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1.0 Introduction

Increasing demands on the performance of satellite communication
antennas have generated recent interest in efficient and systematic
methods for analyzing and synthesizing reflector antennas and associ-
ated feed systems. A comprehensive discussion of a diverse array of
available techniques for analyzing reflector antennas has recently been
published by Rusch [1]; the reader interested in developing a good broad
background on the subject will do well to refer to this excellent work.

Scanning through the 1iterature on reflector antennas, one finds
that most workers prefer to use methods based on integration of the
induced currents on the reflector to compute its secondary pattern.
Also, the induced current on the surface of the reflector is typically
derived via the well-known "physical optics" approximation which has been
verified to be extremely accurate for predicting the pattern over a rather
wide angular range in the forward direction.

In contrast, the ray optical methods are known to run into difficulty
(2] in the neighborhoad of the caustic, i.e., the beam maximum, although
they work well at wide angles. Hybrid techniques that employ ray methods
as a first step for deriving the fields in the projected aperture of the
reflector and then integrating over this aperture to derive the far field
have been used by a number of workers. However, they suffer from the
shortcoming that the secondary patterns computed in this manner rapidly
become inaccurate as one moves away from the beam maximum. Thus, the use
of this approach is limited to the computation of the main beam and the
near-end sidelobes only. Furthermore, the polarization information de-
rived from either the ray or the hybrid approach can contain errors
beyond the tolerance requirements on the accuracy of the results.

For the reasons outlined above, we choose to follow the induced
current integration method in this work and describe in detail a recently
developed series approach {3] that allows an extremely efficient evalua-
tion of the radiation integral of reflector antennas. The series
approach differs both in spirit as well as in detail from the various

1




numerical algorithms conventionally employed for increasing the efficiency
of the numerical procedures [1] for evaluating the radiation integral.

The development of the series representation is motivated by the fact that
in the course of synthesizing contour beams, a topic which we discuss in
the latter part of this paper, one finds it necessary to perform accurate
computation of the secondary pattern of reflector antennas for a large
number of laterally displaced feeds and over a wide range of observation
angles. The series representation of the radiation integral developed in
this paper allows one to accomplish this task in a much more efficient
manner than would be possible via any of the conventional approaches.

The organization of this paper is as follows. In Section 2 we
discuss the case of symmetrical reflectors in some detail. In Section 3
we deal with the offset reflector and show that certain transformations
incorporated in the radiation integral for this case allow one to convert
it into a form which is identical to the symmetric case, thus preserving
all of the useful properties of the series form. In Section 4 we
discuss the problem of contour beam synthesis using a cluster of feeds.
We develop two approaches for deriving the excitation coefficients for
the feeds, one based on an approximation method, and the other requiring
the solution of a matrix equation that can be inverted in a closed form.
A comparison of these two methods is also included in Section 4.

2.0 Evaluation of Radiation Integral for Symmetric Reflectors

2.1 Integral Representation of Far Field

The far field radiation integral (suitably normalized) representing
the field produced by the induced current distribution J on the surface of
the reflector can be expressed as

: s . -3k(o"-3+Ry)
Elo,0) = (T-Rek) - [ [ 3 ds.
SURFACE

where T = the unit dyadic.

The geometry of the reflector antenna system including the feed is
shown in Fig. 1. We point out that the optical phase of J has been
factored out in (2.1) where this phase is defined relative to an ideal
phase center at e, which defines the lTocation of the displaced feed
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Fig. 1. Feed-reflector geometry.

(see Fig. 1). From Fig. 1 we also have the relationship

-. = = - = = = - ¥ v 3
p p=-€=p (xgx o ;e Zez) (2.2)

where p is the distance from the origin (focal point) to a point on the
reflector.

We note that the integral (2.1) is defined on the surface of the
reflector. Often a ray-optical "approximation" is used to derive an
alternate form for the radiation integral which requires the Fourier
transformation of the electric and magnetic fields on a projected aper-
ture of the reflector, rather than on the reflector surface itself.
However, as mentioned earlier, this introduces errors in the secondary
pattern calculation at observation angles away from the main beam direc-
tion and is therefore not suitable for our purpose. We can, neverthe]ess;
derive a mathematically exact form of (2.1) which is also an integration
over the projected aperture coordinates. For instance, we can write (2.1)




equivaiently as

-3k(p"-5-Ry)
r dr d¢'

F(o,9) = [z"[: F(r,e') e

a = radius of projected circular aperture

where F(6,¢) is related to a scalar component of E, say the x-component,
and f(r,¢') is expressed in terms of J and the Jacobian relating the
elemental area on the reflector surface into one on the projected circular
aperture. Explicitly, we have

flrae') = 9 (re') /1 + (9-5) ’

and for a parabola of focal length f,

fr') = 9,0r80) /1 + ()

The function f is sometimes referred to as the "equivalent aperture"
distribution. It should be realized that this is somewhat of a misnomer
since, physically, f is not the distribution on the projected aperture
(in contrast to the one that can be derived approximately via the ray
technique). Since (2.3) is exact, if f were indeed the true aperture
distribution, the kernel of (2.3) would have had the Fourier transform
form which, at the moment, it does not. One of the principal contributions
of this work would be to show that the kernel in (2.3) can still be
expressed in terms of a series of Fourier transforms of appropriate
functions related to f.

Typically, the induced current J is derived from the physical
optics approximation

where ﬁi is the primary magnetic field incident on the reflector surface
due to the given feed. However, if desired, the physical optics approx-
imation for J can be refined by augmenting it with fringe currents existing
at the edges of the reflector.




Returning now to (2.3), we note that the conventional approach to
evaluating the radiation integral entails repeated computation of this

] two-dimensional integral on the "equivalent aperture" for each observation
‘ direction which themselves form a two-dimensional grid. Even if some
timesaving can be achieved by employing efficient numerical algorithms for
evaluating (2.3), the total computation time can become prohibitively
large if accurate results are desired over a wide range of observation
angles. This fact motivates us to seek alternate means for handling the
radiation integral in a manner elaborated on in the following section.

2.2 Development of the Series Representation

A TR YT NS

As a preamble to developing the series representation, we introduce
certain notations, approximations and new variables:

€ € €
p' = pé - (—’-(-u' + Ly +-—Z—w')} + 0(&:2) - (2.5a)
P P )
where
u' = sin 8' cos ¢'; v' = sin 6' sin ¢'; w' = cos 8' (2.5b)

£ . and the direction cosines u, v, w for the observation variables are like-
; wise defined by removing the primes from (2.5b). Typically, for small
R displacement of the feed, the second-order term in (2.5a) is negligible

% and we make the approximation here that this term is small. However, it
: is only a trivial extension to include the higher-order term in (2.5a).

Scaling the radial coordinate r by introducing r = as, a = D/2, and
D = diameter of the reflector, one may rewrite (2.3) as

1 2" 1 > - A 3 '
F(u,v) etikef _ g2 J I [f(s,¢") e+Jk(€'o)] o~Jkow' (1-cose)

! . gkassinecos(e-9') o 4 ek (2.6)

Upon examining the integral in (2.6) carefully, we find that the first
factor inside the integral is a function of the integration variables
alone and the last factor is the Fourier transform kernel written in a
polar form. The second factor, viz., exp{-ikow'(l - cos 8)}, is a
function both of the integration and observation angles, and thus is the
factor that requires the special treatment described below.
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We define

L(s,u,v) = pWw'(1 - cos 8) (2.7a)
and
Ly L(S.uo.vo); La = L(sa,u.vf; Lao = L(sa,uo,vo) (2.7b)

where Sa is a constant to be determined later and Ugs Vp are the direction
cosines evaluated at 6 = 30’ ¢ = ¢0.

Since pw' = p cos 6' is simply the z-coordinate of the reflector
surface, for a symmetric parabola this quantity is a quadratic function of
the radial variable s, and is obviously indpendent of the azimuthal
variable ¢'. We make advantageous use of this property of L later. If we
now rewrite

=J(L-Latl -L_ o )+i(La-L-L_4)

-‘ ' - —‘
3 jkew'(1-cose) _ L g 5 0 "a a0 0. a a0 / (2.8)

we may rearrange (2.6) as

L T ORI SREN ! it i
E (u,v) = J J fedk(esp)+ikassinocos(e=o') =38 ¢ 4 g4 (2.9a)
1 0 0
where
: Lo <L)
E1 = F(u,v) eJkaa 2e a a0 (2.9b)
o ‘jLO
f = fe (2.9¢)
and
A(u,v,uo,vo; s,sa) o L0 - La + Lao (2.9d)

One last step in our manipulation of (2.6) entails the shifting of
the origin of the observation coordinates such that it is centered around
the beam maximum which is determined by e, the lateral displacement of the
feed. This transformation is useful for efficient evaluation of the
radiation integral. We choose the new observation variables to be n and
a,related to the original direction cosines u and v through the formulas

n s ,/%u - uM)2 + (v - vM)2 gy

Vv
arctan {— uM ,
M
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Uny and i being the coordinates of the shifted origin which is here taken
to be the beam maximum. Typically Ugs Vor introduced in (2.7b), are set
equal to Uy Ve respectively. We can now return to (2.9a) and rewrite
the first exponent as

ke + p + kas sin 0 cos (¢' - ¢) = ke, cos B' + kas[-(BMtM) cos (YM -¢')

