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SUMMARY

H
This research prop oses a new framewor k for cons t ruc t ing

pref erence funct i ons when the consequences of a decis ion are

j udged by multiple attributes or criteria. Methods for assessing

single-attribute preference functions have been well established.

The current , stat e-of-the-art procedure for deriving arbitrary ,

mu lt i a t t r i b u t e  pref erence f u n c t i o n s , however , has required

regu lar ity as sumptions to reduce the a rb it r a r iness  of the

preferences. This technique, ca lled decompo s i t ion , ha s been u sed

becaus e it usua lly res ults in a simp le and app ea li ng preferenc e

model. The difficulty with this approach is seen in the restrict-

iveness of the two main assumptions:

(1) the same preference regul arity i s imposed on
all attributes , using this syninetry to achieve
a simple preference function , and

(2) any n-dimensional prefe rence function is
decomposed into n one-dimensional preference
functions.

In this work , no symmetry assumption is necessary , as each

multiattrfbute preference function is tailor-fi t to only those

regularities that exist In a particular problem setting. Those

parts of the preference function that are subject to simplifying

assumptions are decomposed using a new classification scheme to

0
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r
derive further Independence assumptions for the standard models.

Those parts of the preference function that are indecomposable

are handled using a new discretization scheme along with a

behaviorally motivated interpolation rule to fill the gaps.

The flexibility of these methods allows an analyst to make

trade-offs between the degree of accuracy desired and amount of

effort needed .

This integrated framework for decomposable and indecompos-

able multiattribute preference functions stands as an important

decision analysis aid. The usefulness of the framework is

illustrated in an example of the decision to buy a new car. The

relationship of the attributes can be assessed in advance , thus

allowing an optima l decision to be made in the decision maker ’s

absence.
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When Isaac Newton was asked once how he had made his discover—

les, he replied , “By always thinking abcut them , I keep the subject

constantly before me and wait ‘til the first dawnings open little by

little into the fu ll. light”.
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chapter 1

AN OVERV IEW

1.1 Introduction

Decision science uses multiattribute utility theory to treat prob-

lems where the consequences of a decision are judged by multiple attrib-

utes or criteria . Although the theoretical basis of the multiattribute

model is relatively simple and straightforward , decision analysts face

many problems when trying to apply the model . The main dif~~t-u ’~ty en-

countered is that of constructing the decision maker ’s mu.tldirnensiona l

utility surface for a given problem . Actually, except for the case of

one—attribute utilities , there are no general procedure~ or techniques

for directly assessing arbitrary multiattribute utility surfaces . Hence ,

the current state of the art is to impose different regularity assump-

tions on the utility surface to make it less arbitrary . The main thenie

is to be able to derive analytically the multid imensional utility from

one—dimensional utilities which are assessed d irectly and are completely

arbitrary. Such procedures are generally called decomposition or sepa-

rability techniques .

The first attempt to decompose a Von Neumann utility surface , which

Is what we dea l with in this work , is in a 1965 article by Fishburn [8) .

The article contains a system of axioms that guarantees the so—called

additive utility model. Thereafter, other researchers propose other de—

compositiona l axioms that produce different simple and appealing utility

forms such as Pollak’s [301 multiplIcative model and Keeney ’s [20 ) quasi-

sepa rable model.
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Two features seem to characterize most of the work in this area .

The first feature is that of the researcher ’ s emphas i s on symmet ry and

functiona l simplicity of the utility form . By symmetry, we mean t h a t

whatever preference regularity is imposed on one attribute is also im-

posed on a l l  other at tr ibutes . The other fea ture  is that  of r e q u i r i n g

f u l l  decomposi t ion , i .e . ,  an n — a t t r i b u t e  u t i l i t y  surface  is decomposed

into a one—attribute utilities .

In our work , we deviate from both features . We do not insist on

a prior form but , rather , we model the underlying preferences , seeking

regularities (of a certain class) that exist and deriving the utility

form that reflects only the acknowledged regularities . Thus, no s yin-

met ry  is required , and the u t i l i t y  form is tailor—fit to each particu-

lar preference setting . As such , there may be utilit y forms where the

n—attribute surface is not fully decomposed . For the indecomposable

subspaces , we propose the methodology and theory of chapter 5.

We view our work as an integrated framework for constructing mul—

tiattribute utility surfaces in two main stages .

Stage 1: Modeling the underlying preferences for a given setting .

The idea here is to take advantage of whatever regularities the prefer-

ence setting reflects . Many concepts of preference regularity are pro-

posed in the litera ture . We have elected to work w i th  the utility in-

dependence concept tha t captures a certain kind of preference regularity ,

which we will define later . Other concepts can be used as well.

Stage 2: If the modeling from Stage 1 does not produce a fully

decomposed surface , the indecomposable subapaces are treated as such

and the strate ~, y of continuous cuts , presented in chapter 5, is used to

construct an approximat ion for the u t i l i t i e s  over these subapaces .

2



The framework is flexible enough so tha t  the ana lyst  using it can

continually make trade—offs between the degree of accuracy he requires

of the constructed surface , and the amount of effort he and the deci-

sion maker are willing to expend on the assessment .

Even though our research is geared toward utility theory, the

f ramework may be extended in two broad direct ions . First , the surface

to be assessed can be any measurement theoretic surface that preserves

some ordering defined on a set of objects where the order of an object

is determined by mul t ip le  factors . Second , the modeling of the order-

ing may be conducted using any wel l-def ined concept of consistency or

regularity that is meaningfu l to the ordering . For instance , the prob-

lem of measuring different human senses under controlled laboratory

conditions may be approached with the broad outline of this framework.

1.1.1 Basic Definitions

Since most of the terminology in utility theory is not

standardized , we will define and explain some of the terms as we use

them . Any decision facing the decision ma ker , hereafter referred to

as the DM , results in a consequence to him . A consequence is judged

by mu l t i p l e  factors or characterist ics that  we call attributes. An

a t t r i bu t e  x~ is defined by an attribute set , X 1, which , unless

explicitly stated , can be any arbitrary set with at least two elements .

The values an attribute takes need not be real numbers , and the X~

can be finite , countable , or uncountable .

Throughout our work , the number of attributes for a given

problem , denoted n , is arbitrary but finite . A potential problem

may have from two to three attributes , all the way up to thousands of

3



attributes . For a problem with n attributes , the cartesian product

X = X x . . .  x X is called the (whole)  product set of a t t r i b u t e s . In1 n

the case where decisions lead to certain consequences (no risk is in-

volved), X is also called the ~ ioice space. For most of our work ,

the type of utility theory we deal with explicitly treats uncertainty

as one more feature of the consequences of decisions. As such , the

choice space we deal with is the space of all simple* probability dis-

tributions over X , denoted P. It should be clear to the reader that

when the choice set is P, then X is a subset of P. This is so

since any element in X corresponds to a degenerate probability dis-

tribution .

The DM preference structure is an ordering < defined on

the choice space . A utility is a real valued function defined on the

choice space with the ma in feature of preserving the ordering of the

preference structure . When the choice space is X , i.e., there is no

uncerta inty involved , the utility over X is also called a value func-

tion . When the choice space is P and the preference structure is

consistent with the system of axioms proposed by Von Neumann and Morg-

enstern [38], to be described later , the order preserving function is

called a Von Neumann utility . We almost exclusively will dea l with Von

Neumann utilities . Thus, for the sake of brevity~ we sometimes delete

the adjective Von Neumann .

A utility surface is the part of the utility function that

is defined on X . For a Von Neumann utility, once the utility surface

A probability distribution is simple if the number of points with non-
zero probability is finite.

4



(on X )  is obtained , the u t i l i t y  on P is derived via the (probability)

expected value operator . When assessing the DM ’ s preferences , al l  the

analys t  has to do is to construct the DM ’ s u t i l i t y  surface on X . The

dimens iona l i ty  of the surface is equal to the number of a t t r i bu te s  of

the problem a t  hand . A condit ional  u t i l i t y  is the restr ict ion of the

u t i l i t y  surface to the product set of some subset of the a t t r ibutes . A

decompo s~ tional axiom is an assump t. ion via which the u t i l i t y  surface , of

a certain dimension , is derived ana ly t i ca l ly  from conditiona l u t i l i t i e s

of lower d imensions . Since the assessment effort required to construct

a u t i l i t y  decreases with less dimensions , a decompositional axiom , if

sa t is f ied  for a given choice setting , is a welcome relief to the ana lys t .

1.2 Background and Related Work

In this  section , we review some of the ba ckground and important

previous work that relates to our research .

1.2.1 Von Neumann Utility Theory

The theoretical basis of Von Neumann and Morgenstern [381

guarantees the existence of these utilities. Since the publication of

this work , several other researchers proposed other systems of axioms

which are equiva lent to the Von Neumann system , wi th minor modifications

and extensions . The following system of axioms , taken from Fishburn [91 ,

is typical and is considered standard .

Let X = x . .. x be the product set of attributes , and

let P be the space of all simple probability distributions on X . Let

< , read “not preferred to , ” be the preference ordering defined on 
P.5



The relations of strict preference , -< , and indifference , ~~, are de-

fined from < as follows : Let p
1
, P

2 € P.

.< p2 <=> 
(p

1 < p2 and not p2 < p1.
)

p2 <=> (p1 < p2 and p2 < p1
)

Axiom 1: < is a weak ordering on P. That is , < on P

is connected and t r ans i t ive.

Axiom 2: (sure thing) If p1,p 2 1p 3 € P and if p1 <

then , for any real number ~ ~ 
(0,1), we have

+(1 — a )  p3 <~~~~2 + (1 — cx) p3

Axiom 3: (Archimedean) If p
1,p2,p3 € P and if p1 

-< p2

and p2 -< p3 , then there are numbers cr,~ J (0,1) such that

ap1 + ( 1 — a) p3 - < p 2 —<~~ p1 + ( l —~~~) p 3

If these axioms are satisfied for a given preference , then we are guar-

anteed the existence of a real valued utility function , u , defined on

P, with the following important characteristics.

(1) Order preserving : That is , if p1
,p
2 E P and p1 < p2 ,

then

u(p1
) < u(p 2

)

where < is the standard order , less than or equal to ,

defined on the real 
line.6



(2) Expected u t i l i ty  property: The utility of a probability

dis tribution p € P is

u ( p )  = u(x) . p( x )

x€ X

(3) u is unique up to a posit ive linear transformation . That

is , if u and u ’ are two real valued functions satis—

f~~ ng the above two properties , then there exists two

real numbers and 
~2 with 

~2 > 0 such that

U = +

u is made unique by a rb i t ra r i ly  f ixing its values at two

points of the domain.

The f i rs t  property indicates that u contains complete in-

formation about the preferences . The second property indicates that ,

even though u (on P) is an infinite dimensional surface , all we need

to do to have u is to construct its restriction on the finite d imen-

siona l space X and then extend the doma in to P analyt ical ly .  The

thi rd property, which is the basis of most decomposition techniques ,

says that a whole family of functions are eligible cand idates to repre-

sent the preferences . We should remark that there are no other proper-

ties required of u such as continuity, differentiability, or monoton-

icity. u can be any arbitrary surfa ce that sa t i s f ies  the above system

of axioms . It is possible , as we wil l  see later , to augment the axioms

such that the evolving utility exhibits further regularity and smooth-

ness properties.

7



1.2.2 Approaches for Constructing Utilities

We wil l  review here some of the idea s for construct ing u t i l -

i ty surfaces on the product set of attributes , X .  The l i tera ture  (for

instance , see Pratt et al [32]) conta ins techniques and methodologies

for d irectly assessing utilities on a single attribute without requiring

any simplifying assumptions other than the utility is of the Von Neumann

variety. For the case of more than one attribute , no such methodology

exists and different kind s of simplifying assumptions have to be imposed

on the utility to restrict its form . This hopefully reduces the assess-

ment effort required for construction . The most important , and most

popular, procedures for introducing simplifying assumptions are the so-

called decomposition or separability techniques . We will treat decom-

position in detail in the next section . Here, we consider some of the

other important approaches .

The Two-Step Decomposition Procedure

Here , the word decomposition is used in a different sense from that

of the next section . This procedure advocates the ‘decomposing ’ of the

utility assessment effort into two stages .

(1) The assessment of the deterministic trade—offs on X .

This corresponds to constructing a value function by

treating X as the whole choice space (no uncertainty

involved). In economics , the value function is re-

ferred to as the indifference curves.

(2) Once a value function is constructed , a Von Neumann

utility is obtained by invoking a risk on a properly

chosen scalar numera ire.

8



For more details , see Boyd [2]. This procedure is of great theoretica l

importance , bu t of limited applicability. From an application point of

v iew , the procedure transforms the challenge of directly assessing a Von

Neumann utility into the problem of assessing multidimensiona l indif-

ference curves In X. The latter problem , in general , can be just as

difficult or perhaps more so than the former . One instance where this

procedure is used to advantage is where the indifference curves can be

constructed analytically via economic modeling of the underlying deter-

minis t ic  trade—of f s .

Dean Boyd ’s Work

Boyd [2] , among others , has a novel stand on the construction of

utilities . Recognizing that utilities are used to solve decision prob-

lems , Boyd ’s approach does not require the construction of the whole

surface but , rather, only to assess the necessary utility information

to solve the decision problem at hand . Thus, he proposes an optimiza-

tion algorithm that is appl ied to these problems . The algorithm produces

the Optimal decision without requiring a priori an explicit representa-

tion of the utility. Rather , it solicits the necessary Information

about the utility at each Iteration as needed . The main idea of the

algorithm is that of approximating the utility surface at a given point

by a f irst  order Taylor approximation . Minima l knowledge about u is

required to construct such local approximation . This knowledge has to

be assessed di rectly from the DM . The theoretica l fact  that  guides the

algorithm is that , whenever the Taylor a pproximation maximizes the de-

cision at the locale of the approximation , it would be suf f ~ cient for

the decision to be optima l with respect to u i t se l f .  Boyd ’s work is

9



an important theoretical contribution to the field even though its ap-

plicability is limited to simple decision problems .

Delta Properties Techniques

The approach here is to augment the Von Neumann system of axioms

with further smoothness assumptions in such a way that the evolving

utility is a member of a classical family of curves . As such , the util-

ity assessment reduces to estimating a few parameters . The smoothness

assumpt ions , which describe specific kinds of preference behavior , cor-

respond to functional equations that restrict the functional form of the

utility (for examples , see Keelin (18)). It is theoretically possible to

develop funct ional equations corresponding to any of the classica l func-

t ions ; yet , the behav ioral implication of such assumptions are hard to

justify for most actual preference structures . The approach though has

been useful for local approximation of preferences .

1.3 Decompositiona l Techniques

These techniques are current ly  the most popular approaches for

dealing with multiattribute utilities . Decomposition assumptions were

or ig ina l ly  used by economists to deal with (deterministic) utilities

over commodity spaces ,* or what we had called value functions . As such ,

the assumptions are referred to as separability axioms . The first rig-

orous attempt at decomposing utility functions over commodity spaces is

that of Samuelson (35], where he derives necessary and sufficient

*A commodity space essentially can be though t of as the product set of
n attributes .

10



differential equation conditions corresponding to the additive utility

mode l , i.e., the model where the utility of a commodity bundle is the

sum of the utilities of each component commodity. Debreu [5) introduces

a concept of preference independence and proposes an algebra ic sy stem of

axioms that guarantees the additive utility model. Strotz [36] reports

on empirical observations which justify the partitioning aspect of sepa-

rability assumptions and proposes the notion of a utility tree to portray

diagrammatically the partitioning phenomenon . Gorman [14] considers the

implications between different collections of Debreu ’s preference inde-

pendence axioms and suggests the use of utility trees for modeling pref-

erences . Psychological research in the area of conjoint measurement (see

Krantz et al [26]) proposes still other varieties of decompositiona l ax-

ions that correspond to the additive utility model.

The modeling of deterministic utilities can be used to advantage for

constructing Von Neumann utilities via the two-step procedure , descr ibed

previously, as has been demonstrated by the work of Keelin [18].

1.3.1 The Decomposition of Von Neumann Utilities

The first attempt to directly decompose a Von Neumann utility

is that of Fishburn (81. To describe Fishburn ’s work , we need to intro-

duce a few prelim 4naries.

Let the attribute space be X ~ X1 x ... X ~~~ Let P be

the space of all simple probability distributions on X .  If p € P , let

be the margina l distribution of p on X~ , i ~ 1,.. .,n .
i

Defini t ion 1.1 (Fishburn) .  The attributes X1 ...,X are mutually value

independent if , for every p , p € p , 
~~ 

= for i —
I I

implies that p p ’.
11



The concept of value independence characterizes preference

structures where the preference over lotteries depends only on the mar-

ginal distributions over the attributes and hence eliminates effects due

to coupling or interactions between attributes .

Theorem 1.1 (Fishburn). Let the product set of attributes be X =

x X .  Assume the preferences satisfy the Von Neumann axioms .

Then the attributes are mutually va lue independent if and only if ,

for x = (x1,. . . ,x )  E X , we can wr ite

u (x  , ..., x ) = u (x ) (1.1)
1 ~ i i

where u
1
(.) is a real valued function on the space X

1
, I 1,

,n.

Each U
1 

is actually a full—fledged utility defined on its

respective space . Equation (1.1) is what is called the additive

(Von Neumann) utility model .

1.3.2 The Work of Ralph Keeney

We will develop in detail some of Keeney ’s work due to the

fact that it is related intimately to our research . The concept of

u t i l i ty  independence , denoted UI , is centra l to mos t of this  work.

Before introducing this concept , however , additiona l notation is needed .

Let X — X X ... X X be written as Y X Z where Y cor-1 n

responds to an arbitrary (nonempty) subset of the attributes and Z cor-

responds to the complement set of attributes . For Y and Z , let us

def ine P~, and P~ as the spaces of all margina l probability

12
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distributions on Y and Z, respectively. As such , the space of prob-

ability distributions P is P~ X P~ . Hence , for p € P, there exists

Py ~ 
P and € such that p = (p , p ) .  For a marginal distribu-

tion that is degenerate (I.e., only a single point in the respective

space has a nonzero probability), we denote it by the certain point. As

an example , for some z
1 

€ Z , P = (p.z
1
) denotes a lottery in P with

Py 
marginal distribution on the Y space and a degenerate marginal dis-

tribution on Z with p (z
1.
) = 1. For z

0 € Z, let us def ine the in-

duced preference ordering , ~~~~~‘ 
on P as follows : For p

~~
, p ’ € P ,

we have 
0

,z0
) < (p ’ ,z0

) <=~‘ p < p ’

0

Definit ion 1.2 (Keeney) .  The (vector) attribute Y Is u t i l i t y  indepen-

dent of Z if , for every z
1
, z2 

€ Z , < =

z
i 

z
2

The definition characterizes preference structures where the

ordering of lotteries on the 1 attribute is not affected by the partic-

ular (certa in ) value of the Z attribute . Keeney [20 1 has shown that Y

is UI of Z if and only if u (y , z) has the following functional form :

u( y , z)  = f 2 (z)  + f1(z)  . u ( y , z0
) for some z0 E Z ( 1 .2)

where f
1 

and f
2 

are real valued functions with f
1 > 0. Equation

(1.2) is sometimes used as the definition of UI .

To determine the functions f 1 and f 2 , let us f ix  the

u t i l i ty  surfaces ’ two degrees of freedom (see the third property of Von

Neumann utilities, described previously) by choosing y0, y1 € Y such

that
13



r
u (y

0 ,z0
) = 0 ; u (y

1,z0
) = a ~ o

(Here we implicitly assume that such pairs of points exist. This assump-

tion is sometimes explicitly stated by assuming that Y is essential.)

Subst itut ing y
0 

in Eq. (1.2), we get

u (y
0,
z) = f

2
(z) + f

1
(z )  . u (y

0,
z
0

) = f
2
(z) (1.3)

Also , subst itut ing y
1 

in Eq. (1.2), we get

u (y 1,z)  = f 2 (z )  + f
1

( z )  . u (y
1,
z
0
)

(1.4)

.~~ . f~ ( z )  = [u (y1,z)  - u (y 0, z) ] / a

Subs t i tu t ing  Eqs . (1.3) and (1.4) ba ck into  Eq .  (1 .2) , we get

u ( y , z)  = u (y 0 ,z )  + l/a[u(y1~
z)  — u ( Y 0. z)]  . u ( y ,z~~) (1.5)

Thus , from Eq.  ( 1.5) , we are able to derive u from its restrictions on

the subspaces Y and Z .

Keeney [20] uses the UI concept to develop the so—called

quasi-separable model .

Definition 1.3. Let the attribute set be X
1 
x ... x X .  u is quasi-

separable if there are real valued functions u
1 

on X
1
, I = 1 ,

,n , such that u has the following form :

u (x 1, ~~~~ 
x )  — K (j1, . . .,  i~ ) . R (j 1, .. .,  j)

14



4
where

~~~ ~~~ 
= 

i~~1 
R .

and

= u i
(x

i
) if j .  = 1

= 1 — u
1

(x
1
) if 

~i 
= 0

The x (j 1, .  .. ,j ) ’ s are rea l cons tan t s .

Again , the u~~’s in this definition correspond to utilities

on their respective spaces .

Theorem 1.2 (Keeney). Let the product set of attributes be X = X
1
x. ..

X X .  For i = l ,...,n , assume the X~ is UI of its (orthogonal)

complement with respect to X. Then u on X has the quasi—sep-

arable form .

In add ition to the models of Theorems 1.1 and 1.2, the third

most popular model is the so—callied multiplicative—additive model . This

model is developed , almost simul taneously , by both Keeney [20] and Pol-

lak [30].

Theorem 1.3 (Keeney) .  Let the product set of a t t r ibutes be X = X1 \

X . Assume that  X X ... X X  X X  X ... X X  is UI of X .n 1 i—i 1+1 n 1

for n —l of the I = 1,...,n , and n > 3. Then either

u(x1 , . 
~ 

x )  — k1
u~ (x

1
)

i—i

15



I
or

[1 + ku (x  , . . . ,  x )] 
= + kk u(x )1

1 n 
~~~~ 

i i  i J

where u and u
~ 

are utility functions (on their respective

spaces) sca led from zero to one . The k and k
i
’s are scaling

constants with

0 < k
1
< 1  for i = 1 , ..., n

The value of the constant k determines whether u is ad-

ditive or m~..ltiplicative . This value is determined by the k ’ s whose

va lues are to be assessed d irect ly by the DM. The multiplicative—add i-

tive model may be compactly written as

u (x  , . . .,  x ) = u (x ) * ... * u (x ) , * E (x,+l (1.6)
1 n 1 1  n n

Keeney [20] also derives the same model using a combination of prefer-

ence independence and utility independence assumptions. For the case of

on ly two a t t r ibutes , Theorems 1.2 and 1.3 coincide and we have :

Theorem 1.4. Let X = X
1 
x X2

. Assume the X
1 

is UI of and X
2

is UI of X
1
. Then, U has the fol low ing form :

u (x
1 ,
x
2
) = + u

1
(x
1
) * u2

(x
2
) , * 

( (x ,+)

Meyer [29] derives the equation (1.6) by dealing with a dif-

ferent set of UI assumptions .

16



4
1.3.3 The Work of Farquhar

It is clear from Definition 1.2 that the UI concept captures

~ a certain kind of regularity by considering the induced preferences

conditioned on one element , i.e., induced preferences of the form <
z

Fishburn [111 introduces another regularity concept by dealing with two

element conditional preferences , I.e., induced preferences of the for m

< where z
1 

and z
2 

are elements in the space Z as defined in
z1 , z 2
D e f i n i t i o n  1.2. Farquhar [61 generalizes Fishburn ’s work by considering

n—element conditional preferences , i.e., induced preferencec of the form

The regularity assumptions that tvolve from such conditional
z1,...,zn
preferences are called hypercube independence assumptions (the ad jective

‘hypercube ’ is used because the n conditional elements are indexed b

the vertices of n—dimensiona l unit hypercubes) . Farquhar proves a fun-

damental theorem which gives the utility decomposition form correspond-

ing to d if fe ren t  hypercube independence assumpt ions. Farquhar ’s work is

of great theoretical value since it integrates the state of the art and

demonstrates the extent of varieties of preference structures . From an

applications point of view , however , the consideration of n—conditiona l

preferences is both awkward and unintuitive . By comparing some of the

h ypercube indep~r.dence concepts to the UI concept , we believe that what

makes the latter concept more appealing and amenable to introspection is

the property that it always corresponds to a partition of the attribute

space (we will prove this fact in thapter 2). Most hypercube indepen-

den ce assumpt ions , however , do not have this property.

This concludes a brief review of the different results per-

tinent to our work .
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1.4 Summary of Results and Contributions

Throughout our work , we deal with the concept of utility indepen-

dence . Instead of treating specific sets of UI assumptions , or particular

ut il ity  decomposit ion forms , we consider arbitrary sets of UI assump-

tions with respect to n attributes . Each arbitrary set corresponds to

and defines a particular preference structure .

In chapter 2, we characterize the utility decomposition correspond-

ing to an arb itrary set of UI assumpt ions by two funda mental proper ties:

(1) the decomposition partitions the attribute space into subspaees of

lower dimensions , and (2) preferences over the subspaces reflect differ-

ent levels of regularity. The concept of ‘ut il ity  independence order ’

is introduced to capture the second property. The two properties fully

characterize any decomposition corresponding to a set of UI assumptions.

Next , we identify an algebraic structure (a finite semigroup or a monoid )

which automates the derivation of the decomposition corresponding to a

set of UI assumptions . The algebraic structure is implemented , in a na-

tural way ,  using the concept of a utility tree . The tree method is a

simple and visually powerful procedure for generating utility decomposi-

tions. The procedure produces utility trees that are self—contained an-

alytical representations of the decomposition . The whole methodology may

be implemented on a computer .

In chapter 3, we start by listing the preference structures corre-

spond ing to all possible UI sets on three attributes . It is Interesting

to note that such a listing was one of our early research goals . Our

Initial attempt was to capture the different possibilities of preference

Interactions on three attributes by developing differentia l equation

4 18



models , much in the same ve in as tha t  of Samuelson ’ s [35] necessary and

s u f f i c i e n t  conditions for the addi t ive  value model. In retrospect , we

believe the use of the UI concept is more meaningfu l and appealing .

Next , we use the fundamenta l decomposition characterization of chapter

2 to propose a scheme for classifying preference structures on n at-

tributes . The scheme is most meaningfu l with respect to the assessment

effort required for each preference structure . We use the scheme to

list all ‘distinct ’ preference structures on 2, 3, and 4 attributes .

The ‘distinctiveness ’ here , of course , is modulo the UI concept .

In chapter 4, we deal with how UI assumptions imply each other and

consider the case where different UI sets correspond to the same pref-

erence structure . We identify three instances (one of which is docu-

mented by Keeney [23)) where a given set of UI assumptions implies the

satisfaction of other UI assumptions . One of the instances correspond-

ing to a particular pattern of UI sets , which we call dichotomous chains ,

results in representation forms that are a generalization of the quasi-

separable model of Definition 1.3.

Section 4.3 proposes a canonica l form for UI sets which is helpful

for v i sua l iz ing  the decomposition involved , along with any possible UI

implicat ions . Due to the central role of the multiplicative—additive

model for UI implications , Section 4.4 presents a method for construct—

1mg a minima l number of UI assumptions corresponding to a given multi-

plicative—additive model . For instance , if the model involves n at-

tributes , Theorem 1.3 (of Keeney) requires n—i assumptions (Pollak

[30] and Me yer [29] require n assumptions ) , while our construction

requires a number of assumptions k where k is the smallest Integer

such tha t :
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As an example, for a problem with a thousand attributes , Theorem 3.1

requ ires 999 assumpt ions , while our construction requires only 10 as-

sumptions . The amount of reduction in the verification effort by the

analyst is greatly reduced . The general topic of UI implications , in

add it ion to its theoret ical value , is of practica l benefit to the ana-

lyst. The analyst can design the collection of UI assumptions that is

most meaningful to the problem at hand . He can also reduce the number

of assumpt ions to be verified to a minimum to eliminate any, perhaps

nonobvious , dupl ication of effort .

chapter 5, which relates to the second stage of the overall frame-

work , deals with preferences over multiple attributes where no regularity

assumptions are satisfied . The corresponding utility surface is called

indecomposable. For such surfaces , we propose the ‘Strategy of Contin-

uous Cuts ,’ a flexible d iscret izat ion process that collects cont inuous ,

one-dimensional , samples of information about the utility. Interpola-

t lon is used to fill the ‘gaps ,’ due to discretization and , hence , con-

structs the whole surface . An appropriate rule for interpolating util-

ity values should be behaviorally motivated . Thus, in correspondence

with the continuous cuts strategy , we develop a behavior Interpolation

rule called ‘The Risk Avers ion profile Method . ’ The basis of this rule

is to assume a specif ic  kind of local decomposition (or separab i l i ty) .

