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Introduction tp the Cm5 Review
S.H. Fuller and A.K. Jones

The Cm5 project has been In progress almost exactly two years. The
present review Is Intended to critically exam1n~ our progress to date and evaluate
our plans for the future of Cm5. We V will not review V th~~ architecture, hardware
Implementation, or operating system designs In this report The Cm5 hardware and
software designs were described In a session at NCC’77 (1,2,3). ThIs report
contains a description of 

V
the measurement and evaluation studies conducted in the

spring of 1977. Some of the data Included here is preliminary. However, given the
dearth of quantitative knowledge about multiple processor systems, we wanted to
evaluate Cm5 as early in its development cycle as possible to detect and correct
flaws in our design and understanding of this experimental multiprocessor. We have
made an effort to describe the present state of Cm5 and tabulate all of our current V

measurements so a diligent reader can study and evaluate for himself our recent
results. 

V

• 

V

The ten processor V
corIfIgurattorI of Cm 5 shown in FIgure 1 is operational, and

was the system from which the measurement s described here were collected. In
V addition, a kernel operating system is also running on Cm5 to provide the essential

services for the larger application programs described later No hardware-software
system can be evaluated in isolation, and the following it ppllcation programs have
been used In our review of the prototype Cm5 system:

1. An esynchronou3 algorithm for the solution of partial dIfferential equations
2. Quicksort V V V 

V 
V

3. Set partitioning via integer programming (e.g.. the &rllne crew scheduling
problem) V 

V 
V 

V 
V

4. HARPY speech recognition system V V

5. Algol 88 runtime system (with facilities for ~~ma automatic detection and
executIon of concurrent operations) V 

V 

V

V Figure 2 shows the average speedups measured on Cm5 V as a function 0f the
number of processors allocated to the task. These results are very encouraging.
Some curves do not approach linear speedup This does not exhibit any Inherent
limitation of Cm5; rather It illustrates inefficiencies In the slgorithmi being used.

V Sections 4, 5, and 8 of this report go Into much more detail on the measurement and
evaluation of thüse benchmark programs. Analysi. of these programs Indicates that

V the first order characteristics of their behavior can be V understood from
measurements of their memory access patterns and the following average times
between successive memory references within Cm5 (rounded to the nearest
microsecond): V

-~~ * V V  .~~V V . V V V~~_ V V VV ~ ~~~~~~~~~ :V V V . V V~~~~
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Time between local memory references V 3 microseconds
Time between Inter-Cm (same cluster) references’ V~ V 9 mIcroseconds
Time between interciuster references V V 

V V 26 microseconds V

V For appiicatlon.i to make cost-effective use of Cm5, they must make most
V memory references to local memory. V For the programs we have , measured, the hit

ratios are: V 

V V V V 

V 
V

POE’s 9Vr~c, 
V

Qulcksort 90% V V

Integer programming 98%
HARPY V 

, 87% , V

V Algol 68 
V 

V 82% 
V

Several operating system primitives that we expect to be used heavily have
been implemented in Kmap microcode. The execution times for V

SOrne of V these areV
QIven below. (The approximate number of typical LSI-1 1 instructions which could be
executed In the same amount of time are lndicated Ln parentheses.)

Make segment addressable: V 

V 

23 to 29 microseconds (4 Instructions)
Synchronization primitive: V 40 to 80 microseconds (6-12 Instructions)
Transfer, Copy or Delete capabilIty: 40 to 120 microseconds (8-18 Instructions)

The operating system report (SectIon 3) also indicates those software
Implemented operations that we expect wIH be V executed’ frequently. V The
interprocess communication operations, Send and Receive, currently perform below
expectations becau;e they dg not yet have the microcode support originally
planned. Consequently, other operating system operations such as process
dispatching, which rely on Send and Receive are slower than desired. in the near
future we expect • to reexamine the software/microcode tradeoffs In these
operations and find ~*ya to Improve their operatIon~ V 

-

Our past experience with constructing and debugging large hardware arid
software systems caused us to pay partIcular attention to providing effective
development aids and monitoring the reliability of the system. V The availability of a
Cm’ simulator running on C.mmp permitted us to . debug the operating system
software before the hardware V and firmware were usable by the software group. V
The Host computer along with the Hooks processors, provided support essential to V

the rapid development of Cm5. Section 8 documents the results of an automatic
diagnostIc system that ran VOfl Cm’ during the last several months when it was not

— V —. ~~~V_V 
VV — V~~_~~~ ~~~~ - VV__  V~

_
~ ~~___V 

~~~~~~~~~~~~~~~~ .__ V
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otherwise In use. The diagnostic system helped tO and identify faulty and marginal
components. SignIficantly, hardware availability has not been a bottleneck during
the Spring evaluation of Cm’. Moreover , the hardware was regularly pa4-titloned to
etlow multiple user groups simultaneous access to private clusters within Cm’. V

At the inception of the CmL protect , there existed serious questions as to V
V the effectiveness of the Map and Linc bus schemes and the ability to effectively

program Cm’. Our evaluation of the hardware and software system structure of Cm’
during these past few months Indicates that our basic design and implementation l.a
sound. The areas that need further V

V evaluation, expansion, V and possible
V relmpler~entation before constructing and programming a larger Cm’ cpnfiguratlon
are:

A. Reexamine the addressing architecture for simpilf(cations.
B. Review new hardware components for use In more cost-effective Cm’

implementations. - V

C. Consider extension of Map Bus to allow mot e Cm’s per cluster.
0. Review the interciuster communication protocol.
E. Determine how best to employ K.map microcode to support software systems.
F. Add mechanisms to the’ operating system to support Multi-cluster

configurations V V

G. Determine the minimum amount of code that must be duplicated in each Cm
while maximizing the local memory hit ratio.

V We are encouraged by the results from our evaluation of the initial Cm’
system. The difficulties and shortcomings that have been uncovered are wIthin our
original expectations. Studies are now in progress within the Cm’ group on how to

V Improve the existing Cm’ design, identIfy the research problems essoclated with
much larger Cm’ systems, how to apply Cm’ to one ot several major applications,
and to determine the effect of various component failures and to suitably adapt the
system to permit continued processing. V

V r~. . • V V • 
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1. Hardware ‘Status and Performance of Cm* V

R. Swan V

This report provides a brief , basic set of information about the hardware
status and performance of the InitIal stage of the Cm’ project. Figure 1, of the

V introduction, shows the overall system confIguration. In additIon to the present
structure of Cm’, It shows the hardware provided for support and development. The
complete set of hardware components available is listed In Table 1. A time-line of
significant milestones in the Cm’ project is shown In FIgure 1. It indicates that -
approximately two years were required to reach the present fully operational status
of a three cluster, ten processor system. 

V 
V

1.1. Basic Timings 
V 

V

The simplest unit for representing the performance of Cm’ is total memory
references per second. For POP-i is, executing compiled BLISS-i 1 programs
(Harpy, PDE and Quick Sort benchmarks),. there are approximately 1.7 memory
references per instructIon. For a simple, synthetic program., the measured period
between references to local memory was 2.9 microseconds. This corresponds to a
memory reference rate of 348 KHz or about 0.20 MIPS (Millions of Instructions Per
Second). Thus a ten processor Cm’ system, where all memory references are local,
is capable of providing up to a totalVof 2 MIPS. The following section provides some
basic - timing informatIon ~~~

‘ which shows how performance degrades when non-local
(i.e. mapped) references are made under various conditions.

When a processor generates an address it may refer to kical memory ( the
primary memory associated with that computer module) or It may ~a passed , via the
Kmap, to the local memory o? another processor within the cIuste~ or passed over an
interciuster bus to another cluster. Local memory references occur at the full rate
of a stand alone LSI-1 1. Mapped references incur a delay through the switching

1 Unless ipecif icaH y sta t ed, all timings apply to the simple vCrsion of the miorocode. Th.r. are presently two
ve rs ions of the Kmep microcodet a simple version which provides the basic address mapping necessary to access
the memory of any process or in the system. The second version implements a s.gm.nt. d addressing sche me with V

capability based prot ection. S.. sect ion 2 below. For a •imple mapped reference with th. full capability based
microcode add 0.46 us to the times giv.n. V

_ _ _V - - ~~~~~~ - - V~~~~ V -~~ V ~~~~~~~~~~~~~~ - V
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structure. A detailed timing diagram for a single Intractuster , mapped reference is
shown in Figure 2. FIgure 3 shows the various stages of an interciuster reference.
From these two fIgures we see the following basic timings for -memory references
(with no contention from other processors): - 

- V

Time between references to local memory Is 2.9 - 4.0 usec. (This is strictly a
function of the LSI-i 1 processor , and depends on the instruction mix) V

Time between references to other memory in the same cluster Is 9.3 usecs

Time between references to memory In another cluster Is 28 usecs.

Because of this wide range in accessing time for primary memory, the V

performance of Cm’ depends strongly on the relative frequency of accesses to the
different levels of memory. - V

1.2. Contention and Saturation Levels V

The overall performance of a a Cm’ cluster depends primarily on the
percentage of references to local memory made by each processor. For the
applications presently running on Cm’ the ‘hit ratio’ to local memory is in the range
857. - 957. (see later sections of-this report for details). Cluster performance is
also effected by contention for V

t hQ Map Bus and Kmap address mapping mechanisms
and contention for shared memory. The graph V In Figure 4 shows the approximate
effective power of each processor for various hit ratios under a variety of
conditions. The X axis is the hit ratio to local memory. An 80% hit ratio Indicates V
that out of ten references, eight are to the local memory of the processor and two
are two the local memory of another processor in the cluster. The V axis indicates
the performance of a processor , under the conditions specified, relative to a stand
alone LSI-1 I. The plot for a single Cm indicates the degradation In performanc e
strictly as a consequence of the delay in accessing non-local memory. For exanrple,
for a 90% hit ratio a processor has the effective power of 0.85 of a stand alone
181-il. The plot for 8 Cms (nO . memory contention) shows the influence of
contention for the Map Bus and Kmap. This contention has VOflIY a small effect on

V perlormance with 8 Cms. With a hit ratio of 90% the additional degradation Is about
4%. For a hit ratio of 50%

V
the additional degradation is about 7%. The third plot

represents the case of 8 processors sharing a non-local data structure, which
resides in a single Cm. For low hit ratios (frequent references to shared data)
memory contention severely degrades-performance. WIth 8 Cms the shared memory V

- is close to saturation for hit ratios below 85%. However, at a 90% hit ratio, memory
contention has reduced performance by less than an additional 2%. V

-_ _ - -~~ VV V*V -- - V~~~~~~~~-~~~~~~ -
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Table 2 lIsts overall cluster performance both as a function of the number of
V 

Cms and the hit ratio to local memory. As with Figure 4, the effect of aharhg non-
V local memory is also shown. For example, the table shows that 6 Cms , with an 85%

hit ratio, are equivalent to 4.6 LSI-1 is when the non-local data is shared and 4.7
LSI-1 is if there is no memory contention. The overall conclusion from these
measurements is that an 8 Cm cluster, operating in the anticipated region of an 85%
- 95% hit ratio, executes Instructions at the same rate as 5.7 to 7.2 individual LSI-
u s .  V

These measurements were obtained using small synthetic programs.. Later
sections of this report present similar data based on measurements of application
programs. An important aspect of the hardware performance is the maximum
capacity of various components. The saturation levels may be summarized as
follows:

Processor’s normal reference rate to local memory 
. V 

348 KHz

Maximum total memory reference rate over the Map Bus - 500 KHz

Maximum mapped reference rate to same memory 
V 

- 250 KHz

1.3. Measurement Tools

A small set of simple performance evaluation tools were developed to provide
the measurements presented In this: and other reports. TheV tools Include:

1. Map Bus Monitor . This Is a simple display which gives access to control
informatIon and data passed over the Map Bus. Any specific event can be
detected by masking against a ~et of switches corresponding to eact~ Map
Bus signal. Information gathered Is latched in a set of lights for inspection by -

a programmer or engineer and a match signal Is fed to an external -frequency
mater for counting and averagIng. 

- 

V 

- 
V

2. Microcode Analysis. A standard logic analyzer Is connected to the internal
microinstruction address lines of the Pmap. The match signal from the
analyzer is connected to an external frequency meter. This technique allows
counts of the frequency of Invocation of various Kmap operations, for
example: simple mappings, load segment, copy capability, increment
semaphore, etc. - 

V

-~~ 
V V ~

V
~~~