+ncos (a=-¢"')]
where
By v A
A b 2 . MM
BMtM = //QBU uM) + (Bv vM) s Yy E arctan e
M M Uy M
> (2.10)
1 1
[ 5-(——+1) > B 5-(——+1)
Uy BuM " BVM J
and where, for a paraboloid,
2
M=1+ i s2
At
D

Here we have made use of the relationships

> sy S ) prs Moo= 2
sin g' = AGDEE B0g. 6" 5 g

Lastly, Bu and Bv are the so-called beam deviation factors defined by

UM VM
B = U; (v =0 plane) , B = V; (u =0 plane)

&
with e 7? i e 7¥ . Simple expressions for determining Bu and Bv are

given in Appendix I. Using (2.10) in (2.9a) we can rewrite the latter as

2n (1 . S
Ey(u,v) = f J fi(ss0') eIkasncos(a=6') =38 ¢ 4o g4t (2.11a)
0 ‘o

with

-jL, Jke_cose' -jkasgyt,cos(yy,-¢')
0,2 e N e . (2.11b)

fi(ss0") = f(s:0') e

T T e TR R NS AR




The motivation for the manipulations leading up to (2.11) is now
given. If we can show that the exponent A is small for certain ranges
of observation angles to the extent that exp[-jA] = 1, we would obtain
a Fourier transform form for the radiation integral with an "effective
aperture" distribution proportional to fl'

Referring to the definition of A given in (2.9d) and the expressions
for the various L's given in (2.7), we immediately see that A = 0 at
U= Ugs .., 6= eo (typically, though not necessarily, the elevation
angle oy corresponding to the beam maximum). Thus exp[-jA] is identi-
.ally equal to 1 for this choice of observation angles. In addition,
though not obvious at this point, it turns out that by a suitable choice
of Sy defined in connection with (2 7b), we can make A small in the
region of integration of (2.9a) from which the dominant contribution of
the radiation integral is derived in the wide angle region (typically
just a few sidelobes away from the beam maximum) where 6 is not clese to
89 Thus, unusual as it may appear at first sight, what we have accom-
plished through the manipulations described above is the derivation of
an "effective aperture" distribution which is simultaneously valid not
only at the beam maximum (as is the ray optical derivation), but at wide
angles as well where the ray optical distribution is inaccurate. In
fact, numerical results show that only in a small intermediate angular
region does the setting of exp[-ja] = 1 in (2.11) introduce any signi-
ficant errors.

To fill in this gap, we go now to the next step and expand exp[-ja]
in a power series of A, obtaining

en 1
El(u,v) = J [ flK s ds d¢' = Jg I AflK s ds d¢'

0 ‘0

2

A™f.K s ds d¢' (2.12b)

1

K = eJkaSnCOS(a-¢ bk Fourier transform kernel (2.12b)

in polar form, and A was defined in (2.9d). At this point we can compute
E1 by repeatedly Fourier transforming fl, Afl’ A2f1, etc., which of course

g AT ) P T A
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requires an n-fold increase in the number of computations, where n is the
number of terms retained in the series. Instead, in the next section,

we introduce a series method for computing the first integral in (2.12)
which has the unique advantage that the coefficients of the series, once
computed, can also be used to evaluate the higher-order terms in

(2.12) with very little additional effort or increase in computational
time.

In summary, what we have accomplished in expressing the radiation
integral in the form of (2.12) is a biconvergent series whose leading term
accurately predicts the pattern both in the neighborhood of 6 = 8 and at
wide angle regions. In addition, because of the special form of A, the
higher-order terms can be calculated with only a 1ittle additional effort
beyond that required to evaluate the first term. We substantiate these
assertions in the next section where we detail the evaluation of the
various Fourier transform integrations in (2.12) using the Jacobi
polynomials.

2.3 Evaluation of (2.12) Using Jacobi Polynomials

The first integral in the r.h.s. of (2.12), which has strictly a
Fourier transform form, can be evaluated by any number of ways, e.g.,
using the FFT or expanding f1 in a series of Bessel functions and evalu-
ating the resulting series of integrals term-by-term in closed form.
However, as explained in the last section, our goal is to utilize the
results of the first integration for efficiently evaluating the higher-
order terms. The expansion functions for f1 that are uniquely suited
for this purpose are the Jacobi polynomials, also referred to as the
circle polynomials of Zernicke (4], [5]. The use of the Jacobi polynomial
allows one to evaluate the first integral with a speed comparable to the
FFT. However, the Jacobi polynomial method has several important
advantages over the FFT method, viz., (i) it is better suited for
circular apertures; (ii) it can be used to compute the pattern at an
arbitrary value of 6, ¢ not restricted by the choice of the FFT-type
grid; (iii) it does not suffer from aliasing errors or Gibb's phenomenon;
(iv) it is useful for efficiently evaluz ing higher-order terms whereas
the FFT method is not; (v) it has superior numerical accuracy.

i i




The Jacobi polynomial series expansion begins with a two-dimensional
Fourier series representation for f in (2.12)

folsig! )=o) 0} (F" cos ng' + D" sin n¢') F(s) (2.13)
} m=0 n=0 \" " »

Fi(s) = PP(1 - 2s2) = 2(n + 2m + 1) Pr(n"’o)(l - 25%) §" (2.14)

where Pé"’o)(x) are the Jacobi polynomials.

Inserting (2.13) into the first integral in (2.12), henceforth
referred to as E? for convenierce, and using the identity

2m i
g% Jp(z) = f cos nu e J%COSY 4, |
J 0

CcOoS na Cn

1
E?(n.a) = § 2nj" ) 2 f F;(s) J (kans) s ds
n sin na | m Dm 0

where denotes an upper plus a lower sum. The integral in (2.16)
involving the product of Jacobi polynomials, the Bessel function and
the weight function can be evaluated in a closed form [6] using the
integral relationship

Jn+2m+1(ay)

1
n+1/2 5(n,0) 2 Waus y
a JO s Pm (1 - 2s%) Jn(yas)(ys) ds ;T7§

(2.17)
(n > =(m+ 1))
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In general we have

fn:émtlfffﬂl . (2.18)

kan

1
Iy () = jo F(s) 3, (Kans) s ks = /2(n % 20 ¥ 1)

The use of (2.18) in (2.16) permits us to write the final form for the
first term of the radiation integral

Ego)(u,v) = Ego)(n,a) =2n J §" 08 L 2(n+2m+ 1)
n=0 sin na { m=0

(2.19)

n
Cn Jn+2m+1(ka")
" kan

(0)

We note that the radiation integral E1 can be readily calculated at any
observation angle u,v [or (n,a)] once the Fourier coefficients C; and D;
have been determined. This is in contrast to the direct evaluation of the
original integral (2.6) which has to be computed repeatedly for each
observation point. We also note from (2.19) that the leading term is the
Airy function which is the radiation pattern of a circular aperture with
uniform amplitude and phase distribution (except for a linear taper which
shifts the beam maximum to U vM). A1l of the higher-order terms of the
series in (2.19) become zero as n » 0 and represent perturbations around
the beam maximum.

The expansion coefficients are found in the usual manner after
recognizing that the Jacobi polynomials satisfy the orthogonality
relationships

1
Jo 1 - 252) P - 2s%) s ds = o, (2.20)

et e bl i el




where sm. is the Kronecker delta. The orthogonality property was one of
the criteria employed to select the expansion functions for fl; the other
was the recursion relationship which is used to evaluate the higher-order
terms. The integrals to be computed for evaluating the series coeffi-
cients are given by

" e. (1 (2n cos n¢'
m. 2%[ I Filsa0){ (1 - 28%) s dp' ds  (2.21)
Dm 070 sin n¢'

where & 1 forn=0and 2 otherwise. An important characteristic of
the integrands in (2.21) is that they are far less oscillating than the
kernel of the radiation integral (2.6), since the absence of the exponen-
tial factor exp[jkas sin 6 cos (¢ - ¢')] makes the kernel of the radiation
integral in (2.21) vary much less rapidly compared to the one in (2.6),
particularly when {ka sin 6} is not small.

Before proceeding with the discussion of the steps for the evaluation
of the higher-order terms, we examine the leading term E? in a little
more detail with the purpose of showing that this term is useful for the
wide angle region as well. This is the biconvergent property alluded to

earlier in connection with the series given in (2.12).

In order to explore the wide angles (6 not close to 60) behavior of
A, we refer once again to the definition given in (2.9d) and (2.7) for a
and the L's, respectively. It is evident that A =0 at s = Sa* We now
appeal to the well-known result in high-frequency diffraction phenomenon

that away from the caustic (beam maximum) the contribution to the

secondary radiation comes mainly from the rim of the reflector, described
by s = 1.
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Consequently, if.we choose Sa to be equal to 1, we make the
exponential factor e J8 close to unity in the neighborhood of the region
from where the principal contribution of the radiation integral is
derived, in the asymptotic sense, for all observation angles not close
to u = uy (o = eo). Extensive numerical experiments with different
choices of Sa have confirmed that this choice for Sa is the most
appropriate one for the symmetric reflector antenna, with or without
displaced feeds.