The local decomposition is implemented using the information on the con-

tinuous cuts by assuming different behaviora l assumptions about a DM’s

attitud e toward uncertainty along each attribute . To the best of our

knowledge , the rule corresponds to the first attempt where loca l
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4
decomposition is used to model preferences . Note that  th is  approach ii~

distinct from that of local fitting , using classical surfaces .

In chapter 6, we demonstrate some of our results by an actua l exa m-

ple. The example constructs a twelve—attribute utility function for a

dec ision maker ’s preference of cars.

Fin a l l y ,  in the conclud ing cha pter , we sum mar ize the ma in result s

of our work and propose different directions for extending it.
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chapter 2

PARTIAL DECOMPOS ITION OF UTILITY SURFACES

Decomposition of higher dimensional utility surfaces is attained by

assuming different global regularity conditions of the surface . Several

concepts of regularity exist in the literature ; here , we dea l exc lus ively

with the concept of ut ility independence , as defined in chapter 1. The

sat isfact ion of a collect ion of UI assumpt ions impl ies the feas ibili ty

of reducing an n-dimensional utility surface to surfaces of lower dimen-

sions . This property reduces the assessment effort required for con-

structing the utility.

Most of the decomposit ional ut il ity models in the l iterature a ssume

a symmetr ic set of assumpt ions where each attr ibute is treated in the

same way with respect to the type of regularities imposed . In our work,

we consider arbitrary sets of UI assumptions and the corresponding util-

ity decomposition. This approach leads to a spectrum of preference struc-

tures whose ends are , on the one hand , the total decomposition of an n-

dimensional utility into n 1-dimensional utilities and , on the other

hand , the n-dimensional utility cannot be reduced at all. The treatment

of a rb i t ra ry  sets of UI assumptions is of immediate practical value since

different sets of assumptions are meaningful for different problem env i-

ronments .

As a preview of the chapter , SectIon 2.1 introduces the basic nota-

tion used throughout the text. Section 2.2 displays an algebraic spa n-

ning phenomenon that Is fundamental to the kind of decomposition treated

here. The concept of ‘uti l ity independence order ’ is introduced to cap-

ture an aspect of this phenomenon . SectIons 2.3 and 2.4 characterIze
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part ial decomposit ion in two fundamenta l wa ys : par t i t ioning of the at-

tr ibute space , and low order regularities on the decomposed subspaces .

Finally, Section 2.5 proposes a codable procedure for generating the

decomposi t ion corresponding to a set of UI assumptions . The procedure

considers the algebra involved in decomposition and abstracts  from it a

finite algebraic structure , called a semi group , which is implemented in

a natura l way using the utility tree notion .

2.1 Notations

We use a powerful notation for denoting UI assumptions . Let us note

(see Definition 1.2) that the UI concept is defined for any (nonempty

and proper) subset of the set of attributes . Thus , for n—attributes ,

there are many possible UI assumptions . For a given ordering of the

at t r ibutes , denote a UI assumption b y an n—component vector of ones and

zeros where the attributes correspond ing to the ones are utility inde-

pendent of the attributes corresponding to the zeros . For example , for

a 4—at t r ibute  space ,

D
(1,0,1,0) <=> X

1 
x X3 is UI of X

2 X X4

The zero vector is called the null assumption . It should be clear tha t ,

for n—attribute spaces , there are

— 2

possible assumpt ions , where we discount the null assumption and the vec-

tor of all ones as being ill-defined . An arbitrary set of UI assumptions

is denoted by the letter A. Let a , b (~ A. We denote by a A b and

a V b the component—wise Boolean product and addition , res pectively, of
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a and b. Here , we are treating A as a subset of the ?—Boolean al-

gebra . a denotes the Boolean complement of a , i.e., the zeros and

ones of a correspond to the ones and zeros of a , respectively. As

an exa mple , let a = (1 ,0,1,1) and b = (1,1,0,0 ) ;  then ,

a A b = (1 ,0,0,0)

a V b = (1,1,1 ,1)

= (0,1,0,0)

If u is restricted to a subspace of the attribute space , it is

called a cond itional utility and is denoted by Cu(.). The variables

on which Cu (S) is defined are called active variables , while the var-

iables of the complement space are called parameters. It is useful to

deno te the argument of cu( ) by two d ifferent notat ions :

(1) The standard mathematica l notation where all the varia-

bles are listed and the parameters take on constant val-

ues . For example , Cu(x
1,x2,

x3,x4
) is the conditional

utility over (x1,x3
) where (x2,x4

) is a point in the

parameter space X
2 

X X~~.

(2) The Boolean notation is to indicate the active variables

by ones and the parameter variables by zeros. This is

another use for the elements of 2’~—Boolean algebra.

Both notations will be used as appropriate . Two distinct cond i-

tiona l utilities are generically different if their domain of definition

is not the same . Otherwise , they are pa rametrically d i f fe ren t .

We use the standard set theoretic notation such as U for union ,

(~) for intersection , and a set with an upper bar for the complement op—

eration .
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2.2 Spanning of Conditional Utilities

Before sta ting the ma in def in it ions, let us motivate them by an ex-

ample where we point out the salient features of the decomposition tech-

nique . We will particularly articulate an algebraic phenomenon , called

spann ing , which is at the heart of partial decomposition.

Example 2.1.

Let the attribute space be K X Y X Z where X , Y, and Z are

scalar attributes . Let the set of satisfied UI assumptions for a par-

ticular preference structure on X X Y v z be A = f(1,0,0),(0,1,0)).

Let us generate the corresponding decomposition.

To apply the def in it ion of ut il ity independence , let (x
1,y1,

z
1
),

(x2 , v1,y1), and (x
1

,y
2
,z
1
) be elements in K X Y X Z with

u(x
1

,y
1,
z
1
) = 0 ; u (x2 , y 1,z1

) = l/:z ; u (x
1

,y
2,
z
1
) =

where a an d ~ are not equal to zero . We can now write

(1 ,0,0) =~ u (x ,y, z) = Cu(x
1

,y , z) + a[cu(x2,y,z) 
_cu(x

11y,z)] 
. Cu(x,y

1,
z
1
)

( 2 .1)

Equation (2 .1) is a t ta ined similar to Eq. ( 1.5) of chapter 1. S i m i l a r l y ,

we have

(0 ,1,0) ~~u (x 1, y , z)  = Cu(x ,y1, z)  +~~[Cu(x ,y 2 i z)  _ cu (x ,y1 z)] . Cu(x1,y,z1)

(2 .2 )

Let us decompose Cu(x2,y,z), from Eq. (2.1), via Eq. (2.2) as follows :
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Cu(x2,y,z) u(x2,y,z) = Cu(x
2

,y
1,
z) + ~ [C u x2 , y 2,z — Cu(x

2,y1,z)]

Cu(x1,y,z1
)

Decomposing Cu(x1,y,z) in the same way and subs t i tu t ing  both expres-

s ions back in Eq.  (2 .1 ) , and rear ranging  terms , we f i n a l l y  ge t :

u (x , y , z )  = f ( x )  . g(y) . Cu(x 2 ,y 2 , z )

+ f (x ) [ l  — g ( y ) J  . Cu(x
2

,y 1,z)

+ [1 — f(x)1 . g (y )  . Cu(x
1,y 2 ,z )

+ [1 — f ( x ) ]  . [1 — g ( y ) ]  . Cu(x
1

,y 1,z )  (2.3)

where f(x) = X~u (x ,y1,
z
1
); g(y) = ~3Cu(x1 ,y,

z
1
). Let us note the fol-

lowing poi nt s .

(1) The set of attributes has been segmented into three

mutually exclusive and collectively exhaustive subsets

corresponding to the active variables of the three

generic conditiona l utilities . As will be shown , such

partitioning occurs for any set of UI assumptions .

(2) Equation (2.3) ind icates t ha t  four conditiona l utilities

on z (i . e . , at four settings of the parameter space)

are required to construct u .  Let us identify the sur-

face u with the set of a l l  cond it iona l ut ilities on z
( the lat ter  would be cuts along the z-direction of the

former). Now , Eq. (2.3) says that this set is spanned
by four elements In I t .  This  observation r e f l ec t s  a

type of low order Independence on Z tha t is Impl ied

by the UI assumptions on X and Y . With respect to

X and Y , the respective condItional utilities are
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spanned by one conditiona l utility and a constant func-

t ion . To see this  p oi n t , scrut in ize  E q .  (2 . 3 ) .  These

observations are the motivation for Definition 2.4  below .

(3) I f  Eq .  ( 2 . 3)  is used to generate an arbitrary conditiona l

u t i l i t y  on Z, i.e., Cu(x
1

,y
1
,z), we find that the co-

e f f i c i e n t s  mul t ip ly ing  the z—conditiona l utilities always

add up to one . Hence , if the set (Cu(x
1
,y.,z): x~ € X ,

Y~ E Y)  is embedded in an appropriate linear space , u

may be characterized as a linear variety of functions ,

where the spanning functions are actually restrictions or

cuts of u i t s e l f .

(4)  The generat ion of an y u (x
1 1~~~ z)~ for some € X and

‘~ Y , via Eq .  (2 .3)  can be thought of as a three—step

procedure :

( i)  Find u (x ~~~y1~ z)  as a p oin t  on the fun ct ion

line formed by u (x
1,y 1, z )  and u ( x 2 , y 1, z ) .

( ii ) Sim il a r l y ,  find u (x
i
,y2,z )  as a point on

the funct ion line formed by u (x
1,y 2 ,z )  and

u (x 2 ,y2 ,z ) .

( i i i)  F ina l l y ,  derive u (x 1~~~~ z)  as a po int on

the funct ion  line formed by u (x
i ,y i i z )  and

u (x 1,y 2 ,z ) .

Note that  it is just as well if we had gone the route

~~~~~~~~~~~~~~~~~~~~~~~ and u (x
1 1Y~~z). See Fig . 2.1.

With the above motivation in mind , the follow ing def in i t ions are

Introduced .

Def in i t ion  2.1. Let the a t t r ibu te  spacr ~~ V Y where X and Y are

vector or scalar attributes. Consider the set
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S[cuIx ,y~~] 
= {Cu x ,y i

) :  y 1 ~

SfCu(~ )1 is called the function space of Cu(•).

Definition 2.2. Let X and Y be as defined above . Consider the set

SP = ~Cu (x ,y
1
): ~ = 1, . . . ,  ~ y

1 
€

SP is a spanning set for S[Cu(.)] if , for every Cu(.) €S [Cu(~~)],

= 

~~l 
b
1
(y) Cu(x,Y~ ) + b7~

The b
1
(~~)’s are called weight functions .

u (x
1

,y
2
,z) ~~~~~~~~~~~~~~~~~~ u (x

2
,y
2,
z)

u (x 1,y~~,z)  )
u(x

1
,y
1 ,7) x~~~~~~~~~~~~~~~~~ x u (x

2
,y
1
,z)

X x u (x
2

,y
2,

z)

u (x 1~~~~ z)  
~~
- (

u (x 1,y 11z )  X x u (x2 1y 1
,z)

Fig. 2.1. SPANNING OF CONDITIONA L UTILITIES .
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Spanning sets will generally be invoked by A , the set of UI as-

sumptions . Hence , the following definitions.

Definition 2.3. For a particular A , The spanning set of a given Cu(S)

is minima l if none of its elements can be elimina ted by the assump-

tions of A.

Proposition 1. Let Cu( ) be (any  condi t iona l u t i l i t y )  invoked by the

set of assumptions A. Then , a minima l spanning set for Cu (•),

along with its weight functions , will construct the utility surface

U.

Proof.

Let the attribute space be X
1 
X .. .  X X .  Without any loss of

generality, assume we have the minima l set for Cu(x
1,...,

x ) where

0 < r < n .  Let (x1,...,x )  be a point in the attribute space . We want

Two steps are involved:

(1) In t e rpola t ion  s tep:

X ,X
1
, ..., ~~ ) = b

i
(x

1
, ..., x )

Cu
~
(x1, ~ 

X
r
)

+ b (x ,P+1 r÷l n

where

Cu
1
(x1, x ) , i = 1, ..., £ minimally span C u ( S )

( 2 j  Substitution step: We substitute
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X
1~ ~~~~~~~~ 

in Cu(•) to get u(x
1
, . . . , x )  = Cu(x

1, . , X )

Q . E . D .

Definition 2.4. Cu (•) is said to be Utility independent of order k ,

denoted Ul
k , if its minima l spanning set has card inality k.

Let us remark that , if A has only one UI assumption , two generic

conditional utilities ar~.. invoked : one is UI
1 

and the other is UI2
.

Let us also remark that each assumption in A will invoke a con-

ditiona l utility that is UI1
. Thus , there is a natura l correspondence

between Cu (S) that are UI1 and utility independence assumptions .

Generating the Decomposition Corresponding to A

Each UI assumption in A will , by definition , generate a decompo-

sitional equation for u. The resulting system of equations is manipu-

lated to produce the simplest decompositions of u. The idea is to take

a condit iona l u t i l i t y  invoked by an assumption and decompose it fur ther

by one of the other assumptions . This is done recursively for each con-

ditional utility until no more decomposition or reduction is possible.

The simplest possible decomposition , which is unique , is the one that

corresponds to A.

2.3 The Partitioning of the Attribute Space

The following theorem characterizes the set of all generic cond i-

tional utilities in the decomposition corresponding to A.

Theorem 2.2. Let A = (a
t
: I = 1 ,.. .,k) be the set of all satisfied UI

assumptions for a particular preference structure . Then ,

30



A ... A a
k
): (~~ A ... A a

k
) ~ 0* and ‘E

is the set of a l l  generic condi t ional  u t i l i t i e s  in the decomposi t ion

corresponding to A .

Proof.

Proof by induction on k. For k = 1, the assert ion is true by the

definiti n of UI. Assume the assertion is true for k. Let A’ =A U (a
k l

).

We w i l l  show the assertion is true for A’ . We wi l l  generate the decom-

position for A’ by starting with the decomposition for A. Initially ,

a
k l  

will be appl ied to each of the generic conditiona l utilities of A.

By definition ,

a =~~u ( . )  = f ICu(a ); Cu(a )1 (2.4)k+l L k+ 1 k+1 j

Subst i tu t ing  Cu(~~1 A ... A in the functiona l form of Eq. (2.4),

we get the following functiona l form :

A ... A 
~~~ 

= f[Cu(~1 
A ... A a

k 
A a

k+l
) ;  Cu(~~1 A . . .  A a

k 
A a

k i )]

Thus , we can replace all the generic utilities of A by the new ones ,

A ... A 
~~~~~~ 

Now , fur ther  subs t i tu t ions  w ii l  involve one of the

UI assumptions with Cu(~ A ... A ~ ) as follows :1 k+1

a
1 

u(.) = fj[Cu(a 1
) ;  Cu( a

1)] , V i  = 1, ..., k + l

Hence ,

*O here denotes the zero vector (O,O,...,O).

_ 
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Cu(~~~A ... A a
k l

) = f[Cu (~ 1
A ... A ak 1A a

1
), Cu(~ 1

A ... A a
k l  

A

(2.5)

But , note that

a
1 

A ... A a
k l  

A a
~ = A ... A = a~

= 0  if

and

~l
A . . .A a

k+l
A a

1
= 0  if

~1
A ...A

~~k l  
if

Thus , Eq. (2.5) says that no new generic conditiona l utilities will

evolve and all the current ones will be preserved . 
Q.E.D.

Definition 2.5. A partition of the attribute variables is a collection

of mutually exclusive and collectively exhaustive subsets of the

set of attributes .

Theorem 2.3. The active variables of the generic conditional utilities

of a decomposition corresponding to any A form a partition .

Proof.

Any generic conditional utIlity is of the form

A ... A a
k
) where (~~ A ... A ~ 0

To show mutual exclusion , consider the following arbitrary pair of dis-

tinct Cu ’s:
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A ... A ak
) and Cu(b

1 
A . . .  t~ b~~) a 1,b 1

(a 1,a
1)

Since the i’s corres pond to act ive var iables, the two Cu ’s are mutually

exclus ive if

(a
1 

r. ... A a
k

) A (1,
1 A . . . ‘7 b~~) = 0 (2.6)

Equation (2.6) is true if there exists an i such that

= b .1 1

But , at least one such I will exist or else the two Cu ’s are not di~~—

tinct .

To show collective exhaustion , we wil l  construct a conditiona l u t i l -

i ty  whose active variables  contain an a rb i t r a r i ly  chosen attribute vari-

able . Let the arbitrary attribute be the 1
th one , 1 < i < n. For each

j, 1 < j  < k , choose ~ fa~~~a~~) such that tj~e 1th component of a~ is

one . Now , a1 
A ... A a

k ~ 0 and Cu(ç A ... A a
k

) will conta in the

a t t r ibute  as one of its active variables .
Q . E . D .

2.4 Utility Independence Order

The previous section characterized all the generic conditiona l util-

ities of a particular decomposition . But , as Example 2.1 indicates , a

cond itional utility may be required at more than one setting of its pa-

rameters. Definition 2.4 refers to the required number of settings as

the utility independence order of the conditional utility. The followimg

theorem characterizes this concept .
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Theorem 2.4 .  Let Cu
1
,... ~~~ be a l l  the generic condi t iona l u t i l i t i e s

corresponding to some A. Let O
~ 

be the utility independence or-

der of CLI
1, 

I = 1,...,!. Then,

( 1) 0
1 € 19 r r = 0,1,2, . . . , £ — 1) 1 = 1 , . . . ,

p
( 2 ) 2!~~

i~ 1 
-

To prove the theorem , we need the following lemma .

Lemma 2.5. For any Cu
1
, the number of settings each parameter , sepa-

rately, takes on is either one or two .

We will prove the theorem and lemm a simultaneously.

Proof.

By induction on the number of UI assumpt ions in A .  If A = ( a ) ,

the theorem and the lemma are true by scrutiny of Eq. ( 1.5) of chapter

1. Let A = (a 1
: i = l ,...,k— 1J , and assume that the corresponding

CU1, . . . ,Cu s a t i s fy  the assertions of the theorem and the lemma . Con-

sider A ’ = A U ra
k
) with Its correspond ing CUj ~~.. ., CU ’ . Without  any

loss of genera l i ty ,  denote Cu 1, I = 1, . . . ,e , as follows :

Cu
1
(.) = Cu

1
(1
1
l
2 

1 1 r < n (2 . 7 )

(This may be accomplished by permuting the attributes.)

In conformance with Eq. (2.?), ak may be denoted as follows :

a — (1 ...1O ...O 1 ...l O ...O)
k 1 m m+l r r+1 r+2 a
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where 0 < m < r ;  0 < k < n - r .  Let

a Cu(x
1
, ..., x , X 1, ..., x ,x 1

, ..., x )

h 2 
a Cu(x

1
, ..., X

m~
X

m+ 1~ 
..., X ,X

1
, ... , xr+r Xr+

;+l~ 
x )

h 3 
a Cu(x

1
, ..., Xm P~ m+l~ 

..., X ,X 1, ..., X
1
,X~~~~~~1

, ..., x )

where and E X~~, I = 1, . . .  ,n .

We have , by definition ,

a
k ~~u(.) = h 1 + a[h2 

— h
1
) . h3 ~ > 0 , a constant (2.8)

We will use this setup to argue the assertions. Let Cu , 1 < s < e ,

be UI (with respect to A). Since , by the Induct ion assumpt ion , the

number of settings of each parameter is either one or two , we can d ivide

into and 2i~~~, 0 < j < I, where is the number of settings

in the parameter space (x ,...,x ) and is the number of set-
r+1 r+F

tings in (x 2 1 ,...,
x) . Let us apply a

k 
to Cu via Eq. (2.8).

There are three mutually exclusive and collectively exhaustive cases to

consider .

Case 1: m 0 .

As Eq. (2.8) indicates , Cu will not be decomposed further. Hence ,

from Theorem 2.2 , it will be one of the generic conditiona l utilities of

A’ . For the number of required settings in its parameter space , note

that the settings of the parameters ~~~~~~~~~~~~~~~ will be preserved

at this point of the argument , wh ile the settings of the parameters

(x ,...,x ) will be replaced by the two points (x ,...,x ) and
r+1 r+! i+l
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r - -(x , . . . , x ) .  Hence , the UI  order of Cu wi th  respect to A is a t
r+l r +f  s

most ~~~~~~~ For the case where j = 0 , the decomposi t ion is bet ter

off without applying a
k 

to Cu. Thus, we can conclude that the UI

order of Cu is at most 2~~.

Case 2: m = r.

Aga in , 
~~~~~ 

will not be decomposed further. The settings of the

space (x~~~~~~1 ,...,X )  are replaced by a single point , i.e.,

x ) .  Hence , the UI order of Cu with respect to A is at most
S

2j .

Case 3 : r > m ~ 0.

By Eq. (2.8), Cu w ill be decomposed Into

Cu (1 .. . l O  ... 0) and Cu (0 . . . O l  ...10 ...0)
si 1 m m+l n s2 1 m m+l r r+l n

Cu and Cu will be generic conditiona l utilities of A’ (see
sl s2

the Proof of Theorem 2.2). Cu
1 

will inherit all the parameter set-

tings of the space (x
1
,...,X ) , ond only the point (x

1 1
, . . . ,

x ) is required in its space . Thus , the UI order of Cu (with re-
—n sl

spect to A’ ) is at  most

Cu will inherit all the settings of the parameters (x
s2

x ) ,  while two points will be required in the space (X
1
,...,X~~~~ ),

namely,  (x , . . . , x ) and (x , . . . , x ) .  Thu s , the UI order of—r+1 —r+! r+1
Cu is at most 2

i-j+l So , the UI order of both Cu and Cu is
s2 al s2

at  most 21+1 . Note that , in th is case , one conditiona l utility is re-

placed by two . So, 2’ > £ +1, and the bound in the second assertion

of the theorem is made larger .
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With these three cases , the second assertion of the theorem is dem-

onstrated . To complete the proof for the first assertion and for the

lemma , the possibility of further applications of any of the assumption~

to available conditiona l utilities needs to be considered . Note tha t

further application of the assumptions will only reduce the number of

settings of the parameters . But , with an argument similar to Cases 1

or 2 above , any time the parameter settings are reduced , the reduction

is a power of two and , each time a parameter takes on new settings via

Eq. ( 2 . 8 ) , the number of settings is either one or two . The decomposi-

tion corresponding to A’ will be attained after a finite number of

such substitution steps .
Q . F. D.

2.5 A H percube Referencing and Scaling Strategy

From Lemma 2.5, we note thit the m i n i m a l spann ing  set of any  con-

ditiona l utility can be sufficiently referenced by parameter variables

that take on at most two settings each . Thus , let us propose the fol-

lowing convenient referencing procedure for the different conditional

utilities involved In the decomposition corresponding to any set of UI

assumptions .

(1) Let the attribute space be X .. .  )( X .  Choose

and € X ... X Xn such

tha t 
~ 

for every I = 1,... ,n .

(2) Consider H — ((h1
,...,h ) :  h

1 
€ (x~~,x1 1, i = 1 ,...,

n). H is the hypercube generated by the two choseit

points.

(3) Let A be the set of UI assumptions . For each

a P A , apply a on u by referencing the invoked
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conditiona l utilities by vertices of faces of H. As

such , all required scaling constants  correspond to util-

ities of some of the vertices of H.

Theorem 2.4 indicates that H has enough vertices to reference any col-

lection of conditiona l utilities corresponding to a set of UI assumptions.

Keeney has used a restricted version of this strategy for different parts

of his work (e.g., see Keeney f22]); what we did here is to formalize and

generalize Keeney ’s idea .

An Automatum--A Finite Semigroup

When using this procedure , the process of generating the decomposi-

tion form of a utility is governed by a s~~aple algebraic structure called

a semigroup .

Definition 2.6. A set with an operation defined on it is called a semi-

group if the operation is closed and associative . If the set has

f in ite card inal ity , then the semigroup is finite.

To recogn ize the involved semigroup , let us refer to the var iable s

of a given condi t iona l u t i l i t y  in the fol lowing way .

(1) The symbol 1 refers to an active variable .

(2)  The symbol 0 refers to a parameter var iab le  whose

set t ing is in the set (x 1: i = 1, ... ,n ) .

(3) The symbol 0 refers to a parameter variable whose

setting is in the set (x
1
: I =

This new symbolism completely specifies any conditiona l u t i l i t y  tha t  re—

suits from the referencing strategy described above . Now , consider the

set :

38



SG = ~(c 1 , ..., C ) : C1 ~ r l ,ö , u l , I = 1 , ...,

Define the operation * on SG as follows : If C , C’ ‘T SG , then

C * C ’ = (C * C’ , ..., C C ’ )
1 1 n n

where * on the set ~~~~~~~ 15- d e f ined  by the fo l lowing  t ab le :

Table 2.1

DEFINITION OF

*

0 0 0 ~

C~ 2 2 2 2
1 0 0 1

Note that  * is noncommutative . The entries in Table 2.1 are C * C’
i i

(and not C~ * C1
) .  The operation * is clearly closed . To demonst ra te

the assoc iat iv ity  of * f or SO , it is suff icient to show It for the

set (1 ,0,0). Table 2 . 2 contains a proof (by complete enumerat ion ) of

the a s s o c i a t i v i t y  of * on (l ,0 ,ö ) .

The Tree Method

The best way to explain the use of the f i n i t e  semigroup l’~ by an

example . Let the attribute space be X ~< V x Z .  Assume t ha t  the set of

satisfied UI assumptions is ((l ,O ,0),(0,1,0)). Choose (x,~~,z) and

€ X x Y x Z such that
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Table 2 . 2

A PROOF OF THE ASSOCIATI VI TY OF *

1s(O*0) = 1*0 = ö (1*0)*0 = 0*0 = 0

1*(O*0) = 1*ö = 0 (l*0)*0 = ö*ö = ö
l*(0*O) = 1*0 = 0 (1*0)*0 = 0*0 = 0

1*(0*0) = 1*0 = 0 (l*0)*0 = 0*0 = 0

0*(1*0) = 0*0 = 0 (0*1)*0 = 0*0 = 0

0*(1*O) = 0*0 = 0 (0*1)*0 = 0*0 = 0

0*(l*O) = ö*o = 0 (O*1)*O = ö*0 = 0

O* (1*0) = 0*0 = 0 (0*1)*O = 0*0 = 0

0*(0*1) = 0*0 = 0 (O*O)*1 = 0*1 = 0

0*(0*1) = 0*0 = 0 (0*0)*l = 0*1 = 0

0*(0*l) = 0*0 = 0 (0*0)*1 = 0*1 = 0

0*(0*l) = 0*0 = 0 (0*0)*l = 0*1 = 0

1*(1*0) = 1*0 = 0 (l*1)s0 = 1*2 = 2
l*(1*0) = 1*0 = 0 (1*1)x0 = 1*0 = 0

l*(0*l) = 1*0 = 0 (1*0)*1 = 0*1 = 0

l*(0*1) = 1*0 = 0 (j*0)*l = 0*1 = 0

O*(1*l) = 9*1 = 0 (0*1)*1 = 0*1 = 0

O*( 1*l ) = 0*1 = 0 (0*l)*l = 0*1 = 0

l*(1*1) = 1*1 = 1 (1*1)*l = 1*1 = 1

O*(0 *0) = 0*0 = 0 (0*0)*0 = 0*0 = 0

O *(0 *O) = 0*0 = 0 (O*O)*O = 0*0 = 0

O *(O *O) = 0*0 = 0 (O*O)*O = 0*0 = 0

O*(O *5) 0*0 0 (O *O) *O = 0*0 = 0

O *( O *O) 0*0 (O*O ) *O = 9*0 =
0*(0*0 ) — 0*0 0 (O*O)*O = 0*0 — 0

O *(Q*O ) — 0*0 = 0 (OsO)*O 0*0 = 0

O*(O*O) — 0*0 — 0 (o*o)*o 0*0 = 0
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Assume also tha t

u(x ,v ,z) = 0

Using Eq. (1.5) of Chapter 1, we can write

[Cu (x ,~~,z )  — Cu(x ,y,?)1
(0,1,0) >u (x ,y , z) = Cu(x ,~~,z) + — 

. Cu (x , y , z )
Cu(x ,y,z)

(2 .9)

where Cu(x ,y,z) is a scaling constant . Let us rewrite Eq. (2.9) with

the symbolism of the sernigroup:

fCu(l ,0,1) — Cu(1 ,0,1)1
u( 1 ,1,1) = Cu(l ,O ,l)  + — 

— 
. Cu(0 ,l ,0) (2 .10)

— 
Cu (O ,0,O)

Equation (2.10) is portrayed using a three branch node as follows :

(1 ,1,1)

//~TN
(0 ,1 ,0) (1,0,1) (1,0,1)

Where the vector a t  the node indicat es the surface to be decomposed and

the vectors at the end of the branches ind icate the cond i t iona l  u t i l i -

ties that are Invoked due to the UI assumption . All four vectors are

elements of the semig rou p SO. The UI assumption used for the decompo-

s i t ion of the nod e is to be indicated along one of the bran .~hes. Let us

associate the l i s t  [(0 , 1,0 ) ; ( l , 0 , 1) ; ( l ,0 , 1) 1 wi th the assumption (0 ,

1,0) .  Such a l ist  can be direct ly  constructed for any UI a s sumpt ion .
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The three vectors in the list correspond to the three conditiona l util-

ities invoked by a UI ass ’~ ~~ n. The first vector of the list denotes

the conditiona l utilit : th~. t is in a one to one correspondence with the

UI assumpt ion . Since we have as ~med (in the referencing strategy) that

the attribute vector with a lower bar has a zero utility , all the zeros

of the first vector shou ld have a lower bar. For the other two vectors ,

one of then should have all zeros with a lower bar , and the other can ,

in genera l , have any collection as long as they are not all with lo~ er

bars . In this way, the second and third conditional utilities corre-

spond to two different points in the parameter space . The description

for constructing lists is made clear by a scrutiny of the derivation of

Eq. (1.5) of Chapter 1.

