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SUMMARY

\

i

This research proposes a new framework for construci%ng
preference functions when the consequences of a decision are
judged by multiple attributes or criteria. Methods for assessing
single-attribute preference functions have been well established.
The current, state-of-the-art procedure for deriving arbitrary,
multiattribute preference functions, however, has required
regularity assumptions to reduce the arbitrariness of the
preferences. This technique, called decomposition, has been used
because it usually results in a simple and appealing preference
model. The difficulty with this approach is seen in the restrict-

iveness of the two main assumptions:

(1) the same preference regularity is imposed on
all attributes, using this symmetry to achieve
a simple preference function, and

(2) any n-dimensional preference function is
decomposed into n one-dimensional preference
functions.

In this work, no symmetry assumption is necessary, as each
multiattribute preference function is tailor-fit to only those
regularities that exist in a particular problem setting. Those
parts of the preference function that are subject to simplifying

assumptions are decomposed using a new classification scheme to

ii




derive further independence assumptions for the standard models.
Those parts of the preference function that are indecomposable
are handled using a new discretization scheme along with a
behaviorally motivated interpolation rule to fill the gaps.

The flexibility of these methods allows an analyst to make
trade-offs between the degree of accuracy desired and amount of

effort needed.

This integrated framework for decomposable and indecompos-
able multiattribute preference functions stands as an important
decision analysis aid. The usefulness of the framework is
illustrated in an example of the decision to buy a new car. The
relationship of the attributes can be assessed in advance, thus
allowing an optimal decision to be made in the decision maker's

absence.
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When Isaac Newton was asked once how he had made his discover-
ies, he replied, "By always thinking abcut them, I keep the subject
constantly before me and wait 'til the first dawnings open little by

little into the full light".
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Chapter 1

AN OVERVIEW

1.1 Introduction

Decision science uses multiattribute utility theory to treat prob-
lems where the consequences of a decision are judged by multiple attrib-
utes or criteria. Although the theoretical basis of the multiattribute
model is relatively simple and straightforward, decision analysts face
many problems when trying to apply the model. The main difficulty en-
countered is that of constructing the decision maker's mu.tidimensional
utility surface for a given problem. Actually, except for the case of
one-attribute utilities, there are no general procedures or techniques
for directly assessing arbitrary multiattribute utility surfaces. Hence,
the current state of the art is to impose different regularity assump-
tions on the utility surface to make it less arbitrary. The main theme
is to be able to derive analytically the multidimensional utility from
one-dimensional utilities which are assessed directly and are completely
arbitrary. Such procedures are generally called decomposition or sepa-
rability techniques.

The first attempt to decompose a Von Neumann utility surface, which
is what we deal with in this work, is in a 1965 article by Fishburn [8].
The article contains a system of axioms that guarantees the so-called
additive utility model. Thereafter, other researchers propose other de-
compositional axioms that produce different simple and appealing utility
forms such as Pollak's [30] multiplicative model and Keeney's [20] quasi-

separable model.




Two features seem to characterize most of the work in this area.
The first feature is that of the researcher's emphasis on symmetry and
functional simplicity of the utility form. By symmetry, we mean that
whatever preference regularity is imposed on one attribute is also im-
posed on all other attributes. The other feature is that of requiring
full decomposition, i.e., an n-attribute utility surface is decomposed
into n one-attribute utilities.

In our work, we deviate from both features. We do not insist on
a prior form but, rather, we model the underlying preferences, seeking
regularities (of a certain class) that exist and deriving the utility
form that reflects only the acknowledged regularities. Thus, no sym-
metry is required, and the utility form is tailor-fit to each particu-
lar preference setting. As such, there may be utility forms where the
n-attribute surface is not fully decomposed. For the indecomposable
subspaces, we propose the methodology and theory of Chapter 5.

We view our work as an integrated framework for constructing mul-
tiattribute utility surfaces in two main stages.

Stage 1: Modeling the underlying preferences for a given setting.
The idea here is to take advantage of whatever regularities the prefer-
ence setting reflects. Many concepts of preference regularity are pro-
posed in the literature. We have elected to work with the utility in-
dependence concept that captures a certain kind of preference regularity,
which we will define later. Other concepts can be used as well.

Stage 2: If the modeling from Stage 1 does not produce a fully
decomposed surface, the indecomposable subspaces are treated as such
and the strategy of continuous cuts, presented in Chapter 5, is used to

construct an approximation for the utilities over these subspaces.




The framework is flexible enough so that the analyst using it can
continually make trade-offs between the degree of accuracy he requires
of the constructed surface, and the amount of effort he and the deci-
sion maker are willing to expend on the assessment.

Even though our research is geared toward utility theory, the
framework may be extended in two broad directions. First, the surface
to be assessed can be any measurement theoretic surface that preserves
some ordering defined on a set of objects where the order of an object
is determined by multiple fact;rs. Second, the modeling of the order-
ing may be conducted using any well-defined concept of consistency or
regularity that is meaningful to the ordering. For instance, the prob-

lem of measuring different human senses under controlled laboratory

conditions may be approached with the broad outline of this framework.

1.1.1 Basic Definitions

Since most of the terminology in utility theory is not
standardized, we will define and explain some of the terms as we use
them. Any decision facing the decision maker, hereafter referred to
as the DM, results in a consequence to him. A consequence is judged
by multiple factors or characteristics that we call attributes. An
attribute X, is defined by an attribute set, xi, which, unless
explicitly stated, can be any arbitrary set with at least two elements.
The values an attribute takes need not be real numbers, and the Xi
can be finite, countable, or uncountable.

Throughout our work, the number of attributes for a given
problem, denoted n, 1is arbitrary but finite. A potential problem

may have from two to three attributes, all the way up to thousands of



attributes. For a problem with n attributes, the cartesian product
X = x1 ¥ oiee M xn is called the (whole) product set of attributes. In
the case where decisions lead to certain consequences (no risk is in-
volved), X 1is also called the Enoice space. For most of our work,
the type of utility theory we deal with explicitly treats uncertainty
as one more feature of the consequences of decisions. As such, the
choice space we deal with is the space of all simple® probability dis-
tributions over X, denoted P. It should be clear to the reader that
when the choice set is P, then X 1is a subset of P. This 1is so
since any element in X corresponds to a degenerate probability dis-

tritution.

The DM preference structure is an ordering < defined on

the choice space. A utility is a real valued function defined on the
choice space with the main feature of preserving the ordering of the
preference structure. When the choice space is X, i.e., there is no
uncertainty involved, the utility over X 1is also called a value func-
tion. When the choice space is P and the preference structure is
consistent with the system of axioms proposed by Von Neumann and Morg-
enstern [38], to be described later, the order preserving function is

called a Von Neumann utility. We almost exclusively will deal with Von

Neumann utilities. Thus, for the sake of brevity. we sometimes delete
the ad jective Von Neumann,

A utility surface is the part of the utility function that

is defined on X. For a Von Neumann utility, once the utility surface

*
A probability distribution is simple if the number of points with non-
zero probability is finite.




(on X) is obtained, the utility on P is derived via the (probability)
expected value operator. When assessing the DM's preferences, all the
analyst has to do is to construct the DM's utility surface on X. The
dimensionality of the surface is equal to the number of attributes of

the problem at hand. A conditional utility is the restriction of the

utility surface to the product set of some subset of the attributes. A

decompositional axiom is an assumption via which the utility surface, of

a certain dimension, is derived analytically from conditional utilities
of lower dimensions. Since the assessment effort required to construct
a utility decreases with less dimensions, a decompositional axiom, if

satisfied for a given choice setting, is a welcome relief to the analyst.

1.2 Background and Related Work

In this section, we review some of the background and important

previous work that relates to our research.

1.2.1 Von Neumann Utility Theory

The theoretical basis of Von Neumann and Morgenstern [38]
guarantees the existence of these utilities. Since the publication of
this work, several other researchers proposed other systems of axioms
which are equivalent to the Von Neumann system, with minor modifications
and extensions. The following system of axioms, taken from Fishburn [9],
is typical and is considered standard.

Let X =X, XeeeX xn be the product set of attributes, and

1
let P be the space of all simple probability distributions on X. Let

<, read "not preferred to," be the preference ordering defined on P.




The relations of strict preference, <, and indifference, ~, are de-

fined from < as follows: Let pl, P2 € P.
P, < p, <=> (p1 < P, and not P, < pl)

P ~ Py <=> (p,

A

p, and p, < pl)

Axiom 1: < 1is a weak ordering on P. That is, < on P

is connected and transitive.

Axiom 2: (sure thing) 1If Py +PysPy € P and if Py < P2,

then, for any real number ¢ € (0,1), we have

apl + (1 - @) Py - ap2 + (1 - ) P,

Axiom 3: (Archimedean) 1If Py 1Py sP, € P and if Py < P,

and P, < Py then there are numbers «,8 € (0,1) such that

ap; + (1 - Py < P, =< Bpl + (1 - R) Py

If these axioms are satisfied for a given preference, then we are guar-
anteed the existence of a real valued utility function, u, defined on

P, with the following important characteristics.

(1) Order preserving: That is, if PP, €P and p, < p,,
then

u(pl) < u(pz)

| where < 1s the standard order, less than or equal to,
defined on the real line.



(2) Expected utility property: The utility of a probability
distribution p € P 1is

u(p) = ji u(x) « p(x)
x€EX

(3) u 1is unique up to a positive linear transformation. That
is, if u and u' are two real valued functions satis-
fyihg the above two properties, then there exists two
real numbers 71 and 7o with y P 0 such that

+ 3 e

72

u 1is made unique by arbitrarily fixing its values at two
points of the domain.

The first property indicates that u contains complete in-
formation about the preferences. The second property indicates that,
even though u (on P) is an infinite dimensional surface, all we need
to do to have u 1s to construct its restriction on the finite dimen-
sional space X and then extend the domain to P analytically. The
third property, which is the basis of most decomposition techniques,
says that a whole family of functions are eligible candidates to repre-
sent the preferences. We should remark that there are no other proper-
ties required of u such as continuity, differentiability, or monoton-
icity. u can be any arbitrary surface that satisfies the above system
of axioms. It is possible, as we will see later, to augment the axioms
such that the evolving utility exhibits further regularity and smooth-

ness properties.




1.2.2 Approaches for Constructing Utilities

We will review here some of the ideas for constructing util-
ity surfaces on the product set of attributes, X. The literature (for
instance, see Pratt et al [32]) contains techniques and methodologies
for directly assessing utilities on a single attribute without requiring
any simplifying assumptions other than the utility is of the Von Neumann
variety. For the case of more than one attribute, no such methodology
exists and different kinds of simplifying assumptions have to be imposed
on the utility to restrict its form. This hopefully reduces the assess-
ment effort required for construction. The most important, and most
popular, procedures for introducing simplifying assumptions are the so-
called decomposition or separability techniques. We will treat decom-
position in detail in the next section. Here, we consider some of the

other important approaches.

The Two-Step Decomposition Procedure

Here, the word decomposition is used in a different sense from that
of the next section. This procedure advocates the 'decomposing' of the

utility assessment effort into two stages.

(1) The assessment of the deterministic trade-offs on X.
This corresponds to constructing a value function by
treating X as the whole choice space (no uncertainty
involved). In economics, the value function is re-

ferred to as the indifference curves.

(2) Once a value function is constructed, a Von Neumann
utility is obtained by invoking a risk on a properly

chosen scalar numeraire.




For more details, see Boyd [2]. This procedure is of great theoretical
importance, but of limited applicability. From an application point of
view, the procedure transforms the challenge of directly assessing a Von
Neumann utility into the problem of assessing multidimensional indif-
ference curves in X. The latter problem, in general, can be just as
difficult or perhaps more so than the former. One instance where this
procedure is used to advantage is where the indifference curves can be
constructed analytically via economic modeling of the underlying deter-

ministic trade-offs.

Dean Boyd's Work

Boyd [2], among others, has a novel stand on the construction of
utilities. Recognizing that utilities are used to solve decision prob-
lems, Boyd's approach does not require the construction of the whole
surface but, rather, only to assess the necessary utility information
to solve the decision problem at hand. Thus, he proposes an optimiza-
tion algorithm that is applied to these problems. The algorithm produces
the optimal decision without requiring a priori an explicit representa-
tion of the utility. Rather, it solicits the necessary information
about the utility at each iteration as needed. The main idea of the
algorithm is that of approximating the utility surface at a given point
by a first order Taylor approximation. Minimal knowledge about u is
required to construct such local approximation. This knowledge has to
be assessed directly from the DM. The theoretical fact that guides the
algorithm is that, whenever the Taylor approximation maximizes the de-
cision at the locale of the approximation, it would be sufficient for

the decision to be optimal with respect to u itself. Boyd's work is

T et . < o




an important theoretical contribution to the field even though its ap-

plicability is limited to simple decision problems.

Delta Properties Techniques

The approach here is to augment the Von Neumann system of axioms
with further smoothness assumptions in such a way that the evolving
utility is a member of a classical family of curves. As such, the util-
ity assessment reduces to estimating a few parameters. The smoothness
assumptions, which describe specific kinds of preference behavior, cor-
respond to functional equations that restrict the functional form of the
utility (for examples, see Keelin [18]). It is theoretically possible to
develop functional equations corresponding to any of the classical func-
tions; yet, the behavioral implication of such assumptions are hard to
justify for most actual preference structures. The approach though has

been useful for local approximation of preferences.

1.3 Decompositional Techniques

These techniques are currently the most popular approaches for
dealing with multiattribute utilities. Decomposition assumptions were
originally used by economists to deal with (deterministic) utilities
over commodity spaces,‘ or what we had called value functions. As such,
the assumptions are referred to as separability axioms. The first rig-
orous attempt at decomposing utility functions over commodity spaces is

that of Samuelson [35], where he derives necessary and sufficient

»
A commodity space essentially can be thought of as the product set of
n attributes.

10




differential equation conditions corresponding to the additive utility
model, i.e., the model where the utility of a commodity bundle is the
sum of the utilities of each component commodity. Debreu [5] introduces
a concept of preference independence and proposes an algebraic system of
axioms that guarantees the additive utility model. Strotz [36] reports
on empirical observations which justify the partitioning aspect of sepa-
rability assumptions and proposes the notion of a utilityltree to portray
diagrammatically the partitioning phenomenon. Gorman [14] considers the
implications between different collections of Debreu's preference inde-
pendence axioms and suggests the use of utility trees for modeling pref-
erences. Psychological research in the area of conjoint measurement (see
Krantz et al [26]) proposes still other varieties of decompositional ax-
ioms that correspond to the additive utility model.

The modeling of deterministic utilities can be used to advantage for
constructing Von Neumann utilities via the two-step procedure, described

previously, as has been demonstrated by the work of Keelin [18].

1.3.1 The Decomposition of Von Neumann Utilities

The first attempt to directly decompose a Von Neumann utility
is that of Fishburn [8]. To describe Fishburn's work, we need to intro-
duce a few prelim‘naries.

Let the attribute space be X = X, X ... X xn. let P Dbe

1
the space of all simple probability distributions on X. If p € P, let

P be the marginal distribution of p on X iwl,.. 0,
x

’
1 i

Definition 1.1 (Fishburn). The attributes xl,...,xn are mutually value

independent if, for every p, p € P, p ol 0 1 ® 1 ,.0eyn

| 1

implies that p ~ p'.
11




The concept of value independence characterizes preference
structures where the preference over lotteries depends only on the mar-
ginal distributions over the attributes and hence eliminates effects due

to coupling or interactions between attributes.

Theorem 1.1 (Fishburn). Let the product set of attributes be X = X1 4

soe K Xn. Assume the preferences satisfy the Von Neumann axioms.

Then the attributes are mutually value independent if and only if,

for x = (xl,...,xn) € X, we can write
n
U(xl, ooy XY = S u, (x,) (1.1)
n = > Sl |

where ui(-) is a real valued function on the space xi, i=1,
o5 9 gtha

Each ui is actually a full-fledged utility defined on 1its
respective space. Equation (1.1) is what is called the additive

(Von Neumann) utility model.

1.3.2 The Work of Ralph Keeney

We will develop in detail some of Keeney's work due to the
fact that it is related intimately to our research. The concept of
utility independence, denoted UI, is central to most of this work.
Before introducing this concept, however, additional notation is needed.

let X = x1 X eee X xn be written as Y X Z where Y cor-
responds to an arbitrary (nonempty) subset of the attributes and Z cor-

responds to the complement set of attributes. For Y and Z, let us

define Py and Pz as the spaces of all marginal probability

12




distributions on Y and Z, respectively. As such, the space of prob-
ability distributions P is Py b Pz. Hence, for p € P, there exists

py € Py and P, € Pz such that p = (py,pz). For a marginal distribu-

tion that is degenerate (i.e., only a single point in the respective
space has a nonzero probability), we denote it by the certain point. As

an example, for some z.  €Z, P = (p ) denotes a lottery in P with

1 y’zl

py marginal distribution on the Y space and a degenerate marginal dis-

tribution on Z with pz(zl) =1. For z, € 2, let us define the in-

duced preference ordering, <, on Py as follows: For py, p; c Py,

z
0
we have

(Py-zo) S (pyvzo) <=>p S P

)

'
y X

Definition 1.2 (Keeney). The (vector) attribute Y 1is utility indepen-

dent of Z 1if, for every z = <.

22 s 4, ;S ;
1

1!
2

The definition characterizes preference structures where the
ordering of lotteries on the Y attribute is not affected by the partic-
ular (certain) value of the Z attribute. Keeney [20] has shown that Y

is Ul of Z 1if and only if u(y,z) has the following functional form:

u(y,z) = fz(z) + fl(z) . u(y,zo) for some z, €z (1.2)

where fl and fz are real valued functions with 11 > 0. Equation

(1.2) is sometimes used as the definition of UI.

To determine the functions f1 and fz’ let us fix the

utility surfaces' two degrees of freedom (see the third property of Von
Neumann utilities, described previously) by choosing Yor V1 € Y such

that
13




u(yo,zo) =0 ; u(yl,zo) = %0

(Here we implicitly assume that such pairs of points exist. This assump-
tion is sometimes explicitly stated by assuming that Y is essential.)

Substituting Yo in Eq. (1.2), we get

u(yO,Z) = fz(z) + fl(z) . u(yo,zo) = fz(z) (T.3)

Also, substituting ¥y in Eq. (1.2), we get

u(yl,z) = fz(z) + fl(z) . u(yl,zo)
(1.4)
. .fl(z) = [u(yl,z) - u(yo,z)] /Oz
Substituting Eqs. (1.3) and (1.4) back into Eq. (1.2), we get
u(y,z) = u(yo,z) + l/a[é(yl,z) - u(yo,z)] . u(y,zo) €1.5)

Thus, from Eq. (1.5), we are able to derive u from its restrictions on
the subspaces Y and 2.
Keeney [20] uses the UI concept to develop the so-called

quasi-separable model.

Definition 1.3. Let the attribute set be X, 6 X ... X Xn. u is quasi-

1
separable if there are real valued functions ui on xi, : I T A
.++yn, such that u has the following form:
u(xl, Vo4 xn) = K(Jl, ...,jn) . R(jl, ...,jn)

3qreee0d €(0,1)
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where
n
R(1, ., « 13 = O
1 i=1 J3
and
= J. =1
Rj ui(xi) if 3y
al
= - j =0
3 ui(xi) : 6 i 34
The K(jl,...,jn)'s are real constants.

1

Again, the ui

s 1in this definition correspond to utilities

on their respective spaces.

Theorem 1.2 (Keeney). Let the product set of attributes be X = x1 X oo

XX . For 1i=1,...,n, asgsume the xi is UI of its (orthogonal)
complement with respect to X. Then u on X has the quasi-sep-

arable form.

In addition to the models of Theorems 1.1 and 1.2, the third
most popular model is the so-called multiplicative-additive model. This
model is developed, almost simultaneously, by both Keeney [20] and Pol-

lak [30].

Theorem 1.3 (Keeney). Let the product set of attributes be X = X_ x.

1

% xn. Assume that X, X ... X X X

1 i-1 x1+1 X vue XK xn is UI of xi

for n-1 of the i =1,...,n, and n > 3. Then either

L%, ssvy X ) ® :E k.u. (x )
1 n =1 13 1

15
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or

¥ 1
[1 + ku(xl, Savars xn)] = [1 + kkiui(xi/J

-
0=
ny

where u and u1 are utility functions (on their respective

'

i s are scaling

spaces) scaled from zero to one. The k and Kk

constants with

=i, Gl i o0 iz [0 350 <8 O <l | for 1 =Y, «si, B

The value of the constant k determines whether u is ad-
ditive or multiplicative. This value is determined by the ki‘s whose
values are to be assessed directly by the DM. The multiplicative-addi-

tive model may be compactly written as

u(xl, g xn) = 3 ul(xl) e un(xn) - * € {x,+) (1.6)

Keeney [20] also derives the same model using a combination of prefer-
ence independence and utility independence assumptions. For the case of

only two attributes, Theorems 1.2 and 1.3 coincide and we have:

Theorem l1d4. let X = X1 b4 xz. Assume the Xl is UI of x2 and X2

is UI of Xl. Then, u has the following form:

ulx; ,x,) = I ul(xl) wu,(x,) * € (x,+)

Meyer [29] derives the equation (1.6) by dealing with a dif-

ferent set of UI assumptions.

16
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1.3.3 The Work of Farquhar

It is clear from Definition 1.2 that the UI concept captures

+ a certain kind of regularity by considering the induced preferences

conditioned on one element, i.e., induced preferences of the form <

z

Fishburn [11] introduces another regularity concept by dealing with two

element conditional preferences, i.e., induced preferences of the form
< where z1 and z2 are elements in the space Z as defined in

e, e,

Definition 1.2. Farquhar [6] generalizes Fishburn's work by considering

n-element conditional preferences, i.e., induced preferences of the form

< . The regularity assumptions that evolve from such conditional

z z
l,oon,n
preferences are called hypercube independence assumptions (the adjective

'hypercube' is used because the n conditional elements are indexed by
the vertices of n-dimensional unit hypercubes). Farquhar proves a fun-
damental theorem which gives the utility decomposition form correspond-
ing to different hypercube independence assumptions. Farquhar's work is
of great theoretical value since it integrates the state of the art and
demonstrates the extent of varieties of preference structures. From an
applications point of view, however, the consideration of n-conditional
preferences is both awkward and unintuitive. By comparing some of the
hypercube independence concepts to the UI concept, we believe that what
makes the latter concept more appealing and amenable to introspection is
the property that it always corresponds to a partition of the attribute
space (we will prove this fact in Chapter 2). Most hypercube indepen-
dence assumptions, however, do not have this property.

This concludes a brief review of the different results per-

tinent to our work.
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1.4 Summary of Results and Contributions

Throughout our work, we deal with the concept of utility indepen-
dence. Instead of treating specific sets of UI assumptions, or particular
utility decomposition forms, we consider arbitrary sets of UI assump-
tions with respect to n attributes. Each arbitrary set corresponds to
and defines a particular preference structure.

In Chapter 2, we characterize the utility decomposition correspond-
ing to an arbitrary set of UI assumptions by two fundamental properties:
(1) the decomposition partitions the attribute space into subspaces of
lower dimensions, and (2) preferences over the subspaces reflect differ-
ent levels of regularity. The concept of 'utility independence order'
is introduced to capture the second property. The two properties fully
characterize any decomposition corresponding to a set of UI assumptions.
Next, we identify an algebraic structure (a finite semigroup or a monoid)
which automates the derivation of the decomposition corresponding to a
set of UI assumptions. The algebraic structure is implemented, in a na-
tural way, using the concept of a utility tree. The tree method is a
simple and visually powerful procedure for generating utility decomposi-
tions. The procedure produces utility trees that are self-contained an-
alytical representations of the decomposition. The whole methodology may
be implemented on a computer.