The last topic we discuss in this section is the use of the Jacobi
polynomial series for the evaluation of the higher-order terms in (2.12).
We begin by explicitly writing L(s,u,v), originally defined in (2.7a).

As observed earlier, for a parabola pw' is simply the z-coordinate of the
reflector surface and this variable is independent of ¢' and quadratic
in s. Explicitly, for a paraboloid of revolution

L(s,u,v) = {2 (%)[—1 + (%)2] sz}. E, % Z /,2 %2 = (kau)2 P (kaV)ZJZ.éZ)

Using the definitions given in (2.7b) and (2.9d), we can write A as

AR < 6(ugou) (2.23a)

where

2 2
G(uo,u) = /é%% - (kauo)2 (kavo)2 - //%¥a - (kau)2 - (kav)2 .

(2]
"
IH

8F/0 (2.23b)




Substituting (2.23) in (2.12) we obtain

El(u,v) = g Egp) = Ego)(u,v) + Egl)(u,v) + Egz)(u,v) $ig 3 (2.24)

where E§0), defined earlier,is the first integral in (2.12), and the higher-
order integrals are expressed as

E{N uav) = ges IZ" f; (s? - sZ) £k s ds do" (2.25)

e = 25 [0l

5 Ksds de' . (2.26)
0 ‘0

1

We have already discussed the evaluation of Ego) by expanding f1 in a
two-dimensional Fourier series given in (2.13). We now show that by
virtue of the recursion relations satisfied by the Jacobi polynomials,
the expansion coefficients of the higher-order terms, e.q., #2 - sg) f1
and (52 - 52)2 fl’ etc., can be readily expressed in terms of C;, D";
which have presumably been computed already in connection with the

evaluation of E{O).

To this end we make use of the recursion relationship [6]

2 2\ on _ n 2\ on n
(S ' Sa) Pn = AnPm-1 ¥ (bmn ¢ Sa) P * ConPmel

s m(n + m)

T T (n+2m)(n ¥ 2m+ 1)

. (m + n)2 p (m + 1)2
@2m+n)in+2m+1) (n+2m+2)(n+2m+1)

(m+ 1)(n +m+ 1)
T T h+2m+ Dn+2m+ 2) °




and defining the higher-order expansion coefficients in terms of the

T TR RO |

integrals
g e, (1 2m cos n¢'
L 2‘” I % (52 4 Si)p PR(1 - 2s%) s ds  (2.28)
Pp" 0’0 sin n¢'
m
we can derive
PgN = 5 P-1gn _ <2 p-lgn p-1,n
Bm an Bm_1 + bmn Sa Bm + Con Bm+1 (2.29)

where B represents either C or D. We note from (2.29) that if we retain
terms up to the pth order, then the number of coefficients requiring
computation is M + p where M is the upper limit of m. Consequently,

2N (N = "max) additional series coefficients (N each of C's and D's) are
needed for evaluating p integrals of the type Egp)(u,v). However, one
finds that the higher-order pB; coefficients typically decrease very
rapidly, allowing truncation to a moderate number of terms and correspond-
ing pairing of computational time.

We summarize this section by noting that we have expressed the
radiation integral in (2.12) in terms of a series given in (2.24). We
have shown that the first term of the series, viz., Ego)(u,v), gives the
radiated field for (u,v) = (uo,vo) where ug, Vg is typically taken to be
the beam maximum. The first term also predicts the pattern with good
accuracy for 6 not too close to 8 if we choose e 1, since the
radiation away from the caustics comes mainly from the rim of the reflector
; (s = 1) and the particular choice of S makes A small in this region of the
, "effective aperture." For the intermediate range of observation angles,
f_ we can efficiently compute the higher-order integrals in (2.24), i.e.,
| E§1), E§2)’ etc., by making advantageous use of the recursion relations
of the Jacobi polynomials. In fact, among other reasons, this property
of the Jacobi polynomials makes them uniquely suited for our purpose of

series expansion.
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In the next section we present some numerical results illustrating
the application of the theory developed in this paper.

2.4 Steps for Numerical Computations and Illustrative Results

Given the primary pattern of a feed and the parameters of the
reflector antenna, the numerical computation of the secondary pattern is
carried out using the following steps:

(1) The current distribution J on the reflector surface is computed
from the knowledge of the feed location € and its primary pattern using
the physical optics approximation.

(2) f(s,¢') is obtained from (2.4). Note that p sin 8' = r and
as. The same procedure is repeated for other scalar components of J
(for details see Appendix II).

(3) Beam deviation factors are computed using the method in
Appendix I and Uys Vy are derived from the coordinates of the phase
center of the displaced feed. We also calculate By tM and Vi appearlng

n (2.10).

(4) f1 is derived using (2.11b).

(5) Jacobi polynomials are generated using their recursion
relationship [6].

r

(6) The two-dimensional integration represented in (2.21) is
performed to compute Ca and D:. The integration may be carried out using
any of the standard quadrature routines, e.g., the Gauss quadrature. If
a large number of ¢-coefficients, i.e., n, are required, one may perform
the ¢-integration via the FFT.

(7) The coefficients C and D are inserted into the recursion
relation (2.29) to generate the hlgher-order coefficients pC . pD

(8) E(O), E(l) §2), etc., are successively computed using these
coefficients and Equat1ons (2.19), (2.25) and (2.26) are added up to
generate E1 and subsequently F.

(9) The procedure is repeated for the other components of J using
the corresponding f.

(10) The vector far-field pattern is constructed by appropriately
summing up the various contributions.

We now present a few numerical results to illustrate the convergence
of the method. Figure 2 shows the effect of increasing the number of
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terms in the Fourier series expansion of fl. e, m.. (= M) and e

(= N) for increasing lateral displacement of the feed, e.g., €y (or
equivalently kaus). The convergence is seen to be guite rapid even for
several beamwidths of scan which is accompanied by a distortion of the

secondary pattern.

Figure 3 shows the convergence of the p-series, i.e., (2.24). It
is evident that even for a badly distorted pattern only one term of the
p-series, i.e., Ego), is sufficiently accurate for computing both the
amplitude and phase, except in a relatively small, intermediate region
20 < kau < 30. However, only three terms give sufficiently accurate

solutions over the entire range of observation angles.

Before closing this section we remark that unlike the conventional
methods the present approach is very well-suited for computing radiation
patterns of large reflectors, even several hundred wavelengths in size
and, in fact, the relative advantages of the series methods become even
more evident when dealing with the large reflector antennas. Since the
p-series becomes more rapidly convergent as D/A is increased, one finds

e CONVERGED

---------------- M=N=2
——————-=M=N=3 :

Al S S S e P N —— FIRST TERM OF EXPONENTIAL SERIES (= 1)
...................... M-N-s s zrenns' (’-”

~=== 3TERMS. (p = 3) = CONVERGENCE (EXACT).
0

i ;

{

-10.0

200}

[ I ¥
50 100 150 200 250 300 350 400
KAU

T T TR, PN A
150 100 50 00 50 100 150 200 250 0
KAU

kau = p 2 qu’- |
Fig. 2. Series convergence as a

function of m and n. Fig. 3. Convergence of exponen-
f/D = 0.5, D/x = 50. tial series (2.24).
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that the usual numerical problems of storage, loss of accuracy, and
astronomical increase of computation time are virtually nonexistent here.
Furthermore, E&o)(u,v) can be expressed in a scaled form such that the
results for the pattern are universal and independent of A. These added
features are quite useful for computation and display of the radiation
patterns.

3.0 The Offset Reflector

3.1 Introduction

The offset reflector is finding increasing use in many communication
satellite antennas because of its freedom from blockage effects which can
affect the performance of a reflector antenna in a deleterious manner.
The analysis of offset reflectors is made difficult by the lack of any
possible simplifications due to symmetries in the structure. In addition,
cross-polarization effects and pattern distortion due to scanning become
more important here than in the symmetric case. Thus, accurate but
efficient computation of the vector secondary pattern of offset reflec-
tors is highly desired in many applications.

In this work we show that with only a relatively small additional
effort one can extend the series method of Section 2, developed for the
symmetric parabola, to the offset case. We proceed to demonstrate this
in the following sections.

3.2 Radiation Integral for the Offset Parabolic Reflector
The geometry of the offset reflector together with the location of
the feed plane is shown in Fig. 4. Once again we can write the normalized

radiation integral in terms of the induced current J on the surface of the
reflector as

St -5k(p"-p+Ry)
B(e,0) = (T - RyRy) % B G g (3.1)

SURLACE

which is identical to (2.1). Recall that the optical phase of J has been
factored out explicitly relative to an ideal phase center located at ¢
(see Fig. 4). Also, the integral is defined on the surface A of the
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Fig. 4. Geometry of offset parabola.

reflector and not in terms cf an approximate, ray optically derived field
in the projected aperture.