V — V - 
~~~ V —
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3. Measurements within a single Computer Module. Frequency meters were
connected to important signals generated by the processor and other
components of a. Cm. For example, local memory hit ratios are determined by
measuring the overall memory reference rate of a processor and comparing it
with the mapped memory reference rate, measured using the Map Bus
Monitor. V V

Table 1 V -

Hardware Components of ~~~~ V

Host System

pop-li /ia V 
V V V

28K Memory. V 
V

Hardware Bootstrap. V
4 DECtape drives. V 

- 
V V 

V

DJ1 1/18-Serial Line Unit (SLU) Multiplexer connected to LSI-1 is and local
terminal. V

4 SLUs: 2 connected to the Front End & 2 for local termInals. V

2 DR1 1-Cs: Halt, Reset etc. for Computer Modules. V

- V Computer Modules V

Modified 181-i 1 Processor.- 
V

Slocai. Provides local relocation, Map bus Interface etc.
Memory Refresh and LSI-Bus Terminator. V 

-

Serial LIne Unit (SLU). For communIcation with the Host. V V

V Power Board. Power connections, initialization etc. -. V - V -

Memory. 4 - 28K words. Capability for 124K words. . -

Parity Board (under development.) V

V ~~~V ~~~~~~~~~~~ V - V ____________________________-
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Computer Modules Available V

2 with 24K words of memory.
8 with 28K words of memory.

V 
Kmaps (Central Mapping Controllers)

- V 
- 3 Avaiiable with: 

V 

-

Kbus. Map Bus- Controller and Pmap Dispatcher. 100 na cyole time.
Pmap. 150 na cycle time, microprogrammed processor
Data RAM. 5K x 18 bits fast mapping table storage
Writab le Control Stores: 2K x 80 bits -

- Linc. interciuster Bus Interface V

Hooks Processor Interface V V 

-

V Hooks ’ Processors V - .

2 Available, used for loading and controlling Kmape: V

LSI-1 1 Processor with 20K words of memory. 
- 

V

3 SLUs, direct communication to CMU-100 and Host -

- Hooks Pc #1 controls Kmap #1 -

Hooks Pc #2 controls Kmaps #2 and #3 
- 

-

— - -~~~~~~~~~~~~~ 
—

~~~~~~~~~ —
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2. Kmap Microprograms 
V

- J. Ousterhout V

A substantial amount of microcode has been written for the writable control
stores of the Kmaps. Development of microcode has proceeded along two
independent paths; the results presented In this review reflect both of the
vers;ons. The first version, referred to as the simple microcode, was produced in
order to supply the bare minimum facilities needed to allow processors to share a
single address space. No attempt was made to supply protection or elegance in
address space manipulation. This version has been operational for nine months and
has been used extensively by diagnostic programs and by Raskin ’s -benchmarks and
the Algol 68 system. The second version of- microcode supplies the full Cm’ virtual
memory structure to a sIngle-cluster system, complete with address space
management -and protection. This VM microcode has been in use for approximately
two months. -

2.1. The Simple Microcode V

The principal feature supplied by the simple microcode Is to allow each
processor to associate any 2048-word physical page In the system (Identified by
its cluster number , Cm number within the cluster , and high-order six bite of its base
address) with any page In Its virtual address space. AU references to the virtual
page are then mapped to the physical page , with the low-order twelve bits of the
processor address being concatenated to the page’s base address. All pages
contain 2048 words. . When a processor references a page residing in its local
memory it may select whether or not references tOV the page are to be made
directly through the Sioc& or mapped (for diagnostic and measurement purposes)
through the Kmap. - 

-

References to page 1 
~8 are always passed to the Kmap and are not mapped

V in the same way as the other virtual pages. The Kmap responds to fifteen word
addresses in this page, emulating a small memory which contaIns the relocation
tables for the processor (these locations are . called wIndow registers ). Page 1 7
references to locations other than the window registers are passed back to
physical page 1 7 of the processor that made the ref erence so that It maintains
access to all of Its input/output devices. Although each processor has access to
only Its own window registers It may address any physical page in the system
without restriction, thus the system is not a protected one.

_ -  V V V - - - -
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Because It Is not possible to perform non-local Indivisible read-modify-write
sequences the simple microcode implements a single lock that is global to the whole
cluster . Reads to address #1 77776 cause the value of an Internal location in the
Kma , to be returned and then set the value to sU ones. Writes to the location
overwrite Its value. More recently a major expansion of this microcode has been
completed which provides a substantially cleaner and more general semaphore
scheme; however the newer version was not available at the time measurements
were made for this review. 

- 
When multiple semaphores were required, the global

lock was-used to provide indivisibility while manipulating the multiple semaphores.

The simple microcode requires slightly less than 1 7010 words of control
store in its simplest single-cluster form, of which about 50 words are used for
initialization only. including .the expansions for muItI-c~uster service and more
adequate synchronization the simple microcode grew to a size of 505 words. The
breakdown of microinstruction usage is:

Function Performed - 
V instructions

Within-cluster references 11
Cross-cluster references - 91
Window register references V 

- 11
Within-cluster synchronization 68
Cross-cluster synchronization 88
Error handling V 

V 82
InitIalization - 

- 1 08
Page 1 7 decode and miscellaneous V 

48
Total - V V 505

Microcode tends to have a very high branching factor due to the number of
conditions being tested, so that typical microinstruction sequences are substantielly
shorter than the static number of instructions allocated to a particular function.
Sequences range from five microinstructions (at 150 nanoseconds per

- microinstruction) for a simple within-cluster mapped reference to a total of about 60
instructIons (for source and destination Kmaps cocubined) for an Interciuster

V synchronization. V 

- - 
- 

-

The simple mIcrocode uses only a small portion of the Kmap ’s high-speed
data store (which contains a total of 1024 records each with 5 16-bit words). 512
words are reserved for the window regIsters of each of the two address spaces
per Cm (up to 1 4 Cms per cluster), and 256 more words are used to hold internal
locks for synchronization operations. V -
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2.2. Virtual Memory Microcode - 

V

The VM microcode Implements the highly-protected end elegant addressing
architecture described In Cm’ publications t1-3 In introduction]. The verston
currently operational does this only for a single-cluster system and does not Include
message operations whose Implementation was originaly intended for the i(map.
However it does enforce environment boundaries and perform much of the work
involved in maintaining the Integrity ~f the Cm’ virtual address space.

Features of the VM microcode fail into three -rough categories. First ,
execution environments may make direct (i.e. read and write) references to two
different types of segments , where the references cause different actions for the
different segment types. Secondly, they may make indirect references to a variety
of segment types by writing the address of a parameter block into a special page
1 7 location monitored by the Kmap . Lastly they may invoke control operations which
change the virtual-to-physical address translation of an environment.

Two segment types may be referenced directly. Date segments may be read
end wrItten at will, and stack segments may be read and V

w Iitt en, but with the Kmap
maintaining an Invisible stack pointer and altering the actual address to be wr itten
or read in order to enforce a stack discipline (the segment appears as a sIn-gte
memory location which is the top element of a push-down stack ; reads cause
“pop ’s” and writes cause “pushes”). In addition to standard reads and writes the
Kmap provides for Indivisible increments and decrements of words in data segments.

Indirect references to segments are performed by passing to the Kmap (by
writing its address into a location in page 17) the address of a parameter block
containing the index of a capability and the description of an operation to be
performed on the associated segment . All of the opera-tions that may be invoked by
direct references may also be Invoked Indirectly (the difference being that In the
latter case the segment being referenced need not be loaded Into a window
register). Additionally several operations are defIned on capabIlity list segments
and directory segments (the latter contain -the descriptors for segments). These
may only be performed indirectly.

The third service provIded by the VM Microcode Is to Implement high-speed
and protected operations to change the system addressablllty. The first such
operation provided Is to allow environments to change the binding between their
virtual address space and physical memory by passing to the Krnap the Index of a
capability and the number of a virtual page wIth which the segment referred to by -
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the capability Is to be associated (this Is referred to as a wIndow register load).
The second group of operations allows the high-speed loading and dumping of the
Internal Kmap state associated wIth a running of an environment , in order to speed
up context swaps (state consists of the sixteen-bit values In each of the fifteen
window registers of the environment and eight words of error status).

When an external reference is made by an envFronment the Kmap must
access three items to map the reference: the window register , which contains the
index of the capability associated with the page be~ing referenced; the capability
named In the window, which Indicates the name of the segment being referenced
and a set of rights thereon; and the descriptor for the physical segment. Windows
are allocated statically, occupying 3 subwords of the first 512 records of the
Kmap ’s data store. Capabilities and descriptors reside principally- in main memory,
but are cached in the Kmap in order to provide greater speed in performing external
references. Records 512-1023 of the data store are used for cached capabilities
and descriptors (Intermixed) with either Item requiring a full five-word record for Its
cache entry. in addition subwords 3 of the first 256 records contain cache list
pointers. - 

V

To locate a cached entry 7 bits are extracted from the low-order portion of
the unique name for a capability or descriptor and used to look up a list pointer In
records 0-127 (for descriptors) or 128-255 (for capabilities). The pointer
Indicates the first element in a linked list of cache entries with the same low-order
bits. The high-order bits of the name of the desIred item are then compared with
the high-order bits of the names of each of the items In the list for a match. When
one cache element must be thrown out Iii order to create enough room to bring in
another , a pseudo-LRU scheme is used. In this method a use bIt Is kept for each
element and set whenever the element Is used. The throw-out routine scans the
cache , turning off use bits and throwing out the first element found that already had
its use bit turned off from a previous scan.