In Chapter 3, we start by listing the preference structures corre-
sponding to all possible UI sets on three attributes. It is interesting
to note that such a listing was one of our early research goals. Our
initial attempt was to capture the different possibilities of preference

interactions on three attributes by developing differential eauation
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models, much in the same vein as that of Samuelson's [35] necessary and
sufficient conditions for the additive value model. 1In retrospect, we

believe the use of the UI concept is more meaningful and appealing.

Next, we use the fundamental decomposition characterization of Chapter

2 to propose a scheme for classifying preference structures on n at-

tributes. The scheme is most meaningful with respect to the assessment
effort required for each preference structure. We use the scheme to

list all 'distinct' preference structures on 2, 3, and 4 attributes.

The 'distinctiveness' here, of course, is modulo the UI concept.

In Chapter 4, we deal with how UI assumptions imply each other and
consider the case where different UI sets correspond to the same pref-
erence structure. We identify three instances (one of which is docu-
mented by Keeney [23]) where a given set of UI assumptions implies the
satisfaction of other UI assumptions. One of the instances correspond-
ing to a particular pattern of UI sets, which we call dichotomous chains,
results in representation forms that are a generalization of the quasi-
separable model of Definition 1.3.

Section 4.3 proposes a canonical form for UI sets which is helpful
for visualizing the decomposition involved, along with any possible UI
implications. Due to the central role of the multiplicative-additive
model for UI implications, Section 4.4 presents a method for construct-
ing a minimal number of UI assumptions corresponding to a given multi-
plicative~additive model. For instance, if the model involves n at-
tributes, Theorem 1.3 (of Keeney) requires n=-1 assumptions (Pollak
[30] and Meyer [29] require n assumptions), while our construction
requires a number of assumptions k where k 1is the smallest integer
such that:
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As an example, for a problem with a thousand attributes, Theorem 3.1
requires 999 assumptions, while our construction requires only 10 as-
sumptions. The amount of reduction in the verification effort by the
analyst is greatly reduced. The general topic of UI implications, in
addition to its theoretical value, is of practical benefit to the ana-
lyst. The analyst can design the collection of UI assumptions that is
most meaningful to the problem at hand. He can also reduce the number
of assumptions to be verified to a minimum to eliminate any, perhaps
nonobvious, duplication of effort.

Chapter 5, which relates to the second stage of the overall frame-
work, deals with preferences over multiple attributes where no regularity
assumptions are satisfied. The corresponding utility surface is called
indecomposable. For such surfaces, we propose the 'Strategy of Contin-
uous Cuts,' a flexible discretization process that collects continuous,
one-dimensional, samples of information about the utility. Interpola-
tion is used to fill the 'gaps,' due to discretization and, hence, con-
structs the whole surface. An appropriate rule for interpolating util-
ity values should be behaviorally motivated. Thus, in correspondence
with the continuous cuts strategy, we develop a behavior interpolation
rule called 'The Risk Aversion Profile Method.' The basis of this rule
is to assume a specific kind of local decomposition (or separability).
The local decomposition is implemented using the information on the con-
tinuous cuts by assuming different behavioral assumptions about a DM's
attitude toward uncertainty along each attribute. To the best of our

knowledge, the rule corresponds to the first attempt where local
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decomposition is used to model preferences. Note that this approach is
distinct from that of local fitting, using classical surfaces.

In Chapter 6, we demonstrate some of our results by an actual exam-
ple. The example constructs a twelve-attribute utility function for a
decision maker's preference of cars.

Finally, in the concluding chapter, we summarize the main results

of our work and propose different directions for extending it.
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Chapter 2

PARTIAL DECOMPOSITION OF UTILITY SURFACES

Decomposition of higher dimensional utility surfaces is attained by
assuming different global regularity conditions of the surface. Several
concepts of regularity exist in the literature; here, we deal exclusively
with the concept of utility independence, as defined in Chapter 1. The
satisfaction of a collection of Ul assumptions implies the feasibility
of reducing an n-dimensional utility surface to surfaces of lower dimen-
sions. This property reduces the assessment effort required for con-
structing the utility.

Most of the decompositional utility models in the literature assume
a symmetric set of assumptions where each attribute is treated in the
same way with respect to the type of regularities imposed. In our work,
we consider arbitrary sets of Ul assumptions and the corresponding util-
ity decomposition. This approach leads to a spectrum of preference struc-
tures whose ends are, on the one hand, the total decomposition of an n-
dimensional utility into n 1l1l-dimensional utilities and, on the other
hand, the n-dimensional utility cannot be reduced at all. The treatment
of arbitrary sets of UI assumptions is of immediate practical value since
different sets of assumptions are meaningful for different problem envi-
ronments.

As a preview of the chapter, Section 2.1 introduces the basic nota-
tion used throughout the text. Section 2.2 displays an algebraic span-
ning phenomenon that is fundamental to the kind of decomposition treated
here. The concept of 'utility independence order' is introduced to cap-

ture an aspect of this phenomenon. Sections 2.3 and 2.4 characterize
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partial decomposition in two fundamental ways: partitioning of the at-
tribute space, and low order regularities on the decomposed subspaces.
Finally, Section 2.5 proposes a codable procedure for generating the
decomposition corresponding to a set of UI assumptions. The procedure
considers the algebra involved in decomposition and abstracts from it a
finite algebraic structure, called a semi group, which is implemented in

a natural way using the utility tree notion.

2.1 Notations

We use a powerful notation for denoting Ul assumptions. Let us note
(see Definition 1.2) that the UI concept is defined for any (nonempty
and proper) subset of the set of attributes. Thus, for n-attributes,
there are many possible UI assumptions. For a given ordering of the
attributes, denote a UIl assumption by an n-component vector of ones and
zeros where the attributes corresponding to the ones are utility inde-

pendent of the attributes corresponding to the zeros. For example, for

a 4-attribute space,

D
(1,0,1,0) <=> X, XX, 1is Ul of X, X X,

The zero vector is called the null assumption. It should be clear that,

for n-attribute spaces, there are

possible assumptions, where we discount the null assumption and the vec-
tor of all ones as being ill~defined. An arbitrary set of UI assumptions
is denoted by the letter A. let a, b € A. We denote by a A b and

a Vb the component-wise Boolean product and addition, respectively, of
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n
a and b. Here, we are treating A as a subset of the 2 -Boolean al-
gebra. a denotes the Boolean complement of a, 1i.e., the zeros and

ones of a correspond to the ones and zeros of a, respectively. As

an example, let a = (1,0,1,1) and b = (1,1,0,0); then,

aAb = (1,0,0,0)
aVhbes(1,1,1,1)
a = (0,1,0,0)

If u 1is restricted to a subspace of the attribute space, it is
called a conditional utility and is denoted by Cu(:). The variables
on which Cu(:) is defined are called active variables, while the var-
iables of the complement space are called parameters. It is useful to

denote the argument of Cu(*) by two different notations:

(1) The standard mathematical notation where all the varia-
bles are listed and the parameters take on constant val-
ues. For example, Cu(xl,iz,x3,§4) is the conditional
utility over (xl,xa) where (x2,x4) is a point in the

parameter space x2 X X4.

(2) The Boolean notation is to indicate the active variables
by ones and the parameter variables by zeros. This is

another use for the elements of 2n-Boolean algebra.

Both notations will be used as appropriate. Two distinct condi-
tional utilities are generically different if their domain of definition

is not the same. Otherwise, they are parametrically different.

We use the standard set theoretic notation such as |J for union,
N for intersection, and a set with an upper bar for the complement op-

eration.
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2.2 Spanning of Conditional Utilities

Before stating the main definitions, let us motivate them by an ex-
ample where we point out the salient features of the decomposition tech-
nique. We will particularly articulate an algebraic phenomenon, called

spanning, which is at the heart of partial decomposition.

Example 2.1.

Let the attribute space be X XY X Z where X, Y, and Z are
scalar attributes. Let the set of satisfied UI assumptions for a par-
ticular preference structure on X XY x 2 be A = {(1,0,0),(0,1,0)].
Let us generate the corresponding decomposition.

To apply the definition of utility independence, let (xl,yl,zl),

(xz,yl,yl), and  (x ,71) be elements in X X Y X Z with

12

u(xl,yl,zl) =0 ; u(x2,y1,zl) e 1/00 3 u(x zl) = 1/8

1'Yg0
where « and £ are not equal to zero. We can now write

(1,0,0) = u(x,y,z) = m(xl,y,z) + a[(m(xz,y,z) -Qx(xl,y,z)] . Cu(x,ylpzl)

(2.1)

Equation (2.1) is attained similar to Eq. (1.5) of Chapter 1. Similarly,

we have

(0,1,0) = U(xl'y'z) = O.I(x,yl,z) +B[Cu(x,y2.z) -m(x,yl,z)] -Cu(xl,y,zl)
(2.2)

Let us decompose Cu(xz,y,z), from Eq. (2.1), via Eq. (2.2) as follows:

25




D
Cu(x2,y,z) = u(xz,y,z) = Cu(xz,yl,z) + BEJJ(xz,yz.z) - Cu(xz,yl,z)]

* Cu(Xl .y,zl)

Decomposing Cu(xl,y,z) in the same way and substituting both expres-

sions back in Eq. (2.1), and rearranging terms, we finally get:
u(x,y,z) = £(x) - g(y) - Culx,,y,,2)
+ f(x)[1 - g(y)] - Cu(x2,y1,z)
+ 1 - £(x)] * gly) - Cu(xl,yz,z)

+ [1 - £(x)] - [1 -¢g(y)] - Cu(xl,yl.Z) (2.3)

where f(x) = OCu(x,yl,zl); gly) = BCu(xl,y,zl). Let us note the fol-

lowing points.

(1) The set of attributes has been segmented into three
mutually exclusive and collectively exhaustive subsets
corresponding to the active variables of the three
generic conditional utilities. As will be shown, such

partitioning occurs for any set of UI assumptions.

(2) Equation (2.3) indicates that four conditional utilities
on z (i.e., at four settings of the parameter space)
are required to construct u. Let us identify the sur-
face u with the set of all conditional utilities on z
(the latter would be cuts along the z-direction of the
former). Now, Eq. (2.3) says that this set is spanned
by four elements in it. This observation reflects a
type of low order independence on Z that is implied
by the UI assumptions on X and Y. With respect to
X and Y, the respective conditional utilities are
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spanned by one conditional utility and a constant func-
tion. To see this point, scrutinize Eq. (2.3). These

observations are the motivation for Definition 2.4 below.

(3) If Eq. (2.3) is used to generate an arbitrary conditional
utility on Z, 1i.e., Cu(xi,yi,z), we find that the co-
efficients multiplying the z-conditional utilities always

add up to one. Hence, if the set {Cu(xi,y Yo X EX,

3 i
Y, €Y} is embedded in an appropriate linear space, u

J

may be characterized as a linear variety of functions,
where the spanning functions are actually restrictions or

cuts of u itself.

(4) The generation of any u(xi.yJ,z), for some X, € X and

YJ €Y, via Eq. (2.3) can be thought of as a three-step

procedure:

(1) Find u(x ,2) as a point on the function

1'%1

line formed by u(x z) and u(xz,yl,z).

l.yl.

(ii) Similarly, find u(xi,yz,z) as a point on
the function line formed by u(xl,yz,z) and
u(xz,yz,z).

(1i1i) Finally, derive u(xi,y ,2) as a point on

J
the function line formed by u(xi,yl,z) and

u(xi,yz.z).

Note that it is just as well if we had gone the route

u(xl,y 2}, u(xz,y y2), and u(xi.y ,2). See Fig. 2.1.

J J J

With the above motivation in mind, the following definitions are

introduced.

Definition 2.1. Let the attribute space be X ¥ Y where X and Y are

vector or scalar attributes. Consider the set
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S[Cu(x,yi)] =

Sfcu(-)]

Definition 2.2,

SP =

is called the function space of
Let X

{Cu(x,yi): i =1

5}

cu(-).

{Cu(x.yi)= ¥,

and Y be as defined above. Consider the set

g £, Yy = Y}

SP is a spanning set for S[Cu(-.)] if, for every cu(-:) <slcu(-)],
2
cu(.) = % 5 (v) qulx,y,) + b7
— i 5 | /+1
i=1
The bi(-)'s are called weight functions.
u(xl,yz,z) x\__;;{ X u(x2,y2,z)
|
’/,////,—l
u(xi’yj’z) - E
|
|
|
|
u(xl,y1,7) B L u(xz,yl,z)
“(xl.yz.-’») u(xziyzvz)
U(xi .Yj ,2)
u(xl,yl,z) u(x2,y1.2)

Fig. 2.1.

SPANNING OF CONDITIONAL UTILITIES.
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Spanning sets will generally be invoked by A, the set of UI as-

sumptions. Hence, the following definitions.

Definition 2.3. For a particular A, The spanning set of a given Cu(-)

is minimal if none of its elements can be eliminated by the assump-

tions of A.

Proposition 1. Iet Cu(+) be (any conditional utility) invoked by the

set of assumptions A. Then, a minimal spanning set for

cul-),

along with its weight functions, will construct the utility surface

W

Let the attribute space be X1 I amelia Xn. Without any 1loss of
generality, assume we have the minimal set for Cu(xl,....xr) where
O << n. Iet (;1""'§n) be a point in the attribute space. We want
u(il,...,§n). Two steps are involved:

(1)

(2)

Interpolation step:

cu(xl, seen XX 40 ceey xn) = 1(xr+1, . oleiy xn)
i=1
Cui(xl, . oy xr)
2 b£+1(xr+1' i xn)
where

Cui(xl, Sy xr), i=1,...,£ minimally span Cu(-)

Substitution step: We substitute
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;1' ""§r in Cu(:) to get u(§1, ve,x ) = Culx

Q.E.D.

Definition 2.4. Cu(-) 1is said to be utility independent of order k,

denoted UIk, if its minimal spanning set has cardinality k.

Let us remark that, if A has only one UI assumption, two generic
conditional utilities ar¢ invoked: one is UI1 and the other is UIQ.
Let us also remark that each assumption in A will invoke a con-

ditional utility that is UIl' Thus, there is a natural correspondence

between Cu(-:) that are U11 and utility independence assumptions.

Generating the Decomposition Corresponding to A

Each UI assumption in A will, by definition, generate a decompo-
sitional equation for u. The resulting system of equations is manipu-
lated to produce the simplest decompositions of u. The idea is to take
a conditional utility invoked by an assumption and decompose it further
by one of the other assumptions. This is done recursively for each con-
ditional utility until no more decomposition or reduction is possible.
The simplest possible decomposition, which is unique, is the one that

corresponds to A.

2.3 The Partitioning of the Attribute Space

The following theorem characterizes the set of all generic condi-

tional utilities in the decomposition corresponding to A.

Theorem 2.2, let A = (31: 1i=1,...,k] be the set of all satisfied UI

assumptions for a particular preference structure. Then,

30




~ * po -
a a ): (a R e
{Cu(a1 Ao N ak) (a1 A ak) # 0 and a, {ai,ai)}

is the set of all generic conditional utilities in the decomposition

corresponding to A.

Proof.
Proof by induction on k. For k =1, the assertion is true by the

definition of UI. Assume the assertion is true for k. Let A' =AU{a }.

k+1

We will show the assertion is true for A'. We will generate the decom-
position for A' by starting with the decomposition for A. Initially,

a i will be applied to each of the generic conditional utilities of A.

By definition,

a8 .1 = u(:) = f[()tl(ak+1); Cu(ak+1)] (2.4)

Substituting cm(é‘l A e A Ek) in the functional form of Eq. (2.4),

we get the following functional form:

c:u(a?1 N X gy - f[cu(al Ay A

A
kT Mt

% ) I Cu(a1 o a, A ak+1ﬁ

Thus, we can replace all the generic utilities of A by the new ones,

Cu(ﬁ'1 N N Ek+1)' Now, further substitutions will involve one of the

UI assumptions with Cu(ﬁ'1 N wws N Ek+1) as follows:

a = u(.) = f1ECu(a1); Cu(ai)] > YA wl, ssvi K41

Hence,

*
0 here denotes the zero vector (0,0,...,0).
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Y A S = B Aeis BB A s cu@. Ao, A A a
Cu(a1 A 8k+1) f[éu(al A a ai), {a a ai)]

But, note that

51 N s 5k+1 Aa, = 51 B wiew B 5k+1 1% Ei =a,
=0 if 51 = 51
and
8, A A 5k+1 A 51 =0 if Ei =a,
=@ A AE if Ei = Ei

Thus, Eq. (2.5) says that no new generic conditional utilities will

evolve and all the current ones will be preserved. Q.E.D

Definition 2.5, A partition of the attribute variables is a collection

of mutually exclusive and collectively exhaustive subsets of the

set of attributes.

Theorem 2.3. The active variables of the generic conditional utilities

of a decomposition corresponding to any A form a partition.

Proof .

Any generic conditional utility is of the form

Cu(n1 s w2 ak) where (a1 o R ak) £ 0

To show mutual exclusion, consider the following arbitrary pair of dis-

tinct Cu's:
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Qu@; A ... A& ) and Cu(By A ... A b )a.b (a5 )

1

Since the 1's correspond to active variables, the two Cu's are mutually

exclusive if

a e e e a /\ b .--‘\~ "—'0 2.
(a1 A A ak) (b1 A A bk) (2.6)

Equation (2.6) is true if there exists an 1 such that

., =Ry

Bﬁt, at least one such 1 will exist or else the two Cu's are not dis-
tinct.

To show collective exhaustion, we will construct a conditional util-
ity whose active variables contain an arbitrarily chosen attribute vari-

able. Let the arbitrary attribute be the 1th one, 1 <1i<n. For each

3, 1

IA

J < k, choose 5J(a ,Ej] such that the 1th component of Ej is

J

one. Now, 51 it Ek # 0 and Cu(.'?\'1 e 5k) will contain the

th

i attribute as one of its active variables. 850

2.4 Utility Independence Order

The previous section characterized all the generic conditional util-
ities of a particular decomposition. But, as Example 2.1 indicates, a
conditional utility may be required at more than one setting of its pa-
rameters. Definition 2.4 refers to the required number of settings as
the utility independence order of the conditional utility. The following

theorem characterizes this concept.
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Theorem 2.4. Let Cul....,CuI be all the generic conditional utilities

corresponding to some A. Let 01 be the utility independence or-

der of Cui’ i wml..00,0s Then,
(1) o, € B v w0.1,3; jvvg k1) TRE P
A
(2) £ .o
i=1

To prove the theorem, we need the following lemma.

Lemma 2.5. For any Cu the number of settings each parameter, sepa-

i,

rately, takes on is either one or two.

We will prove the theorem and lemma simultaneously.

Proof.
By induction on the number of UI assumptions in A. If A = {a},
the theorem and the lemma are true by scrutiny of Eq. (1.5) of Chapter

1, let A= (a i=1,...,k-1)}, and assume that the corresponding

1~:
Cul,...,cue satisfy the assertions of the theorem and the lemma. Con-

sider A' = A U (ak] with its corresponding Cu',...,Cué. Without any

loss of generality, denote Cui, i=1,...,e, as follows:

cui(-) - Cui(lll 10 P Ok) LL<r<n (2.7)

2 """ Tr r4l

(This may be accomplished by permuting the attributes.)

In conformance with Eq. (2.7), a  may be denoted as follows:

s =l +..10
mm

K 1 0 1 ses A 0 e On)

+41 °°° Tr rsl r+f
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where 0 <m<pr; 0< f<n-r. Let

h1 = Cu(fl' ey XX a0 eeey XX g0 cees X g T rapal® xn)
h2 = Cu(§1, ey §m,xm+1, . visig xr';r+1' ey §r+['xr+ﬁ+1’ o iy xn)
h, = Cu(xl, ooy X X g eeey XX g ceey XX a1t in)
where 51 and §1 € xi, Lowm L vinlte
We have, by definition,
a, = ul:) = h1 + a[h2 - h1] . h3 a >0, a constant (2.8)

We will use this setup to argue the assertions. Let Cus, l1<s<e,

be UI21 (with respect to A). Since, by the induction assumption, the

number of settings of each parameter is either one or two, we can divide
i =

2 into 2j and 2i J, 0<Jj<1i, where 2j is the number of settings

g1
in the parameter space (xr+1,...,x ) and 2 7 1is the number of set-

r+/

tings in (x Let us apply a to Cus via Eq. (2.8).

r+l+1""'xn)' k

There are three mutually exclusive and collectively exhaustive cases to

consider.

Case 1: m =0,

As Eq. (2.8) indicates, Cus will not be decomposed further. Hence,
from Theorem 2.2, it will be one of the generic conditional utilities of
A'. For the number of required settings in its parameter space, note
that the settings of the parameters (xr*1+1,...,xn) will be preserved

at this point of the argument, while the settings of the parameters

(xr+1""'xr+z) will be replaced by the two points (§r+1'°"'§r+r) and
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(x ,+.++,X__ ). Hence, the UI order of Cu_ with respect to A is at
r+l r+f s

21-J+1

most . For the case where j = 0, the decomposition is better

off without applying ak to Cus. Thus, we can conclude that the UI

order of Cus is at most 2i

Chgse 2: W = Y.

Again, CuS will not be decomposed further. The settings of the

space (x .,xn) are replaced by a single point, i.e., (

r+b+l’ "’ Ersr41’

..,En). Hence, the UI order of C'uS with respect to A 1is at most

Cass 3: » >m > 0.

By Eq. (2.8), CuS will be decomposed into

Cusl(l1 Py lmOm+1 TSR On) and Cusz(O1 Sk Omlm+1 T 1r0r+1 o On)

Cu and Cus will be generic conditional utilities of A' (see

sl

the Proof of Theorem 2.2). Cu51 will inherit all the parameter set-

2

), and only the point (x AR

tings of the space (x X erel’

“e ey

r+1’ xr+£

En) is required in its space. Thus, the UI order of Cu51 (with re-

spect to A') 1is at most 2J.

Cu will inherit all the settings of the parameters (x

s2

r+f+1’’

),

xn). while two points will be required in the space ( i

Xrs1'" r+/

) and (x ). Thus, the UI order of

namely, ( X1t Xy

' Er s

i-j+1

Cu82 is at most 2 . So, the Ul order of both C'us
1

at most 21+ , Note that, in this case, one conditional utility is re-

x ad
“r+1’

and Cus° is

-

1

placed by two. So, ' P/ +1, and the bound in the second assertion

of the theorem is made larger,
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With these three cases, the second assertion of the theorem is dem-
onstrated. To complete the proof for the first assertion and for the
lemma, the possibility of further applications of any of the assumptions
to available conditional utilities needs to be considered. Note that
further application of the assumptions will only reduce the number of
settings of the parameters. But, with an argument similar to Cases 1
or 2 above, any time the parameter settings are reduced, the reduction
is a power of two and, each time a parameter takes on new settings via
Eq. (2.8), the number of settings is either one or two. The decomposi-
tion corresponding to A' will be attained after a finite number of
such substitution steps.

Q.E.D.

2.5 A Hypercube Referencing and Scaling Strategy

From Lemma 2.5, we note that the minimal spanning set of any con-
ditional utility can be sufficiently referenced by parameter variables
that take on at most two settings each. Thus, let us propose the fol-
lowing convenient referencing procedure for the different conditional
utilities involved in the decomposition corresponding to any set of Ul

assumptions.

(1) Let the attribute space be x1 P xn. Choose
(51""'§n) and (xl,...,xn) € X1 e AR xn such

that X, £ x for every i =1,...,n.

1!

(2) Consider H = [(hl,...,hn): h, € (51,§1}, - [ R
n}). H 1s the hypercube generated by the two chosean

points.

