

—i REPORT DOCUMENTATION PAGE~ READ INSTRUCTIONS

SECURITY CLASSIFICATION OF THIS PAGE (When "nll"'nfrrl'cl)
il

§ BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

AFOSR-TR- 7 8 - 0115

4. TITLE (and Sublitle) 5. TYPE OF REPORT & PERIOD COVERED
A — e e oy
(yb QARNEGIE—P}'ELLON gNIVERSITY gULTI—PiICROPORCESSOR \C'/‘Interim !v' <)X
g_EVIEW. = i o > 6. PERFORMING O3G. REPORT NUMBER

P S S 8. CONTRACT OR GRANT NUMBER(s)

S. H./Fuller o K./Jones !

ams I.,Durham

——

F446208-73-C-pp74
15| /pRVA Ovdet 20l |

AREA & WORK UNIT NUMBERS

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Carnegie-Mellon University

Computer Science Departmentv’ 61101E
Pittsburgh, PA 15213 A02466/7
11. CONTROLLING OFFICE NAME AND ADDRESS RE P
Defense Advanced Research Projects Agency/v,m uneyis®’7 7
1400 Wilson Blvd " NUMBER OF
Arlington, VA 22209 88 2191E
14. MONITORING AGENCY NAME & ADORESS(If different from Controlling Oftice) 15. SECURITY CLASY eport)
Air Force Office of Scientific Research/NM UNCLASSIFIED

Bolling AFB, DC 20332

1Sa. DECL ASSIFICATION/DO¥NGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlip

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

X

20. ABSTRACT (Continue on reverse slde |l necesnary and identily by block number)

prasent review Is intended to critjcally examine our progress to date and evaluate
our .plans for the future of Cm*. the architecture, hardware
implementation, or operating system designs in this report.\The Cm* hardware and
software designs were described In a session at NCC'77 [1,2,3]." This report
contains a description of the measurement and evaluation atud?o*md@\t:‘g,jn the

ring of 1977._Some of the data included here is preliminary.®Howevaer, given the

FORM e
DD ,an 73 1473 eoiTion oF t nOV 6815 OBSOLETE UNCLASSIFIED Wt pag

2 3D g SECURITY CLASSIFICATION OF THIS PAGE (When Data lMond‘)

——

J ! n— S-S

he Cm* project has been in progress almost exactly two years. The

UNCLASSIFIED

SECLRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. Abstract ‘

sl L-‘ ey des rable — ~
dearth of quantitative knowledge about muitiple processor ‘systems.wed‘to
evaluate Cm* as early in its development cycie as possible to detect and correct
flaws In our design and understanding of this experimental multiprocessor. \We have
made an effort to describe*the present state of Cm* ‘and tebulete all 6F our current
measuremqntsﬁso a diligent reader can study and-evaluate for himseif our recent
results,

,;\ '{.C"Ou/:, ‘,,(

J

{

N

b ¢

UNCLASIFIED

CMU Computer Science Department

CmX Project

Peripherals! Wil ' g eripherals

Mp |— Slocal ~ Slocal Mp

Pc +—

Computer Module Computer Module

Kmap | - et n

Cm*% Review, June 1977
S.H. Fuller, AK. Jones, and |. Durham (Editors)
. Contributors: |

Hardware Systems: H. Bellis, S.H. Fuller, J. Ousterhout, P. Reddy,
P. Rubinfeld, P. Sindhu, R. Swan,
Software Systems: R.J. Chansler, |. Durham, P. Feiler, A.K. Jones,
. J.Ousterhout, D.Sceiza, K.Schwans, S.Vegdahl
Algol 68: P. Hibbard, A. Hisgen, T. Rodeheffer.
Benchmark Programs: P, Feiler and L. Raskin.

This work was wppéﬂod in part by the Advanced Research Projects Agency of the Department of
Defense under contract FA4620-73-C-0074, which is monitored by the Air Force Office of Scientific Research,
and in part by the National Science Foundation Grant GJ 32758X. The LSI-11's and related oqunpmom were
supplied by the Digital Equipment Corporation.

27-Jun-77 introduction to the' Cm* Review

Introduction tp the Cm* Review
S.H. Fuller and A.K. Jones

The Cm* project has been in progress aimost exactly two years. The
present review is intended to critically examine our praogress to date and evaluate
our plans for the future of Cm*. We will not review the architecture, hardware
Implementation, or operating system designs in this report. The Cm* hardware and
software designs were described in a session at NCC'77 . [1,2,3]. This report
contains a description of the measurement and evaluation studies conducted in the
spring of 1977. Some of the data included here is preliminary. However, given the
dearth of quantitative knowiedge about muitiple processor systems, we wanted to
evaluate Cm* as early in its development cycle as possible to detect and correct
flaws In our design and understanding of this experimental multiprccessor. We have
made an effort to describe the presant state of Cm* and tabulate all of our current
measurements so a diligent reader can study and avaluata for himself our recent
rasults.

The ten processor canfiguration of Cm* shown in Figure 1 is operational, and
was the system from which the measurements described here were collected. In
addition, a kernel operating system is aiso running on Cm* to provide the essential
services for the larger application programs described later. No hardware-software
system can be evaluated jn isolation, and the following ¢pplication programs have
been used in our review of the prototype Cm* system:

1. An asynchronous algorlthm for the solutlon of partlal cﬂfferenttal equatlons

2. Quicksort

3. Set partitioning via integer proqrammma (e.g. the amino crew scheduling

_ problem) .

4. HARPY speech recognltlon system '

5. Algol 68 runtime system (with facilities for some’ wtomatic detection and
execution of concurrent oporatlons) :

Figure 2 shows the average speedups measured on Cm* as a function of the
number of processors allocated to the task. These results are very encouraging.
Some curves do not approach linear speedup. This does not exhibit any inherent
limitation of Cm*; rather It illustrates Inefficiencles In the algorithms being used.
Sections 4, 5, and 6 of this report go into much mare detail on the measurement and
evaluation of thase benchmark programs. Analysis of these programs Indicates that
the first order characteristics of their behavior can be understood from
measurements of their memory access patterns and the following average times
between successive memory reforoncu within Cm* (rounded to the nearest
microsecond):

M»ﬁ:uw e

27=-Jun-77 ; Introdudtlon to the Cm* Review

Time between locai memory references A . 'a ml‘croseconds
Time between Inter-Cm (same cluster) refaerences: - - 9 microseccnds

Time between intercluster referencas B e © 26 microseconds

For applications to make cost-effective use of Cm*, they must make most
memory references to {ocal memory For the programs we have measured, the hit
ratios are:

PDE's ' 87%
Quicksort 90% .
- Integer programming 98% i SN
HARPY : Y TR - :
Algol 68 3 . 82%

Several operating system primitives that we expect to be used heavily have
been implemented in Kmap microcode. The execution times for some of these are
‘given below. (The appraximate number of typicai LSI-11 instructions which could be
executed In the same amount of time are indicated in parentheses.)
Make segment addressable: . 23 to 29 microseconds (4 Iinstructions)
Synchronization primitive: 40 to 80 microseconds (6-12 instructions)
Transfer, Copy or Delete capability: 40 to 120 microseconds (6-18 instructions)

The operating ‘system report (Section 3) also indicates those software
implemented operations that we expect will be ~executed frequently. ' The
interprocess communication operations, Send and Receive, currehtly perform below
expectations because they do not yet have the microcode support originally
planned. Consequently, other operating system operations such as process
dispatching, which refy on Send and Recelve are slower than desired. in the near
future we expect: to reexamine the software/microcode tradeoffs in these
operations and find ways to improve their operation.

Our past experience with constructing and debugging large hardware and
software systems caused us to pay particular attention to providing effective
development aids and monitoring the reliability of the systam . The availability of a
Cm* simulator running on C.mmp permitted us to .debug the operating system
software before the hardware and firmware were usable by the software group.
The Host computer along with the Hooks processors, provided support essential to
the rapid development of Cm*. Section 8 documents the results of an automatic
diagnostic system that ran .on Cm* during the last several mbnths when it was not

Ry

27-Jun=-77 » - Introduction to the Cm* Review

otherwise in use, The diagnostic system helped to and identify faulty and marginal
components. Significantly, hardware availabllity has not been a bottleneck during
the Spring evaluation of Cm*. Moreover, the hardware was regularly partitioned to
allow muitiple user groups simultaneous access to privgte~'c|usters within Cm*,

At the inception of the Cm* project, there existed serious questions as to
the effectiveness of the Map and Linc bus schemes and the ability to effectively
program Cm*. Our evaluation of the hardware and software system structure of Cm*
during these past few months indicates that our basic design and implementation is
sound. The areas that need further ' evaluation, expansion, and possible

‘reimplementation before constructing and programming a !arger Cm* cenfiguration

are:

Reexamine the addressing architecture for simplifications.

Review new hardware components for use in more cost-effective Cm*
implementations.

Consider extension of Map Bus to aliow more Cm's per cluster.

Review the intercluster communication protocal.

Determine how best to employ K.meap microcode to support software systems.
Add mechanisms . to the operating system to support Multi-cluster
configurations ; .

G. Determine the minimum amount of code that must be duplicated in each Cm
while maximizing the local memory hit ratio.. :

® >

., *@meo

We are encouraged by ‘the results from our evaluation of the Initial Cm*
system. The difficulties and shortcomings that have been uncovered are within our
original expectations. Studies are now in progress within the Cm* group on how to
improve the existing Cm* design, identify the research problems associated with
much larger Cm* systems, how to apply Cm* to one or several major applications,
and to determine the effect of various component faillures and to sultably adapt the
system to permit continued processing.

B

27-Jun-77 A Introduction to the Cm* Review

Acknowiedgements

While not involved in the work reported. here, A. Bechtolsheim, K. W. Lai, and
D. Siewlorek have made important, earlier contributions to the hardware design and
implementation of Cm*. P. Oleinick provided many helpful suggestions in re-designing
the HARPY speech system for Cm*. This report would not have been possible
without the tireless editing of I. Durham. - : :

in addition to the ARPA, NSF, ‘and DEC support, several students received
support from other sources: H. Bellis, ONR, J. Qusterhout, NSF Fellowship, §. Vegdahi,
Hertz Foundation, and t. Raskin, Israeli Fellowship. .

References

[1] R.J. Swan, S.H. Fuller, D.P. Siewiorek, "Cm*: a Modular Muiti~-Microprocessor",
NCC Proceedings, Dalles, Texas, 1977

[2] R.J. Swan, A. Bechtolsheim, K. Lai, J.K. Ousterhout, “The Impilementation of
. the Cm* Multi~-Microprocessor”, NCC Proceedings, Dallas, Texas, 1977

(3] A.K. Jones, R.J. Chansler Jr., I. Durham, P. Feiler, K. Schwans, "Software
Management of Cm*, a Distributed Multiprocessor”, NCC Proceedings, Dallas,
Texas, 1877 ; ; L o

Introduction to the Cm* Review

27-Jun-77

T 84ndi4
; thﬁ mczm. uols! >
ISIA-1V Wy
Ao duwy P
uoijeinByuo) Wis)sAg %kwH . |
; 0/01-dad 24 “
8/01-dad
v/o1-aad >< D —{)
> -
uoj}d3uuo) 34 .
s04d] t—y
*10553501d SYOOH 192015 WD & 01/11-d0d : gy
pue w) yoea o} und p 1SOH *w)
uo1}23uu0) Jo3.ig NeH P> <t— I._HU
: aur 21485 P <g— .
s,
—>< /01-dad —>< a/01-d0d
wo wo wo wo wo wo wH woH wH wy
‘ Jo}1uop
sng depy
dews) S300H deusy| _|I%Ev_ $300H
_MVA a/o1-dad HVA a/o1-dad

27-Jun-77 Introduction to the Cm* Review
10 ==
speedup
9 4 LINEAR
8 e
o INTEGER PROG.
/0 PDE
e 3 3 7
4
| 6 —— s 2 ” =
$ Qe
i 7/
7 2
7/
Sl g 7 3
g
7 .
4
| 'S
4 4+~ Z , .
: ‘ A : o HARPY :
| v | /’M QUICKSORT
i -
l —
a » '
o POLYEVENT/A68
2.1
Y.
/ o
v
1 l]] 1 L L 1 !
T] T 1 { T T =
1 2 3 4 5 6 7 8 9
of processors]
Fig.2 Average Speedup of Five Algorithms on Cmx

27-Jun-77 Contents

Introduction to the Cm* Review by S.H. Fuller and A.K. Jones

1. Hardware Status and Performance of Cm«

1.1. Basic Timings
1.2. Contention and Saturation Levels
1.3. Measurement Tools -

2. Kmap Microprograms

2.1. The Simple Microcode
2.2. Virtual Memory Microcode

3. Measurements ot the Cmx Kernel/Machine

3.1. Introduction:

3.2. Measurement Techniques

3.2.1. Memory reference counts

3.2.2. Measurements on the actual hardware

3.3. Software Measurements

3.3.1. Saving and loading the processor state

3.3.2. Cost of dispatching a process

3.3.3. Message Operation costs

3.3.3.1. Measured Time

3.3.3.2. Total costs for the user

3.3.3.3. Total cost in case of firmware implementation
3.3.4. Dispatch cost with microcoded message operations
3.35. Costs of kernel entry/exit

3.3.6. Further Software Measurements (intended)
33.7. Interaction and Contention (Intended)

3.4. Firmware Measurements

3.4.1. Firmware (l.e. operations microcoded in the Kmap)
3.4.1.1. The parameters

3.4.1.2. The functions

3.5. Conclusions

4. Performance af a Stand Alone Cms System

4.1. Introduction

42. Objectives

43. The Programs

4.3.1. Numerical Application - Partiai Differential Equations.
4.3.1.1. The Problem .
4.3.1.2. The Methods

4.3.1.3. The Implementation

4.3.1.4. The Results

4.3.2. Sorting ~ Quick Sort

4.3.2.1. The Problem

4.3.2.2. The Implementation

o o g ¥ s — —— e e

11

11
13

16

16
;74
17
18
19
18
18
20
20
20
20
21
21
21
22
23
23
23
24
24

26

26
26
&t
27
¢
28
29
29
32
32
33

Contents 27-Jun-77
4.3.2.3. The Results a3
4.3.3. Searching - Set Partitioning lntegef Programmlng 34
4.3.3.1. The Problem 34
4.3.3.2. The lmplementaﬂon 35
4.3.3.3. The Results 35
4.4. |initial Resuits 37
4.4.1. Access times in the Cm* system 37
4.4.2. Throughput of Cm* Buses and Components. - 37
4.43. Hit and references ratios ; 38
4.4.4, Utilization - 39
4.4.4.1. System Components 39
4.4.4.2. Number of Cms supported by a Kmap 39
4.45. Total local memory references per second and MIPS. 39
4.46. Memory Contention X 40
4.4.6.1. PDE 40
4.4.6.2. Quick Sort a1
4.47. Frequency of Lock operations 41
448 Estimate of execution times using muiti cluster Cm* configuration 41
4.49. Some useful humbers a2
45. Measurements of Inter Cluster (Linc) commumcatlon 43
45.1. Program execution a3
45.2. Conténtion aa
46, Conclusions a5
4.7. References 45
5. HARPY 57
5.1. Introduction 57
5.2. HARPY on Cm* 57

- 5.2.1. Process Structure 57
5.2.2. Space Requirements 57
5.2.3. Implementation Alternatives 58
5.3. Experiments with HARPY on Cm* 58
5.3.1. Speed-up with Multiple Processors 58
5.3.2. Memory Distribution 50
5.3.3. Workload Distribution 50
5.3.4. Synchronization and Cooperation 60
5.4. HARPY on CMU computers 60
5.5. References 61

27-dun-77

6.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.

