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1.0 Introduction

Increasing demands on the performance of satellite comunication

antennas have generated recent interest in efficient and systematic

methods for analyzing and synthesizing reflector antennas and associ—

ated feed systems. A comprehensive discussion of a diverse array of

availabl e techniques for analyzing reflector antennas has recently been

published by Rusch [1]; the reader interested in developing a good broad -

background on the subject will do wel l to refer to this excellent work. -

Scanning through the literature on reflector antennas, one finds
that most workers prefer to use methods based on integration of the

induced currents on the reflector to compute its secondary pattern.

Also , the induced current on the surface of the reflector is typically -

derived via the well-known “physical optics” approximation which has been -

verified to be extremely accurate for predicti ng the pattern over a rather

wide angular range in the forward direction.

In contrast, the ray optical methods are known to run into difficulty
[2] in the neighborhond of the caustic, i.e., the beam max imum , although
they work well at wide angles . Hybrid techniques that employ ray methods

as a first step for deriving the fields in the projected aperture of the

reflector and then integrati ng over this aperture to derive the far field -

have been used by a number of workers. However, they suffer from the

shortcoming that the secondary patterns computed in this manner rapidly F -
become inaccurate as one moves away from the beam max imum. Thus , the use -

of this approach is limi ted to the computation of the main beam and the

near-end sidelobes only. Furthermore, the polarization information de—

rived from either the ray or the hybrid approach can contain errors -

beyond the tolerance requirements on the accuracy of the results .

For the reasons outlined above , we choose to follow the induced
current integration method in this work and describe in detail a recently

developed series approach [3] that allows an extremely efficient evalua- - -

tion of the radiation integral of reflector antennas. The series

approach differs both in spirit as well as in detail from the various

1 
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numerical algorithms conventionally employed for increasing the efficiency
of the numerical procedures [1] for evaluating the radiation integral .
The development of the series representation is motivated by the fact that

- 

- 
in the course of synthesizing contour beams, a topic which we discuss in
the latter part of this paper, one finds it necessary to perform accurate - 

-

computation of the secondary pattern of reflector antennas for a large
number of laterally displaced feeds and over a wide range of observation
angles. The series representation of the radiation integral developed in H
this paper allows one to accomplish this task in a much more efficient
manner than would be possible via any of the conventional approaches. —

The organization of this paper is as follows. In Section 2 we —

discuss the case of symetrical reflectors in some detail. In Section 3
we deal with the offset reflector and show that certain transformations
incorporated in the radiation integral for this case allow one to convert
it into a form which is identical to the symetric case, thus preserving
all of the useful properties of the series form. In Section 4 we
discuss the problem of contour beam synthesis using a cluster of feeds.
We develop two approaches for deriving the excitation coefficients for
the feeds, one based on an approximation method , and the other requiring
the solution of a matrix equation that can be inverted in a closed form.
A comparison of these two methods is also included in Section 4.

2.0 Evaluation of Radiation Integra l for Synrietric Reflectors

2.1 Integral Representation of Far Field

The far field radiation integral (suitably normalized ) representing
the field produced by the induced current distribution ~ on the surface of
the refl ec tor can be expressed as

— — -jk(p ’-~.R0)E(e ,~ ) = (I - R0R0) . J J 
Je ds, (2.1)

SURFACE

where I = the unit dyadic.

The geometry of the reflector antenna system i nclud i ng the feed is
shown in Fig. 1. We point out that the optical phase of 3 has been

• 
factored out in (2.1) where this phase is defined relative to an i deal
phase center at ~~~, which defines the location of the displaced feed

2
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Fig. 1. Feed-refl ector geometry .
(see Fig. 1). From Fig. 1 we also have the relationship

(2.2)

where ~ is the distance from the origin (focal point) to a point on the
- - 

- reflector.

We note that the integral (2.1) is defined on the surface of the
reflector. Often a ray—optical “approximation ” is used to der ive an
alternate form for the radiation integral which requires the Fourier
transformation of the electric and magnetic fields on a projected aper-
ture of the reflector, rather than on the reflector surface itself.
However , as mentioned earlier , thi s i ntroduces errors i n the secondary
pattern calculation at observation angles away from the main beam direc-
tion and is therefore not suitable for our purpose. We can , neverthel ess ,
derive a mathematically exact form of (2.1) which is also an integration
over the projected aperture coordinates . For instance , we can write (2.1)

3
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equivalently as

~2~~a -jk(p ’ —~.R )
F( e ,~) = I I f(r ,~ ’) e r dr d+ ’ (2.3)