(3) Let A be the set of UI assumptions. For each
a €A, apply a on u by referencing the invoked
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conditional utilities by vertices of faces of H. As
such, all required scaling constants correspond to util-

ities of some of the vertices of H.

Theorem 2.4 indicates that H has enough vertices to reference any col-
lection of conditional utilities corresponding to a set of UI assumptions.
Keeney has used a restricted version of this strategy for different parts
of his work (e.g., see Keeney [22]); what we did here is to formalize and

generalize Keeney's idea.

An Automatum--A Finite Semigroup

When using this procedure, the process of generating the decomposi-
tion form of a utility is governed by a simple algebraic structure called

a semigroup.

Definition 2.6. A set with an operation defined on it is called a semi-

group if the operation is closed and associative. If the set has

finite cardinality, then the semigroup is finite.

To recognize the involved semigroup, let us refer to the variables

of a given conditional utility in the following way.

(1) The symbol 1 refers to an active variable.

(2) The symbol 0 refers to a parameter variable whose

setting is in the set (§1’ 0y PR

(3) The symbol O refers to a parameter variable whose

setting is in the set {51: T PRI G

This new symbolism completely specifies any conditional utility that re-
sults from the referencing strategy described above. Now, consider the

set:
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SG = {(cl. cees €)1 C, € (1,6,0), 1= 1, ..., n}

Define the operation x on SG as follows: If C, C' € SG, then

ek ' 1
C*xC' = (C1 * Cl' o %\ie Cn * Cn)

where * on the set (1,0,0) 1is defined by the following table:

Table 2.1

DEFINITION OF =

s
%

= T
0 0 1
0 0 0 0
0 0 0 0
c, 0 0 0 0
1 0 0 %

Note that =« is noncommutative. The entries in Table 2.1 are Ci * C;
(and not Ci * Ci)' The operation % 1is clearly closed. To demonstrate
the associativity of * for SG, it is sufficient to show it for the

set [1,6,9]. Table 2.2 contains a proof (by complete enumeration) of

the associativity of x on [1,9,5].

The Tree Method

The best way to explain the use of the finite semigroup is by an
example. Let the attribute space be X X Y X Z. Assume that the set of
satisfied UI assumptions is ((1,0,0),(0,1,0)}. Choose (x,y,2) and
(x,y,2) € X XY x 2 such that
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A PROOF OF

Table 2.2

THE ASSOCIATIVITY OF

1+(0%0)
1+ (0*0)
1% (0*0)
1*(0*0)
0% (1*0)
0*(1*0)
0% (1*0)
0*(1*0)
0*(0*1)
0%(0*1)
0% (0%1)
0% (0*1)
1*(1%0)
1%(1%0)
1% (0*1)
1%(0*1)
0% (1%1)
0% (1*1)
1%(1#1)
0% (0+0)
e
0% (0%0)
0%(0%0)
0#(0*0)
0%(0*0)
0*(0%0)
0*(0%0)

1*0
1%0
1+0
1*0
0%0
0+0
0%0
O*Q
0%0
0%0
0+0
0*0
1%0
1*0
1%0
1%0
0*1
0*1
1*1
0%0
gee
0%0
0%0
0+0
0%0
0+0
0%

1010 OI1IO OI OI1IO O1 +# OtiIo 10 O! QIO 10 10 ©O1 0110 O110 o110 10 o1 ol

(1*0)*0
(1%0)*0
(1%0)*0
(1*0)*0
(0*1)*0
(0%1)*0
(0*1)*0
(0*1)*0
(0%0)*1
(0%0)*1
(0%0)*1
(0%0)*1
(1%1)*0
(1*1)*0
(1%0)*1
(1%0) *1
(0%1)*1
(0%1)*1
{1+1)*1
(0%0) *0
' g ke
(0%0)*0
(0%0)*0
(0%0)*0
(0%0)*0
(0%0)*0
(0*0)*0

* .
o110

*

* * *
I 19 Qi St N

1 Q110 Q110 110 10 O O
* *
-

o T |
* *
=

(=]

10 10 OII0 O O11IQ Ol B OIiI0 10 O D10 10 10 Ot O1iID o110 S1io 10 o1
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Assume also that

wixz.z) = 0

Using Eq. (1.5) of Chapter 1, we can write

[cu(x,y,z) - Cu(x,y,z)]
(0,1,0) =>u(x,y,z) = Culx,y,z) + - + Cu(x,y,z)
Cu(x,y,z)

(2.9)

where Cu(§,§,£) is a scaling constant. Let us rewrite Eq. (2.9) with
the symbolism of the semigroup:
fcu(1,0,1) - cu(1,0,1)]

u(1,1,1) = cu(1,0,1) + - . cu(0,1,0) (2.10)
Ccu(0,0,0)

Equation (2.10) is portrayed using a three branch node as follows:

€1,1,1)

0,1,0) (1,0,1) (1,0,1)

Where the vector at the node indicates the surface to be decomposed and
the vectors at the end of the branches indicate the conditional utili-
ties that are invoked due to the UI assumption. All four vectors are
elements of the semigroup SG. The UI assumption used for the decompo-
sition of the node is to be indicated along one of the branches. Let us
associate the list [(9.1.2);(1.9,1);(1,6.1)] with the assumption (O,

1,0). Such a list can be directly constructed for any UI assumption.
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The three vectors in the list correspond to the three conditional util-

ities invoked by a UI assurption. The first vector of the list denotes
the conditional utility that is in a one to one correspondence with the
UI assumption. Since we have assumed (in the referencing strategy) that

the attribute vector with a lower bar has a zero utility, all the zeros
of the first vector should have a lower bar. For the other two vectors,
one of them should have all zeros with a lower bar, and the other can,
in general, have any collection as long as they are not all with lower
bars. In this way, the second and third conditional utilities corre-
spond to two different points in the parameter space. The description
for constructing lists is made clear by a scrutiny of the derivation of
Eq. (1.5) of Chapter 1.

Let us continue with the example. The 1list for (1,0,0), con-

structed directly, is:

[(1,0,0);(0,1,1);(0,1,1)]
1f we decompose Cu(1,5,1) of Eq. (2.10) using (1,0,0), we get

w i (cu(x,y,z) - cu(x,y,z)]
Culx,y,z) = Cu(x,y,z) + - + Dulx,z.2) (2.11)
Cu(x,y,z)

or, equivalently,

cu(1,0,1) = cu(0,0,1) + + cu(1,0,0) (2.11)

We can augment Eq. (2.11) on the previous tree as follows:
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(1,0,0) (0,0,1) 0,0,1)

But, we can directly obtain this augmentation if we *-multiply (1,6,1)

by the list of the assumption (1,0,0) as follows:
((1,0,0);(0,1,1);(0,1,1)] * (1,0,1) = ((1,0,0);¢0,5,1);¢0,0,1)]

Decomposing (1,0,1) 1in the same way, we get
[(1,0,0);(0,1,1);(0,1,1)] * (1,0,1) = [(1,0,0);(0,9,1);(0,0,1)]

This equation is also augmented to tree as follows:

(2,3 ,31)

0,1,0) (1,0,1) (1,0,1)
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In general, the decomposition of a conditional utility by an as-
sumption corresponds to a three vector list. There are two ways which
indicate that a conditional utility can not be decomposed any further

by a UI assumption.

(1) If the first element of the evolving list is the vector

of all zeros with lower bar.

(2) If the first element of the evolving list is a vector
equal to the vector corresponding to the conditional

utility to be decomposed.

Both of these instances correspond to cases where the evolved
equation is an empty algebraic identity. A 1list whose first element
corresponds to one of the above cases is called tautological. The con-
struction of a utility tree is completed when, for every conditional
utility, further decomposition by assumptions produces tautological
lists. The completed tree should be such that the collection of the
conditional utilities of the end branches corresponds to the collection

characterized by Theorem 2.2.

The Use of the Tree

A utility tree is a self-contained analytical form of the decom-
posed utility surface. 1f the values of the conditional utilities of
the end branches of the tree (the indecomposable conditional utilities)
are known for a given point in the attribute space, then the overall
utility of the point is obtained by working with the tree. The values
of the conditional utilities are propagated upward along the tree, to

the top, much in the same way as tree construction has advanced downward.

44




For a given node in the tree, assume that the values of its three condi-
tional utilities are known. Then, by the use of the equation of the cor-
responding UI assumption, we calculate the value of the node conditional
utility. This procedure is to be used, recursively, for each node until
the original node of the tree is reached. The final value is the over-

all utility of the point.

Concluding Remarks

We have characterized the utility due to a set of UI assumptions by
two fundamental properties: the partitioning of the attribute space into
subspaces of lower dimensions, and the utility independence order of the
evolving subspaces. These two properties, along with a scrutiny of the
decomposition algebra involved leads to a simple and visually powerful
procedure for generating analytical forms corresponding to a given util-
ity decomposition.

The results of this chapter can be used to advantage by the analyst.
He now can ponder questions such as: What set of assumptions to 1look
for? For a given set of assumptions, which other assumptions further
simplify the available decomposition? And, which subset of the attrib-
utes requires most of the analyst's care and attention?

The utility trees, in addition to their analytical content, may be

used as a visual aid for discussion purposes with the decision maker.
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Chapter 3

CLASSIFICATION OF PREFERENCES ON n-ATTRIBUTES

In this chapter, we demonstrate the extent of varieties of prefer-
ence structures on n-attributes. In Section 3.1, we list the preference
structures corresponding to all possible UI sets on three-attributes.
Section 3.2 proposes a classification scheme that distinguishes between
preferences on the basis of the two fundamental characterizations of
Chapter 2, i.e., the partitioning phenomenon and the utility independence
order. The scheme also reflects the assessment effort required for con-
structing the utility of each preference structure. We apply the scheme
to list all 'distinct' preferences on two, three, and four attribute
spaces. We should note that this classification is modulo the concept
of utility independence. The same framework can be applied to classify
preference independence for some of Farquhar's [6] hypercube independence

assumptions.

3.1 All Preference Structures on Three-Attributes

In Section 2.1, we have noted that the number of possible UI assump-

tions for n-attribute spaces is:

A preference structure on n-attributes may be modelled and charac=-
terized by any subset of the set of all UI assumptions. As such, the

number of different subsets of UI assumptions is:

n
gt -2 €3.1)
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Consider the attribute space X XY X Z where X, Y, and Z are
scalar attributes. For this space, there are only 23 -2. or six, UI
assumptions. They are: ((1,0,0),(0,1,0),(0,0,1),(1,1,0),(1,0,1),(0,1,
1)}. Any collection of these assumptions defines a preference structure
on X ¥ Y X Z. The number of subsets of the six assumptions is

3
2[2 -2] - 2% . 6t

Table 3.1 lists all of these Ul sets along with the corresponding util-

ity decomposition form.

The Construction of Table 3.1

We explain in detail the decomposition form corresponding to each
entry of the table. Entries whose Ul sets are the same up to a reorder-
ing of the attributes are grouped together. As such, the decomposition

form of only one of them needs to be explained.

Entry 1: None of the UI assumptions 1is satisfied. Hence, the

three dimensional utility surface is indecomposable.

Entries 2-4: The decomposition of Entry 2 is obtained using Eq. (1.5)
of Chapter 1.

Entries 5-7: The decomposition of Entry 5 is obtained using Eq. (1.5)
of Chapter 1.

Entries 8-10: The decomposition of Entry 8 is obtained by treating
(Y x2Z) as a (vector) attribute and applying Theorem
1.4 on X x (Y X2).

Entries 11-13: For a proof of the decomposition of Entry 11, see Exam-
ple 2.1 of Chapter 2.
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Entries 14-16: The decomposition of Entry 14 is obtained using Theorem
1.3 of Chapter 1.

Entries 17-22: The decomposition of Entry 17 is obtained as follows:

(1,1,0) = u(:) = Cul(z) + a[?uz(z) - Cul(z)] . Cu(x,y) (3.2}
(1,0,0) =u(:) = Cul(y,z) + 5E312(y,z) - Cul(y,z)] « Cu(x) (3.3)
Cu(x,y) = Cul(y) + E[?uz(y) - Cul(y)] . Cu(x) (3.4)

Substituting Eq. (3.4) back in Eq. (3.2), we get:
u(.) = 0.11(2) + Q[Cuz(z) - Cul(z)] Cul(y)
_ - . - .
+ aVBmz(z) Cul(Z)] &mz(y) Cul(y)] Cu(x)
Entry 23: Corresponds to Keeney's quasi-separable form as charac-

terized by Definition 1.3 of Chapter 1.

Entry 24: The decomposition of Entry 24 is obtained using Theorem
1.3 of Chapter 1. The entry contains more assumptions
than is necessary to generate the decomposition form.
This implies that the assumptions jointly contain dupli-

cate information about the preference structure.
Entries 25-27: See explanation for Entry 24.
Entries 28-33: See explanation for Entry 24.

Entries 34-36: The decomposition form of Entry 34 is obtained as fol-

lows:

(1,1,0) =>u(.) = ml(z) + a[Cuz(z) - Cul(z)] + Culx,y)
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By Lemma 4.5 of Chapter 4, we have:
Cu(x,y) = ¥ Cu(x) * Cu(y) * € (+,x)

Hence, we have:

ui+) = Cul(z) F (1[0.12(2) - 0.11(2)] . [Cu(x) * Cu(y)] * € {+,x)

Entries 37-42: The decomposition form of Entry 37 is obtained as fol-

lows. From Entry 9, we have:
{(0,1,0),(1,0,1)}=>u(:) = F Cu(y) * Cu(x,z) * € (x,+4} (3.5)
We also have:

(1,0,0) =>u(.) = Cul(y,z) - a[?uz(y,z) - Cul(y,z)] « Cu(x)

(3.6)
Cu(x,z) = Cul(z) +(Y&m2(?) - Cul(Z)] Cu (x)
Substituting Eq. (3.6) in Eq. (3.5), we get:
u(.) = 1(Cu1(z) + a[buz(z) - Cul(z)] . Cu(x)) * Cu(y) * € (x,+)

Entries 43-45: The Ul sets for these entries correspond to what we call
dichotomous chains, to be defined in Chapter 4. For an
explanation of the derived form, see the proof of Theo-

rem 4.4.

Entries 46-48: The decomposition of Entry 46 is obtained using Theorem
1.3 of Chapter 1. The remarks made for Entry 24 apply

here also.

Entries 49-51: See explanation for Entry 24.
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Entries 52-57: See explanation for Entry 24.
Entries 58-60: See explanation for Entry 24.
Entries 61-63: See explanation for Entry 24.

Entry 64: See explanation for Entry 24.

We observe from the construction of Table 3.1 that, even though the
number of different UI sets is large, the number of different decomposi-
tion forms is relatively small. This observation is strongly demonstrated
for spaces with a larger number of attributes. There are two instances
where different UI sets correspond to the same decompositional forms:
(1) The two UI sets are the same up to a reordering of the attributes,
and (2) For a given ordering of the attributes, two unequal Ul sets may
contain the same information (i.e., information of the UI type) about the
regularity of the preference structure. An example of the first instance
is Entries 2 and 3 of Table 3.1; an example of the second instance is
Entries 24 and 25. The second instance which invokes a sort of equiva-
lence relation between different sets of UI assumptions is a source of
flexibility to the analyst when modeling preferences. For a given util-
ity decomposition, the analyst has more than one choice of UI sets guar-
anteeing the decomposition; he can choose the UI set most natural to the
problem environment at hand. The second instance is treated in detail
for n-attributes in the next chapter.

There are two more remarks particular to Table 3.1. Some entries of
the table (e.g., Entry 60) correspond to more than one possible decompo-
sition form. 1In such a case, the most general (or least restrictive)
form is chosen. Finally, the decomposition forms of Entries 11 through
22 and Entries 34 through 45 are not explicitly treated in the litera-

ture.
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3.2 Classifying Preferences on n-Attributes

If we are to construct a list similar to Table 3.1 for five attrib-
ute spaces, we would have to generate 230 entries (see Eq. (3.1)). This
number is extremely large and gets to be enormous for even a moderate
number of attributes. The question we entertain in this section is: of
the huge number of possible UI sets, how many correspond to a distinct
decomposition form? Another wording of this question is: how many
'distinct' preference structures are there on n-attribute spaces? To
have a well-posed question, we have to define carefully what we mean by

'distinct.’

be two sets of UI assumptions that are

Definition 3.1. Let A1 and A2
satisfied in two preference structures on Rn. The two structures
are said to be distinct if the collection of generic conditional

utilities of A1 and A2 are not the same up to any permutation

transformation of the attributes or, once they are the same, at

least one conditional utility has different UI order for the two

structures.

The definition distinguishes between preferences on the basis of
regularities defined by UI assumptions only. The distinction 1is based
on the two fundamental properties of a decomposition resulting from a Ul
set. The definition does not differentiate between two preferences that
are defined by two UI sets \ﬂach are the same up to a reordering of the
attributes since, in this case, the two Ul sets produce the same collec~
tion of generic conditional utilities and the same collection of Ul or-

der. Ihe definition also clearly does not differentiate between two
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preferences defined by two Ul sets that are unequal but contain the same
regularity information. Thus, the definition eliminates the two types
of equivalence of UI sets pointed out for Table 3.1.

Definition 3.1 is used to propose a three-stage classification scheme
for preferences on n-attributes. We use the scheme to list all distinct

preference structures on two-, three-, and four-attribute spaces.

The Classification Scheme

Stage 1

To distinguish among structures by only looking at their collections
of generic conditional utilities. Let A be the set of satisfied UI as-

sumptions, for a given preference, with the corresponding Cu_, ..., Cu

1 k'

let di be the dimensionality of the domain of Cui, 2 divinke 0t

.,d. ] the D-collection. The term ''collection’

us call the numbers [d K

T
is used to indicate that the indexing of the di's is immaterial. From

the first part of Definition 3.1, two preference structures are distinct

if their D-collections are not identical. Note that:

d., + weos #d. =0 I <d., <n Y1 sd; innpg X tA:7)

where n 1is the number of attributes. Let p(n) be the number of D-
collections that correspond to distinct preference structures on an n-
attribute space. p(n) corresponds to a classical problem in combina-

torics under the topic of unordered partitions. From Hall [15], p(n)

has the following generating function:

o0 -1
P(x) = II (} - xi> . x 1is a real variable (3.8)
i=1
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Hall [15] also tabulates different values of p(n).

Stage 2

To distinguish among structures by considering the collections of

Ul-order corresponding to a given collection of generic conditional

utilities, Cul,. .,Cuk. let Oi be the UI order of Cui, Tl wse,ke
The numbers [01,...,Ok] are called the O-collection. Here again, the
indexing of the O,'s 1is immaterial. For two preferences, with k

i
generic Cu's, to be distinct, it is sufficient that their O-collec-

tions are not identical. Theorem 2.4 gives constraints on all possible

O-collections. Let O; = Log2 Oi' By Theorem 2.4,

k.
lo <k =1; Oifi(l,...,k-l}, i K (3.9)
=1

L}
-
-

i

-

let r(k) be the number of all possible O'-collections that correspond
to distinct preferences, where k 1is the number of generic conditional
utilities of the preferences. By comparing Eq. (3.7) and Eq. (3.9), we

can write:

k=1
r(k) =1 + :i p(1) K =2, oon; D
i=1

where n 1is the number of attributes.

Stage 3

Corresponds to a matching process between Stages 1 and 2 above. Two
preferences having the same D-collection and O'~-collection may still be

distinct. As an example, let the number of attributes be 3. Let the
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D-collection be [1,2], i.e., one l-dimensional conditional utility and
one 2-dimensional are involved. Let the O'-collection be [1,2]. There
are two possible distinct preferences: (1) the l-dimensional conditional

utility is UI., and (2) the l1-dimensional conditional utility is Ul

1 2°

The number of matchings corresponding to distinct preferences depends
on the particularity of both collections. This problem is abstractly
similar to the problem of finding all the combinatorial possibilities of
matching partially distinguishable colored balls to partially distin-
guishable colored boxes. In general, only explicit enumeration is pos-

sible.

Enumerating All Distinct Preferences on Two, Three, and Four Attributes

In conformance with the classification scheme, Tables 3.2, 3.3, and
3.4 1list all distinct preference structures on two-, three, and four-at-
tribute spaces, respectively. The last column of each table contains the
assessment effort required to construct the utility surface corresponding

to each structure. The following notation is used.

i CuJ means the assessment of 1 number of j-dimensional

conditional utility is required

The following remarks pertain to Tables 3.2, 3.3, and 3.4.

(1) A similar table is constructed for a five-attribute space.
We will just report that this space has 47 distinct pref-
erence structures. The number of distinct preferences
should be contrasted with the number of all possible UI

sets as obtained by the formula:

n
2[2 -2]
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Table 3.2

ALL DISTINCT PREFERENCE STRUCTURES ON TWO ATTRIBUTES

Item | D-Collections | O'=Collections | Possible Matching R ired [
Assessment
1 (2] (1] [(2:1)] 1 cu?
2 f1,1] (2,1 [(1;2),(1;1)) 3 cu’
1
3 [1L] By (1 :1)] 2 Cu
Table 3.3
ALL DISTINCT PREFERENCE STRUCTURES ON THREE ATTRIBUTES
i § ’ Required
Item | D-Collections | O'-Collections Possible Matching
Assessment
1 (3] (1] [(3;1)) 1 cud
s a 2 1
2 (2,1] 2,11 [(2;2),1;1)] 20u , 1y
2 1
3 k2.1 ] (c2z:1),(1:2)] 1 ta, 2 Cu
p | ; |
4 B [(2:4),:1)] B o -
5 i1.12.4] i4,3,1] [¢x,4),€3:1),€1:1)] 6 Cu1 ;
6 (2,2,1] [(1;2),(1;2),(1;1)] 5 cu'
7 {(2.1,%] £(1:2),0(1:1),¢(1:1)) 4 Cu1
. [1.5,5] [(1;1),(1;1),(1;1)) 3 cu'
—
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Table 3.4

ALL DISTINCT PREFERENCE STRUCTURES ON FOUR ATTRIBUTES

Item | D-Collections | O'=Collections Possible Matching AZEZ::;?:t
i (4] [1] [(4:1)) 1 cut
E 2 (3,1 (2,1 [(3:2),(1;1)] 2’ 1 cu
| 3 | (2,1 [(3;1),(1;2)) 1o, 2
5 &1 [1,1] [(3;1),(1:1)] 1 oa, 1t
&5 | [2,2] (2,11 [(2;2),(2;1)] 3 cu®
6 [1,1] [2;1),(2;1)] 2 cu?
¥ (2,1,1] (4,1,1] £02;4),€2 ;13,41 ;1)] 4 o, 2 cu
8 f4,1.,1] f{2:1),(1:4),(1:1)1 T Cu2, 5 a
9 {2.2,1] E(2:2), (1:2),80:2)] 2 Cu2, 3 Cu
10 E2.2,1] {21y, 61:2). ¢1:2)] 1 Cuz, 4 Cu
11 [2,1,1] [(2;2),(1;1),(1;1)) 2 u®, 2 cu
12 [2,1,1] [(2;1),(1;2),1;1)] |1 c®, 3 cu
13 3,100 [¢2:2), (L=1), 11yl 1 Cu2, 2 Cu
14 11,2,3.1) £8,1,1,1) ECL8Y, (1 2y, €11 ,(1:1)]) 1 cu'
15 [4.2.5.1] Csdy Cl:2), (1), (21)y) 8 Cu1
16 (2,2,2,1] [(1;2),(1;2),(1;2),(1;1)] 7 cu
17 (4,1,1,11 [(1;4),(1;1),(1;1),(1;1)] 7 cu!
18 {(2.2.1.1} £C1:2),(3;3),(3:1) ,41;1)) 6 Cul
19 [2,1,1,1) ((1:2),(1:1),(1:1),(1;1)] 5 cu’
20 (1,1,1,1] [(1;1),(1;1),(1;1),(1;1)) 4 ou
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(2)

(3)

(4)

The whole classification layout is modulo the concept of
utility independence. Other decompositional concepts may

be used as well.