7.

7.1.
7.2.
7.3.

8.

8.1.
8.2.
83.
8.4
8.5.
8.6.

9.

Contents

Algol 68 on Cms»

Investigators

Introduction

Algol 68

C.mmp Implementation

Cm* Impiementation

The Kernel

Performance of the Basic Run-time System on Cm*
Automatic Decomposition of Sequential Programs

Dynamic Reconfiguration

Current Status
Dynamic Recovery Facilities
Overview of Initialisation

Cms Host System

introduction
‘Overview
Use
Hardware
Software
Example

Reliability and the Auto-diagnostic

v e v . e p————

lit

65

65
65
65
65
66
67
67
67

71

71
71
72

73

73
73
73
74
74
74

77

27-Jdun-77 Hardware Status and Performance of Cm* 1

1. Hardware Status and Performance of Cmx

R. Swan

This report provides a brief, basic set of information about the hardware
status and performance of the initial stage of the Cm* project. Figure 1, of the
introduction, shows the overall system configuration. In addition to the present
structure of Cm*, it shows the hardware provided for support and development. The
complete set of hardware components available is listed in Table 1. A time-fine of
significant milestones in the Cm* project is shown In Figure 1. It indicates that:
approximately two years were required to reach the present fully operational status
of a three cluster, ten processor system. : ;

1.1. Basic Timings

The simplest unit for representing the performance of Cm* is total memory
references per second. For PDP-11s, executing compiled BLISS-11 programs
(Harpy, PDE and Quick Sort benchmarks), there are approximately 1.7 memory
references per instruction. For a simpile, synthetic program, the measured period
between references to local memory was 2.9 microseconds. This corresponds to a
memory reference rate of 348 KHz or about 0.20 MIPS (Millions of Instructions Per
Second). Thus a ten processor Cm* system, where all memory references are local,
is capable of providing up to a total-of 2 MIPS. The following section provides some
basic . timing information 1 which shows how performance degrades when non-local
(i.e. mapped) references are made under various conditions.

When a processor generates an address it may refer to lacal memory (the
primary memory assoctated with that computer module) or it may %2 passed, via the
Kmap, to the local memory of another processor within the cluster or passed over an
intercluster bus to another cluster. Local memory references occur at the full rate
of a stand alone LSI-11. Mapped references incur a delay through the switching

' Unless specifically stated, all timings apply to the simple version of the microcode. There are presently two
versions of the Kmap microcode: a simple version which provides the basic address mapping necessary to access
the memory of any processor in the system. The second version implements a segmented addressing scheme with
capability based protection, See section 2 below. For a simple mapped reference with the full capability based
microcode add 0.45 us to the times given.

2 Hardware Status and Performance of Cm* 27-Jun-77

structure. A detailed timing diagram for a single Intracluster, mapped reference is
shown In Figure 2. Figure 3 shows the various stages of an intercluster referencae.
From these two figures we see the followlng basic timings for memory references
(with no contention from other processors):

Time between references to local memory is 2.9 - 4.0 usec. (This is strictly a
function of the LSI-11 processor, and depends on the Instruction mix)

Time between references to other memory in the same cluster is 9.3 usecs

Time between references to memory In another cluster is 26 usecs.

Because of .this wide range in accessing time for primary memory, the
performance of Cm* depends strongly on the relative frequency of accesses to the
different levels of memory

1.2. Contention and Saturation Levels

The overall berformance of a a Cm* cluster depends primarily on the
percentage of references to local memory made by each processor. for the
applications presently running on Cm* the 'hit ratio' to local memory is in the range
85% - 95% (see later sections of- this report for details). Cluster performance is
aiso effected by contention for the Map Bus and Kmap address mapping mechanisms
and contention for shared memory. The graph-in Figure 4 shows the approximate
effective power of each processor for various hit ratios under a variety of
conditions. The X axis is the hit ratio to local memory. An 80% hit ratio indicates
that out of ten references, eight are to the local memory of the processor and two
are two the local memory of another processor in the cluster. The Y axis indicates
the performance of a processor, under the conditions specified, relative to a stand
alone LSI-11. The piot for a single Cm indicates the degradation in performance
strictly as a consequence of the delay in accessing non-local memory. For exampie,
for a 90% hit ratio a processor has the effective power of 0.85 of a stand alone
LSI-11. ‘The plot for 8 Cms (no memory contention) shows the influence of
contention for the Map Bus and Kmap. This contention has only a small effect on
. periormance with 8 Cms. With a hit ratio of 904 the additional degradation is about
4%. For a hit ratio of 50% the additional degradation is about 7%. The third plot
represents the case of 8 processors sharing a non-local data structure, which
resides in a single Cm. For low hit ratios (frequent referentes to shared data)
memory contention severely degrades. performance. With 8 Cms the shared memory
" Is close to saturation for hit ratios below 85%. However, at a 90% hit ratio, memory
contention has reduced performance by less than an additional 2%.

27-Jun-77 Hardware Status and Performance of Cm* 3

Table 2 lists overall cluster performance beth as a function of the number of
Cms and the hit ratio to local memory. As with Figure 4, the effect of sharing non-
local memory is also shown. For example, the tabie shows that 6 Cms, with an 85%
hit ratio, are equivalent to 4.6 LSI-11s when the non-local data is shared and 4.7
LSI-11s if there Is no memory contention. The overall conclusion from these
measurements is that an 8 Cm cluster, operating in the anticipated region of an 85%
- 95% hit ratio, executes instructions at the same rate as 5.7 to 7.2 individual LS!-
11s.

These measurements were obtained using small synthetic programs. Later
sections of this report present similar data based on measurements of application
programs. An important aspect of the hardware performance is the maximum
capacity of various components. The saturation levels may be summarized as
follows: ;

Processor's normal reference rate to local memory 4 \ 348 _KHz
Maximum total memory reference rate over the Map Bus 500 KHz
Maximum mapped reference rate to same memory : 250 KHz

1.3. Measurement Tools

A small set of simple performance evaluation tools were developed to provide
the measurements presented In thls and other reports. The tools include:

1. Map Bus Monitor. Thls is a simple display which gives access to ccntrol
information and data passed.over the Map Bus. Any specific event can be
detected by masking against a set of switches corresponding to each Map
Bus signal. Information gathered is latched in a set of lights for inspection by
a programmer or engineer and a match signal is fed to an external frequency
meter for counting and avuraglng

2. Microcode Analysis. A standard logic analyzer is connected to the internal
microinstruction address lines of the Pmap. The match signal from the
analyzer is connected to an external frequency meter. This technique allows
counts of the frequency of invocation of various Kmap operations, for
example: simple mappings, load segment, copy capabllity, increment
semaphore, etc. : y

N T

Hardware Status and Performance of Cm* 27-Jun-77

Measurements within a single Computer Module, 'Frequency metécs were

connected to Important signals generated by the processor and other

components of a Cm. For example, local memory hit ratios are determined by
measuring the overall memory reference rate of a processar and comparing it
with the mapped memory reference rate, measured using the Map Bus
Monitor.

Table 1

Hardware Components of Cme

Host System

PDP-11/10

28K Memory.

Hardware Bootstrap.

4 DECtape drives.

DJ11/16-Serial Line Unit (SLU) Multlplexer connected to LSi-11s and local
terminal.

4 SLUs: 2 connected to the Front End & 2 for local terminals.

2 DR11-Cs: Halt, Reset etc. for Computer Modules.

Computer Mndules

Modified LSI-11 Processor.

Slocal. Provides local relocation, Map bus interface etc
Memory Refresh and LSI-Bus Terminator.

Serial Line Unit (SLU). For communication with the Host.
Power Board. Power connections, Initialization etec.
Memory. 4 - 28K words. Capability for 124K words
Parity Board (under development)

27-Jun-77 Hardware Status and Performance of Cm*

Computer Modules Available |

2 with 24K words of memory.
8 with 28K words of memory.

Kmaps (Central Mapping Controllers)
3 Available with: ;

Kbus. Map Bus Controller and Pmap Dispatcher. 100 ns cyocle time.
Pmap. 150 ns cycle time, microprogrammed processor

Data RAM. 5K x 18 bits fast mapping table storage -

Writable Control Stores: 2K x 80 bits

Linc. Intercluster Bus interface

Hooks Processor Interface

Hooks Processors

2 Available, used for loading and controlling Kmaps:
LSI-11 Processor with 20K words of memory.

3 SLUs, direct communication to CMU-10D and Host
Hooks Pc #1 controis Kmap #1

Hooks Pc #2 controls Kmaps #2 and #3

27-Jun-77

Hardware Status and Performance of Cm*

. 3 "Adowssuwl |edo| Uou paJeys JNoym pue ypim ‘Jamod Buissadold aaneRy Z o|qel

‘pajeunies si Alowaw paseys eyj auy| esedlie}s sy} mojaq uoiBa. ey uj
i _(sn) 0d ‘0¥ 0QV. Buindexe aue si0s$8204d |y
(Seliowaw Juasayp 0} S$85U.43)8. |ed0) Uou |je - Asowau [eatsAyg swes 0} S82US.9)8. [ed0] UOU [je)

:uonjdudseq

11-1S7 @uoje puejs suQ = O'] ‘ peeds Buissednid oale|ay
08 (@L-2L (99-59) @9-¢%)| LS-8Y) (05-ve) @v-92) WLE-12) 8
0t (9-€9) (65-8% (§5-29) 0S-y¥) (v -2€) (8E-v2) GE-6T L
09 (S-v8) (5-08 Wv-9%) Gv-ov)| @e-18) (€€-v2) (E-6T) 9
05 (9v-9%) @v-2v) (6e-6€) (Le-5e) (@e-82)| 8BZ-€2) OZ-6T) g
ov (E-.8) WE-be) @E-TE) (OE-62 0Z-52) (€2 - 1&_ (12 - 81) v
0E Wz-12) GZ-92) WZz-€2) (€2-22) 61-6T WT-LT) (97-v1D) 3
oz (T-80) 1-91 @T-¢1) GT-vD €1-€D @T-21 @1-0M| .2
01 880 580 180 5.0 990 650 S50 1
4001 156 206 458 %08 204 %09 705 $108S320.4
jO "ON

Aiowaj |ed307 0} onjey yH

27-Jun=-77

Hardware Status and-Performance of Cm*

89 1091V

pue suoledyddy

— ‘wajsAg Bujesadq
JO uoljeJ}sUOWa(Q

— [euonessdg syuIl € .
_v soul jnoyym wayshs J8isnig g ‘2d 01
i

R—"

%wg Jjo jaswdopasg 8yl 1 834 _

spels uBiseg SO

@I TA ISOH
f7s 1 ¥ | : S A | a
Lt LU 9/t 9/t silt
| 2
¢A 1SOH Q dwwrg uQ

jeuonesad) waysAg J81SN) 1 ‘ 9d 2

JojEjnuIg W9

suidag dewy jo usisaq —
suiSag [edo|s jo uBisaq paje}e(Q

paulLB)}a(] @4njoNnJ}S J3)snj) diseq —
ejqeyeAy Supung ny —

27-Jun-77

Hardware Status and Performance of Cm*

.po#ms_o ulyym ddusIejey paddejy

L1610 AeW “T soysnpD Ut Tw)

(sn mmv 19MOjS SI BWi} uoljesjiqle YN ©Y) w) Jusiayp e o) paddew usym : |

{(sn £'8) wy awes 3y} o} ¥oeq paddepy umoys
- *sh §°Z S! |eJ0] {je Buiuunt awl) S2Ua18)8.-13)u]

Od “1# AON 1 Sunndaxs 10ssa04d 9|BulS :juswiiadx3l ~o spie}aQg

wesBelg Buwn| 2 94n3i4

(le0I5 je8e) WO

058

jsenbay winay

|

(sng 11-1S7 uo esS g)

000E - 0Oy

. <G> swnj voijessy VNG

0011 .
ssappy poddepy

uou..a 1 e 3ppAy Aiowsiy

(sjev0iS 0} sNQ) woJj)

: _ 0012- 0081
L R i
4 001

aqoss uoheunsaQ.

|
1

woiber. & ol

05l * v

056 - 0SL

dewy ..._ Suiddey ssa.ppy

(1e20]S 0} SNqy wo4j)

006 - 00S
<—>

pesy ejeg : ~ sseippy mey

sZy

0598 - 051¥

Arlv

F 1

o ~eqo45 2205
+—>

ﬁ il . ysenbay edses |

(snqy 0} [ed0lS wo)

009 - 00E
t+—>

" 00L1 4° 0OE1

0091

00E1T

— 0091 40 00Z¥
KN
G—

<t

>

11-1S1 0} Aiday

Lu 11-1S7 wouy A

—

"w) Jsyjoue o} paddew g6 J18S O} pacdew sBesane sn L'

27-Jun-77

LL6T ‘9Z Kep ‘T dewy

(Ie20] ||le sn §°2) "SN §°2Z :S92UaIaja4 UBBM)a(poliad a8elaAy

"Wy awes o} yoeq paddew 90UaI9jaYy :90U3IBJBY J3)SN|D-J3U]

8qo.4)5 1s8Q jo =3pa Buyes)