JO J O

a = radius of projected circular aperture

where F(e,~) is related to a scalar component of £ , say the x-component,
and f(r,4 ’) is expressed in terms of 3 and the Jacobian relating the
elemental area on the reflector surface into one on the projected circular
aperture. Explicitly, we have

-~ 

- f ( r ,~ ’) = Jx (r ,
~ ’)/1 + (

~ )2 (2.4)

and for a parabola of focal length f,

f(r,~ ’) = 

~
(
~‘)A ÷ (r)2

The function f is sometimes referred to as the “equivalent aperture”
distribution . It should be realized that this is somewhat of a misnomer
since, physically, f is not the distribution on the projected aperture
( in  contrast to the one that can be derived approximately via the ray - —

technique). Since (2.3) is exact, if f were indeed the true aperture
distribution , the kernel of (2.3) woul d have had the Fouri er transform
form which , at the moment, it does not. One of the principal contributions 

- 
-

of this work would be to show that the kernel in (2.3) can still be
expressed in terms of a series of Fourier transforms of appropriate
functions related to f.

Typically, the induced current 3 is derived from the physical
optics approximation

3 2 è
~~

x R
~

.

where ft~ is the primary magnetic field incident on the reflector surface

due to the given feed. However, if desired , the physical optics approx-
imation for 3 can be refined by augmenting it with fringe currents existing
at the edges of the reflector.

4
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Returning now to (2.3), we note that the conventional approach to
evaluating the radiation integral entails repeated computation of this
two-dimensional integral on the “equ ivalen t aperture” for each observation
direction which themselves form a two-dimensiona l grid. Even if some
timesaving can be ar’~ieved by employing efficient numerical algori thms for
evalua ti ng (2.3), the total computation time can become prohibitively
large if accurate results are des i red over a wide range of observation
angles. This fact motivates us to seek alternate means for handling the
radiation integral in a manner elaborated on in the following section .

2.2 Development of the Series Representati on

As a preamble to developi ng the series representation, we introduce
certain notations, approximations and new variables :

p ’ = - (~
-
~ 

u ’ + v ’ + ~~~ w’)) + 0(t2) , (2.5a )

where
= sin e ’ cos ,‘ ; v ’ = sin a ’ sin ~~

‘ ; w ’ = cos e ’ (2.5b)

and the direction cosines u, v, w for the observation variables are like-
wise defined by removing the primes from (2.5b). Typically, for small
displacement of the feed, the second-order term in (2.5a) is negligible
and we make the approximation here that this term is small. However, it
is only a trivial extension to include the higher-order term in (2.5a).

Scaling the radial coordinate r by introducing r = as, a = D/2 , and
0 = diameter of the reflector, one may rewrite (2.3) as

F(u,v) +Jk2f 
= a2 J~’~ J’ [f(s,+ ’) e

+jk(
~~~

)i e
j
~~

4’(1
~~
050)

eJkass inecos(4_
~
’)s ds d~’ . (2.6)

Upon examining the integral in (2.6) carefully, we find that the first
factor inside the integra l is a function of the integration variables
alone and the last factor is the Fourier transform kernel written in a
pol ar form. The second factor, viz., exp{-~~pw ’(1 - cos 8)) ,  is a

. function both of the integration and observation angles , and thus is the
factor that requires the special treatment described below .

5 
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We define

L (s ,u,v) = pW ’(l - cos e) (2.7a )
and

L0 
= L(s ,u0,v0); La = L(sa,u ,v~

; La0 
= L(Sa~

U0~
v0) (2 .7 b )

where 5a i s a cons tan t to be determ ined later an d u0, v0 are the direction
cosines evaluated at 0 = oo~ 

= 4~~
.

Si nce pw ’ = p cos 0’ is simply the z-coordinate of the reflector
sur face , for a symmetric parabola this quantity is a quadratic function of
the radial variable s, and is obviously indpendent of the azimuthal
var iable ~~

‘ . We make advantageous use of this property of L later. !f we
now rewr ite

e
jknW ’(1

~~
0S0) 

= e JL = e~ 
Lo+La a 0 0~~~~~0

) 
, (2.8)

we may rearrange (2.6) as

E
1
(u,v) = J f fe j k 4j kass 8cos~~~~~ . ~~~~ s ds d~’ (2.9a)

where

~k2f 2~ 0= F(u,v) e3 a e a a (2.9b)

- 
-jL0f = fe (2.9c)

and

~(u ,v ,u0,v0; S
~~

S
a

) = L _ L
0

_ 1a + La0 . (2.9d)

One last step in our manipulation of (2.6) entails the shifting of
the origin of the observation coordinates such that it is centered around
the beam maximum which is determined by ~, the lateral displacement of the
feed. This transformation is useful for efficient evaluation of the
radiation integral . We choose the new observation variables to be n and
cz,related to the original direction cosines u and v through the formulas

n /
~
u - u M) + ( v vt~

) ; cz arctan
(u u )

6
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and vM being the coordinates of the shifted origin which is here taken
to be the beam maximum. Typically u0, v0, introduced in (2.7b), are set

-: equal to VM~ 
respecti vel y. We can now return to (2 . 9a) an d rewr ite

the first exponent as

k~ 
. + kas sin 0 cos (+ ‘ — q )  = kt

~ 
cos 0 ’ + kas[_ (BMtM ) cos -

+ r~ cos (a -

where

~M
tM /U M M + 

~
VM ~ 

1M arctan
M j~ (2.10)

8 E - ( ~~~+1) vM ( BV M )  J
and where, for a paraboloid ,

— M E 1 + — S4 !~•j
Here we have made use of the relat ions hip s

. I — S • _  —

sin - 

2(f/D) M cos —

Lastly, B
~ 

an d B
~ 

are the so-called beam deviation factors defined by

B =
~~
—(v = O plane) , B

~~
=
~~

-— ( u = O plane)u

with u5 
= -t , v5 

= —
~~~~ - Simple expressions for determining B