Two perhaps curious entries of Table 3.4 are Items 16 and
17 where, even though the two structures are distinct,

the required assessment effort is the same.

With respect to Table 3.4, the three celebrated models in
the literature: the additive utility model, the quasi-
separable, and the multiplicative-additive, all correspond

to the last entry of the table.

The scheme may be used to generate such lists for higher dimensional

utility surfaces as well.
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Chapter 4

UI IMPLICATIONS

In this chapter, we will consider sets of UI assumptions which au-

tomatically imply the satisfaction of some new ones. This topic

is of

practical importance to the analyst since it shows him how to minimize

his work and eliminate some, perhaps nonobvious, duplication of effort.

As a preview to the chapter, Section 4.1 characterizes the set of

all possible implications for a given set of UI assumptions.

Section

4.2 demonstrates three basic instances of UI implications, one of which

is discovered and reported by Keeney [23]. Section 4.3 proposes

a can-

onical form for sets of UI assumptions that is useful for, among other

things, recognizing Ul implications.

Since the three sources of UI im-

plications are intimately related to the multiplicative-additive utility

model, Section 4 takes a close look at this model and constructs sets of

UI assumptions for it where the number of assumptions involved is

Before we start, we propose a classification of pairs of UI

tions that is useful and convenient for theoretical arguments.

let a and b,

[a,b] € class
and

[a,b] € class
and

[a,b] € class
Finally,

[a,b] € class

1

2

3

a #b be two UI assumptions.

- g

& -

aAb #0 and aAb #0 and aAb # 0

aAb #0 and aAb or aAb is zero

aAb=0 and a £ b

63

minimal.

assump-




The classification is clearly mutually exclusive and collectively exhaus-

tive, and is unique for any reordering of the attributes.

4,1 The Set of All Possible UI Implications

let A be a set of satisfied UI assumptions for a given preference

structure.

Definition 4.1. Let b be a UI assumption. A implies b if A and

A' = A J (b) contain the same assumptions about the induced pref-

erence ordering of the structure.

We will restrict the set of possibilities of UI implications for a
given A. If b is implied by A, then from the definition A and A'
will have the same decomposition. Equivalently, b can not contain new
information about the preferences not already included in A. Hence, b
should, roughly speaking, be compatible with the partition boundaries of
the decomposition of A. The following theorem is a careful statement

of this observation.

Theorem 4.1. Let A = [ai: i=1,...,k] be a set of satisfied assump-

tions. Let A imply b, b ¢ A. Then,

~

= a “oe a s ww ) BN s A
b (1a1 A A 1ak) Vv V (za1 lak)
where
151 - {ai,Ei] } 1 ® 1, 6oy K3 J®Y sasy B
1< B 5 2k

and Vv denotes Boolean addition.
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Before proving the theorem, let us state its assertion in words.
Let the partition of the attribute space (with respect to A) be Xl'
..,X,. Then the theorem says that b corresponds to a UI assumption
¥

where the union of some of the subspaces is utility independent of its

complement.

By contradiction. Assume that the assertion is not true. The only
other possibility is for b to cut across the partition boundaries. As
such, b can be used to further decompose at least one of the subspaces.
Hence, b reflects new information about the induced preference order-
ings not already contained in A. This contradicts the definition of UI
implication.

Q.E.D.

The following example is an application of Theorem 4.1.

Example 4.1.
ot A= §(1.3.3.1, 1.0,0.,0),¢(0,0,%.1, 1.,1.,2,1Y]. THe set of =all
possible UI implications is the following:
{€1,3,0,0, 0.0.,0,0),€,0,1,3, 1.,0,0,05.€0.0.0,0, 6,1,3.1),
1,1,1,1, 1,0,0,0),(1,1,0,0, 0,1,1,1),(0,0,1,1, 1,1,1,1)]

8 8
Since the number of all UI assumptions in R is 2 -2, we are

able to eliminate all but the above six assumptions from consideration.

Bar Diagrams

A, 1in Example 4.1 above, may also be denoted schematically by the

so-called 'bar diagram' representation as follows:
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Where the variables underlined by each horizontal line are UI of their
complement ; the dotted vertical lines indicate the boundaries of the
partition of the attribute space. As we will see in the next section,

bar diagrams are very convenient for representing sets of UI assumptions.

4.2 Different Sources of Implications

In this section, we will introduce three sources of UI implications,
the first two of which are basic patterns that can be discerned in arbi-
trary sets of UI assumptions. The third source is due to a joint occur-

rence of the first two ones.

4.2.1 Implications Due to Overlapping Chains

This source of implications was discovered and reported by
Keeney [23]. The definitions and theorems of this subsection are, with

some modifications, in Keeney [23].

Definition 4.2. let A be a set of satisfied UI assumptions. lLet B =

[bi: i=1,...,r, r>1) be a nonempty subset of A. B is called

an overlapping chain if there exists an ordering on the bi's such

that for every b o (O PR there exists at least one i, i =

J'
1,...,+/ such that

(bi,bjl € Class 1
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Definition 4.3. Let C= {c=(b A ... Ab ): (by A veu A Sr) £ 0 and

B Noves AB b ces A D b, < b, ,b.}, i=1,...,r).
(b1 A A br) # (b1 A br) and bi ‘bi' 3 b i 5 I

¢ ©C 1is called an overlapping chain element.

Theorem 4.2 (Keeney). Let C = [ci: i=1,...,1] be as defined above.

Then, every

V ¢ Pt e 8
1€1

is a UI essumption implied by B.

The theorem says that the Boolean sum of any subset of the
chain elements is a satisfied UI assumption on the preference structure
corresponding to B. The reader should verify that these UI implications

do conform with the assertions of Theorem 4.1.

Example 4.2.

Let A= ((1,1,0,0),(0,1,1,1),(0,0,0,1)}. Let B = {(1,1,0,0),(0,

1,1,1)). B 1is clearly an overlapping chain. Also,
c = {(1,0,0,0),00,1,0.0%,00,0,31.,3) ]
Now, by Theorem 4.2, each element in the set:
{(1,0,0,0),(0,1,0,0),(0,0,1,1),(1,1,0,0),(1,0,1,1),(0,1,1,1) )

is a UI implication of B. This set also happens to be the set of all

possible UI implications of B as characterized by Theorem 4.1.

The next theorem relates overlapping chains to the multiplic-

ative-additive, denoted M-A, utility model. (See Theorem 1.3 of Chapter1.)
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Theorem 4.3 (Keeney). lLet B be as in Definition 4.2 above. Then, we

have either
r
[1 + K Cu(b,.V ...Vb )] = F [1 + K Cu(b,)] where K # 0 (4.1)
) § b o 151 -

or, if K =0, we have

X
(,\J(b1 N e W br) Z Cu(bi)
=1

It is the symmetry of Eq. (4.1) that causes all the implica-

tions of Theorem 4.2,

4.2.2 Implications Via Dichotomous Chains

let A be a set of satisfied UI assumptions.

Definition 4.4. Let B = (bi: i=1,...,/) be a nonempty subset of A.

B 1is called a dichotomous chain if there exists an ordering on the

£, there exists a unique r,

<

b1 such that, for every bj, 2<3

1 <r S / such that:
1Y b, Ab w0
J x

(2) M, VE)IEDB or B, VvH)ma]
J > - 3 r

Definition 4.5. let C C B be the set of all ¢ such that ¢ Ab =0

or cAb=c¢c, YbEB. c€C 1is called a dichotomous chain element.

?1 is the vector of all ones.
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Example 4.3.

let B = [(lrlvlnlv 1,1,0,0),(1,1,0,0, OIO!O!O)D(OIO’]‘DIO 11110'())u
(0,0,0,1, 1,1,0,0),(0,0,1,0, 0,0,0,0)}. Choose b, = (1,1,1,1, 1,1,0,0).

B 1is a dichotomous chain. By a bar diagram, B 1is denoted as follows:

The following theorem is the analogue of Theorem 4.3.

Theorem 4.4. let B = {biz i=1,...,/) be a dichotomous chain. Order
the bi‘s such that br""'bg’ 1 <r </, are the elements of the

chain. Then,

P 4

Cu(b1 N vbz) = 121 aifil(bl) . SEEA xf”(b[)

where

(bj) = Cu(b,) or th.) =1 ) o O

4 3 a3™

and the «,'s are real constants.

i

Let us call this model the generalized quasi-separable model.
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Before proving this theorem, let us prove the same assertion

for the two simplest cases of a dichotomous chain.

£ = c € ( v =
Lemma 4.5. Let B [bl,b ,b3} be such that bz/\b3=) and b2 b3

2

bl' Then, either

Cu(bl) = CU(bz) + Cu(b3)

or

[1 + K Cu(hl)] = [1 + K CU(bz)] . [1 + K Cu(b3)] for K #0

Proof.
B 1is, from the definition, a dichotomous chain. Without any loss

of generality, let the 1's 1in b2 correspond to vector x, the 1's

correspond to vector y, and the 1's in b correspond to

in b, 1

3

vector z. So,

b1 = x and Yy Ul of =z
b2 5 X T of v aend =z
b3 = ¥ Ul of x and =z

0. By definition, we have:

Assume u(xl,yl,zl)
b2 = u(x,y,z) = Cu(xl,y,z) + 7 E)J(xz,y,z) - Cu(xl,y,z)] Cu(x,yl,zl)

(4.2)

b3 =S u(x,y;z) = Cu(x.yl.z) + Bﬁnx(x,yz.Z) - Cu(x.yl,z)] Cu(xl.y.zl)

(4.3)
where 7 = 1/Cu(x2,y1,z1); B = l/Cu(xl,yz,zl). From Eq. (4.2),

Cu(x,y,zl) = Cu(xl,y,zl) + 7Eax(x2.y,zl) - CU(xl.y.zl)] Cu(x,yl,zl)

(4.4)
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But, from Eq. (4.3),

Cu(xz,y,zl) = a2

/ Q. = : = Yo € = ¥ . bstituti ~
where @, Cu(xz,y1,71) 1Ly 4 Cu(x2 ¥, zl) Substituting Eq

(4.5) back into Eq. (4.4), we get:

Cu(x,y,yl) = Cu(xl,y,zl) - 7[72-¥(331- &12-1) Cu(xl,y,zl)] -Cu(x,y1,71

Let 7(5a1-eoé -1) = k. If k =0, we get the additive model.

Otherwise, we can write:

1+ k Cu(x,y,zl) = [1 + k Cu(xl,y,zl)] . [1 + K Cu(x,yl,zl)]

- .“(O(1 - az) Cu(xl,y,zl) (4.5)

)

Q.E.D.

The second simple case of a dichotomous chain correspond to

Theorem 1.4 of Chapter 1. We restate it here for fast reference.

Lemma 4.6. let B = [bl,bz] where b1 = 52. Then, either

u(b1 \ b2) = CU(bl) + Cu(bz)

or
[1 + Ku(b1 bz)J = [1 + K CU(bl)] . [1 + K Cu(bz)] for K # 0

Froof of Theorem 4.4.

Let the number of subspaces that are dichotomized by pairs of Ul
assumptions be p. The proof is by induction on p. For p =1, the
dichotomous chain corresponds to either Lemma 4.5 or Lemma 4.6; hence,
the assertion of the theorem is satisfied. Assume that the assertion
is satisfied for p=-1. That is, we can write:
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r
Cu(b1 W bf) = ’:i aifil(bl) ¥ wwn X fif(bl) (4.6)

[

For some j € {1,2,...,£}, let the pair of UI assumptions bjl and bj2

dichotomize the subspace corresponding to bi' We <thus can write:

Culb . ) =culb, ) +culb ) + K Culb ) » Culb ) (4.7)
J j1 j2 j1 j2
where K 1is any real constant. (Note: Eq. (4.7) is an equivalent
statement of the assertion of Lemma 4.5.)
Substituting Eq. (4.7) back in Eq. (4.6), it is clear that the rep-
resentation form will be preserved.
Q.E.D.
n The assertion of Theorem 4.4 is too general to indicate ex-
plicitly possible UI implications of a dichotomous chain. 1In fact, a
different kind of preference information about the structure is required
before any UI implications are discerned. The following example demon-

strates this point.

Example 4.4.

Lat: B = [i(E, L 1 1 10T 000Y, (% 0.0 0.6, 0,0), (0,013, 3.1.-0,0),
(0,0,1,0, 0,0,0,0),(,0,0,1, 1,1,0,0)}. Choose bl = 2,11 .3, 3,8,08,0).

B 1is a dichotomous chain

¢ = {(3,1,0,0,0,0,0,0),(0,0,1,0, 0,0,0,0¥,(0,0,0,1, 1,1,0,0)}

By a bar diagram, B 1is denoted as follows:
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I 1 i I I

' 1 20 3 4 5 6 7 &

I I I l 1

' I I 1 I

bl: | T T I 1

i i | I I

b, 1 1 i I I

I | I I I

b3: 1 = 1 | |

] ] I 1 [}

b, I YT I I

| I i i i

bg: I I i 0 l

I | I I I

! Y1 I T2 i '3 | |

Using {bl,bz,ba}, we can write:

C“(y1'y2’y3) = Cu(yl) - Cu(yz,y3) + Ky Cu(yl) . CU(yz'ys) (4.8)

where Ky is any real constant. Also, using (b3,b4,b5], we have:

Culy,,yy) = Culy,) + Culyy) +K, Culy,) - Culy,) (4.9)
where K2 is any real constant.
We will consider three cases:
Case 1: K1 = K2 = 0.
As such, we can write:
Culy,,¥,,¥5) = Culy;) + Culyy) + Cu(y,) (4.10)

Case 2: K1 = K2 #0.

We have:

[1 S Kl m(yl'y2'y3)] = [1 + Kl Cu(yl)] . [1 + Kl CU(yz.YS)]

73




and

[1 + K, Cu(yz,y3)} = [l + K, Cu(yz)] . [1 + K, Cu(y3)]

= [1 + Ky C“(yz'ys)]

Hence,

U}

[1 + K1 Cu(yl,yz,ya)] [l + Ky Cu(yl)] . [1 + Ky Cu(yz)J

[1 + Ky Cu(ya)] (4.11)

These two cases correspond to the M-A model. By a scrutiny of the

UI definition, we can easily discern the following implications:

{(1,1,1,0, Opovov())v(lplloll' 1,1,0,0),(0,0,1,1, 1v1,0'0)v
(1,1,1,1, 1,1,0,0),(1,1,0,0, 0,0,0,0),(0,0,1,0, 0,0,0,0),

(0,0,0,1, 1,1,0,0))

Case 3: kl # K2.

As such, we can write:

Cu(yl’yz'ys) = Cu(yl) + Cu(y2) + Cu(y3) + K Cu(y2) Cu(y3)

2

+ K Cu(yl) Cu(y2) + K

1 Cu(yl) Cu(ya)

1

+ K1K2 Cu(yl) Cu(y2) Cu(ya) (4.12)

For this case, there are no UI implication. Note that Eqs. (4.10),
(4.11), and (4.12) all conform with the assertion of Theorem 4.4. The
values of K1 and K2 may be determined by a procedure contained in
Keeney [21].
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4.2,3 Implications Via Mixed Chains

Here, we consider sets composed of overlapping and dichoto-
mous chains, jointly. Since there are many combinatorial possibilities
of such coexistence, we will use a series of examples to demonstrate
different basic patterns. For each example, a bar diagram representa-
tion is used to denote the UI assumptions. The verification of each

example should be apparent from Theorems 4.3 and 4.4.

Example 4.5.

1 1 1 | 1 |

e I T RS T xn .

| 1 l | 1 1

3 1 1 ! | | 1
" [ I 1 | 1 1
1 1 1 1 1 1

a2 1 | 1 I 1 |
5 I 1 1 1 1 1

o & 1 1 1 R i
g 1 1 1 1 I 1
84° 1 1 1 | 1 |
1 1 1 | 1 1

| y1 | y2 1 y3 1 y4 1 ys 1

Using {al,az], we have either:
[1 + K1 Cu(yl,yz,ya)] = [1 - K1 Cu(yl)] . [} +Ky Cu(yz)J . b.+K1 Cu(ys)]

where K, ® 0, Or, It K, = 0, we have:

Culy,,¥y,¥5) = Culy,) + Culy,) + Culy,)

Also, using [(alv 82),8 we have:

3840

Culy; s¥,1¥50¥,) = CQuly,,¥,,¥5) + Culy,) + K, Culy,,y,,y5) *+ Culy,)
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Let us consider the following three cases:

Case 1: K, =K = 0.
As such, we can write:

Cu(yl,yz,yg,y4) = Cu(yl) + Cu(y2) + Cu(y3) + Cu(y4)

Case 2: K1 = K2 # 0,

As such, we have:

[1 + K, Cu(yl.yz.y3.y4)]

[1 + K2 Cu(y4)] . [1 + K1 Cu(yl)]

[1 + K2 Cu(y4)J . [1 + K2 Cu(yllyzvys)]

. [1 + K1 CU(yz)] . [1 + Kl Cu(y3)]

For these two cases, the Ul implications are: any subset of [yl.

y2,y3.y4) is U¥.

32 .
Case Kl # K2

Here, by a scrutiny of the evolving functional form, the only UI

implications are those associated with the overlapping chain

Example 4.6.

1 1 | 1 1 1
y Xy , v W R X :
| 1 1 | 1 |
iy 1 [ | 1 1 1
p { 1 1 | | | |
Lt 1 | [ 1 | 1
2 I \ 1 1 [ 1
A | | 1 1 1 1
%y ' i ' t t 1
y 1 | 1 1 1 1
b & ' 1 | | 1 1
| 1 1 | 1 |
' Y1 | Yo | Y3 1 y4 ' yS 1
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Using [al,az], we have either:

[1 + Kl Cu(yl.yz,yS,y4)] = [1 + K1 Cu(yl)] . [1 + Kl Cu(yzﬁ

[1 + K1 Cu(y3,y4)]

Or, if K, = 0, we have:

where K1 # 0., 1

Cu(yl,yz,yS,y4) = Cu(yl) + Cu(yz) + Cu(y3,y4)

}

, we have:

Using ((azz\gl),as,a4
Cu(yg,y4) = Cu(ys) + cu(y4) + K2 Cu(ys) . Cu(y4)

K 1is any real constant.

Let us consider the following three cases:

Case 1: 1 2

As such, we can write:

Cu(yl,yz,ya,y4) = Cu(yl) + Cu(yz) + Cu(ya) + Cu(y4)

# 0.

Case 2: Kl K2

As such, we can write:

[1 + K1 Cu(yl,yz,ys,y4)} = [1 + K1 Cu(yl)] . [1 + Kl Cu(yz)]

. [1 + K1 Cu(ys)] . [1 + Kl CU(yq)]

For these two cases, the Ul implications are: any subset of [yl,yz,yB.

y4] is UI.
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Case 3: Kl # K2.

For this case, the only UI implications are those associated with

the overlapping chain [al,az}.

Example 4.7.

I I I I 1 1
gl SRty 1 I B
I I I ' 1 1
I I ! | 1 I
B ' T i ] I I
] 1 1 1 1 I
& ! ! [ 1 1 1
i i i i ' i
gk i I \ VAR |
1 I I ! I 1
B I ] I I 1 |
I I 1 1 I !
&n I I i I I !
I I I i i 1
¥y Y9 Y3 g g o 1

Using (a4,a5], we have either:

4

[1 + Kl Cu(yl,yz,ya)] = [1-+K1 Cu(yl)] . [1 +K1 Cu(yz)] . [1-+K1 Cu(ys)}

where K1 * 0, Or, if K1 = 0, we have:

Culy;,¥,,¥5) = Culy,) + Culy,) + Culy,)
Using [al,az,aS], we have:
Culy;s¥y1¥g,¥y) = Culy ,y,,y,) + Culy,) + K, Culy,,v,,¥,)

Let us consider the following three cases:
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Case 1: K, =K_ = 0.

As such, we can write:

CU(yl,yz,ys,y4) = Cu(yl) + Cu(yz) + Cu(y3) + Cu(y4)

- = 0.
Case 2 K1 K2 #

As such, we can write:

[1 + Kl Cu(yl,yz,y3,y4)] = {1 + Kl Cu(yl)] . [1 + Kl Cu(yz)]

[1 + K1 CU(ys)J . [1 + K1 Cu(yq)]

For these two cases, the UI implications are: any subset of {yl,yz,ya,

7 )
Y4 is UI.

3 { .
Case Ky # K,
Here, by a scrutiny of the evolving functional form, the only UI

implications are those associated with the overlapping chain {a4,a53.

Example 4.8.

1 X K wsw ¥ an i en | . X !

1 . 1 | 1 1 L |

! ! ! [ ! !

al: 1 4 4 | | |

1 | | | 1 |

82: I | -+ b | 1

| | | | | |

o 3 L —— | ) 1 !

3 1 | | | | |
Rt 1 1 | SRS S—— 1 |

4 | | 1 ) | 1

| y ! y | y 1 y | 1

| 1 | 2 | 3 4 | 1
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In this example,

(1) [al,az] and [al,az,as} and [al,az,a4] are over-

lapping chains.

(2) [(al\/az),a3,34] and {(alﬁ\az),(azf\aB),(alﬁxa4)]

are dichotomous chains.

(3) (al,az,as,a4} is also an overlapping chain and it

subsumes all the chains above. Thus, the set of UI

implications is the one associated with this chain,

as characterized by Theorem 4.2.

4.3 A Canonical Form for Sets of UI Assumptions

Here, we propose a canonical form that is useful for, among other

things, recognizing the kind of UI implications treated in the previous

section. The form is introduced by an algorithm that constructs it for

any arbitrary set of UI assumptions. The main idea of the form is to

aggregate UI assumptions with respect to the space location of the reg-

ularity that they define.

The Algorithm

PART 1. Step 1:

Step 2:

Step 3:

Let a, € A be such that, if (ai,a ) € Class 2, then
a, Na, =0 for an &, € A
¥ 0 b

J

Let A(1) be the union of all overlapping chains in A

that contain ai.

Let a1 € ANA(1) and assume it satisfies the condi-
tions of Step 1 above. Construct A(2) as in Step 2

above.
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PART 2:

PART 3:

Step 4: Let a, € ANA(1) U A(2) and assume it satisfies the

3
conditions of Step 2 above. Construct A(3) as in

Step 2 above. By repeating this process, we construct
A(l),...,A(jl). The process stops when there does not
exist a, € ANA@Q) U «-x U A(jl) which satisfies the

i
condition of Step 1.

Step 5: Construct A*(i), 1 <1i < jl, as follows: ar~fA*(i)
$£ & € ANACE) U see U AC),) and A, Aa. =@ for
r at r d T

some  a, € A(i). Now, the A(i)'s and A*(i)'s are

a collection of mutually exclusive and collectively

exhaustive subsets of A.

For each A*(i) # g, 1 = 1,...,j1, construct A(L:1) ..o 801

j2) and A*(i;l),...,A*(i:jz) by replacing A by A*(i) in
PART 1 above.

For each A*(il;i2) £, 1< il £ and 1 < i, < 3,, con-
struct A(ilziz;l),...,A(il;iz;js) and A*(il;iz;l),...,A*(il:
12;J3). This process is continued until all the A*(-) are
empty. The canonical form is the collection of all the A(:)'s.

The following example demonstrates the algorithm.