Let us continue with the example. The list for (1 ,0,0), con-

structed directly, is:

[(1,0,0) ; (0 ,l ,1) ; (0,1,1)]

If  ~e decompose Cu(l ,0,1) of Eq. (2.10) using (1,0,0), we get

— — [Cu(x , y , z)  — Cu(x , y , z)1
cu(x ,y,z) = cu(x ,y,z) + — 

. Cu(x ,~~,z) (2 . 1 1)
Cu(x ,y,z )

or , equivalently,

— — 
[Cu( 0,0,l) — ~u(0,0,l) I

Cu(1 ,~~~ ,1) = O.i (0 ,O ,l)  + 
— 

. Cu( 1  , 0 ,0) (2 .11)
Cu( 0,0,0)

We can augment Eq.  (2.11) on the previous tree as follows :
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(1,1,1)

(0,1 ,0) (1,0,1) (1,0,1)

v,
v~~~~~~

(1,0,0) (O ,(,1) (0,0,1)

But , we can directly obtain this augmentation if’ we * mult jplv (1,0,1)

by the list of the assumption (1,0,0) as follows :

U (l ,0,0);(ö ,l ,1);(0,1 ,l)] * (l ,ö ,l) = 1(1 ,0,0);(0,0,1);(0 ,(1 ,l)]

l)ec npusing (1,0,1) in the same way, we get

f(1,0,0);(0,l ,l);(0,l,l)] * (1 ,0,1) =

This equation is also augmented to tree as follows :

(1,1 ,1)

~~(0 ,1 ,0) (1,0,1) (1,0,1)

//~\ 7 ~\(1 ,0 ,0) (0 ,5 , 1) (0 ,0 , 1) (1 ,0 ,0) (5 ,0 , 1) (0 , 0 , 1)
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In genera l , the decomposition of a conditional utility by an as-

sumption corresponds to a three vector list. There are two ways which

ind i cate that a conditiona l utility can not be decomposed any further

by a UI assumption .

(1) If the first element of the evolving list is the vect r

of all zeros with lower bar.

(2) If the first element of the evolving list is a vector

equal to the vector corresponding to the conditiona l

utilit y to be decomposed .

Both of these instances correspond to cases where the evolved

equation is an empty algebraic identity . A list whose first element

correspond s t one of the above cases is called tautologica l. The con-

struction of a utility tree is completed shen , for every conditiona l

ut ility , further decomposition by assumptions produces tautological

lists . The completed tree shou ld be such that the collection of the

conditiona l utilities of the end branches corresponds to the collection

c~.a racterized by Theorem 2.2.

The Fse of the Tree

A utility tree is a self—contained analytical form of the decom-

posed utility surface . If the values of the conditiona l utilities of

the end branches of the tree (the indecomposable conditiona l utilitie s )

are known for a given point in the attribute space , then the overall

utility of the point is obtained by working with the tree . The values

of the c o n d i t i o n a l  u t i l i t i e s  are propagated upward along the tree , t

the top , much in the same way as t ree construct ion has  advanced downward .
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For a given node in the tree , assume that the values of its three cond i-

tiona l utilities are known . Then, by the use of the equation of the cor-

responding UI assumption , we calculate the value of the node conditiona l

utility. This procedure is to be used , recursively, for each node until

the original node of the tree is reached . The final value is the over-

all utility of the point.

Conclud ing Remarks

We have characterized the utility due to a set of UI assumptions b~

two fundamenta l properties : the partitioning of the attribute space into

subspaces of lower dimensions , and the utility independence order of the

evolving subspaces. These t~e properties , along with a scrutiny of the

decomposition algebra involved leads to a simple and visuall y powerful

procedure for generating analytical forms corresponding to a given util-

ity decomposition .

The results of this chapter can be used to advantage by the analyst.

He now can ponder questions such as :  What set of assumptions to look

for? For a given set of assumptions , which other assumptions further

simplify the available decomposition? And , which subset of the attrib-

utes requires most of the analyst ’s care and attention?

The utility trees , in addition to their ana lytica l content , may be

used as a visua l aid for discussion purposes with the decision ma ker .
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Cha pter 3

CLASSIFICATION OF PREFERENCES ON n-ATTRIBUTEs

In this chapter , we demonstra te the extent of varieties of pre fer-

ence structures on n—attributes . In Section 3.1 , we list the pre ference

structures corresponding to all possible UI sets on three—attributes .

Section 3.2 proposes a classification scheme that distinguishes between

preferences on the basis of the two fundamental characterizations of

Chz~pter 2 , i.e., the partitioning phenomenon and the utility independence

order . The scheme also reflects the assessment effort required for con-

structing the utility of each preference structure . We apply the scheme

to list all ‘distinct’ preferences on two , three , and four attribute

spaces. We should note that this classification is modulo the concept

of utility independence . The same frame~’.ork can be applied to classify

preference independence for some of Farquhar ’s [6] hypercube independence

assumptions .

3.1 A l l  Preference Structures on Three—Att r ibutes

In Section 2.1 , we have noted that the number of possible UI assump-

tions for n—attribute spaces is:

- 2

A preference structure on n — a t t r i b u t es  may  be modelled and charac-

ter ized by any subset of the set of all UI assumptions . As such , the

number of different subsets of UI assumptions is:

(2 fl 
212 (3.1)
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Consider the a t t r i b u t e  space X Y ~
‘ Z where X , Y , and Z a re

scalar attributes . For this space , there are only 2~ -2 , or six , ~ I

assumptions . They are : ((1 ,O ,O),(O,1 ,O) ,(O ,O ,1),(1,1 ,O),(1 ,O ,1),(I~,1

1)1. Any collection of these assumptions defines a preference structure

on N ~
‘ y 

~~ Z. The number of subsets of the six assumption - is

2
[2 23 

= 2
6 

= 64

Table 3.1 lists all of these UI sets along with the correspond ing util-

ity decomposition form .

The Construction of Table 3.1

We explain in detail the decomposition form corresponding to each

entry of the table . Entries whose UI sets are the same up to a reorder-

ing of the attributes are grouped together . As such , the decomposition

form of only one of them needs to be explained .

Entry 1: None of the UI assumptions is satisfied . Hence , the

three dimensiona l utility surface is Indecomposable.

Entries 2—4 : The det’omposition of Entry 2 is obtained using Eq. (1.5)

of Chapter 1.

Entr ies 5—7: The decomposition of Entry 5 is obtained us ing  Eq .  ( 1 .5)

of Chapter  1.

En t r i e s  8—10 : The decomposit ion of E n t r y  8 is obtained by t r e a t i n g

(‘f x Z) as a (vector) attribute and applying Theorem

1.4 on X x ( YX Z ) .

Entries 11—13 : For a proof of the decomposition of Entry 11 , see Exam-

ple 2.1 of chapter 2.
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Entries 14—16: The decomposition of Entry 14 is obtained using Theorem

1.3 of chapter 1.

Entries 17—22: The decomposition of Entry 17 Is obtained as follows :

(1,1 ,0) u(.) = ~~ 1
( z )  + a[~~2

(z )  — 
~~~~~~~ 

. ~~ (x,y) (3.2)

(1,0,0) ~ u (~~) = ~~1(y,z) + ~ [~~2 (y , z )  — ~~ 1(y , z )~ . 
~~ (x) (3.3)

Cu (x ,y) = Cu
1
(y) + [cu2 y - Cu

1(y)] 
. Cu(x) (3.4)

Substituting Eq. (3.4) back in Eq. (3.2), we get :

u(.) = Cu
1
(z) + a[cu2

(z) - Cu
1
(z)] Cu1

(y)

+ cz~~1~cu2(z) - Oj1(z)~ 
. 

~o.i2~y~ 
- Cu

1(y)] 
. Cu(x)

Entry 23: Corresponds to Keeney ’s quasi—separable form as charac-

terxzed by Definition 1.3 of chapter 1.

Entry 24: The decomposition of Entry 24 is obta ined using Theorem

1. 3 of Chapter 1. The entry conta ins more assumptions

than is necessary to generate the decomposition form .

This implies that  the assumpt ions  j o i n t l y  con ta in  dupli-

cate information about the preference structure .

Entries 25—27: See explanation for Entry 24.

En t r i e s  2 8—33: See explanat ion for En t ry  24 .

Entries 34—36: The decomposition form of Entry 34 is obtained as fol-

lows :

(1,1,0) ~ u(.) = Cu1(z) + a[cu2
z — Cu

1
(z)] . Cu(x ,y)
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By Lemma 4.5 of Chapter ‘1 , we have :

Cu(x ,y) = ~ Cu(x) * Cu(y) *

Hence , we have :

u(•) = Cu
1
(z) ; cz[Cu2

(z) - Cu
1
(z)] . [cu~ x * Cu(y)] *

Entries 37—42: The decomposition form of Entry 37 is obtained as fol-

lows . From Entry 9, we have:

((0,l ,0),(l ,0,1) ) ~ u(.) = ~ Cu (y) * Cu(x ,z) * € f < , +)  (3.5)

We also have :

(1,0,0) -~ u(.) = ~~1
(y,z) + a[~~2 y,z )  — ~~ 1

(y , z)] . ~~ (x)

(3.6)

Cu(x ,z) = Cu
1
(z) + a[Cu2

(z) — Cu
1(z)] 

Cu(x)

Substituting Eq. (3.6) in Eq. (3.5), we get :

u ( . )  = ;(0u1
(z + a[c~u2

z) — Cu
1(z)] 

. Cu(x)) * Cu(y) €

Entries 43—45: The UI sets for these entries correspond to what we call

d ichotomous cha ins , to be defined in Chapter 4. For an

explanat ion of the der ived form , see the proof of Theo-

rem 4.4.

Entr ies  46—4 8: The decomposition of Entry 46 is obtained us ing  Theorem

1.3 of chapter 1. The remarks made for Entry 24 appl y

here also .

Entries 49-51: See explanation for Entry 24.
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Entries 52—57 : See explana t ion  for En t ry  24 .

Entries 5~ —6O : See explanation for Entry 24.

Entries 61—63 : See explanat ion  for Entry 24.

En try 64: See explana tion for En try 24.

We observe from the construction of Table 3.1 that , even though the

number of different UI sets is large , the number of different decompo~~i-

tion forms is relatively small. This observation is strongly demonstrated

for spaces with a larger number of attributes . There are two instances

where di f fe rent UI sets corres pond to the same decompos it ional forms:

(1) The two UI sets are the same up to a reordering of the attributes ,

and (2) For a given ordering of the attributes , two unequal U I sets may

contain the same information (i.e., information of the UI type) about the

regularity of the preference structure . An example of the first instance

is Entries 2 and 3 of Table 3.1 ; an example of the second instance is

Entr ies  24 and 25. The second instance which invokes a sort of equiva-

lence rela tion between di f ferent  sets of UI assumpt ion s is a source of

flexibility to the analyst  when modeling preferences . For a given util-

ity  decompos it ion , the analyst has more than one choice of UI sets guar-

anteeing the decomposition ; he can choose the UI set most natura l to the

problem environment at hand . The second instance is treated in detail

for n -a t t r ibu tes  in the next chapter .

There are two more remarks particular to Table 3.1. Some entries of

the table (e.g., Entry 60) correspond to more than one possible decompo-

sition form . In such a case , the most genera l (or leas t restr ict ive)

form is chosen . F ina l ly ,  the decomposition forms of Entr ies  11 through

22 and Entries 34 through 45 are not explici t ly treated in the litera-

ture .
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3.2 Classifying Preferences on n—Attributes

If we are to construct a list similar to Table 3.1 for five attrib-

ute spaces , we would have to generate 2
30 

entries (see Eq. (3.1)). Thi~

number is extremely large and gets to be enormous for even a moderate

number of attributes . The question we enterta in in this section is: of

the huge number of possible UI sets , how many correspond to a distinct

decomposition form? Another word ing of this question is: how many

‘distinct ’ preference structures are there on n—attribute spaces? To

have a well-posed question , we have to define care fully what we mean by

‘di-tinct

Definition 3 .1. Let A
1 

and A
2 

be two sets of UI assumpt ions that are

satisfied in two preference structures on R
n
. The two structure s

are said to be distinct if the collection of generic conditiona l

utilities of A
1 

and A
2 are not the same up to any permutation

transformation of the attributes or , once they are the same , at

least one conditiona l utility has different UI order for the two

structures .

The definition distinguishes between preferences on the basis of

r egu la r i t i e s  defined by UI assumptions only. The distinction is based

on the two fundamental properties of a decomposition resulting from a UI

set . The d e f i n i t i o n  does not d i f f e r e n t i a t e  between two preferences t h a t

are defined by two UI sets ‘~~ich are the same up to a reordering of the

attributes since , in this case , the two UI sets produce the same collec-

tion of generic conditiona l utilities and the same collection of UI or-

der . ~he definition also clearly does not differentiate between t~~o
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preferences defined by two UI sets that are unequal but contain the same

regularity in formation . Thus , the definition eliminates the t~~ tvp~-~

o ’ equivalence o f  UI sets pointed out for Table 3.1.

Definition 3 .1 i s  used to propose a three—stage classificati on scheme

for preferences on n—attributes. We use the scheme to list all distin ct

preference structures on two— , three- , and four—attribute spaces .

The Classificat ion Scheme

Stage 1

To distinguish among structures by only looking at their collections

of generic conditional utilities . Let A be the set of satisfied UI as—

suinptions , for a given preference , with the corresponding Cu
1
, . . . , Cu~~.

Let d . be the d imensionalitv of the domain of Cu ., i = 1 ,... ,k. Let
1 1

us call the numbers [d
l~~

. . .
~
d
k
] the D—collection . The term “collection

i~ ‘ised to indicate that the indexing of the d 1
’s is immaterial. Fr~ m

the first part of Definitio.i 3 .1 , two preference structures are distinc t

if their D—collectlons are not identical. Note that:

d
1 

+ ... + d
k 

= n , 1 < d
i 
< n V i = 1 , ... , k (3.7)

where n is the number of a t t r i b u t e s .  Let p(n) be the number of D-

collections that correspond to distinct preference structures on an n-

a t t r i b u t e  space . p ( n )  corresponds to a c l a s s i ca l  problem in combina-

torics under the topic of unordered partitions. From Hall [151 , p (n)

has the follow ing genera ti ng funct ion :

P ( x )  = r (~ — , x is a rea l v a r i a b l e  (3. 8)

57



Hall [151 also tabulates different values of p (n).

Stage 2

To distinguish among structures by considering the coflectionc of

11—ord er corresponding to a given collection of generic conditional

utilities , Cu , . .., Cu . Let 0. be the UI order of Cu ., i =1 ,... ,k.1 k 1 1

The numbers [Oj,...,Ok
I are called the 0—collection . Here again , the

indexing of the o
f

’s is immaterial. For two preferences , w i t h  k

generic Cus , to be d i s t i n c t , it is sufficient that their 0—collec-

tions are not identical. Theorem 2. 1 give s cc’nstraints on all possible

0—collections . Let 0 = Log
2 

0 . . By Theor er ,  2 .4 ,

0 < k — 1 ; 0~ ~l , ..., k - 1) , i = 1, ..., K (3.9)

Let r(k) be the number of all possible 0’—collections that correspond

to d i s t i n c t  preferences , where k is the number of generic c o n d i t i o n a l

u t i l i t i e s  of the preferences . By comparing Eq .  (3 .7) and Eq. (3.9), we

can write:

k—1

r(k) = 1 + p ( i )  k = 2 , ..., n
i =1

where n is the number of attributes .

Stage 3

Corresponds to a matching  proce~ c between Stages 1 and 2 above . Two

preferences  hav ing  the same D— c o l l e c t l o n  and 0’ — c o l l e c t i o n  may s t i l l  be

d i s t i n c t .  As an example , le t  th~ number of a t t r i b u t e s  be 3. Let the
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D— c o l l e c t i o n  be [1 , 2 1 , i . e . ,  one 1—d imensiona l conditiona l utility and

one 2—d imensiona l are involved . Let the 0’—collection be [1 ,21. There

are two poss ib le  d i s t i n c t  p re fe rences :  ( 1)  the 1 — d i m e n s i o n a l  c o n d i t i o n a l

u t i l i ty  is UI 1, and ( 2 )  the 1—dimens iona l c o n d i t i o n a l u t i l i t y  is U I 2 .

The number ~if m a t c h i n g s  corresponding to d i s t i n c t  preferences  depend s

on the p a r t i c u l a r i t y  of both collections . This problem is abstractly

s i m i l a r  to the problem of finding all the combinatorial possibilities of

m a t c h i n g  p a r t i a l ly  d i s t i n g u i s h a b l e  colored balls to part Ially distin-

guishable colored boxes. In genera l , only explicit enumeration is pos-

sible .

Enumerating All Distinct Preferences on Two, Three, and Four Attribute ’

In conformance with the classification scheme , Tables 3.2 , 3.3 , and

3.4 list all distinct preference structures on two— , three , and four—a t-

tribute spaces , respectively. The last column of each table contain~ the

assessment effort required to construct the utility surface corresponding

to each structure . The following notation is used .

i Cu~ means the assessment of i number of j—dimensiona l

conditional utility is required

The following remarks pertain to Tables 3.2 , 3.3 , and 3 .4.

(1) A similar table is constructed for a five—attribute space .

We will just report that this space han 47 distinct pref-

erence structures . The number of distinct preferences

should be contrasted with the number of all possible UI

sets as obtained by the fo rmula :

2 12 21
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Table 3.2

ALL DISTI NCT PREFERENCE STRUCT URES O~ TWO ATTRIBUTES

Item D—Collections 0’—Collection s Possible Match1ng~ 
Required

Assessment

1 12] [11 1(2:1)1 1 Cu2

2 11 ,1] 12 ,1) [(l;2),(1;l)] 3 Cu
1

3 11 ,11 1(1;1),(1 ;1)1 2 Cu
1

Tab le  3 . 3

ALL DISTINCT PREFERENCE STRUCTURES ON THREE ATTRIBUTES

Item D—Collec t ions  0’ — Col lec t ions  Possible Matching  Required
Assessment

1 13] (1] 1(3 ;1)] 1 Cu3

2 12 ,1] [2 , 11 [(2 ; 2) , (1 ;1) 1 2 Cu 2
, 1 Cu’

3 [2,11 [(2 ;l),(l ;2)] 1 Cu
2
, 2 Cu

1

-1 11 ,11 1(2;l),(1;l)1 1 Cu
1
, 1 Cu

1

5 11 , 1, 11 14 , 1 , 11 1(1 , - l ) , ( 1 ; l ) , ( 1 ; l ) ]  6Cu
1

12 ,2 ,1] [(1 ;2) ,(1 2), (1 ;1) 1 5 Cu~

7 12 ,1 ,11 [(l;2),(l;1) ,(1;l)1 4C u
1

8 [1 ,1,1] [( l ;1),(l ;l),(1;1)1 3Cu
1
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Table 3.4

ALL DISTINCT PREFERENCE STRUCTURES ON FOUR ATTRIBUTES

Item D—~~~l l ec tion s  0 —Col l ec t ions  Poss ib le  Ma tch ing  Requi red
Assessmen t

1 [4] [1] [(4 ; 1 )]  1 Cu4

2 [3 , 11 [2 , 11 [(3 ; 2) , (1 ; 1) 1  2 Cu3
, 1 Cu 1

3 [2 , 1) [(3 ; 1) , (1 ; 2 ) 1  1 Cu
3

, 2 Cu
1

4 [1 , 11 [(3 1) , (l 1)]  1 Cu 3
, 1 Cu 1

5 12 ,21 12 , 1] [ (2  2) , (2 ; 1 )]  3 Cu
2

6 [1, 11 [( 2 ; 1 ) , (2 ; 1 )]  2 Cu 2

7 [2 , 1 , 1] 14 , 1, 11 f(2;4),(1 ;1),(1;l)] 4 Cu
2
, 2 Cu

1

8 [4 , 1,1] [( 2 ;1) , ( 1 ;4 ) , (1 1) 1 1 Cu2
, 5 Cu 1

9 [2 ,2,11 [(2 ;2),(1;2),(1; 1)] 2 Cu
2
, 3 Cu

1

10 12 ,2,1] [(2 ;1) , (1 ;2) , (1 ;2) 1 1 Cu 2
, 4 Cu 1

11 12 ,1,11 1(2 ;2),(l;1), (l ;1)J 2 Cu
2
, 2 Cu

1

12 [2 ,1 ,1] [(2 ;1) ,(1 ;2) , (1 ;l ) ]  1 Cu
2

, 3 Cu
1

13 [1 ,1 ,11 U(2;1) ,( l ; 1) ,(1 ;1)] 1 Cu
2
, 2 (~~

l

1-1 11 ,1 ,1 ,11 [8,1,1 ,11 [(1 ; 8) , (1 ; 1) , (1 :1), (1 ;1)] 11 Cu
1

15 14 ,2 ,1, 11 [( 1 ;4)  , (1 ; 2)  , (1 ;1) , (1 ;1) 1 8 Cu 1

16 [2 , 2 ,2 , 11 [(1 2) , (1 ; 2) , (1 ;2)  , (1 ;1)] 7 Cu
1

17 14 , 1, 1, 11 1(1 ; 4 ) , (1 ; l) , ( l ; 1) , ( 1 ; l ) 1  7 C u 1

18 12 ,2 , 1, 11 [(l ; 2 ) , (1 ; 2) , ( l ; 1) , ( 1 : l) ]  6 C u 1

19 [2 , 1,1, 11 [(l ;2 ) , (1 ;1) ,(1 ;1) ,( 1 ; l ) ]  5 C u
1

20 [1 ,1,1 ,11 [( l ; l ) ,(l ;1) ,( l ; 1) ,( l ; 1)]  4 Cu 1

6]



(2) The whole classification layout is modulo the concept of

utility independence . Other decompositiona l concepts may

be used as well.

(3)  Two perhaps curious entries of Table 3.4 are Items 16 and

17 where , even though the two structures are distinct ,

the required assessment  ef f o r t  i.~ the same .

(4 )  W i th  respect to Table 3.4 , the three celebrated models in

the literature : the additive utility model , the quasi—

separable , and the multiplicative-add itive , all correspond

to the las t  en t ry  of the t a b l e .

The scheme may be used to genera te such list’ for higher dimensiona l

u t i l i ty  su r faces  as w e l l .
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• Chapter 4

UI IMPLIcATIONS

In this chapter , we will consider sets of UI assumptions which au-

t o m a t i c a l l y  imply  the satisfaction of some new ones. This topic is of

practica l importance to the analyst since it shows him how to minimize

his work and eliminate some , perhaps :,onobvious , duplication of effort .

As a preview to the chapter , Section 4.1 characterizes the set of

all possible implications for a given set of U I assumptions . Section

4.2 demonstrates three basic instances of UI implications , one of which

is discovered and reported by Keeney [23].  Section 4.3 proposes a can-

onical form for sets of UI assumptions that is usefu l for , among other

things , recognizing UI implications . Since the three sources of UI im—

plicat i ns are intimately related to the multiplicative—additive utility

model , Section 4 t akes  a close look a t  this model and cons t ruc ts  sets of

UI assumptions for it where the number of assumptions involved is minimal.

Before we start , we propose a classification of pa irs of U I  assump-

tions that is useful and convenient for theoretical arguments .

Let a and b , a ~ b be two UI assumptions.

[a ,b ]  ~ class 1 if: a A b  ~ 0 and a A b  ~ 0 and a A b  ~ 0

and

[a ,bl € class 2 if: a A b  ~ 0 and a A b  or a A b  is zero

and

fa ,b] C class 3 if: a A b  = 0 and a b

Fin a l l y ,

[a ,b I  C class 4 if :  a b
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The classification is clearly mutually exclusive and collectively exhaus-

tive , and is unique for any reordering of the attributes .

4.1 The Set of All Possible UI Im p l i c a t i o n s

Let A be a set of satisfied UI assumptions for a given preference

structure .

DefinitIon 4.1. Let b be a U I  a s sumpt ion . A implies b if A and

A ’ = A ~b ) conta in the same assumptions about the induced pre f-

erence ordering of the structure .

We will restrict the set of possibilities of UI implications for a

given A. If b is implied by A , then from the d e f i n i t i o n  A and A

will have the same decomposition. Equivalently, b can not contain new

information about the preferences not already included in A. Hence , b

should , roughly speaking , be compatible with the partition boundaries of

the decomposition of A. The following theorem is a careful statement

of this observation .

Theorem 4.1. Let A = (a
i

: i = l ,...,k) be a set of satisfied assump-

tions . Let A imply b , b ~ A. Then ,

b = A ... A 
1~ k~ 

~ V A ... A

where

C fa
1, 1) , 

i = 1, . . . , k .1 1 , . .,, f

1 < ~ <

and V denotes Boolean addi t ion .
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Before proving the theorem , let us state its assert ion in words.

Let the partition of the attribute space (with respect to A) be

,X
1
. Then the theorem says that b correspond s to a UI assumption

where the union of some of the subspaces is utility independent of i t s

complement .

Pr of.

By contradiction . Assume that the assertion is not true . The only

other possibility is for b to cut across the partition boundaries. As

such , b can be used to further decompose at least one of the subspace~~.

Henc e , b reflects new Information about the induced preference order-

ings not already contained in A. This contradicts the definitIon of UI

i m p l i c a t i o n .
Q.E.D.

The following example is an application of Theorem 4.1.

Example .1.1.

Let A = ( (1,1,1 ,l , 1,0,0,O),(0,0,1 ,1 , 1,1,1,1)). The set of all

possible UI implications is the following :

(1 ,1 ,o ,o , 0,h ,(1 ,O) , (0 ,O ,1,l , 1 ,0,0,0) ,(0,O ,0,0, 0,1,1 ,1),

(1,1,1 ,1 , l ,O ,0,0),(1 ,1,0,0, 0,1,l ,l),(0,0,1 ,1 , 1,1 ,1 ,1)1

S ince the number of a l l  UI assumpt ions in R8 is 2
8 _ 2 , we are

able to eliminate all but the above six assumptions from consideration .

Bar Diagrams

A , in Example 4.1 above , may also be denoted schematically by the

so—called ‘bar diagram ’ representation as follows :
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I x
1 

x
2 

X
3 

X
4 

X
5 

I X
6 

X
7 

X
8 

I

I I I I

I I I I

I I I I
a :
1 I I I I

— . 
I I I I

I I

I I I

Where the ~‘ariables underlined by each horizontal line are t I of their

complement ; the dotted vertical lines indicate the boundaries of the

partition of the attribute space . As we will see in the next section ,

bar diagrams are ver convenient for representing sets of UI assumptions .

4.2 Different Sources of Implicati ons

In this section , we will introduce three sources of UI implications ,

the first two of which are basic patterns that can be discerned in arbi-

trary sets of U I  assumptions . The third source is due to a joint occur-

rence of the first two ones .

4.2.1 Implications Due to Overlapping chains

This source of impl i ca t ions  was discovered and reported by

Keeney [23]. The definitions and theorems of this subsection are , with

some modi f i ca t ions , in Keeney [231.

Definition 4.2. Let A be a set of sa t i s f ied  UI assumptions . Let B =

fb
i

: i = 1 , . . . ,r , r > 1)  be a nonempty subset of A .  B is ca ’l ed

an overlapping chain if there exis ts  an order ing on the b
1

’s such

tha t  for every ~~~ j  = 2,...,r there exists at least one I , I =

1, . . . , r such that

1b~~.b~~l C Class 1

66



Definition 4.3. Let C = (c = (g A ... A br
) : (b

1 A . . .  ~~, ~~) ~ 0 and

(b
1 

A . . .  A b )  
~ ~~l 

A ... A “r~ 
and 

~ 
-h

1 ,t j ,  i =

c C C is cal led an over lapping chain  element .

Theorem 4 . 2  (K e e n e y ) .  Let C = cc . : I = 1 , .  . . , i l  be a s d e f i n ed above .

Then , ever y

V c~ I C (1,2 , . . . , p )
i~~I

is a II rssumptIon implied by B.

The theorem says that the Boolean sum of any subset of the

chain elements Is a satisfied UI assumption on the preference structure

corresponding to B. The reader should verify that these UI implications

do conform with the assertions of Theorem 4.1.

Example 4.2.

Let A =  ~(1 ,1 ,O ,0),(0,1,1 ,1), (O ,0,0,1)). Let B =  ((1,1 ,0,O),(O,

1,1, 1 )) .  B is c lea r ly  an over lapping chain . Also ,

C = ((1,o ,o ,o),(o,1 ,o ,O),(o,O ,1,1))

Now , by Theorem 4.2, eac h element in the set:

((1 ,0,0 ,0) , (0,1,0,0) , (0 ,0 ,1, 1) , (1 ,1 ,0,0) , (1 .0 ,1 ,l)  , (0,1 ,1 ,1) 1

is a UI implication of B. This set also happens to be the set of all

possible UI impl ications of B as characterized by Theorem 4.1.

The next theorem relates overlapping cha ins to the multiplic-

ative—additive , denoted M—A , ut ility model. (See Theorem 1.3 of thapter 1.)
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Theorem 1.3 (Keeney). Let B be as in Definition 1.2 above . Then , we

have either

+ K Cu (b1
V . . .Vb )] = + K C u(b i )] where K ~ 0 ( - 1 . 1 )

or , if K = 0, we have

Cu (b
1 
V . . .  V b )  =

It  is the symmetry of Eq .  (4 .1)  t ha t  causes a l l  the implica-

t ions  of Theorem 1.2 .

1. 2 .2 I m p l i c a t i o n s  Via Dichotomous Chains

Let A be a set of s a t i s f i e d  U I a s sumpt ions .

D e f i n i t i o n  4.4. Let B = ~b1
: I = 1, . . .. !) be a nonempty subset of A .

B is called a dichotomous cha in  if there ex i s t s  an ordering on the

b
i 

such th at , f or ever y ~~~ 2 
< j  < f , there  ex is t s  a un ique  r ,

1< r < /  such t h a t :

(1) b A b  = 0
j r

(2) (b V b ) C B  or (b V b ) = l
t

j r j r

Definition 4.5. Let C C B be the set of all c such that c A b = 0

or c A b  = c , V b C B .  ccC is called a dichotomous chain element .

is the vector of a l l  ones .
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Example 4.3.

Let B =  ((1 ,1,1,1, 1 ,l ,0,0),(1 ,1 ,O ,0, O ,0,0,O),(0,0,l ,1 , 1 ,1 ,0,0),

(0,0,0,1 , l ,l ,O ,0),(O ,O ,1,O , 0,0,0,0)). choose b
1 = 

(1 ,1 ,1 ,’~, 1 ,1 ,0,1)).

B Is a dichotomous chain . By a bar diagram , B is denoted as follows :

I X
1 

x2 I X
3 

I X
4 

X
5 

X
6 

X
7 

X
8 

I

I I I I I
I I I I I

b I I I I

l~ i I I I I

b __________ 
I I I I

2 • I I I I

b I I I I
3 I I I I I

b 
I I I I

4~ t i u i

b I I _________________ I I
5 I I I I I

I I I I I

The following theorem is the analogue of Theorem 4.3.

Theorem 4 . -I . Let B = fb i
: i = 1, . . . , !) be a dichotomous chain . Order

t he b i ’s such that b ,...,b
1
, 1 < r < 2 , are the elements of the

chain. Then ,

V ... V b
1

) = (
~~
f11

(b
1
) x . . .  x f i, th

~~

where

= Cu(b~ ) or = 1 V i ,i

and the a1 ’s are rea l constants .

Let us call  this model the generalized quasi—sepa rable model.
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Before proving this theorem , let us prove the same assertion

f r  the t o s i m p l e - I  cases  of a d i c h o to m o u s  c h a i n .

LA ra’ 4.5. Let B = fb ,b2 ,b3
) be such that b

2
A b

3 
= 0 and b 2~ ’b 3 =

b 1. Then , e i t h e r

C u ( b 1
) = Cu(b

2
) + Cu (b

3
)

or

+ K cu(h
1)] 

= [1 + K Cu(b
2)] 

. [i + K Cu (b
3)] 

for  K ~ 0

Proof.

B is , f rom the d e f i n i t io n , a d i cho tomous  c h a i n . W i t h o u t  a ny  loss

of generality , let the l’ s In b2 
correspond to vector x , the 1’~

in b
3 

correspond to vector v , and the l’ s In correspond t

vector z. So ,

b1 a x and y UI of z

b 2 x UI of y and z

b3 y UI of x and z

Assume u(x
1

,y
1
,z

1
) = 0. By definition , we have :

b 2 ~~~u (x ,y , z )  = C u ( x
1 , y , z)  + 2[Cu (x2~

v~ z) 
- Cu (x

1 ,v ,z)] C u ( x , v 1 , z 1
)

(4.2)

b3 ~ u ( x ,y , z )  = Cu (x ,y 1 ,z) + ~~[C u(x ,y 2~ z )  - Cu(x ,y1,z)] Cu(x1
,y,z

1
)

( 4 . 3 )

where ~ ~ 1/Cu(x21y1 ,z1
) ;  ~ — 1/Cu(x 11y 2 , z 1

) .  From Eq.  (4 . 2 ) ,

Cu(x,y,z1
) — Cu (x 1,y , z1

) + l[Cu(x2~ Y , z1) — Cu (x
1
,y,z1)] 

Cu(x ,y1 ,
z
1
)

( 4 . 1 )
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But , from Eq. (-1 .3)

Cu (x
2,y,

z
1
) = a2 + — a2 ) Cu(x1 ,y ,z1

) ( 4 . 5 )

where ~c, 
= Cu(x

2
,y 1 ,z1

) = h/~~; :~ = Cu (x
2
,y
2 ,

z
1
). Substitutin g Eq.

(1.5) back in to  Eq. (4.4 ) ,  we g e t :

Cu(x,y, z
1
) = Cu (x

1
,y,z

1
) + 

~
[-

~2 + - 

~~2 
- 1)  C u ( X

1
, Y , Z

1 )]

Let — ~~z, —1) = k. If k = 0 , we get the additive model.

Other. ise , we can write :

1 k Cu(x ,y, ?1
) = [i + k C u ( x 1 ~v , z 1)] . + K Cu(x ,v1

Q . E  .D .

The second s imple  case of a dichotomous cha in  correspond t o

Theorem 1.-I of Chapter 1. We restate it here for fast reference .

Lem ::: 4.6. Let B = (b
1
,b9) where b

1 
= b

2
. Then , either

u(b
1 

V b
2
) = Cu (b

1
) + Cu(b

2
)

or

+ Ku (b1 b~ )] = El + K Cu(b1)] [. + K C u(b 2 )] for  K ~ 0

I roof of Theorem 1 .1.

Let the number of subspaces that are dichotomized by pairs of UI

assumptions be p. The proof is by induction on p. For p = 1, t he

dichotomous chain corresponds to either Lemma 4.5 or Lemma -1 .6; hence ,

the asse r t ion  of the theorem is satisfied . Assume that the assertion

is sa t isf lr ’d  for p — I .  That  is , we can wr i t e :
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Cu(b V ... V b ) = a.f . (b ) ~ ... x f . (b ) (4.6)
1 i i i  1 i . £

For some j € (l,2, . . . , P), let the pair of UI assumptions b .1 and

d icho tomize  the subspace corresponding to b . . We tnus  can wr i t e :

Cu( b .) = Cu (b . ) + Cu(b . ) + K C u ( b . ) Cu(b ., ) (4.7)
j 2 j l 32

where K is any real constant. (Note : Eq. (4.7) is an equiva lent

statement of the assertion of Lemma 1.5.)

Substituting Eq. (4.7) back in Eq. (4.6), it is clear that the rep-

resentation form will be preserved .
Q.E.D.

The assertion of Theorem 4.4 is too general to indicate ex-

plicitly possible UI implications of a dichotomous chain . In fact , a

different kind of preference information about the structure is required

before any UI implications are discerned . The following example demon-

strates this point .

Example 4.4.

Let B =  ((1,1 ,1 ,1 l ,l ,0,0),(1,i,O ,0 0 ,O ,O ,0),(0,O ,l ,l , 1 ,1 ,0,0),

(0,0,1 ,0 , O ,O ,0,0), (O ,O ,0,l , 1 ,1,0,0)). choose b 1 
= (1 , 1, 1, 1, 1, 1 , 0 , 0 ) .

B is a dichotomous chain

c =  ((1,1 ,0,0, O ,O ,0,0) ,(O ,0,1 ,O , 0,0,0,o) ,(O ,0,O ,1 , 1 ,1 ,0,0)1

By a bar diagram , B is denoted as follows :

72



~1 x2 
1 x3 x4 x 5 x6 x7 x8

y3

Using (b
1,
b
2,b

3 ), 
we can write:

~~~(y 1,y 2 ,y 3
) = Cu(y

1
) + Cu(y2,y3) + K1 cu(y1

) . cu(y
2

,y
3
) (4 .8)

where K
1 

is any real constant . Also , using (b
3,b4 ,b5), we have :

= ~~~ y2
) + Cu(y

3
) + K 2 Cu( y2) . Cu(y1) (4.9)

wtiere K
2 

is any rea l constant .

We will consider three cases :

Case 1: K
1
r K

2
= 0.

As such , we can write :

Cu(y 1,y 2 ,y 3
) = Cu(y

1
) + Cu(y

2
) + Cu (y

3
) (4.10)

Case 2: K
1 = K 2~~~ O .

We have :

+ K1 Cu(y 1 .y 2
,y
3)] = [i + K 1 Cu(y

1)] 
• [1 + K 1 Cu(y

2 .y 3 )]
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and

+ K 2 Cu(v ,y )] = [i + K 2 ~~i (y 2 )] . [i + K 2 Cu(y3)]

= [1 ÷ K 1 Cu(y 2,y3)]

Hence ,

El + K 1 Cu (y 1,y 2 , y 3 )] = [1 + K1 Cu(y
1)] 

. + K 1 Cu (y
2)]

= [1 + K1 
Cu(y 3)] (4 .11)

These two cases correspond to the H—A model. By a scrutiny of the

UI definition , we can easily discern the following implications :

((1,1 ,1 ,0, 0,0,0,0) ,(l,l ,0,1 , 1 ,1 ,0,0) ,(O ,0,l ,1, 1,1 ,0,0),

(1,1,1 ,1 , l ,1 ,O ,O),(1,l ,0,o , 0,0,0,0) ,(O ,O ,l ,0, 0,0,0,0),

(0,0,0,1 , 1 ,1 ,0,0))

Case 3: K
1 ~ 

K
2
.

As such , we can wri te :

~ i(y
1 ,y 2 ,y

3
) = Cu(y

1
) + Cu (y

2
) + Cu(y

3
) + K 2 O.i(y 2

) Cu (y 3
)

+ K 1 Cu(y
1

) Cu (y
2
) + K

1 
Cu (y

1
) cu(y

3
)

+ K 1K 2 Cu( y
1

) Cu(y
2

) Cu (y
3
) (4.12)

For this case , there are no UI implication . Note that Eqs . (4.10),

(4.11), and (4.12) all conform with the assertion of Theorem 4 . 4 .  The

values of K 1 and K 2 may be determined by a procedure conta ined in

Keeney [21].
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4 . 2 . 3  I m p l i ca t i o n s  Via Mixed Chains

Here , we consider sets composed of overlapping and dichoto-

mous chains , jointly. Since there are many combinatorial possibilities

of such coexistence , we will use a series of examples to demonstrate

different basic patterns . For each example , a bar diagram representa-

tion is used to denote the UI assumptions . The verification of each

example shou ld be apparent from Theorems 4.3 and 4.4.

Example 4.5.

I I I I I I
x ... ... ... x

I 1 I I I I fl I

I I I I I I

I T I I I I
a :1 I I I I I I

I I I I I I
a :
2 I I I I I I

I I I I I I
a :
3 i I I I I I

I I I I I I
a :
4 I I I I I I

I I I I I I

I ~l I I y3 I ~
‘5 I

Using (a1,a2
), we have either :

+ K 1 cu(y1 ,y
2

,y
3 )] = [i + K 1 cu(y 1)] . [1 + K 1 

cu (y 2 )j . 
[1 4K1 

cu(y
3)]

where K
1 ~ 

0. Or , if K
1 = 0 , we have :

~~i (y 1,y 2 ,y 3
) = ~~1(y

1
) + Cu(y2

) + Cu(y
3
)

Also , using ((a
1

V a
2
),a3,a4

), we have :

~~~ y1 1y2
,y
3

,y
4
) — ~~1(y 1,y 2 ,y 3

) + cu(y 4 ) + K 2 Cu(y
1,y 2 ,y 3

) . CU (y )
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Let us consider the following three cases :

Case 1: K
1 = K 2

= O .

As such , we can write :

= Cu(y
1
) + Cu(y

2
) + Cu(y

3
) + cu(y

4
)

Case 2: K
1 = K 2 ~ 0.

As such , we have :

~ K 2 Cu(y1.y2 ,y3,y4)] [
~ 

+ K~ Cu(~4)j 
. 

[
1 + K2 Cu(y ,Y ,y )]

= [1 + K
2 
Cu(y )] . [1 + K

1 
C u (y

1 ) ]

[i + K1 ~
‘
~~ 2~] 

. [i + K 1 Cu(y 3)]

For these two cases , the UI implications are : any subset of (y
1
,

v ,y , y l  is UI.

Case 3: K
1 ~ 

K
2
.

Here , by a scrut iny of the evolv ing fu nct ional for m , the only  UI

implications are those associated with the overlapping chain (a
1 ,a2

).

Example 4.6.

I I I I I Ix ... ... ,.. ... x
I 1 I I I I fl I

I I I I I

I I I I I Ia :
1 I I I I I I

I I I I I Ia :
2 I I I I I I

I I I I I Ia :3 I I I I I I

I I I Ia :4 I I I I I I

I I I I I I

I ~
‘l I I 

)‘3 I I 
}‘5 ~

76



Using (a
1 ,a2), 

we have either :

[1 + K
1 ~~

(y
1,y2,y3,y4

’)] = + K 1 Cu(y
1)] 

. + K
1 

Cu(y
2)]

[i + K
1 

Cu (y 3,y4)]

where K
1 ~ 

0. Or , if K
1 = 0, we have :

0.~~y1,y2,y3 ,y4
) = 

~~~~~~ 
+ Cu(y

2
) + Cu(y

3
,y
4
)

Using ((a
2
A~~1

),a3,a4
1 , we have :

Cu (y3,y4
) = Cu(y

3
) + Cu(y

1 ) + K2 
Cu(y

3
) .

K is any real constant .

Let us consider the following three cases :

Case 1: K
1 = K 2

= O .

As such , we can write:

(~~~y1
,y 2,y3,y4) = 0.1(y1) + Cu(y

2
) + Cu(y

3
) + Cu (y

4
)

Case 2: K1 = K 2~~~~0.

As such , we can wr ite :

[1 + K
1 

C U ( Y 1. Y2 , Y3, Y 4 )] = [1 + K 1 C u Y 1 ’] [1 + K1 Cu(y ,)]

[i + K
1 

Cu (y
3)] 

. [i •s. K 1 
Cu( y ) ]

For these two cases , the UI impl ica t ions  are : any subset of (y
1

,y
2
,y
3

,

y4 ) is UI.
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p
Case 3: K

1 ~ 
K2.

For this case , the only UI implications arc those associated with

the overlapping chain (a
1,

a
2

).

Example 4.7.

I I I I I I

I X
1 I I I I X

n I

I I I I I I

I I I I I I
a 1: I I I I I I

I I I I I I
a 2 . 

I I I I I I

I I I I I I
a 3 I I I I I I

I I I I I I
a
4
. 

I I I I I I

I I I I I I
a
5
. 

I I I I I I

I I I I I I

I I ~“2 I I 
~
‘4 I I

Using fa4,a5
), we have either :

+ K
1 

Cu (y
1,y 2 ,y3 )] = [i +x 1 Cu(y )] 

. .
~~~~ Cu( y ) ]  . 

[1 ÷~ Cu(y
3)]

where K
1 ~ 

0. Or , if K
1 = 0 , we have :

Cu(y
1,y 2 ,y3

) = cu (y 1) + Cu (y
2
) + Cu(y

3
)

Using fa 1 ,
a
2
,a3 ), 

we have :

Cu (y 1,y 2 ,y 3 , y 4
) = Cu(y 1,y 2 ,y 3

) + Cu(y
4
) + K2 Cu(y ,y

21y3
) . 0.i(y4 )

Let us consider the fol lowing three cases :
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Case 1: K
1 = K 2

=O .

As such , we can wr ite :

~~~ y1
,y
2

,y
3

,y
4
) = ~~~(y 1) + 0.i(y2

) + Cu(y
3
) + Cu(y

4
)

Case 2: 1(
1 = K 2 ~~

0.

As such , we can wr ite :

+ K1 Cu (y
1

,y
2

,y3,y4)] = [i + K
1 

Cu (y
1)] 

‘ [i + K1 Cu(y
2)]

+ K
1 

Cu(y 3)j . [1 + K
1 

Cu(y
4)]

For these two cases , the UI implications are : any subset of (y1,y 2 ,y 3,

is UI.

Case 3: K1 ~ K2 .

Here , by a scrutiny of the evolving functiona l form , the only UI

implications are those associated with the overlapping chain (a4 , a5).

Example 4.8.

I X I . ..  I . . .  I . . .  I ... x I
1 n

I I I I I I

I I I I I I

a
1
: I -I I I I I

I I I I I I

02
: I I I I I

I I I I I I

a :  I I I I I
I I I I I I

a~~ I I I— -‘ I I

I I I I I I

I y1 
l y I y

3 y I I
I I I I I I
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In th is  example ,

(1) (a
1,

a
2
) and (a

1 ,a2,a3 ) 
and (a

1,a2,a4
) are over-

lapping chains .

(2) f(a
1
va 2

),a3,a4) and ((a
1
Aa

2
),(a2

A a
3
),(a1

A a
4
))

are dichotomous chains .

(3) fa1, a2,a3,
a
4
) is also an overlapping chain and it

subsumes all the chains above . Thus, the set of U I

implications is the one associated with this chain ,

as characterized by Theorem 4.2.

4.3 A Canonical Form for Sets of UI Assumptions

Here , we propose a canonica l form that is useful for , among other

things , recognizing the kind of UI implications treated in the prev ious

section . The form is introduced by an algorithm t’iat constructs it for

any arbitrary set of UI assumptions . The ma in idea of the form is to

aggregate UI assumptions with respect to the space location of the reg-

ularity that they define .

The Al gor ith m

PART 1. Step 1: Let a
i € A be such that , if (a

1~ a~~) € Class 2 , then

A a~ = 0 for a n y  a~ € A .

Step 2: Let A ( l )  be the union of a l l  overlapping chains  in A

tha t  contain  a~~.

Step 3: Let a~ € A\A(1) and assume it satisfies the cond i-

tions of Step 1 above . Construct A(2) as in Step 2

above .
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I-
Step 4: Let a3 

€ A\A (1) U A(2) and assume it satisfies the

conditions of Step 2 above . Construct A(3) as in

Step 2 above . By repeating this process , we construct

A(1),...,A(j
1
). The process stops when there does not

ex ist a
1 
€ A\A (1) U ... U A(j1) which satisfies the

condition of Step 1.

Step 5: Construct A* (i), 1 < j < j~~~, as follows : a~~~ A*(i)

if a E A \ A(l )U...UA(j ) and a A a  = a  for
r 1 r d r

some a
d 

C A(i) . Now , the A(i)’s and A* (i)’s are

a collection of mutually exclusive and collectivel y

exhaustive subsets of A.

PART 2: For each A*(i) ~ .~, i = 1,...,j1, construct A (i;1),...,A ( i ;

and A*(i;1) , . . . , A~~(i;j2
) by replacing A by A*(i) in

PART 1 above .

PART 3: For each A *( i
1
;i2
) ~ ~~, 1 < i

1 
< j

1 
and 1 < 

~2 ~ 
12~ 

con-

struct A ( i
1;i

2
; l) ,...,A ( 1

1
;i
2
;j
3
) and A*(i

1
;i
2 ;l),...,A* (i

1 :

12;j3
). This process is continued until all the A*(.) are

empty. The canonical form is the collection of all the A(.)’s.

The following example demonstrates the algorithm .

Example 4 . 9 .

Let A = (a
1: i = l ,...,10), where the a ’s are :

a
1
=(0,O ,0,O , O ,O ,O ,0, O ,O ,l ,l)

a
2 = (0,1,1,1, 1 ,0,1,1, 1 ,1 ,0,0)

a 3 = (0 ,0 ,1,0 , 0 ,1,0 ,0 , 0 ,1,0 ,0)

a
4 = (1,0,0,0, 0,0,0,0, 0,0,0,0)

a
5 — (0,1,0,1 , 1 ,0,1,0, 0,0,0,0)

a
6 

(0 ,1,0 ,1, 0 ,0 ,0 ,1, 1,0 ,0 ,0)
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a
7
= (O,l ,O ,0, 0,0,0,0, 0,0,0,0)

a8 = (0,0,0,1 , 0,0,0,0, 0,0,0,0)

a9 = (0,0,0,0, 0,0,0,0, 0,0,0,1)

a
10 = (0,0,1,0, 0,0,0,0, 0,0,0,0)

Applying the algorithm , we get :

A ( 1)  = (a
1) ; A ’(l)  = (a 9 )

A (2) = [a
4
) ; A*(2) =

A ( 3 )  = (a
2
,a
3
) ; A *( 3) = (a

5
,a
6
,a10 ,a ,~ ,a 8

)

A(l ;l) = (a9) ; A*(1 ;1) = 0

A(3 ;1) = (a 5, a6) ; A *(3;1) = (a 7 ,a 8 )

A (3 ;2) = (a10) ; A *(3;2) = 0

A(3 ;1 ;l) = (a 7 ) ; A *(3 ;1;1)

A(3 ;1 ;2) = (a 8 ) ; A *(3;1 ;2) =

Figure 4.1 contains a schematic representation of the canonical form for

this example .

The following comments pertain to the canonical form :

(1) Each A(.) contains UI assumptions corresponding to a

particular subspace of the attribute space . A *() con-

tains UI assumptions that decompose this subspace further .

When A * ( . )  is empty,  th is  implies that the subspace cor-

responding to A ( s )  can not be decomposed any fur ther .

(2)  The boundaries of the attribute space partition , corre-

spond ing to A , are compa t ible with the partition of the

attributes corresponding to the A (’)’s whose A *t.)~ s

are empty.
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77
7
V
7
V

\
\
\
\
\
\
\

A(TL) A (3) A(2)
(ar ) 

(a 2 ,a 3 ) (a)

A(1 ;l) A(3 :l) A(3 ;2)
(a9
) 

~~~~~~~~~~~~~~~~ 
(a
~~~
)

A ( 3 ; l ;l) A ( 3 ;l ;2)
(a7) 

(as)

Fig . 4.1. A SCHEMATIC REPRESENTATION OF THE CANONIC AL
FORM OF EXA MPLE 4 .9 .

(3) All UI implications due to overlapping chains are dis-

cerned by scrutinizing all the A (.)’s of A.

(4) To recognize possible UI implications due to a dichot-

omy ,  more than one A(S) has to be considered at a

time . Many patterns are possible ; the ma in guideline

is to look for the occurrence of pairs of A(.)’s

whi ch are singleton and have the same source , i.e.,

the same
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4.4 The Multiplicative—Additive Model

Of the different decompositiona l utility models , the multiplicative—

additive model is the one most used in reported applications . We have

seen in Section 4.2 that there are many distinct sets of UI assumptions

that produce an M—A model. In this section , we construct sets with the

least number of UI assumptions that produce the M—A model :

u (x  , .. ., x ) = Cu (x ) * ... * Cu(x ) *
1 n 1

where n is arbitrary. We will denote such sets by A
n
.

Construction of A~

Step 1: If n is even , segment the attributes into t w o  halves cor-

responding to the two sets S(1) and S( 2 ) .  If a is odd ,

segment the attributes such that Card US(l)J = Card fS(2))

+ 1, where ‘Card ’ stands for the cardinality of the set .

Step 2: By iia~ xc t ive  cons t ruc t ion , assume we have S( i
1
;i2

;... ; i ) ,

i
1
,.. .,i

,~ 
C (1 ,2). If Card [S(i1

;. .. ;i .) ]  is even , seg-

ment its attributes into two halves corresponding to

and S(i
~~
;... ;i ;2). If Card

is odd , segment the attributes such that Card [S(i
1
;...

i~~; 1)]  = 1 + Card [S(i
~~

;.. . ;i .;2)1.

Step 3: This construction is carried on until every SC .) is a

singleton . Assume these last sets are indexed by S( i 1:

. .. ; i  ) .
r—].