~ 
an d B

~ 
are

given in Appendix I. Usi ng (2.10) in (2.9a) we can rewrite the latter as

E1(u ,v)  = J J~ 
f1(s ,~ ’) e~

kasnc0s(
~~~

’) e 3
~ s ds d~ ’ (2.llá)

with
—jL0 jke cose ’ _jkas0

MtMcos(-YM—4
4)

f1(s ,~ ’) = f (s ,~ ’)  e e Z e . (2.llb)

7
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L. The motivation for the manipulations leading up to (2.11) is now
given . If we can show that the exponent ~ i s smal l for certa i n ranges
of observation angles to the extent that exp[-jA] 1, we would obtain
a Fourier transform form for the radiation i ntegra l with an “effective
aperture ” distribution proportional to f1.

Referring to the definition of A given in (2.9c1 ) and the expressions
for the various L’s given in (2.7), we immediately see that A 0 at
u = u0, i.e. , 0 = 00 (typically, though not necessarily, the elevation
angle 0M corresponding to the beam maximum). Thus exp[-jAJ is identi-
..ally equal to 1 for this choice of observation angles. In addition ,
though not obvious at this point , it turns out that by a suitable choice
of S

a
l defined in connection with (2 7b), we can ma ke ~ small in the

region of integration of (2.9a) from which the domi nant contribution of
the radiation integral is derived in the wi de angle region (typically
just a few sidelobes away from the beam maximum) where 0 is not close to
e~. Thus , unusual as it may appear at first sight , what we have accom-
plished through the manipulations described aoove is the derivation of
an “effective aperture” distributi on which is simultaneously valid not
only at the beam maximum (as is the ray optical derivation), but at wide
angles as well where the ray optical distribution is inaccurate . In
fact, numerical results show that only in a small intermediate angular
region does the setting of exp[-jA] = 1 in (2.11) introduce any signi-
ficant errors.

To fill in this gap, we go now to the next Step and expand exp[-jL~]
in a power series of A , obtaining

r2lt ~l r 211 r 1
E1(u,v) 

= I f1K S ds d4 ’ = j 0 I I Af1K s ds d~ ’
JO ~O JO JO

r2it r i1I I A2f K s d s d~ ’ (2.l2b)
2 j 0 j 0 

1

where

K = ej~~
sncos

~~~~
’) 

= Fourier transform kernel (2.12b)

in polar form, and A was defined in (2.9d). At this point we can compute
E1 by repeatedly Four i e r  t r a n s f o r m i n g  f 1, Af 1, A 2f 1, etc ., w h i c h  of course

8

~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,‘ - . -



-—-~~~ ‘ -~~~~-~ -~~-~~~~~~~---- -,.-- ~~~~- -~— - - -

requires an n-fold increase in the number of computations , where n is the
number of terms retained in the series. Instead, i n the next section ,
we introduce a series method for computing the first integral in (2.12)
which has the unique advantage that the coefficients of the series, once
computed , can also be used to evaluate the higher-order terms in
(2.12) with very little additional effort or increase in computationa l
time.

-; - In summary, what we have accomplished in expressing the radiation
integral in the form of (2.12) is a biconvergent series whose leading term
accurately predicts the pattern both in the neighborhood of 0 = 00 and at
wide angle regions. In addition , because of the special form of A , the
higher-order terms can be calculated with only a littl e additional effort
beyond that required to evaluate the first term. We substantiate these
assertions in the next section where we detail the evaluation of the
various Fourier transform integrations in (2.12) using the Jacobi
polynomials.