Example 4.9.

let Aw f{a : i =1,...,10}, where the a_'s are:

i

= (0,0,0,0, 0,0,0,0, 0,0,1,1)

]
I

0,1,1,1, 1,0,1,1, 1,1,0,0)

o
[l

(0,0,1,0, 0,1,0,0, 0,1,0,0)

®
L}

(1,0,0,0, 0,0,0,0, 0,0,0,0)

»
n

(0,1,0,1, 1,0,1,0, 0,0,0,0)

(0,1,0,1, 0,0,0,1, 1,0,0,0)
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a, = (0,1,0,0, 0,0,0,0, 0,0,0,0)
ag = (0,0,0,1, 0,0,0,0, 0,0,0,0)
ag = (0,0,0,0, 0,0,0,0, 0,0,0,1)
a,, = (0,0,1,0, 0,0,0,0, 0,0,0,0)

Applying the algorithm, we get:

AQ) = {a ) ; A*(1) = (ag)
A(2) = {a4] : A%(2) = &
= ~ * i
A(S) = {32,83] 5 AT(@3) = {a5'36'810'a'."88]
A1) = (ag]) ; A*(1;1) = @
A5 = (agal) ; A*@3;1) = (ajiag)
A(3:2) = [alo] ; A¥@3;:2) = ¢
A(3:1:1) = (87} H A*(3;1;1) =
A(3:1;:2) = [38] ; A¥(3:;1:2) = ¢

Figure 4.1 contains a schematic representation of the canonical form for

this example.

The following comments pertain to the canonical form:

(1)

(2)

Each A(+) contains UI assumptions corresponding to a
particular subspace of the attribute space. A*(:) con-
tains UI assumptions that decompose this subspace further.
When A*(-) 1is empty, this implies that the subspace cor-
responding to A(:) can not be decomposed any further.

The boundaries of the attribute space partition, corre-
sponding to A, are compatible with the partition of the
attributes corresponding to the A(:)'s whose A%*(*)'s

are empty.
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A(1) A(3) A(2)
(a ] {a,,a,] (an]
AT 1) A(3:1) A(3:2)
(ag) (agia,) {ay,]
A(3:1:1) A(3:1:2)
(a,) (ag)

Fig. 4.1. A SCHEMATIC REPRESENTATION OF THE CANONICAL
FORM OF EXAMPLE 4.9.

(3) All UI implications due to overlapping chains are dis-
cerned by scrutinizing all the A(:)'s of A.

(4) To recognize possible UI implications due to a dichot-
omy, more than one A(-) has to be considered at a
time. Many patterns are possible; the main guideline
is to look for the occurrence of pairs of A(:)'s
which are singleton and have the same source, 1i.e.,

the same A*(.).
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4.4 The Multiplicative-Additive Model

Of the different decompositional utility models, the multiplicative-
additive model is the one most used in reported applications. We have
seen in Section 4.2 that there are many distinct sets of UI assumptions
that produce an M-A model. In this section, we construct sets with the

least number of UI assumptions that produce the M-A model:

X = ¥ €4 e * C )
ulx,, > B} = F Culxy) Cu(xn) [%,+]

where n 1is arbitrary. We will denote such sets by An.

Construction of An

Step 1: If n 1is even, segment the attributes into two halves cor-
responding to the two sets S(1) and S(2). If n is odd,
segment the attributes such that Card [S(1)] = Card [S(2)]
4+ 1, where 'Card' stands for the cardinality of the set.

Step 2: By iunductive construction, assume we have S(il;i2;...;i_L

J
i syl € 2%, XE  Card [S(il;...;ij)] is even, seg-

17" j

ment its attributes into two halves corresponding to S(il;

voudd 1) and 8@, 3suest 32). IT Card BU_;...51))
J 1 J 1 J

is odd, segment the attributes such that Card [S(il;...;

iJ;l)] =1 + Card [S(il;...;ij:Z)].

Step 3: This construction is carried on until every S(:) is a
singleton. Assume these last sets are indexed by S(il:

...;1r_1).

Step 4: For every Jj, 1< j <r-2, let aJ denote that the at-

tributes in

R R ————




are UI of their complement.

Step 5: This process is ended in one of two ways:

. O [ BRI =
(1) 1f Card [S(2;;2,;...52 )] =1, then a ,
denotes that the attributes in
o ats s ( I SRR
45 S(yseeeil )JUS(252,5.0052 )
lpcy =
il,...,ir_2€[1,2}

are UI of their complement, and we stop.

ii (8o TN L R =
(i1) If ©Card IS¢ 1i295 ,21_2)] 2, then a__,

is defined as in Step 4, and a_ = a .
> r=1

n
Thus, A will have r or r-1 UI assumptions, depend-

ing on n.

5 .
Lemma 4.7. let A = {ai: i=1,...,k}] be as constructed above. Then,

k < /, where [ 1is the smallest integer such that e

Proof.

First, assume n =2, m some integer. Then, k = m+1 because

each step of the segmentation process which constructs S(:) reduces

l

i s ends with the case

by 1, and the process of constructing the a
where Card [S(2 ;...;2 )] = 2,
1 m=1
If n = 2" -1, for some integer m, then Kk = m because
case, the process of constructing the ai's ends by the
ity of steps. To see this, just add a dummy variable t
and construct the S(:)'s such that S(C\

variable. At Step 5, the dummy is deleted
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Now, for any n, there exists a unique integer ¢ such that 2£>

n > 2[-1. If n= ae'-l, then Card (An) = £ by the argument above.
1f n<2/-1, then, clearly, card ") < 2.
Q.E.D.

Theorem 4.8. (i) M produces the M-A model, and (ii) of all the other

sets producing the same model, An has the smallest cardinality.

For the first assertion, An is, by construction, an overlapping
chain. Thus, we know by Theorem 4.2 that we will get some M-A model.
All we need to show is that each of the conditional utilities is one di-
mensional. Assume otherwise, i.e., there exists i and j such that
X and x_., belong to the same Cu(:) in the M-A model. Let us assume,

i J
without any loss of generality, that x, and x, belong to Cu(all\...

i J
Aa_Aa A ... ANa ), where 0 <r < k. This means that x, and x,
5 r+l k - - i J
belong to the same set for every set used in constructing al,...,ar and

also belong to the same set of every set not used in constructing ar+1,

s eyl But this is impossible since, sooner or 1later, any subset of

K
the attributes with more than one element will be decomposed via the
construction process of S(-:)'s.

For the second assertion, assume there exists a set with cardinal-

ity d, where n > 2d. By Theorem 2.5 (see previous text), the set

{Cu(a1 “oe ad): a, € {81'81]' { WLy e d}

contains all the conditional utilities of the decomposition and this set

has cardinality 2d. Hence, 2d > n--a contradiction.
Q.E.D.
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Example 4.10.

Let us construct Als. From Theorems 4.7 and 4.8, Card (An) = 4.

Applying the algorithm, we construct the following four assumptions:

a, = (1,1,1,1,1, 1,1,1,0,0, 0,0,0,0,0)
a, = (1,1,1,1,0, 0,0,0,1,1, 1,1,0,0,0)
a, = (1,1,0,0,1, 1,0,0,1,1, 0,0,1,1,0)
a, = (1,0,1,0,1, 0,1,0,1,0, 1,0,1,0,1)

In a bar diagram representation, these assumptions are:

Xy 1 X 1 Xy X, 1K 1 Xg 1 X 1 Xg 1 Xg 1Ky 91 %111 %121 %131 *14' ¥ 5!
] ] ) 1 ] 1 ] 1 ] ] ] 1 ] | ] )
| ] 1 ] ) 1 1 ] ] ) ] 1 ] 1 1 1
313 P T T | PR i T T T 1 t t | \ \ 1 1
L} ] | 1 | 1 I I ] | ] ] ] | ] 1
82 SR S T | 1 | r T T T | L} 1 |
i I ) 1 ] i i i i ] ] i ] 1 ! 1
83: P 1 | e G, I | e o | ] | e TR 1
I | 1 ] ] ] ] ] ) ] ] ] ] ] ] !
&4: | e | pe—— | i | goce g e e | e | =i |

It should be clear that An are not unique, not even up to a per-
mutation transformation of the attributes. If the M-A model to be gen-
erated is one where some of the indecomposable spaces are of higher
dimensions, the same construction process is carried on by treating the
vectors of each subspace as a scalar and n, of An, will correspond
to the number of indecomposable subspaces involved.

Finally, the same type of process can be used to construct minimal
sets of other decompositional concepts such as preference independence,
in which case the generated model is the deterministic additive utility
model .
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Ooncluding Remarks

In this chapter, we considered how UI assumptions span each other.
Since no apparent geometry is involved, the term implications 1is wused
instead of spanning. In the first section, we characterized the set of
all possible UI implications for a given arbitrary set of UI assumptions.
In Section 2, three sources of UI implications are introduced, and their
relations to the multiplicative-additive utility model are demonstrated.
Section 3 proposes a canonical form for sets of UI assumptions via which
the three sources of UI implications are made transparent. Finally, due
to the central role played by the multiplicative-additive model, Section
4 constructs sets with the least number of UI assumptions for generating

an arbitrary M-A model.




Chapter 5

UTILITY ASSESSMENT OVER INDECOMPOSABLE SPACES

In the previous chapters, we have shown how to generate a utility
surface, of a given dimension, from surfaces of lower dimensions via a
modeling effort of the preference structure involved. The reason given
for justifying such an effort is that it is always easier to construct
utilities of lower dimensions. This standpoint is neither novel nor new.
In fact, it is possible to categorize almost all proposed methodologies
for constructing n-dimensional utilities into two types: one where some
smoothness conditions on the surface is required, hence, 1limiting the
utility to be a member of a classical family of surfaces, and the other
is where some regularity conditions are assumed on cuts of the surface,
hence, invoking decomposition. The only technology currently available
for constructing a Von Neumann utility without limiting its functional
form is when it is one-dimensional (see Pratt et al [32]).

The purpose of this chapter is to propose a framework for construct-
ing utility surfaces that can not be decomposed via any of the known
decompositional concepts. In other words, the preference structure is
assumed to be so intertwined and intricate that a joint treatment of the
attributes is required. The framework does not require any specific
global smoothness conditions on the surface, and the limitation of the
functional form of the constructed utility is rather minimal.

Section 5.1 introduces the so-celled "strategy of continuous cuts"
which is essentially a discretization process that collects continuous
samples of information about the utility surface. Section 5.2 contains

a general treatment of classical interpolation techniques which can be
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used to construct the whole utility surface by filling the "gaps" léft
out by the discretization process. Also contained, is a discussion of
the salient features for any interpolation rule used on utilities. Sec-
tion 5.3 proposes a behaviorally motivated rule of interpolation via the

use of a new concept that we call "risk aversion profile."

5.1 The Strategy of Continuous Cuts

Within the framework of the previous chapters, let us assume that
the set of UI assumptions, for a particular preference structure, does
not fully decompose the attribute space. The challenge that faces the
analyst now is how to construct the utility surface over indecomposable
subspaces of higher dimensions. One possible solution is to attempt to
model these utilities via other regularity concepts such as Fishburn's
"Diagonal Independence' (Fishburn [11]) or Farquhar's '"Hypercube Inde-
pendence' (Farquhar [6]). Another possibility is to ascertain the plaus-
ibility of assuming that the utility is a member of a family of curves.
As such, the utility surface is constructed by estimating a finite num-
ber of parameters.

An alternate way of approaching the problem is to start by con~
structing the underlying (deterministic) value function (i.e., the in-
difference curves for the preferences). The Von Neumann utility is then
attained by invoking uncertainty on a properly chosen numeraire. This
technique is called the decomposition procedure (see Boyd [2]). To con-
struct the value function, modeling, again, is required. The basis of
modeling in this case is the same as that for the utility itself, 1i.e.,
either (deterministic) separability of some sort is introduced for the

attributes (e.g., see Debreu [5]), or some smoothness conditions limiting
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the shape of the indifference curves are assumed, see Keelin [18]. Once
the value function is constructed, the Von Neumann utility is attained
via the decomposition procedure, mentioned above, with not much diffi-

culty.

When All Else Fails

The question now is--what if both the utility and its corresponding
value function are not amenable to any simplifying assumptions? For this
case, we propose the strategy of continuous cuts. This strategy calls
for the assessment of the utility surface along continuous one-dimen-
sional cuts. Each cut corresponds to a properly chosen numeraire. The
numeraires are chosen in such a way that they spread over the entire
domain of definition that is meaningful to the problem at hand. The
utility surface between numeraires is approximated via some, hopefully,
behaviorally motivated rules of interpolation. To propose a collection
of numeraires, one attribute is chosen to be a variable, while all the
others act as parameters. Thus, each numeraire corresponds to different
discretized values of the parameters.

As an example, let the indecomposable subspace be X XY XZ. We may
discretize Y and Z into yl,...,yk and 21""'zt' respectively.
Then we assess the utility over the numeraires

(x,yi,zj) for every i =1, ..., k
Ju 2y, sivy

The collection {(yi,zj)) are chosen to cover the part of the do-
wmain that is most pertinent and meaningful to the decision at hand. The
utility over each numeraire is directly assessed via one of the differ-

ent standard techniques (see Pratt et al [32]).
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Each numeraire utility can initially have any reference zero and
any scale (i.e., its two degrees of freedom may be arbitrarily chosen).
Yet, before the assessment is over, they have to be calibrated. The pro-
cedure for calibration is easy enough. One numeraire utility is chosen
as a reference. Two points on each of the other numeraire utilities are
compared with points on the reference utility. 1In this way, the two de-
grees of freedom of each of the other numeraire utilities are made com-
patible with those of the reference numeraire utility.

With an appropriate rule of interpolation, we will construct the

whole utility surface.

Applying the Strategy

When applying this strategy, there are two important points to con-
sider: (1) How to outline a domain of definition for the utility that
is most meaningful to the decision maker? And, (2) How fine should the
discretization of the parameters be? The degree of fineness increases
the assessment effort exponentially, but also decreases the error due
to interpolation.

The assessment can be meaningful if all the deterministic and
probabilistic structural dependence amcng the attributes are taken into
account. These dependencies, which vary with different applications,
act as constraining agents on the dom=ain of the utility. Note that the
structural dependencies of the attributes are different from the prefer-
ence dependencies; the latter acts on the utility surface itself while
the former acts on its domain.

The question of minimal assessment may be answered by a joint con-

sideration of the error bounds due to interpolation along with other
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sources of computational error. Different forms of sensitivity analysis

can be used to resolve this issue. We propose the following types:

(1) Preassessment Sensitivity: This is done by constructing
some sort of a graph that indicates what part of the do-
main of the utility surface is most frequently used in
the calculations of the problem. The discretization pro-
cess may then be designed to take full advantage of this
information. This procedure will hopefully reduce the

overall interpolation error.

(2) Dynamic Sensitivity: This type of sensitivity analysis
is to be conducted "on line" during the assessment pro-
cedure. The idea is to attempt to sense any steep or
irregular regions of the utility surface. One way to do
this is to ask the decision maker some preference ques-
tions and then compare his answers with those obtained
by the interpolation rule. Once a steep region of the
surface is discerned, the discretization process is mod-
ified to accommodate it. This kind of sensitivity is
particularly hopeful if the assessment is conducted via

an interactive computer code.

(3) Post-mortem Sensitivity: This is conducted after the
utility surface is built. If the optimization rule of
the decision setting of the problem is sensitive to val-
ues taken from the constructed utility surface, then
further assessment (on a finer discretization of the
parameters) may be conducted to improve the accuracy of

the utility surface.

5.2 Interpolation

For the purpose of this section, we will assume that the domain of

definition of the utility is the whole product set corresponding to
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x1 b SO xk, where the ranges of the Xi's are finite real intervals.
According to the strategy of continuous cuts, all but one of the attrib-
utes are discretized into a finite number of values. Let us call such
variables the parameter attributes. Also, the single variable that is
not discretized is called the numeraire attribute. It is, by convention,
chosen to be X, .

Now, the set

D = (x X . eleey X >: x EX :+ x € (discretized
{ 111 212 kik 111 1 jij

values of XJ], for every j =2, ..., k

is the only part of the domain that is of known utility. The utility
over the complement set (with respect to the domain) is to be interpo-
lated. Let xO € D. Consider the k-1 dimensional hyperplane in the

attribute space that is orthogonal to the space X and passes through

1

the point x_. (It should be clear that we are treating the domain here

0
as a subset of the k-dimensional euclidean space.) Consider the lattice
that is formed by the intersection of such a hyperplane with the numer-

aire cuts. The k-1 tuple (xzo,...,xko) is surrounded by the points
of such lattice whose utility values are known. If we just consider the
part of the lattice that immediately surrounds (xzo,...,xko), then al-
most any point in the product set (except possibly points on the boundary
of the lattice) is cornered into a (smallest) hyperrectangle whose ver-

tices are of known utilities. Figure 5.1 displays this setup for the

case of three attributes.

We will investigate the classical approach of fitting a family of

curves through the utilities of the lattice points and interpolating the
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/Domain of YXZ

g
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73 1 1 i
1 1 |
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1 1 (X,yz.zz) 1
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/l | 1
| 1 |
|(xcy1vx1) 1 1
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- | ] |
1 1 1
| 1 0

z z z z

1 2 3

Fig. 5.1. THE CONTINUOUS CUTS STRATEGY. Note that most points of the
domain are contained in rectangles whose vertices are of known utili-
ties.

points in between or extrapolating for the points on the boundaries of
the lattice. For the sake of clarity, we will treat the case of two at-
tributes. The extension to k-attributes 1is straightforward. Let the
attribute space be X X Y. Discretize Y into ¥y yz, and g+ Thus,
the numeraire utilities are u(x,yl). u(x,yz). and u(x,ys). Assume we
want the utility at (x,,y,). If y, € (yl.yz.ys}, u(x,,y,) is a known

value corresponding to a point on one of the numeraire utilities.
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Otherwise, (xo.yo) can be approximated by fitting a curve through the
(lattice) points u(xO,yl), u(xo,yz), and u(xo,y3). See Fig. 5.2.
Note that the curve we fit corresponds to a conditional utility on Y.

Let us demonstrate, by an example, some of the implications of this ap-

proach.
¥
(xo ry3)
Y3 X The domain of u(x,y3)
!
--------------- , (xo ’yO)
]
Y, X The domain of u(x,yz)
' (x,yz)
1
i
Yy X The domain of u(x,yl)
1
! (x,yl)
1
'
1
1
X
*o
Fig. 5.2. EXAMPLE 5.1.
Example 5.1.

Let us fit a quadratic curve through the points u(xo.yl). u(xo.yz)

and u(xo,ya). We get

2
“(xooy) = 01(8) + 02(8) y + ob(g) y
where

g = g[u(xo,yl) yu(xo .Y2) Du(xoiya)]

96




with sufficient manipulation, u(xo,y) can also be written as

u(xo,y) = fl(y) u(xo,yl) + f2(y) u(xo,yz) + f3(y) u(xo,y3) (5.1)

(.) are real valued functions. Since X is

where fl(-), f2(-). f 0

3

arbitrary, we can write Eq. (5.1) as

ulx,y) = fl(y) u(x,yl) + f2(y) u(x,yz) + fs(y) u(x,y3) €5.2)

So, even though we started with 2 procedure for point-wise interpo-
lation, Eq. (5.2) reflects a sort of function-wise interpolziior that is
similar to ones induced by decompositional axioms. To see this more viv-
idly, note that, from Eq. (5.2), three functions on X and on Y are
required to (linearly) span all other conditional utilities and hence
construct u(:). This is particularly reminiscent of some of the hyper-
cube independence of Farquhar [6], except that here the forms of the
functions on Y are explicit.

If the exponential family is used instead of the quadratic family,

the functional form for wu(-) is:

u(x,y) = Bl(g) + Bz(g) Exp[-83(g) . y] (5.3)

where

g = g[u(x,yl) ,u(x,yz) ,u(x,ys)]

In this case, the function-wise spanning is more subtle and nonlin-
ear,

Thus, if we are to propose an interpolation procedure, it should
produce an (approximation) surface that is not amenable to decomposition.

Otherwise, we would not have had to revert to the strategy of continuous
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cuts. One way to avoid this difficulty is not to require that the same
family of curves be used everywhere; thus different families may be used

for different locales.

Desirable Properties of Utility Interpolation

In the above discussion, we reflected on one feature of using the
classical approach for utility interpolation. Here, we will identify
and discuss other salient features involved.

One of the first issues to be decided upon is whether the interpo-
lating surface should be unique or a best fit, where 'best" is defined
in some mathematical sense. Uniqueness is, of course, a function of the
number of parameters of the surface versus the amount of information
about the utility to be used. Strictly speaking, the numeraire utili-
ties contain an infinite amount of information about the surface. The
analyst has to decide how much to use and from where, for a given locale.
The question of uniqueness versus best fit determines whether the fidel-
ity of the data is to be preserved or not. The theoretical basis for
deciding either way depends on the kind of assumptions the analyst be-
lieves about the assessed utilities. For example, if the utility values
are only accurate within an error range, then best fit may be justified.
Another aspect of the question is the computational effort required for
each case. Inferpolation by best fit reguires a lot more computations
than by unique surfaces.

Another salient feature of an interpolating surface is the absence
of any oscillatory behavior. This is a desirable property for a norma-
tive utility model even though, strictly speaking, Von Neumann utilities
are not required to be monotonic. This feature rules out most polynomial

and transcendental surfaces.
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Finally, the analyst may impose different assumptions on the approx-
imating surface that are relevant to utility theory. For instance, it may
be plausible to make the behavioral assumption that the decision maker's
risk aversion is smooth and displays no abrupt changes. This assumption
is valid for many choice situations, and it corresponds to requiring that

the utility surface be twice continuously differentiable.

5.3 Risk Ava=rsion Profile

With the comments of the previous section in mind, we will propose
a behaviorally motivated rule of interpolation. The main idea involved
is to construct an interpolating surface such that risk aversion along
different attributes ''resembles,” in a certain way, risk aversion along
the numeraire utilities. For the purpose of this section, we will re-
quire the Von Neumann utility to be monotonic with respect to each of

the variables. That is,

38‘:(2‘20 or %“_So Vi m i, ssay K
i i

Behaviorally, this means that either more of an attribute is always bet-
ter (or just as good) than less, or more of an attribute is always worse
(or just as good) than less, for every attribute.

We will first introduce the concept of risk aversion profile for 1-
dimensional utilities. Let u(xl) be a utility over the scalar attrib-

ute x, . Assume that du(xl)/d(xl) > 0. Hence, u(xl) may look 1like

the curve in Fig. 5.3. Let x and x where x be two

11 12° 11 < %2

points in the domain of u(:). Any point X4 < [xll,xlzl can be writ-

ten as
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u(xl)

u(xl) A

u(xlz) B e et e e e e e e
u(xu) e

B utey ) +1-Bux; ) e e e

RISK AVERSION PROFILE.

Fig. 5.3.
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x,,=0__ + (1 -q) X, a € [0,1]

1i 11 2

Also, due to the monotonicity assumption, for every « £ [0,1] and X4

) € [0,1] such that

and x there exists a unique B(a,xll,x

2" 12

u[""‘11 + 1 ~a) x12] = B(a,x) 0%, ,) ulx;y)

=+ [1 = B(a,xll,xlz)] . u(x12) (5.4)

See Fig. 5.3. B(:) 1is clearly a linear transformation of u(.) on the

interval [ ]. Also, PB(:) is the same for every positive linear

i R

transformation of u(-), and hence is well-defined.

a0
Definition 5 For a fixed X11%12 € xl, where X1 < LY B(O,xll.

X.,) 1is the risk aversion profile of u(+) on the interval [xll'

12

x12].