Step 4: For every j, 1 < j < r—2 , let a~ denote that the at-

tr ibutes in

S( i
1; . . . ;

.. . 
~~~~~~~~ 

(1 ,2 )
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are UI of their complement .

Step 5: This process is ended in one of two ways :

Ci ) If Card fS(2 2, ; .. .  2 ,)1 = 1, then a
1 2 r — 2  r— l

denotes that the attributes in

S(i
1
;. .. ;i

r i
) ‘j S( 2~ ;22

;. 
~
2
r—2~1r—l =

are UI of their complement , and we stop .

(ii) If Card rS(2 ;2~ ;.  . .  ;2 )I = 2 , then a
1 2 1—2 

— 
r— l

is def ined ~ s in Step 4, and a a
r r-l

Thus , A
n 

will have r or r—1 UI assumptions , depend-

ing on n.

Ler~ - :~~ 4.7. Let A~ = [a . : i = 1,...,k) be as constructed above . Then ,

k < j’ , where I is the smallest integer such that 2~ > n.

Proof.

First , assume n = 2m
, m some integer . Then , ~ = m +1 because

each step of the segmentation process which constructs S (S) redu~ t s

by 1, and the process of constructing the a
1
s end s with the ca~.e

where Card [S(2 ;... ;2 )1 = 2.
1 m-l

If n — 2
m

1 for some integer m , then k m h c ~ ~~ - , -

case , the process of construct ing the a t ’s end s by t h .  “l t ’ T  0

ity of step s . To see th is , just add a du~~r v  v ar la Ple t . ~

and construct the S(.)’s such that S(2
1 

-

variable. At step 5, the dumm y ii leleted .
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Now, for any n , there exists a unique integer £ such that 2 2 >

n > 221 . If n = a1— l , then Card (An) = 2 by the argument above .

If a < 22 _ i , then , clearly, Card (Ar) < 2.
Q.E.D.

Theorem 4.8. (1) A~ produces the M—A model , and (ii) of all the other

sets producing the same model , A~ has the smallest cardinality.

Proof.

For the first assertion , A
n 

is , by construction , an overlapping

chain. Thus, we know by Theorem 4.2 that we will get some M-A model.

All we need to show is that each of the conditional utilities is one di-

mensional. Assume otherwise , i.e., there exists 1 and j such that

x~ and x~ belong to the same Cu(.) in the M-A model. Let us assume ,

without any loss of generality, that x~ and x~ belong to Cu(a1A ...

A a A a A ... A a ) , where 0 < r < k. This means that x and x
r r+1 k — — I j

belong to the same set for every set used in constructing a1,... ,ar 
and

also belong to the same set of every set not used in constructing a 1,

,ak
. But this is impossible since, sooner or later , any subset of

the attributes with more than one element will be decomposed via the

construction process of S(.)’s.

For the second assertion , assume there exists a set with cardinal—

dity d , where n > 2 . By Theorem 2.5 (see previous text), the set

{cu(ç ... a~J). ~~ 
€ (a11 1

) , i 1, ...,

contains all the conditional utilities of the decomposition and this set

d d
has cardinality 2 . Hence , 2 > n——a contradiction .

Q.E.D.
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$
Example 4.10.

Let us construct A
15. From Theorems 4.7 and 4.8, Card (A’~) = 4.

Applying the algorithm , we construct the following four assumptions :

a1 = (1,1,1,1,1, 1,1,1,0,0, 0,0,0,0,0)

a2 = (1,1,1,1,0, 0,0,0,1,1, 1,1,0,0,0)

a
3 = (1,1,0,0,1, 1,0,0,1,1, 0,0,1,1,0)

a4 = (1,0,1,0,1, 0,1,0,1,0, 1,0,1,0,1)

In a bar diagram representation , these assumptions are :

~x1 1 x2 ,
x
3 

x~ x5 
x

6 , X
7 

x8 1 x
9 1 x101 x

11 1 x
12 1 x

13 1 x
14 1 x

15 ,
I I I I I I I I I I I I I I I I
I I I I I I I I I I I I I I I I

a1
: , , , —

‘ ,
I I I I I I I I I I I I I I I I

a
2

: . i I u i
I I I I I I I I I I I I I I I I

a
3

: I , I I u i I I ‘ ‘ I I
I I I I I I I I I I I I I I I I

a4 I • • r—i r i  r 1  r 1  r i
I I I I I I I I I I I I I I I I

It should be clear that A
n 

are not unique , not even up to a per-

mutation transformation of the attributes . If the M-A model to be gen-

erated is one where some of the indecomposable spaces are of higher

dimensions, the same construction process is carried on by treating the

vectors of each subspace as a scalar and n , of A’s, will correspond

to the number of indecomposable subspaces involved .

Finally, the same type of process can be used to construct minimal

sets of other decompositional concepts such as preference independence,

in which case the generated model is the deterministic additive utility

model .
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Conclud ing Remarks

In this chapter , we considered how UI assumptions span each other .

Since no apparent geometry is involved , the term implications is used

instead of spanning . In the first section , we characterized the set of

all possible UI implications for a given arbitrary set of UI assumptions .

In Section 2, three sources of UI implications are introduced , and their

relations to the multiplicative—additive utility model are demonstrated .

Section 3 proposes a canonical form for sets of UI assumptions via which

the three sources of UI implications are made transparent . Finally, due

to the central role played by the multiplicative—additive model , Section

4 constructs sets with the least number of UI assumptions for generating

an arbitrary M-A model .
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4
chapter 5

UT ILITY ASSESSMENT OVER INDECOMPOSABLE SPACES

In the prev ious chapters , we have shown how to generate a utility

surface , of a given d imension , from surfaces of lower dimensions via a

modeling effort of the preference structure involved . The reason given

for justifying such an effort is that it is alwa ys easier to construct

utilities of lower dimensions . This standpoint is neither novel nor new .

In fact , it is possible to categorize almost all proposed methodologies

for constructing n—d imensional utilities into two types : one where some

smoothness conditions on the surface is required , hence , limiting the

utility to be a member of a classica l family of surfaces , and the other

is where some regularity conditions are assumed on cuts of the surface ,

hence , invoking decomposition . The only technology currently available

for constructing a Von Neumann ut i l i ty  without l imiting its functional

form is when it is one—d imensional (see Pratt et al [32]).

The purpose of this chapter is to propose a framework for construct-

ing utility surfaces that can not be decomposed via any of the known

decompositlona l concepts . In other words , the preference structure is

assumed to be so intertwined and intricate that a joint treatment of the

attributes is required . The framework doe s not require any spec i f ic

global smoothness conditions on the surface , and the limitation of the

functional form of the constructed utility is rather minimal.

Section 5.1 introduces the so-celled “strategy of continuous cuts”

which is essentially a discretization process that collects continuous

samples of information about the utility surface. Section 5.2 contains

a general treatment of classica l interpolation techniques which can be
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used to construct the whole utility surface by filling the “gaps” left

out by the discretization process. Also contained , is a discussion of

the salient features for any interpolation rule used on utilities . Sec-

tion 5.3 proposes a behaviorally motivated rule of interpolation via the

use of a new concept that we call “risk aversion profile .”

5.1 The Strategy of Continuous Cuts

Within the framework of the previous chapters , let us assume that

the set of UI assumptions , for a particular preference structure , does

not fully decompose the attribute space . The challenge that faces the

analyst now is how to construct the utility surface over indecomposable

subspaces of higher dimensions . One possible solution is to attempt to

model these utilities via other regularity concepts such as Fishburn ’s

“Diagonal Independence” (Fishburn fill) or Fnrquhar’s “Rypercube Inde-

pendence” (Farquhar [6]). Another possibility is to ascertain the plaus-

ibility of assuming that the utility is a member of a family of curves .

As such , the utility surface is constructed by estimating a finite num-

ber of parameters.

An alternate way of approaching the problem is to start by con-

structing the underlying (deterministic) value function (i.e., the in-

difference curves for the preferences). The Von Neumann utility is then

attained by invoking uncertainty on a properly chosen numeraire . This

technique is called the decomposition procedure (see Boyd (2]). To con-

atruct the value function, modeling , again , is required . The basis of

modeling in this case is the same as that for the utility itself , i.e.,

either (deterministic) separability of some sort is introduced for the

attributes (e.g., see Debreu (51) , or some smoothness conditions limiting
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the shape of the indifference curves are assumed , see Keelin [18]. once

the value function is constructed , the Von Neumann utility is attained

via the decomposition procedure , mentioned above, with not much diffi-

culty.

When All Else Fails

The question now is——what if both the utility and its corresponding

value function are not amenable to any simplifying assumptions? For this

case, we propose the strategy of continuous cuts . This strategy calls

for the assessment of the utility surface along continuous one—d imen-

sional cuts . Each cut corresponds to a properly chosen numeraire . The

numeraires are chosen in such a way that they spread over the entire

domain of definition that is meaningful to the problem at hand . The

utility surface between numeraires is approximated via some , hopefully,

behaviorally motivated rules of interpolation . To propose a collection

of numeraires , one attribute is chosen to be a variable , while all the

others act as parameters. Thus, each numeraire corresponds to different

discretized values of the parameters.

As an example , let the indecomposable subspace be XxYX Z. We may

discratize Y and Z into y1,.. •‘
~k 

and ~~~~~~~~~ respectively.

Then we assess the utility over the numeraires

(x
~Fi~

z
j
) for every i — 1, ..., k

i — i , . . .,  £

The collection ((y
i
,z
3
)) are chosen to cover the part of the do-

m ain that is most pertinent and meaningful to the decision at hand . The

utility over •ach numeraire is directly assessed via one of the differ-

ent standard techniques (see Pratt •t al (32)).
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Each numeraire utility can initially have any reference zero and

any scale (i.e., its two degrees of freedom may be arbitrarily chosen).

Yet , before the assessment is over , they have to be calibrated . The pro-

cedure for calibration is easy enough . One numeraire utility is chosen

as a reference . Two points on each of the other numeraire utilities are

compared with points on the reference utility. In this way, the two de-

grees of freedom of each of the other numera ire utilities are made com-

patible with those of the reference numeraire utility.

With an appropriate rule of interpolation , we will construct the

whole utility surface .

Applying the Strategy

When applying this strategy , there are two important points to con-

sider : (1) How to outline a domain of definition for the utility that

is most meaningful to the decision maker? And , (2) How fine should the

discretization of the parameters be? The degree of fineness increases

the assessment effort exponentially, but also decreases the error due

to interpolation .

The assessment can be meaningful if all the deterministic and

probabilistic structural dependence among the attributes are taken into

account. These dependencies , which vary with different applications ,

act as constraining agents on the dom.in of the utility. Note that the

structural dependencies of the attributes are different from the prefer-

ence dependencies ; the latter acts on the utility surface itself while

the former acts on its domain.

The question of minima l assessment may be answered by a joint con-

sideration of the error bounds due to interpolation along with other
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sources of computational error . Different forms of sensitivity analysis

can be used to resolve this issue. We propose the following types :

(1) Preassessment Sensitivity: This is done by constructing

some sort of a graph that indicates what part of the do-

main of the utility surface is most frequently used in

the calculations of the problem . The discretization pro-

cess may then be designed to take full advantage of this

information . This procedure will hopefully reduce the

overall interpolation error .

(2) Dynamic Sensitivity: This type of sensit ivity analysis

is to be conducted “on line” during the assessment pro-

cedure . The idea is to attempt to sense any steep or

irregular regions of the utility surface . One way to do

this is to ask the decision maker some preference ques-

tions and then compare his answers with those obtained

by the interpolation rule . Once a steep region of the
surface is discerned , the discretization process is mod-

ified to accommodate i t .  This kind of sensitivity is

particularly hopeful if the assessment is conducted via

an interactive computer code.

(3) Post—mortem Sensitivity: This is conducted after the

utility surface is built. If the optimization rule of

the decision setting of the problem is sensitive to val-

ues taken from the constructed utility surface , then

further assessment (on a finer discretiaation of the

parameters) may be conducted to improve the accuracy of

the utility surface .

5.2 Interpolation

For the purpose of this section , we will assume that the domain of

definition of the utility ii the whole product set corresponding to
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X
1 
x ... x X~ , where the ranges of the X

i
’s are finite real intervals .

According to the strategy of continuous cuts , all but one of the attrib-

utes are discretized into a finite number of values . Let us call such

variables the parameter attributes . Also , the single variable that is

not discretized is called the numeraire attribute . It is , by convention ,

chosen to be x1
.

Now , the set

D = {(~11~~21~ . . .,  x
ki ): 

,c
11 € X1

; x~~ € (discretized

values of for every j = 2, . . . ,  k

is the only part of the domain that is of known u t i l i ty . The u t i l i t y

over the complement set (with respect to the doma in ) is to be interpo-

lated . Let x0 € I). Consider the k-i dimensional hyperplane in the

attribute space that is orthogona l to the space and passes through

the point x0. (It should be clear that we are treating the domain here

as a subset of the k-dimensional euclidean space.) Consider the lattice

that is formed by the intersection of such a h yperplane with the numer-

aire cuts . The k — i  tuple (x2 0 , . . . ,xko ) is surrounded by the points

of such lattice whose u t i l i ty  values are known . If we just consider the

part of the lattice that immediately surround s (x 2 0 , . . . , xko
) , then al-

most any point in the product set (except possibly points on the boundary

of the lattice) is cornered into a (smallest) hyperrectangle whose ver-

tices are of known utilities . Figure 5.1 displays this setup for the

case of three attributes .

We will investigate the classical approach of fitting a family of

curves through the utilities of the lattice points and interpolating the
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Y

of YxZ

I (x ,y ,z ) I

I I (x ,y2,z2
) I 

/ /
(x ,y 1 ,x~

)

Yi~~~~~~~~~~~ 

_
Z
1 

z

Fig . 5.1. THE CONT INUOUS CUTS STRATEGY . Note that most points of the
domain are contained in rectangles whc~ e vertices are of known utili-
ties .

points in between or extrapolating for the points on the boundaries of

the lattice . For the sake of clarity, we will treat the case of two at-

tributes . The extension to k—attributes is straightforward . Let the

attribute space be X X Y. Discretize Y into y1, y2, and y3. Thus,

the numeraire utilities are u(x,y 1), u(x ,y2), and u(x,y
3
). Assume we

want the utility at (x0,y0). If y0 € (y 1
,y2,y3 ) , u(x0,y0

) is a known

value corresponding to a point on one of the nurnera ire utilities .
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Otherwise , (x0,y0
) can be approximated by fitting a curve through the

(lattice) points u(x0,y1
), u(x0,y2

), and u(x0,y3
). See Fig . 5.2.

Note that the curve we fit corresponds to a conditiona l utility on Y.

Let us demonstrate , by an example , some of the implications of this ap-

proach .

Y

(x0 , y3
)

y3 x The domain of u(x ,y3
) 

~ 
(x0,y()

y2 
— x The domain of u(x ,y2

)
(x,y2

)

y1 The domain of u(x,y1
)

I (x ,y1
)

— __________________________

xo

Fig . 5.2. EXAMPLE 5.1.

Example 5.1.

Let us fit a quadratic curve through the points u(x0,y1
), u(x0,y2

)

and u (x0 , y3
). We get

u(x0,y) — cz1(g) + cz2(g) y + a~(g) y
2

where

g — g[u(x0,y1),u(x0,y 2),uCx0,y3)]
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with sufficient mai~ipulation , u (x01y) 
can also be written as

u(x
0
,y) = f

1
(y) u(x

0,y1
) + f

2
(y ) u (x

01y2
) + f3

(y) u(x0,y3
) (5.1)

where f
1
(~~), f2

(.), f3
(.) are real valued functions . Since x0 

is

arb itrar y ,  we can write Eq. (5.1) as

u (x ,y) = f
1

(y )  u (x ,y
1
) + f2

(y ) u (x ,y 9) + f3(y) u(x ,y3
) (5.2)

So , even though we started with .~ procedure for point—wise interpo-

lat ion , Eq. (5.2) reflects a sort of function—wise interpo J~~m .i~ r that is

similar to ones induced by decompositiona l axioms . To see this more viv-

idly, note that , from Eq. ( 5 . 2 ) , three functions on X and on V are

requ ired to (l inearly) spa n a ll other cond it ional ut ilit ies and hence

construct u ( S ) .  This is particularly reminiscent of some of the hyper—

cube independence of Farquhar [61 , except that here the forms of the

functions on V are explicit .

If the exponential fami ly  is used instead of the quadrat ic  f a m i l y ,

the functional form for u(S) is:

u(x,y) = ~1
(g) + ~2

(g) ExP [_~3
(~~) . y] (5.3)

where

g = g[u (x,y1
),u(x ,Y2

1 ,u(x ,Y3)]

In this case , the function—wise spanning is more subtle and nonlin-

ear.

Thus, if we are to propose an interpolation procedure , it should

produce an (approximation) surface that is not amenable to decomposition.

Otherwise , we would not have had to revert to the strategy of continuous
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cuts . One way to avoid this difficulty is not to require that the same

fam ily of curves be used everyv~’here ; thus different families may be used

for d ifferent locales .

Desirable Properties of Utility Interpolation

In the above discussion , we reflected on one feature of us ing the

classical approach for utility interpolation. Here , we will ident if y

and discuss other salient features involved .

One of the first issues to be decided upon is whether the interpo-

lating surface should be unique or a best fit , where “best ” is defined

in some mathematical sense . Uniqueness is , of course , a funct ion of the

number of parameters of the surface versus the amount of information

about the utility to be used . Strictly speaking , the numera ire utili-

ties contain an infinite amount of information about the surface . The

analyst has to decide how much to use and from where , f or a g iven locale .

The question of uniqueness versus best fit determines whether the fidel-

i ty of the data Is to be preserved or not . The theoretica l basis  for

decid ing either way depend s on the kind of assumptions the ana lys t  be-

lieves about the assessed utilities . For example , if the utility values

are only accurate within an error range , then best fit may be Justified .

Another aspect of the question is the computational effort required for

each case. In terpolation by best f i t  requires a lot more computations

than by unique surfaces .

Another salient feature of an interpolating surface is the absence

of any oscillatory behavior . This is a desirable property for a norma-

tive utility model even though , strictly speaking , Von Neumann utilities

are not required to be monotonic . This feature rules out most polynomial

and transcendental surfaces .
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Fin a l l y ,  the analyst may impose different assumptions on the approx-

imating surface that are relevant to utility theory. For instance , it may

be plaus ible to make the behavioral assumpt ion tha t the dec ision maker ’s

risk aversion is smooth and displays no abrupt changes . This assumption

is valid for many choice situations , and it corresponds to requiring that

the utility surface be twice continuously differentiable .

5.3 Risk Av’~rs ion Profile

With the comments of the previous section in mind , we will propose

a behaviora l ly  motivated rule of interpolation . The ma in  idea involved

is to construct an interpolating surface such that risk aversion along

different attributes “resembles ,” in a certain way, risk aversion along

the numeraire utilities . For the purpose of this section , we will re-

quire the Von Neumann utility to be monotonic with respect to each of

the variables . That is ,

or V i = 1 , ..., k

Behaviorally,  this means that either more of an attribute is always bet-

ter (or just as good) than less , or more of an attribute is always worse

(or just as good) than less , for every attr ibute .

We will f i rs t  introduce the concept of risk aversion profile for 1-

dimensional ut i l i t ies. Let u(x1
) be a utility over the scalar attrib-

ute x1. Assume that du(x
1
)/d(x

1
) > 0. Hence , u(x1

) may look like

the curve in Fig . 5.3. Let x
11 and x12, where x11 

< x~~, be two

points in the domain of u(.). Any point x
11 € 

[x
11 1x12) can be writ-

ten as
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u(x
1
)

u(x
12
) 

u(x
1
)

~~(.) u(x~~) +[l-~ (.)]u(x12
) 

~~~~~~~~~~~~~~~~~~

Iii 1 112
I I

I 

-_ — — — 

~~~~~~~~~~~~~~~~~~~~~~~~~ 

1,
x12
)

Fig . 5.3 . RISK AVERSION PROFILE .
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x
1~ 

= coc
a + (1 — a) x12 a ~ [0,11

Also , due to the monotonic ity assumpt ion , for every a ~ [0,1 ) and x11

and x12 , 
there exists a unique ~(cz ,x11 ,x12

) E [0,11 such that

u [coci1 
+ (1 — a) ~dl2] = ~(a,x11,x12

) u(x
11
)

+ — ~(cx ,x11~x12)] . u(x
1~
) (5.4)

See Fig. 5.3. ~~( . )  is clearly a linear transformation of u(.) on the

interval [x
11,

x12). Also , ~~( . )  is the same for every positive linear

transformation of u(.), and hence is well—defined .

Definition 5.1. For a fixed x
11

,x
12 € X1

, where x
11 

< x
12

, ~(cx ,x
11

,
x12

) is the risk aversion profile of u(.) on the interva l

x
12

1.

5.3.1 thcalized Separability

Risk aversion profiles will be used to implement a type of

separability condition . Let x0 = (x lO,...,xko
) be a point in X1

x...

x )L~ . We want to construct u (x0
). Within the framework of the contin-

uous cuts strategy, x0 is contained in a (smallest) hyperrectangle

whose vertices are of known utilities . Let x1 — (xll,...,xkl
) and

x2 — (x12,...,xk2
) define the hyperrectangle containing x0, 

where

x
~1 

< x~0 < x12 V i — 2, . . . ,  k

and

xli — xlO — xl2
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$
x0 correspond s to some convex combination of the vertices of the hyper—

rectang le tx1 ;x21 . Also , due to the monotonicity assumpt ion , u(x
0
)

corresponds to some convex combination of the utility values of the ver-

t ices of the hyperrectangle . So , what we need is a k-dimensional ana-

logue of Eq. (5.4).

Define a2 , .. . , o~ such that

= a~x11 + (1 — a1) x12 V I = 2, ... , k

The a
1
’s are well-defined and unique . Assume that for each i , i = 2,

.,k, we have f3
~
(a
~
,x
~1,

x12
) .  We can construct ~ (x 0

) , the approxi-

mation of u(x0) recursively, in the following manner :

~ (xlOP x2O)x3j~~
x
kj) 

= 
~~~~ ~~~~~~~~~~ . . .,  X~~~~

) 
+ —

u (xio~x22~
x3j~~ . . .,  x

kj) 
(5.5)

where 
~3’” ’~k 

€ (1 ,2). And ,

~ (xi0 t x2o~x3o~x4j~~ . .. ,  x~j )  = ~3
(~ ) ~(xi0~

x20~x3i~x4j . . . .,  x
kj)

+ [1 —

~~~~~~~~~~~~~~~~~ ... I x
k J )  

(5.6)

where 
~4 ’~~

•
~~’~ k € (1 ,2 ) ,  and so on. Finally, we get

. . .,  x.~) — 
~~~~~ 

t~(x10, ...~~ 
Xk_ i ,O~

X
k1
)

+ [1 — 
~ k

(
~~~

)] ii(x10, . . . ,  ‘
~~—1 ,o”~k2~ 

(5.7)
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The following proposition characterizes this recursive system

in three ways .

Proposition 5.1.

(1) The recursive system of Eqs . (5.5) , (5.6) , and (5 .7)  is

equivalent to the following explicit formula :

~(x0
) = 

j 2 , . . . ,~~ €(1 ,2 )  
C (~~~~~~~~~~) u (xi0~ x2j~~ . . .

~~ 
x
kj)

(5.8)
where

C(~~~~~~~ J )  = 

~~~ 
~~~~~~~~~~~~

and

C~J~~~~~~~~) 
= $~(a1~x11~x12

) if = 1

= 1 — 

~1
(a
~
,x
11

,x
12
) if j

1 
2

(2) ~ (x 0
) is independent of the ordering of the attributes

in the recursion process of Eqs . (5.5), (5.6), and (5.7).

(3) The C ( .) ’s of Eq. (5.8) correspond to a convex combi-
nation , i.e., each C

o 
is nonnegative and they sum up

to one .

Proof.

For the first assertion , the correspondence between the recursive

equations and the formula (5.8) is made apparent by starting with Eq.

(5.7) and substituting for the utilities on its right side by their

equ ivalence in the recursion . This is to be done recursively until

involves only vertex utilities . What we willhave then is Eq. (5.8).
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For the second assertion , we note that  any ordering of the attrib-

utes in the recursion process will produce the same C~~~~s in Eq.

(5.8); hence , t~(x0) is unique and well-defined . The third assertion

is demonstrated by noting that:

~~~~~~~~~~~ = 
i112 k~ 

+ (~ - ~
( .))] = •

The nonnegativity of the C( .) ’s is obvious from their definition .

Q.E .D .

Proposition 5.1 correspond s to a procedure where the inter-

polation is conducted by handling the variables separately, i.e., inter-

polating unidimensionally, edge by edge along the hypercube, until in a

finite number of steps , converging to the point of interest. The pro-

cedure assumes a certain type of localized separability of the attrib-

utes . This fact is reflected by Eq. (5.8) by noting that , for a gL vcn

locale , the ~~(.)‘s are conditional utilities along the 1th d irection .

In fact , a u t i l i ty  is represented by Eq. (5.8) if and only if , f o r i =

2 , . .  ., K , is UI .  For a proof , see Appendix 5.A. The separability,

though , is not global because the ~~(~~ ‘s are different (not the same

up to a positive linear transformation) for different locales . An im-

portant feature of the procedure is that it preserves the fidelity of the

assessed data . That is, if the point whose utility is to be interpo-

lated happened to be in the domain of the numeraire utilities , Eq. (5.8)

produces the exact assessed value.

All we need now is a meaningful proposition for the
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5.3.2 Estimating the

We will propose two behaviorally motivated methods for esti-

mating the

Method I

The mai n idea here is that , for a given interval of the overall

u t i l i t y ,  ea ch ~~~~( . )  is equa l to the average of risk aversion profiles

of surrounding numeraire utilities. An equivalent way of expressing the

idea is to say that the preference ordering along an at tr ibute is the

same as the (arithmetic) average of preference orderings of the sur-

rounding numeraire utilities when both the attribute and the surround ing

numera ires are restricted to correspond to a particular interval of the

utility. (The arithmetic average is chosen here for the sake of simplic-

ity only ; other averages may be used as well.)

Appl ying Method 1

The numera ire utilities surrounding the hyperrectangle [x1;x21 con-

taining x0 are:

u (xi.x2j~~ . . .

~~ 

‘

~~~
3k) 

where 
~~
‘
~~~~
‘ 
~k 

€ (1,2)

For a given 1, 1 2,...,k, and a given numeraire utility uL
(x
i
) =

u(x
l
,x2j ,...,xkj ), 

~2’”~~’~k 
€ (1,2), assume that there exists

such that

. . .,  ~~~~ . . . ,  

~~~~
i
k) 

— .... x
is

. . . .
~~ 

xkj
k)

(5.9)
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where m
~ € (1 ,2 )  and m 1 j~ j

1. Let 
~i

(a
~

,x
10

,x
11

) be th’~ . isk

avers ion profile correspond ing to u (x ) , on the doma in (x 
0,x1 1 ,

L i  ~
evaluated at a1. We will use the arithmetic average of all the

iL 
(that exist) as a value for ~1(a1,x

11
,x

12
) in Eqs . (5.5),

(5.6), and (5.7).

We will demonstrate the method by an example.

Example 5.2.

Let the at tr ibute space be X x V. Choose the numeraire utilities

to be ul
(x,yl

),...,uk
(x,yk

) where 
~1’”’~m 

€ V. Let us try to cal-

culate t~(x0 ,y0) via the risk aversion profile using Method I . Assume

tha t :

= + (1 — a) ‘
~.+1 

a ~ [ 0 ,1] and for some

i E ( 1 ,2 , ..., m — i )

From Fig . 5.4 , there exists x~ and x
1 1  

such that

u 1(x~ ,y1
) = u

i i
(x o ,y j i )

and

u
1~1

(x
1 1,y1 1

) = u
1
(x0,y1

)

Thu s , using Eq. (5.4) ,

u (x ,y ) — u  + (1-a) x ),y
~ (ax x ) =  ~ ~ I i~ I i

0’ 1 u
1

(x 1,y1
) — u

1
(x0,y1

)

and

~ (a 1 1 0 1 + 1  
— u1~1{(czic1 ~ 

+ (1 — a)

~~±+i 
u1 1

(x
0,y1 1

) — u
1 1

(x
1 1

,y
1 1

)
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Y

U = constant

y
i~~ 

- 

~~~~~~~~~~~~~~
x0,y

~~~~~~~~
(x
1,y 1

)

U = constant

1 I
x x x

1+1 0 1

Fig . 5.4. RISK AVERSION PROFILE- -AN EXA IIWLE .

so

( 
~,v y — ( . )  + ~ ( . ) ~~ /2y • I  1+1 [ 

~
‘j  ~“ i+i  J/

and finally

G~(x0,y0
) — •~~~~ ,Y1 ,Y 1~ 1~ 

u(x0,y 1
) + [i - :. (~~,yj,y~~1)] 

u(x0,y
1~1
)

Proposition 5.2. The interpolation via the localized separabili ty and

Method I is exact for linear utilities , i.e., utilities of the form

u(x
1
, . .. ,  x.~

) — 01
x
1 + p

i—i
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Proof.

We will f i nd i~(x0
) where x0 = (xlO,...,xkO

) € X1 
/ . . .  / Xk and

k
compare it with the exact value , ~~ ~~~~ + p. Let x1 = (x10 x20,

and x2 = (xlO ,x22,...,xk2
) where x

11 
< x12, i = 2,...,

k, correspond to the h yperrectangle containing x0 . Pick j ,  2<j< k ,

and let a be such that :

x~0 = a~x~ 1 
+ (1 — a~) Xj2 

E [0 , 11 (5.10)

Let u L
(x l

) = u (xl ,
x2L ,

~~ 
• •

~~
xkLk

) ? where L2 , . . . ,L.K € (1,2 ) ,  be one

the numeraire utilities indexed by one of the vertices of Cx1;x2
l . As-

sume that there exists x1 E X1 
such that

u
L(xlJ

1) 
= u (xlOt:2L . ...

~~ 
X
jm

j
IXj+1L

j1~ ~~~ 
X

k~~~
)

where m~ € (1,2) and m~ ~ L~ . Using Eq. (5.4), we have

u
L
(xio) 

- U L[ajxi j  + (1 - a)~~

jL(u ij
L bo) 

= /u
L
(xlO
) - u

L~\
x
lJ

c
I

X
2L +~~~ X~ 0 +Q] - 

[c )  
~i

X2L + c71[aj
xi j  + (1 ~~~~~~~~~~ “10] +]~

Oj X
2L + + - 

[22 
OIx2L + 

1 1
~ L 

+

— 
~~~~~ - 

~~

ai(xio 
-
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Since the choice of U L
(x l

) is a rb i t r a ry  (with respect to the ones

surrounding the hyperrectangle) , a l l  ~~ ( . )  tha t  exis t  w i l l  be equa l

to a~. So , their average is equa l to a1 , and hence the es t imate  for

is a
1
. Since j  is a r b i t r a r i l y  chosen , we can write

= a~ , v j = 2, . . . ,  k (5.11)

We will use Eq. (5.11) along with the system of equations (5.5)—(5.7) to

estimate the value ~(x0
).

x
k i )  

= a2u (xi0~ x
21 t x

3 j~~ . . .,  x
ki)

+ (1 — a2) ~~~~~~~~~~ . . .,  x
kj)

= a2 (~ 
c1

x~~ + c1x10 + a2x
21 +

+ (1 — a2) (1t a1x~~ + a1
x10 + c2x22 +

= (
~ ~ 

+

+ 02[a2X21 + (1 — a2) x22] + ~

But , Eq.  ( 5.10) , we get

i~~ 

ai
x
1~ + ~ix1o + a2x20 + ~

— u (xi0~
x2o~x3j i . . .,  x

kj)

~~ 
~~
‘ ~k 

€ (1,2) (5.12)
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Equation (5.12) indica tes that the first step of the recursion Is exact.