€ ®4n314

Hardware Status and Performance of Cm*

G 4. peaJ ejeg yim O InQ snqy ysnd- Eo. @d4nos je u..im
[}X@juol jeuidlio jo uolheanoesy dewgd ui jsuf isT I
(spiom 2) eBessapy uimay D pues aur] ysng
(OGSt + spiom g * Ggyy) uoydesues) dur
A . }L 2.
A_r__rljm.ﬁﬂ;.‘Tdi.ﬂAm_:ﬂd-ﬁJ__
H 0z 6T f or HV g 0
}

o

w) 824N0S e duAg puj

W) 824n0S Je SuAS may

JX9Juod Mau Jo Jsul IS

: 0 1nQ snqy ysnd

BJEP U}IM }X3)u0d JO UoneAlIR)Y

oy

s ity e i PRI

10

Relative Performance

54

.44

.24

14

0

Hardware Status and Performance of Cm* 27-dun-77

olCm
~ + 8 Cms, No Memory Contention
x 8 Cms, v_zith memory contention

100

T -~y T hd b

9% @90 88 @80 75 70 65 60 55 60O .
Percentage Hit Ratio to Local Memory

Fig. 4. Relative Processor Performance

27-Jun-77 Kmap Microprograms . 99

2. Kmap Microprograms

J. Qusterhout

A substantial amount of microcode has been written for the writable control
stores of the Kmaps. Development of microcode has proceeded along two
independent paths; the results presented in this review reflect both of the
versions. The first version, referred ta as the simple microcode, was produced in
order to supply the bare minimum facilities needed to allow processors to share a
single address space. No attempt was made to supply protection or elegance in
address space manipulation. This version has been operational for nine months and
has been used extensively by diagnostic programs and by Raskin's benchmarks and
the Aigol 68 system. The second version of microcode supplies the full Cm* virtual
memory structure to a single-cluster system, complete with address space
management and protection. This VM microcode has been in use for approximately
two months. '

2.1. The Simple Microcode

The principal feature supplied by the simple microcode is to allow each
processor to associate any 2048-word physical page in the system (identified by
its cluster number, Cm number within the cluster, and high-order six bits of its base
address) with any page in its virtual address space. AH references to the virtual
page are then mapped to the physical page, with the low-order twelve bits of the
processor address being concatenated to the page's base address. All pages
contain 2048 words.. When a processor references a page residing in its local
memory it may select whether or not references to the page are to be made
directly through the Silocal or mapped (for diagnostic and measurement purposes)
through the Kmap. & s -

References to page 1 78 are always passed to the Kmap and are not mapped
in the same way as the other virtual pages. The Kmap responds to fifteen word
addresses in this page, emulating a smail memory which contains the reiocation
tables for the processor (these locations are.called window registers). Page 17
references to locations other than the window registers are passed back to
physical page 17 of the processur that made the reference so that it maintains
access to all of its input/output devices. Although each processor has access to
only its own window registers it may address any physical page in the system
without restriction, thus the system is not a protected one.

12 Kmap Microprograms 27-Jun~77

Because it Is not possible to perform non-local indivisible read-modify-write
sequences the simple microcode implements a single lock that is global to the whole
cluster. Reads to address #177776 cause the value of an internal locatian in the
Kmap to be returned and then set the value to all ones. Writes to the location
overwrite its value. More recentiy a major expansion of this microcode has been
completed which provides a substantially cleaner and more general semaphore
scheme; however the newer version was not available at the time measurements
were made for this review. When multiple semaphores were required, the giobal
lock was used to provide indivisibility while manipulating the muitipile semaphares.

The simple microcade requires slightly less than 17045 words of controi
store in its simplest single-cluster form, of which about 50 words are used for
initialization only. Including -the expansions for multi-cluster service and more
adequate synchronization the simple microcode grew to a size of 505 words. The
breakdown of microinstruction usage is:

Function Performed . . Instructions
Within-cluster references v 5
Cross-~cluster references X 91
Window register references . ' 11
Within-cluster synchronization : T e 68
Cross-cluster synchronizatian ' ' 88
Error handling o : S ; 82
Initialization : ‘ ¥ 1086
Page 17 decode and miscellaneous ? _4as8
Total j : : 505

Microcode tends to have a very high branching factor due to the number of
conditions being tested, so that typical microinstruction sequences are substantially-
shorter than the static number of instructions allocated to a particular function.
Sequences range from five microinstructions (at 150 nanoseconds per
microinstruction) for a simple within-cluster mapped reference to a totatl of about 60
instructions (for source and destination Kmaps combined) for an intercluster
synchronization.

The simple microcode uses cnly a small portion of the Kmap's high-speed
data store (which contains a total of 1024 records each with .5 16-bit words). 512
words are reserved for the window registers of each of the two address spaces
per Cm (up to 14 Cms per cluster), and 2‘6 more words are used to hold internal
locks for synchronizatlon operations.

i e

27-Jun-77 Kmap Microprograms 13

2.2. Virtual Memory Microcode .

The VM microcode Implements the highly-protected and elegant addressing
architecture described in Cm* publications [1-3 in introduction]. The version
currently operational does this only for a single~-cluster system and does not include
message operations whose implementation was originaly intended for the Kmap.
However it does enforce environment boundaries and perform much of the work
involved in maintaining the integrity of the Cm* virtual address space.

Features of the VM microcode fall into three rough categories. First,
execution environments may make direct (i.e. read and write) references to two
different types of segments, where the references cause different actions for the
different segment types. Secondly, they may make indirect references to a variety
of segment types by writing the address of a parameter block into a special page
17 location monitored by the Kmap. Lastly they may Invoke control operations which
change the virtual-to-physical address transiation of an environment.

Two segment types may be referenced directly. Data segments may be read
and written at will, and stack segments may be read and ‘written, but with the Kmap
maintaining an Invisible stack pointer and altering the actual address to be written
or read in order to enforce a stack discipline (the segment appears as a single
memory [ocation which is the top element of a push-down stack; reads cause
"pop's" and writes cause "pushes"). In addition to standard reads and writes the
Kmap provides for indivisible increments and decrements of words in data segments.

Indirect references to segments are perfarmed by passing to the Kmap (by
writing its address into a location in page 17) the address of a parameter block
containing the index of a capability and the description of an operation to be
performed on the associated segment. All of the operations that may be invoked by
direct references may also be invoked indirectly (the difference being that in the
latter case the segment being referenced need not be loaded into a window
register). Additionally several operations are defined on capability list segments
and directory segments (the latter contain the descriptors for segments). These
may only be performed indirectly. '

The third service provided by the VM Microcode Is to implement high-speed
and protected operations to change the system addressability. The first such
operation provided Is to allow environments to change the binding between their
virtual address space and physical memory by passing to the Kmap the index of a
capabllity and the number of a virtual page with which the segment referred to by .

s - - — ’ e .t A ———

14 _ Kmap Microprograms i 27-Jun=-77

the capability Is to be associated (this Is referred to as a window register load).
The second group of operations allows the high-speed loading and dumping of the
internal Kmap state associated with a running of an environment, in crder to speed
up context swaps (state consists of the sixteen-bit values in each of the fifteen
window registers of the environment and eight words of error status).

When an external reference is made by an environment the Kmap must
access three items to map the reference: the window register, which contains the
index of the capability associated with the page baing referenced; the capability
named in the window, which indicates the name of the segment being referenced
and a set of rights thereon; and the descriptor for the physicai segment. Windows
are allocated statically, occupying 3 subwords of the first 512 records of the
Kmap's data store. Capabilities and descriptors reside principally in main memory,
but are cached in the Kmap in order to provide greater speed in performing external
references. Records 512-1023 of the data store are used for cached capabilities
and descriptors (intermixed) with either item requiring a full five~word record for its
cache entry. In addition subwords 3 of the first 256 records contain cache list
pointers.

To locate a cached entry 7 bits are extracted from the low-order portion of
the unique name for a capability or descriptor and used to iook up a list pointer in
records 0-127 (for descriptors) or 128-255 (for capabilities). The pointer
indicates the first element in a linked list of cache entries with the same low-order
bits. The high-order bits of the name of the desired item are then compared with
the high-order bits of the names of each of the items in the list for a match. When
one cache element must be thrown out in order to create enough room to bring in
another, a pseudo-LRU scheme is used. In this method a use bit is kept for each
element and set whenever the element is used. The throw-out routine scans the
cache, turning off use bits and throwing out the first element found that aiready had
its use bit turned off from a previous scan.

The use of a dynamically-allocated cache required the writing of a
substantial amount of microcade and incurred a sizable execution time overhead,
but made possible a fairly substantial speedup In the time required for changing
addressability. A cache "miss" when looking for a capability requires between ten
and fifteen microseconds (two main-memory references) to read in the capability,
assuming all of the information needed to locate the capability is already present in
the cache. A descriptor miss involves nearly twenty microseconds (three
references) in the best case. A worst case series of cache misses could require

22 main memory references (around 150 ‘microseconds) before a window register .

could be bound to a physical address. (The breakdown of this is as follows: two
descriptors, one for a directory and one for a capability list, in order to locate the

27-dun-77 Kmap Microprograms 15

primary capability for the window; then two more Jascriptors after reading in the
primary capability to locate a secondary capability; then a directory descriptor and
the actual segment descriptor)

The VM microcode requires 15154 microinstructions in its current form. A
rough breakdown of the static control store ailocation by function is as follows:

Function Performed Instructions
Descriptor cache manipulation 100
Capability cache manipulation : 143
Window register manipulation - 197
Direct data segment operations: ‘ v 64
Direct stack segment operations 28
Page 17 decode and control registers . 139
Utilitles for indirect operations _ 82
Indirect data segment operations 52
Directory operations 122
Capability operations - : i 268
State loading and dumping : 99
Error handling 123
Initialization ' 53
Miscellaneous utilities . : _as
Total : 16186

The dynamic microinstruction sequences are somewhat longer in the VM
microcode than for the simple microcode. The simplest mapping requires 8
microinstructions; a typical window-register load causes the execution of about 80-
100 microinstructions; and a transfer capability operation involves 200-300
microinstructions. All of the above numbers assume a 100% cache hit ratio.

For the measurements reported later in the other sections of this report, the
full cache was not used; its size was reduced to 3210 words.

— R ——————— e A ———————

e A oy

v AR AR

e g

16 Measurements of the Cm* Kernel/Machine’ 27-Jun-77

3. Measurements of the Cmx Kernel/Machine

K. Schwans

3.1. Introduction

In this section we present the initial performance measurements of those
Operating System functions we expect to be most frequently used. Before
explicating the measurements we will characterize the scenario in which they were
made. ‘

The Operating System is distributed, i.e. there is no centralized control, there
are no master - slave relations_hips. and processors execute autonomously. Only a
few benchmark applications have been programmed to use the Operating System.
Consequently, we have relatively little experience with the way users will empioy
the Operating System. However, we expect heavy use of certain functions. In
particular, we do know that the Operating System relies heavily on the capability
operations In terms of which a process' addressing environment is defined. In this
initial evaluation we focus on the cost of individual operatians involved in changing
the addressing environment of a process, multiplexing a processor among
processes, synchronization, and interproces‘s communication. -

Cm* provides two media in which to implement an Operating System function:
software and Kmap microcaode. To invoke an operation implemented in software
requires trapping to the kernel so that the operation can be executed in kernel
space, then returning to the user. In contrast, microcoded operations are invoked-
through a special set of locations in each processor's virtual address space.
Invocation and execution can be expected to be qguite fast, because neither a
processor trap nor fetching of instructions from main memory is required to perform
the operation. Microcoded operations include synchfonizatioh primitives and
operations for manipulating addressing state (for example, all capability operations).

Our original design specified that message communication operations also be
implemented in microcode. Because microcode space was becoming scarce and
because the operations could more rapidly be implemented in software, we decided
to implement the message communication operations in software. We expect users
to make fairly extensive use of this disciplined communication mechanism; in
addition, the Operating System itself relies on message operations to perform
multiplexing. Since we are concerned that multiplexing be a relatively efficient
function, muitiplexing measurements are reported below,

—— ————————— o

s coee

27-dun-77 Measurements of the Cm* Kernel/Machine 17

We maintain local copies of some amount of kernel code. A processor
executes code locally if possible, otherwise It must execute remotely. Because
execution of remote code js significantly more expensive than execution of local
code, issues arise, such as:

L What amount of kernel code should be local to each processor for good
performance?

ii. Where is the tradeoff between remote code execution and moving the locus
of control to a processor with local code?

As of now, 4,096 words of kernel code are local to each processor and all
other kernel code is executed remotely. Included in the local kernel code are the
message operations, the multiplexing code, the kernel entry/exit code, and
interrupt/trap handling routines. ’

3.2. Measurement chhniqués

Two kinds of measurements were performed:

3.2.1 Memory reference counts
Counting memory referénces of frequently used Operating System code, we

have made a number of reasonable assumptions not explicated in every case. They
are control flow assumptions such as:

[Mailboxes are not empty. (If a Conditional Receive is performed on a maiibox,
it does not fail.) :

ii. Capability parameters to a system call are located in primary or secondary
capability lists.

The rough'Ume estimates are derived by code counts, assuming:

i Code and stack local to the executing processor

ii. Data residing in another module

o S

o

[

18 Measurements of the Cm* Kernel/Machine 27-Jun-77

The processor reference time for 'local references is assumed to be 2.8
microseconds. Mapped references are assumed to take 9.3 microseconds.

3.2.2 Measurements on i_ho iciual-hardwaro

The measured times were taken on the hardware under a slightly optimized
version of the 0OS. The OS had ail kernel entry/exit code local to each processor,
and no kernel code contained debugger or Kmap tracing calls. Error checking of
each Kmap call was still performed. This constitutes an overhead of one
test/branch per Kmap calil. : : ;

The following three methods were employed for taking the measurements
under artificial Kmap ioad conditions:

i A tight loop executes on one processor, while all others are. halted. Thus the
Kmap has only to service requests from one module. The ‘measurements are
taken with the logic analyzer and the Kmap bus monitor concurrently.

ii. A larger loop, generally about 20 code references, 1Q stack references, and
two mapped data references executes on one module, while the others
require continual Kmap service (busy waiting on 1/0). 2

iii. A loop (as in li) executes on ohe processor, while the other processors
require Kmap service Iinfrequently (approx. every 20,000 instructions).