2.3 Evaluation of (2.12) Using Jacobi Polynomials

The first integral in the r.h.s. of (2.12), which has strictly a
Four ier trans form form , can be eval uated by any number of ways, e.g.1
using the FFT or expanding f1 in a series of Bessel functions and evalu-
ating the resulting series of integrals term-by-term in closed form.
However , as explained in the last section , our goal is to utilize the
results of the first integration for efficiently evaluating the higher-
order terms. The expansion functions for f1 that are uniquely suited
for this purpose are the Jacobi polynomials , also referred to as the
circle polynomials of Zernicke [41, [51. The use of the Jacobi polynomial
allows one to evaluate the first integral with a speed comparable to the
FFT . However , the Jacobi polynomial method has severa l important
advantages over the FET method , viz., (1) it is better suited for
circular apertures; (ii) it can be used to compute the pattern at an
arbitrary value of e, • not restricted by the choice of the FFT-type
grid; (iii) it does not suffer from aliasi-’q errors or Gibb ’s phenomenon;
( i v )  it is useful for efficiently evalu : ing higher-order terms whereas
the FF1 method is not; (v) it has superior numerical accuracy .

9
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The Jacobi polynomial series expansion begins with a two-dimensional

Fourier series representation for f1 in (2. 12)

I-
f1(s ,~ ’) = 

m~O n~O 
(C~ cos n~’ + D” sin fl4 ’) F”~(s) (2.13)

F~(s) P~(1 - 2s2) 2(n + 2m + 1) ~(n l O) ( 1 - 2s2) 5n (2.14)

where P~~’
0
~(x) are the Jaco bi pol ynom ials .

Inserting (2.13) into the first integral in (2.12), hencefo rth
referred to as E? for convenience, and using the identity

Jn ( Z )  = cos nu ~~~~~~ du , (2.15)

— we get

0 (cos nc~) C~~~1E1(i,ct) 
= ~ 2~j’~( 

m F~(s)  J ( kan s) s ds (2. 16)
n 1~sin na )mD~~

J0

where ()denotes an upper plus a l ower sum. The integral in (2.16)
involving the product of Jacobi polynomials , the Bessel function and
the weight function can be evaluated in a closed form [6] using the
integral relationship

a J0 5n+1/2 ~~n~O) ( 1 - 2s2 ) J~(yas ) ( ys)~’2 ds = 1/2 J~~2~~1(ay ) 
(2.17)

[n >— (m + 1)]

10 
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In general we have

- 
,. ~ 

- 1 
____________ 

+2 1

( kan)
Im n (n ) = J F~( s) Jn (k a

~
s) s ks = V2(n + 2m+ 1) ~ 

~
11

~a~ 
. (2.18)

The use of (2.18) in (2.16) permits us to write the final form for the
first term of the radiation Integra l

(cos na~E~ ‘(u,v) = El ‘(n,ct) = 2ir ~ jfl( ~ 2(n + 2m + 1 )
— n=0 L5~

n naJ m 0  -

(2.19)

IC~ t.Jn+2~~i
( k an )

\ Dn ( (kan)
m

(0)We note that the radiation integral E1 can be readily calculated at any - 

-observa tion an gle u,v [or (ri,c*)] once the Four ier coef ficients and
have been determined. This is in contrast to the direct evaluation of the
original integral (2.6) which has to be computed repeatedly for each
observation point. We also note from (2.19) that the leading term is the
Airy function which is the radiation pattern of a circular aperture wi th
uniform ampl i tude and phase distribution (except for a linear taper which
shifts the beam maximum to UM, VM). All of the higher-order terms of the
ser ies i n (2.19) become zero as r~ -~ 0 and represent perturbations around
the beam maximum.

The expans ion coeffici ents are foun d i n the usual manner after
recognizing that the Jacobi polynomials satisfy the orthogonality
relationships

J P~( 1 - 2s2) P~, ( 1 - 2s2) s ds = 6 , (2.20)

11

j
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where o~ , is the Kronecker del ta . The orthogon a lity property was one of
the criteria employed to sel ect the expansion functions for f1; the other

-

- - 
was the recursion relationship which is used to evaluate the higher-order
terms. The integrals to be computed for evaluating the series coeff j

- • cients are given by -

~ J
i J~ 

f
l

(s ,~~I )~~~
0S 

) 

P~( 1 - 2s2) s d~’ ds (2 .2 1)

where = 1 for ii = 0 and 2 otherwise. An important characteristic of
the integrands in (2.21) is that they are far less oscillating than the
kernel of the radiation integra l (2.6), since the absence of the exponen-
tial factor exp[jkas sin a cos (4 - 

~
‘)] makes the kernel of the radiation

integral in (2.21) vary much less rapidly compared to the one in (2.6),
particularly when {ka sin 0) is not small.