Let us ma ke the inductive assumption that the (k_ i) St step is exact ,

i . e . ,  t~
(x io , . . ., xk j o ,x

ki
) and 

~
?(x io , . . . , xk l o ,x

k2
) correspond s to

the exact values . Hence , by Eq.  (4 . 7 ) ,

“kO~ 
= aku(xlO , . . .

~~ 
xk_ l ,O ,x

kl
)

+ (1 - c~~) ~(x10, . . .
~~ 

xk ...1,0
,xk2

)

= 

~~~ 

a~x~~ + 
~1

x 10 + +

+ (1 — cxx ) (~ o1x~0 + c~1x10 + 
~k

X
k2 +

= 
~i
’
~IO 

+ + ak[cxkx
kl + (1 — cz

k
) xk2] + 

~

= u (x
10

, . . . , xko
)

Q.E.D.

Method II

This method is motivated by the observation that a risk aversion

profile over an interval of an at t r ibute (of an indecon’posable space )

changes for different  levels of the overall Ut i l i ty  and also changes as

to where the attribute interval is located with respect to the overall

range of the attribute . (For a vivid example of this observation , see

Fig . 6.5 of Chapter 6.) As such , the method estimates ~~~~(.) for at-

tribute I by a numera ire risk aversion profile corresponding to the

same utility interval and also where the numeraire interval approximately

110



4
has the same position with respect to the overall numeraire range as

that of the a t t r ibu te  interval  involved .

As an example of Method II , consider FIg . 5.5. Assume we need to

interpolate the utility of the point (x0,y0
). To implement the local-

ized separ abilit y ,  we need an estimate of B ( )  around the point (x
0,

y0
). ~~~~(~~~) is defined on the attribute interval (y3,y4

) that corre-

sponds to higher values of V . Thus , if we are to use for it a nurner—

aire risk aversion profile , it should correspond to higher values of the

numeraire attribute . We also want both the numeraire and attribute pro-

files to correspond to the same interval of the overall utility. Thus ,

V

I

~°

Y~~~~~~

\

Y2~~~~~~ J

yl 
. 

I
I u = C

-

~~~~~

_ _ _ _ _ _ _  

u = C
~

Fig. 5.5. RISK AVERS ION PROFILE--METHOD I I .
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the appropriate choice is that part of the numeraire utility u (x,y1
)

that is shaded In the f igure .

It should be clear that Methods I and II will essentially coincide

for a large part of the domain . Even though Method I is easier to apply,

Method II is an improvement over Method I for a large class of problems .

A fina l note concerning the case where the behaviora l assumptions

of both methods are not satisfied . For such problems , localized separ-

ability may still be used . What Is needed is an alternative way of

proposing conditional utilities along each of the parameter attributes.

One way to proceed Is via the idea of canonica l utilities . A canonical

utility is the ana lyst ’s concept ion of a “representative” behavior of the

decision maker ’s preferences along each attribute . Such a conception

usually evolves when the analys t develops a good grasp of the problem

and the preference structure . A canonical Utility will reflect any dis-

cerned peculiar preference behavior along an attribute . The appropriate

interva l of a canon ical ut il ity is used , after proper rescaling , a long

the corresponding edge of the hypercube surrounding the point of interest.

Concluding Remarks

We have dealt with spaces that are not amenable to decomposition .

We introduced the strategy of continuous cuts which discretize the domain

of the utility into continuous one-dimensional cuts . Utility is to be

d irectly assessed over these cuts via existing standard techniques . For

the rest of the doma in , we proposed the risk aversion profile method as

a rule of interpolation . The core of the method is a particular variety

of local decomposition. The method produces approximation utility sur-

faces where risk aversion along the different attributes resembles that

of the assessed u t i l i t y  cuts. The method is exact for linear utilities .
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Appendix 5.A

Theorem. Let the attribute space be X
1 

X ... x X~~. Let x1,x2 X1 
/

X be such that x~ 1 ~ 
x12 

for a l l  I = 1,... ,k. The util-

ity surface may be represented as

u(x
1
, “

~~
‘“k~ 

= 

~~~~~~~~~~~~~~~ ~
(i
2
,...,j

k
)
~
”2’ ...,xk

)

. . . ,  x
kj) 

(5.A.1)

where

= 
p~ 2 ~~~~~~~~~~~

and

)
(~~~) = Cu(x ) if j = 1i I

= 1 — Cu(x ) if j 2

If and only if , for I = 2 , ...,k, X~ is UI.

Proof.

Assume that Eq. (5.A.1) represents the utility surface . For i= 2 ,

• . .  ,k , the terms of Eq. (5.A.1) may be rearranged in the following man-

ner :

u(x1, 
. . . ,  xk

) ~1~
(x
1~ 

. . . ,  x1_ 1 , . . .,  xk
) Cu(x

1
)

+ g
2

1
(’c

1
, . . .,  x1 1

,x~ 41
,. .. ,x.K ) V i = 2, . . . ,  k

(5.A.2)
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But , by def in it ion , Eq. (5.A.2) implies that is UI for i=2 ,...,k.

Now , assume that , for I = 2,. ..,k , X~ is UI. We will use induc-

tion (on k) to prove the representation of Eq. (5.A.i). For k = 2,

(0,1) 
1
~~u (x

1
,x
2
) = Cu ( x

12 ,x
2

) + ~~[Cu(x11, x
2

) — Cu(x
12 , x

2 )] . Cu(x1, x~~2
)

where ~ is some real constant.

Equ ival en t ly ,

u(x
1,x2

) = [a cu(x1,x22)] 
. Cu(x

11,x2
) + [1 — a Cu(x

1
,x22 )] • cu(x1~ ,x~)

(5.A .3)

By letting Cu (x
1,
x
22
) = a Cu(x

1,
x
22
), Eq. (5.A.3) corresponds to Eq.

(5.A.l).

Assume that the assertion is true for k — i .  Let the attribute

space be X1 x ... X X.~. Treat X
1 
YX~ as a single (vector) attribute .

By the inductive assumption , we can write

u(x
2,
x
3
, . . .

~~ 
x
k
) 

j3
,...~~~ € (1,2) ~~3’

”’
~ k~~~

3 • • ~~~~ 
x
k
)

. ,  x
ki) 

(5.A.4)

where x2 corresponds to (x1,x2).

Let us decompose each Cu(x ,x , . . . ,x ) via the assumption that
1 3 J

3

ii U I :
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~~(xl
.x3i ’ . . , x

kj) 
= Co (x1.

x22~x3j~~ •. .‘  “kj~~)

+ 
~[~~

(xl’
x2l’x3i ’ . . .,  x

kj)

— 

~~(xl’x22 ’x3~~ ’ . . .,  x
ki
)]

Cu(x 12,x2 , x32, 
~ 

“k2~~

where ~ is some real constant . Equivalently,

•.., X~~~
) 

= ~ ~i(x12,x2 ,x32 , • . . ,  xk2
)

~1(x~~x~~~x . .
~~~

. , X
k j)

+ [i — • Cu(x12 ,x2,
x
32

, . . .,  xk2)]

. . .,  x
k j) 

(5.A .5)

Substituting Eq. (5.A.5) into Eq. (5.A.4) produces the required result.

Q.E.D.
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chapte r 6

AN APPLICATION : BUYING A NEW CAR

In this chapter , we will demonstrate part of the theory of prev ious

chapters by an actual application . The application involves Mr. Manna

as a decision maker (denoted DM). Mr. Manna is an internationa l student

at Stanford University. He is about to finish his graduate program of

stud y and return home . Mr. Manna , who henceforth will be refferred to

as the DM , would like to obtain a 1978 model , four-door sedan for him-

self. Since this model will only be available two months after his de-

parture , the DM has engaged a friend to choose one of the new cars and

ship it to him . The friend was a bit reluctant to accept such delega-

tion since he was not sure what would be an appropriate choice for the

DM . At this point, the author , as an analyst , steps in to help commu-

nicate the DM’s preferences of cars to the friend . The strategy is to

construct the DM’s multiattribute Von Neumann utility over the differ-

ent possible choices of cars .

6.1 The Model

We distinguish between car features which the DM insists upon as

requirements and those about which he is willing to trade of f and com-

promise . We consider the former kind of features as constraints , and

the latter as attributes . Any chosen car will have all the required

features along with different levels of the attributes . The best choice

will represent the best balance among the attributes.

For the required features , the DM wants a four-door sedan with au-

toinatic transmission , power steering , a ir—conditioning , and an AM-FM

rad io.
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For the compromising features , we identify the following attributes ,

along with their measurements and ranges .

(1) Total R~rchase Price: Denoted x1, is the overall cost

of the transaction in U. S. dollars . The DM considers

the range $4,000 - $6,000 as being appropriate for the
class of car he wants .

(2) City Mileage : Denoted x2, is the mileage per gallon

in the city ,  as reported by EPA (Environmental Protec—
tion Agency) testing .

(3) Highway Mileage : Denoted x
3, 

is the mileage per gal—

ion on the highway, as reported by EPA testing .

(4) Resale Value : Denoted x
4
, is the approximate worth of

the car a f te r  three years of usage , as a percentage of

the init ial price . x4, for a given car , is to be esti-
mated from historical data c f  similar cars . Such data

is easily available . An appropriate range for x
4 Is

3 5 t l 
— 701 .

When talk ing about the ‘cost ’ of the car , we mean the

vector (x1,x2,x3 ,x4
). Variations among cars due to

maintenance cost are minor and hence are dismissed .

(5) Motor Performance: The overall performance of the car

is influenced by many design features . To compare per-

formance , the following two attributes are considered
sufficient .

(a) Starting Acceleration : Denoted x5, is the time ,

in second s , it takes a car to accelerate on level
road from 0 - 3 0  miles per hour , as measured and

reported by Consumer Report magazine . An appro-

priate range for x
5 

is 4.5—7.0 seconds.
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(b) Passing Acceleration : Denoted x
6

, is the t ime ,

in seconds , it ta kes a car to accelerate on level
road from 45 to 60 miles per hour , as reported by

Consumer Reports. An appropriate range for x
6 is

7.0-15.0 seconds . When talking about ‘motor per-

formance ,’ we mean the d oubleton (x
5
,x
6
).

(6) The Brake System : As a measure of the brake system

performance , we define the attribute x
7, 

the distance
in feet , for level braking from 60 miles per hour to a
stop (with no wheels locked ), as measured and reported

by Consumer Reports. An appropriate range for x7 Is

170 — 220 feet .

(7) Mainta inabili ty: Here , the DM is concerned about the
availability of maintenance and spare parts in his home

country. It is decided to measure maintainability ac-

cording to the popularity at home of the make of car.

Thus, we define the pervasiveness of a make of car , x8,
as the percentage of the imports of such a ma ke with
respect to total imports . Such data may be obtained
from the Import Statist ics Year Book of the DM’s home

country. An appropriate range for x8 is 1— 10 ~~.

(8) Trunk Size: Denoted x
9
, is the volume in cubic feet

of the car trunk , as reported in the car manual .  An

appropriate range for x9 Is 10 -30 feet
3.

(9) Front Seat Size: An important feature of the front seat
is leg room , x10, as measured and reported by Consumer

Reports. It is implici t ly assumed that the interior

design Is proportioned in such a way that more leg room

coincides with a large——hence , more comfortable——seat

size. The size of the back seat is not of crucial im-

portance to the DM. An appropriate range for x10 is

39—45 inches ,
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(10) Seat Upholstery: Denoted x11
, seat uphol stery has

only three possibilities : vinyl , leather , or cloth.

The preference of upholstery concerns ease of cleaning

and reta inment of a fresh long time look . The DM’s

preference is for vinyl , then leather , and , las tly ,

cloth .

(11) Measurement Gauges : In add ition to the standard ones

such as a speedometer or an odometer , DM wou ld li ke to

have add itiona l gauges such as an ampmeter and a volt-

meter for the car ’s electr ical system , a temperature

gauge , a RPM gauge , and the like . We will let

denote the number of extra (nonstandard ) gauges in a

car. The range for x12 is (0,1,2,3,4,5).

Table 6.1 summarizes all the attributes along with their ranges .

6.2 Preference Modeling

(I) The Cost Variables: It becomes apparent that there is

a deterministic relationship relating the preferences

over the cost variables , x
1 

through x
4
. Hence , it

is dec ided to construct an economic model that will re-

late these variables. The present value model seems

appropriate enough . A Von Neumann utility over (x
1,

x2 ,x3 ,x4
) is obtai ned by invoking risk over the pres-

ent value as a numera ire via the two step decomposition

approach reported in Chapter 1.

For the present value model , the follow ing assumpt ions

are agreed upon with the DM.

(a )  The DM wil l  use his car over a three-year period

before selling it.

(b) The DM will drive , on the average , about 10,000

miles per year , 60% of which Is highway driving

and the balance is for city driving .
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Table 6.1

A LIST OF CAR ATTRIBUTES , ALONG WITH THEIR APPROPRIATE RANGES

Attr ibutes Symbol Range

~~ST:

Purchase Price x
1 

4,000 - 6,000 Dollars

City Mileage x2 
8 — 20 MPG

Highway Mileage x
3 

15 - 25 MPG

Resale Value x
4 

30 - 70’~ (Un itless)

MOTOR PERFORMANCE :

Starting x
5 

4.5 — 7.0 Seconds
Acceleration

Passing x
6 

7 — 15 Second s
Accelera t ion

BRAKES x
7 

170 — 220 Feet

MA INTAINABILITY x8 1 - l0’~ (Un it less)

TRUNK SIZE x
9 

10 - 30 Feet

FRONT SEAT SIZE x10 
38 - 45 Inches

SEAT UPHOLSTERY x1~ (Vinyl , Lea ther , Cloth )

MEASUREMENT GAUGES x12 
(0,1,2,3,4,5)

(c) A 13% discount rate is the DM’s time—value of

money. The DM will ac tua l ly  finance the car at

about that rate .

(d)  The cost of gasoline is $0.30 per gallon . With

these assumptions , the present cost , denoted PC,

of a car is:

{~
c — x1 +0.3 X * 

. ( 2 . 4 2 )  — (0.683 ) *4 
• x
1] 

(6.1)
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In Eq. (6.1), the cash flows are discounted yearly.

With thiF modal at hand , for the rest of the chapter

we will suppress the attributes x1 
through x

4 
and

deal only with the present cost , PC , as an adequate

measure of the overall cost of having a car.

(ii) Motor Performance: It is believed , from the DM’s re-

sponses to questions , that the starting and passing ac-

celerat ions , x
5 

and x
6
, are intricately linked ,

preference—wise , and thus have to be treated jointly.

In accordance with our theory, the space X
5 
x X

6 
is

indecomposable . The justification for taking this stand

may be deduced from the data collected and assorted for

the space X
5 
X X

6
.

(iii) A Multiplicative—Additive Model: We will use the fol-

lowing vector to describe fully a car:

(PC ,p,x7,
x8,x9, x10,x11,x12)

where PC stands for present value as def ined by Eq.

(6.1), p = (x5,
x
6

) stand s for motor performance , and

x
7 

through x12 are as defined in Table 6.1. From a

scrutiny of the DM responses , we suspect the plausibil-

ity of the following multiplicative—additive model:

u(PC,p,x7,x8,x9,
x
10,x11,x12

) ~ cu(PC,p,x7,x8
)

* Cu(x9
) *Co(x ) *cu(x11

) *Cu(x12
) * € (x ,+) (6.2)

To test the validity of th is model , we used the theory

of Section 4.4  to construct the set A1, a minima l set

of UI assumption :

A1 — ((1 ,1,1,l ,1,1,0,0) ,(l ,1 ,1 ,1,1,O ,1 ,0) ,(1,1,1 ,1,O ,0,0,l) )
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The sa t i s fac t ion  of the assu mpt ions in A
1 

will guarantee

the representation of Eq. (6.2).

(iv ) A Quasi—Separable Submodel: In addi t ion to the assump-

tions of A
1, 

the following set also seems worthy of

testing and verification :

A2 
= ((1,0,0,0,0,0,0,0), (0,1 ,0,0,0,0,0,0) ,

(0,O ,l ,O ,0,0,0,0),(0,O ,o ,1,0,O ,O ,O))

If the assumpt ions of A
2 

are sat is f ied , then Cu (PC ,

p,x7,
x
8
) of Eq. (6.2) is modeled using Keeney ’s [20 ]

quasi—separable model . This means that Cu(PC ,p,x7,
x
8
)

is analytically derived from conditiona l utilities over

PC , p, x7, and x8, separately.

Let A = A
1UA 2

. If the assumptions in A are verified ,
then , except for the attribute P, all required utility

assessments are over scalar attributes .

Figure 6.1 sketches the total preference modeling effort for the

problem .

Ver i f ica t ion of UI Assumptions

For verifying the UI assumptions, two techniques are used . The first

technique corresponds to confronting the DM with a two—branch lottery

whereb y he will get either a favorable package w ith probab ility a or

an unfavorable package with probability (1-a). He is to compare such

a lottery with choosing a particular package , for certa in . All three

packages Involve different levels of the active attributes (the attrib-

utes corresponding to the l’s in a UI assumption). The parameter at-

tributes are completely suppressed unless the DM has asked about them .
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Cost i Performance

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I ~~~~~~~~~~~~~~~~~~~~~~ I I I I I I I
x1,x2,x3 ,x4 x5,x6 , x7 ~C

9 
X
10 

x11 x12
I I I I I I I I

I I I I I I I I
Economic Indecom—

Model l posable I I  P I P  P P

Quasi—Separable

Multiplicative—Additive
Model

Fig . 6.1. PREFERENCE MODELING .

He is told only that their level is the same for all three packages . The

three packages are varied throughout the active attributes ’ space. Fig-

ure 6.2 demonstrates this procedure . It is felt that , should the DM re-

quest to know the actual level of the parameter attributes , th is would

indicate the failure of the UI assumption . This technique indicates to

us that the two types of acceleration are indecomposable .
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PC
$4,000, 

_______
)

a

PC
($3 ,000, 

_ _ _ _ _ _
) <~~~>

(1—a)
PC

$2,500, 
_______

)

Fig. 6.2. VERIFYING THE UI ASSUMPT ION (1,0,0,0,0,0,0,0).

The other procedure is suggested by Keeney [21]. It involves the

same three packages as above , but with the parameter levels specified .

The UI assumpt ion is satisfied if different parameter levels do not

influence the DM ’s preferences throughout the space of active attrib-

utes . Both techniques are used to verify the UI assumptions in A.

6.3 The Assessment of Utilities

Before d iscussing the assessment effort for the different submod-

els , we introduce two special car packages: the superior car and the

inferior car. The superior car , denoted (B,B ,B ,B ,B,B ,B ,B), corre-

sponds to the car where each attribute is at its best level (B stands

for best). The inferior car , denoted (w ,w ,w ,w ,w ,w ,w ,w) , corresponds

to the car where each attribute Is at its worst level (w stands for

worst). The levels best and worst are determined by the range of at-

tributes in Table 6.1. To fix the two degrees of freedom of the 12-

d imensional utility surface , we will assume :

u(superior) — 1 ; u(inferIor) — 0 (6.3)
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All assessed utilities and constants eventually will be referenced and

scaled using Eq. (6.3).

Required Assessments

(i) The Multiplic~ t1ve—Ad diti~ e Model: Using Theorem 1.3

of Chapter 1 , we need to assess four one -dimensiona l

ut il it ies over x9, x10, x11 , and x 12, and one 5—

d imensiona l utility over PC ~ perf ormance X X X8.

The latter utility will be derived analytically from

utilities of lower dimensions using the quasi—separa-

ble model below . Also needed are five scaling con-

stants which reflect the relative merit of each of

the attributes in the M-A model. They correspond to

C3 
through C

7 
in Table 6.2.

(ii) The Quasi—Separable Model: This model is defined over

the space PC X performance X X
7 

X X
8
. The model is

d iagrammatically depicted as a utility tree in Fig .

6.3. The required assessments are : three One-dimen-

sional uti l it ies for PC , X7, 
and X8, and one 2—

d imensiona l utility over performance . Also required

is the as sessment of 2~ constants corresponding to the

utility values of the vertices of the hypercube defined

by (B ,B ,B ,B ,w ,w ,w ,w) and (w,w ,w ,w ,w ,w ,w ,w). These

constants are listed as C2, C3, and C
8 

through C
21

in Table 6.2.

( iii ) The Performance Space : Us ing the cont inuous cuts

strategy of chapter 5, the s tar t ing accelerat ion ,

is discretized into three levels: worst , average , and

bes t .  The utility over passing acceleration , X
6, is

assessed at these three levels ,where allother attrib—

utes a re at a fixed , unspecif ied level. Thus , for this

space , th ree one—d imensional u t i l i t i es  are required ,
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along with four constants (see Table 6.3) to calibrate

the three cuts .

In summat ion , the overall assessment effort requires ten one—dimen-

siona l utilities and twenty—five constants.

Asses sing the Utilities

All the ten one—d imensiona l utilities are assessed using standard

techniques (see Pratt et al [321) on a zero to one scale , i.e., the best

level of the act ive a t t r ibute correspon d s to a va lu~ of one , and the

worst level corresponds to a value of zero . Figures 6.4 through 6.11

contain these utilities . During the assessment , the par ameters of each

utility are set at an average value chosen by the DM. This makes the

assessment effort easy and fast for the DM. For each utility, about 6

to 8 points are assessed . Check lotteries are also used to verify the

(relative) reproducibility of the assessed utility points. A French

curve is used to connect the points.

Assessing the Constants

The first two constants of Table 6.2 are arbitrarily chosen by Eq.

(6.3) to fix the two degrees of freedom of the 12-dimensional utility

surface. Each of the other constants is estimated by comparing its

corresponding car to a lottery involving two cars with known utilities.

For exa mple , C3 
Is estima ted by compa r ing choos ing the car (B ,B ,B ,B ,

w ,w,w ,w) to the lottery :

~~~~~ AB ,B,B ,B ,B ,B ,B ,B) a Super ior car

~~~~~~~~~~~~~~~~~~~~~~~~~ E Inferior Car
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1.0

0.9 -

0.8 -

0.7 -

0.6 -

u
A
(PC ) 0.5 -

0.4 -

0.3

0.2

0.1 -

0.0 I I I

1 ,500 2 ,000 2 ,500 3,000 3,500 4 ,000 4,500 5,000

Present Cost (in U. S. Dollars)

Fig . 6.4. THE ASSESSED UTILITY OVER PRESENT (X)ST. (The sub-
script A In u

A
(•) stands for assessed.)
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= 5.75

1.0 

~~~~~~~~~~~~~~~~~~~~~
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,xS
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=7.0
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0.8 -

0.7 -

0.6 -

u
A

(x
6
) 0.5 -

0.4 -

0.3 -

0.2 -

0.1 -

0.0 1 I I I I I I

7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0

x6

Fig . 6.5. THE ASSESSMENT ON THE THREE NUMERA IRES IN THE PERFORMANCE
SPACE.
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1.0 ____

0.9 -

0.8

0.7 -

0.6 -

u
A

(x
7
) 0.5 -

0.4 -

0.3 -

0.2 —

0.1 —

0.0 I I I I

170 180 190 200 210 220

x7 , in Fact

Fig . 6.6.  THE ASSESSMENT OF UTILITY OVER x7 (BRA KES ) .
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0.8 -

0.7 -

0.6 -

uA
(x 8

) 0.5 -

0.4 -

0.3 -

0.2 -

0.1

0.0 I I I I I I I

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

x8; Maintainability, Unitless

Fig. 6.7. THE ASSESSMENT OF UTILITY OVER x8 (MA INTAINABILITY ).
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1 .0

0.9 -

0.8 -

0.7 -

0.6 -

u
A
(x
9
) 0.5 -

0.4 -
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0.2 -
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0.0 I I I I I
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3

Fig. 6.8. THE ASSESSMENT OF UTILITY OVER TRUNK SIZE.
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Fig . 6.9. THE ASSESSMENT OF UTILITY OVER FRONT SEAT SIZE , X
10

.
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1.0

1 .0

0.8

0.6
uA

(x
ll

)
0.4 0.30

0.2

0.0 
0.0
x x x

cloth lea ther v inyl

Upholstery , x
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Fig. 6.10. UTILITY ASSESSMENT OVER UPHOLSTERY .
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0.9 • 0.95
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0.6

0.5 0.50
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0.2 0.20
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____ _____ _____ _____ _____ ___________x-— x x x x

0 1 2 3 4 5

Gauges ,

Fig . 6.11. UTILITY ASSESSMENT OVER x12.
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An a C (0 ,1] where choosing (B ,B ,B ,B ,w ,w ,w ,w) is equivalent to choos-

ing the lottery is sought . For such an a, we have:

u (B ,B ,B ,B ,w ,w,w ,w) = ‘~ u(Superior Car) + (1 — a) u(Inferior Car)

+ (1 — a) C
2 = C 3

To get consistent results and reduce the assessment difficulties for the

DM , d ifferent lotteries are used to estimate different constants . The

last column of Table 6.2 contains the utility values of the pair of cars

used in the lottery to estimate a particular constant . For example ,

c16 = ac13 + (1 — a) C
8

where a is such that:

a

~

___ < B ,B , w ,

~

, w ,w ,w ,w)

( IB ,B ,I w , I w ,~ w ,w ,w ,w) ~~ 
I I I

I_ — ~ I 
— ~.I (1 _~~ h—

___._.( B,w , w, 
~ 
w , 

~ 
w ,w ,w ,w)

It is clear that careful preplanning had to be undergone before the ac-

tual assessment is conducted .

For the sake of uniformity, since all the assessed utilities range

from zero to one , we will also require that the utility over performance

have the range 0—1 . That is , we will assume :

Cu(Rest Performance) a cu(Best Starting Acceleration ,

Best Passing Acceleration) = 1

and

Cu(Worst Performance) a Oz(Worst Starting Acceleration ,

Worst Passing Acceleration) — 0
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Table 6.2

THE ASSESSED UTILITY ~DNSTANTS

Ut il ity  At t r ibute Levels
— — — — — — Reference

Assessed Point’-
Value Symbol PC P x

7 
x
8 

x
9 

X1() X
fl 

X
12

1.0 C
l 

B T ~~ ~~ T T ~~ Arb i t r ary
0.0 C

2 
w w w w w w w W

0.78 C
3 

B B B B w w w w (C
1 ,C2

)

0.05 C
4 

w w w w B w w w (C
1
,C2
)

0.02 C
5 

w w w w w B w w (c1 ,c2
)

0.05 C
6 

w w w w w w B w (C
1
,C
2
)

0.001 C
7 

w w w w w w w B (C
1 ,C2

)

0.6 C
8 B w w w w w w w (C

1
,C2
)

0.5 •C9 
w B w w w w w w (C

1,
C2
)

0.1 C
10 

w w B w w w w w (C1, C2)

0.2 C11 w w w B w w w w (C
1,C2

)

0.74 C12 B B B w w w w w (C2,C3
)

0.70 C
13 

B B w B w w w w (C
2,C

3
)

0.66 C14 B w B B w w w w (C
2
,C
3
)

0.62 C15 w B B B w w w w (C
2

,C
3
)

0.68 C
16 

B B w w w w w w (C
8

,C
13
)

0.26 C17 
w w B B w w w w (C

11,C15
)

0.64 C18 
B w w B w w w w (C8,C14

)

0.63 C19 B w B w w w w w (c8,c14
)

0.56 C
20 

w B B w w w w w (C
9,
C15
)

0.58 C21 
w B w B w w w w (C

9
,C
15
)
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Thus , the three numera ire utilities on the performance space will be

calibrated with respect to these two points . Four calibra t ion points

(see Fig . 6.12) are assessed as such and reported In Table 6.3.

Now , using an interpola t ion rule , such as the one suggested in

Section 5.3 , we have a two-dimensional utility surface over the entire

performance space whose range is Zero to one .

The Final Analyt ical Model of the Overal l Ut ili ty

We will derive the fina l overall utility model via the following

steps.

Step 1: The first four attributes , x
1 , x2, x3, and x

4
are mapped into the present value nu mera ire v ia

Eq. (6.1). -

Step 2: Using the risk aversion profile method , the util-

ity over any pair of starting and passing accel-

erat ion is interpolated from the ut il it ies over

the three continuous cuts .

Step 3: The utility over the space PC “( performance ‘~‘ X7
X is derived , via the tree method of chapter

2, using the utility tree depicted in Fig . 6.3.

From the utility tree , all we need are the utili-

ties outlined by squares . Each one of these util-

ities is the same , up to a positive linear trans-

forma t ion , as one of the assessed ut ilities of

Figs . 6.4 through 6.11. Also , the domain of each

squared utility contains two points whose utility

values correspond to two constants in Table 6.3.

Since the constants in Table 6.2 are assessed with

respect to the reference and scale points of Eq.

(6.1), each squared utility, with reference and
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x
5

C27 
C
22

B = Best -1.5 —x x—

I I

I C26 I C
25

A = Average 5.75 x— x—

I I

I C
23 I

w = Worst 7.0 —x x—

I I
I I
I I

— 
~~~~ x

6
w Wors t  B = Best

Fig. 6.12. DISCR~ TIZING THE PERFORMANCE SPACE .