Introducing a mathematical transformation, we can rewrite the integral
in terms of coordinates r, ¢' of the projected aperture of the parent
parabola (see Fig. 4). We get, for a typical scalar component of E, say,
F(e,¢), integrals of the type

-jk(p'-5+Ry) .
F(8,¢) = JI f(r,e') e r dr d¢' (3.2)
A

where f is related to the corresponding scalar component of J via the
Jacobian J of the transformation between the parabolic surface and the
projected aperture. The Jacobian J is given by (1 + r/2f)1/2.

Using the small displacement approximation, we can write

p' =p-pee . (3.3)
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As mentioned earlier, this approximation is easily generalized, if desired,
and is not really necessary for our work. However, the small displacement
approximation is often used because of its simplicity and because it is
sufficiently accurate as long as the feed displacement is not too large.

For a parabola,

p=2f +pcos ' and sin ' = r/fM (3.4)

1+ rlpaf

i

with M

and, hence,

2f+pcos 8' -p » ¢
2f + p cos 8' - [(exr/fM) cos ¢' + (eyr/fM) 5 e SRR i S

P

u

Recognizing that

p sin 8' sin 6 cos (¢ -~ ¢') + p cos & cos &'
r sin 8 cos (¢ - ¢') + p cos 6 cos &' , (3.6)

p'Ro

we can rewrite (3.1) as

j - V(1= ke coss'
F(o,¢) edkef - IJ {}(r,¢') o-Jkecose' (1-cose) ™z

A
- e'jkelr(“sc°5¢'+vsSi"¢') 4 ejknrcos(u-¢'{} rdr do' )
3.7
where 2 (
and
o = tan”! %é—;—%i; ;n = //(v + vs)2 + (u + us)2 (3.9)
> Rt ol (3.10)

Examining (3.7), we note the following features of the integrand.
In addition to the function f, which is realted to the induced surface
current on the reflector, the integral has four exponentials. The first
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of these is a function of both the observation angle & and integration
variable 8'(r). The second and third exponents depend on the integration
variables r and ¢' only. In the second exponent we have deliberately

left €, to be nonzero, since, in contrast to the symmetric reflector,

the plane of displacement of the feed for minimum distortion is not
entirely transverse for the offset case. We will soon demonstrate this
point when we derive a formula for the optimum feed displacement plane.

The third exponent contains ug and v which define the lateral coordinates
of the displaced feed. Finally, the last exponent is the familiar Fourier
transform kernel expressed in cylindrical coordinates.

It is desirable for later manipulation to shift the origin of the
integration coordinates to the center of the projected aperture. To this
end we introduce the transformation of coordinates from (r,¢') to (r1,¢1)
system (see Fig. 4) via the equations

r cos ¢' d1 +ry cos ¢, (3.11a)

r sin ¢' r sin ¢ : (3.11b)

Writing Flu,v) eIh2f _ El(u,v), we get from (3.7),

-jkdlnc05a ol TAL T -jkz(r1,¢1)(1-cose)
E.(u,v) e = filr. s0,) e 5
1 0 Jo 1 |

-jkg,r.t_cos(y_-¢,) -jk(B,d,u_-e_coss')
o e i . T ie g2

jknrlcos(a-¢li}

x e " dr1 d¢1 (3.12)
with
f(r19¢1) o f(rs¢')
ts gl e tany, = uS/vS ; (3.13)
Note also that the " and r are related by
A g
e + d1 4 2r1d1 cos ¢; . (3.14)
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At this point it is worthwhile to point out some of the similarities and
differences between the radiation integrals for the symmetric and offset
reflectors. For both of these cases the radiation integral reduces to the
Fourier transform form if the first exponent is small, which occurs when
8 = 0. In the symmetric case the function z(r1,¢1) is independent of the
azimuthal coordinate and, in addition, is a quadratic in the radial
coordinate. This special property of the z-coordinate of a symmetric
parabola allowed us to express the radiation integral in the form of an
analytically continuous series whose higher-order coefficients are
derivable from those of the corresponding zero-order term via the re-
cursion relationship of the Jacobi polynomials given in the previous
section.

It would appear at first sight that this unique and advantageous
feature is no longer available for the offset case. Since the function
z(r1,¢1) is neither independent of the azimuthal variable ¢1, nor
is it a quadratic function of re However, we show in Sec. 3.4 that
by using a suitable transformation of the observation variables n and a
we can still recast (3.12) into a form which has all of the desired
characteristics of the symmetric case including the numerical efficiency
and ease of computation.

Before discussing this topic, however, we will briefly digress to

consider the problem of choosing the optimum scan plane, i.e., €, 3 a

function of (ex,ay), for offset reflectors.

3.3 Choice of Optimum Scan Plane

We return to (3.12) and rewrite the third exponent, which contains

£ as
z°?

jk(sldluS - €, €OS 8') = jksl[dluS - 2521 + jkeZ (3.15)

where By was defined in (3.8). This allows us to rewrite (3.12) as




-3k(d,u e, )-jkd,u

El(u,v) = El(u,v) @
- [ I f(r1»¢1) €
0
-jkslrltscos(YS-¢1) ~jksl[d1us-2ez]
x e e
jknr.cos(a=¢, N
1 1
x e ‘} ry dry do; (3.16)
where we have used u = n cos a. It may be worthwhile to point out that
-jkd,u
e ] represents the phase factor introduced in the expression for the

radiation integral due to a shift of the origin from the focus of the
parent parabola to the center of the projected aperture.

The criterion we choose for determining ez(ex,ey) is that an optimum
choice should minimize the phase error terms represented by the second
and third exponential factors in (3.16), exclusive of linear phase tapers
which may contribute to beam shift. Explicitly, we deal with the
exponent h(r1,¢1)

h(r1,¢1) = kel[dluS - ZeZ] + kBI[rltS cos (ys - ¢1)] . (3.17)

We note that the first term in the square bracket, i.e., [dlus - ZeZ], is
independent of " and 995 whereas the second term contains the factor

rltS cos (ys - ¢1), which has a single cosinusoidal variation as a function
of the azimuthal angle ¢y Since both of these have a common multiplicative
factor kBl, one might be tempted to conclude that the minimum distortion

due to h(r1,¢1) results when we set

25:z = dlus a (3.18)
However, as shown below, the correct choice differs from that given in
(3.18) because the behavior of By as a function of (r1,¢1) can not be
ignored. To this end we examine B1 and express it as
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~ (r/2f)? ? (r1/2f)2 + (d1/2f)2 + (ry/2F)(d;/2f) cos ¢,

Lo (r/26)5 1+ (r/26)7 4 (472607 + (r)/2F)(d,/2f) cos 4,
(3.19)
which may be approximated to give
[}r +d,)% + 2r.d. cos ¢
&5 1 1 171 i]
81 ) f2 2 2 . (3.20)
(4 + ] + dl)
We therefore have
h(r s6,) = d2(d,u_ - 2¢.)
5 G | 1 1S z
2
tr dltS cos (ys - ¢1) + 2d1(d1uS - Zsz) cos ¢;]
& ri [(dlts €os v + dl"s - Zez) + dlts cos (ys - 2¢lﬂ
3
+ rlts cos (ys - ¢1) : (3.21)

We note in (3.21) that the parameter e, appears only at three places.
The first term containing e, is a constant in r and merely introduces a
constant phase factor in the radiation integral without contributing to
distortion. The second term, linear in res also contains €, However,
this exponential factor only contains cos 2 and sin ¢q types of terms,
and hence can be straightforwardly combined with the Fourier transform
kernel -exp[jkn cos (ys - ¢1)] to derive the direction of the shifted beam.
We show this explicitly in the next section. Meanwhile, we remark here
that because of its special form the 1inear term in " does not introduce
any distortion terms either; therefore, we turn our attention to the
quadratic term in r It is evident that the first term inside the bracket
is independent of 61 whereas the second term has a cyc]ica} variation
along the azimuthal direction. Consequently, the distortion in h(r1,¢1)
as a function of €, is minimized by enforcing the condition

dlts cos yv¢ + d1

by Zez =0 (3.22a)
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or 1
£, " (1/2)[d1ts cos yg + dlus] (3.22b)
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which can be further simplified to give

& dlus (3.23)
by recognizing that tg cos yo = ug. Comparison of (3.23) with (3.18) shows
that the two expressions differ by a factor of two. We now show that
(3.23) implies that the optimum plane of displacement of the feed is
approximately the plane normal to the line OP where P is the point on the
surface of the reflector whose projection in the focal plane coincides with
the origin (x = dl’ ryt 0) of the projected aperture.

Along this plane €,, and e = satisfy (see Fig. 5)

€n sin (m - e‘(dl)l dl/f1 (3.24)
—— = tan 6 _ = ; =
exn n (o{0 ] [" - 8 (dIY] 1 = (d1/2f)2
or
d,u 4
= 8 DRI SRR (3.25) ;

g TR (dl/Zf)z 1 sn

for f/D in the range 0.25 < (f/D) < 1,
since typically (d,/2)% < (1/18(£/D)1)?
for an offset reflector.

