spikes in the cost components. If we were to continue the
analysis, we would observe a small probability of ordering in period 11
followed by a larger probability of ordering in period 12. After period
12 the (s,S) policies and mean period demands are stable. This stability
is reflected in the cost components which are approximately constant in
periods 1 through 6.

The underlying mean demand structure of case B, shown in Figure
l.1.e, exhibits considerably more gradual change than 1s observed in
case A. This slower movement results in a gradual change in the opti-
mal policies and their cost components. Table 2.8 displays the optimal
policy for case B. Note that eh and Si attain their lowest values

in periods 2 and 3 and highest values in periods 8 and 9. The convo-

luted mean, (j), plotted in Figure 2.2.b, attains its minimum and

11‘

maximum values in the same periods, respectively. The policy para-

meters 8, and S1 follow a sinusoidal pattern, similar to that of
. (3)
{ o
The 12 period cost components, displayed in Figure 2.4, also follow

(3)

the sinusoidal pattern of vy

The cost components do not reflect the




Table 2.8

Optimal Policy for Case B

Period in

Cycle: 1 t Sy Si
1 46 61
2 33 55
3 33 56
4 44 73
5 60 93
6 75 113
7 90 128
8 101 136
-, 102 131

10 93 Lk5
30 78 95
12 62 76

48
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(3)

shape of My

as well as 8y and S1 do, but they nevertheless echo
the basic shape of the convoluted means. Backlog costs deviate the

most from this pattern; even for this component, however, {ts minimum

3

and maximum values occur near the corresponding extreme points of My

Unlike case A, case B does not display significant spiking in any
of its operating characteristics. Case B's mean demand structure con-
tains gradual movements, in contrast to the step change of case A. Thus,
while case B's reorder policy can adjust slowly to increasing demand,
case A must adjust immediately to the first indication of higher mean

demands, producing spikes in the cost components.

2.4 Approximately Optimal Control with Full Information: Multi-Item
Systems

The replenishment policy parameter values employed are calculated

using the modified version of the Ehrhardt power approximation (1976)
discussed in Section 1.1.2. Although the control is described as
utilizing full information, actually only the means and variances of
the demand distributions need to be kncwn in order to compute an inven-
tory policy of the (s,S) type.
The components of aggregate total cost per period for the various multi-

item systems are recorded in Table 2.9, and Table 2,10 contains a com-
parison of the systems controlled optimally and approximately optimally.

Note that for all systems the power approximation results in only
small increases of total cost above the optimal total cost. The largest
increases occur under those models with the greatest variation in demand
means: model III and model IV. For these models the increases in total
cost are 5.8% and 2.6%, respectively. Table 2.9 also reveals that the
inventory costs of each nonstationary model exceeds that of the station-

ary model, while nonstationary backlog and replenishment costs are lower




than those of the stationary model.

These differences are most notice-

able when contrasting models III and IV with the stationary model.

Table 2.9

Average Costs Per Period for a Multi-Item

Negative Binomial System Controlled Approximately Optimally

51

COST COMPONENT STATIONARY MODEL MODEL MODEL MODEL
MODEL 1 1I I1I v
INVENTORY 440 (57.8) 445 (58.8) 442 (58.4) 466 (61.3) 461 (60.7)
BACKLOG 109 (14.3) 105 (13.8) 106 (14.0) 95 (12.5) 97 (12.8)
REPLENISHMENT 212 (27.8) 207 (27.3) 209 (27.6) 199 (26.2) 201 (26.5)
TOTAL 761 (100.0) 757 (100.0) 758 (100.0) 760 (100.0) 759 (100.0)
Note: Numbers in parentheses are percent of total.
Table 2.10
Average Costs Per Period for a Multi-Item
Negative Binomial System
Comparison of Optimal and Approximately Optimal Control
COST COMPONENT STATIONARY MODEL MODEL MODEL MODEL
e MODEL I 11 III v
INVENTORY 3 C.3) 12 (2.9) 5 (1.1) 37 (8.7) 27 €6.3)
BACKLOG ¢ .2) -1 (-1.0) 0 (-.2) -7 (-6.5) -7 (-7.0)
REPLENTSIMENT I €.3) =1 (=.5) % €.5) 31 6.0) 1. 0 A= 2)
TOTAL 1 LD 10 (1.4) 6_(.8) 42 (5.8) | 19 (2.6)

Note: Table 2.10 shows the absolute increase or decrease in the cost components of
Table 2.9 over those in Table 2.2 with percent changes in parenthescs.

Table 2.10 indicates that the nonstationary systems maintain higher

levels of inventory than that found

which result in lower backlog costs

This is most apparent in models IIIL

The apportionment of aggregate

in the corresponding optimal systems

under approximately optimal control.

and IV,

total cost per period for various

classifications of the items in each system is shown in Table 2.11, which

can be compared with Table 2.3.

mately the same apportionment of costs.

Observe that all systems follow approxi-

Model II1's and model IV's

A o i s
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