The use of a dynamically-allocated cache required the writing of a
substantial amount of microcode end Incurred a sizable execution time overhead,
but made possible a fairly substantial speedup in the time required for changing
addressability. A cache “miss ” when looking for a capability requires between tan
and fifteen microseconds (two main-memory references) to read In the capability,
assuming all of the InformatIon needed to locate the capability is already present in
the cache. A descriptor miss involves nearly twenty microseconds (three
references) In the best case. A worst case series of cache misses could require
22 main memory references (around 150 microseconds) before a window register
could be bound to a physical address. (The breakdown of this is as follows: two
descriptors , one for a directory and one for a capability list, in order to locate the
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primary capability for the window; then two more ~ascriptors after reading in the
primary capability to locate a secondary capabIlity; then a directory descriptor and
the actual segment descriptor)

The VM microcode requires 1515 10 microinstructions in its current form. A
rough breakdown of the- static control store allocation by function is as follows:

Function Performed Instructions
Descriptor cache manipulation 1 00
Capability cache manipulation 1 43
Window register manipulation 1 97
Direct data segment operations- 

V 
64

Direct stack segment operations 28
Page 1 7 decode and control registers V 1 39
Utilities for indirect operations 82
Indirect data segment operations 52
Directory operations 1 22
Capability operations - - V 

- . 268
State loading and duznpmg V 99
Error handling 1 23
initialization V 

53
Miscellaneous utilities 45
Total 1515

The dynamic microinstruction sequences are somewhat longer in the VM
microcode than for the simple microcode. The simplest mapping requ4tes 8
microinstructions; a typical window-register load causes the execution of about 80-
1 00 microinstructions; and a transfer capability operation involves 200-300
microinstructions. All of the above numbers assume a 100% cache hit ratio.

For the measurements reported later in the other sections of this report, the
full cache was not used; Its size was reduced to 32 io words.

--s- -- -
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3. Measurements of the Cm* Kernel/Machine 
V V

K. Schwans

3.1. Introduction -

In this section we present the initial performance measurements of those
Operating System functions we expect to be most frequently used. Before
explicating the measurements we will characterize the scenario in which they were
made.

The Operating System is distributed, i.e. there is no centralized control, there
are no master - slave relationships, and processors execute autonomously. Only a
few benchmark applications have been programmed to use the Operating System.
Consequently, we have relatively little experience with the way users will employ
the Operating System. However, we expect heavy use of certain functions. In
particular , we do know that the Operating System relies heavily on the capability
operations In terms of- which a process ’ addressing environment is defined. In this
initial evaluation we focus or the cost of individual operations involved in changing
the addressing environment ’ of a process, multiplexing a processor among
processes , synchronization, and interprocess communication. V

Cm* provides two media in which to implement an Operating System function:
software and Kmap microcode. To Invoke an operation Implemented in software
requires trapping to the kernel so that the operation can be executed In kernel
space, then returning to the user. In contrast , microcoded operations are invoked
through a special set of locations in each processor ’s, virtual address space.
Invocation and execution can be expected to be quite fast, because neither a
processor trap nor fetching of Instructions from main memory Is required to perform
the operation. Microcoded operations include synchronization primitives and
operations for manipulating. addressIng state (for example, all capability operations).

Our original design specified that message communIcation operatIons also be
implemented in microcode. Because microcode space was becoming scarce and
because the operations could more rapIdly be Implemented in software , we decided
to Implement the message communication operations in software. We expect users
to make fairly extensive use of this d1sc~plined communication mechanIsm; in
addition, the Operating System Itself relies on message operations to perform
multiplexing. Since we are concerned that multiplexing be a relatIvely effIcIent
function, multiplexing measurements are reported below.

- - -  - - V  -~~ ~~~~~~~~~~~~~~~ 
V -~~~~~ V—-- - * - -_ -- -
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0

We maintain local copies of some amount of kernel code. A processor
executes code locally if possible, otherwise it must execute remotely. Because
execution of remote code is significantly more expensive than execution of local
code, issues arise, such as: V

I. What amount of kernel code should be local to each processor for good
performance? - 

V

II. Where is the tradeoff between remote code execution and -moving the locus
of control to a processor with local code?

As of now, 4,098 words of kernel code are local to each processor and all
other kernel code is executed remotely. Included in the local kernel code are the
message operations, the multlplexing code, the kernel entry/exit code, and
interrupt/trap handling routines. - 

. 
-

3.2. Measurement Techniques

Two kinds of measurements were performed;

3.2.1 M.mory r.t.r. nc. counts -

Counting memory references of frequently used Operating System code, we

have made a number of reasonable assumptions not explicated in every case. They
are control flow assumptions such 83: V

i. Mailboxes are not empty. (If a Conditional Receive is ’performed-on a mailbox,
it does not fail.) -

ii. Capability parameters to a system caN are located in primary or secondary
capability lists.

The rough time estimates are derived by code counts, assuming:

1. Code and stack local to the executing processor

ii. Data residing in another module 
-

—~~~~~~~ —. - — - -- - -, - -- V —— - ______________________ —
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The processor reference time for local references is assumed to be 2.9
microseconds. Mapped references are assumed to take 9.3 mIcroseconds.

3.2.2 M.asursm.nts pn th. actual .hardwar. 
-

The measured times were taken on the hardware under a slightly optimized
version of the OS. The OS had all kernel entry/exit code local to each processor ,
and no kernel code contained debugger ’or Kmap tracIng calls. Error checkIng of
each Kmap call was still performed. This constitutes en overhead ‘of one
test/branch per Kinap call. - 

. 
V

The following three met hods were employed for taking the measurements
under artificial Kmap load condtt ions: -

.

I. A tight loop executes on one processor , while all others are. halted. Thus the
Kmep has only to service requests from one module. The measurements are
taken with the logic analyzer and the Kmap bus monitor concurrently.

ii. A larger loop, generally about 20 code references, 10 stack references, and
two mapped data references exec utes on one module, while the others
require continual Kmap service (busy waiting on i/O). - 

V

iii. A loop - (as in ii) executes on one processor, while the other processors
require Kmap service Infrequently (approx. every 20,000 instructions).

Timings obtained with methods ii,IiI include a potential error of up to 10% due
to the necessary estimation of the loop execution times. AddItional inaccuracy
(approx. 17.) was introduced by the use of a low resolution timing device. This error
was minimized by repeating the operations 30,000 tImes and- averaging the results.

V ~ S

’ 

- 

- 

.

. 
S 

- 
‘ V

S 
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3.3. Software Measurements 
V

3.3.1 Saving and loading th. processor st ats - 

V

Load: Make the designated user the current user , set’ the current user ’s state
to active , and load the current user. V

Rough Time Estimate: V

124 Microseconds processor execution time - 

- 

-

+ 150 Microseconds kmap execution time ‘ -

274 Microseconds total V 
-

Unload: Reverse the Cbove process. 
- 

- 
-

Rough Time Estimate: V

112 MicrOseconds processor execution time
+ 135 Microseconds Kmap execution time -

247 Microseconds total - 

-

3.3.2 Cost of di~patehing a process V

Here we assumed that the processor was not idle. This ensures that the cost
of unloading an environment i~ included. The dispatching algorithm may briefly be
described as follows: - 

-

Test whether processor is idle or not.
IF Idle

THEN Unload current erivi,’onment; - V

SEND environment to its Run Queue.
F! - V 

- -

WHILE True DO 
- - -

. V

Wait a while . 
- -

Conri/t!ona!Rece/ve a runnable environment. -

Load the new environment
00 

S

3

_______ -- ±

V 

_ _
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Rough Time Estimate~

498 Microseconds processor execution time plus the cost of one

Conditional Send and one Conditional Receive - on the processor

runqueueS. - 
- 

V 
-

+ 350 MicrosecondS Kmap processing time -

-848 Microseconds total plus the two Message Operations

Measured Time: 4.73 milliseconds (including Message Operations)

As can be deduced from the measured times and - the message operation

costs shown below , the latter dominate the cost of dispatching a process.

V 33~3 M.s~ag. Operation costs -

3.3.3.! Measured Time 
-

Conditional Send: 2.03 Milliseconds (local stack)
2.72 Milliseconds (mapped stack)

ConditIonal Receive: 2.03 Milliseconds (local stack)
- 2.72 Milliseconds (mapped stack) -

Users executfrtg the software message operations have to perform a kernel

call. Thus additional costs are incurred.

3.3.3.2 Total costs for the user V

Conditional Send: 5.24 millisecondS
Conditional Recelvf: 5.24 millIseconds

3.3.3.3 Total cost in case of f irmware implementation

Our best estImate of execution time for a Conditional Send or Receive In

case of Kmap implementation Is: 200 microsecondS. -

-—5— ~
_ 5  V V ‘V~ - -- ~~~~~~~~~~~~ — ~~~~-- --— -V -~~ 

- V
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3.3.4 Dispatch cost with microcoded m.ssag. operations - -

Using the 200 microsecond estimate from above, the cost of a dispatch then
V 

becomes: 
- 

-

Memory operations 
, 

498 Microseconds 40%
Capability operations 350 Microseconds 30% -

Message operatIons 400 MIcroseconds 30%
Total: - 

- - 1248 Microseconds

3.3.5 Costs of kerne l .ntryf .xit -

The following steps are involved in kernel entry and exit:

Save and restore the registers
Save and restore the user PCSPS - -

Determine the EMT number ‘ 
-

Select the action . . 
V

Move the parameters -

Return from the EMI back to user space -

Rough Time Estimate: (n # of parameters) V V

2.02 + n*O.2 mlliisac plus Kmap operation time. Note that
the Kmap operations performed in -the entry/exit routines
are not included.

Measured Time: 3.14 milliseconds (call with two parameters) V

-I-- - - - - -

~~ 
—~~~~~~~~~~~---- -~~ - ~~~~~~. -
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3.3.6 F urther Software Measurements ( intended ) 
-

1. Process creation system calls -

Explicitly: try to compare building a new environment as opposed to
retrieving one from a pool. V

2. Memory operations: 
V 

.