Timings obtained with methods ii,iil include a potential error of up to 10% due
to the necessary estimation of the loop execution times. Additional inaccuracy
(approx. 1%) was introduced by the use of a low resolution timing device. This error
was minimized by repeating the operations 30,000 times and averaging the resuits.

F 27-dun-77] Measurements of the Cm* Kernel/Machine 19

3.3. Software Measurements

3.3.1 Saving and Ioadin; the processor state

Load: Make the designated user the current user, set the current user's state
to active, and load the current user.

Rough Time Estimats:

124 Microseconds processor execution time
+ 150 Microseconds Kmap execution time
274 Micraoseconds total
Unload: Reverse the above process.

| Rough Time Estimate:

112 Microseconds processor execution time
+ 135 Microseconds Kmap execution time
247 Microseconds total :

3.3.2 Cost of dispatching a process

Here we assumed that the processor was not idie. This ensures that the cost

of unloading an environment is included. The dlspatching algorithm may briefly be
described as follows:

Test whether processor is idle or not.
IF \dle
THEN Unload current environment;

SEND environment to its Run Queue.
Fl

WHILE True DO
Wait a while
ConditionalReceive a runnable environment.

Load the new environment
(0]0]

.

LA A A W i

(W

20 Measurements of the Cm* Kernel/Machine ' 27-Jun-77

Rough Time Estimate:

498 Microseconds processor execution time plus the cost of one
Conditional Send and one Conditional Receive on the processor
runqueues. '

+ 350 Microseconds Kmap processing time .
848 Microseconds total plus the two Message Operations
Measured Time: 4.73 milliseconds (mcludlng Message Opefatlons)
As can be deduced from the measured times and the message operation
costs shown below, the latter dominate the cost of dispatching a process.

. 3.3.3 Message Operation costs

3.3.3.1 Measured Time

Canditional Send: 2.03 Milliseconds (local stack)
2.72 Milliseconds (mapped stack)

Conditional Receive: 2.03 Milliseconds (local stack)
: 2.72 Milliseconds (mapped stack)
Users executing the software message dperations have to perform a kernel
call. Thus additional costs are incurred. g
3.3.3.2 Total costs for the user
Conditional Send: 5.24 milliseconds
Conditional Receive: 5.24 milliseconds

3.3.3.3 Total cost in case of firmware implementation

Our best estimute of execution time for a- Conditional Send or Receive in
case of Kmap implementation is: 200 microseconds.

AT Bo

27-Jun-77 Measurements of the Cm* Kernel/Machine 21

3.3.4 Dispatch cost with microcoded message operations -

Using the 200 microsecond estimate from above, the cost of a dispatch then
becomes:

Memory operations 488 Microseconds 40%
Capability operations 350 Microseconds 30%
Message operations 400 Microseconds 30%
Total: _ -1248 Microseconds

3.3.5 Costs of kernel entry/exit
The following steps are involved in kernel entry and exit:

Save and restore the registers

Save and restore the user PC,PS
Determine the EMT number

Select the action.

Move the parameters :
Return from the EMT back to user space

Rough Time Estimate: (n = # of parameters) ,
2.02 + n*0.2 millisec pius Kmap operation time. Note that
the Kmap operations performed in the entry/exit routines
are not included.

Measured Time: 3.14 milliseconds (call with two parameters)

-~y -y o~ ~——y— —

D R PO s

22 Measurements of the Cm* Kernel/Machine 27-dun~77

3.3.6 Further Software Measurements (intended)

1. Process creation system calls

Explicitly: try to compare building a new environment as opposed to
retrieving one from a pool.

2. Memory operations:
I Performance of bitstring allocation strategies

il. Createsegment costs, using Kmap directory opefations and distributed
memory management data structures

3. Overlay costs
I Overhead for overlaying segments in the kernel

li. Patterns of overlay, optimal strategies

3.3.7 Interaction and Contention (intended)

1. Contention in .the message system -~ two modules s'endlreceive messages in
various patterns with various frequencies

2. Locking overhead and waiting times on shared systém data structures

3. Compare the cost of using the message system to using shared segments
with explicit locking. ;

4. Contention in the runqueues for dispatching
5. Intensive process swapping experiments

6. Optimal communication of data between processész

P e TR

27-Jun~-77 Measurements of the Cm* Kernel/Machine 23

R Referencing shared segments in remote modules as opposed to

il. Copying segments to enable local referencing

7. Compare cost of:
i Remote code execution,
ii. Moving a process to the processor that can execute the code locally,

lii. Copying code segments into local memory

3.4. Firmware Measurements

3.4.1 Firmware (i.e. operations microcoded in the Kmap)

3.4.1.1 The parameters

The parameters for the measurements of the capability and locking
operations are: y

i Access to a primary or secondary capability list (directily/indirectly)

li. Capability accessed can be expected to be cached or not {(cached/not
cached) :

iil. Kmap contention caused by requests from other processors (contention/no
contention)

The ranges given result from variation in the parameters. The typical times
are underlined. ; A

O v e e —_
g e g ——————

24 Measurements of the Cm* Kernel/Machine 27-Jun-77

3.4.1.2 The functions

i. LoadSegment (make a segment directly addressable) - 23 to 38
microseconds

ii. ReadWord, WriteWord (read and write to a segment which is not directly
addressable) - 40 to 80 microseconds

ili. ReadCapability (read the capability contents) - 40 to 114 microseconds

iv. TransferCapability (move a capability from one slot to another) -. 70 to 145
microseconds

v. CopyCapability - (estimated cost) 127 microseconds
vi. DeleteCapability - (estimated gost) 89 microseconds

vii. IncrWord, DecrWord (synchronization instructions) - 40 to 80 microseconds

3.5. Conclusions

.An Operating System can only be evaluated on the basis of the services it
provides to its users. We are not yet at that stage of evailuation. However, we .
believe that we have been successful in designing primitives that are useful both
for application programs and the Operating System. The primitives are simple
enough to be microcoded and are cost effective in that we derive substantial
improvement in execution speed using the microcode implementation. We have
gained some insight into the use made of these operations by the Operating System,
but more evaluation is required to make optimal use of the centralized microcode
resource,.

At the design stage of the Cm* project, we speculated that operations that
were designed to be implemented in microcode could be implemented in software
with no functional change. The proved to be the case with the message operations.

In this evaluation emphasis has been on the microcoded Operating System
operations that allow programmers to make maximal use of the Cm* resources. One
of the basic problems of the PDP-11 machine is the s/l 16 bit address space. We
have overcome this problem by providing a capability addressing space together

27-Jun-77 - Measurements of the Cm* Kernel/Machine ; 2_5

with efficient capability space manipulation operations. in addition, Cm* provides
efficient operations to make segments directly addressable or to read/write
arbitrary words out of/into segments -in the virtual address space. The execution
times of these operations range from 23 microseconds for performing a
'LoadSegment' operation to 130 microseconds for a 'CopyCapability' operation. This
compares very favorably to the average LSI-11 instruction executlon time of 6
microseconds or the floating point multlply cost of 94 microseconds.

Processes can communicate through shared segments or by messages. The
explicit synchronization instructions (IncrWord/DecrWord) provided for locking
shared gata segments, also implemented in Kmap microcode,. cost only 40
microseconds. Segments do not have to be directly addressable to perform locking
operations on them, thus no overlay costs are incurred.

The message operations (costing 2 milliseconds each) are slower than we
would like. If microcoded, the operations are estimated to cast 200 microseconds
each, a time that would also compare favorably with LSI-11 instructions. We
believe that reducing the cost of the message operations by an order of magnitude
woald substantially increase their usage. Certainly, in the Operating System itself
the message operations dominate the cost of multiplexing environments. Almost all
the time in executing a 'dispatch' is spent there. Either the multiplexing function will
be redesigned so that it does not rely on message operations, or the message
operations will have to be microcoded to increase the speed of a 'dispatch'
operation. Users executing the current message operations have to perform a
costly kernel entry/exit. Thus the costs are twice as high for the user as for the
system. In a microcoded implementation this anomaly will not persist.

~ Further measurements are in progress. The process creation system
functions, the memory manager operations, current kernel overlay costs, and
interaction and contention effects will be studied. More analysis is required to
determine precisely what code must be duplicated in each processor to maximize
local instruction fetches at low storage cost. And, as mentioned earlier, more
analysis is required to determine the most cost effective use of microcode.

26 Performance of a Stand Alone Cm* System 27-Jun-77

4. Performance of a Stand Alone Cm*k System

L. Raskin

4.1. Introduction

Three application programs are described in this section along with some
initial measurements of their operation on Cm*.

The three applications are:
1. Asynchronous Iterative methods for solution of PDE's.
2. Sorting (Quick Sort).
3. Set Partitioning integer Programming.
Each application program is discussed below. The measurements obtained are
presented and discussed.
4.2. QObjectives
We have used these applicatian program= as a warkload for the Cm* system.
This was done in order to measure the values and evaluate the importance of

various attributes (like program/data locality) to:

1. Show the possibility of solving efficiently severai problems on Cm* and thus
the viability of such an architecture.

2. Make a theoretical comparison, using these parameters, between Cm* and
other multiprocessor architectures (e.g., loosely coupled computer networks
or tightly coupled structures such as C.mmp.) Measurements of these
attributes will help in deriving and validating a perfarmance model for Cm*
like architectures. .

3. ldentify performance bottienecks in the hardware system that will provide
some insight and help in tuning and constructing such systems in the future.

R] - e e e e S g . A ———

. —— ——————— - _————

27-Jun~77 Performance of a Stand Alone Cm* System 27

4. Provide some quantitative criteria to decompose future applications for Cm*
into parallel tasks. '

5. Determine software (Operating System) and /O system impact on these

applications (e.g., in terms of overhead involved in synchronization, memory

management). Help in tuning these systems.

6. Help to define classes of problems that are most suitable to run on Cm*

4.3. The Programs

4.3.1 Numerical Application = Partial Differential Equations.

4.3.1.1 The Probiem

An example of an Asynchronous Iterative Method is the solution to Dirichlet's
problem of Laplace's Partial Differential Equation (PDE) by the method of Finite
Differences.

This program solves the PDE:

FU(xy) | 3U(xy) = g
ax? ay?

oit a rectangular grid of size M x N, where only the values at the outer edges of the
grid are given.

The Finite Difference method transfcrms the problem into a set of linear
equations: Ax = b, where X is an MN vector of all the points in the grid, A is an MN x
MN sparse matrix and b is an MN vector derived from the boundary conditions. This
set of linear equatlons is derived from the new approximate values of the points (in
each iteration) by averaging the values of the four adjacent neighbors of each
point. The solution to this PDE is required in many application areas (e.g., Electro-

Magnetic field, Hydrodynamics) Other PDE problems can be similarly solved using
this method.

More detalls about Asynchronous Iterative Methods and their applications
can be found in [BAUDET 78a, BAUDET 76b].

28 A Performance of a Stand Alone Cm* System 27-Jun-77

4.3.1.2 The Methods

Baudet [BAUDET 76b] gave a survey and developed several new methods for
solving the above probiem. Four of these methods were impiemented and measured
on Cm*. In all the methods, the computation is initially decomposed into P processes
where P is equal to the number of processors available. Each process (and
processor) iterates on a fixed subset of MN/P components out of the total MN
components. The four methods are briefly discussed below:

Method 0: Jacobi's Method. In this method each processor retrieves its particular
subset of the data from the global vector, X, at the beginning of each
. iteration. New values are computed for the elements of x and then
compared with their previous values. The elements are stored back
into the global vector, X, for other processors to use. This store
operation is protected by a critical section. The processor then
checks the error vector (computed by differencing the oid and new
values of the x vector). If the error vector is smaller than the pre-
specified limit, the processor notifies the other processors that it has
finished. If all of the other processors have finished their work the
computation Is complete. Otherwise the processor blocks awaliting the
completion of the iteration by all the other processors before starting
the next iteration. 4

Method 1: Asynchronous Jacobi Method (AJ). This method Is the same as the
Jacobi method (Method 0) except that each processor does not wait
for the other processors to finish before starting on the next iteration.

Method 2: Asynchronous Gauss Seidel Method (AGS).. This method is similar to AJ
method (Method 1) except the processor uses the new values
computed in its subset as soon as they are available (not the values

known at the beginning of the iteration as in the previous two

methods).

Method 4: Purely Asynchronous Method (PA). This method computes a new value
of each component using the most recent values of all components by
reading them directly from the global vector, x, and writing the
updated values directly back to the global vector (without any critical
sections or synchronization). This last method is clearly the most
efficient. 1t also uses less memory than the other methods. [t uses
critical sections rarely to'inform the master process that the work has

been finished. Almost linear speed up can be achieved theoretically

with this method. .

27-Jun-77 Performance of a Stand Alone Cm* System 29

More discussion of the above methods and experimental results on C.mmp
(using floating point) can be found in [BAUDET. 1976 ab]. Fixed point, single
precision computation was used in the Cm* implementation.

Some features of this problem:
I. Extensive use of integer arithmetic operations.
ii. 4 different methods with different synchronization requirements.
jii. Can be éomparadrwith a C.mmp implementation.

iv. Almost linear speed up can be expected.

4.3.1.3 The Implementation

The grid size was chosen to be 21 x 24 points (i.e., a linear system of 504
elements). The boundary conditions were chosen to be all zeroes and the grid points
initialized to one. The error bound was chosen to be 0.1 in all the following
experiments. One processor, the master processar, initializes and starts the other
slave processors, and prints the resuits when all have finished. Note that the
master participates in the computation like any other (slave) processor. Ali the
global variables are kept in the master processor's local memoty area.
Synchronization and mapping are achieved by using the simple Kmap micro-code.

4.3.1.4 The Results

The timing measurements and speed up factors for various memory reference
patterns are given in Figures 1.1 to 1.8 and in Table 1. (The figures appear at the
end of this section.)

30 Performance of a Stand Alone Cm* System

27-dun~77

Table 1: PDE, Memory Reference Patterns (using one Cm)

This table shows program execution times for various memory reference
patterns expressed both in seconds and as percentages of the times taken when
all references are to local memory. ‘

Memory reference pattern

All Local

All Mapped

Only Code Mapped

Oniy Stack Mapped

Only Local Variables Mapped
Only Global Variables Mapped

Memory Reference Pattern

All Local

All Mapped

Only Code Mapped

Only Stack Mapped

Only Local Variables Mapped
Only Giobal Variables Mapped

Memory Reference Pattern

All Local

All Mapped

Only Code Mapped

Only Stack Mapped

Only Local Variables Mapped
Only Global Variables Mapped

Method 0
Execution time

362
954
835.5
420
405
378

Method 1
Execution Time

355.5
048
820
413
399
370

Method 2

Execution Time. -

181
a78
a17
210
203.5
188

‘% Local execution time

100
263.5
231
116
112
104.5

% Local execution time

100
267
231
116
112
104

% Local execution time

100
264
230
116
112
104

Ay Qh!"’