5.3.1 localized Separability

Risk aversion profiles will be used to implement a type of

speseyX ) be a point In X X..s

separability condition. Let x_ = ( 0 1

o " Mo
X xk' We want to construct u(xo). Within the framework of the contin-

uous cuts strategy, X0 is contained in a (smallest) hyperrectangle

whose vertices are of known utilities. Let X, = (xll""'xkl) and

x2 = (x12""'xk2) define the hyperrectangle containing xo, where
X4 < X0 < X0 Vimd, vy R
and

101




X0 corresponds to some convex combination of the vertices of the hyper-
rectangle [xl;le. Also, due to the monotonicity assumption, u(xo)
corresponds to some convex combination of the utility values of the ver-

tices of the hyperrectangle. So, what we need is a k-dimensional ana-

logue of Eq. (5.4).

Define a2""'0§ such that
x10=aix11+(1-a1) X0 Vol w2, ok

The ai's are well-defined and unique. Assume that for each i, i = 2,
A
...,k, we have Bi(ai’xil'x12)' We can construct u(xo), the approxi-

mation of u(xo) recursively, in the following manner:

G<xlo,x20,x333,xkjk> = 82(-) ué(m,xm,xajs, sty kak> + [1 - B2(')]
. “("10'x22’x3j3' kg xkjk> (5.5)
where JS""'Jk € {1,2). And,
G<"1o'xzo"‘30"‘4j4' Gk xkjk> * Pyl*) 36‘10"‘20"‘31"‘434' s xkjk>
+ [1 - 63(°)]
. G(}lo,xzo,xaz,x4j4, ...,xkjk> (5.6)

where J,,...,J, € (1,2), and so on. Finally, we get
~ ~
Ulxygr coor Xyg) = B UGy coey Xy 0%k2)

+ [1 - Bk(°)] u(xm. P xk-l,o'xk2) (5.7)
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The following proposition characterizes this recursive system

in three ways.

Proposition 5.1,

(1) The recursive system of Eqs. (5.5), (5.6), and (5.7) is
equivalent to the following explicit formula:

uix.) = P Al c uéc Xogs v veey K
5 Sgreenr€(1,2) (greeeady) "\10723, kjk)
(5.8)
where
k
i
C = Cc
(JZ""’Jk) iEL (J2,...,jk)

and

i

C(Jz""hjk) - Bi(ai'xil'x12) if Ji =1

=1-8(a, ) it 3 =2

X517%32

(2) G(xo) is independent of the ordering of the attributes
in the recursion process of Eqs. (5.5), (5.6), and (5.7).

(3) The C(.)'s of Eq. (5.8) correspond to a convex combi-

nation, i.e., each C(.) is nonnegative and they sum up

to one.

Proof.

For the first assertion, the correspondence between the recursive
equations and the formula (5.8) is made apparent by starting with Eq.
(5.7) and substituting for the utilities on its right side by their
equivalence in the recursion. This 1is to be done recursively until

G(xo) involves only vertex utilities. What we will have then is Eq. (5.8).
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For the second assertion, we note that any ordering of the attrib-
utes in the recursion process will produce the same C(.)'s in Eq.
(5.8); hence, G(xo) is unique and well-defined. The third assertion

is demonstrated by noting that:

C =
e(1,2) Ugreedy) 4l

% ﬁ [51(-) - (1 - 51")>] = jjz 1=1

Jpree

The nonnegativity of the C(')'s is obvious from their definition.

Q.E.D.

Proposition 5.1 corresponds to a procedure where the inter-
polation is conducted by handling the variables separately, i.e., inter-
polating unidimensionally, edge by edge along the hypercube, until in a
finite number of steps, converging to the point of interest. The pro-
cedure assumes a certain type of localized separability of the attrib-
utes. This fact is reflected by Eq. (5.8) by noting that, for a given
locale, the Bi(-)'s are conditional utilities along the ith direction.
In fact, a utility is represented by Eq. (5.8) if and only if, for i =
Liien ki Xi is UI. For a proof, see Appendix 5.A. The separability,
though, is not global because the Bi(-)'s are different (not the same
up to a positive linear transformation) for different locales. An im-
portant feature of the procedure is that it preserves the fidelity of the
assessed data. That is, if the point whose utility is to be interpo-
lated happened to be in the domain of the numeraire utilities, Eq. (5.8)
produces the exact assessed value.

All we need now is a meaningful proposition for the 81(-)'3.
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5.3.2 Estimating the Bi(-)'s

We will propose two behaviorally motivated methods for esti~-

mating the Bi(-)'s.

Method 1

The main idea here is that, for a given interval of the overall
utility, each Bi(°) is equal to the average of risk aversion profiles
of surrounding numeraire utilities. An equivalent way of expressing the
idea is to say that the preference ordering along an attribute is the
same as the (arithmetic) average of preference orderings of the sur-
rounding numeraire utilities when both the attribute and the surrounding
numeraires are restricted to correspond to a particular interval of the
utility. (The arithmetic average is chosen here for the sake of simplic-

ity only; other averages may be used as well.)

Applying Method 1

The numeraire utilities surrounding the hyperrectangle [xl;x2] con-

taining x are:

0
u(xl.xzjz, yay ’S‘Jk/ where J,, ...y 3, € (1,2)

For a given 1, 1 = 2,...,k, and a given numeraire utility uL(xl) =
u(xl'xziz""’kak)' Jz,...,Jk € {1,2), assume that there exists xliL

such that

ué‘lil"xz‘jz' ooy xiji. ey ﬁjk> = u(xlo'xz‘,z. ey ximi' ey kak>

(5.9)
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where m, € (1,2} and m, # Ji' Let BiL(ai'XIO'xliL) be the 1isk

aversion profile corresponding to uL(xl). on the domain [xlo,x11 )

L
evaluated at ai' We will use the arithmetic average of all the

B, (*)'s (that exist) as a value for Bi(ai,x ) in Egs. (5.5),

g

(5.6), and (5.7).

11'%42

We will demonstrate the method by an example.

Example 5.2.

Let the attribute space be X X Y. Choose the numeraire utilities
to be ul(x,yl),...,uk(x,yk) where Yyree ¥y € Y. Let us try to cal-

culate G(xo,yo) via the risk aversion profile using Method I. Assume

that:

= €

Yo ™ ayi + (1 - Yia ! a € [0,1) and for some
18 1.8, «ou, =1}

From Fig. 5.4, there exists X, and Xia such that

uy Orgoyy) =0y ) Gor¥i4n)
and

Uy FiaaYg40) = 8y (Xg0yy)

Thus, using Eq. (5.4),

ui(xi.yi) - ui[(axo + (1 - xi),yil

B, (0,x ,% ) =
Yy 0’71 ui(ki,yi) - uilxo,yi)
and
8 (a.x .3 " u1+1(x0’y1+1) b3 u1+1[(ax1+1 g xO)'y1+1]
i) ’ -
Yia el u1+1(x0,y1+1) u1+1?§1+1'y1+£)
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A u = constant
Yia

%1F ———————— e Ra
|
|
: 7Yy
1

yi —Tf
|
|
{
: constant
|
: » X

x x X

i+l 0 i

Fig. 5.4. RISK AVERSION PROFILE--AN EXAMPLE.

s0

g _(a,y, .y )w | () ¢+ B () /2
y TN [yx Yia ]

and finally

N = ( - A
Ulxgi¥o) = B (A,y oy, ) Ulxgey ) ¢ [1 ’y(a'yi'yu-l)] ulxg ¥y )

Proposition 5.2. The interpolation via the localized separability and

Method 1 is exact for linear utilities, i.e., utilities of the form

k

u(xl. saey xk) = 25 oix1 +p
i=1
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Proof.

We will find G(xo) where x. = (

c N\
o x10""'xk0) E X, X ooa XX =nd

k
compare it with the exact value, >, 0.X., +p. let x = (

1*10 1 = *10"*20’

""xk-l) and x, - (x10'x22""’xk2) where X1 < X0 S5 EERON
k, correspond to the hyperrectangle containing Xq Pick J3, 25;}5k,
and let aJ be such that:

X . mox. . +0-)x o, € [0,1] (5.10)

jo Jj a1 - jlites - o 3 :
Let uL(xl) = u(xl,szz,...,kak), where L2,...,Lk € {1,2}, be one of
the numeraire utilities indexed by one of the vertices of [xl;le. As-
sume that there exists x € X such that

le 1

u_ [x = ulx _,x i s X X RS
L<13L> <10 2L, ’ gm j+1LJ+1 . kLk>

where mj € (1,2} and mJ # LJ. Using Eq. (5.4), we have

up (xy9) = uL[QJxle * =) x10]
5 G)J'XIJL'XIO »

up (x50 - “L<"13L>

k. k.
Box +0,X, . +p Zzax +o[(1x +(1-a)x]+p
L& 1"21, * 71710 & 121, 1, 37 %10
" >
o,X + 0, X, +p| - 0,X + 0.X + P
1; 12L2 1710 ) i 2L2 1 IJL
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Since the choice of uL(xl) is arbitrary (with respect to the ones

surrounding the hyperrectangle), all BJ (+) that exist will be equal

L
to aj. So, their average is equal to (1'1, and hence the estimate for
g (x,,x._,x..) 1is «a,. Since j 1is arbitrarily chosen, we can write
Y j : 7 " '
Bj(aj'le'sz) = aj - ¥ 3 w2, g K (5.11)

We will use Eq. (5.11) along with the system of equations (5.5)-(5.7) to

estimate the value ﬁ'(xo).

~
uix X X “ee X = Q. Ulx X X e X
10! ’ 3 ’ ’ ’ ’ ’ ’
< 20"733, kjk> 2 <1o 21°734, kjk>

q = oo
+ ( Ocz) u<x10,x22,x3j3, ¥ xkjk>

k
= Q 0.X + 0% + g% +p
2| 2
<1=31131 110 221 >

k
= z g,X L D
<1=3 1 131> 1*10

+ 02[a2x21 + (1 - 0.'2) x22] +p

But, Eq. (5.10), we get
k

= 1; Uixi‘ji +0yXg * Xy + P

- WX, XX ioEvey X
(10 20'733, kjk>

Vs eees 3y € (1,2) (5.12)
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Equation (5.12) indicates that the first step of the recursion is exact.
st
Let us make the inductive assumption that the (k -1)q step is exact,

i.e., u( P ) and Q(x ) corresponds to

*10° k-1,0"%k1 Faral

10’ k-1,0""k2

the exact values. Hence, by Eq. (4.7),

u(xlo, e xko) = aku(xlo, Stany xk-l,O’xkl)

+Q-0a) G(xlo, )

Xe-1,0""2

k-1
=% 12; e B T Sl o ™ S

k

g

1
) %0 * %1%0 * uxe * °>

+ (1 - o%) <

i

k-1

= 122 Uixio + 0 X+ Ok[o‘kxkl + (1 - Ok) xkz] + 0

= u(xlo, istaly xko)

Q.E.D.

Method 11

This method is motivated by the observation that a risk aversion
profile over an interval of an attribute (of an indecomposable space)
changes for different levels of the overall utility and also changes as
to where the attribute interval is located with respect to the overall
range of the attribute. (For a vivid example of this observation, see
Fig. 6.5 of Chapter 6.) As such, the method estimates Bi(-) for at-
tribute 1 by a numeraire risk aversion profile corresponding to the

same utility interval and also where the numeraire interval approximately
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has the same position with respect to the overall numeraire range as
that of the attribute interval involved.

As an example of Method II, consider Fig. 5.5. Assume we need to
interpolate the utility of the point (xo,yo). To implement the local-
ized separability, we need an estimate of By(-) around the point (xo,
yo). By(') is defined on the attribute interval (y3,y4) that corre-
sponds to higher values of Y. Thus, if we are to use for it a numer-
aire risk aversion profile, it should correspond to higher values of the
numeraire attribute. We also want both the numeraire and attribute pro-

files to correspond to the same interval of the overall utility. Thus,

L

L~

«
(=)
Sl i

1

ot b A 4

T

<
—
» -————-————J—-——-——{ —— ——

Fig. 5.5. RISK AVERSION PROFILE~~METHOD II.
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the appropriate choice is that part of the numeraire utility u(x,yl)
that is shaded in the figure.

It should be clear that Methods I and II will essentially coincide
for a large part of the domain. Even though Method 1 is easier to apply,
Method II is an improvement over Method I for a large class of problems.

A final note concerning the case where the behavioral assumptions
of both methods are not satisfied. For such problems, localized separ-
ability may still be used. What is needed is an alternative way of
proposing conditional utilities along each of the parameter attributes.
One way to proceed is via the idea of canonical utilities. A canonical
utility is the analyst's conception of a '"representative' behavior of the
decision maker's preferences along each attribute. Such a conception
usually evolves when the analyst develops a good grasp of the problem
and the preference structure. A canonical utility will reflect any dis-
cerned peculiar preference behavior along an attribute. The appropriate
interval of a canonical utility is used, after proper rescaling, along

the corresponding edge of the hypercube surrounding the point of interest.

Concluding Remarks

We have dealt with spaces that are not amenable to decomposition.
We introduced the strategy of continuous cuts which discretize the domain
of the utility into continuous one-dimensional cuts. Utility is to be
directly assessed over these cuts via existing standard techniques. For
the rest of the domain, we proposed the risk aversion profile method as
a rule of interpolation. The core of the method is a particular variety
of local decomposition. The method produces approximation utility sur-
faces where risk aversion along the different attributes resembles that
of the assessed utility cuts. The method is exact for linear utilities.
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Appendix 5.A

Theorem. Let the attribute space be X1 ¥ s K xk. Let xl,x2 e x1 %

X Xk be such that X9 # X0 for 411 1= 1....,K, The util-

ity surface may be represented as

Wl i ey X ‘5 f (X , viesX. )
k (12,...,jk) 2 k

1 5 é-cfl 2)
.2,"'!Jk~-t ’
s PR R g (5.4.1)
< 3 232 ka)
where
I=k
Y )
f (') = | £ ()
(Ggseresd)) fy Ggreeead))
and
£’ () = Culx,) 2 4w
(32,...,jk) i i
=1~ CU(XI) if Ji = 2

1f and only if, for 1 = 2,...,k, X is UI.

Proof.
Assume that Eq. (5.A.1) represents the utility surface. For 1i=2,

...,k, the terms of Eq. (5.A.1) may be rearranged in the following man-

ner:
u(xl, 5 uy xk) = gli(xl' ceer Xy g0 teey xk) CU(xi)

+ gzi(xl, svey xi_l.x1+1....,xk) Vim®; couy &

(5.A.2)
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But, by definition, Eq. (5.A.2) implies that X1 18 Ul for 41 =2,...,K-.

Now, assume that, for 1 = 2,...,k, Xi is UI. We will use induc-

tion (on k) to prove the representation of Eq. (5.A.1). For k = 2

D
(0,1) >u(x1,x2) = Cu(x12.x2) - a[?u(xll.xz) ~ Cu(xlz,xz)] . Cu(x1 )

X2

where & 1is some real constant.

Equivalently,

u(xl,xz) = [g Cu(xl,xzz)] . CU(xll'x2) + [1 - Cu(xl,xzz)] . Cu(xlz,xz)
(5.%.3)

By letting Cu(xl,x ) = ¢ Cu(xl,x ), Eq. (5.A.3) corresponds to Eq.

22 22

{5.A.1).
Assume that the assertion is true for k-1. Let the attribute

space be X, X ... X xk. Treat X, 2 xX_2 as a single (vector) attribute.

1 2

By the inductive assumption, we can write

1

4 1 s, RIS, IS AF f O s ween X )
2" '3 : .l 3 k
k Jgreeerd €{1,2) Ugseeendy)
k
« Culx, ,x y e X (5.A.4)
(1 33, kjk)
where X, corresponds to (xl,xz).
Let us decompose each Cu(x_,x v ek ) via the assumption that
1 333 ka
x2 is UI:
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Culx, ,x o Ausy X = Cu<; Mo SN, - o ey B >
<1 3j3 kjk> 1722 3‘13 ka

+ B[Cué{l,le,x:jjs, araisty xkjk>

- Culx, ,X,,X SREATSUS.
(1 22 3j3 ka)]

« Cu( % .5

Rygr*gi¥ags 0 Ko

where £ 1is some real constant. Equivalently,
Cu<xl'x3j3’ ey kak> = B Cu(xlz,xz,xaz, Seiars xkz)
. Cu<xl,x21,x333, S kak>
g [1 - B - Cu(xlz,xz,xsz, G xk2)]
. Cu<x1,x22,x3J3, “andiy xkjk) (5.A.5)

Substituting Eq. (5.A.5) into Eq. (5.A.4) produces the required result.

Q.E.D.
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Chapter 6

AN APPLICATION: BUYING A NEW CAR

In this chapter, we will demonstrate part of the theory of previous
chapters by an actual application. The application involves Mr. Manna
as a decision maker (denoted DM). Mr. Manna is an international student
at Stanford University. He is about to finish his graduate program of
study and return home. Mr. Manna, who henceforth will be refferred to
as the DM, would like to obtain a 1978 model, four-door sedan for him-
self. Since this model will only be available two months after his de-
parture, the DM has engaged a friend to choose one of the new cars and
ship it to him. The friend was a bit reluctant to accept such delega-
tion since he was not sure what would be an appropriate choice for the
DM. At this point, the author, as an analyst, steps in to help commu-
nicate the DM's preferences of cars to the friend. The strategy is to
construct the DM's multiattribute Von Neumann utility over the differ-

ent possible choices of cars.

6.1 The Model

We distinguish between car features which the DM insists upon as
requirements and those about which he is willing to trade off and com-
promise. We consider the former kind of features as constraints, and
the latter as attributes. Any chosen car will have all the required
features along with different levels of the attributes. The best choice
will represent the best balance among the attributes.

For the required features, the DM wants a four-door sedan with au-
tomatic transmission, power steering, air-conditioning, and an AM-FM

radio.
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For the compromising features, we identify the following attributes,

along with their measurements and ranges.

(1) Total Purchase Price: Denoted x is the overall cost

1'
of the transaction in U, S. dollars. The DM considers
the range 34,000 - $6,000 as being appropriate for the

class of car he wants.

(2) City Mileage: Denoted x2, is the mileage per gallon
in the city, as reported by EPA (Environmental Protec-
tion Agency) testing.

(3) Highway Mileage: Denoted Xg s is the mileage per gal-
lon on the highway, as reported by EPA testing.

(4) Resale Value: Denoted x is the approximate worth of

4!
the car after three years of usage, as a percentage of

the initial price. x for a given car, is to be esti-

4'
mated from historical data of similar cars. Such data
is easily available. An appropriate range for x is

4
35% - 70%.

When talking about the ‘cost' of the car, we mean the

vector (x ,x4). Variations among cars due to

1%20%3
maintenance cost are minor and hence are dismissed.

(5) Motor Performance: The overall performance of the car
is influenced by many design features. To compare per-
formance, the following two attributes are considered
sufficient.

(a) Starting Acceleration: Denoted x is the time,

s'
in seconds, it takes a car to accelerate on level
road from O -30 miles per hour, as measured and

reported by Consumer Report magazine. An appro-

priate range for Xg is 4.5~ 7.0 seconds.
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(6)

(7)

(8)

(9)

(b) Passing Acceleration: Denoted Xg is the time,

in seconds, it takes a car to accelerate on level
road from 45 to 60 miles per hour, as reported by
Consumer Reports. An appropriate range for x_ is

6
7.0 -15.0 seconds. When talking about 'motor per-

formance,' we mean the doubleton (xs,xs).

The Brake System: As a measure of the brake system

performance, we define the attribute x the distance

7!
in feet, for level braking from 60 miles per hour to a
stop (with no wheels locked), as measured and reported
by Consumer Reports. An appropriate range for x is

7
170 - 220 feet.

Maintainability: Here, the DM is concerned about the
availability of maintenance and spare parts in his home
country. It is decided to measure maintainability ac-
cording to the popularity at home of the make of car.
Thus, we define the pervasiveness of a make of car, Xgs
as the percentage of the imports of such a make with
respect to total imports. Such data may be obtained

from the Import Statistics Year Book of the DM's home

country. An appropriate range for xg is 1 -10%.

Trunk Size: Denoted x_, 1s the volume in cubic feet

9
of the car trunk, as reported in the car manual. An
appropriate range for Xy is 10 - 30 feets.

Front Seat Size: An important feature of the front seat

is leg room, x as measured and reported by Consumer

’
Reports. It 1:01mp11c1t1y assumed that the interior
design is proportioned in such a way that more leg room
coincides with a large--hence, more comfortable--seat
size. The size of the back seat is not of crucial im-
portance to the DM. An appropriate range for x is

10
39 =45 inches.
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(10) Seat Upholstery: Denoted seat upholstery has

b © 1y
only three possibilities: vinyl, leather, or cloth.
The preference of upholstery concerns ease of cleaning
and retainment of a fresh long time look. The DM's
preference is for vinyl, then leather, and, lastly,

cloth.

(11) Measurement Gauges: In addition to the standard ones
such as a speedometer or an odometer, DM would like to
have additional gauges such as an ampmeter and a volt-
meter for the car's electrical system, a temperature
gauge, a RPM gauge, and the 1like. We will let X190

denote the number of extra (nonstandard) gauges 1in a

car. The range for x,, 1s (0,1,2,3,4,5)}.

Table 6.1 summarizes all the attributes along with their ranges.

6.2 Preference Modeling

(1) The Cost Variables: It becomes apparent that there is
a deterministic relationship relating the preferences

over the cost variables, x through x,. Hence, it

is decided to construct an ;conomic mode: that will re-
late these variables. The present value model seems
appropriate enough. A Von Neumann utility over (xl,
x2,x3,x4) is obtained by invoking risk over the pres-
ent value as a numeraire via the two step decomposition

approach reported in Chapter 1.

For the present value model, the following assumptions

are agreed upon with the DM.

(a) The DM will use his car over a three-year period
before selling it.

(b) The DM will drive, on the average, about 10,000
miles per year, 60% of which is highway driving
and the balance is for city driving.
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Table 6.1

A LIST OF CAR ATTRIBUTES, ALONG WITH THEIR APPROPRIATE RANGES

Attributes Symbol Range
COST:
Purchase Price Xy 4,000 - 6,000 Dollars
City Mileage x, 8 - 20 MPG
Highway Mileage x3 15 ~ 25 MPG
Resale Value X, 30 -~ 70% (Unitless)

MOTOR PERFORMANCE :

Starting x5 4.5 - 7.0 Seconds
Acceleration
Passing x6 7 - 15 Seconds
Acceleration
BRAKES X, 170 - 220 Feet
MAINTAINABILITY Xg 1 - 10% (Unitless)
TRUNK SIZE X 10 - 30 Feet®
FRONT SEAT SIZE Xy 38 - 45 Inches
SEAT UPHOLSTERY X1 {vinyl, Leather, Cloth]
MEASUREMENT GAUGES x (0,1,2,3,4,5)

(c) A 13% discount rate is the DM's time-value of
money. The DM will actually finance the car at
about that rate.

(d) The cost of gasoline is $0.30 per gallon. With
these assumptions, the present cost, denoted PC,
of a car 1is:

4000 6000
[PC = x. +0.3 T i ¢ (2.42) - (0.683) X, 'xl] (6.1)

: 2 3
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In Eq. (6.1), the cash flows are discounted yearly.
With this model at hand, for the rest of the chapter
we will suppress the attributes x1 through x4 and
deal only with the present cost, PC, as an adequate

measure of the overall cost of having a car.

(11) Motor Performance: It is believed, from the DM's re-
sponses to questions, that the starting and passing ac-

celerations, x and x are intricately linked,

’
preference-wise? and thug have to be treated jointly.
In accordance with our theory, the space X5 X X6 is
indecomposable. The justification for taking this stand
may be deduced from the data collected and assorted for

the space X5 X x6.