I. Performance of bitstring allocation strategIes

ii. Createsegment costs , using Kmap directory operations and distributed
memory management data structures

3. Overlay costs - -

I. Overhead for overlaying segments in the kernel

II. Patterns of overlay, optimal strategies

3.3.7 Interaction and Contention ( int.ndàd ) - - 

-

1. Contention in -the m e s s age  sys t e m  - two modules send/receive messages in
varIous patterns with - various frequencies 

V V

2. Locking overhead and waiting times on shared systam data structures

3. Compare the cost of using the message system to us1n~ shared segments
with explicit locking.

4. Contention ~n the runqueues for dispatchIng V

5. Intensive process swapping experiments 
V 

V

6. Optimal communication of data between processes:

V.— -V—---- - ~~~~~~~~~~~~~~~~ — ~VV___ — •~__V_~_V~V_ V_ _ V__V_ _ V_i __V_~V__~ 
—
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i. Referencing shared segments in remote modules as opposed to

ii. Copying segments to enable local referencing

7. Compare cost of: 
- V

I. Remote code execution,

ii. Moving a process to the processor that can execute the code locally,

III. Copying code segments into local memory

3.4. Firmware Measurements V

3.4.1 Firmwarf (i.e. op.ration% microcoded in the Kmap)

3.4.1.! The parameters 
- 

-

The parameters for the measurements of the capability and -lockIng
operations are: V 

- 
-

I. Access to a primary or secondary capability list (directly/indirectly)

Ii. Capability accessed can be expected to be cached or not -(cached/not
cached) V

iii. Kmap contention caused by requests from other processors (contention/no
contention) - 

V

The ranges given result from variation in the parameters. The typical times
are underlined. - 

- 
- V 

V V ~~~~~~~~~~~~~ V_~~~~ 
- - -~~~~~~ ---- --  -
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3.4.1.2 The functions - 
- 

-

i. LoadSegment (make a segment directly addressable) - 23 to 39
microseconds

ii. ReadWord , WriteWord (read and write to a segment which is not directly
addressable) - 40 to 80 microseconds

iii. ReadCapability (read the capability contents) - 40 to 114 microseconds

iv. TransferCapability (move a capability from one slot to another) - - 70 to 1 45
microseconds - V

v. CopyCapability - (estimated cost) 1 27 microseconds V

vi. DeleteCapability - (estimated cost) 89 microseconds

vii. lncrWord, DecrWord (synchronization instructions) -  40 to 80 microseconds

3.5. Conc’usions 
- 

-

-An Operating System can only be evaluated on the basis of the services it
provides to its users. We are not yet at that stage of evaluation. However, we
believe that we have been successful in designing primitives that are useful both
for application programs and the Operating System. The primitives are simple
enough to be microcoded and are cost effective in that we derive substantial
improvement in execution speed using the microcode Implementation. We have
gained some Insight Into the use made of these operations by the Operating System,
but more evaluation Is required to make optimal use of the centralized microcode
resource.

At the design stage of the Cm* project , we speculated that operations that
were designed to be Implemented in microcode could be implemented In software
with no functional change. The proved to be the case with the message operations.

In this evaluation emphasis has been on the microcoded Operating System
operations that allow programmers to make maximal use of the Cm* resources. One
of the basic problems of the PDP-11 machine is the s - 16 bit address space. We
have overcome this problem by providing a capabilit , addressirg space together
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4. Performance of a Stand Alone Cm* System

L Raskin

4.1. Introduction -

Three application programs are described in this section along with some
initial measurements of their operation on Cm’.

The three applications are:

1. Asynchronous iterative methods for solution of POE’ s.

2. Sorting (Quick Sort).

3. Set Partitioning Integer Programming.

Each application program is discussed below. The measurements obtained are
presented and discussed. - 

V

4.2. Objectives - 
- 

-

We have used these application prograr- - as a workload for the Cm’ system.
This was done in order to measure the value, and evaluate the importance of
various attributes (like program/data locality) to:

1. Show the possibility of solving efficiently -several problems on Cm’ and thus
the viability of such en architecture. -

2. Make a theoretical comparison, using these parameters , between Cm’ and
other multiprocessor architectures (e.g., loosely coupled computer networks
or tightly coupled structures such as C.mmp.) Measurements of these
attributes will help In derMng and validating a performance model for Cm’
like architectures. V -

3. Identify performance bottlenecks in the hardware system that will prov~de
some Insight and help In tuning and constructing such systems in the future.

- - - V  - ------- --- -
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4. Provide some quantitatIve criteria to decompose future applications for Cm’
into parallel tasks. V 

-

5. Determine software (Operating System) and I/O system Impact on these
applications (e.g., in terms of overhead involved in synchronization, memory
management). Help in tuning these systems.

6. Help to define classes of problems that are most suitable to run on Cm’

4.3. The Programs

4.3.1 Numerical App lication — Partial Differential Equationt.

4.3.1.1 The Problem -

An example of an Asynchronous- Iterative Method Is the solution to Dirichlet’ s
problem of Laplace ’s Partial Differential Equation (POE) by the method of Finite
Differences. - -

This program solves the PDE: -

,
~

2U(x ,)~~ + 
a2U(x .y) - o -

8x 2 -

on a rectangular grid of size M x N, where only the values at the outer edges of the
grid are given. V

The Finite Difference method transfcrms the problem into a set of linear
equations: Ax 2 b, where x Is an MN vector of all the points In the grid, A Is an MN x
MN sparse matrix and b is an MN vector derived from the boundary conditions. This
set of linear equations is derived from the new approximate values of the points (in
each Iteration) by averaging the values of the four adjacent neighbors of each
point. The solution to this POE is requ4red in many applIcatIon areas (e.g., Electro-
MagnetIc field, Hydrodynamics). Other POE problems can be similarly solved using
this method. -

- More details about Asynchronous Iterativ e Methods and their applications
can be found in [BAUDET 76a , BAUDET 78b).
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4.3.1.2 The Methods -

Baudet EBAUDET 76b] gave a survey and developed, several new methods for
solving the above problem. Four of these methods were implemented and measured
on Cm’. In all the methods, the computation is initially decomposed Into P processes
where P Is equal to the number of processors available. Each process (and
processor) iterates on a fixed subset of MN/P components out of the total MN
components. The four methods are briefly discussed below:

Method 0: Jacobi’ s Method. In this method each processor retrieves its particular
subset of the data from the global vector , x , at the beginning of each

- iteration. New values are computed for the elements of x and then
compared with their previous values. The elements are stored back
into the global vector , x, for other processors to use. This store
operation is protected by a critical section. The processor then
checks the error vector (computed by differencir ig the old and new
values of the x vector). If the error vector is smaller than the pre-
specified limit, the processor notIfIes the other processors that it has
finished. If all of the other processors have finished their work the
computation Is complete. Otherwise the processor blocks awaiting the
completion of the Iteration by all the other processors before starting

V the next Iteration. 
-

Method 1: Asynchronous Jacobi Method (AJ). This method is the same as the
Jacobi method (Method ‘0) except that each processor does not wait
for the other processors to finish before starting on the next Iteration.

Method 2: Asynchronous Gauss Seidel Method (AGS).. This method is similar to AJ
method (Method .1) except the processor uses the new values
computed in its subset as soon as they are available (not the values
known at the beginning of the iteration as in the previous two
methods). 

V 
- -

Method 4: Purely Asynchronous Method (PA). This method computes a new value
of each component using the most recent values of all components by
reading them directly from the global vector , x , and writing the
updated values directly back to the global vector (without any critical
sections or synchronization). This last method Is clearly the most
efficient It also uses less memory than the other methods. It uses
critical sections rarely to-inform the master process that the work has
been fInished. Almost linear speed up can be achieved theoreticaily ’
with this method. V -
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More discussion of the above methods and experimental results on C.mmp

(using floating point) can be found in [BAUDET. 1978 a,b].’ Fixed point, single

precision computation was used In the Cm’ implementation.

Some features of this prpblem: -

I. Extensive use of Integer ar%thmetlc operations.

Ii. 4 different methods with different synchronization requirements.

iii. Can be compared with a Cinmp implementation.

iv. Almost linear speed up can be expected. - 

-

4.3.1.3 The Implementation V

The grid size was chosen to be 21 x 24 points (i.e., a linear system of 504

elements). The boundary conditions were chosen to be all zeroes and the grid points

initialized to one. The error bound was chosen to be 0.1 In all the following

experiments. One processpr, the master processor, initializes and starts the other

slave processors , and prints the results when all have finished. Note that the

master participates in the computation like any other (s/ave) processor. All the

global variables are kept in the master processO~’$ local memory area.

Synchronization and mapping are achieved by using the simple Kmap micro-code.

4.3.1.4 The Results 
-

The timing measurements and speed up factors for various memory reference

patterns are given in Figures 1.1 to 1.8 and in Table 1. (The figures appear at the

end of this section.) 
* - 

-

-

V 
_  _
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Table 1: POE, Memory Reference Patterns (using one Cm)

This table shows program execution times for various memory reference
patterns expressed both In seconds and as percentages of the times taken when
all references are to local memory. V

Method 0 -

Memory reference pattern Execution time S Local execution time

All Local - 
362 100

All Mapped 954 263.5
Only Code Mapped 835.5 - 

231
Only Stack Mapped - 420 

V 116
Only Local Variables Mapped . 405 - 

V 

112 V

Only Global Variables Mapped 378 104.5

Method i

Memory Reference Patter n Execution Time S Local ’executlon time

All Local 100
All Mapped . 

- 
- 

- 
948 267

Only Code Mapped 820 - 231
Only Stack Mapped - 413 

- - 118
Only Local Variables Mapped 399 . -112 -

Only Global Variables Mapped 370 . 
- 

104

Method 2 - 

V 

-

Memory Reference Pattern Execution Time. - S Local execution time

All Local V 181 100
All Mapped 478 - 264 . -

Only Code Mapped 417 - - 230
Only Stack Mapped - 

210 - 
- 116

Only Local Variables Mapped 203.5 
- 

- 112
Only Global Variab les Mapped 188 - 

V 

104

_ _ _ _ _- .-- --. ~~-~~~~ 
- _ _ _ _— —-- --
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Method 4

Memory Reference Pattern Execution Time S Local execution time

All Local 165.5 
- 

100
All Mapped V 433 261.5
Only Code Mapped 382 231 

-

Only Stack Mapped 196 - 118.5
Only Local Variables Mapped -176.5 107
Only Global Variables Mapped 173 104.5

-

_  

V 

-

. 

- 

-

. 

V

.

_________________ -— -V V— —: -— “~ 
— —-—V-- --- - -- —V - _•____V

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—
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4.3.2 Sorting - Quick Sort V

4.3.2.1 The Problem 
- 

- 
V 

V

This problem concerns the decomposition of the well known Quicksort
algorithm [SINGLETON 69) into asynchronous parallel processes. The median for
each sort pass was chosen as the median of the f irst, middle-and last elements in
the subiist. Each process Is assigned to its own processor. (Hence the process and
processor may be used Interchangeable here.)