27-Jun-77 Performance of a Stand Alone Cm* System

Memory Reference Pattern

All Local

All Mapped

Only Code Mapped

Onily Stack Mapped

Only Local Variables Mapped
Only Global Variables Mapped

Method 4
Execution Time

165.5
433
382
196
176.5
173

% Local execution time

100
261.5
231
118.5
107
104.5

S ————.. <t

@

32 Performance of a Stand Alone Cm* System 27-dun-77

4.3.2 Sorting = Quick Sort

4.3.2.1 The Problem

This problem concerns the decomposition of the well known Quicksort
algorithm [SINGLETON 69] into asynchronous parailel processes. The median for
each sort pass was chosen as the median of the first, middie.and last elements in
the sublist. Each process is assigned to its own processor. {Hence the process and
processor may be used interchangeable here.)

During a pass, each processor partitions its set of elements into two
subsets: Elements larger than the median of the original set and elements smalier
than the median. The processor then pushes the address and size of the smaller of
the two subsets onto a stack shared by all the processors. (Making the smaller
subset available to the other processors tends to put more work onto the shared
stack in order to keep as many processors as possible, busy.) The processor
proceeds to further partition the remaining (larger) subset. When the remaining
subset cannot be partitioned further, the processor selects the next available
subset from the shared stack. .

Very simple assumptions about the algorithm (similar to the T = ¢ N Log N for
sortirg using the sequential aigorithm) give a theoretical sorting.time of:

T=cN{(K-M)/P + 2(1 - (172)M)}

Where: N = # of elements to sort,
K = Logy N,
c = constant,
= # of processors.
M = Logz P,

When the number of processors is much smaller than the number of items to
be sorted almost linear speed-up can be achieved. The performanced degrades
considerably when the number of processors is large (asymptotically to a constant
speed of T = ¢ Log N/2). See Stone [STONE 71] for a description of sorting
methods that speed up as N/log N for large numbers of processors.

R

27-Jdun-77 Performance of a Stand Alone Cm* System : 33

4.3.2.2 The Implementation
One processor, the master processor, Initializes and starts the other
processors. It makes the first partition and prints. the resuits when the sort is
complete. The master also participates in the sort like any other (s/ave) processor.
The stack, the vector of elements to be sorted, and the global variables are
kept in the local memory of the master processor. All the experiments sort 18,000
elements, where each eiement is a 16 bit (2's complement) value.
Some features of this problem:
I. Extensive access to the shared data vector (which causes data contention).
li. Extensive use of logical operdtions.
iii. Almost linear speed up when the number of elements in the data part is
orders of magnitude larger than the number of processors.
4.3.2.3 The Results
The timing measurements and speed up factors for various memory reference
patterns are given in Figures 2.1, 2.2 and Table 2. (The figures appear at the end

of the section.) X
Table 2. Quicksort, Memory Reference Patterns (using one Cm)

This table shows program execution times for various memory reference
patterns expressed both in seconds and as percentages of the times taken when
all references are to local memory.

Memory Reference Pattern Execution time % Local execution time
All Local 25.54 X 100

All Mapped % 70.0 ' By

Only Code Mapped 58.4 229

Only Stack Mapped : 30.3 s © 118.5

Only Local Variables Mapped 28.3 S

Only Global Variables Mapped 31.2 122

34 Performance of a Stand Alone Cm* System 27-dun-77

4.3.3 Searching - Set Pgrtitioning Integer Programming

4.3.3.1 The Problem

The particular integer programming considered here Is one of the most
practical and applicable methods. It is used, for exampte in airline crew scheduling
[BALAS 786]. '

This problem is typically solved with an enumeration algorithm, by searching
(N-ary tree search) in a large, relatively sparse, binary matrix - typicailly on the
order of hundreds x thousands - for a minimum cost solution. :

The set partitioning problem is to solve:
min { c.x | Ax = e, x; =0 or 1 for 0<jSN}
Where: A = M x N binary matrix.

cs N vector
e=(1.. 1) M vector

As an example of this method, consider the airline crew scheduling problem.
The rows of the A matrix correspond to a set of flight legs (from city A to city B, in
time T) to be covered during a specified period and the columns of A correspond to
a possible sequence of tours of flight legs done by one crew, ¢ is the vector of
associated cost of each tour. A possible solution includes a set of tours that
satisfy all the flight legs (one and only one crew makes a f“ght leg) We are looking
for the solution with the lowest cost.

Some features of this program:

I It uses binary data types, manipulates a lurge matrix in a relatively small
address space.

ii. Extensive use is made of both arithmetic & logic functlons..
iii. There is a theoretical possibility of nearly linear speed up.

iv. The application is relatively complex.

27-dun~77 Performance of a Stand Alone Cm* System 35

4.3.3.2 The Implementation

As in the previous applications, one processor - the master - Initializes,
creates the array according to user's specification and puts enough initial possible
search path solutions in a global stack, from whicii all the processors pick their
work. The criteria was (arbitrarily chosen) to put more than 10 x P path solutions
into the stack (where P = # of processors) - so that the work will be more evenely
distributed between the processors and all will be occupied for a large percentage
of the time.

To enhance pruning in the search, a global variable contains the cost of the.
best solution found so far by any of the processors - and all compare their current
cost value to it and begin to track back in the search when that global cost is
lower. ' -

4.3.3.3 The Resuits

Five different cases where arbitrarily chosen as test cases.

- e J Seed Density # Solutions
Case 1 10 100 1 0.1 3
Case 2 10 100 2 0.1 5
Case 3 10 100 3 0.1 5
Case 4 50 500 1 0.2 o
Case S 17 60 1 0.1 1
Where:

b # of rows in the A matrix

Jd= # of columns in the A matrix

Seed = initial seed number for a random # generator to generate the

: matrix , ' ;
Density = Density (ratio of ones and zeroes) in the array

Solutions = . # of different solutions found by one processor

The timing and speed up factor results for the S different cases are given in
Figures 3.1 to 3.2 and in Table 3. (The figures appear at the end of the section.)

36 Performance of a Stand Alone Cm* System 27-dun-77

Table 3: Integer Programming, Memory Reference Patterns (one Cm)

This table shows program execution times for various memory reference
patterns expressed both in seconds and as percentages of the times taken when
all references are to local memory.

~Case 1

Memory reference Pattern Execution Time % Local Execution Time
All Local ' oy 100
All Mapped 215.1 ‘ 272
Only Code Mapped 176.8 ' 223.5
Only Stack Mapped : 113.9 . 143
Only Local Variables Mapped 85.8 108.5
Only Global Variables Mapped 81.1 102.5

Case 2
Memory referenceé Pattern Execution Time % Local Execution Time
All Local] 19.5 : 100
All Mapped 53.0 272
Only Code Mapped 43.6 223.5
Only Stack Mapped 27.3 140
Only Local Variables Mapped 21.1 108.2
Only Global Variables Mapped 20.0 102.5

Case 4
Memory reference Pattern Execution Time % Local Execution Time
All Local ! . 204.4 100
All Mapped 546.1 . 267
Only Code Mapped 455.5 223
Only Stack Mapped ' 277.4 136
Only Local Variables Mapped : 217.85 106.5
Only Global Variables Mapped 208.3 102

—————

27-4un-77 Performance of a Stand Alone Cm* System 37

4.4, Initial Results

4.4.] Access times in the Cmx system

The following summarizes the resuits presented in Tables 1 to 3. The figure
given is the ratio of total execution time (for various memory reference patterns) to
the total execution time when all memory references are to iocal memory.

1. When all references are mapped, the ratio is between 2.6 and 2.75.

2. When code is mapped and everything eise is local, the ratio is between 2.2
and 2.3. Hence it is very important for code to be in a Cm's local memory.

3. When the Cm's stack is mapped, the ratio is between 1.16 and 1.185 for the
PDE and QuickSort applications and 1.4 for the Integer Programming
application. The latter application consists of a large number of small
routines, the execution of which causes frequent stack accesses to perform
the call/return sequence.

4. When global data is mapped, the ratio varies between 1.02, when global data
accesses are infrequent, and 1.15 when accesses are relatively frequent.
These particular figures are encouraging since large shared data structures
may be located anywhere in the system without significant performance
degradation.

5. When Own (local) data is mapped, the ratio iIs between 1.07 and 1.12.

4.4.2 Throughput of Cm% Buses and Components.

1. When all processors share both code and data from a single memory, the
graphs indicate that performance cannot be improved by using more than 3 or
4 processors. This limitation is caused by memcry contention.

2. The graphs showing Cms making references which are mapped back to their
local memory ("Mapped to Self") indicate that the Kmap saturates when 6 or
7 processors are simultaneously active in this mode.

38 Performance of a Stand Alone Cm* System 27-Jun-77

4.43 Hit and references ratios

The rate of mapped memory references from a Cm, for which all references
were mapped, was measured. The reference rates to Code, Stack, Own (local) and
Global data were also measured. The percentages of the total reference rate
represented by the above reference types are tabulated below. (The
measurements were made using a combination of the Map Bus Monitor and a
frequency counter.)

a. PDE
- method O method 1 method 2 method 4
Code 80.8% 80% 80.5% 82%
Stack 10% 10% 10% . 11.5%
Owns] 6.8% 7% 7% a%
Globals 2.5% 3% o.85% 2.5%

b. Quick sort

Code 1%
Stack 12.5%
Oowns : 6.5%
Globals 9.5%
c. Integer programming
- case 1 case 2 case 3 case4 case §
Code 71.3% 70.3% 711% 72.8% T1.5%
Stack 23% 24% 25.4% . 22.3% 23.6%
Owns 4.75% 4.6% 4.15% 3.75% 3.85%

Globals o~ 1.1% 1.2% 1.1% 1.1%

The hit ratios are therefore on the order of 97.5% in the PDE program, 90.5%
in the Quicksort program and 99% in the integer Programming program.

e —————— B sl e g

-

27-Jun-77 Performance of a Stand Alone Cm* System 38

4.4 4 \Uilization

4.4.4.1 System Components

Figures 4.1 to 4.4 show the different aspects of the system's component
utilization while running the PDE programs. The Kmap executes a 2 micro-instructon
loop (called the "idle loop") whenever there is no useful work for it to do. (This is
used to show the utilization of the Kmap). The “Slocal busy loop" is 7 micro-
instructions long and is used to show the amount of contention for Slocals and
memories. This loop is executed when the Kmap tries to read from, or write into, a
memory but the Slocal Is still busy executing a previous reference. A successful
reference to an Slocal takes 4 micro-instructions.

The Kmap micro instruction time Is about 157 nanosec.

It is interesting to note that the maximum Pmap utilization when the hit ratio
is 0% and all references are mapped back to the Cm is oniy 35% (the rest of the
time is spent in the idie loop). :

4.4.4.2 Number of Cms supported by a Kmap

The measurements shown in Fig 4.2 (all references mapped) shows that, due
to Kmap contention, there is a degradation of about 10% in the time to execute a
remote (mapped) reference inside the cluster when about 400,000 references/sec.
are made to the Kmap.

Consider, for example, the PDE program. The average number of mapped
references from one Cm, when only global variables are mapped, is about 6,500
references/sec. This means that the Kmap can support 400,000/6,500 or about
60 Cm's with only 10% degradation in the mapped reference time. With a S0% hit
ratio (10% mapped references), as observed in the Quicksort program, the Kmap
can support about 20 processors with a 10% degradation In the mapped reference
time.

445 Total local memory references per second and MIPS.

Based on the three programs measured, the local memory reference rate was
as follows:

40 Performance of a Stand Alone Cm* System 27-Jun~77

PDE - Time between successive memary references = 3.7
microseconds. Reference rate = 270 KHZ.

Quick Sort - Time between successive memory references = 3.33
microseconds. Reference rate = 300 KHZ.
Integer Programming - Time betwen. successive memory references = 3.51

microseconds. Reference rate = 285 KHZ.

The average number of memory references per instruction was measured to
be:

QUICKSORT - 1.5
POE - 1.45
INTEGER -1.75

For HARPY the reference rates are in the 1.85 - 1.9 range. (See section 5.)

These numbers are considerably lower than the corresponding numbers (2.1
to 2.3) measured on a large sample (about 8 million instructions) of from 20 Fortran,
Cobol and system programs {MARATHE 77]. A possible explanation for this may be
that the Cm* applications were compiled by a good optimizing compiler.

The average number of memory references per instruction in the measured
programs was about 1.7. From this we get that the maximum potential instruction
rate of a Cm executing a program in its local memory Is on the order of 0.17 MIPS
(Millions of Instructions Per Second). This may be extrapolated to 1.7 MiPS for a
10 processor system. :

446 Memory Contention

As seen in Fig. 4.4 (Slocal busy loop count) the time added to a reference by
each Slocal busy loop count is about 2.26 microseconds (1.1 microseconds in the
Pmap and 1.16 microseconds in the Kbus and Map bus)

4.46.1 PDE

The number of busy loop references in the PDE program increases from O to
4200 in Method O and to 9600 in Method 4 - with O to 8 Cm's all running local code

e o P i ~ — ————n T — - e e

27-Jun-77 Performance of a Stand Alone Cm* System 41

(and shared data). This means that, as expected, the degradation due to memory
contention in this high hit ratio application is negligible. The memory contention adds
only 0.5% - 1% to the utilization of the Pmap. (The Pmap spends 2% -~ 3% of its time
doing useful work, and sits in its idle loop for the remaining 96% - 97% of the time.)

From the above results, the performance degradation due to memon;y
contention (and hence slower mapping) was calculated to be In the range: 0.1% to
0.25%.

4.4.6.2 Quick Sort:
This program is difficult to measure as it has a short execution time and

changes its demands upon the Kmap during execution. Taking peak Kmap activity
with 8 processors (local code):

Siocal busy loop 100,000 counts (11.0% of Pmap time)
idle loop 2,500,000 counts (78.5% of Pmap time)
Useful mapping references 150,000 counts (10.5% of Pmap time)

From the above results, the performance degradation due to memory
contention was calculated to be 2.7%. Map bus contention was ignored in the
above calculations.