Offset
iy The result shown in (3.25), though \
px simple, is quite important from a f
P x:d, (note o,z J A . 3
Normal Plone practical point of view. In the past,
g s the choice of the optimum scan plane
» 3 br s -~ t has been based on experimental trials

and a systematic derivation of the
equation for the plane has not been
Fig. 5. Geometry of optisem blane aYaiIable. Before closing this sec-
for feed displacement. tion we add the remark that for the
symmetric case, d1 = 0; hence, the op-
timum scan plane reduces to the focal

plane €, = 0.

oo ik i i

e

25

:
s




3.4 Series Development of the Radiation Integral

We now return to (3.16) and examine the possibility of developing a
series expansion for this radiation integral in the same manner as was
done for the symmetric case. We note first of all that in the absence
of the first exponential factor exp[-jkz(1 - cos )] the integral (3.16)
would reduce to a Fourier transform form and could therefore be efficiently
evaluated by any number of available methods. Next, we recall that this
factor was also present in the symmetric case and that we were able to
handle it by using the recursion relations of the Jacobi polynomials
because the z(r,¢) for the symmetric reflector assumed a very special form,
viz., quadratic in r and independent of ¢. The apparent difficulty in
using the same procedure for the offset case stems from the fact that z is
now a function of both the integration variables " and I and the
recursion relationships of the Jacobi polynomials cannot be directly used
to efficiently evaluate the coefficients of the Jacobi polynomial series
for the higher-order terms of the exponential series derived from the

expansion of exp[-jkz(1l - cos 6)]. It is extremely fortuitous, however,
that certain manipulations of the integrand in (3.16) allow us to retain
all of the advantages of the Jacobi polynomial series without any penalty
whatsoever. We proceed now to elaborate on this point in the following
paragraphs.

As a first step we explicitly write

- it .c05: 0"
z(r1,¢1) o LBl e e
2 2 2
i r2 Vi 4f2 & r + d1 + 2r1d1 cos ¢1 - 4f s et
I ¢ A if .
for the offset parabola. Thus
& - af? rd,
z(r1,¢1)(1 - Cos 8) = g1 ;g (1 - cos @)+ —F C0S ¢, (1 - cos 8)
'3

* IF (1 - cos 8) . (3.27)

We now note the following features of the three terms appearing in the
r.h.s. of (3.27). The first term is independent of the integration
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variables and depends only on the observation angle 6. The second term
has a special form in that it is linear in " and has a cos ) variation.
Finally, the last term is quadratic in " and independent of ¢1. We will
soon make advantageous use of these properties of the first exponent in
(3.16).

Turning now to the second exponent in (3.16), we write
Blrlts cos (ys - ¢1) = elrl(us cos ¢; + v, sin ¢1)
= rl[(BluS + Cu) cos ¢, + (slvS + Cv) sin ¢,]
- rl[cu cos ¢, + Cv sin 9,1 (3.28)

where Cu, Cv are constants yet to be specified.

Finally, we rewrite the term nry cos (a - ¢1) in the last exponent as

nry cos (a = ¢1) = rl[n CoS o COS ¢, + n sin a sin ¢1]

rl[(u + us) cos ¢, + (v + vs) sin ¢1] : (3.29)

Using (3.27), (3.28) and (3.29), we can now combine certain terms from the
various exponents in (3.16) that contain the factors ry €os ¢, and
r sin 91s respectively. We choose to collect

ry €os ¢, terms

d
{-ﬁ(l-cose)+cu+(u+u)\

3
{%v + (v + vsi}

from the various exponents and introduce a new pair of observation vari-

" sin 2 terms

ables " and ay via the definitions

d
- ﬁ (1 - cos a) + cu + (u + us) (3.29)

" sin ay

Cv + (v + vs) ’ (3.29b)




hence,
rylng cos a; cos ¢, + ny sin a) sin ¢,] = ryn, cos (a1 - ¢1)
Using (3.27) through (3.30) in (3.16), we can rewrite

. 2 Lo -
e ke {d,-4f")/4F|«(1-cose) J(L.-L_.)
= 2E1(u.v) A [1 1 ) ] i a0

12n . .ix Jkn;scos(a,-¢,)
= E,(u,v) = filde) ety 0 PN ds do
2 olo |} 1 1

where
s = ary
. =jkB,[d u_-2¢_]
fowF ¢ As Ta

1 oh
-jkays; [(Bju +C )cose +(8,v+C )sing, ] e-JLo

e x (3.32)

(3.33)

(3.34a)
= E(s,uo,vo) (3.34b)

L, = L(sa,u,v) (3.24c¢)

Lao = L(sa,uo.vo) ; (3.34d)

Comparison of (3.31) with (2.11a), (3.32) with (2.11b), (3.33) with
(2.9d) and (3.34) with (2.7) reveals an almost one-to-one correspondence
between the equations for the radiation integral for these two cases,
provided that the observation coordinates (n,a) for the symmetric case are
replaced by (“1’°1) for the offset case and certain suitable proportion-
ality factors are introduced in defining E1 and E2.

It is evident that the processing of (3.31) can follow exactly the
same treatment as (2.11). That is, the function fl(s,¢1) can again be
expressed in terms of a two-dimensional Fourier series in s and % in the
same manner as in (2.13) and the exponential series for (3.31) be obtained
by expanding exp(-ja] as before. The evaluation of Ego)(u.v), as well as
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of the higher-order terms of the series, viz., Eél). Eéz). etc., defined in
the same manner as in (2.19), (2.24), (2.25) and (2.26), also proceeds in
an identical manner with the use of the recursion relation for the Jacobi
polynomials for the higher-order terms. In short, all of the advantages

of the Jacobi polynomial method of evaluating the radiation integral are
maintained in the offset case without any penalty.

Before closing this section, it may be worthwhile to make some f
comments on the new observation variables nps 9 defined in (3.29). We
note first of all that the origin of the observation coordinates, say,
Ugs Vg» may be fixed by letting Cu = (d1/2f)(1 - cos eo) - (u0 + us) and
Sy -(v + vs), since nl(uo,vo) then becomes identically zero. Typically,
though not necessarily, (uo,vo) are chosen to coincide with the beam

maximum, in which case

m m
Cum = (d1/2f)(1 - COS em) - (um + us) (3.35a)
cvm = -(vm + Vs) (3.35b)
and we have from (3.29)
¢
ny €0s a; = ¢ (cos o - cos 6. ) + (u - u) (3.36a)
" sin de 0w =N (3.36b)

which are somewhat more convenient to use than (3.29a) and (3.29b).

In order to determine Un and i for a given Ug (= ex/f), X (= ey/f),
it is necessary to know the beam deviation factors Bu and Bv’ The
beam deviation factors for an offset parabola can again be expressed
in terms of the primary feed pattern [7].

3.5 Steps for Numerical Computation and Illustrative Results

The steps for numerical computation of the secondary pattern for a
given primary pattern of the feed follow pretty much along the lines
described in Sec. 2.4.

Some illustrative results of offset pattern computation are shown
in Fig. 6. Rapid convergence is achieved (see Fig. 6b) even when the beam
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Fig. 6a. Convergence test for offset parabola with focal feed.
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Fig. 6b. Convergence test for offset parabola with displaced feed for
5 BW scan.
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is considerably distorted as compared to the focal-feed pattern (Fig. 6a),
which of course converges even faster. Once again we mention that the
computation time for secondary patterns is much more rapid here as compared
to the conventional numerical integration or the spherical wave expansion
and that the relative advantage becomes even more apparent as the dish

size gets larger.

4.0 Contour Beam Synthesis Using Reflector Antennas

4.1 Introduction

Reflector antennas typically radiate narrow pencil beams and even
though some control over the shape of the radiation pattern can be
exercised by perturbing the reflector or subreflector shapes and their
contours, this step alone seldom offers the flexibility needed to closely
match the coverage to a given geographical area, e.g., the Eastern time
zone (ETZ) of the U.S.

A much more satisfactory approach to synthesizing contour beams
entails a superposition of a multitude of pencil beams generated by a
cluster of feeds whose complex excitation coefficients are adjusted to
obtain the desired secondary power pattern. In this section we address
ourselves to this problem of designing cluster feeds for reflector
antennas with the objective of synthesizing contour beams.*

Conventionally, the synthesis problem is attacked via the so-called

spotlighting technique in which the complex amplitude of the feed that

generates a beam falling within the contour is set equal to 1, and
identically zero otherwise. Although, generally speaking, this approach

is often quite satisfactory, it nevertheless suffers from the drawback that
there is very little control over the slope of the contour, sidelobe Tevel,
etc. Perhaps even more important is the fact that the method does not

take into account the effect of beam distortion with lateral displacement
of the feed, which may be substantial even when the beam scan is only four
or five beamwidths.

Neither does the spotlighting method necessarily generate an optimum
or "best-fit" solution to the specified contour pattern, which is typically
a power pattern, since it attempts to approximate, at best, the specified
field pattern while arbitrarily assigning the phase distribution within the

* The material is based on a forthcoming paper [8].
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contour to be uniform. Fortunately, however, the spotlighting techniques
can still be used to generate results that are very close to the "optimum"
one — typically in an extremely efficient manner, providing the constituent
beams remain relatively undistorted as these beams are scanned. Obviously,
this is not possible to achieve with a single feed unless the reflector is
shaped to reduce the scan distortion, a task that is not easily
accomplished, and in fact, no systematic means for doing it is available

at this time.