- 

During a pass , each processor partitions its sat of elements into two
subsets: Elements larger than the median of the original set and elements smaller
than the median. The processor then pushes the address , and size of the smaller of
the two subsets onto a stack shared by all the processors. (Making the smaller
aubset available to the other processors tends to put more work onto the shared
stack in order to keep as many processors as possible, busy.) The processor
proceeds to further partition the remaining (larger) subset. When the remaining
subset cannot be partitioned further, the processor selects the next available
subset from the shared stack. - -

Very simple assumptions about the algorithm (similar to the T = c N Log N for
sortirfg using the sequential algorithm) give a theoretical sortlng.time of:

T = c N { (K-M)/P + 2(1 - (i/2)M)-) -

Where: N # of elements to sort, 
-

K Log2 N,
c constant, V

P x # of processors,
Mz L àg2 P, 

-

- 

When the number of processors Is much smaller than the number of Items to
be sorted almost linear speed-up can be achieved. The performanced degrades
consIderably when the number of processors is large (asymptotically to a constant
speed of T c Log N/2). See Stone [STONE 71] for a description of sorting
methods that speed up as N/ log N for large numbers of processors.
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4.3.2.2 The imj ,iementation

One processor , the master processor , Initializes and starts the other
processors. It makes the first partition and prints the results when the sort is
complete. The master also participates in the sort like any other (slave) processor.

The stack , the vector of elements to be sorted, and the global variables are
kept in the local memory of the master processor. All the experiments sort 1 8,000
elements , where each element is a 16 bit (2’s complement) value. -

Some features of this problem: V

I. Extensive access to the shared data vector (which causes data contention).

ii. Extensive use of logical operations.

iii. Almost linear speed up when the number of elements in the data part is
orders of magnitude larger than the number of processors.

4.3.2.3 The Results 
V

The timing measurements and speed up factors for various memory reference
patterns are given in Figures 2.1, 2.2 and Table 2. (The figures appear at the end
of the section.) - 

-

Table 2. Qulcksort, Memory Reference Patterns (using one Cm)

This table shows program execution times for various memory reference
patterns expressed both In seconds and as percentages of the times taken when
all references are to local memory.

Memory Reference Pattern Execution time 
- 
S Local execution time -

Al Local 25.54 100
All Mapped 70.0 274
Only Code Mapped 58.4 229
Only Stack Mapped - 30.3 - - 118.5
Only Local Variables Mapped 28.3 111
Only Global Variables Mapped 31.2 122

- —-- - -V-V  -
~~~~~~~ - - - - -—
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4.3.3 S..rching - Sat Partitioning Int.gar Progrimming -

4.3.3.1 The Problem -

The particular integer programming considered here is - one of the most
practical and applicable methods. It is used, for example In airline crew scheduling
[BALAS 76]. - V -

This problem is typically solved with an enumeration algorithm, by searching
(N-ary tree search) in a large , relatively sparse , binary matrix - typically on the
order of hundreds x thousands - for a minimum cost solution.

The set partitioning problem is to solve: V

mm { 
~~~~ 

A~ = ~, xj =0 or 1 for 0�$N) 
- - 

V

Where: A = M x N binary matrix.. . -

c=Nvec to r  V

e ( 1  1)Mvector  -

As an example of this method, consider the airline crew scheduling problem.
The rows of the A matrix correspond to a set of flight legs (from city A to city B, In
time T) to be covered during a specified period and the columns of A correspond to
a possible sequence of tours of flight legs done by one crew , c Is the vector of
associated cost of each tour. A possible solution includes a Set of tours that
satisfy all the flight legs (one and only one crew makes a flight leg). We are looking
for the solution with the lowest cost. . 

V - 
V

Some features of this program:

I. It uses binary data types, manipulates a large matrlx ’in a relatively small
address space. 

-

II. Extensive use Is made of both arithmetic & logic functions.

iii. There is a theoretical possibility of nearly linear speed up.

iv. The application is relatively complex.

V - V~~~ V_ _ - - - - - - -- - -
~ 

- -  - V
~~
-

~ 
- - 

—- - -
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4.3.3.2 The Implementation . V

As in the previous applications, one processor - the master - Initializes,
creates the array according to user ’s specification and puts enough Initial possible
search path solutions in a global stack , from whic~i all the processors pick their
work. The criteria was (arbitrarily chosen) to put more than 10 x P path solutions
into the stack (where P * # of processors) - so that the work will be more evenely
distributed between the processors and all will be occupied for a large percentage
of the time. V 

V

To enhance pruning in the search, a global variable contains the cost of the-
best solution found so far by any of the processors - and all compare their current
cost value to It and begin to track back in the search when that global cost Is
lower. - 

-

4.3.3.3 The Results -

Five different cases where arbitrarily chosen as test cases.

- I 
- 
Seed Oens(ty # Solutions

Case 1 10 100 ’ 1 0.1 3
Case 2 10 100 2 0.1 5
Case 3 10 100 3 0.1 5
Case 4 50 500 . 1 0.2 0
Case 5 17 60 1 0.1 1

Where:

I - # of rows in the A matrix - ,

- 
- J # of columns in the A matrix

Seed = initial seed numb-ar for a random # generator to generate the
matrix - 

V

- Density ~ Density (ratIo of ones and zeroes) in the array
# Solutions z - # of different solutIons found by one processor

The timing and speed up factor resuIt~ for the 5 different cases are given In
Figures 3.1 to 3.2 and in Table 3. (The figures appear at the end of the section.)

________________________ — - -V—V..—.- ~~~~~~~~~~~~~ - — VVVV, - — -—V.-- 
~~

VV VV.
~
VV_.

~
V
~

V V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Table 3: Integer Programming, Memory Refere nce Patterns (one Cm)

This table shows program execution times for various memory reference
patterns expressed both in second s and as percentages of the times taken when
all references are to local memory.

- Case l

Memory reference Pattern Execution Time S Local Execution Time

-Al) Local - V 79.1 
- 

100
All Mapped 215.1 - 272
Only Code Mapped 176.8 223.5
Only Stack Mapped 

- 

- 113.9 - 143
Only Local Variables Mapped 85.8 108.5
Only Global Variables Mapped 81.1 102.5

-

~~ Case 2

Memory ref erenc~ Pattern Execution Time S Local Execution Time

All Local 19.5 - 

- 100
All Mapped 53.0 272
Only Code Mapped 43.6 223.5
Only Stack Mapped 27.3 140

- Only Local Variables Mapped 21.1 108.2 V

Only Global Variables Mapped 20.0 
- 

102.5

Cese
b4 

- 

- 

-

Memory reference Pattern Execution Time S Local Execution Time

All Local - 204.4 100
All Mapped 546.1 - 267
Only Code Mapped 455.5 223
Only Stack Mapped 277.4 136
Only Local Variables Mapped 217.5 106.5
Only Global Variables Mapped 208.3 102

_ _ _ _  - -
— V—
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44. Initi al Results

4.4.1 Access times in the Cm* ;yst.m

The following summarizes the results presented in Tables 1 to 3. The figure
given is the ratio of total execution time ’(for various memory reference patterns) to
the total execution time when all memory references are to local memory.

1. When all references are mapped, the ratio is between 2.6 and 2.75.

2. When code is mapped ~nd everything else is local, -the ratio is between 2.2
and 2.3. Hence It. is very important for code to be In a Cm’s local memory.

3. When the Cm’s stack is mapped, the ratio is between 1.16 and 1.185 for the
PDE and OuicicSort applications and 1 .4 for the Integer Programming
application. The latter application consists of a large number of small
routines, the execution of which causes frequent stack accesses to perform
the call /return sequence. 

-

4. When global data is mapped, the ratio varies between 1 .02, when global data
accesses are infrequent, and 1.15 when accesses are relatively frequent.
These particular figures are encouraging since large ;hared data ~tructures
may be located anywhere in the system without significant performance
degradation. -

5. When Own (local) data is mapped, the ratio is between 1.07 and 1.12.

4.4.2 Throughput of Cm* Buses and Components. -

1. When all processors share both code and data from a single memory, the
graphs indicate that performance cannot be improved by using more than 3 or
4 processors. This limitation is caused by memory contention.

2. The graphs showing ~..ms making references which are mapped back to their
local memory (“Mapped to Self”) indicate that the Kinap saturates when 6 or
7 processors are simultaneously active in this mode.
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4.4.3 Hit and references ratios

The rate of mapped memory references from a Cm, for which all references
were mapped, was measured. The reference rates to Code, Stack , Own (local) and
Global data were also measured. The percentages of the total reference rate
represented by the above reference types are tabulated below. (The
measurements were made using a combination of the Map Bus Monitor and a
frequency counter.)

a. POE

- method 0 method 1 method 2 method 4

Code 80.8% 80% 80.57. 82%
Stack 10% 10% 107. - 11.5%
Owns 

- 6.8% 7% 7% 4%
Globals 2.5% 3% 2.57. - 2.5%

b. Quick sort

Code 71%
Stack 12.5% -

Owns 6.5% 
- 

-

Globals 9.5% - 

- 
-

c. Integer programming 
. - 

- 

- 

V

- case 1 case 2 case 3 case 4 
- 

case 5

Code 71.3% 70.3% 71.1% 72.8% 71.5%
Stack 23% 24% 25.4% - 22.3% 23.8% 

-

Owns 4.75% 
- 

4.67. 4.15% 3.75% 3.85%
Giobais 1.1% 1.1% 1.2% 1.1% 1.1%

The hit ratios are therefore on the order of 97.5% ~n the POE program, 90.5%
in the Quicksort program and 99% in the Integer Programr~ n~ program.