Table 6.3

CALIBRATION CONSTANT S FOR THE NUMERA IRE
UTILITIES OF THE PERFORMANCE SPACE

Ut il ity  Performance

Symbol Assessed
Value X

5

Arb itrar ily C22 1.0 B B

Chosen 
~ C

23 
0.00

C24 
0.75 w B

c25 
0. 85 A B

c26 0.45 A w

C27 
0.70 B w
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sca le compatible with Eq. (6.1) may be obtained using

the assessed Utilities and the scaling constants of

Table 6.2 . As an example :

Cu(w ,B ,a ,1) + 

~~~~~~~ 
Cu (w,B ,w ,l , w , w , w , w )

where u
A
(xR) is the assessed utilit y depicted in

FIg. 6.7 and ~ and ~ are chosen such that:

Cu(w ,B ,w , w , w , s , w , w )  = C9

Cu ( w ,R , w , B , w , w ,~A , w) = C 21

We thus have all the data necessary to construct a

representation for C~ (PC ,p,x7
,x
8
) that Is compat-

ible with the two degrees of freedom , defined by Eq.

(5.1) , of the overall utility.

Step 4: We n ow ha v e all the pieces to construct the o”erall

utility via the multip lf cat ive—add itlve model . We

w i l l  r ewr i t e  Eq .  (6..) in the following equivalent ,

but more convenient , representatlor. (see Keeney [221):

1 + k u ( P C ,p , x 7, x 8, x 9, x 10, x
11 , x

12
)

= [i + kk
1 
Cu(Pc.~~ x

7~
x
8
)
j 

* Il + kk
2 

Cu(x
9)]

* + kk 3 Cu (x10)] + + kk
4 

Cu(x
11)]

* + kk 5 Cu(x
12)] * E (‘<, +) (6.4)

where

( i )  The ça rameter a t t r ibutes  of each utility are

set at  thei r worst level.

( i i )  — u (B ,B ,B ,B ,w ,w , w , w)  — C3
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k
2 
= u (w ,w ,w ,w ,B ,w ,w ,w) = C

4

k
3 
=u (w ,w ,w ,w ,w ,B ,W ,w) = C 5

k
4 

= u (w,w ,w ,w ,w ,w ,B ,w) = C 6

k
5 
= u ( w ,w , w , w , w , w , w ,B) = C

7

(iii) Each utility in Eq. (6.4) is to be assessed

on a zero to one scale .

(iv) k is to be estimated from the k
1
’s. If

~~~ l 
k
1 

= 1 , k = 0 and we have the additive

model . If ~~~~ k1 ~ 
1, we have the multi-

plicative models , and k is estimated by the

equation :

5
1 + k = (1 + kk

1
) (6.5)

I

where

-l < k  <~~

For our model , s ince

= C3 + C4 + C
5 

+ C
6 

+ C7 
= 0.901 ~ 1

we have the mu l t ip l i ca t ive  model . Using Eq. (6.5),

along with the constraint 0 < Ic < ~~, we e s t i m a t e

k 1.01 .

To implement Eq . (6.4), we use directly the assessed

conditiona ’ utilities for X9~ 
X
10 , x11 , and x12

.

To have Cu(Pc,p,x7,
x
8
) range from zero to one , the

derived values from Step 3 above have to be multiplied

by 1/Cu(B,B ,B ,B ,w ,w ,w ,w). But , by Eq. (6.4), Cu(PC,

p, x7 ,x8) is to be multiplied by k1 — C3 — Cu (SB ,B ,

B,w ,w ,w ,w). So, it is just as ~~l1 if we use the
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va lues for Cu(PC , p , x 7 ,x 8
) as calculated by Step 3

and eliminate the constant k
1 

from Eq. (6.-i ).

This concludes the construction of the overall utility surface .

6. 4 Using the Constructed Utility

We have decided to choose a number of actual cars and estimate their

utilities by using the constructed utility surface , and also by construct-

ing the direct assessment of the DM. If we have been successful in cap-

turing the essence of the DM’s preferences ,the two sets of figures should

be compatible .

Table 6.4 contains a desc r ip t ion of four  1977 model cars that satisfy

the requirements of the dec i s ion  ma ker . Most  of the da t a  is t a k e n  f rar :

Consumer Report  [4). The data on upholstery , gauges , and trunk size are

obta ined from loca l dealers . The DM assessed the data  for  m a i n t a i n a b i l -

ity, as he perceives i t .  The DM In i t i a l l y  is asked to rank the four cars

ord inaril y. Then cardina l ordering is obta ined via lottery questions by

assuming the first choice to have unit utility value and the last choice

t” have a zero utility. The first column of Table 6.5 contains the car-

dinal utility ordering for the four cars . Using the constructed utilit y

surf ace , the utility of each car is calculated and reported in the ~econd

column of Table 6.5. To compare the ca lculated u t i l i ti e  with the as-

sessed ones , we resca led the ca lculated ut il it ies so tha t t he h ighe st

and lowest values are one and zero , respectively. Column three of Table

6.5 contains the calculated u t i l i t i e s  a f t e r  rescal ing . (App endix 6.A

contains a sample of the calculations involved ; Appendix 6.B contains

different sensitivity analysis calculations.)
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Table 6.4

CONTAINS THE FEATURE S OF FOUR , 1977 MODEL , ACT UAL CARS
Most of the data are taken from Consumer Report (February 1977)

Attribute Symbol Car 1 Car 2 Car 3 Car 4

Purchase price x
1 

$5237 ~4 734 ,~‘42l7 ~5230

City mileage x2 10.5 MPG 10.5 MPG 9.5 MPG 9.5 MPG

Highwa y mileage x
3 

20.0 MPG 19.5 MPG 17.5 MPG 18.5 MPG

Resale value x
4 

0.6 0.58 0.50 0.52

Start ing Acceler a t ion x
5 

5.0 sec 6.2 sec 5.1 sec 5.6 sec

Passing Accelera t ion  x
6 

8.2 sec 13.0 sec 8.8 sec 9.5 sec

Brakes x7 
180 ft 185 ft 205 ft 205 ft

Ma intainability x
8 

0.07 0.05 0.04 0.04

Trunk size X
9 

25 f t 3 20 ft
3 

22.5 ft
3 

20 ft
3

Front seat size x
10 

41.5” 42” 41” 43”

Seat uphols te ry  x 11 Viny l  Vinyl V iny l  Vinyl

Gauges x
12 

3 2 2 3

Table 6.5

COMPARING DIRECT LY ASSESSED VS CA LCU LATED
UTILITY VA LUES FOR FOUR ACTUAL CARS

Directly CalculatedCa 1 cu la ted
Car Assessed Util ity

Utility 
Utility (Sca led)

Car 1 1.0 0.88884 1.0

Car 2 0.4 0.69450 0.0

Car 3 0.6 0.80613 0.57

car 4 0.0 0.74965 0.28
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From Table 6.5, the calculated ut il i t ies correct l y  indi cate the

first and second choices of the DM. The third and fourth cars , though ,

interchange positions in the calculated ranking . If we consider the

table from the point  of view of comparing pairs of cars , the calculated

utilities have correctly chosen the better car for five out of the six

possible pairs . We do believe that the constructed utility captures

the bul k of the DM’s preferences .

6.5 Summary

A utility surface is constructed for an actua l decision maker . The

utility is defined over the space of all cars of a particular class .

Twelve a t t r ibutes are ident if ied as the most important features the DM

seeks in a car. Four of the attributes wh ich reflect different aspects

of the cost (pr ice , m ileage , resale va lue) of a car are related via an

economic model . Two of the attributes reflecting motor performance are

considered preference inseparable and are treated as such via the theory

of chapter 5. The economic model along with motor performance and two

more attributes are preference—modeled using Keeney ’s [20) quasi-separa-

ble utility model. The tree method of chapter 2 is used to depict the

u t i l i t y  tree of this model. The quasi—separable model along w i t h  the

rest of the attributes are joined via the multiplicative—additive model

to form the overall utility of the DM. To justify the multiplicative-

additive model , the construction of Section 4.4 is used to generate a

minima l set of UI assumpt ions .

To test the constructed utility, the utility of four actual cars

are directly assessed by the DM. The assessed values are then compared

with the values estimated by the constructed utility. It is believed
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that the constructed surface is a fair representation of the DM’s pref-

erences of cars .
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Appendix 6.A

We will show , step by step , all the calculat ions necessary to obta in

the utility value for car 1 of Table 6.4. Such value is , of course , ref-

erenced by the two points defined by Eq. (6.3).

The calculations :

Step 1:

(1) Present Cost (Car 1) = x + 0.7255 + - 0.687 x x
1 \ X 2 

x3, 41

= $3585 (6.A.1)

(2) u
A

(PC ) = u
A
(3585) = 0.59 (from Fig. 6.4)

(3) Cu(PC ,w ,w ,w ,w ,w ,w ,w) = C8 u
A

(PC )

= 0.6 x 0.59 = 0.354 ( 6 . A . 2 )

Step 2: Calculat ing the Ut i l i ty  of Performance

(1) u
A
(8.2,4.5) = 0.97 (from Fig . 6.5)

( 2 )  u
A
(8.2,5.75) = 0.98 (from Fig . 6.5)

(3) u(8.2,4.5) = (1 — C27
) . uA

(8.2,4.5) + C27

= 0.3 x 0.97 + 0.7 = 0.991 (scaled) ( 6 . A . 3 )

(4) u(8.2,5.75) = C26 + (C25 
— C26

) u
A
(8.2 ,5.?5)

— 0.45 + 0.40 x 0.98 — 0.84 (scaled) (6.A.4)
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Equations (6.A.3) and (6.A.4) are used so that the utility of

(8 .2 , 5.75) and (8 .2 ,4 .5 )  are in conformance with the reference

points C22 and C23 of Table 6.3.

(5) We will use the risk aversion profile (Method I) of Chapter

5 to estimate u(8.2,5.0):

(5.1) 5.0 = cr4.5 + (1 - a) 5.75 =+ cx = 0.6

(5.2) Let u(x
6
,4.5) = 0.84

u(x ,4.5) - C
(5.3) Hence , u (x6,

4.5) = 6 27
A C27

u
A

(x
6
,4.5) = 

0.84—0.7 
= 0.467

=~~x6 = 11.1 sec (from Fig . 6 .5)

(5.4) u
A

[S.2cx + (1 — a) 11.1 ,4.5) = u
A

(9.36 ,4 .5)

= 0.952 (scaled)

(5.5) u(9.36 ,4.5) = C27 + [1 — C27
] u

A
(9.36,4.5)

= 0.952 (scaled)

(5.6)  Estimating ~ (O .6) :

u(9 .36 ,4.5)  = ~ (O .6)  u (8 .2 , 5.75) + [1 — ~ (0 .6)1

u (8 .2 ,4 . 5)

or

0.952 = ~ (0.6) x 0.84 + [1 — ~~( 0. 6 )]  0 .991

= 0.258 (6 .A.5)

Fbr car 1, Eq. (6.A.5) is the only estimate of ~~( . )

that exists .
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(5 .7)  The interpolated u t i l i t y  of (8.2 , 5.0)  = ~ (8.2,5.O)

= ~(O.6) u(8.2 ,4.5) + [1 — ~(O.6)] 
. u(8.2 ,5.75)

= 0.258 x 0.84 + 0.742 v 0.991 = 0.95

(6) Cu(w,p, w ,w ,w ,w ,w ,w) = C
9 

.

.
.
. Cu( w,(8.2,5.0),w ,w ,w ,w ,w ,w) = 0.5 x 0.95 = 10.476 1 (6.A.6)

Step 3: Calculating Cu(3585 ,(8.2 ,5.O),18O ,0.07) via the tree method :

(1) u
A

(x
7

) = u
A
(l8O) = 0.95 (from Fig . 6.6)

Cu(w ,w ,x7,
w ,w ,w ,w ,w) = C

10 
. uA

(x
7

)

=+ Cu (w ,w ,180,w ,w ,w ,w ,w) = 0.1 x 0.95 = 0.095 (6.A.7)

(2) u
A

(x
8

) = u
A
(O.O7) = 0.86 (from Fig . 6.7)

Cu(w ,w ,w ,x8,
w ,w ,w ,w) C11 

. u
A
(x8
)

=+ Cu(w ,w ,w ,0.07 ,w ,w ,w , w) = 0.2 x 0.86 = 10.172 (6 .A . 7 )

(3) Cu(w,w ,B,x8,w ,w ,w ,w) C10 + (C
17 

- C10) uA
(x
S
)

-~ Cu (w ,w ,B,0.07,w ,w ,w ,w) = 0.1 + 0.16 X 0.86 = 0.240 (6.A.8)

(4) Cu(w,B ,w ,x3,
w ,w ,w ,w) = C9 + (C21 

— C9
) u

A
(x
8
)

=-~ Cu(w ,B ,w ,0.07,w ,w ,w ,w) = 0.5 + 0.08 X 0.86 = 0.57 (6.A.9)

(5) Cu(w,B ,B,x8,w ,w ,w ,w) = C20 + (C
15 

— C20
) u

A
(x
8
)

~- C u ( w ,B ,B ,O .07 ,w , w ,w ,w) = 0.56 + 0.06 x 0.86 = 0.61 (6.A.10)

(6) Cu(B ,w ,w ,x8,w , w , w , w) — C8 + (C18 
— C8

) u
A
(x8

)

=~~Cu (B ,w ,w ,O.07,w ,w ,w ,w) = 0.6 + 0.4 x 0.86 = 0.63 (6.A.11)

(7) Cu (B ,w ,B,x8,w ,w ,w ,w) — C19 + (C14 
— C19) u

A
(x
8
)

cu(s,w ,B0 .07,w,w ,w ,w) — 0.63 + 0.03 x 0.86 • 0.656 (6.A.12)
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(8) Cu(B ,B ,w ,x8,
w ,w ,w ,w) = C

16 
+ (C13 

— C
16
) u

A
(x
8
)

Cu (B ,B ,w ,0.07,w ,w ,w ,w) = 0.68 + 0.02 x 0.86 = 0.70 (A .A .l3)

(9) Cu (B ,B ,B,x8,w ,w ,w ,w) = C12 + (C~ - C19
) u

A
(x
8
)

Cu (B ,B ,B ,0.07,w ,” ,w ,w) = 0.74 + 0.04 x 0.86 = 0.774 (6.A.l4)

(10) Cu(w ,w ,x7 ,
x8,w ,w ,w ,w) = Cu(w , w ,w ,x8 ,

w , w , w , w)

+ [Cu(w ,w ,B,x8,w ,w ,w ,w) — Cu(w ,w ,w ,x8,
w ,w ,w ,..~ 

1

Cu (w , w , ~c7 , 
w , w , w , w , w)

C10

-~~Cu(w ,w ,l80,0.O7,w ,w ,w ,w) = 0.2366 (6.A.15)

(11) Cu(w ,B ,x7
,x8,

w ,w ,w ,w) = Cu(w ,B ,w ,x8,
w ,w ,w ,w)

+ [Cu (w ,B ,B ,x8,
w ,w ,w ,w) — Cu(w,B ,w ,x8,

w ,w ,w ,w)J

Cu(w ,w ,x7,w ,w ,w ,w , w)

Cl0

=+- Cu(w,B,180,O.07,w ,w ,w ,w) = 0.61 (6.A.16)

(12) Cu(B ,w ,x 7 ,x8 ,w ,w ,w , w) = Cu (B ,w ,w ,x8,w ,w ,w ,w)

.4. [Cu (B ,w ,B ,x8, w ,w , w ,w) — Cu (B ,w , w ,x8 ,w ,w ,w ,w ) ]

Cu (w , w ,x7 ,w , w ,w , w ,w)

C10

z4 Cu(B,w ,180,0.07,w ,w ,w ,w) = 0.655 (6.A.17)

(13) Cu(B,B ,x7,x8,
w ,w ,w ,w) = Cu(B,B ,w ,x8,w ,w ,w ,w)

+ ICu (B ,B ,B ,x8, w ,w ,w ,w) - Cu(B,B ,w,x8,w ,w ,w ,w)]

Cu(w ,w,x7,
w,w ,w ,w)

C10

=* Cu(B,B,180,0.07,w ,w ,w ,w) 0.77 (6.A.1~~)
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(14) Cu(w ,(x
5,
x
6
),x

7
,x
8
,w ,w ,w ,w) = Cu(w,w ,x7

,x
8,

w ,w ,w ,w)

+ ICu(w,B ,x7,
x8,w ,w ,w ,w) — Cu(w ,w ,x7,

x
8,
w ,w ,w ,w)]

Cu( w ,(x
5,
x
6
),w ,w ,w ,w ,w ,w)

C
9

:3 Cu (w ,(5.O ,8.2),180,0.07,w ,w ,w ,w) = 0.59 ( 6 .A . 19 )

(15) Cu(B , (x
5 , x6

) ,x 7 ,x8 , w , w ,w , w )  = Cu(B ,w ,x
7 ,x

8 , w , w , w ,w)

+ [Cu(B , B ,x
7

, x 8, w , w ,w , w) — Cu (B ,w ,x 7, x 8 , w , w , w , w ) )

Cu( w ,(x 5, x6),w ,w ,w ,w ,w ,w)

C9

--~‘Cu (B,(5.O ,8.2),180 ,0.07,w ,w ,w ,w) = 0.764 (6.A.20)

(16) Cu(PC , (x
5 ,x6

) ,x 7, x8, w , w ,w ,w) = Cu(PC ,(x 5, x6
),x7,

x
8
)

— Cu (w ,(x 5 ,x6
) ,x7, x8, s. , w ,w , w) +

— Cu (w , (x
5 , x6

) , x7, x8, w , w , w , w ) 1  . 
Cu(PC ,w ,w ,:,w ,w ,w ,w)

=+ Cu(3585,(5.O,8.2),18O,O.07,w ,w ,w ,w) =LO.6927] (6.A.21)

Step 4: ca lcu la t ing  the Overall U t i l i t y

(1) u
A

(x
9

) = 0.92 (from Fig . 6 .8)

(2) u
A
(x
lo
) = 0.70 (from Fig . 6.9)

(3) u
A
(x
ll
) = 1.0 (from Fig. 6.10)

(4) u
A
(xl2

) = 1 0.75 j (from Fig . 6.11)

(5) 1 + 1.01 x u(car 1) • [1 + 1.01 x Cu(3585 , (5.0 ,8.2) ,180 ,O.07 ,

w ,w ,w ,w ) 1  . (1 + 1.01 X C4uA
(x

9
) l  . [1 + 1.01 X CSuA

(x
lo

) 1

[1 + 1.01 )( c
6uA

(x
llfl 

. [1 + 1.01 x C7uA
(x
l2

)J

=* (1 + 1.01 x u(car 1)1 • 1.70094 x 1.04646 ‘
~< 

1.01414

x 1.0505 x 1.0007575 .. u(car 1) — 0. 889
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Appendix 6.B

SENSITIVITY ANALYS IS

Here , we conduct different sensitivity analyses on the preference

model to discern its robustness and the sensitivity of trade offs be-

tween pairs of attributes .

6.B.l Sensitivity Analysis of the Preference Model

The preference model we used for the application Involves seven

UI assumptions which are depicted in Fig . 6.B.l as assumptions a
1

through a
7
. This model is referred to in this appendix as Model I.

We propose Models I I  and I I I  which are m o d i f i c a t i o n s  of Model I .  Mode l

II , which is def ined by assumptions a
1 

through a
12 

of Fig. 6.B.1,

replaces the quasi—separable component of Model I by a multiplicati ve -

additive component . This corresponds to assuming further regularities

of the preference structure on the subspace x1 through x
8
. Model

I I I , wh ich is def ined by assu mpt ions a
1 

through a
7 

and a
13 

and

a14, replaces the quasi—separable component by a dichotomous chain

component . For this model , we d ichotomize x
1 

through x
8 

into

(x
1 ,

x 2,x3
,x4,x 7 ) and (x5,x6,x8

) where the first group of attributes

are al l cost related and the second group are performance related (mo-

tor and brake performance). This dichotomy seems quite natural for the

problem and the corresponding UI assumpt ions , even though unver i f ied ,

seem quite plausible .

With respect to the concept of u t i l i t y  independence , Model I I

corresponds to the most regular preference structure , then , Model I I I

and , lastly, Model I.
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Fig . 6.B.1. PREFER~~~CE ~&~DELING USING A DIFFEREN T SET OF UI ASSUMPTIONS .
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The ana l ytica l form of Models II and III are derived . F r  Model

II , we get

[1 ~
- Kul = [1 + 0.6Ku

A
(PC)I . [ j  O.5K

~A
(P)1 . [1 0.lKu (x

7
))

[1 + 0.2Ku (x
8
)J [1 + 0.O5Ku

A
(x
9
)] . [1 0

~
024-:

~ A
(xl4))I

[1 + 0.M5Ku
A
(x

ll
)] . [j  + 0.OOiKu (x

12
)J

where u Is the overall utility of a car and u (P) is the utility of

performance as obtained by the interpolation method . All other utili-

ties are obtained from their respective graphs of chapter 6. K for

thi’ model is equal to —0.76 .

The analytical form of Model III Is:

El Kul = Cl + 0.6K Cu(Pc ,p,x7,
x
8
)1 . [1 + O.O5Ku

A
(xgYJ

[1 +O.O2Ku
A

(x
lO

)I . Cl +0.O 5Ku
A
(x
ll
)] . [1 +0.OOlKu

A
(x
12

)l

where u is the overall utility of a car , K for this model is equal

to + 1.01 , and

cu(PC ,p, x7,x8) = 0.714 + 0.714 Cu ’ (P) . Cu ’(x8
) . Cu ’ (PC) . Cu ’(x8)

— 1.55 Cu ’ (P) . Cu ’(x 8
) — 1.57 Cu ’(PC ) . Cu ’( x ~ )

where

Cu ’ (PC ) = 0.70 u
A

(PC ) — 1

Cu ’(x 7 ) u 0.12 u
A
(x
7
) — 1

Cu ’(P) • 0 .6 ~ (P) - 1

Cu ’(x 8
) = 0.24 u

A
(x
8
) — 1

All uA
(.) are obtained from their respective graphs in Chapter 6.

152



The analytical models are used to calculate the utilitie -~ of each

car of Table 6.4. Table 6.B.l contains the calculated values . It is

clear from the table that Models I and III produce similar utility val-

ues while Model II is slightly different . All models give the same

ordina l ranking of the four cars .

From an assessment point of view , Model s II  and I I I  re qu ire les s

effort than Model I. In particular , Model II requires the assessment of

only twelve constants as opposed to the twenty-five constants required

of Model I. This transLites into a reduction of about two hours worth

of assessment time . Model III requires only eighteen constants . In re-

trospect , we would h~ve been better of f  us ing Model I I I  instea d of Model

I due to the resemblance of theii- utilities .

Table 6.B.l

SENS ITIVITY OF PREFERENCE MODELING

Utility Va lues
Item —______

Car 1 Car 2 Car 3 C~r 4

Direct assessment 1.0 0.4 0.60 0.0

Model I 0.88884 0.69450 0.80613 0.74965
Model I (scaled ) 1.0 0.0 0.57 0.28

Model II 0.86132 0.67020 0.80736 0.73394
Model Ii (scaled ) 1.0 0.0 0.72 0.33

Model III 0.88881 0.69445 0.80609 0.749(~
Model III (scaled ) 1.0 0.0 0.57 0.2~

6 .8. 2 Trade Off Ana lysis

Here , we address questions of the fol lowing type : How much is

some percentage Improvement of an attribute for a given car worth in

terms of the present value of the car or its initia l purchase price?
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Table 6.B.2 conta ins such calculations . In the table , we calcu-

late changes in the present value of a car due to a l5~ increase (or

decrease) in the performance of the car , where all other attributes are

fixed at the ir given values . These calcu1ation -~ correspond to moving

along the same indifference curve of the attributes PC and P. To

properly interpret the figures of the table , let us consider the first

column correspond ing to car 1. For t h i -~ car , the decis ion maker should

be indiffere”t between the original car 1 as defined by Table 6.4 (of

chapter 6) and the same car where performance improves by l5~ and pres-

ent cost increases by 315 dollars. Likewise , the decision maker should

be Ii~different between the origina l car 1 and car 1 where performance is

decreased by 15 ’ and present cost is decreased by 310 dollars .

The same sort of calculations are conducted for the a t t r ib u tes

x7 , x9 , and x
10

. They are reported in Tables 6.B.3 through 6.B.5. To

translate the changes in pres€~n t cost to chan ges in the in it ia l purch ase

price , x
1 , 

we use the multipliers of the last row of the table.