Nevertheless, as we show in Section 4.2, a cluster of seven feeds can
be synthesized for each scan position such that the beam dis*ortion with
lateral displacement is substantially reduced. Superposition of these
composite beams using the spotlighting technique car then be employed to
synthesize a desired contour beam.

As mentioned earlier, the optimization approach has both the flexibil-
ity and capability to handle the general synthesis problem since it can
deal directly not only with the specified power pattern, but can also be
programmed tc achieve some control over the ripple, siope and sidelobes
associated with the contour. We discuss this method in Section 4.3 and
describe certain algorithms for extracting a numerical solution to the
optimization problem. Finally, in Section 4.4, we present some examples
of application of both of these methods to the problem of synthesizing the
ETZ contour.

4.2 Synthesis of Cluster Feeds to Reduce Pattern Distortion
In this section we discuss two approaches for reducing the distortion
in the secondary pattern due to laterally displaced feeds. We begin with

i the dominant term for the radiation integral, viz., E(o)(u,v), whach is
given by [see (2.11a)]

D e
[<x1]

1
: Egluv) = [ = ¢ | de' £i(s,6') expDis jkDsn cos (o' - a)] . (4.1)
10 §)

We restrict ourselves to the case of symmetric reflectors and remind the
reader that the derivation of (4.1) was given in Section 2. For convenience,
we repeat some of the pertinent definitions:
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r'/a = 2r'/D (4.2a)
(Ku - uM)2 + (v - vM)?jl/z (4.2b)
tan™? ((v = v/ (u - uy)) (4.2c)

sin e cos ¢ , v=sin6 sing¢ . (4.2d)

The location of the beam maximum is given by Uy Vi defined as

I

u = uy Bu(c/f) €os Y (4.3a)

Vo= vy Bv(e/f) sin ¥e (4.3b)

where Bu’ Bv are the beam deviation factors. The function F1 is derived
from the primary feed pattern, and the location of the feed was defined
in (2.11b). It can be rewritten as

fi(s59") = P*(s) Q*(s,9') f(s) (4.4)

where f(s) is associated with the illumination function of a focal feed
[see (2.4)] and is assumed here to be circularly symmetric. The functions
P(s) and Q(s) are given by

' 2
pr(s) = exp[:-j {1/2 ke(e/f) L* N3 = kf(d > N)[ 5 71 a (Bue/f)z:]}]
14N
(

4.5a)
Q*(s,0') = exp{-j[Be cos (¢' - vy)1} (4.5b)
where
8 2
N = 7(F/D) (4.6a)
B =% kS(f"/D)-1 Bu {14+ h’-f] (4.6b)
v F T (4.6c)

Note that P and Q are distortion factors introduced by the displacement of
the feed, i.e., due to nonzero €y and €y
The secondary pattern, which can be calculated using the series expan-
sion method described in Section 2.1, is found to have a distortion for wide
angle scan. We have calculated the secondary pattern with the following

choice of parameters
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D=50xr, f/D=0.5 (4.7)

f(s) = (-cos 6')" = (%—i—%)n {(4.8)

where N was defined in (4.6a) and cos 6' is related to s by the equation
appearing underneath (2.10). The exponent n controls the edge taper of
the illumination, e.g., n = 2.2538 for a -10 dB taper.

The secondary pattern in dB is plotted in Fig. 7 as a function of kan.
We observe that the beamwidth is approximately 2 x 1.8 in the ka space and
that the sidelobes decrease monotonically from the -26 dB level of the

first one.

Secondary pattern of a
parabolic reflector due
to a focal feed.

p/» = 50, f/D = 0.5

(10 dB edge taper).

In Fig. 8 we have shown the
results for the secondary pattern
obtained with the feed displaced from
the focus to € = 3, 5 tan'1 (ys/us)
= n. We observe from Fig. 8 that the
beam becomes quite broad in the scan
plane due to phase errors in the
aperture. This error also creates
higher sidelobes, e.g., -13 dB for
the case shown. The effect on the
pattern in the plane orthogonal to
the displacement of the feed is
rather minimal.

We now address ourselves to the
problem of compensating for the phase
error in the aperture introduced by
the displacement of the feed. For
this purpose, we consider an array
of seven feed elements distributed
in a hexagonal lattice shown in
Fig. 9.  Our problem is to choose
the excitation coefficients for the
seven feed elements such that the
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Secondary pattern distortion due to a displaced feed. Parameters
same as in Fig. 7. Note on focus pattern shown in dotted line.

distortion factors are compensated

for as much as possible. The function
for the cluster of seven elements

takes the form

f1(s59") = P*(s)Q*(s,0")f(s)A(s,6")

(4.9)
where A(s,¢') is the array factor :
given by :
‘ A(s,6') ;
=1+ % I exp{jnd cos [' - (m+1)~"—-]\ :
m=2 " 3’1
(4.10a)
i i and where
: : Fig. 9. Feed as a periodic array of p
equilateral triangular k = k sin 8' = ks/ 2(5)[1 + NJ
spacing. Elements 1 to 7
form a typical cluster. (4.10b)
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Im, m=2,3,4,...,7 in (4a) are the comple: excitation coefficients of the
ring elements and without loss of generality, we have set the coefficient

of the center element equal to 1.

It is evident from (4.9) that to eliminate the distortion from fl our
goal is to adjust A(s,¢') such that, ideaily,

As.etlw [P P sfies el ol L LI

Strictly speaking, it is not possible to achieve the cundition enunciated
by (4.11) exactly since A has only twelve degrees of freedom. However,
we can satisfy (4.11) approximately by matching the leading Fourier
coefficients of both sides of this equation. We discuss a method for
doing this in the following paragraphs.

The problem of expressing the Fourier coefficients for the expansion
of A(s,¢') is simplified considerably if instead of working directly with
the unknown excitation coefficients, we introduce a new set of unknowns S

q
via the equation

I = [ 8§ SJUMN/3 L o34,..,7 (4.12)

which is an orthogonal transformation of the Lo Substituting (4.12) into
(4.10) gives

5
A(s,6') =1+ J 5B (s,0') (4.13a)
q:O qq

where

7 s m . ™ "
Bq(s,¢') B 22 exp{]ncd cos E¢ - (m+ 1) §-J+ jq(m + 1) —3—} . (4.13b)

m=

Making use of the identities

gIXc0%0 . ] (/2" 3_(x) (7™ + 7] (4.14a)
m‘_'
9 - By TN+ G = 61
) exp j(q +n) . o (4.14b)
n=0 0, otherwise
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in (4.13), we get

SRR T j(62+q)0"
LGie s T N g ) N

g=m

and eventually the Fourier series for A(s,¢')
A(s,¢') = 1 + 68 E € (j)sl J.. (xd) cos 62¢'
: . e 6%

+6 5 (9% g (eaiis, oIIOEHLIOT £ e-j(62+1)¢3>

L=-w

o

L=mw

g E (5)64+3 Jg, a3k 03, ej(62+3)¢z}

=00

62+

H(<d){3, e (6242)0" | 3, e-j(62+2)¢}}

At this point, we note that the product P.Q, which we are attempting to
approximately equate to A(s,¢'), is an even function of (¢' - yM), whereas
the Fourier series given in (4.16) is not. In fact, it turns out that with
the 1imited number of degrees of freedom in our hands, it is not possible
to make the function A(s,¢') even in (a' - YM) for an arbitrary A\
However, it is possible to enforce the condition of evenness to the five
Fourier coefficients of e'jp¢' for p = 0,z1 and *2. We can show that this
is possible by imposing the two constraints

'jZYM

-3y
M
5 © 37

= 54 e (4.17)
which reduces the number of unknown coefficients from six to four. Denoting
these new unknowns Sq, we relate them to §q via

-3y -32y
R M

j2YM




We can also relate the Sq to the original unknowns IM as follows

2
L= Sy %2 qgl Sq 05 9 Kﬁ +1) %—— yﬁ]

R AdlacatL oo e it

AR

+ 55 cos 3((m+1) § - Wi ReZAa) L (A9

The Fourier series for the array factor becomes

A(sse') = 1+ 65, 23;@ el(j)sgdsz(nd) cos 624"

(J)6£+1 J62+1(Kd) cos [(62' + 1) ¢' = YM]

(4.20)
(j)62+2 J

62+2(.cd) cos [(62 + 2) ¢' - ZYM]

(J)6£+3 Jgpe3(kd) cos [(62 +3) ¢' - 3yy]

S A

We note from (4.20) that only the cos [p(¢' - YM)] terms appear in the
series for p = 0, 1 and 2, thus ensuring the symmetry we were seeking in
A(s,¢') up to these harmonics.