(iii) A Multiplicative-Additive Model: We will use the fol-

lowing vector to describe fully a car:

(PC,p,x )

7'%8 9 *10"%11' %12
where PC stands for present value as defined by Eq.
(6.1), p= (xs,xs) stands for motor performance, and
X, through X0 are as defined in Table 6.1. From a
scrutiny of the DM responses, we suspect the plausibil-

ity of the following multiplicative-additive model:
u(PC,p,x7,x8,x9,x10,xll,xlz) =3 Cu(PC,p,x7,x8)

* Cu(xg) 'C“(x1o) *cu(xll) ‘C“(x12) * € (X,+) (6.2)

To test the validity of this model, we used the theory

of Section 4.4 to construct the set Al' a minimal set

of UI assumption:

A, = ((1,1,1,1,1,1,0,0),(1,1,1,1,1,0,1,0),(1,1,1,1,0,0,0,1))
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The satisfaction of the assumptions in A1 will guarantee

the representation of Eq. (6.2).

(iv) A Quasi-Separable Submodel: In addition to the assump-

tions of A the following set also seems worthy of

1'
testing and verification:

A2 - {(1,0,0,0,0,0,0,0),(0,1,0,0,0,0,0,0),

¢(0,0,1,0,0,0,0,0),(0,0,0,1,0,0,0,0)}

If the assumptions of A2 are satisfied, then Cu(PC,
p,x7,x8) of Eq. (6.2) is modeled using Keeney's ([20]
quasi-separable model. This means that Cu(PC,p,x7,x8)
is analytically derived from conditional utilities over
and x

PC, p, x separately.

7 8’

let A = AILJAz. If the assumptions in A are verified,
then, except for the attribute P, all required utility

assessments are over scalar attributes.

Figure 6.1 sketches the total preference modeling effort for the

problem.

Verification of UI Assumptions

For verif&ing the UI assumptions, two techniques are used. The first

technique corresponds to confronting the DM with a two-branch lottery
whereby he will get either a favorable package with probability «a or
an unfavorable package with probability (1 -Q). He is to compare such
a lottery with choosing a particular package, for certain. All three
packages involve different levels of the active attributes (the attrib-
utes corresponding to the 1's 1in a UI assumption). The parameter at-

tributes are completely suppressed unless the DM has asked about them.
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Fig. 6.1. PREFERENCE MODELING.

He is told only that their level is the same for all three packages. The
three packages are varied throughout the active attributes' space. Fig-
ure 6.2 demonstrates this procedure. It is felt that, should the DM re-
quest to know the actual level of the parameter attributes, this would
indicate the failure of the UI assumption. This technique indicates to

us that the two types of acceleration are indecomposable.

123




PC
3:’4’0000 )

&
2

(33,000, )

LZAN
vV

1-a)
PC

$2,500, )

Fig. 6.2. VERIFYING THE Ul ASSsumPTION (1,0,0,0,0,0,0,0).

The other procedure is suggested by Keeney [21]. It involves the
same three packages as above, but with the parameter levels specified.
The UI assumption is satisfied if different parameter levels do not
influence the DM's preferences throughout the space of active attrib-

utes. Both techniques are used to verify the UI assumptions in A.

6.3 The Assessment of Utilities

Before discussing the assessment effort for the different submod-
els, we introduce two special car packages: the superior car and the
inferior car. :I'he superior car, denoted (B,B,B,B,B,B,B,B), corre-
sponds to the car where each attribute is at its best level (B stands
for best). The inferior car, denoted (w,w,w,w,w,w,w,w), corresponds
to the car where each attribute is at its worst level (w stands for
worst). The levels best and worst are determined by the range of at-
tributes in Table 6.1. To fix the two degrees of freedom of the 12-

dimensional utility surface, we will assume:

u(superior) = 1 ; u(inferior) = 0 (6.3)
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All assessed utilities and constants eventually will be referenced

scaled using Eq. (6.3).

Required Assessments

(1)

(i)

(111)

The Multiplicative-Additive Model: Using Theorem 1.3
of Chapter 1, we need to assess four one-dimensional
and and one 5-

utilities over s

%gr *10* *11° *42°
dimensional utility over PC X performance X x7 X X8.
The latter utility will be derived analytically from
utilities of lower dimensions using the quasi-separa-
ble model below. Also needed are five scaling con-
stants which reflect the relative merit of each of
the attributes in the M-A model. They correspond to

C3 through C7 in Table 6.2.

The Quasi-Separable Model: This model is defined over

the space PC X performance X X7 ¥ XB. The model is

diagrammatically depicted as a utility tree in Fig.
6.3. The required assessments are: three one-dimen-
sional utilities for PC, X

and X and one 2-

, ’
dimensional utility over perormance.8 Also required
is the assessment of 24 constants corresponding to the
utility values of the vertices of the hypercube defined
by (B,B,B,B,w,w,w,w) and (w,w,w,w,w,w,w,w). These
C

constants are listed as C and C_, through C2

2r "3 8 1
in Table 6.2.
The Performance Space: Using the continuous cuts
strategy of Chapter 5, the starting acceleration, x5,

is discretized into three levels: worst, average, and
best. 'The utility over passing acceleration, xs, is
assessed at these three levels, where all other attrib-
utes are at a fixed, unspecified level. Thus, for this

space, three one-dimensional utilities are required,
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along with four constants (see Table 6.3) to calibrate

the three cuts.

In summation, the overall assessment effort requires ten one-dimen-

sional utilities and twenty-five constants.

Assessing the Utilities

All the ten one-dimensional utilities are assessed using standard
techniques (see Pratt et al [32]) on a zero to one scale, i.e., the best
level of the active attribute corresponds to a valuz of one, and the
worst level corresponds to a value of zero. Figures 6.4 through 6.11
contain these utilities. During the assessment, the parameters of each
utility are set at an average value chosen by the DM. This makes the
assessment effort easy and fast for the DM. For each utility, about 6
to 8 points are assessed. Check lotteries are also used to verify the
(relative) reproducibility of the assessed utility points. A French

curve is used to connect the points.

Assessing the Constants

The first two constants of Table 6.2 are arbitrarily chosen by Eq.
(6.3) to fix the two degrees of freedom of the 12-dimensional utility
surface. Each of the other constants is estimated by comparing its
corresponding car to a lottery involving two cars with known utilities.
For example, C is estimated by comparing choosing the car (B,B,B,B,

3

w,w,w,w) to the lottery:

o B,B,B,B,B,B,B,B) = Superior Car

1-a w,w,w,w,w,w,w,w) = Inferior Car
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uA(PC)

0.0 . | - | A ad = -
1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000

Present Cost (in U. S. Dollars)

Fig. 6.4. THE ASSESSED UTILITY OVER PRESENT COST. (The sub-
script A in uA(-) stands for assessed.)
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Fig. 6.5. THE ASSESSMENT ON THE THREE NUMERAIRES IN THE PERFORMANCE
SPACE.,
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uA(x7)

0.0 | | 1 |
170 180 190 200 210 220
x7, in Fact

Fig. 6.6. THE ASSESSMENT OF UTILITY OVER X, (BRAKES) .
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uA(xs)

0.0 | | - ! | 1 | | |

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

x Maintainability, Unitless

8’

Fig. 6.7. THE ASSESSMENT OF UTILITY OVER Xg (MAINTAINABILITY) .
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u, (x_)

0.0 ! 1 L 1 1 1 L
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3
X Trunk Size, in Feet

9;

Fig. 6.8. THE ASSESSMENT OF UTILITY OVER TRUNK SIZE.
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Fig. 6.9. THE ASSESSMENT OF UTILITY OVER FRONT SEAT SIZE,
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Fig.

uA(x12

Fig. 6.11.

6.10.
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X X X
cloth leather vinyl

Upholstery, x11

UTILITY ASSESSMENT OVER UPHOLSTERY.

e 0.95

0.75

0.50

Gauges , x12

UTILITY ASSESSMENT OVER X19°
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An « € [0,1] where choosing (B,B,B,B,w,w,w,w) is equivalent to choos-

ing the lottery is sought. For such an &, we have:

u(B,B,B,B,w,w,w,w) = @ u(Superior Car) + (1 - @) u(Inferior Car)

o C1 + (1 - C2 = C3

To get consistent results and reduce the assessment difficulties for the
DM, different lotteries are used to estimate different constants. The
last column of Table 6.2 contains the utility values of the pair of cars

used in the lottery to estimate a particular constant. For example,

C16 = OtC13+ 1 - C8

where & 1is such that:

m ===
R SR o’ )

(1B,B,lI w,!I w,l W,w,w,w) 1 1 1 1
1 1 1 1 Aa-a 1
t

P

It is clear that careful preplanning had to be undergone before the ac-
tual assessment is conducted.

For the sake of uniformity, since all the assessed utilities range
from zero to one, we will also require that the utility over performance

have the range O -1. That is, we will assume:

Cu(Best Performance) = Cu(Best Starting Acceleration,

Best Passing Acceleration) = 1

and

Cu(Worst Performance) = Cu(Worst Starting Acceleration,

Worst Passing Acceleration) = 0
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THE ASSESSED UTILITY CONSTANTS

Table 6.2

Utility Attribute Levels
Reference
et jrmmariive i ¥ o fa |u fagln, fu ] "o |
.
1.0 C1 B B B B B B B B | ‘ !
Arbitrary
0.0 C2 w w w w w w w w ‘
0.78 C3 B B B B w w w w (Cl’c2)
0.05 C4 w w w w B w w w (CI’C2)
0.02 C5 w w w w w B w w (Cl'c2)
0.05 C6 w w w w w w B w (Cl'CZ)
0.001 C7 w w w w w w w B (Cl,C2)
0.6 CS B w w w w w w w (Cl'Cz)
0.5 ‘Cg w B w w w w w w (C1'C2)
0.1 C10 w w B w w w w w (Cl,C2)
0.2 C11 w w w B w w w w (Cl,C2)
0.74 C12 B B B w w w w w (C2,C3)
0.70 013 B B w B w w w w (C2,C3)
0.66 Ciq B w B B w w w w (C2.C3)
0.62 Cis w B B B w w w w (C2,C3)
0.68 016 B B w w w w w w (C8,C13)
0.26 C17 w w B B w w w w (C11'C15)
0.64 C18 B w w B w w w w (CB'C14)
0.63 Cig B w B w w w w w (CS'C14)
0.56 020 w B B w w w w w (CQ'CIS)
0.58 C21 w B w B w w w w (CQ'CIS)

o
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Thus, the three numeraire utilities on the performance space will be
calibrated with respect to these two points. Four calibration points
(see Fig. 6.12) are assessed as such and reported in Table 6.3.

Now, using an interpolation rule, such as the one suggested in
Section 5.3, we have a two-dimensional utility surface over the entire

performance space whose range is zero to one.

The Final Analytical Model of the Overall Utility

We will derive the final overall tility model via the following

steps.

Step 1: The first four attributes, xl, Xy x3, and x4
are mapped into the present value numeraire via

Eq. (6.1).

Step 2: Using the risk aversion profile method, the util-
ity over any pair of starting and passing accel-
eration is interpolated from the utilities over
the three continuous cuts.

Step 3: The utility over the space PC X performance X x7

) 4 x8 is derived, via the tree method of Chapter
2, using the utility tree depicted in Fig. 6.3.
From the utility tree, all we need are the utili-
ties outlined by squares. Each one of these util-
ities is the same, up to a positive linear trans-
formation, as one of the assessed utilities of
Figs. 6.4 through 6.11. Also, the domain of each
squared utility contains two points whose utility
values correspond to two constants in Table 6.3.
Since the constants in Table 6.2 are assessed with
respect to the reference and scale points of Eq.

(6.1), each squared utility, with reference and
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A = Average

w = Worst

Fig.

Arbitrarily ‘
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1 1
1 1
e S
w = Worst B = Best
6.12. DISCRETIZING THE PERFORMANCE SPACE.

Table 6.3

CALIBRATION CONSTANTS FOR THE NUMERAIRE

UTILITIES OF THE PERFORMANCE SPACE

Utility Performance
Assessed
Symbol Value x5 x6
1.0
C22 B B
0.00
l Ca3 ” i
0.7
C24 5 w B
0.85 A
C25 B
0.45
C26 4 A w
0.70
C27 < B w
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scale compatible with Eq. (6.1) may be obtained using
the assessed utilities and the scaling constants of

Table 6.2. As an example:
cu(w,B,w,1) = B + 7uA(x8) = cu(w,B,w,1,w,w,w,w)

where uA(xs) is the assessed utility depicted in

Fig. 6.7 and B and ) are chosen such that:

CU(W,B,W'W,W,V. ,W,W) e C(’

CU(W,B,W,B,W,W,W,W) - C21
We thus have all the data necessary to construct a
representation for Ox(PC,p,x7,x8) that is compat-
ible with the two degrees of freedom, defined by Eq.
(6.1), of the overall utility.

Step 4: We now have all the pieces to construct the overall
utility via the multiplicative-additive model. We
will rewrite Eq. (6.2) in the following equivalent,

but more convenient, representation (see Keeney [22]):

1 + ku(PC,p,x7 )

1Xg1Xg1%100%11%12

= [1 + kk Cu(PC,p,x7,x8)J * Ll - kk2 Cu(xg)]

1
* [i + kk3 Cu(xlo)] + [1 + kk4 CU(xll)]
* [1 + Kk Cu(x12)] * € (X,+) (6.4)

where

(1) The parameter attributes of each utility are

set at their worst level.

(11) k1 = u(B,B,B,B,w,w,w,w) = C3

139




I
0

k, = U(W,W,W,W,B,W,W,W) =

2 4
k3 = u(w,w,w,w,w,B,w,w) = C5
k4 = u(w,w,w,w,w,w,B,w) = C6
k5 = u(w,w,w,w,w,w,w,B) = C7

(iii) Each utility in Eq. (6.4) 1is to be assessed

on a zero to one scale.

(iv) k 1is to be estimated from the k,6's. If

Z?=1 k1 W 5k = 0 and we have theiadditive
model. If Zi=1 ki # 1, we have the multi-
plicative models, and k 1is estimated by the
equation:
5
. 1 +k = 15; (1 + kk,) .
where
-1 <k<ow

For our model, since

5

ZS ki = C3 + C4 + C5 + C6 + C7 = 0.901 #1
i=1

we have the multiplicative model. Using Eq. (6.5),

along with the constraint 0 < k < o, we estimate

E = 1,08

To implement Eq. (6.4), we use directly the assessed

conditional utilities for x_, X and x

il T -y 12°
To have Cu(PC,p,x7,x8) range from zero to one, the
derived values from Step 3 above have to be multiplied
by 1/cu(B,B,B,B,w,w,w,w). But, by Eq. (6.4), Cu(PC,
p,xv,xs) is to be multiplied by k1 = C3 = Cu(B,B,B,
B,w,w,w,w). So, it is just as well if we use the
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values for CU(PC,p,x7,x8) as calculated by Step 3

and eliminate the constant k1 from Eq. (6.4).

This concludes the construction of the overall utility surface.

6.4 Using the Constructed Utility

We have decided to choose a number of actual cars and estimate their
utilities by using the constructed utility surface, and also by construct-
ing the direct assessment of the DM. If we have been successful in cap-
turing the essence of the DM's preferences, the two sets of figures should
be compatible.

Table 6.4 contains a description of four 1977 model cars that satisfy
the requirements of the decision maker. Most of the data 1is taken from

Consumer Report [4]. The data on upholstery, gauges, and trunk size are

obtained from local dealers. The DM assessed the data for maintainabil-
ity, as he perceives it. The DM initially is asked to rank the four cars
ordinarily. Then cardinal ordering is obtained via lottery questions by
assuming the first choice to have unit utility value and the last choice
to have a zero utility. The first column of Table 6.5 contains the car-
dinal utility ordering for the four cars. Using the constructed utility
surface, the utility of each car is calculated and reported in the cecond
column of Table 6.5. To compare the calculated utilities with the as-
sessed ones, we rescaled the calculated utilities so that the highest
and lowest values are one and zero, respectively. Column three of Table
6.5 contains the calculated utilities after rescaling. (Appendix 6.A
contains a sample of the calculations involved; Appendix 6.B contains

different sensitivity analysis calculations.)
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Table 6.4

CONTAINS THE FEATURES OF FOUR, 1977 MODEL, ACTUAL CARS
Most of the data are taken from Consumer Report (February 1977)

Attribute Symbol Car 1 Car 2 Car 3 Car 4
Purchase price Xy $5237 $4734 $4217 $5230
City mileage X, 10.5 MPG | 10.5 MPG 9.5 MPG 9.5 MPG
Highway mileage x3 20.0 MPG | 19.5 MPG | 17.5 MPG | 18.5 MPG
Resale value X4 0.6 0.58 0.50 0.52
Starting Acceleration Xg 5.0 sec 6.2 sec 5.1 sec 5.6 sec
Passing Acceleration Xe 8.2 sec | 13.0 sec 8.8 sec 9.5 sec
Brakes X 180 ft 185 £t 205 ft 205 ft
Maintainability Xg 0.07 0.05 0.04 0.04
Trunk size Xq 25 ft3 20 ft3 22.5 ft3 20 ft3
Front seat size X0 415" 42" 41" 43"
Seat upholstery X1 Vinyl Vinyl Vinyl Vinyl
Gauges x12 3 2 2 3

Table 6.5

COMPARING DIRECTLY ASSESSED VS CALCULATED
UTILITY VALUES FOR FOUR ACTUAL CARS

Directly Caloulated Calculated
Car Assessed Utilit Utility

Utility y (Scaled)
Car 1 1.0 0.88884 1.0
Car 2 0.4 0.69450 0.0
Car 3 0.6 0.80613 0.57
Car 4 0.0 0.74965 0.28
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From Table 6.5, the calculated utilities correctly indicate the
first and second choices of the DM. The third and fourth cars, though,
interchange positions in the calculated ranking. If we consider the
table from the point of view of comparing pairs of cars, the calculated
utilities have correctly chosen the better car for five out of the six
possible pairs. We do believe that the constructed utility captures

the bulk of the DM's preferences.

6.5 Summary

A utility surface is constructed for an actual decision maker. The
utility is defined over the space of all cars of a particular class.
Twelve attributes are identified as the most important features the DM
seeks in a car. Four of the attributes which reflect different aspects
of the cost (price, mileage, resale value) of a car are related via an
economic model. Two of the attributes reflecting motor performance are
considered preference inseparable and are treated as such via the theory
of Chapter 5. The economic model along with motor performance and two
more attributes are preference-modeled using Keeney's [20] quasi-separa-
ble utility model. The tree method of Chapter 2 is used to depict the
utility tree of this model. The quasi-separable model along with the
rest of the attributes are joined via the multiplicative-additive model
to form the overall utility of the DM. To justify the multiplicative~
additive model, the construction of Section 4.4 is used to generate a
minimal set of UI assumptions.

To test the constructed utility, the utility of four actual cars
are directly assessed by the DM. The assessed values are then compared

with the values estimated by the constructed utility. It is believed
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that the constructed surface is a fair representation of the DM's pref-

erences of cars.
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Step 1:

(1)

(2)

(3)

Step 2:

(1)
(2)

7 (3)

4)

the utility value for car 1 of Table 6.4.

erenced by the two points defined by Eq.

Appendix 6.A

The calculations:

We will show, step by step, all the calculations necessary to obtain
Such value is, of course, ref-

(6.3).

Present Cost (Car 1) = x, + 0.7255 <3999 + EQEQ) - 0.687 x,x
1 X X 41
2 3
= $3585 (6.A.1)
uA(PC) = uA(3585) = 0.59 (from Fig. 6.4)
Cu(PC,w,w,W,w,w,w,w) = Cg ° UA(PC)
=0.6 X0.59 =|0.,354 (6.A.2)
Calculating the Utility of Performance
uA(8.2,4-5) = 0.97 (from Fig. 6.5)
uA(8.2,5-75) = 0.98 (from Fig. 6.5)
u(8.2,4.5) = (1 - C,,) + u,(8.2,4.5) +C,,
=0,3 Xx0.97 +# 0.7 = 0.991 (scaled) (6.A.3)
u(8.2,5.75) = C,, + (Cpg = Cpe) u,(8.2,5.75)
=0.45 + 0.40 X 0.98 = 0.84 (scaled) (6.A.4)
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Equations (6.A.3) and (6.A.4) are used so that the utility of
(8.2,5.75) and (8.2,4.5) are in conformance with the reference

points C22 and C23 of Table 6.3.

(5) We will use the risk aversion profile (Method I) of Chapter
5 to estimate u(8.2,5.0):

(5.1) 5.0=04.5+ (1 -q) 5,750 = 0.6

(5.2) Let u(x6,4.5) = 0.84

u(x6,4.5) - C27
3 4.5) =
(5.3) Hence, uA(XG, ) T C27)
0.84 - 0.7
uA(x6,4.5) ki v e 0.467

"X, - 11.1 sec (from Fig. 6.5)

(5.4) uA[8.2a + (1 - 11.1,4.5] = uA(9.36,4.5)

= 0.952 (scaled)

(5.5) u(9.36,4.5) =C + 1 - C27] uA(9.36,4.5)

27
= 0,952 (scaled)

(5.6) Estimating PR(0.6):

u(9.36,4.5) = B(0.6) u(8.2,5.75) + [1 - B(0.6)]

. u(8.2,4.5)

or

0.952 = B(0.6) x 0.84 + [1 - B(0.6)] 0.991

= B(0.6) = 0.258 (6.A.5)

For car 1, Eq. (6.A.5) is the only estimate of B(.)
that exists.
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6)

Step 3:

(1)

(2)

3)

(4)

(5)

(6)

(7)

(5.7) The interpolated utility of (8.2,5.0) = u(8.2,5.0)
= £(0.6) u(8.2,4.5) + (1 - B(0.6)] - u(8.2,5.75)
= 0.258 X 0.84 + 0.742 x 0,991 = 0.95

Culw,p,w,w,w,w,w,w) = c9 : G(XG’XS)

o cu(w,(8.2,5.0),w,w,w,w,w,w) = 0.5 x 0,95 =|0.476 (6.A.6)
Calculating Cu(3585,(8.2,5.0),180,0.07) via the tree method:

uA(X7) = uA(180) = 0.95 (from Fig. 6.6)

Cu(w,w,x7,w,w,w,w,w) = C10 . uA(x7)

= Cu(w,w,180,w,w,w,w,w) = 0.1 X 0.95 = 0,095 (6.A.7)

uA(xS) = uA(0.07) = 0.86 (from Fig. 6.7)

Cu(w,w,w,xs,w,w,w,w) = C11 . uA(xs)

= cu(w,w,w,0.07,w,w,w,w) = 0.2 X 0.86 =l 0.172 i (6.A.7)
Cu(w,w,B,xs,W,w,w,W) =Cio *+ (C17 - Clo) uA(xa)

- Ccu(w,w,B,0.07,w,w,w,w) = 0.1 4+ 0.16 x 0.86 = 0.240 (6.A.8)

Cu(w,B,w,xa,w,w,w,w) = C9 + (C21 - C9) uA(xs)

-» cu(w,B,w,0.07,w,w,w,w) = 0.5 + 0.08 X 0.86 = 0.57 (6.A.9)

Cu(w,B,B,xs,w,w,w,w) = C20 + (C15 - C20) uA(xe)

- Ccu(w,B,B,0.07,w,w,w,w) = 0.56 + 0.06 X 0.86 = 0.61 (6.A.10)

CU(B,w,w,xs.w,w.w,w) =Cq + (C18 - Cs) uA(xs)

= Cu(B,w,w,0.07,w,w,w,w) = 0.6 + 0.4 X 0.86 = 0.63 (6.A.11)

Cu(B,w,B,x_,w,w,w,w) = C1 + (c,, - 019) uA(xs)

8 9 14
cu(B,w,B,0.07,w,w,w,w) = 0.63 + 0.03 x 0.86 = 0.656 (6.A.12)
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(8)

(9)

(10)

(11)

(12)

(13)

Cu(B,B,w,xs,w,w,w,w) = C16 + (C13 - C16) uA(XS)

Cu(B,B,w,0.07,w,w,w,w) = 0.68 + 0,02 x 0.86 = 0.70

Cu(B,B,B,xB,w,w,w,w) =C._ + (C3 - C12) uA(XS)

12
cu(B,B,B,0.07,w,w,w,w) = 0.74 + 0.04 x 0.86 = 0.774

CU(W,W,X7,X8,W,W,W,W) - Cu(w,w,w,xe,w,w,w,w)
+ [Cu(w,w,B,xs,w,w,w,w) - Cu(w,w,w,xs,w,w,w,w)]

Cu(W,w,x7,w,w,w,w,w)

C10

= Ccu(w,w,180,0.07,w,w,w,w) = 0.2366

Cu(w,B,x7,x8,w,w,w,w) = Cu(w,B,w,xs,w,w,w,w)
+ fCu(w,B,B,xB,w,w,w,w) - Cu(w,B,w,xs,w,w,w,w)]
Cu(w,w,x7,w,w,w,w,w)

C10

= Cu(w,B,180,0.07,w,w,w,w) = 0.61

Cu(B,w,x7,x8,w,w,w,w) - Cu(B,w,w,xs,w,w,w,w)

+ [cu(B,w,B,x_,w,w,w,w) = Cu(B,w,w,x_,w,w,w,w)]

8 8
Cu(w,w,x7,w,w,w,w,w)

C

.