-~~~~~~~~ —- V - - V .-- V 
~~~~~~~~~~~~~~~~ —~~~ -
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4.4.4 Utd~zation

4.4.4.1 System Components 
-

Figures 4.1 to 4.4 show the different aspects of the system ’s component
utilization while running the POE programs. The Kmap executes a 2 micro-instructor,
loop (called the “Idle loop”) whenever there is no useful work for it to do. (This I-;
used to show the utilization of the Kmap). The “Slocal busy loop” is 7 micro-
instructions long and is used to show the amount of contention for Slocals and
memories. This loop Is executed when the Kmap tries to read from , or write into, a
memory but the Slocal is still busy executing a previous reference. A successful
reference to an Slocal takes 4 micro-instructions. -

- The Kmap micro Instruction time is about 1 57 nanosec.

It is interesting to note that the maximum Pmap utHization when the hit ratio
is 07. and all references are mapped b~ick to the Cm is oniy 35% (the rest of the
time is spent in the idle loop). -

4.4.4.2 Number of Cms supported by a Kmap

The measurements shown in Fig 4.2 (all references mapped) shows that , due
to Kmap contention, there i~ a degradation of about 10% in the time to execute a
remote (mapped) reference Inside the cluster when about 400,000 references/sec.
are made to the Kmap. -

Consider , for example , the POE program. The average number of mapped
references from one Cm, when only global variables are mapped, is about 6,500
references /sec. This means that the Kmap can suppo~-t 400,000/6,500 or about
60 Cm ’s with only 10% degradatIon in the mapped reference time. With a 90% hit
ratio (10% mapped references), as observed in the Quicksort program, the Kmap
can Support about 20 processors with a 10% degradatIon In the mapped reference
time.

4 4 .5 Total local memory rIlerencQs per second and MiPS.

Based on the three programs measured , the local memory reference rate was
as follows:

- -~~~~~~ -V  ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 
V~~~ -
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POE - Time between successive memory references 3.7
microseconds. Reference rate = 270 KHZ.

Quick Sort - Time between successive memory references = 3.33
microseconds. Reference rate = 30Q KHZ.

integer Programming - Time betwen successive memory references 3.51
microseconds. Reference rate = 285 KHZ.

The average number of memory references pe instruction was measured to
be:

QUICKSORT - 1.75
POE -1.45 - V

INTEGER - 1.75 - 
V 

-

For HARPY the reference rates are in the 1 .85 - 1 .9 range. (See section 5.)

These numbers are considerably lower than the corresponding num bers (2. 1
to 2.3) measured on a large sample (about 8 million instructions) of from 20 Fortran,
Cobol and system programs (MARATHE 77]. A possible explanation for this may be
that the Cm* applications were compiled by a good optimizing compiler.

The average number of memory references per instruction in the measured
programs was about 1 .7. From this we get that the maximum potential Instruction
rate of a Cm executing a program in its local memory Is on the order of 0.1 7 MIPS
(Millions of Instructions Per Second). This may be extrapolated to 1 .7 MiPS for a
1 0 processor system. 

V 

-

4.4 .6 Memory Contention

As seen in Fig. 4.4 (Slocal busy loop count) the time added to a reference by
each Slocal busy loop count is about 2.26 microseconds (1.1 microseconds in the
Pmap and 1.16 microseconds i~ the Kbus and Map bus)

4.4.6.~ POE V

The number of busy loop references in the POE program increases from 0 to
4200 in Method 0 and to 9600 In Method ~ - with 0 to 8 Cm’s all running local code
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(and shared data). This means that , as expected , the degradation due to memory
contention in this high hit ratio ap~ Iication is negligible. The memory contention adds
only 0.5% - 1 I. to the utilization of the Pmap. (The Pmap spends 27. - 3% of its tIme
doing useful work , and sits in its idle loop for the remaining 96% - 97% of the time.)

From the above results , the performance degradation due to memory
contention (and hence slower mapping) was calculated to be in the range: 0.17. to
0.25%.

4.4.6.2 Quick Sort 
-

This program is difficult to measure as it has a short execution time and -

changes its demands upon the Kmap during execution. Taking peak Kmap activity
with 8 processors (local code):

Slocal busy loop i 00,000 counts (-1 1 .07. of Pmap time)
Idle loop 2,500,000 counts (78.57. of Pmap time)
Useful mapping references 150,000 counts (10.5% of Pmap time)

V From the above results , the performance degradation due to memory
contention was calculated to be 2.7%. Map bus contention was ignored in the
above calculations.

4.4.7 Frequency of Lock operations

TI-’ ‘ total number of lock operations per second ranged , In POE Method 0,
from 10 in a 2 Cm system to 3,400 for the 8 Cm system. For Quick Sort the range is
1 ,500 - 1 4,000. These are algorithm dependent numbers and do not have much
influence on total execution time due to the fast synchronization operation in the
simple Kmap microcode. - 

V

4.4.8 Estimate of •x .cu t ion times using mu lti cluster Cm* confi gurat ion

The number of mapped references were measured from Cm #0 - Cm #3 when
the code was local and the global data was in Cm #13. -
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POE Quick Sort
- Method 0 Method 4 -

Reference Counts

V Total (Mapped) Cm ’s 0-3 22000 27000 90000
Total for 1 Cm 257200 - 256000 256000
Mapped for 1 Cm 5500 6750 22000

Average Memory Refe rence Times~

Local (Microseconds) 3.7 3.7 3.3
Mapped Intracluster 9.44 9.47 9~16
Mapped lntercluster (est.) 26.4 - 26.4 26.4

Reference ratio (see note) 1.095 1.115 1.39

Note: The interciuster /intraciuster reference ratio was calculated by
multiplying the number of local and mapped references by their respective
execution times in the. Interciuster and intracluster cases , then dividing the two
resultant numbers. -

The references ratios show that the PDE method 0 algorithm (which waits for
the slowest processor to finish) experiences a slow down of about 9.5%, but the
slow down on method 4 and in Quicksort should be much better tI-ian the 11 .5% end
397. predicted slow down in execution times - due to different algorithms (difficult
to predict).

4.4.9 Som. useful numbers - 
V

Some rounded, useful numbers from this evaluation of Cm ’-- include:

1 Cm (i.e. single LSI-1 1 processor) - 0.1 7 MIPS

Reference saturation rate of shared memory bus - 270 KNz (3.7 microsec per
reference). -

Reference saturation rate of Kmap (including the map bus) - 552 KHZ

Saturation of map bus transactions (i.e read or Read-Modify-Write between 2
Cm ’s needs three transactions and write requires two transactions) - 1.7 MHZ

-- - - - - - V - - -— V- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - — - -
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4.5. Measurements of Inter Cluster (Linc) communication

4.5.1 Program execution -

Figs. 5.1 arid 5.2 show the initial results from a multi-cluster Cm’
configuration (as shown in figure 1 of the introduction).

The program used for that evaluation was the POE program (methods 0 and
1). The Cm’ configuration was a 3 Cluster system (4 - 4 - 2 Cm ’s in each) and the
program was measured while using only two Clusters with equal number of Cm ’s in
each. - -

Fig 5.1 st-iows that, with almost all the memory references local to each Cm
(only globals mapped either inter-cluster or intra-c luster depending on the location
of the Cm in the system) , the increase in the execution time between using the Linc
in a two Cluster configuration, or executing with all Cm~ configured into the same
Cluster - is only 5.5% to 12%. -

Although the multi-cluster performance of Figure 5.1 is not much worse than
the single Cluster configuration , it does raise the issue of when, if ever , it makes
sense to consider muitic l’ister configurations. With only 10 Cm ’s in the initial
configuration we did not observe any practical situation in which multictuster Cm ’-
configurations were superior to single Cluster. However , it is obvious that in larger
Cm’ systems a single Map bus and Kmap will become a bottleneck. Figure 5.2
shows a case , albeit an art ificial one , in wiuch a multicluster system is better than a
single Cluster configuration.

Fig 5.2 shows tIie results with aft memory references within a Cluster mapped
back to the originatIng Cm and only giobals shared across Clusters. Starting in 4
processors , a better execution time is achieved by using the Linc in a two Cluster
(2 Cm’s in each) configuration than by using one (big - 4 Cm’s) Cluster - which
increases to about 36% speed-up with 8 Cm’s participating.

This Is due to the high contention (and saturat ion) of the Kmap in the one
Cluster (0% hit ratio) configuration while in the two Cluster case the work is divided
between the two Kinaps participating with only a small percentage of the
references (globals) being executed via the Linc (which does not significantly
degrade the overall performance). This simulates a case where, In some special
circumstances , using the Inter-Cluster bus relieves contention (and saturation) In a
one Cluster - many Cm ’s - configuration.
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A large Cm’ system is necessary to - test the utility of multicluster
configurations for running practical applications.

4.5.2 Contention

Figs. 5.3 and 5.4 show the results of executing a simple, one instruction loop
(L: mov #L, R7), test case through the Uric. The system was in a two Cluster (6 - 2
Cm’s in each) configuration, with all references Initiated in the source (8 Cm’s)
Cluster reading from memory in the other Cluster. -

Fig 5.3 shows the change in reference rate in the source Cluster with an-
increasing number of processors participating. The Figure shows different memory
access methods: -

i. Sharing the same memory in the destination Cluster , or alternating between
the memories of two Cm’s. -

ii. Using a single Linc, or alternating between two Lincs (ports).

Fig 5.4 shows the utilization of the source Pmap while executing the above
cases. Utilization was obtained by countIng the rate of Kmap Idle Loop iterations.

From these graphs a few observations and parameters can be deduced;

i. The time to execute an Inter-Cluster reference (without contention in the
system) Is 26.4 micro second.

ii. With only one processor executing, the source Pmap is busy ortiy 1 3.2% of
the time - I.e about 3.5 micro second of the inter-Cluster reference time is
spent in the source Pmap (the same a-s received from a theoretical
calculation based on the number of microinstructions executed). Similar
measurements of the destination Cluster shows it being busy 1 0.3% or
about 2.7 microseconds per reference. -

III. From FIgure 5.3, we see that a single Linc has a bandwidth of about
200,000 references per second. When multiple Ltn~s are used, the source
Pmap becomes the bottleneck , and we do not reach saturøtion using & Cm’s.
Extrapolating from the utilization of the Pmap in Figure 5.4 (and from the 3.5
microseconds execution time per reference for the source Pmap) the inter-
Cluster saturation rate Is estimated to be about 287,000
references/second.
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Iv. The anomalous behavior of some of the graphs in Fig 5.3 and 5.4, when
severe contention occurs in the 7 to 8 Cm’s region, is not well understood
yet and needs further investigation.

4.6. Conclusions

In this chapter we have studied the performance of the CmR system using
three programs. These programs were drawn from different application areas. A
number of conclusions may - be drawn from the measurements presented here ; The
most important are: -

I. No single bottleneck component was discovered in the initial Cm’ system.
Furthermore , the results show that there is a potential for expanding the
system without a signific ant system performance degradation.

ii. The differences in the memory reference time which is a function of the
- hierarchy in the Cm’ memory structure (I.e local memory, interciuster or
intraciuster references) does not degrade significantly the efficiency of
the system for solving the above problems. This Is due to the high local
memory hit ratio experienced by these programs - about 90% in the
Quicksort program and approx. 97.57. in the POE and Integer Programming
probiems. -

lii. In such high hit rat~o applications , it was shown that localizing the code ,