Next we turn to the problem of determining Sq by performing an
approximate matching of the array factor A to the distortion factor P . Q.
We show that by matching the appropriate Fourier coefficients of A and
P . Q we can derive closed form solutions for the coefficients Sq.

i
£
B
!
%%.
E
i

Let us first consider the case of " 0. The function P . Q may be
written in a Fourier series

P.Q=P(s):z j"Qn(s) cos n¢'
Qn(S) = Ean(Be)
From (4.20) we can write

A(s,9') =2 jnAn(s) cos n¢'
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Ap(s) = 128 oot dp(kd) 5 0= 1,2,

Equating the Fourier coefficients we get

An(s) = P(s) Qn(s) o T8 U os <l oand - n=0,1.2.0,. " .18.23)

[t is evident, once again, that with only four unknown coefficients it is
impossible to satisfy (4.23) for all s. The best we can hope for is a
minimization type of solution, e.g., one that minimizes the error” A defined

by

-]

1
A= IO sds W(s) 1 [A(s) - P(s) RO TEE (4.24)

In general, we might expect (4.24) to lead to a 4 x 4 matrix equation
to be solved for Sq. Fortunately, however, it is possible to diagonalize
the resulting equation, enabling one to extract the solution without the
need for matrix inversion. To develop this diagonalized form, we first
write A as

(4.25)

0

0 2
nZO |6 + 6Sgdgn(kd) = P(s) Jg (8e)|®  (4.26a)

5 jl (sds) W(s)
= sds S
U Ja

o

1
2
b, - [0 (s5) M(s) T [653gn4q(<0) = P(5) Jgpq(6e)(? (4.26b)

* Not to be confused with A in Sec. 2.
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We note that Aq depends only on one S, viz., Sq. Thus the individual Sq‘s i

can be determined by minimizing the corresponding Aq's. one at a time. By |

requiring
a 3
__-gz ' R e -—-%: 0 (4.27) H
as asS |
q q I
i
where Sq = Sé - jsa, we can derive the closed-form solutions ﬁ
1 o x |
[0 (sds) W(s) T Jgy(xa)|P(5) dgy(ee) - &
S = 1 = : ’ (4.28a)
6 J sds W(s) § [J..(kd)] :
0 n=0 O" ?
1 - ‘* 18
JO (sds) W(s) P(s) njlm [§6n+q(Kd) J6n+q(BezJ §;
Sq = 1 - s (4.28b) 3
2 3
6 jo Sd5 W(S) T [gnyq(xd)]
N=~o {3
q=1,2,3

Equation (4.28) represents the solution for S_ we were seeking. We can of
course determine the IM's from (4.19) once Sq are known. E

The generalization of the solution to an arbitrary A\ will now be
discussed. First, if oy nt/6, where n is a positive or negative integer,
the entire procedure described above for Yy = 0 goes right through without
change. For T # nn/6, it is no longer possible to match all of the
¢-harmonics but only p = 0, +1 and +2 because we do not have a sufficient
number of degrees of freedom. Once this fact is accepted, the resulting
equations and the solutions for Sq remain unchanged from (4.26).

4,3 Illustrative Results of Cluster and Contour Beam Synthesis

At this point it will be worthwhile to illustrate the synthesis of a
single cluster that reduces the distortion in the secondary pattern caused
by the Tateral displacement of the feed. We refer, once again, to the
pattern shown in Fig. 9. We also plot the corresponding "equivalent
aperture" distribution [see 2.4] whose Fourier transform gives the
secondary pattern under the so-called "small angle approximation"

BEST_AVAILABLE COPY
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[see Ref. 3]. We plot this distribution in Fig. 10 for three different
azimuthal directions, viz., ¢' = 0°, 90° (same as -90°) and 180°. It is
evident that the phase error is quite large in the ¢' = 0° and 180°
directions. We point out that the error in the phase is the departure from

the linear taper which only shifts the direction of the beam. The cluster
excitation coefficients that minimize the phase error are found from (4.8)
and (4.19) and are given by

s B
= (7.4676 + j 0.7144) x 1072

(9.8688 + j 1.2031) x 1072

= (1.0088 + j 0.1170) x 1072

.0709 + j 0.0099) x 1072 )
.1032 - j 0.0147
-0.0334 - j 0.0060
0.1626 + j 0.0179
0.2929 + j 0.0336

It is interesting to compare the com-
pensated and uncompensated phase
distribution in order to assess the
degree of improvement achieved by using
a cluster feed as opposed to a single
one.

We have plotted the compensated
case in Fig. 11 which should be com-
pared with the original phase distri-
bution shown in Fig. 10. The following
features may be noted from Fig. 11.

Titud has i d f
Equivalent aperture dis- T tap?r ?crease dic
tribution for a single -10 dB to -14 dB in the ¢' = 0 and
feed who_e center ele- 180° plane and to -12 dB in the
ment is displaced 3A in 0 :
the -x direction. ¢' = 90" plane. The improvement in
the phase error is notable in the
range 0 < s < 0.8, where the amplitude

distribution is relatively significant.
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In Fig. 12 we plot the compensated
secondary pattern which should be com-
pared to the corresponding uncompensa-
ted pattern in Fig. 8. Although the

9 ‘\\ compensated pattern does not by any
1%
| Y//—"' "r‘\»/ means reproduce the on-focus feed
(_,f ol pattern, it nevertheless reduces the
s 4 \\% distortion in the secondary pattern
Z : N quite noticeably.

w e The sidelobe level in the o =-180°
L2 direction is reduced from -13 dB to
i3 ﬁf‘ -17 dB and the shape of the pattern

improves in the a = 0° plane.
Numerical experiments have been
Fig. 11. Equivalent aperture dis- carried out by varying the parameter
tribution for a cluster Ay and the weight function W(s) of
feed whose center ele- e R R § .
ment is displaced 3x in the minimization integral; the basic
the ~x direction. findings are that the method works as
(a) (b) (c)
- e " = .
dr 4 Y “m!
2
- - -
- W - %0
¥ - 0 ] ® . w .

Fig. 12. Compensated secondary pattern with a c1gster feed_synthesized
using equivalent aperture method analytical solution.
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well as with an arbitrary M and that varying the weight function has
% relatively little effect on the results.

< e

Having derived the cluster coefficients, we can use them for synthe-
sizing contour beams in a relatively straightforward manner if we
choose to use the spotlighting method for synthesizing the contour
coverage. In this method, one merely uses a sampling of the specified
contour pattern in the secondary to determine the excitation coefficients
of the individual cluster. Note that in this procedure an implicit
assumption is made on the behavior of the phase of the secondary pattern
which is not specified. Consequently, we do not expect the results thus
derived to necessarily be optimum in the sense of a "best-fit" criterion
imposed on the specified power pattern. However, the cluster spotlighting
method is not only extremely efficient, but the result obtained via the
use of this approach often are close to optimum. For this reason the
results derived via the spotlighting technique can also serve as good
i starting points for other iterative techniques.

A A S

TR

é In Fig. 13 we show the ETZ contour as viewed from a synchronous
orbiting satellite located at the
equator and at the Tongitude of
112° W. The scale for this figure .
e is in kau and kav with D/x = a/2x
“”L o e e a1 = 151.05. A reflector of this size
sk produces a beam of -3 dB beamwidth
’ i as depicted in the inset in Fig. 13
-»mg;g~M1 when the primary feed is described by
1 i (4.8) with n - 2.254 that gives a
e T -10 dB edge taper. Recall that an
£83 on-focus feed illuminating this

T AT T S W R

oustens ‘@

IR R LR AAJ reflector generates a secondary
g e g T A g pattern with a -26 dB sidelobe.

An equilateral triangular lattice
Fig. 13. Eastern Time Zone - of beams is superimposed in Fig. 13
synchronous satellite showing the locations of the centers ]
view from equator at of the spotlighting beams. The -

1120 W longitude.
D = 151.05A. separation distance between the feed
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elements, which is a design parameter for the system, is chosen to be 1,
which produces a -6 dB intersection Tevel between adjacent beams. Such an
arrangement assures minimum ripple magnitude when well-formed beams are
added in space.

For the size of the refiector chosen for the example, only nine
clusters can be positioned such that their main peaks fall inside the
contour which spans about 2° as viewed from the synchronous orbit. A
total of 26 beams are associated with these nine clusters.

The resulting contour beam realized with the nine-cluster feeds is
shown in Fig. 15 and the desired power pattern of the contour is plotted
in Fig. 14. The entire design can be carried out using only a few
seconds of computer time when the cluster superposition method is used.
The field calculation, even at nearly ten thousand or so observation
points, can be carried out in a rapid manner using the series approach
described in Section 2. It is evident from Fig. 15 that the resolution
achiaved from the use of a 150 1 diameter dish is not sufficient to
accurately follow the contour. Increased resolution can be obtained by
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using a larger dish; we show in Fig. 16 the results for a 302.1 X dish.
Note that the diagrams have been scaled by the radius a, which is now
twice as large compared to the one in the last example. The number of
clusters that are accommodated within the contour now increases to 32 and
the associated number of single beams is 63. The resolution of the
synthesized contour pattern is substantially improved. It should be
pointed out, however, that beam distortion puts a severe 1imit on the
maximum achievable resolution and one cannot expect continuous improvement
with an increase of reflector size. Although not apparent at first sight,
the increase in computation time due to the increase in the number of
beams is very little. This is a significant advantage of the cluster
synthesis approach developed in this section.