10

- Cu(B,w,180,0.07,w,w,w,w) = 0.655

Cu(B,B,x7,x8,w,w,w,w) - CU(B,B,W,xs,w,w,w,w)

+ [Cu(B,B,B,x_,,w,w,w,w) - Cu(B,B,w,xs,w,w,w,w)]

8'

Culw,w,x_,w,w,w,w)

)
10

C

= Cu(B,B,180,0.07,w,w,w,w) = 0.77
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W X_ W, W,W,w)

o 7'*8

yWyow,w,w) = Cu(w,w,x

(14)  culw, (xg,x.) %,

8

+ [cu(w,B,x ,xs,w,w,w,w) ~ Cul(w,w,x ,x8,w,w,w,w)]

7 7

Cu(w,(x5,x6),w,w,w,w,w,w)

Co

> cu(w,(5.0,8.2),180,0.07,w,w,w,w) = 0.59 (6.A.19)

(15) Cu(B,(xs.xe),x7,x8,w,w,w,w) = Cu(B,w,x

X, W,W,W,W)
’ 8' ’ ’ ’

7

+ [Cu(B,B,x7,x8,w,w,w,w) ~ Cu(B,w,x_,X_, ,W,w,w,w)]

7""8
Cu(W,(xs,xe),w,w,w,w,w,w)

Co

~ cu(B,(5.0,8.2),180,0.07,w,w,w,w) = 0.764 (6.4.20)

(16) Cu(PC,(xs,xe),x7,x JWo,W, W, W) = Cu(PC,(xs,xG),x7,x8)

8

= Cu(w,(xs,xe),x ,x8,w,w,w,w) + [CU(B,(xs,xﬁ),x7.X8.W.W.WyW)

7

) Cu(PC,w,w,w,w,Ww,w,w)

2 C\l(W,(xs,xe) vx-lnx lwvwlwvw)]

8 Cq
= Cu(3585,(5.0,8.2),180,0.07,w,w,w,w) =| 0.6927 (6.A.21)

Step 4: Calculating the Overall Utility

(1) uA(xg) = @ (from Fig. 6.8)
(2) uA(xlo) = (from Fig. 6.9)
@) u,(x,) = (from Fig. 6.10)
(4) uA(x12) = (from Fig. 6.11)

(5) 1 +1.01 x u(car 1) = [1 + 1.01 x Cu(3585,(5.0,8.2),180,0.07,

w,w,w,w)] « [1 + 1,01 x C4uA(x9)] » 't 108 % csuA(xm)]

« [1 +1.01 % Ce“A("u)] « [1 +1.01 x C7"A("12)]

= [1 4+ 1.01 X u(car 1)] = 1,70094 x 1,04646 x 1.01414
% 1,0505 x 1.0007575 .. u(car 1) =
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Appendix 6.B

SENSITIVITY ANALYSIS

Here, we conduct different sensitivity analyses on the preference
model to discern its robustness and the sensitivity of trade offs be-

tween pairs of attributes.

6.B.1 Sensitivity Analysis of the Preference Model

The preference model we used for the application involves seven

UI assumptions which are depicted in Fig. 6.B.1 as assumptions ay

through a,. This model is referred to in this appendix as Model 1.
We propose Models II and III which are modifications of Model I. Model

II, which is defined by assumptions a1 through a, of Fig. 6.B.1,

replaces the quasi-separable component of Model I by a multiplicative-
additive component. This corresponds to assuming further regularities

of the preference structure on the subspace X through x Model

1 8"

III, which is defined by assumptions a1 through a, and a3 and

a14, replaces the quasi-separable component by a dichotomous chain
component . For this model, we dichotomize x1 through x8 into
[xl,xz,xs,x4,x7} and (xs,xs,xsl where the first group of attributes
are all cost related and the second group are performance related (mo-
tor and brake performance). This dichotomy seems quite natural for the
problem and the corresponding UI assumptions, even though unverified,
seem quite plausible.

With respect to the concept of utility independence, Model 11

corresponds to the most regular preference structure, then, Model III

and, lastly, Model I.
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The analytical form of Models II and 111 are derived. For Model

11, we get
S 2 ) " a
(1 +Kul = [1 + O.GKuA(PC)] s 0.5qu(P)] {1 4+ u.1KuA(x7)]
- . " 02Ku _ (3
1 + 0.2KuA(x8)] (1 + o.osqu(xg)] [1 +0.0 kuA(xln)]

. [1 + o.osnuA(xll)] « 1 % 0.001KuA(x12)]

where u 1is the overall utility of a car and G(P) is the utility of
performance as obtained by the interpolation method. All other utili-~
ties are obtained from their respective graphs of Chapter 6. K for
this model is equal to =0.76.

The analytical form of Model III is:
(1 «+ Kul] = [1 + 0.6K Cu(PC,p,x7,x8)] « [T % O.OSKuA(xg)]

s % +O.02KuA(x10)] « 1 +O.05KuA(x11)] L i | +0.001KuA(x12)]

where u 1is the overall utility of a car, K for this model is equal

to +1.01, and
Cu(PC,p,x7,x8) =0.714 + 0.714 Cu'(P) - Cu'(xs) « Ca'(PC) - Cu'(x8)

- 1.58 cua'(p) - Cu'(xs) = 1,87 Ca'(PCc) - CU'(x7)
where
cu'(pc) = 0.70 uA(PC) -1
Cu'(x7) = 0,12 uA(x7) -1
Cu'(pP) = 0.6 G(P) - 1
Cu'(xa) = 0,24 uA(xs) -1

All uA(-) are obtained from their respective graphs in Chapter 6.




The analytical models are used to calculate the utilities of each
car of Table 6.4. Table 6.B.1 contains the calculated values. It is
clear from the table that Models I and III produce similar utility val-
ues while Model II is slightly different. All models give the same
ordinal ranking of the four cars.

From an assessment point of view, Models II and III require less
effort than Model I. 1In particular, Model II requires the assessment of
only twelve constants as opposed to the twenty-five constants required
of Model I. This translates into a reduction of about two hours worth
of assessment time. Model III requires only eighteen constants. In re-
trospect, we would huve been better off using Model III instead of Model

I due to the resemblance of their utilities.

Table 6.B.1

SENSITIVITY OF PREFERENCE MODELING

Utility Values
Item
Car 1 Car 2 Car 3 | Car 4

Direct assessment 1.0 0.4 0.60 0.0
Model I 0.88884 | 0.69450 | 0.80613 | 0,74965
Model I (scaled) 10 0.0 0.57 0.28
Model II 0.86132 | 0.67020 | 0.80736 | 0.73394
Model II (scaled) 1.0 0.0 0.72 (s . 3
Model III 0.88881 | 0.69445 | 0.80609 | 0,74961
Model III (scaled) | 1.0 0.0 0.57 0.28

6.B.2 Trade Off Analysis

Here, we address questions of the following type: How much is
some percentage improvement of an attribute for a given car worth in
terms of the present value of the car or its initial purchase price?
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Table 6.B.2 contains such calculations. In the table, we calcu-
late changes in the present value of a car due to a 157 increase (or
decrease) in the performance of the car, where all other attributes are
fixed at their given values. These calculations correspond to moving
along the same indifference curve of the attributes PC and P. To
properly interpret the figures of the table, let us consider the first
column corresponding to car 1. For this car, the decision maker should
be indifferent between the original car 1 as defined by Table 6.4 (of
Chapter 6) and the same car where performance improves by 157 and pres-
ent cost increases by 315 dollars. Likewise, the decision maker should
be indifferent between the original car 1 and car 1 where performance is
decreased by 157 and present cost is decreased by 310 dollars.

The same sort of calculations are conducted for the attributes
They are reported in Tables 6.B.3 through 6.B.5. To

X and x

7' %9 10°

translate the changes in present cost to changes in the initial purchase

price, x we use the multipliers of the last row of the table.

11
Finally, all such calculations are repeated using preference Model
11 instead of preference Model I. (We have ignored Model III since it is

similar to Model 1.)
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Table 6.B.2

SENSITIVITY OF PRESENT COST TO PERFORMANCE CHANGES

Item Car 1 Car 2 Car 3 Car 4
Performance, (xs,xe)-- (5,8.2) (6.2,13) (5.1,8.8) (5.6,9.5)
old value
Utility, G(xs,xs) 0.952 0.308 0.919 0.826
Performance, (XS'X6)-- (4.63,7.0) | (5.83,11.8) (4.73,7.6) | (5:23,8.3)
new value
Utility, G(xs,xe) 1.0 0.563 0.991 0.895
% change in performance + 15 + 15 + E5 + 15
” change in G(xs,xe) + 5 + 83 + 8 + 8
Worth in present cost [ + 315 + 903 + 527 + 400 |
Performance, (xs,xs)-- (5.38,9.4) | (0.875,14.2) €5.5,10) (5.98,10.7)
new value
Utility, G(xs,xe) 0.862 0.03 0.802 0.69
7 change in performance - 15 = 15 - 15 - 15
7 change in G(xs,xe) -9 - 99 - 13 - 16
Worth in present cost [- 310 - 672 - 723 - 550]
Worth with respect to 1.69 1.66 1.52 1.56

xlz multiply APC by
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Table 6.B.3

SENSITIVITY OF PRESENT COST TO CHANGES IN BRAKE VALUES

Item Car 1 | Car 2 |Car 3 | Car 4

Brakes, x7-—01d value 180 185 205 205

Utility, uA(x7) 0.95 0.78 0.22 0.22

Brakes, X, =-new value 1725 VX779 | 297 .S | 197 .5

ptility, uA(x7) 1 0.97 0.38 0.38
% change in X, + 15 a5 e 18§+ 18
% change in uA(x7) +5 |+ 24 4+ 73 L3

Worth in present cost |[+ 115 [+ 203 | + 227 [ + 250 |

Brakes, x.--new value 187.5 | 192.5 | 212.5 | 212.5

i
Utility, u,(x,) 0.67 |0.52 |0.06 |0.06
7 change in X, - 15 la 38 1«15 |= 16
7 change in uA(x7) -30 |-33 |~73 |~-173
Worth in present cost |[~- 560 | - 97 |~ 323 | - 150 |

Worth with respect to 1.69 1.66 1.52 1.56

X, multiply APC by
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Tabl

e 6.B.4

PRESENT COST SENSITIVITY TO CHANGES IN TRUNK SIZE

Item Car 1| Car 2 |Car 3 | Car 4
Trunk size, xg-—old values 25 20 22.5 20
Utility, uA(xg) 0.92 0.65 0.79 0.65
Trunk size, Xg=-new values 28 23 25.5 23
Utility, uA(xg) 1:0 0.82 0.93 0.82
% change in Xq +15 (+15 |+ 15 | + 15
” change in uA(xg) +9 | + 26 + 18 + 26
Worth in present cost [+ 170 [ + 93 | + 157 | + 250 |
Trunk size, Xg==new values 22 14.5 19.5 14.5
Utility, uA(xg) 0. 7% 0.41 0.61 0.41
4 change in Xq -15 |[=-15 [=-15 |~ 15
% change in uA(xg) -~ 16 | =37 |- 238 |~ 37
Worth in present cost [- 290 ] - 297 | - 393 | ~ 394 |
Worth with respect to xl: 1.69 1.66 1.582 1.56
multiply APC by
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Table 6.B.5

SENSITIVITY OF PRESENT COST TO CHANGES IN SEAT SIZE VALUES

Item Car 1 Car 2 Car 3 Car 4
Seat size, x, --old values 41.5" 42" 41" 43"
Utility, uA(xlo) 0.7 0.77 0.6 0.87
Seat size, x, --new value 42,55" | 43.05" | 42.05" | 44.05"
Utility, uA(xlo) 0.83 0.87 0.77 0.94
% change in X0 + 15 + 15 + 15 + 15
% change in uA(xlo) + 19 + 13 + 28 + 8
Worth in present cost | + 85 + 75 + 97 + 75 |
Seat size, x,,--new value 40.45" | 40.95" | 39,95" | 41,95"
Utility, uA(xlo) 0.47 0.6 0.33 0.77
% change in X10 - 15 - 15 - 15 - 15
q, - - -
7 change in uA(xlo) 33 22 45 11
Worth in present cost [-105] - 75 [- 273 - 75 |
Worth with respect to x1: 1.69 1.66 1.52 1.56
multiply APC by
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Table 6.B.6

SENSITIVITY OF PRESENT COST TO PERFORMANCE CHANGES (MODEL II)

Item Car 1 Car 2 Car 3 Car 4
Performance, (xg,x)--| (5,8.2) (6.2,13) (5.1,8.8) (5.6,9.5)
old value
Utility G(xs,xe) 0.952 0.308 0.919 0.826
Performance, (xs,xs)—- (4.63,7.0) | (5.83,11.8) (4.73,7.6) | (5.23,8.3)
new value
Utility, G(xs,xs) 1.0 0.563 0.991 0.895
7 change in performance + 15 + 18 + 15 + 15
% change in ﬁ(xs,xs) + 5 + 83 + 8 + 8
Worth in present cost | [+ 215 + 800 + 625 + 300 |
Performance, (xs,xs)-— (5.38,9.4) | (0.575,14.2) (5.5,10) (5.98,10.7)
new value
Utility, G(xs,xs) 0.862 0.03 0.802 0.69
7 change in performance - 15 ~ 15 - 15 - 15
7 change in G(xﬁ,xe) -9 ~ 99 - 13 - 16
Worth in present cost | - 435 - 950 ~ 323 - 550 |
Worth with respect to 1.69 1.66 1.52 1.56

xl: multiply APC by
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Table 6.B.7

SENSITIVITY OF PRESENT COST TO CHANGES IN BRAKE VALUES (MODEL II)

Item Car 1 | Car 2| Car 3| Car 4

Brakes, x7--01d value 180 185 205 205

Utility, u,(x.) 0.95 |0.78 [0.22 |0.22

Brakes, X, =-new value X72:8 | 177.5 ] 197.5 | 197.5

Utility, u,(x,) 1 [0.97 {0.38 |0.38
7 change in X, 315 {+ 318 |+ 15 |+ 15
7, change in uA(x7) +5 | +24 | +73 | +73
Worth in present cost [ +8 | +100[+ 100 ] + 100 |

Brakes, X, =-new value 187.5] 192.5 | 212.5 | 212.5

Utility, u,(x.) 0.67 |0.52 |0.06 | 0.06
7 change in x, -15 | =15 |=-15 | - 15
% change in u,(x,) -3 [-33 |-73 |-73
Worth in present cost |[[- 185] - 75 | - 150 | = 90 |

Worth with respect to 1.69 1.66 1.52 1.56

L% multiply APC by
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Table 6.B.8

PRESENT COST SENSITIVITY TO CHANGES IN

TRUNK SIZE (MODEL II)

multiply APC by

1!

Item Car 1 |Car 2 | Car 3 | Car 4
Trunk size, xg--old values 25 20 22.5 20
Utility, uA(x9) 0.92 0.65 0.79 0.65
Trunk size, xg--new values 28 23 25.5 23
Utility, u,(xg) 1.0 [0.82 |0.93 |0.82
% change in Xy +15 | +15 |+ 15 | + 15
% change in uA(xg) +9 %26 [+18 |4 26
Worth in present cost [+15 [+50 [+ 50 [+ 100 |
Trunk size, xg--new values 22 14.5 19.5 14.5
Utility, u,(xg) 0.77 |0.41 |o0.61 |0.41
% change in Xg -15 | =15 | =15 |- 15
% change in uA(xg) -16 (=37 |- 23 |- 37
Worth in present cost [-60 [-100]-75 |- 50|
Worth with respect to x 1.69 |1.66 1.52 1.56
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Table 6.B.9

SENSITIVITY OF PRESENT COST TO CHANGES IN SEAT SIZE VALUES (MODEL II)

Item Car 1 Car 2 Car 3 Car 4
Seat Size, x,  --old values 41.5" 42" 41" 43"
Utility, wu,(x;.) 0.7 0.77 0.6 0.87

Seat size, x_ . --new value | 42.55" | 43.05" | 42.05" | 44.05"

10
)i
Utility, uA(xlo) 0.83 0.87 Q.77 0.94
% change in X0 + 15 + 15 + 15 + 15
o
> change in uA(xlo) + 19 + 13 + 28 + 8
Worth in present cost | + 15 + 10 + 10 + 20 |

Seat size, x_ . .--new value | 40.45" | 40.95" | 39.95" | 41,95"

10
Utility, uA(xlo) 0.47 0.6 0.,33 Q.77
4 change in X0 - 15 - 15 - 15 - 15
% change in u, (x;0) - 33 - 22 - 45 11
Worth in present cost [ - 35 - 50 - 73 - 15]
Worth with respect to x1: 1.69 1.66 1.52 1.56

multiply APC by
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Chapter 7

SUMMARY OF RESULTS AND FURTHER RESEARCH

In this concluding chapter, we highlight the salient features of
our contribution and suggest different directions for extending this

research.

7.1 Summary of Results

We propose the modeling of preference structures via sets of Ul
assumptions. As such, different preferences correspond to different
Ul sets, and different Ul sets result in varying decompositional forms
of the utility surface, preserving the preference ordering. Utility
decomposition implies that an n-dimensional surface can be analytically
derived from surfaces (or utilities) of lower dimensions. In this case,
the assessment effort required for constructing the utility may be
greatly reduced.

We consider arbitrary sets of UI assumptions. For a given UI set,
two fundamental properties fully characterize its corresponding decompo-
sition: the partitioning of the attribute space into subspaces of lower
dimensions, and a type of low order regularity operating on each of the
subspaces. The concept of "utility independence order' is introduced to
capture such low order regularities. These two properties underly a
proposed codable procedure called the tree method for generating the
utility decomposition form corresponding to any UI set. The procedure
rests cn an automatum, or a finite semigroup, which is an abstraction of
the decomposition algebra involved. The procedure produces tree-like

structures that are both a self-contained analytical representation of
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the utility decomposition and a visually powerful aid for demonstration
and discussion purposes. We believe that this part of our contribution
gives the analyst much facility and insight with regard to modeling
preferences via UI sets and the whole decomposition technique in gen-
eral.

Next, we use the two characterizations of utility decomposition to
propose a natural scheme for classifying preferences on n-attributes.
We use the scheme to list all distinct (modulo the UI concept) prefer-
ence structures on four-attribute spaces.

The treatment of arbitrary UI sets leads naturally to questions of
implications and equivalence between such sets. We thus consider the
case where the satisfaction of a set of UI assumptions automatically
implies the satisfaction of further assumptions. We discuss three in-
stances of UI implications, one of which has been discovered by Keeney.
Of the other two instances, the implication due to dichotomous chains
leads to a generalized version of Keeney's quasi-separable utility model.
Dichotomous chains also are believed to remedy a conceptually weak point
of the UI primitive with respect to the fact that it is one directional,
i.e., 1f X UI Y, it does not mean that Y UI X. For a dichotomous
chain which involves a collection of nested subspaces, the UI assumption
is satisfied in both directions, with respect to each subspace.

To discern any occurrence of UI implications, a canonical form is
proposed for UI sets. The canonical form also indicates, visually, other
properties of the induced decomposition.

The multiplicative~additive model which plays a central role in UI
implications is considered on its own merits. We propose a construction

which produces a minimal number of Ul assumptions corresponding to a
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given multiplicative-additive model. Such a construction reduces the
verification effort required by the analyst.

A Ul set may not lead to a full decomposition of the utility sur-
face. Thus, an analyst may have to construct conditional utilities of
more than one dimension that are indecomposable. For such surfaces, we
propose the strategy of continuous cuts, a discretization process which
requires-the assessment of one-dimensional utilities on one of the at-
tributes where the other attributes are parameterized into a finite
ndmber of points. An interpolation rule is to be used to approximate the
utility throughout the domain. For a rule, we consider a procedure that
assumes a lggil decomposition due to a particular choice of a set of UI
assumptions. The implementation of the 1local decomposition relies on
simplifying behavioral assumptions about the decision maker's attitude
toward uncertainty along each of the attributes. All the information
required for this procedure is extracted from the assessed one-dimen-
sional utilities. When comparing this procedure with the current state
of the art, of fitting classical families of curves locally, we find that
our procedure requires a relatively modest amount of calculations. This
is so because the utility of a point is calculated step by step, undi-
mensionally, with respect to each attribute. Hence, no systems of equa-

tions need to be solved, as is the case with othe. methods.

7.2 Future Research

The following is a list of suggestions for future research that

extends and complements our contribution.

(1) 1In Example 2.1 of Chapter 2, we observed a spanning phenom-

enon that characterizes the utility surface as a 1linear
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(2)

(3)

(4)

(5)

(6)

variety of functions that are part of the surface itself.
Such a characterization may be established as a general

mathematical property of decomposition due to any UI set.

It may be useful to identify and document actual examples
of preferences corresponding to the distinct classes of

some of the tables of Chapter 3.

In the chapter on UI implications, we stopped short of
identifying gll possible sources of implications. We have
a strong feeling that the three instances we discussed are
all the sources there are. This statement, of course, has

to be proved or disproved.

On the treatment of indecomposable utilities, our proposed
methodology may require a great deal of assessment effort.
Specific schemes of sensitivity analysis need to be pro-
posed to calibrate this effort with othoer parts of the
overall assessment for the purpose of enhancing the total

accuracy of the overall utility.

There seems to be a great deal of variety of regularity

and smoothness assumptions proposed for modeling prefer-
ences. A theory is needed to structure the state of the
art and compare preferences corresponding to different

generic assumptions as to their restrictiveness or equiv-
alence. The development of a hierarchy of preference in-
terdependencies between the attribute seems like a fruit-

ful way to proceed.

More on the practical side, the utility concept seems to
be illusive and slippery at times. Some of the questions
that require answers in this area are: How does the util-
ity over a set of objects develop in the decision maker's
mind? If it changes over time, why should it change? And,
what about other concepts that refine, specialize, or

extend the utility concept?
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