4.47 Frequency of Lock cperations

Tk total number of lock operations per second ranged, in PDE Method O,
from 10 in a 2 Cm system to 3,400 for the 8 Cm system. For Quick Sort the range is
1,500 - 14,000. These are algorithm dependent numbers and do not have much
influence on total execution time due to the fast synchronization operation in the
simple Kmap microcode. :

4.4.8 Estimate of execution times using multi cluster Cmx configuration

The number of mapped references were measured from Cm #0 - Cm #3 when
the code was local and the global data was in Cm #13.

a2 Performance of a Stand Alone Cm* System 27~-Jun-77

PDE Quick Sort
Method O Method 4
Reference Counts

Total (Mapped) Cm's 0-3 22000 27000 90000
Total for 1 Cm 257200 . 256000 256000
Mapped for 1 Cm 5500 6750 22000

Average Memory Reference Times

Local (Microseconds) 3.7 3.7 - 3.3
Mapped Intracluster 8.44 9.47 9.16
Mapped Intercluster (est.) 26.4 : 26.4 26.4

Reference ratio (see nate) 1.0985 1.115 1.39

Note: The intercluster/intracluster reference ratio was calculated by
multiplying the number of local and mapped references by their respective
execution times in the.intercluster and intracluster cases, then dividing the two
resultant numbers.

The references ratios show that the PDE method O algorithm (which waits for
the slowest processor to finish) experiences a sjow down of about 9.5%, but the
slow down on method 4 and in Quicksort should be much better than the 11.5% and
39% predicted slow down in execution times - due to different algorithms (difficult
to predict).

449 Some useful numbers
Some rounded, uséful numbers from this evaluation of Cm* include:
1 Cm (i.e. single LS!~11 processor) ~ 0.17 MIPS

Reference saturation rate of shared memory bus - 270 KHz (3.7 microsec per
reference).

Reference saturation rate of Kmap (including the map bus) - 552 KHZ

Saturation of map bus transactions (i.e read or Read-Modify-Write between 2
Cm's needs three transactions and write requires two transactions) - 1.7 MHZ

e e —————————————a -~

- —— e g

27-Jun-77 Performance of a Stand Alone Cm* System 43

4.5. Measurements of Inter Cluster (Linc) communication

4.5.1 Program execution

Figs. 5.1 and 5.2 show the Initial results from a multi-cluster Cm*
corifiguration (as shown in figure 1 of the introduction).

The prograrf\ used for that evaluation was the PDE program (methods O and
1). The Cm* configuration was a 3 Cluster system (4 - 4 - 2 Cm's in each) and the
program was measured while using only two Clusters with equal number of Cm's in
each. s

Fig 5.1 shows that, with almost all the memory references local to each Cm
(only globals mapped either inter-ciuster or intra-cluster depending on the location
of the Cm in the system), the increase in the execution time between using the Linc
in a two Cluster configuration, or executing with ail Cm's configured into the same
Cluster - is only 5.5% to 12%. :

Although the multi-cluster performance of Figure §.1 is not much worse than
the single Cluster configuration, it does raise the issue of when, if ever, it makes
sense to consider multicluster configurations. With only 10 Cm's in the initial
configuration we did not observe any practical situation in which multicluster Cm*
configurations were superior to single Cluster. However, it is obvious that in larger
Cm* systems a single Map bus and Kmap will become a bottleneck. Figure 5.2
shows a case, albeit an artificial one, in wiich a multicluster system is better than a
single Cluster configuration.

Fig 6.2 shows the results with all memory references within a Cluster mapped
back to the originating Cm and only globals shared across Clusters. Starting in 4
processors, a better execution time is achieved by using the Linc in a two Cluster
(2 Cm’s in each) configuration than by using one (big ~ 4 Cm's) Cluster - which
increases to about 36% speed-up with 8 Cm's participating. ,

This is due to the high contention (and saturation) of the Kmap in the one
Cluster (O% hit ratio) configuration while in the two Cluster case the work is divided
between the two Kmaps participating with only a small percentage of the
references (globals) being executed via the Linc (which does not significantly
degrade the overall performance). This simulates a case where, in some special
circumstances, using the Inter-Cluster bus relieves contention (and saturation) in a
one Cluster - many Cm's ~ configuration.

44 Performance of a Stand Alone Cm* System : 27-dun-77

A large Cm* system Is necessary to. test the utility of multicluster
configurations for running practical applications.

45.2 Contention

Figs. 5.3 and 5.4 shaow the resuits of executing a simple, one instruction loop
(L: mov #L, R7), test case through the Linc. The system was in a two Cluster (8 - 2
Cm's in each) configuration, with all references initiated in the source (8 Cm's)
Cluster reading from memory in the other Cluster.

Fig 5.3 shows the change in reference rate in the source Cluster with an
increasing number of processors participating. The Figure shows different memory
access methods: ;

k Sharing the same memory in the destination Cluster, or aiternating between
the memories of two Cm's.]

i, Using a single Linc, or alternating between two Lincs (ports).

Fig 5.4 shows the utilization of the source Pmap while executing the above
cases. Utilization was obtained by counting the rate of Kmap ldle Loop iterations.

From these graphs a few observations and parameters can be deduced:

i The time to execute an Inter-Cluster reference (without contention in the
system) is 26.4 micro second.

. °h With only one processor executing, the source Pmap is busy only 13.2% of
the time - l.e about 3.5 micro second of the Inter-Cluster reference time is
spent in the source Pmap (the same as received from a theoretical
calculation based on the number of microinstructions executed). Similar
measurements of the destination Cluster shows it being busy 10.3% or
about 2.7 microseconds per reference. '

il From Figure 5.3, we see that a single Linc has a bandwidth of about
200,000 references per second. When multiple Lings are used, the source
Pmap becomes the bottleneck, and we do not reach saturation using 8 Cm's.
Extrapolating from the utilization of the Pmap In Figure 5.4 (and from the 3.5
microseconds execution time per reference for the source Pmap) the Inter-
Cluster saturation rate s estimated to be about 287,000
references/second.

27-Jun=-77 Performance of a Stand Alane Cm* System 45

iv.

The anomalous behavior of some of the gréphs in Fig 6.3 and 5.4, when
severe contention occurs in the 7 to 8 Cm!s region, is not well understood
yet and needs further investigation.

4.6. Conclusions

In this chapter we have studied the perfarmance of the Cm* system using'

three programs. These programs were drawn from different application areas. A
number of conclusions may be drawn from the measurements presented here; The
most important are:

No single bottleneck component was discovered in the initial Cm* system.
Furthermore, the results show that there is a potential for expanding the
system without a significant system performance degradation.

The differences in the memory reference time which is a function of the
hierarchy in the Cm* memory structure (i.e local memory, interciuster or
intracluster references) does not degrade significantly the efficiency of
the system for solving the above probiems. This Is due to the high local
memory hit ratio experienced by these programs - about 90% in the
Quicksort program and approx. 97.5% in the PDE and Integer Programming
probiems. :

in such high hit ratio applications, it was shown that localizing the code,
stack area, and local variables (in that order) is very important. The global
data can be placed anywhere in the system (even outside the Cluster)
without much degradation in the application's execution time.

A larger Cm* system along with a larger, more complex, application program

is needed to continue evaluation of the system, exercise it's full potential
and explore it's limitations. 4

e —————————— o~

a6 Performance of a Stand Alone Cm* System 27-dun~77

4.7. References

[BALAS 76] Balas E. and Padberg M., "Set Partitioning - A Survey" SIAM
Review, Vol 18, No 4, Oct. 1976.

[BAUDET 76a] Baudet G. "Thesis Proposeal", Comp. Science Dept., CMU,
April 1978. '

[BAUDET 76b] Baudet G. "Asynchronous Iterative Methods For Multi-

processors”, Comp. Science Dept., CMU, TR, November 1976.

[MARATHE 77] Marathe M. Ph.d Thesis, Comp. Science Dept. CMU, (in
preparation). . . y :

[SINGLETOM 69] - Singleton R.C. "Aigorithm 347" CACM, Vol 13, No. 3, March

[STONE 71] Stone H.S. "Parallel Processing With The Perfect Shuffie”,
IEEE Trans. on Computers, Vol. C-20, No. 2, Feb. 1871.

. ——————— e

47

Performance of a Stand.Alone Cm* System

27-Jun-77

dn poeeds ‘0 poyeW ‘30d 2°T 314

$1055830.1d JO JaquInp

9

A

S

i

v € [1

R 1 1 4

ow] uonNodX3 ‘0 POYRW ‘Iad T°T 14

$10553204 JO Joquunpy

8 & 9 °]

A -

L '

dn paadg seaury
paseys sjeqoly ‘ed07 3oe)s ‘opo)d
paseys sieqoln Ao ‘paddepy |1y
paieys pue paddepy |1y

+ 4 ©°

v

€

Z

'

€

<
¢n pssds

rS

A
paJeys sjeqojn) {eso yoe)s ‘apo) ©
pa.eys sieqols) Ao ‘paddepy (jy +

paieys pue paddeyy ||y o
-8

001

002

-00¢€

009

004

008

006

~000T

00t =t

F00S v

27~Jun-77

Performance of a Stand Alone Cm* System

48

.

dn paads ‘T poye ‘3ad +°T 314

9

S.10

5522044 JO JaquinN

G b € [1

i

1 J A 1

dn paadg 4eadul
paddepy sjeqoln) {207 yaeis ‘epo)
paJeys sjeqojy Auo ‘paddeny |1y
paJeys pue paddepy |1y

L §

L4

-

o

Hy

A

o)

dn pasds

Qwi] uonnoax3 ‘T pouleW ‘30d €1 314

$10S5820.4 JO Joquny

L 9 S v

€

4

paleys sjeqon {107 yaels§ ‘apo) ©
paseys sieqorn Ao ‘padden iy ¢
paJeys puy padden ||y e

oot |

-002

-00C

00

Ul 3wl

F0QS

S.

2%

spLo

-009

FO0L

-008

006

-0001

49

Performance of a Stand Alone Cm* System

27-Jun-77

dn peads 'z poye ‘3ad 9'1 814
$10585820.4d JO JBQUINN
8 v 9 G 174 € & I

gy Sos i H I

i

dn paadg seauiq

poddepy sjeqoln {|e207 %oejs ‘apo)d
paseys sjeqoln A|uo ‘paddewy ||y
pa.eys pue paddyny |1v

4

+

o

e

-

FL

-8

W

el

ouil| uoNNIX3 Z POYIRW ‘Iad G'T T4

$4055320.1d JO 13aguInp

8 i 9 S b € Z

L A I - F | 1

.\\\//

\

pateys sjeqol {ed0q yaeys ‘epo) -
paJteys sjeqojs Ajuo ‘paddepy |1y +
paleys puy paddep ||y e

ﬁoom 3

062

SR
&S

e ——
S

rOOoYy

oSy

00G

———— e -

27-Jun-77

Performance of a Stand Alone Cm* System

dn peads 't powis ‘3ad 8'1 914

9

$J0553201d JO Jaqunp
G 1 € 4 [

) 1 1 A 1

dn paadg teaun

paJseys sieqol Auo ‘paddepy ||y
poleyg pue paddepy |1y

©

paddepy sjeqols) {207 %oe)s ‘opo) ©

+*

-

L

duil) uonNoax3 ‘' poyeW ‘30d £'T A4

5405532044 JO Jaquny

&) G 4 €

(

2

dn pssds

pa.eys s|eqojn ‘18307 yaejs ‘apo)
paJeys sieqoln Auo ‘paoddepy 1y +
puleys puy paddepy |1y o

-O0b

oSy

-00G

SPUOSES Ut Swl]

PR

B

g e

————————————————————————

51

- 0

Performance of a Stand Alone Cm* System

27-Jun~77

dn paads oS oind z'Z 314 8ull | uonNIAX3 10S oI 12 314
$10553204d JO Jaquinp $.J0553204d JO 18qunp
9 S v e [I 3 L 9 S '} € Z [
//

.S
Q
o
- %- robv
S \
|
-G oS
-9 09
yde.ur) jednasoay) o L/ tOZ
poddepy sjeqol9 (e300 3ae)s ‘apo) © paddepy sieqojn ‘12207 ¥oe)s ‘opo)) © |
paJteys sieqoj9 Auo '‘paddeyy |1y + paieys sjeqoy) Ajuo ‘poddepy iy +
poJeys pue poddepy |1y o pateys pue paddepy ||y o
r..nw - «,W

Wil

=]

SpU028S ul

27-Jun~-77

Performance of a Stand Alone Cm* System

52

r

dn peads ONIWWYYOOYN ¥3IDILNI Z2°€ 314

$10S$820.4d JO Jaquinp

£

A

9

S

1

4

i

€

i

ewi] uoNNIex3 ‘ONINNYHYIOUd ¥IDILINI 1€ 314

$1055320.d JO Jaqunp

G

1/

A

£ [!

dn paadg Jeauln =
G 8se) ‘jes0] v
t 8sen ‘1edoq o
£ ase) ‘|ledo x
Z 9se) ‘jedo +
[@se) ‘ledo) o