4.4 Gradient Optimization Method

In the last section, we discussed a procedure for synthesizing a
contour beam using a spotlighting technique to determine the excitation
coefficients of a set of cluster feeds. The tactic amployed in this
approach was to closely approximate an ideal "equivalent aperture distri-

bution" with that produced by each cluster by varying the relative
amplitudes and phases of the individual elements of the cluster. In
following this procedure, an implicit assumption is made that a close
approximation to the ideal distribution in the "equivalent aperture"
will produce a relatively distortionless secondary (field) pattern.
However, no convenient quantitative correlation between the "goodness"
of the distribution in the equivalent aperture and the lack of distortion
in the secondary power pattern can be readily established. One can,
therefore, choose to work directly with the secondary power pattern and
seek to approximate the same using some type of minimization procedure.
To this end one can define a performance index A given by

2 J“z f"z . 7)2
A= du dv W(u,v) ||E(u,v)| - IEO(u,v)] : (4.31)
o+ 8. o

where W(u,v) is a weighting function, E(u,v) is calculated from (4.1) and
E0 is the desired (real) power pattern which can be taken to be the
undistorted pattern for a symmetric feed. The region of integration in
(4.31) should be taken to be an area in the (u,v) space which is large
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enough to cover the range of interest in the secondary pattern space. Any
number of available optimization schemes can be employed to minimize A and
derive the solution for the excitation coefficients Im's that implicitly
appear in (4.31) through the expression for E(u,v). The numerical results
for Im's obtained from an optimal solution of (4.31) are given by

, = -0.0816 ~ j 0.0734
I,=1,=-0.0250 + j 0.0141 (4.32)
I, = 1, - 0.2034 - § 0.0290

I; = 0.2833 - j 0.1771

(9

N =N

which should be compared with the one derived by working with the
“equivalent aperture" method and given in (4.30). The secondary pattern
for this choice for Im's is plotted in Fig. 17. We note that at least for
this example the optimal solution is not significantly superior to the
secondary pattern derived earlier using the "equivalent aperture" method.
However, the computer time required for deriving the optimal solution is
considerably higher than that necessary to extract the cluster coefficients
using the proccedure outlined in Section 4.3. We also mention that the
solution for Tm derived from the "equivalent aperture" approach can serve
as an excellent initial quess in the gradient optimization program.
Finally, it is possible to emplioy the optimization approach to synthesize
the entire contour beam directly, rather than just the constitutent cluster
beams. [t is not difficult to see, however, that the time involved in
deriving an optimal solution directly for the entire contour can be very
large and that there is the increased risk of converging to a false minimum.

Although we have not discussed the algorithmic details of optimization
procedures, we mention that a number of optimization subroutines are usu-
ally available in a typical computer program Tibrary. More scphisticated
procedures for minimization techniques, such as the minimax procedure,
may be found in [9]. An appliication of this method to the contour beam
synthesis problem has been discussed in [10].

47




st R e s

, . a1 | T L i pa T ; T
3.0
muf :
”v”r -
B.ar- -
i 5 REFLECTOR b
i4.29F AXIS -1
9.5} =
‘4’°[ Be 5.5 (xam)
j o Ac = 14 - ~
-4)0# 0+ 0.5 o
P ¥ i D/x»302.)
Fig. 16a. Eastern Time Zone — o ]
synchronous satellite 19,08 @ 4
view from equator at 2 _
1120 W ]ongitude. 28 %t . . usuuc.:utmsm 4
D 2 302.1X. 33,34 b 32 CLUSTERS (@) 4
-27.5 -2‘? -I; §5-11-5.% 8 55 11 18 572 7.5 J‘J 3.5
_' oy
3 A B e T T T
e 1
TYPICAL ‘
e |
P —
p (o ——
\WIRY qr .
AR
¥ B ‘ﬁ*
= \\ 33 .4
e S ner
1 : N fes 19.08
- 14.29
Fig. 16b. ETZ objective power & : e S gem
pattern flzmction e TR e LT AN
. CoEx | -9.53
] [Eglu,v)|™. ka = oty R S
£777] 0 YA Sl SRS (et S 223,82
WD/)\ - 17302.1- .”A;a e ; Tt 115 5 -28.58
/1:—’“ T LT Jteecsoss | ]
et : ‘
3 | N Koy = 33,34 |
B\ 111 1
R V. “_4__4 |
E 3 | e
i) gy . :
= L8 ‘- 5
10— :. v R |
Vi |
15} '
T il y A
- sk pL 23.82 i
T 19.08 |
| 14.29 |
; ask (= |
Fig. 16¢c. ETZ contour power § REBIRE | <& I
' pattern function asf e } : pah ¥ |
i " S T— - 4 i 14,29 il
c, IE(u,v)[%. ka = e AR, SENE |
! #D/x = n302.1. N i Lt e |
5 2520 -15 <10 «§ O 8 10 15 20 28 1|
s . oy
48
-




Fig.

7

(a)

0 g = o e 2
CLUSTER FEED
[+:¢] |
2} ]
]
=
=
-3 R
- 1
~50 A i
0 10 5 2 2
xD/2n
(b)
0 e ik |
CLUSTER FEED
[ o]
-101 ) R
-2 4
&
z
=

‘L
50 e
0 S

]
qmﬂﬂﬁc

0/ 2
(¢)
0 T T % ¢
CLUSTER FEED
-0} .. - -ln. _{
2
'
=
=
-0 4
-o B
3 SR
10 15 2 5

Compensated secondary pattern of a cluster feed synthesi~ d using

0/ 21n

the optimization approach.

49



References

W. V. T. Rusch, "Reflector antennas," Numerical and Asymptotic Techniques

in Electromagnetics, Topics in Applied Physics, vol. 3, R. Mittra, ed.
New York: Springer-Verlag, 1975.

R. Kouyoumjian, "Geometrical theory of diffraction,” Numerical and
Asymptotic Techniques in Electromagnetics, Topics in Applied Physics,
vol. 3, R. Mittra, ed. New York: Springer-Verlag, 1975.

V. Galindo and R. Mittra, "A new series representation for the radiation
integral with application to reflector antennas," IEEE Trans. Antennas
Propagat., vol. AP-25, no. 5, September 1977.

M. Born and E. Wolf, Principles of Optics. New York: Pergamon Press,
1959, ch. 9.

S. Cornbleet, Microwave Optics. New York: Academic Press, 1977.

Bateman Manuscript Project, Tables of Integral Transforms, vol. II.
New York: McGraw-Hill, 1954, p. 47.

R. Mittra and V. Galindo-Israel, "Analysis of offset reflector antennas,"
(to appear).

V. Galindo-Israel, S. W. Lee and R. Mittra, "Synthesis of a laterally
displaced cluster feed for a reflector antenna with application to

multiple beams and contoured patterns," IEEE Trans. Antennas Propagat.
(to appear).

D. Bertsekas, "On penalty and multiplier methods for constrained
minimization," Nonlinear Programming, 2, O. L. Mangasarian et al., eds.
New York: Academic Press, 1975, pp. 165-191.

L. W. Pearson and R. Mittra, "Pattern synthesis for antennas with
multiple primary beams by minimax optimisation," Electronics Letters,
vol. 12, no. 4, February 1976.

J. Ruze, "Lateral feed displacement in a paraboloid," IEEE Trans.
Antennas Propagat., vol. AP-13, no. 5, September 1965.




Appendix I.

Beam Deviation Factors for
Symmetric Reflectors (Parabolic)

The beam deviation factors Bu’ Bv are defined by

u \'}
B = Uﬂ 8 Vﬂ (A.1.1)
S S

where we recall that Uy and vy are the direction cosines of the beam
maximum and Ug and vg are given by g, * ex/f and S ey/f. The beam
deviation factors are generally independent [11] of the feed displacement,
at least when Ug and vg are not very large. It is also fortuitous that
these parameters, which are essentially constants, can be found directly

from the primary pattern of the feed centered at the focal point by using

1 s3
J (1 -cos 6')[3H_+ E_] 3 ds
0 PP
Bu = - 1 (A.1.2)
f (1-cos 6')[3H_+E] s ds
0 p P

where Ep and Hp are the E-plane and H-plane patterns of the feed. The
other constant Bv can also be derived from (A.1.2) by simply interchanging
E_with H_.

T
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Appendix II.

A Method for Computing
the "Equivalent Aperture" Distribution

We will now briefly outline a method for computing the "equivalent
aperture" distribution for a given feed whose primary pattern is known.
Let the feed pattern be specified in the (6',¢') coordinate system
(Fig. 1) as

= e-jkp At '
feed T TRT L8LEgh tiELEL oo (A.2.1)

E

Assuming that the E- and H-plane patterns of the feed can be smoothly
interpolated, we obtain for a nominally y-polarized feed

E & Ep(e') L1 Ll o

5 = -Hp(e‘) oS, (A.2.2)

¢l

so that

Thrid') =« n—éf (1 -cose6') {QE-HP + Ep) sin ¢' cos ¢]

+ &Eip cos? $' + Ep sin ¢] - i[ctn %'— sin ¢' Ep]} kbl { )

Each rectangular component of T can now be related to a corresponding
component of the surface current.