stack area , and io~ai variables (in that order) Is very important. The global
data can be placed anywhere In the system (even -outside the Cluster)
without much degradation In the application’s execution time.

iv. A larger Cm’ system along with a larger , more complex , application program
is needed to continue evaluation of the system, exercise It’s full potential
and explore it’s limitations. - 

-

L r - -  - 
V -- - - — — —

~ — —
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5. HARPY

P. Fe~Ier

5.1. Introduction V

HARPY is a speech recognition system developed at CMU. Its knowledge
representation is a state transition network which is dynamically updated. The
speech data is preprocessed (segmented ) on the CMU-1 08 (CMUB). A search along
a “few best” paths in the network is performed in parallel to recognize the speech.
For more details on the Artificial Intelligence aspects of HARPY the reader is
referred to [1).

- 5.2. HARP? on Cm* -

5.2 .1 Proc.u Structure 
- 

-

The Cm’ version of HARPY can recognize the DESK CALCULATO R (OESCAL)
task. It has a 37 word vocabulary ; the network consists of approx. 1000 states
with an average branchIng factor of 4 (i.e., each node in the network has an
average of 4 immediate neighbors). The program is decomposed Into a set of
cooperating processes. One master process communicates with the user ’s terminal,
initializes the received input data, and co-ordinates a set of slave processes. The
slave processes perform three functions according to the rules the master
specifies - (network Initialization, take one step in the network , prune the search
tree and remember the result). For the l i ve version of HARPY an input process is
responsible for communication with the CMUB. The Input process receives data from
tile CMIJB and passes It to the master. The master process then prepares the date
for the slaves.

5 2 .2 Space Requirements

The space requirements for running the Cm’ verSIon of HARPY are as foIlows~

I. Each process requires 2K words of local code and 2K words for a local stack.

ii. The network’ s global data requires 26K words.

Iii. The I/O process requires 2K words of buffers.

-- - V V 
~~~~~~~~~~~~~ 
- -VV

~~~~~~~~ 
- -_
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5 .2.3 Implementation A lternatives

Several implementation alternatives are possible which affect the
V synchronization structure and hence the performance of the program. The private

semaphores of the different processes can be implemented using a Kmap provided
synchronization operation or by the method of busy waiting on a shared memory
location . Exclusive access to the network can be guaranteed by using critical
sections. The grain size of the lock used in critical sections affects the
performance of the system. in the extreme ca ses , either the entire network is
locked or an individual node is locked. Work on the network can either be
distributed evenly in a predefined way , which does not require synchronization, or It
Can be dynamically partitioned into workuni (s. Workunits can be collected in a pool
from which processes pick up the next available piece of work . In the latter case
synchronization overhead is incurred . The choice of workirnit size is influenced by
the synchronization overhead and the variance and mean of the work demands of a
workun it.

5.3. experiments with HARPY on Cm*

Most - of the experiments were performed on pre-recorded data. This data
consisted of three phrases which correspond to app roxImately 6 seconds of
speech. The fastest recognition of the speech achieved to date was 6.6 seconds
or 1 .2 times real time. In that case 6 slave processes were used; code, stack and
private semaphores were local, arid- the unit of work were the best candidate nodes
of the search through the network.

53 .1 Speed-up with Multip~. Processors

The following speed-up factors have been achieved on an 8 processor
system (6 slave Pcs , I master Pc , and 1 utility Pc)~

ol s laves speed-up factor
1 1
2 1.87
3 2.64

- 4 3.17
5- 3,44 

V

6 3.60

-- — -V _ _ _  - V - -  ~~~~~~~~~~~~~~ - — ~-V _ V
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An experiment on C.mmp - another multiprocessor at CMU - showed that the
number of processors the HARPY algorithm can effectively use (i.e., can get more
speed-up with) Is bounded above by 7. Hence, increasing the number of processors
beyond 8 or 10 will not Improve HARPY’ s performance on Cm’ unless the algorithm is
C hail g e d.

53 .2 Memory Distribution

An active HAPPY slave process has the following memory reference
distribution: 

-

14% . Globa l data of the network
8— 10% Stack references

2% Kinap operations
74-76% Code references

An experiment was performed in which a comparison was made batween the
performance of a slave process executing remotely (I.e., fetching instructions from
another Cm ’s memory) and the performance of a locally executing slave process.
This experiment showed a factor of 2.5 difference in performance between the two
cases , which corresponds to the variation in access time to the different levels of

- the memory hierarchy. -

It is desirable to execute code in the local memory of a processor . The
locality of the stack also has a strong influence on the performance of the program
as can be seen In Fig. 4. The improvement in speed over accessing the stack
remotely is about 12%. This figure can be even higher if the locality of the stack
changes the memory reference pattern such that the Kmap becomes unsaturated.

5.3.3 Workload DItr ibution

The following HARPY experiment was performed. The experiment was divided
into three parts; each time HARPY used two slave processes. The processes were
arranged so that: -

I. Both were executing remotely. V

U. One was executing locally and the other remotely.

iii. Both were executing locally.

V - .  - V  - - - ~~~~~~~ - V~ ~~~~~~~~~~~~~~~~~ 
V
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The results of tile experiment show tIle - sensitivity of the algorithm to tile
speed variance of the different processors. It turned out that in the second case
tile performance lies between the values for the fi rst and third cases. This Is
because part of the workload is distributed evenly, thus the slower processor was
slowing down the faster processor at the synchronization points (the slave
processes are synchronized 50 times per second of speech or 25 times for one real
time second). V

5.3.4 Synchronization and Cooperation V

The Kmap supported operation decrword , which decrements a variable down
to 0 and returns the old value of the variable , is a useful facility for implementing
synchronization. For example for a set of processes to simultaneously push or
simultaneously pop elements to or from a shared stack , the synchronization on the
stack is embedded in the decrword operation on the stack pointer.

However using the Kmap to implement private semaphores is not
recommended; A process busy waiting on a semaphore makes frequent references
through the Kmap. Busy waiting on a local memory IQcation Is a better solution (see
Fig. 2).

V To guarantee exclusive acce .s to a shared data structure , i.e., in order to
update a node in the network , locks associated with the network must to be
introduced. The unit of data to be locked can be the entire network , part of the -

network, or a node. A lock on the entire network causes slaves to queue up on the
lock. The situation is improved by locking indivFdual nodes (see Fig. 3). The latter
scheme naturally increases HAPPY’ s space overhead.

5.4. HARPY on CMU computers

The performance of HARPY with the desk calculator task on different
machines at CMU is depicted in Fig. 1.

The C.mmp version of HAPPY with one process , running on a PDP11 / 40, is
slightly slower than the UNIX version on a PDP 1 1/40. However with two processes
it can run faster than real time. With more than seven processes no further speed-
up can be obtained. This is inherent to the small network- of the desk calculator
task.

As expected , HAPPY on Cm’ Is slower than HAPPY on C.mmp. They differ In
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performance by a fac tor of 2.5, even though the basic processor speeds of the
PDP1 1/40 and the LSi-1 1 differ by a factor of 3. The better performance of HAPPY
on C.mmp is mostly due to the more efficient Implementation of synchronization
mecHanisms.

5.5. References

(1] 8. Lowerre , “The HAPPY Speech Recognition System”, Ph. D. Thesis, CMU ,
April 1976
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V Fig.1 HARPY on CMU computers 
V
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6. A goI 68 on Cm*

6.1. Investigators

Peter Flibbard, Andy Hisgen , Tom Rodeheffer (with assistance gratefully
received from Paul Knueven and Bruce Leverett).

6.2. Introduction V

The programming language Algol 68 is being implemented on Cm’ for the
following reasons:

o To provide a language for general purpose programming applications and for
software experiments;

o To study the performance of a technique for decomposing programs
automaticaily to execute concurrently on several processors , and to study
the suitability of- the Cm* architecture for this technique.

6.3. Algol 68 
V

The language we are implementing is a semantically rich subset of Algol 68.
The subset has official recognition by the International Federation for Information
Processing. It has been derived from full Algol 88 by the omission of infrequently
used facilities , and by restrictions to simpHfy compilation , however, it remains

somewhat more powerful than PL/ l. In order to take advantage of the parallel - 

V

architectures on which It runs, the official subset has been extended by Including
several methods -of specifying concurrent execution and synchronisation of
subtaska (1]. -

6.4. C.mmp Implementation

An Implementation of subset Algol 68 has been runn ing on C.mmp -for about 1 8
months. It comprises:
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o A single-pass compiler. This is written Ill a common subset of Biiss / 1O and
Bliss / il , and thus may be used as a cross-compiler on the PDP1O. It runs on
a single processor, and in the POP1 1 version occupies about 20K words of
code.

o A run-time support system. This provides the standard functions, I/O
routines and the primitives for scheduling and synchronising concurrent
subtasks . V 

-

o A linker (still being written). it will also act as a cross-linker from the PDP1O
to the PDP11. -

Extensive measurements of t he  performance of the run-time system l,ave
been made (2].

6.5. Cm* Implementation

The project of bringing up the Cm’ version has been split into five phases:

o The installation of the C.mmp run-time system on Cm’, operating on top of a
V small kernel, and driven by the PDP1O cross-compiler;

o The evaluation of the performance of the system, and its comparison to the
C.mm~ version;

o The installation of a number of modifications , mainly Into the run-time system,
to support the automatic decomposition of sequential tasks into concurrent
subtasks; - - 

V

o The evaluation of the performance and effectiveness of these modifications,
with a view to incorporating some of them Into Kmap microcode;

o The installation of the compiler for the resulting system on Cm’.

The first two of these tasks have been completed, and the second two are
now In progress. At some stage in the evaluation a compiler will be installed for
general programming use.

-— V V -V V - V
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In the following sections we describe the functions of the kernel, give the
measurements which have been made on the basic run-time system and describe
the modifications which are being made.

6.6. The Kernel

in order to avoid interference from operating system overheads while
collecting performance statistics , the run-time system runs upon a small, special -
purpose kernel, which provides basic support for interrupt and I/O handling, segment
allocation and swapping, bootstrapping and the collecting of performance statistics.
Only very minor modifications to the run-time system executing on C.mmp have been
required to get it to execute above this kernel , and similar minor modifications will
be required to get it to execute above the Cm’ Operating System.

6.7. Performance of the Basic Run-time System on Cm*

Measurements of the locality of memory references for several Algol 68
programs show that 80-857. of the references are to local memory, a reasonably

V 