ﬁ,o—

™~
4. 0

-

G 8se) ‘jedo
p @se) ‘|el0)
£ @se) ‘|ed0)
Z ase) '1e20
1 @se) ‘e307

o

0O+ x O

r0G

00T

061

002

-0S2

r00€

-OGE

-00b

SPUOYag Ul BWI|

53

Performance of a Stand Alone Cm* System

27-Jun-77

-

W) euo wouy eley eaususfsy -30d

's108882044 Jo uonez|nn 2y 814

$40585820.4 JO Jaquny
L) g b € 2

A A A

paseys pue paddepy ||y +
paieys sjieqoln Ajuo ‘paddepy | o

02

-0E€

-Ob

~00T

FO11

-021

pu02sS 184 Q00T Ul 3led 9dua.13}ay

dew-y 0} ejey sdusieiay ©10) -30d

‘sesng Jo .S_.__.S‘___S Ty 314

5105532044 JO 13quinp

S

i

v e [1

A e |

-

paieys pue paddepy ||y +
paJeys sieqoys Ao ‘paddepy |1y o

o
o

rOGT
002
rQGe
rO0E
-OGE

FOOY

puosas Jad QQQ1 Ut 8jey §dus.a)sy

-OSY

F00G

OGS

—

009

27-Jun-77

Performance of a Stand Alone Cm* System

54

doon Asng |ed0)s jo % ‘30d ‘dewy jo uopez\nn vy 814 doo e|p| jo edejuadiad ‘Iad ‘dewy jo uoneziin £t 314
$4055820.4d JO Jequnpy 5105582044 JO Jaqunp
g L a S b £ 2 I 8 L 9 S b £ 2 I
-02 0%
foe @ Hoe
0O
S
-0t o3 -OY
m
o
& w
08 F0G
O
8
09 & -09
< G———
S
o
0L o 0L
08 08
peddepyy sjeqojn Ajuo ‘jesoT ||y x
paleys sieqof Ao ‘leao (iy © 06 paieys pue paddepy |y + 06
paieys pue peddepy (v + pa.ieys sjeqoj Ajuo ‘paddepy ||y o
paseys sjeqoj Ajuo ‘paddeyy ||y o s }
00T 001

doo7 a|p] j0 a8ejusdiag

n
o

Performance of a Stand Alone Cm* System

27~-Jun-77

(paddely |y) ew)) uopnoex3 Jejsn| 48Ul B eA] 2'G B14

(epod jed0)) ewi| uonnNdax3 JBYsN|) s8jul & e TG Biyg
$J0553204d }O Jaguinp 5105582044 JO 13Qunp
8 4 9 g b € (4 [3 L 9 G b £ Z 1
- . 001 .
-0G
-002
00T
-00€E |
toow = o
3
o
X
00§ » -002
o
o
a
009 &
-0G2Z
00/
-00€
-008
b POUIaKY 3Qd ‘49)5N|D e4u| © b POUlayy 30d ‘491N eljuf o Loge
b PoYlayy 30d 491sN1D 43l 006 b POUISN 3ad ‘491N J8juf v
0 POYIBW 3Qd 48)snID eau] + 0 POYION 3Ad ‘481SnID el +
0 POYIaN 30d “4815N(D 484y o 0 POUIayy 3Qd 491SN1) Jou] o
L0001 -00Y

SPU0Y8S Ul swWi]

RIS U —

—

T o ————————

27~Jun-77

Performance of a Stand Alone Cm* System

56

dewy 824nog jo uonezynn ‘oull uo uolusjuo) H'G 314

8 &

L

A

43)SN|D 82.N0G Ul S10SS3I044 JO 13NN
S Y € e {

9

)

-

i i i i

7

51404 9|eulally ‘Alowapy ajeusally o
}404 aweg ‘Aiowayy 8jeuls)|ly v
S)110d 8)jeu.ally ‘Alowapyy sweg +
}404 aweg ‘Alowsyy aweg o

-08

-06

ﬁ,ooa

(88e)ud2.84) dewy 83.N0S JO UDHRZI|IN

8jey edualeyey ‘our] uo uonusyuo) g£'G 314
18§SN{] 5414 Wi $1055320.4y JO Jaquny

&

A

9

i

S v £ 2 T

i 4 i i '

S|40d ajeusalfy ‘Aiowayy ajeusajly
1104 aweg 'Alowayw ajeusaly
$}40d 8jeuid)|y ‘Alowapy aweg
1104 aweg ‘Alowapy awes

(uonuajuod ou) ydein seaull v

o
x
+
G

~001
021
a
091
081
002
~0Z¢
~obZ
‘092
082

-00E

-02¢€

(0001X) puodss 48d 2)2y 82Us.3;8Yy

27-Jun-77 HARPY ‘ 57

5. HARPY

P. Feiler

5.1. Introduction

HARPY is a speech recognition system developed at CMU. Its knowledge
representation is a state transition network which is dynamically updated. The
speech data is preprocessed (segmented) on the CMU-108 (CMUB). A search aiong
a "few best" paths in the network is performed in parallel to recognize the speech.
For more details on the Artificial Intelligence aspects of HARPY the reader is
referred to [1].

.5.2. HARPY on Cmsx

5.2.1 Process Structure

The Cm* version of HARPY can recognize the DESK CALCULATOR (DESCAL)
task. It has a 37 word vocabulary; the network consists of approx. 1000 states
with an average branching factor of 4 (i.e,, each node in the network has an
average of 4 immediate neighbors). The program is decomposed into a set of
cooperating processes. One master process communicates with the user's terminal,
initializes the received input data, and co-ordinates a set of slave processes. The
slave processes perform three functions according to the rules the master
specifies ~ (network initialization, take one step in the network, prune the search
tree and remember the result). For the live version of HARPY an input process is
responsible for communication with the CMUB. The input process receives data from
the CMUB and passes it to the master. The master process then prepares the data
for the slaves.

5.2.2 Space Requiremenis
The space requirements for running the Cm* version of HARPY are as Tollows:.
I Each process requires 2K words of local code and 2K words for a local stack.

i, The network's global data requires 26K words.

iii. The I/0O process requires 2K words of buffers.

58 HARPY 27-Jun-77

5.2.3 Implementation Alternatives

Several implementation alternatives are possible which affect the
synchronization structure and hence the performance of the program. The private
semaphores of the different processes can be implemented using a Kmap provided
synchronization operation or by the method of busy waiting on a shared memory
location. Exclusive access to the network can be guaranteed by using critical
sections. The grain size of the lock used in critical sections affects the
performance of the system. In the extreme cases, either the entire network is
locked or an individual node is locked. Work on the network can either be
distributed evenly in a predefined way, which does not require synchronization, or it
can be dynamically partitioned into workunits. Workunits can be collected in a pool
from which processes pick up the next available piece of work. [n the latter case
synchronization overhead is incurred. The choice of workunit size is influenced by
the synchronization overhead and the variance and mean of the work demands of a
workunit.

5.3. Experiments with HARPY on Cms

Most.of the experiments were performed on pre-recorded data. This data
consisted of three phrases which correspond to approximately 6 seconds of
speech. The fastest recognition of the speech achieved tp date was 6.6 seconds
or 1.2 times real time. In that case 6 slave processes were used; code, stack and
private semaphores were local, and the unit of work were the best candidate nodes
of the search through the network.

5.3.1 Speed-up with Multipte Pracessors

The following speed-up factors have been achieved on an 8 processor
system (6 slave Pcs, 1 master Pc, and 1 utility Pc):

of slaves speed-up factor
1

1,87
2,64
3,17
3,44
3,60

27-Jun-77 HARPY 59

An experiment on C.mmp - another multipracessor at CMU ~ showed that the
number of processors the HARPY algorithm can effectively use (i.e., can get more
speed-up with) is bounded above by 7. Hence, increasing the number of processors
beyond 8 or 10 will not improve HARPY's performance on Cm* unless the algorithm is
changed.

5.3.2 Memory Distribution

An active HARPY slave process has the following' memory reference
distribution: j

14% . Global data of the network
8-10% Stack references
2% Kmap operations
74-767% Code references

An experiment was performed in which a comparison was made batween the
performance of a siave process executing remotely (l.e., fetching instructions from
another Cm's memory) and the performance of a locally executing siave process.
This experiment showed a factor of 2.5 difference in performance between the two
cases, which corresponds to the variation in access time to the different levels of

. the memory hierarchy.

It is desirable to execute code in the local memory of a processor. The
locality of the stack also has a strong influence on the performance of the program
as can be seen in Fig. 4. The improvement in speed over accessing the stack
remotely is about 12%. This figure can be even higher if the locality of the stack
changes the memory reference pattern such that the Kmap becomes unsaturated.
5.3.3 Workload Distribution

The following HARPY experiment was performed. The experiment was divided
into three perts; each time HARPY used two slave processes. The processes were
arranged so that: :

i Both were executing remotely.

ii. One was executing locally and the other remotely.

liil. Both were executing locally.

e e ¥ —p——————

60 HARPY 27-Jun-77

The results of the experiment show the sensitivity of the algorithm to the
speed variance of the different processors. It turned out that in the second case
the performance lies between the values for the first and third cases. This Is
because part of the workload is distributed evenly, thus the slower processor was
slowing down the faster processor at the synchronization points (the slave
processes are synchronized 50 times per second of speech or 25 times for one real
time second). :

5.3.4 Synchronization and Cooperation

The Kmap supported operation decrword, which decrements a variable down
to O and returns the old value of the variable, is a useful facility for implementing
synchronization. For example for a set of processes to simultaneously push or
simultaneously pop elements to or from a shared stack, the synchronization on the
stack is embedded in the decrword operation on the stack pointer.

However using the Kmap to implement private semaphores is not
recommended; A process busy waiting on a semaphore makes frequent references
through the Kmap. Busy waiting on a local memory location is a better solution (see
Fig. 2).

To guarantee exclusive access to a shared data structure, j.e., in order to
update a node in the network, locks associated with the network must to be
introduced. The unit of data to be locked can be the entire network, part of the -
network, or a node. A lock on the entire network causes slaves to queue up on the
lock. The situation is improved by locking individual nodes (see Fig. 3). The latter
scheme naturally increases HARPY's space overhead.

5.4. HARPY on CMU computers

The performance of HARPY with the desk calculator task on different
machines at CMU is depicted in Fig. 1.

The C.mmp version of HARPY with one process, running on a PDP11/40, is
slightly slower than the UNIX version on a PDP11/40. However with two processes
it can run faster than real time. With more than seven processes no further speed-
up can be obtained. This is inherent to the small network of the desk calculator
task.

As expected, HARPY on Cm* is slower than HARPY on C.mmp. They differ in

27-Jun~-77 HARPY 61

performance by a factor of 2.5, even though the basic processor speeds of the
PDP11/40 and the LSi-11 differ by a factor of 3. The better performance of HARPY

on C.mmp is mostly due to the more efficient implementation of synchronization
mechanisms.

5.5. References

[1] B. Lowerre, "The HARPY Speech Recognition System", Ph. D. Thesis, CMU,
April 1976

et 7 m— crag s ———————————————— T S —————— —_— =

62 HARPY 27-Jdun-77

Fig.1 HARPY on CMU computers
DESCAL Task

elapsed time x real time

40

3.8 2

S

2.5 -

20 L.

(PDP-10 /KA10)

__ .
R AR NS . - a8 L

(real time)
.. 5 o 98 1
i, 3

Sde
OVﬁb
~ -

rocesses

——————— . o ——

63

8unoo yiomieN €914

$10ss8>0.4d jo »

sasoydewas 8jeatid 2914

$405$8%04d JO #

HARPY

27-Jun-77

g 1%

>

Z 9 °] 14 € [4
S
-9
01
FO1 g
®
5
@ -Gl
o
o
3
o
£ ek
02
4
-GS
%20| BPOU YHIOM|BU + aioydewas 0| +
%20} yiomjau 1eqo|3 o aioydewas dewy o
-G2 -0t

SPUO23s Ul swiy

64

time in seconds

30-1
251
20-
154
10

54

HARPY

a stack mapped
+ stack local

—

T " T

2 3 4
of processors

FIG.4 Locality of Stack

el e e e — g ———

27-Jun-77

27-Jun-77 Algol 68 on Cm* 65

6. Aigol 68 on Cmx

6.1. Investigators

Peter Hibbard, Andy Hisgen, Tom Rodeheffer (with assistance gratefully
received from Paul Knueven and Bruce Leverett).

6.2. Introduction

The programming language Algol 68 is being implemented on Cm* for the
following reasons:

o To provide a language for general purpose programming applications and for
software experiments;

o To study the performance of a technique for decomposing programs
automatically to execute concurrently on several processors, and to study
the suitability of the Cm* architecture for this technique.

6.3. Algol 68

The language we are Implementing is a semantically rich subset of Algol 68.
The subset has official recognition by the International Federation for Information
Processing. It has been derived from full Algol 88 by the omission of infrequentiy
used facilities, and by restrictions to simplify compilation; however, it remains
somewhat more powerful than PL/l. In order to take advantage of the parallel’
architectures on which it runs, the official subset has been extended by including
several methods of specifying concurrent execution and synchronisation of
subtasks [1]. ;

6.4. C.mmp Implementation

An implementation of subset Algol 68 has been running on C.mmp for about 18
months. |t comprises:

66

Algol 68 on Cm* 27-Jdun-77

A single-pass compiler. This is written in a common subset of Bliss/10 and
Bliss/11, and thus may be used as a cross~compiler on the PDP10. [t runs on
a single processor, and in the PDP11 version occupies about 20K words of
code.

A run-time support system. This provides the standard functions, /0
routines and the primitives for scheduling and synchronising concurrent
subtasks. _ : '

A linker (still being written). it will also act as a cross-linker from the POP10

to the PDP11.

Extensive measurements of the performance of the run-time system liave

been made [2].

6.5. Cmx Implementation

The project of bringing up the Cm* version has been split into five phases:
The installation of the C.mmp run-time system on Cm*, operating on top of a
small kernel, and driven by the PDP10 cross-compiler;

The evaluation of the performance of the system, and its comparison to the
C.mmp version;

The installation of a number of modifications, mainly Into the run-time system,
to support the automatic decomposition of sequential tasks into concurrent
subtasks; .

The evaluation of the performance and effectiveness of these modifications,
with a view to incorporating some of them Into Kmap microcode;

The installation of the compiler for the resulting system on Cm*.

The first two of these tasks have been completed, and the second two are

" now in progress. At some stage in the evaluation a compiler wiill be installed for
general programming use.

27-Jun-77 Algol 68 an Cm* 67

In the following sections we describe the functions of the kernel, give the
measurements which have been made on the basic run-time system and describe
the modifications which are being made.

6.6. The Kernel

In order to avoid interference from operating system overheads while
collecting performance statistics, the run-time system runs upon a small, special-
purpose kernel, which provides basic support for interrupt and 1/0 handling, segment
allocation and swapping, bootstrapping and the coliecting of performance statistics.
Only very minor modifications to the run~time system executing on C.mmp have been
required to get it to execute above this kernel, and similar minor modifications will
be required to get it to execute above the Cm* Operating System.

6.7. Performance of the Basic Run-time System on Cm»

Measurements of the locality of memory references for several Algol 68
programs show that 80-85% of the references are to local memory, a reasonably
high figure considering that no efforts need be taken by the programmer to achieve
this, and the compiier has no knowlédge of the mapping properties of the Cm~*
architecture. Measurements have also been made on several programs which make
use of the parallel processing facilities of Algol 68. The speed-up obtained for
polyevent, a program’which manipulates branching data sfructures, executing on
several processors is given in Figure 2 of the Introduction.