Before proceeding with the discussion of the steps for the evaluation
of the higher-order terms, we examine the leading term E~ in a little - -

more detail with the purpose of showing that this term is useful for the
wide angle region as well. This is the biconvergent property alluded to
earlier in connection with the series given in (2.12).

In order to explore the wide angles (a not close to eo) behav ior of
A , we refer once again to the definition given in (2.9d) and (2.7) for A
and the L’s, respectively. It is evident that A 0 at s = We now
appeal to the well-known result in high-frequency diffraction phenomenon
that away from the caustic (beam maximum) the contribution to the
secondary radiation comes mainly from the rim of the reflector, described
b y s = 1 .

12
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Consequently, if we choose to be equal to 1, we make the
exponen tia l factor e jA close to unity in the neighborhood of the region

• . from where the princ ipal contr ibut ion of the ra diat ion integral is
derived , in the asymptotic sense, for all observation angl es not close
to u = u0 (a = 80). Extensive numerical experiments wi th different
choices of s have confirmed that this choice for s is the most
appropr iate one for the symmetr ic refl ector antenna , with or withou t 1 -
displaced feeds.

The last topic we discuss in this section is the use of the Jacobi
polynomial series for the evaluation of the higher-order terms in (2.12).
We begin by explicitly writing L(s,u,v), originally defined in (2.7a).
As observed ear li er , for a parabola pw ’ is simply the z-coordinate of the
reflector surface and th is var iable is independent of 4~~ and quadratic
in s. Explicitly, for a paraboloid of revolution

L( s ,u,v) = (2 (~) [-~ + (~)
2]s2).[ff~~~ /2 

~~2 
- (kau) 2 - ( kav) 2 1 .

Using the definitions given in (2.7b) and (2.9d), we can write A as

— 

- 
A (L - L~) = c s2 - s~ G (u 0,u) (2.23a )

where

G(u 0,u) 
(

~~~
)

2 
- ( kau0)

2 
- (kay 0)

2 
- A~) 2 

- ( kau) 2 - (kav)2)~

C 8f/D - (2.23b )

______ 

- 
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Substituting (2.23) in (2.12) we obtain

E1 (u ,v) = 
~ ~~~ = E~

0
~(u ,v) + E~1) (u ,v) + E~

2
~(u~v) + ... (2.24)

where 40), defi ned earl ier,is the first integral in (2.12), and the higher-
order i ntegrals are expressed as

r 2~ ~i
E~~’(u,v) = jcG I (s

L 
- s2) f1 K s ds d4~’ (2. 25)

-
~~~~ ~~ 

a ~.

42)(u ,v) = 
~~ 2 j

~ J’ (s~ - ~2)2 f1K s ds d~’ - (2.2 6)

We have alrea dy di scussed the evalua ti on of E~
0
~ by expanding f1 in a

two-dimensional Fourier series given in (2.13). We now show that by
virtue of the recursion relations satisfied by the Jacobi polynomials ,

-: the expansion coefficients of the higher-order terms, e.g., (~
2 

- ~2) ~
and (s - sa) f1, etc., can be readily expressed in terms of C~, D~
which have presumably been computed already in connection wi th the
evaluation of 40).

To this end we make use of the recursion relationship [6]

(~
2 

- s~) P~ = amn P~, 1 + (bmn - s~) ~:;~ 
+ Cmn P~~1

where - -
m n + m)amn = _ f n~~ 2m (n+2m +—i-)-

b — (m + n) 2 
+ 

(m + 1) 2

mn — 

(2m + n)(n + 2m + 1) (n + 2m + 2)(n + 2m + 1J

— (m + 1)(n + m + 1)
C - - (n + 2m + 1) (n  + 2m + 2) , (2. 27)

14
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I
and defining the hi gher-order expansion coefficients in terms of the
integrals

= 

~ ~~ 
- ~2)P~~

0S 

~~~ 
- 2s2 s ds (2 28)

we can der ive

= amn~~ B
~_i 

+ b - S
2 

~~~~ + Cmn~~ B
~ .i (2.29) 

—

where B represents ei ther C or 0. We note from (2.29) that if we retain
terms up to the ~th order , then the number of coefficients requiring
computation is M + p where 14 is the upper limi t of m . Consequently,
2N (N = n ) additional series coefficients (N each of C ’s and D’s) aremax ( )needed for evaluating p integrals of the type E1~ (u,v ) .  However , one
finds that the higher-order ~~ coefficients typically decrease very
rapidly, allow ing truncation to a moderate number of terms and correspond-
ing pairing of computational time .