high figure considering that no efforts need be taken by the programmer to achieve
this , and the compiler has no knowledge of the mapping properties of the Cm’
architecture. Measurements have also been made on several programs which make
use of tile parallel processing facilit ies of Algol 88. The speed-up obtained for
polyevent , a program which manipulates branching data sfructures , executing on
several processors is given in Figure 2 of the Introduction.

6.8. Automatic Decomposition of Sequential Programs

As In other languages , the parallel processing facilIties In Algol 68 requIre the
explicit decomposition of a program into relatively large-grain subtasks , and their
explicit synchonisation using semaphores. Whilst some advances have been made
in simplifying this decomposition, it still remains the case that much potential small-
grain parallelism cannot be exploited due to the tack of language features to
support it. On Cm*, with relatively low-power processing units, the importance of
obtaining large degrees of parallelism Is high.

The modifications which are being studied to- provide for automatic
decomposition Into small-grain subtasks comprise a software implementation of
multiple parallel Instruction pipelines, in which the Instructions are tile primitive
actions of the Algol 68 run-time system (e.g. floating point operations , array
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indexing and other vector operations and assignments of large values). These
actions are executed by “slave ” processors on behalf of the “master ” processor

whicil is placing the actions In the pipeline. The overall control of the pipeline is
distributed throughout all the processors , and processors may alter their des ignation
according to the load.

investigations of this system wh ich are in progress include:

o Measurements of the performance of the system as a ?ur,c t,on of several

parameters , such as the number of actions In the pipe ’.ne , the degree of
interdependency of the actions and the critical section ,.verheads;

o Assessment of the improvements to be expected by encoding certain of the
actions which maintain the pipeline in Kmap microcode;

o Design of appropriate data-structures and the run-time routines which
manipulate them;

o The measurement of the performance of the system when used with practical
algorithms. -

Several of the results which have been obtained are tabulated below .

— --~~~~~~~~~~~-- - -— V 
-~~~ —

_V
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7. Dynamic Reconfiguration 
V

-1. Durham V 
V V

7.1. Current Status V

Dynamic Reconfiguration is divided into two parts : Dynamic Recovery of
system elements and Dynamic Removal of system elements. Subject to the
restrictions described in the outline below , Dynamic Recovery Is complete and -

ope~rational. Dynamic Removal of system elements is partially designed. Dynamic
Recovery is routinely executed as part of system initialisation. Loading the
operating system consists of bringing up a single Cm and dynamically reconfiguring
in the remainder of the Cms in the Cluster. -

7.2. Dynamic Recovery Facilities -

Dynamic Recovery provides for recovering an entire cluster , individual Cms ,
individual Mps of Cms , and individual Pcs of Cms. Recovery of a system element
means that the resource provided by the element becomes avaiiable.for use by the
system.

Cluster recovery invoives a single cluster. The first module in any cluster
must be specially initialised before it can execute Cluster Recovery. Cluster
Recovery Involves attempting to recover each additional Cm in the cluster. It is
possible to specify a subset of Cms to be ignored during cluster recovery.

IndIvidual Cm recovery first checks that the Siocal for the Cm responds to
references. if It does respond, then both the Pc and Slocal are initialised (brought
into a known, dormant state). The Cm’s Mp Is recovered first and then the Pc is
recovered.

Recovering Mp involves creating the Local Mp Manager ’s data structures ,
sizing memory, and Initiahsing the Cm’s local BitStr ing (which is used to record
allocation of blocks of pt ysical memory). T he Local Mp Manager ’s structures are
then linked In as one more element in the distributed Cluster Mp Management data
structure.

To recover a Pc means to set up all of the Cm ’s private structures that are
used by the Operating System and uniquely associate them with this Pc. The PCL
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(Primary Capability List) Is created first and capabilities for existing operating
system data structures are copied into it. Then other segments used by the Cm are
created; these include the Control Stack , Control Stack Interrupt vectors , and
Slocal segment . -

Dynamic Recovery has been used to recover a Cm into an already running
cluster.

7.3. Overview of Initial isation

An over-simplification of system initiahi~ation would be to say that all Cms in
all clusters are recovered. More specifically, the strategy is that the first Cm in
each cluster is individually initialised. Once initialised, this first Cm executes Cluster
Recovery to bring up the other Cms in the cluster. The very first Cm in the world is
special in that during its initialisation certain system-wide data structures are
created. In particular , tile Segment Directory is created and initialised.

lnitiahising (Recovering) clusters other than the first involves three stages:

(1)Locating a Cm in the remote cluster wtiich is capable of performing
initialisation, 

-

(2) Depositing ‘first Cm’ initialisation code into it and starting it , and

(3) Recovering all other Cms in the remote cluster. This last stage is identical to
that performed in the very first cluster , since Cluster Recovery operates only
on the ‘local’ cluster. V

- - -  — - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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8. Cm* Host System - 
V

D. Scetza

8.1. Introduction

This report gives a brief description of the Cm* Host System. A brief outline
of both the software and hardware Is provided. The Cm’ Host System provides all
communication with the Cm’ machine et this time. In this role the Host System Is a
most valuable tool.

8.2. Overview V

The Cm’ -Host is a line oriented system. Its primary function is to facilitate
Intercommunication between a large number of serial lines. Lines, both those that
connect to terminals and those that connect to other computers, are treated In a
uniform manner.

The uniform treatment of these lines means that a terminal can look just like
a Computer Module and, more importantly, a computer Module can look just like a
terminal.

8.3. Use -

The primary use of the Cm~ Host System is for the control of Computer
Modules. A user can log into the Host and assign resources to be used. These
resources generally include one or more Computer Modules. After a user has
assigned resources he can have the Host execute commands that let him
comm Vn i cate with these resources. He can be put into a direct cross-patch mode
with his assigned resource. This gives him the ability to talk to his Computer Module
just as if his terminal were directly connected to that module. The user can also
load programs Into his Computer Modules. The loading can be done from either the

V DECtape or from the PDP-10. As long as a user Is fogged In and has resources
assigned no one can Interfere with his use of those resources. When a user logs
off of the Host all of the resources that he had assigned are then free to be used
by other users.
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8.4. Hardware V 
-

The SCm ’ Host System runs on a Digital Equipment Corporation PDP-1 1/10.
The PDP-1 1/10 is equipped with 28K of core memory and numerous peripherals
devices. These devices include: -

a) A DECtape controller with four DECtape drives.

b) A OJ1 1 16 line serial line multiplexer.

c) 2 DR1 1-C parallel interfaces.

d) Three local terminals.

e) A host link to the C-MU Front End. (This is a multiplexed line along which
there can be any number of virtual terminals.)

f) A terminal link to the C-MU Front End.

8.5. Software -

The Cm’ Host System consists of about 1 6K of BLISS-i 1 code which runs on
the POP-i 1/10 along with a small amount of support software which runs on the
PDP-1 0’s. V

8.6. Example

The two figures below give an example of the use of the Host. The diagram
of the Cm’ system (Fig. 1) has been annotated to correspond to the system status
report (Fig. 2). We see that there are four Jobs logged into the Host. Three of
these jobs are on terminals (jobs 1,2, and 3), while the fourth job is logged in from a
Computer Module. The diagrams also show that the jobs 1,2, and 3 have each been
allocated a set of resources that only they can access.

V _ _  - - - V - -  - - V - V -
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Status of’ Cns * HOST Vers ion 1.7
Ufr t iae 9:17 :56

Job Who W1V Ie PP Talk Lines ~~~~i~~r,e d
1 Pradee~ SI I V V

I JhU TTY3 CH4 CMS CVt 4 H1<32
2 A lgol 68 FE4 HOST CVi13 Ci’-112 C u l l

C iM 10
3 Peter Feiler FE42 CI10 HKS1 CilO CH3

C~i2 CiV i l
4 Crn * K e r I , e l  Vers ion  2 . 0  Ciii HOST

Line Our-icr Job T~~~e Ifl’JO~-~ LIR11c i~1c’Je
CONSOLE ASLI 0 Non e IIaSV LeIS
TTY 1 ASLI 1 None MasLer
TTY2 ASLI 2 None MasLer
PEiFlO ASLI 3 None Slave
VHF’ LUll 0— 0 None Slave
CH14 LUll 0 2 None S l ave
HK51 3 LIJj.1 0— 2 None Slave
CM6 LUll 0— 3 None Slave
CH13 2 LIJ11 0— 4 0— 0 S lave
CMJ. 0 2 LIJ11 0— 5 0— 2 Slave
Ciii 2 LUll 0— 6 1— 3 Slave V
TTY3 1 LiJ11 0— 7 None Master
CMO 3 LIJ11 0— 10 1— 2 Slave
Cl-iS 1 LUll 0— 11 0— 1 Slave
HKS 2 1 tiJil 0— 12 No,,e Slave
CH12 2 LUll Q —~ 3 0— 4 Slave
CM4 1 LUll  0— 14 0— 3 S1~~ve
CM3 3 tiJil 0— 13 1— 1 Slave V
CM2 3 LIJil 0—16 1— 4 Slave
CPU 3 4 LUll 0—17 1- 0 Ha~~Ler
FEZ FE S Norie
FE42 3 FE 42 None M.3S1C1’
FE4 2 FE 4 None Mas Ler

Fig. 2.

V .  ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --- --~~~- ---
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9. Reliability and the Auto-diagnostic -

H. Bellis

Experimental systems typically have poor reliability and It was initially feared
that Cm’, with its many varied components , might be especially unstable during Its
period of development, in an attempt to monitor the frequencies of transient errors
and to detect hard errors as soon as-possible , an automatic diagnostic system (the
Auto-diagnostic) , has been developed.

The Auto-diagnostic program resides in one of the modules of the Cm’
system. Af t~ r requesting the time and date from an operator , the Auto-diagnostic
Jogs into the Cm’ Host and assigns any Cms which are currently free (i.e., not
assigned to any other user Jogged into the Host). (See Section 6.) The Auto-
diagnostic will return Cms to the Host when so requested by a user.

The Auto-diagnostic loads a standard diagnostic program, from the Host’ s
DECtapes, into each module. When the diagnostic has completed a run in a module ,
the Auto-diagnostic replaces it with the next diagnostic in the testing sequence.
This sequence currently consists of four diagnostics:

I. A memory diagnostic. (DEC’ s standard DZKMA for LSI-1 1’s).

ii. An instruction set diagnostic. (DEC’s standard DVKAA for LSI-1 l’s).

III. An interrupt and trap diagnostic. (DEC’s standard DV1~AD for LSl-1 l’s).

iv. An Slocai diagnostIc.

The Auto-diagnostic monitors the output of the Cms it is testing and produces
a statistical error report for each Cm. The engineer can examine this report each
morning to determine which modules are In -need of attention.

The Auto-diagnostic is run whenever there are free Cms which m a y  be
tested. (In the future , the Host may be updated to automatically load the Auto-
diagnostic whenever possible.)
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The statistics gathered during that past few months (i.e., since the Auto-
diagnostic has been operational) are summarized below.2

Transient Errors

7-May-77 to 2-Jul-77

Memory Jnst.Set Traps Slocal Total HH:MM MTBF

CmO 14 0 1 0 15 162:41 10:51
Cml 2 0 0 1 3 188:18 62:46
Cm2 1 4 4 4 13 209:45 - 16:08
Cm3 0 0 0 4 4 208:27 52:07

Cm4 0 0 0 -  1 1 157:55 157:05
Cm5 0 4 0 .  1 5 149:52 29:58

CmlO 0 2 0 1 3 160:12 53:24
Cmli 8 0 0 0 - 8 207:13 25:54
Cm12 4 0 1 Q 5 218.23 43:41
Cm 13 1 0 3 0 4 102:15 25:31

Total: 30 10 9 12 6.1 1765:01 28:56

2 These sta t!s t lcs are preliminary and should not be taken as an indication of the reliability of a fully stabalized
system. Further data Collection and anal y~~,s are required.
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