6.8. Automatic Decomposition of Sequential Programs

As in other languages, the parallel processing facilities in Algol 68 require the
explicit decomposition of a program into relatively large-grain subtasks, and their
explicit synchonisation using semaphores. Whilst some advances have bheen made
in simplifying this decomposition, it still remains the case that much potential small-
grain parallelism cannot be exploited due to the lack of language features to
support it. On Cm*, with relatively low~power processing units, the importance of
obtaining large degrees of parallelism is high.

The modifications which are being studied to provide for automatic
decomposition into small-grain subtasks comprise a software implementation of
multiple parallel instruction pipelines, in which the instructions are the primitive
actions of the A!gol 68 run-time system (e.g. floating point operations, array

e e AP——— _—

68 Algol 68 on Cm”* 27-Jun-77

indexing and other vector operations and assignments of large values). These
actions are executed by "slave" processors on behaif of the "master" processor
which is placing the actions in the pipeline. The overall control of the pipeline is
distributed throughout all the processors, and processors may alter their designation
according to the load.

Investigations of this system which are in progress include
o Measurements of the performance of the system as a furction of several
parameters, such as the number of actions in the pipe'ine, the degree of

interdependency of the actions and the critical section overheads;

(o] Assessment of the improvements to be expected by encoding certain of the
actions which maintain the pipeline in Kmap microcode;

(o] Design of appropriate data-structures and the run-time routines which
manipulate them;

o The measurement of the performance of the system when used with practical
algorithms.

Several of the resulits which have been obtained are tabulated below.

27=-Jun-77 Algol 68 on Cm* : 68

Tables

The tables show the speed-up obtained by operation pipelining in the Algol
68 run-time system, and the percentage of the time that the queue of operations in
the pipeline is locked for synchronisation. In order to determine the effects of the
pipelining overheads on processor utilisation, the relative cost of pipeline operations
tc floating point operations was varied. This was done by keeping the pipeline
costs fixed and slowing the floating point operations by factors of 1 (no delay), 2, 4
and 10. The high percentage of the time that the queue Is locked shows that slave
dispatching then becomes the principle overhead. Some distortion of the time the
queue was locked for small numbers of slaves occurs due to the perturbations
caused by the sampler which was collecting the statistics; the perturbations have
insignificant effects on the execution times. These preliminary results indicate that
a five-fold speed-up might be expected if the plpeimlng overheads can be reduced
by rewriting them in Kmap microcode.

Speedup of Sequential Romberg Intagr;ation

number of processors 1 2 3 4
effective processors - 1.00 1.81 199 1.86
% time queue locked 1 27 48 49

Speedup of Fast Foprier Transform (inner loops)

Standard floating-point cperation cost

number of processors 1 R 3 4
effective processors 1.00 1.84 1.78 1.72

% time queue locked 10 24 12 24
Twice cost for floating-point operations
number of processors ¥ 2 3 4

effective processors 1.00 1.88 2.52 235
% time queue locked 26 23 14 50

Four times cost for floating-point operations
number of processors 1 2 a3 4 5 6 7

effective processors 100 192 260 327 335 3.20 3.24
% time queue locked 26 27 38 a7 88 82 65

70 ‘ Algol 68 on Cm* 27-Jun-77

Ten times cost for floating point operations

number of processors 1 2 3 4 5 8 " 4

effective processors 1.00 1.95 290 365 426 4.48 4.35

% time queue locked 27 0019 AR B4 W 53
References

[1] Peter Hibbard, Parallel Processing Facilities, New Directions in Algorithmic
Languages, IRIA, 1976.

[2] Peter Hibbard, Paul Knueven, Bruce Leverett, A Stackless Run-time
Implementation Scheme, Fourth International Corference on the Design and
Implementation of Algorithmic Languages, Courant Institute, 1977.

27-Jun-77 Dynamic Reconfiguration 71

7. Dynamic Reconfiguration

1. Durham

7.1. Current Status

Dynamic Reconfiguration is divided into two parts: Dynamic Recovery of
system elements and Dynamic Removal of system elements. Subject to the
restrictions described in the outline below, Dynamic Recovery is compiete and
operational. Dynamic Removal of system elements is partially designed. Dynamic
Recovery is routinely executed as part of system initialisation. Loading the
operating system consists of bringing up a single Cm and dynamically reconfiguring
im the remainder of the Cms in the Cluster. :

7.2. Dynamic Recovery Facilities

Dynamic Recovery provides for recovering an entire cluster, individual Cms,
individual Mps of Cms, and individual Pcs of Cms. Recovery of a system element
means that the resource provided by the element becomes available.for use by the
system.

Cluster recovery invoives a single cluster. The first module in any cluster
must be specially initialised hefore it can execute Cluster Recovery. Cluster
Recovery involves attempting to recover each additional Cm in the cluster. It is
possible to specify a subset of Cms ta be ignored during cluster recovery.

individual Cm recovery first checks that the Slocal for the Cm responds to
.references. If it does respond, then both the Pc and Siocal are initialised (brought
into a known, dormant state). The Cm's Mp is recovered first and then the Pc is
recovered.

Recovering Mp involves creating the Local Mp Manager's data structures,
sizing memory, and initialising the Cm's local BitString (which is used to record
allocation of blocks of physical memory). The Local Mp Manager's structures are
then linked in as one more element in the distributed Cluster Mp Management data
structure.

To recover a Pc means to set up all of the Cm's private structures that are
used by the Operating System and uniquely associate them with this Pc. The PCL

e —

e T —————— S

e

;s Dynamic Reconfiguration 27-Jun-77

(Primary Capability List) Is created first and capabilities for existing operating
system data structures are copied into it. Then other segments used by the Cm are
created; these include the Control Stack, Control Stack interrupt vectors, and
Slocal segment,

Dynamic Recovery has been used to recover a Cm into an already running
cluster.

7.3. Qverview of Initialisation

An over-simplification of system initialisation would be to say that all Cms in
all clusters are recovered. More specifically, the strategy is that the first Cm in
each cluster is individually initialised. Once initialised, this first Cm executes Cluster
Recovery to bring up the other Cms in the cluster. The very first Cm in the world Is
special in that during its initialisation certain system-wide data structures are
created. In particular, the Segment Directory is created and initialised.

Initialising (Recovering) clusters other than the first {nvolves three stages:

(1)Locating a Cm in the remote cluster which is capable of performing
initialisation,

(2) Depositing 'first Cm' initialisation code into it and starting it, and

(3) Recovering all other Cms in the remote cluster. This last stage is identical to

that performed in the very first cluster, since Cluster Recgovery operates only
on the 'local' cluster.

27-Jun-77 ~ Cm* Host System 73

8. Cmx Host System

D. Scelza

8.1. Introduction

This report gives a brief description of the Cm* Host System. A brief outline
of both the software and hardware is provided. The Cm* Host System provides all
communication with the Cm* machine at this time. In this role the Host System is a
most valuable tool.

8.2. Overview

The Cm* Host is a line oriented system. Its primary function is to facilitate
intercommunication between a large number of serial lines. Lines, both those that
connect to terminals and those that cannect to other computers, are treated in a
uniform manner.

The uniform treatment of these lines means that a terminal can look just like
a Computer Module and, more importantly, a Computer Module can look just like a
terminal.

8.3. Use

The primary use of the Cm* Host System is for the control of Computer
Modules. A user can log into the Host and assign resources to be used. These
resources generally include one or more Computer Modules. After a user has
assigned resources he can have the Host execute commands that let him
comm nicate with these resources. He can be put into a direct cross-patch mode
with his assigned resource. This gives him the ability to talk to his Computer Module
just as if his terminal were directly connected to that module. The user can also
load programs into his Computer Modules. The loading can be done from either the
DECtape or from the PDP-10. As long as a user is logged in and has resources
assigned no one can interfere with his use of those resources. When a user logs
off of the Host all of the resources that he had assigned are then free to be used
by other users.

74 : Cm* Host System 27-Jun-77

8.4. Hardware
The 'Cm* Host System runs on a Digital Equipment Corporation PDP-11/10.
The PDP-11/10 is equipped with 28K of core memory and numerous peripherals
devices. These devices include:
a) A DECtape controller with four DECtape drives.
b) A DJ11 16 line serial line multiplexer.
c) 2 DR11-C paraliel interfaces.

d) Three local terminals.

e) A host link to the C-MU Front End. (This is a multiplexed line along which
there can be any number of virtual terminals.)

f) A terminal link to the C-MU Front End.

8.5. Software

The Cm* Host System consists of ahout 16K of BLISS-11 code which runs on
the PDP-11/10 along with a small amount of support software which runs on the
PDP-10's.

8.6. Example

The two figures below give an example of the use of the Host. The diagram
of the Cm* system (Fig. 1) has been annotated to correspond to the system status
report (Fig. 2). We see that there are four jobs logged into the Host. Three of
these jobs are on terminals (jobs 1,2, and 3), while the fourth job is logged in from a
Computer Module. The diagrams also show that the jobs 1,2, and 3 have each been
allocated a set of resources that only they can access.

T B

n
~N
161 Bunf SR D e
uone.nSiyuoy) walsAg xwo duwp > :
: 0/01-dad !
8/01-d0d M. 34 ;
v/01-d0d NIND e B
> IIIﬁHU_an.
uoyj28uuo) 34 _
204d 1]
4 1820(S 43D ﬁ 01/11-d0d P qor
A0SS32044 SHO oo
pue Euﬂuwomu uny p 1SOH *Ww?) L 1o e 11-1S1 uo p383807
2 uod8uL0D §93.ig JeH VMH‘ R ' SO *w)
o auln |euss » " 138|134 13)3d
2 —{D \ g aor
- 1]]
m 89 108}y < g/01-d0d UnPuIS daspe.d e ﬂ..va 0/01-d0d
x S i fRan gt H:culuundng. AR W R e,
rmV el .4..U 21 “..U 1wy o1w) Sw) ywd gw) cuy 143 owd
Joy1uopy
sng deyy
dewy SYOO0H dewy dewy S300H
_|VA 0/01-d0d _wva a/01-dad

27-Jun-77

76 Cm* Host System 27-Jun-77

sy
Status of Cm* HOST Version 1.7
Urtime? 9:¢17:5

Job Who Where Talk Lines asssidned
1 Fradeer Sindhu TIY 3 Cii4d CHMS Cii4 HKS2
2 Aldol 68 FEA4 HOST Cii13 Cr12 Cci11

CM10
3 Feter Feiler FE42 Cit0 HKS1 Ci10 CM3
CM2 Ciil

4 Cm¥ Kernel Versian 1.0 CM1 HOST
Line Owner Job Ture Index OR11C Mode

CONSOLE ASLI O None Master

TTY1 ASLI 1 None Masler

TEYZ2 ASLIT 2 Norne Masler

FIOF10 ASLI 3 Nane Slave

UMF nJ11 O~ ¢ None Slave

CM14 nJii 0~ 1 Nane Slave

HKS1 3 nDJit 0~ 2 None Slave

CMé DJii 0~ 3 None Slave

CM13 2 nJ11 0- 4 0- 0 Slave

Cnio 2 DIl L 0= 0 0= 2 Slave

CcH11 2 nJi1 O= & 31~ 3 Slave

EFRYS ! nJit 0- 7 Nane Master

CHo 3 nJit 0-10 1- 2 Slave

Cris 1 nJii O=11 P~ 1 Slave

HIKS2 1 DJii 0=12 None Slave

CM12 2 ODJti 0-13 - 4 Slave

CHa o nJi1 0-14 0- 3 Slave

CM3 3 nJi11 Q=15 3= 1 Slave

CM2 3 b1l 0-16 1~ 4 S5lave

Cr1 3 4 nJit Q=37 1=0 Mestler

FES P J None Master

FEA2 3 FE 42 None Masier

FE4 2 FE 4 None Masler

Fig. 2.

27-Jun-77 Reliability and the Auto-diagnostic Vil

9. Reliability and the Auto-diagnostic

H. Bellis

Experimental systems typically have poor reliability and it was initially feared
that Cm*, with its many varied components, might be especially unstable during its
period of development. In an attempt to monitor the frequencies of transient errors
and to detect hard errors as soon as-possible, an automatic diagnostic system (the
Auto~diagnostic), has been developed.

The Auto-diagnostic program resides in one of the moduies of the Cm*
system. After requesting the time and date from an operator, the Auto-diagnostic
logs into the Cm* Host and assigns any Cms which are currently free (i.e., not
assigned to any other user logged into the Host). (See Section 8.) The Auto-
diagnostic will return Cms to the Host when so requested by a user.

The Auto-diagnostic loads a standard diagnostic program, from the Host's
DECtapes, into each module. When the diagnostic has completed a run in a module,
the Auto-diagnostic replaces it with the next diagnostic in the testing sequence.
This sequence currently consists of four diagnostics:

- A memory diagnostic. (DEC's standard DZKMA far LSI-11*s).
ii. An instruction set diagnostic. (DEC's standard DVKAA for LSI-11's).
iii. An interrupt and trap diagnostic. (DEC's standard DVKAD for LSI-11's).

iv. An Slocal diagnostic.

The Auto-diagnostic monitors the output of the Cms it is testing and produces
a statistical error report for each Cm. The engineer can examine this report each
morning to determine which modules are in need of attention.

The Auto-diagnostic is run whenever there are free Cms which may be
tested. (In the future, the Host may be updated to automatically load the Auto-
diagnostic whenever possible.)

78 Reliability and the Auto-diagnostic 27-Jun-77

The statistics gathered during that past few months (i.e., since the Auto-
diagnostic has been operational) are summarized below.2

Transient Errors

7-May-77 to 2-Jul-77

Memory Inst.Set Traps Slocal Total HH:MM MTBF
CmO 14 0 1 (o] 15 162:41 10:51
Ccmi1 2 0 0 1 3 188:18 62:46
Cm2 1 4 4 4 13 ’209:45‘ " 16:08
Cm3 (0] 0 o] 4 4 208:27 52:07
Cmd 0 0 0 1 T "157:85 15709
Cm5 0 4 0 1 5 149:52 29:58
Cmi10 0 2 0 1 3 160:12 53:24
Cm11 8 0 0 0 8 207:13 25:54
Cmi2 4 0 1 0 5 218:23 43:41
Cm13 1 0 3 (0] 4 . 102:15 29:31

Total: 30 10 9 e 61 1765:01 28:56

2 These statistics are preliminary and should not be taken as an indication of the reliability of a fully stabalized
system. Further data collection and analysis are required.

D e ———