We summarize this section by noting that we have expressed the
radiation integra l in (2.12) in terms of a series given in (2.24). We
have shown that the first term of the series , viz., E~

0
~ (u ,v ) ,  gives the

radiated field for (u,v) = (u 01v0) where u0, v0 is typically taken to be
the beam maximum. The first term also predicts the pattern with good
accuracy for a not too close to 00 if we choose = 1, s ince the
radiation away from the caustics comes mainly from the rim of the reflector

(s = 1) and the particular choice of Sa 
makes A small in this region of the

“effective aperture.” For the intermedi ate range of observa tion angles ,
we can efficiently compute the higher-order integrals in (2.24), i.e.,
41), 42), etc., by making advantageous use of the recursion relations
of the Jacobi pol ynom ials.  In fac t, amon g other reasons , this property
of the Jacobi polynomials makes them uniquely suited for our purpose of
series expansion .

~~~~~~~~~~~~~~~~~~~~~~~ 
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In the next section we present some numerical results illustrating
the appl ication of the theory developed in this paper.

2.4 Steps for Numerical Computations and Illustrative Results

Given the prima ry pattern of a feed and the parame ters of the
reflec tor an tenna , the numerical computation of the secondary pattern is
carried out using the followi ng steps :

(1) The current distribution ~ on the reflector surface is computed
from the knowledge of the feed location E and its primary pattern using
the physical optics approximation .

(2 ) f(s ,~ ’) is obtained from (2.4). Note that p sin 0’ = r an d
r = as. The same procedure is repeated for other scalar components of ~
(for details see Appendix II).

(3) Beam deviation factors are computed using the method in
Appendix I and U

M~ 
vM are derived from the coordinates of the phase

cen ter of the d ispl aced feed . We also calcula te 
~M’ 

t~1 an d v~ appearing
in (2.10).

(4) f1 is derived using (2.llb).
(5) Jacobi polynomials are generated using their recursion

relationship [6].
(6) The two-dimensional integration represented in (2.21) is

performed to compute C~ and D~. The integration may be carried out using
any of the standard quadrature routines , e.g., the Gauss quadrature . If
a large number of q -coefficients , i.e., n , are required , one may perform
the 4-integration via the FET.

(7) The coefficients C~ and D~ are inserted into the recursion
relation (2.29) to generate the higher-order coefficients DC”, P0~1 .

(8) E 1 , E 1 , E1 , etc., are successively computed using these
coefficients and Equations (2.19), (2.25) and (2.26) are added up to
genera te E 1 and subsequently F.

(9) The procedure is repeated for the other components of i using
the corresponding f.

(10) The vector far-field pattern is constructed by appropriately
summing up the various contributions.

We now presen t a few n umer ical resul ts to il l ustra te the conver gence
of the method. Figure 2 shows the effect of increasing the number of

16
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terms in the Fourier series expansion of f1, i.e., mmax (= M) and ‘
~max

(= N) for increasing l ateral displacement of the feed, e.g., 
~ 

(or
equivalent ly kau5). The convergence Is seen to be quite rapid even for
several beamwidths of scan which is accompanied by a distortion of the
secondary pattern .

Figure 3 shows the convergence of the p-series, i.e., (2.24). It
is evident that even for a badly distorted pattern only one term of the
p-series, i.e., 40), is sufficiently accurate for computing both the
amplitude and phase, except in a relatively small , intermediate region
20 < kau < 30. However , only three terms give sufficientl y accura te
solu tions over the entire range of observation angles .

Before closing this section we remark that unlike the conventional
methods the present approach is very well-suited for computing radiation
patterns of large reflectors, even severa l hun dred wavelen gths in s i ze
and , in fact, the relative advantages of the series methods become even