Finally, all such calculations are repeated using preference Model

II instead of preference Model I. (We have ignored Model I I I  since it is

s i m i l a r  to Model I . )
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Table 6.8.2

SENS ITIVITY OF PRESENT COST TO PERFORMA NCE CHANGE S

Item Car 1 Car 2 Car 3 Car 4

Performance , (x 5,
x
6
)—— (5,8.2) (6.2,13) (5.1 ,8.8) (5.6 ,9.5)

old value

U t i l i ty , ~(x5,x6
) 0.952 0.308 0.919 0.826

Performance , (x 5
,x6)—— 

(4.63 ,7.0) (5.83,11.8) (4.73 ,7.6) (5.23 ,8.3)
new value

Utility, G(x5,x6
) 1.0 0.563 0.991 0.895

‘
~ change in performance + 15 + 15 + 15 + 15

~ change in ~(x5 ,x
6
) + 5 + 83 + 8 + 8

Worth in present cost + 315 + 903 + 527 + 4(1~~

Perf ormance , (x 5 ,
x
6)—— (5.38,9.4) (0.575,14.2) (5.5,10) (5.98,l4~.7)

new value

Utility, ~(x5,x6
) 0.862 0.03 0.802 0.69

change in performance — 15 — 15 — 15 - 15
‘
~ chan ge in ~(x5,x6

) — 9 — 99 — 13 — 16
Worth  in present  cost — 310 — 672 — 723 — 550

Worth with respect to 1.69 1.66 1.52 1.56
mul tiply i~PC by
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Table 6.8.3

SENSITIV ITY OF PRESENT COST TO CHA NGES IN BRAKE VALUE S

Item Car 1 Car 2 Car 3 Car 4

Brakes , x
7
—-old value 180 185 205 205

U t i l i t y ,  uA
(x 7

) 0 .9 5 0.78 0 .22 0 .22

Bra kes , x
7
——new value 172.5 177.5 197.5 197.5

Utility, u
A
(x
7
) 1 0.97 0.38 0.38

% chan ge In x
7 

+ 15 + 15 + 15 + 15

~ chan ge In u
A

(x
7

) + 5 + 24 + 73 + 73

Worth in present cost + 115 + 203 + 227 + 250

Bra kes , x
7
——new value 187.5 192.5 212.5 212.5

Ut il it y ,  u
A

(x
7
) 0.67 0.52 0.06 0.06

~ chan ge in x7 — 15 — 15 — 15 — 15

~ change in u
A

(x
7

) — 30 — 33 — 73 — 73

Worth in present cost r— 56() — 97 — 323 — 150

Worth with respect to 1.69 1.66 1.52 l.5C
x
1
: multiply ~PC by
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Table 6.B.4

PRESENT COST SENSITIVITY TO CHANGES IN TRUNX SIZE

Item Car 1 Car 2 Car 3 Car 4

Trunk size , x
9
——old values 25 20 22.5 20

Utility, u
A

(x
9
) 0.92 0.65 0.79 0.65

Trunk size , x
9
——new values 28 23 25.5 23

Utility, u
A
(x
B
) 1.0 0.82 0.93 0.82

~ change In x9 + 15 + 15 + 15 + 15

~ change in u
A
(x
9
) + 9 + 26 + 18 + 26

Worth in present cost + 170 + 93 + 157 + 250

Trunk size , x
9
——ne w values 22 14.5 19.5 14.5

Ut il it y ,  u
A

(x
9
) 0.77 0.41 0.61 0.41

% change in x9 — 15 — 15 — 15 — 15

% change In u
A

(x
B
) — 16 — 37 — 23 — 37

Worth in present cost — 290 — 297 — 393 — 394

Worth with respect to x
1
: 1.69 1.66 1.52 1.56

mult iply L~PC by
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Table 6.B.5

SENS ITIVITY OF PRESENT COST TO CHANGES IN SEAT SIZE VA LUES

Item Car 1 Car 2 Car 3 Car 4

Seat size , x
10

——old values 41.5” 42” 41” 43”

Ut il it y ,  u
A

(x
lo
) 0.7 0.77 0.6 0.87

Seat size , x
10

——new value 42.55” 43.05” 42.05” 44.05”

Ut il it y ,  u
A
(x lO) 0.83 0.87 0.77 0.94

~ change in + 15 + 15 + 15 + 15

~ change in uA
(X

1O
) + 19 + 13 + 28 + 8

Wort h in present cost + 85 + 75 + 97 + 75

Sea t size , x
10

——new value 40.45” 40.95” 39.95” 41.95”

Ut il it y ,  u
A
(x lO) 0.47 0.6 0.33 0.77

~ change in — 15 — 15 — 15 — 15

~ change in uA
(x lo

) — 33 — 22 — 45 11

Worth 1.:: present cost — 105 — 75 — 273 — 75

Worth with respect to x
1
: 1.69 1.66 1.52 1.56

mul t ip ly  L~PC by
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Table 6.B.6

SENSITIVITY OF PRESENT COST TO PERFORMANCE CHANGES (MODEL II)

Item Car 1 Car 2 Car 3 Car 4

Performance , (x
5 ,
x
6
)—— (5,8.2) (6.2 ,13) (5.1 ,8.8) (5.6 ,9.5)

old value

U t i l i t y  ~(x5,x6
) 0.952 0.308 0.919 0.826

Performance , (x5,x6
)—— (4.63 ,7.0) (5.83 ,11.8) (4.73 ,7.6) (5.23 ,8.3)

new value

Utility , ~ (x
5
,x
6
) 1.0 0.563 0.~)91 0.895

~ change in performance + 15 + 15 + 15 + 15

‘
~ change in G~(x 5,x6) + 5 + 83 + 8 + 8

Worth in present cost + 215 + 800 + 625 + 300

Performance , (x
5,

x
6
)—— (5.38,9.4) (0.575,14.2) (5.5,10) (5.98 ,10.7)

new value

Utility, G(x
5 ,

x
6
) 0.862 0.03 0.802 0.69

~ change in performance — 15 — 15 — 15 — 15

~ change in ~ (x,,x6
) — 9 - 99 — 13 — 16

Worth in present cost — 435 — 950 
— 

— 323 — 55~J

Worth with respect to 1.69 1.66 1.52 1.56
x1

: mul t ip l y ~ PC by
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Table 6 .13.7

SENS ITIVIT Y OF PRESENT COST TO CHANGES IN BRAKE VALUES (MODEL I I )

Item Car 1 Car 2 Car 3 Car 4

Brakes , x
7
——old value 180 185 205 205

Utility, u
A
(x
7
) 0.95 0.78 0.22 0.22

Brakes , x
7
——new vaiue 172.5 177.5 197.5 197.5

Ut il it y ,  u
A

(x
7
) 1 0.97 0.38 0.38

~ change in x7 + 15 + 15 + 15 + 15

-
~~ change in u

A
(x
7
) + 5 + 24 + 73 + 73

Worth in present cost + 8 100 + 100 + 100

Brakes , x7——new value 
187.5 192.5 212.5 212.5

Ut ilit y ,  u
A
(x
7
) 0.67 0.52 0.06 0.06

~ change in x7 — 15 — 15 — 15 — 15
% change in u

A
(x
7
) — 30 — 33 — 73 — 73

Worth in present cost — 185 — 75 — 150 - 90 1

Worth with respect to 1.69 1.66 1.52 1.56
x
1

: mul t iply L~PC by
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Table 6.B.8

PRESENT COST SENSITIVITY TO CHANGES IN TRUNK SIZE (MODEL II)

Item Car 1. Car 2 Car 3 Car 4

Trun k size , x
9
——old values 25 20 22.5 20

Ut il it y ,  u
A

(x
9
) 0.92 0.65 0.79 0.65

Trunk size , x
9
——new values 28 23 25.5 23

Ut il it y ,  u
A

(x g) 1.0 0.82 0.93 0.82

-
~~ change in ÷ 15 + 15 + 15 + 15

~ change in u
A

(x
B

) + 9 + 26 + 18 + 26

Worth in present cost + 15 + 50 + 50 + 100

Trunk size , x
9——new values 22 14 .5 19.5 14.5

Utility, u
A
(x
9
) 0.77 0.41 0.61 0.41

% change in x9 — 15 — 15 — 15 — 15

‘~ change in u
A

(x
9

) — 16 — 37 - 23 — 37

Worth in present cost — 60 - 100 — 75 - 50

Worth with respect to 1.69 1.66 1.52 1.56
multiply APC by

161



Table 6.8.9

SENSITIVITY OF PRESENT COST TO CHANGES IN SEAT SIZE VALUES (MODEL II)

Item Car 1 Car 2 Car 3 Car 4

Seat Size , x
10

——old values 41.5” 42” 41” 43”

Utility, u
A
(x
lO
) 0.7 0.77 0.6 0.87

Seat size , x
10

——ne w value 42.55” 43.05” 42.05” 44.05”

Util ity , u
A

(x
lo
) 0.83 0.87 0.77 0.94

~ change in x
10 

+ 15 + 15 + 15 + 15

~ change in u
A

(x
lo
) + 19 + 13 + 28 + 8

Worth in present cost J + 15 + 10 + 10 + 20

Seat size , x10——new value 
40.45” 40.95” 39.95” 41.95”

Uti l it y ,  u
A

(x
lo
) 0.47 0.6 0.33 0.77

~ change in x10 — 15 — 15 — 15 — 15

~ change in uA
(x
lo
) — 33 — 22 — 45 11

Wort h in present cost r— ~~~~~ — 50 — 73 — 15

Worth with respect to x1
: 1.69 1.66 1.52 1.56

multiply LPC by
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Chapter 7

SUMMARY OF RESULTS AND FURTHER RESEA R CH

In this concluding chapter , we highlight the salient featurec of

our c~ ntribution and suggest different directions for extending this

research .

7.1 Summary of Results

We propose the modeling of preference structures via sets of UI

assumptions. As such , d ifferent preferences correspond to different

UI set s, and dIfferent UI sets result in varying decompositiona l forms

of the utility surface , preserving the preference ordering . Utility

decomposition Impl ies that an n—d imensional surface can be analytically

derived from surfaces (or utilities) of lower dimensions . In this case ,

the assessment effort required for constructing the utility may be

greatly reduced .

We consider arbitrary sets of UI assumptions . For a given UI set ,

two fundamental properties fully characterize its corresponding decompo-

sition : the partitioning of the attribute space into subspaces of lower

dimensions , and a type of low order regularity operating on each of the

subspaces . The concept of “ut ili ty independence orde r” is introduced to

capture such low order regularities . These two properties underly a

proposed codable procedure called the tree method for generating the

u t i l i t y  decomposi t ion form corresponding to any  UI set . The procedure

rests cm an automatum , or a f i n i t e  semigroup,  which is an abs t rac t ion  of

the decomposition algebra involved . The procedure produces tree-like

structures that are both a self—contained analytica l representation of
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the utility decomposition and a visually powerful aid for dernon~ tration

and discussion purposes . We believe that this part of our contribution

gives the analyst much facility and insight with regard to modeling

preferences via UI sets and the whole decomposition technique in gen-

era 1.

Next , we use the two characterizations of utility decomposition to

propose a natura l scheme for classifying preferences on n—attributes.

We use the scheme to list all distinct (modulo the UI concept) prefer-

ence structures on four—attribute spaces .

The treatment of arbitrary UI ~ets leads naturally to questions of

impl ications and equivalence between such sets . We thus consider the

case where the satisfaction of a set of UI assumptions automatically

ir~p1ies the satisfaction of further assumptions. We discuss three in-

stances of UI implications , one of which has been discovered by Keenev .

Of the other two Instances , the implication due to dichotomous chains

leads to a generalized version of Keeney ’s quasi—separable utility model.

Dichotomous chains also are believed to remedy a conceptually weak point

of the UI primitive with respect to the fact that It is one directiona l ,

i.e., if X UI Y , it does not mean that Y UI X. For a dichotomous

cha in which involves a collection of nested subspaces , the UI assumption

is satisfied in both directions , with respect to each subspace .

To d iscern any  occurrence of U I  imp l ications , a canonica l form Is

proposed for UI sets. The canonica l form also indicates , visually, other

properties of the induced decomposition .

The mult iplicative—additive model wh ich plays a central role in UI

implica tions is considered on its own merits. We propose a construction

which produces a minima l number of UI assumptions corresponding to a
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given multiplicative— additive model . Such a construction reduces the

verification effort required by the analyst.

A UI set may not lead to a full decomposition of the utility sur-

face . Thus , an analys t may have to construct conditiona l utili ties of

more than one dimension that are indecomposable. For such surfaces , we

propose the strategy of continuous cuts , a discretization process which

requires the assessment of one—dimensiona l utilities on one of the at-

tributes where the other attributes are pa rarneterized into a finite

number of points. An interpolation rule is to be used to approximate the

utility throughout the domain . For a rule , we consider a procedure that

assumes a loca l decomposition due to a particular choice of a set of UI

assumptions . The implementation of the local decomposition relies on

simplifying behavioral assumptions about the decision maker ’s attitude

toward uncertainty along each of the attributes . All the information

required for this procedure is extracted from the assessed one—dimen-

sional utilities . When comparing this procedure with the current state

of the ar t , of fitting classical families of curves locally, we find that

our procedure requires a relatively modest amount of calculations. This

is so because the utility of a point is calculated step by step , undi—

mensiona lly, with respect to each attribute . Hence , no systems of equa-

t ions  need to be solved , as is the case w i t h  othe~ methods .

7.2 Future Research

The following is a l ist of suggestions for future  research th at

extends and complements our contribution .

(1) In Example 2.1 of chapter 2, we observed a spann ing phenom-

enon that  characterizes the u t i l i t y  sur face  as a l inear
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variety of functions that are part of the surface it~ elf .

Such a characterization may be established as a genera l

mathematica l property of decomposition due to any UI s e t .

(2) It may be usefu l to identify and document actual example’-

of preferences corresponding t the distinct classes of

come of the tables of Chapter 3.

(3) In the chapter on UI implications , ~e s ’~opped sho r t  of

identifying all possible sources of implic~ t~~ ns . We have

a strong feeling that the three inst~inces~~ e d1~:cus-.ed are

all the sources there are . This statement , of c urse , has

to be proved or disproved .

(4) On the treatment of indecornposable utiljtle~~, our proposed

methodology may require a great dea l of a”-e~-sment effort .

Specific schemes of sensitivity ana lysis need to be pro-

posed to calibrate this effort with oth r parts of the

overa ll assessment for the purpose of enhancing the tota l

accuracy of the overall utility.

(5) There seems to be a great deal of variety of regularity

and smoothness assumptions proposed for modeling prefer-

ences . A theory is needed to structure the state of the

art and compare preferences correspond ing to different

generic assumptions as to their restrictiveness or equiv-

alence . The development of a hierarchy of preference in-

terdependencies between the attribute seems like a fruit-

ful way to proceed .

(6) More on the pract ical side , the utility concept seems to

be illusive and slippery at times . Some of the questions

that require answers in this area are : How does the util-

ity over a set of objects develop in the decision maker s

m ind ? If it changes over time , why should it change? And ,

what about other concepts that refine , specialize , or

extend the u t i l i t y  concept?

166



B IBLIOGRA RIY

1. Becker , G. ~~~., M. H. DeGroot , and 3. M a r s c h a k , “An E x pe r ime nt a l
Stud y of Some Stochastic Models for Wagers ,” B e h a v i r l  Science,
8, 3 , Jul 1963 , pp. l~ 9—~ 02 .

2. Boyd , Dean W. , “A Methodology for Analyzing Decision Problems In-
volving Complex Preference Assessments ,“ Ph.D. dissertation , Dept .
of Engineering—Economic System- , Stanford University , Sta n f o r d
Ca., May 1970.

3. Cochrane , James L. and Milan Zeleny , eds. , Mu l t i p l e  C r i t e rl :  Deem-
sion Making, University of South Carolina Press , O r t  1 7 ~~.

4. Consumer Reports, Feb 1977.

5. Debreu , G. , “Topologica l Method s in Ca rd ina l U t i l i t y  Theory ,” ir .
Ma thema t i ca l  Method s in the Social Sciences,  1959 , K. J.  Arro s , S .
Karlin , and P. Suppe s , eds. , Stanford Universit y Press , Stanford ,
Ca. , 1960 .

6. Farquhar , Peter H ., “Fractional Hypercube Decompositions of Multi—
attribute Utility Functions ,” Dept . of Operations Research , Tech-
nica l Report No. 222 , Cornell University, Ithaca , N.Y. , Aug 1974,
Operations Research (forthcoming).

7. Farquhar , Peter H. , “Pyramid and Semicube Decomposition of M u l t i -
attribute Utility Functions ,” P—5323 , The Rand Corp. , Santa Monica ,
Ca . , Nov 1974.

8. Fishburn , P. C . ,  “Independence In Utility Theory with Whole Product
Sets ,” Operations Research, 13 , 1965, pp . 28—45.

9. Fishburn , Peter , “Utility Theory,” Management Science, 14, 5, Jan
1968.

10. Fishburn , Peter C. , “Bernoullian Utilities for  M u l t i p l e  Factor Sit-
uat ions ,” in Multiple Criteria Decision Making, J. L. Cochrane and
M. Zeleny , eds., University of South Carolina Press , Columbia , 1973 .

11. Fishburn , Peter C., “von Neumann—Morgenstern Utility Functions on
Two At t r ibutes ,” Operations Research, 22 , 1974, pp. 35-15.

12. Fishburn , Peter C. and Ra lph L. Keeney , “Generalized Utility Inde-
pendence and Some Implications ,” Operations Research, 23, 1975, pp.
928—940.

13. Fr iedman , M. and L. J. Savage , “T’~e Expected—Util ity Hypothesis and
the Measurab il ity of Ut il it y , ” J. Politica l Econ ., 60, 1952 , pp .
463—474 .

167



14. Gorman , W.  M . , “The Structure of U t i l i t y  Func t ions ,” Review of
Econom ic Studies, 35, 1968, pp. 367—390.

15. Hall , Mars hall , Jr. , Combinatorial Theory, Blaisdell Publishing
Co., 1967.

16. Howard , H. A. , “Risk Preference ,” in Readings in Decision Analys
Decision Analysis Group, St anfo rd Research In st itute , Menlo Park
Ca., 1974.

17. Huber , George P., “Multi-Attribute Utility Models: A Review ofF
and Field—Like Stud ies ,” Management Science, 20, 10, Jun 1974 .

18. Keelin , Thomas W ., “A Protocol and Procedure for Assessing Multi
tribute Preference Functions ,” Ph.D. dissertation , Dept. of Engi
neering—Economic Systems , Stanford Un iver sit y ,  Stanford , Ca. , Se
1976 .

19. Keeney, Ralph L., “Quasi—Separable Utility Functions ,” Nava l Re-
search Logistics Quarterly, 15 , Dec 1968, pp. 551—565.

20. Keeney, Ralph L., “Multidimensional Utility Functions: Theory , A
sessment , and Applications ,” Technica l Report No. 43, Operations
Research Center , Massachusetts Institute of Technology, Oct 196~

21. Keeney, Ralph L., ‘
~ Jti1ity Functions for Multiattributed Conse-

quences ,” Management Science, 18, 1972 , pp. 276—287.

22. Keeney, “Mult ipl icat ive Ut ili ty Funct ions ,” Operations Research,
22, 1974, pp. 23—34 .

23. Keeney, Ralph , “Utility Ind ependence Properties on Over lapping  A
tr ibutes ,” Internationa l Institute for Appl ied Systems Ar .alysis,
Research Memorandum RM-76—6 , Jan 1976 .

24. Kirkwood , Craig W ., “Parametrically Dependent Preferences for Mu
t i a t t ributed Consequences ,” Dept . of Electrical Engineering , Uni
vers i ty of Colorado , Colorado Springs , Co., Nov 1973 .

25. Krantz , D. H., “Conjoint Measurement: The b.ice—Thkey Axiomatizat
and Some Extens ions ,“ J. of ‘ta t h o n a  t Ical Psychology, 1 , 1964 , p

~
248-277. 

—

26. K.rantz , D. H . ,  R .  D . Lucf , P . Su ppes , and A. Tversky, Foundatior
of Measurement, Vol . 1 , Academic Press , N .Y ., 1971 .

27. Loce, R. D. and ! .  W .  T u k r y .  ~~~~~~~~~~~~~ (‘ n oint Measurement’
J. of Mathematica l Psych. 

~~y, 
1 . i ” ; , pp .  1-27 .

28 . Marschak , J. , “Rat b r a  ~~~ c. ~ r t a  In Pr spects , and Mea
able Utility, ” Ec n i ~~t~ .4 - .‘ pp - 111 141.



29. Meyer , R. F., “On the Relationship among the Ut ility of Asset s , the
Ut il ity of Consumpt ion , and Invest ment Strategy in an Uncer tain but
T ime Invar iant World ,” Proceedings of the Fifth International Con-
ference of Operational Research, Taavistock Publications , 1970.

30. Pollak , R. A., “Additive von Neumann—Morgenstern Utility Functions :’
Econometrica, 35, 1967, pp . 485—494.

31. Pratt , John W., “Risk Avers ion in the Small and in the Large ,” Ec—
onometrica, 32, 1—2 , Jan—Apr 1964.

32. Pratt , J. W ., H. Raiffa , and R. Schlaifer , Introduction to Statis-
tical Decision Theory (Pre l iminary  E d i t i o n) , McGraw—Hi l l , N . Y . ,
1965.

33. Raiffa , Howard , Decision Analysis , Introductory Lectures on Cho ices
Under Uncertainty, Addison—Wesley, Read ing , Ma., 1968.

34. Raiffa , Howard , “Preferences for Multiattributed Alternatives ,” R!~l-
5868—DOT/RC , The Rand Corp., Santa Mon ica , Ca. , Apr 1969.

35. Samuelson , Paul A. , Foundations of Economic Analysis , Harvard Uni-
ver sity  Press , Cambridge , Ma., 1947.

36. Strotz , R. H. , “The Empirical Implications of a Utility Tree ,” Ec—
onometrica, 25, 1957, pp. 269—280 .

37. Swain , R. 0., “Ut ility Theory — Ins ights into Risk Thking ,” Harvard
Business Review, Nov—Dec 1966 , pp. 123—136.

38. von Neumann , J. and 0. Morgenstern , Theory of Games and Economic
Behavior, 2nd Ed., Princeton University Press , Pr incet on , N.J. ,
1947.

169



CONTRACT DISTRIBUTION LIST
(Unclassified Technical Reports)

Director 2 copIes
Advanced Research Projects Agency
At tention : Program Management Office
1400 Wilson Boulevard
Arlington , Virginia 22209

Office of Naval Research 3 copies
Atten tion : Code 455
800 North Quincy Street
Arling ton , Virginia 22217

Defense  Documentation Center 12 copies
Attention : DDC—TC
Cameron Station
Alexandr ia, Virg inia 22314

DCASMA Baltimore Office 1. copy
Attention : Mr. K. Gerasim
300 Eas t Joppa Road
Towson , Maryland 21204

Direc tor 6 copies
Naval Research Laboratory
At ten t ion ; Code 2627
Washington , D.C. 20375

Off ice of Naval Research 6 cop ies
Attent ion : Code lO2IP
800 Nor th  Quincy Street
Arlington , Virginia 2221.7

170



SUPPLEMENTAL DISTRIBUTION LIST
(Unclassified Technical Reports)

Department of Defense

Assistant Director (Environmental and Life Office of Naval Research
Sciences) Information Systems Progr am (Cod e 437)

Office of the Deputy Director of Defense 800 North Quincy Street
Research and Engineering (Research and Arlington , VA 22217
Advanced Technology)

Attention : COL Henry L. Taylor Director , ONR Branch Office
The Pen tagon , Room 3D129 Attention : Dr. Charles Davis
Washington , DC 20301 536 South Clark Street

Chicago , IL 60605
Director , Defense Advanced Research
Projects Agency Director , ONR Branch Office

1400 Wilson Boulevard Attent ion : Dr. 3. Lester
Arling ton , VA 22209 495 Summer Street

Boston , MA 02210
Director , Cybernetics Technology Office
Defen se Advance d Research Projects Agency Director , ONR Branch Office
1400 Wilson Boulevard Attention : Dr. E. Gloye
Ar ling ton , VA 22209 1030 East Green Street

Pasad ena , CA 91106
Defense Intelligence School
Attention : Professor Douglas E. Hunter Office of Naval Research
Washing ton , DC 20374 Scientific Liaison Group

Attention : Dr.  M. Bertin
American Embassy — Room A—407

Department of the Navy APO San Francisco 96503

Office of the Chief of Naval Operations Dean of Research Administration
(OP—987) Naval Postgraduate School

Attention : Dr. Robert G. Smith Attention : Patrick C. Parker
Washington , DC 20350 Monterey , CA 93940

Off ice of Naval Research
Naval Analysis Programs (Code 431) Department of the Army
800 Nor th  Quincy Street
Arlington , VA 22217 U.S. Army Research Institute

Organization, and Systems Research
Office of Naval Research Laboratory
Operations Research Program s (Code 434) Attention : Dr, Edgar M. Johnson (PERT—OK )
800 North Quincy Street 1.300 Wilson Boulevard
Arling ton , VA 22217 Arlington, VA 22209

Off ice of Naval Research (Code 436) Department of Engineering
A ttention : Dr. Bruce MacDonald United States Military Academy
800 North Quincy Street Attention : COL A. F. Grum
Arlingto n , VA 22217 West Point, NY 10996

171



Other Institutions

Director , Social Science Research Institute
University of Southern California
Attention : Dr. Ward Edwards
Los Angeles , CA 90007

Perceptronics, Incorporated
Attention : Dr. Amos Freedy
6271 Varie l Avenue
Woodland Hills , CA 91364

Stanford University
Attention : Dr. R. A. Howard
Stanford , CA 94305 (10 copies)

Decision Analysis Group
Stanford  Research I n s t i t u t e
Attention : Dr. Miley W. Merkhofer
Menlo Park , CA 94025

Decision R ese arch
1201 Oak Street
Eugene, OR 97401

Department of Psychology
Hebrew University
Attention: Dr. Amos Tversky
Jerusalem , Israel

Professor Howard Raif f a
Morgan 302
Harvard Business School
Harvard University
Cambridge , MA 02163

Professor Richard Meyer
Morgan 302
Harvar d Business School
Harvard University
Cambridge , MA 02163

172



UNCLASSIFIE D
S E C U R I T Y  CL A SSIF I C A T I ON OF T Ill S P A G E  (W7..n D.,a E nf . r . d)

REP’~RT D~C~~Eb~hTAT I~~
I PAC E R E A D  L N S T R U C T I O N S

Id Id VIR I~ ~~~~~~~ “S’ BEFORE CO”IFLETIN G FORM
REPORT N U M B E R  2. ~OVT ACCESSION No. 3. RECIPIENT S C A T A L O G  NuM BE R

EES DA 77—4 ’ ___________________________
4. T ITL E (ond Subtill.) S. TYP E OF REPORT B PERIOD COV E RE D

PREFERENCE MODELING OF UTILITY SURFACES Technical

6. PER FORMI NG ORG. REPOR T NIj MBL R

7. AU TNOR (s) B. CONTRACT OR GRA NTNUM BE R( ’)

Khaled H. Nahas Contract N000l4—76—C—0074
DDI subcontract 75—030—0713

_____________________________________________________ NSF_Gran t_ ENG_ 76—81056
9. PERFORM ING O R GA NI ZA T ION N A M E  AND ADDRESS 10. PRO G R A M  E L E M E N T . PROJECT , 1 A SK

A R E A  B Y O R K  UNI T  N U M B E R S
The Board of Trustees of the Leland Stanford
Junior University, d o  Office of Research Admini-
stra tor , Encina Hall , Stanford , CA 94305

1’ . CONTROLLING OFFICE NAME AND ADDR ESS 12 . REPORT DATE
Defense Advanced Research Projec ts Agency December , 1977
Arlington , VA 22209 (sub—contract with Decisions TI NUNB EROFP AGE S
& Designs , Inc., McLean , VA 22101) 184

14 M O N I T O R I N G  A G E N C Y  N A M E  S A O D R E S S ( I I  dISf . , .n t Ivoa, ConIroIlS,,g Of f i c e )  15 .  S E C U R I T Y  C L A S S .  (of  this ,.p or t)

Engineering Psychology Programs , Code 455
Off ice of Naval Resear ch UNCLASSIFIED
800 N. Quincy Street IS.. D E C L A S S I F IC A T I O N /D O W N G R A D I N G

Arlington , VA 22 217 SC HEDULE

16. D I STR I BUTION STATEMENT (of thIs R.por t)

Approved for public release; distribution unlimited

17. DIS TR IBUTION STATEMENT (of A. .b.fr.ct wt.r.d h, 8~ock 20. Ii dIf I . v ~~,f  leo., R.porl)

IS. SU P P L E M EN T A R Y  NOTES

IS. KE Y W O R D S  (Con,lnu. on r.err.. aId, if nec....ry id Identif y by block rwmbe,)

De cision analysis Value independence Preference  func t i ons
Decision making Utility independence Utility surfaces
Conditional utility Decomposition
Multiattribute utility Regularity assumptions

~Q~~~~~sTR~.C T (ConIi”ta. on p.. .,.. side If n.c....ry wd Id .ntlfy by block nim.b.,)

~This research proposes a new framework for constructing preference
functions when the consequences of a decision are judged by multiple
attributes or criteria. Methods for assessing single—attribute preference
functions have been well established. \The curren t , state—of—the—art
procedure for der iving arb itrary , aulti~ttribute preference functions , how-
ever, has required re gularity aseumptioós to reduce the arbitrari ness of
the preferences. This technique , ca11eIl

L
decomPoa ition

~ 
has been used

D D 1  ~~~~~~~~~~ 1473 EDITION OF I N O V 6 5  IS OBSOLETE UNCtA S~IFTw ...~.~~ ~~
SE CU R ITY C L A SS I c I CA T ION OF THIS PAGE (~~~.n 1l•Ia Bnt.,.d ~

173



UNCLASSIFIED
S E C U R IT Y  C LA S S I F I C A T I O N  OF THIS PAGE(W ?i w Dot. EnI•,.d)

because it usually results in a simple and appealing preference model.
The difficulty with this approach is seen in the restrictiveness of the
two main assumptions:

(1) the same preference regularity is inmosed on all
attributes , using this svimnetry to achieve a simp le
preference function , and

(2) any n—dimensional preference function is decomposed
into n one—dimensional preference functions .

In this work , no symmetry assumption is neç~j’~sar~~, as each
multiattribute preference function is tailor—fit to only those
r e g u l a r i t i e s  tha t  exist in a particular problem setting . Those
parts of the preference function that are subject to simplifying
assumptions are decomposed using a new classification scheme to
derive further independence assumptions for the standard models.
Those parts of the preference function that are indecoinposable
are handled using a new discretization scheme along with a
behaviorally motivated interpolation rule to fill the gaps.
The flexibility of these methods allows an analyst to make
trade—offs between the degree of accuracY desired and amount of
effort needed .

This integrated framework for decomposable and indecomoosable
multiattribute preference functions stands as an important decision
analysis aid . The usefu lness  of the framework is illustrated in an
example of the decision to buy a new car . The relationship of the
attributes can be assessed in advance , thus allowing an optimal
decision to be made in the decision maker ’s absence.

t

UN CLASSIFIED
S E C U R I T Y  CLASSIF ICATION OF THIS PAG((WW .n Data EnI.~.cf ~

174