more evident when dealing with the large reflector antennas. Since the
p-series becomes more rapidly convergent as D/x is increased , one finds

CONVERGED 

M - N- 2
— - —-— - M - N •3  -

—— — - -  M - N -4  —— FIRST TERM OF EXPONENTIAL SERIES (p• 1) 
M • N • S — - — 2 TERMS. (P • 2)

__________ - ___________________ —— — — 3T ER MS ( p - ) ~ — CONVERGENCE (EXAC II
0 0r— - - 

0 — .  —

100 — - - --— 
-- -

eO 
100 ~~~~~ 50  100 ISO 200 25.0 U 5 0  100 ‘50 200 250 300 350 400

• K A U

— 
~~‘m

• ~~~~~~~~

F ig . 2. Ser ies conver gence as a
function of m and n. Fig. 3. Convergence of exponen-
f/D 0.5, 0/A = 50. tial series (2.24).
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that the usual numerical problems of storage, loss of accuracy , and
astronomical increase of computation time are virtually nonexistent here.
Fur thermore , E~

0
~(u ,v) can be ex pressed i n a scale d form such tha t the

results for the pattern are universal and i ndependent of A. These added
features are quite usefu l for computation and display of the radiation
patterns.

3.0 The Offset Reflector

3.1 Introduction
The offset reflector is finding increasing use in many conr~unication

satellite antennas because of its freedom from blockage effects which can
affect the performance of a reflec tor an tenna i n a dele ter ious manne r .
The analysis of offset refl ectors is made difficult by the lack of any
possible simplifications due to symmetries in the structure. In addition ,

cross-polarization effects and pattern distortion due to scanning become
more important here than i~ the symmetric case. Thus , accurate but
efficient computation of the vector secondary pattern of offset reflec-

tors is hi ghly desired in many applications.

In this work we show that with only a relatively small additional
effort one can extend the series method of Section 2, developed for the
symmetric parabola , to the offset case. We proceed to demonstrate this
in the following sections.

3.2 Radiation Integral for the Offset Parabolic Reflector
The geometry of the offset reflector together with the l ocation of

the feed plane is shown in Fig. 4. Once again we can write the normalized
radiation integral in terms of the induced current J on the surface of the
reflector as

- -jk(p ’-~.R0)

~
(o ,$) = ( 1 -  R0

R
0 ) j j  J e ds (3.1)

SURFACE

which is identical to (2.1). Recall that the optical phase of i has been
factored out explicitly relative to an ideal phase center located at ~
(see Fig . 4). Also , the integra l is defined on the surface A of the

18
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(a) (b)

Fig. 4. Geometry of offset parabola.

reflector and not in terms of an approximate , ray optically derived field
in the projected aperture.

Introducing a mathematical transformation , we can rewrite the integral —

in terms of coordinates r, 4’ of the projected aperture of the parent
parabola (see Fig. 4). We get, for a typical scalar component of ~ , say,
F(o,~), integrals of the type

-jk(p ’-~.R0) -

F (e ,4) = JJ f(r,~’) e r dr d4’ (3.2)

where f is related to the corresponding scalar component of J via the
Jacobian J of the transformation between the parabolic surface and the
projected aperture. The Jacobian J is gi ven by (1 + r/2f)1’

12
.

Using the small displacement approximation , we can wr ite

p ’ = p - • - (3.3)

19
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As menti oned ear li er, this approximation is easily generalized , if desired ,
and i s not really necessar y for our work . Howev er , the small di sp lacemen t
approx imation is often used because of its simplicity and because it is
cufficient ly accurate as long as the feed displacement is not too large .

For a parabola ,

p = 2f + p cos 0 ’ and sin 6 ’ = r/fM (3.4)

w it h M 1 + r2/4f2

and , hence,

p ’ 2f + p cos 8’ -~~~.~~

— 

= 2f + p cos a ’ - [(c
~
r/fM) cos 4’ + (e r/fM) sin 4’] - (3.5)

Recognizing that

- R0 
= p sin a ’ sin 0 COS (

~ 
— 4 ’ )  + p cos 0 cos a ’

= r sin 0 C05 (4 - 4 ’) + p cos 0 cos a ’ , (3.6)

we can rewrite (3.1) as

F(o ,4) e~k2f = if (f(r~4 ’) e jk oso ’(l-cosa) 
e
ikezcose I

X 5c0s4 5S1n 4) x e~ 
rcos 

~~~~ r dr d4’
) (3.7)

where

= C~~2f)
2r 

2 (3.8)1 1 + (r/2f)
and

1 (v + v )  2 2a = tan 
~u + u T  

r~ = + v5) + (u + u5) (3.9)

-~~- =  a5 , 
—
~~~- =  v5 - (3.10)

Examining (3.7), we note the following features of the integrand .
In addition to the function f, which is real ted to the induced surface
current on the reflector , the integra l has four exponentia ls. The first

20
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of these is a function of both the observation angle a and integration
variable 0’(r). The second and third exponents depend on the integration
variables r and •‘ only. In the second exponent we have deliberately
left c

z 
to t~e nonzero , since , in contrast to the symmetric reflector,

the plane of displacement of the feed for minimum distortion is not
enti rely transverse for the offset case. We will soon demonstrate this
point when we derive a formula for the optimum feed displacement plane.
The third exponent contains u~ an d v5, which define the ~ tôral coordinates
of the displaced feed. Finally, the last exponent is the familiar Fourier
transform kernel expressed in cylindrical coordinates.

It is desirabl e for later manipulation to shift the origin of the
integration coordinates to the Center of the projected aperture . To this
end we introduce the transformation of coordinates from (r,~ ’) to (r 1,~1)
system (see Fig. 4) via the equations

r cos ~~~
‘ = d1 + r1 cos (3.lla)

r s i n 4 ’ = r1 sin 01 (3.llb)

Writing F (u ,v)  e3h2f = E 1(u ,v ) ,  we get from (3.7),

—jkd 1ncosa 
a1 2~ - -jkz(r1,~1)(1—coso)E1(u,v) e = 

JO 1~ 
(f(ri~ i) e

~jk~1r1t5cos(y5~~1) e
_
~
k ld 1us~~z

c050
~
)

jknr1cos(cz-~1fle J r1 dr 1 d~1 (3.12)

wi th

f(r1,~1 ) = f(r ,~ ’)

= 
~
/u
~ 

+ v~ ; tan -y-5 = u5/v5 - (3.13)

Note also that the r1 and r are related by

= r~ + d~ + 2r1d 1 cos . (3.14)
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L. At this point it is worthwhile to point out some of the similarities and
differences between the radiation integrals for the synrnetric and offset
reflectors. For both of these cases the radiation integral reduces to the
Fourier transform form if the first exponent is small , which occurs when

0. In the symmetric case the function z(r1,~1) is independent of the
azimuthal coordinate and , in addition , is a quadratic in  the radial
coordinate . This special property of the z-coordinate of a symmetric
parabola allowed us to express the radiation integral in the form of an
analytically continuous series whose higher-order coefficients are
derivable from those of the corresponding zero-order term via the re-
cursion relationship of the Jacobi polynomials given in the previous
section .

It would appear at first sight that this unique and advantageous
feature is no longer available for the offset case. Since the function
z(r1,41) is neither independent of the azimuthal variable q 1, nor
is it a quadratic function of r1. However, we show in Sec. 3.4 that
by using a suitable transformation of the observation variables r~ and a

we can still recast (3.12) into a form which has all of the desired
characteristics of the symmetric case including the numerical efficiency
and ease of computation.

Before discussing this topic , however , we will briefly digress to
consider the problem of choosing the optimum scan plane , i.e., as a
function of (c

~~~
c
~~

) s  for offset reflectors.

3.3 Choice of Optimum Scan Plane
We return to (3.12) and rewrite the third exponent , which contains

as

jk(~1d 1u5 
— C z cos a ’ )  = j k 8 1

[d
1

U
5 

— 2c
r
] + Jkc

~ 
(3.15)

where was defined in (3.8). This allows us to rewrite (3.12) as

22 
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—jk(d1u —c )—jkd u
E1(u,v) = E 1(u ,v) e $ Z 1

a1 21T (_ -jkz(r ,q )(1-cosoj
= f f ~f(r1,~1 ) e 1 1

-‘0 -‘0

-jk~1r1t5cos(ys-~1) ~
Jk8i[d iUs~

2czJ

jknr1cos(a-cp ~~~~x e  Jr 1 dr 1 d~1 (3.16)

where we have used u = n cos ~~~. It may be worthwhile to point out that
-jkd1ue represents the phase factor introduced in the expression for the

radiation integral due to a shift of the origin from the focus of the
parent parabola to the center of the projected aperture.

The criterion we choose for determining Cz(Cx~
Cy) is that an optimum

choice should minimize the phase error terms represented by the second

and third exponential factors in (3.16), exclusive of linear phase tapers
which may contribute to beam shift. Explicitly, we deal wi th the
exponent h(r1,41)

h(r1,41) 
= k~1(d1u5 

— 2e
~
] + kB 1[r1t5 cos (y 5 

— 
- (3.17)

We note that the first term in the square bracket , i.e., [d1u5 
- 2cr], is

independent of r1 and whereas the second term contains the factor

r1t~ 
cos (-~ 

— 4]). which has a single cos-inusoida l variation as a function
of the azimuthal angle 

~~~~~~ 
Since both of these have a common multiplicative

factor k81, one mi ght be tempted to conclude that the minimum distortion

due to h(r1,41) results when we set

2e~ = d1u5 - (3.18)

However, as shown below , the correct choice differs from that given in
(3.18) because the behav ior of as a function of (r1,41 ) can not be
ignored. To this end we exami ne B 1 and express it as
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L
— (r/2f)2 - 

(r 1/2f)
2 

+ (d 1/2f) 2 
+ ( r 1/2f)( d 1/2f ) cos

1 + (r/2f) 1 + (r 1/ 2f)  + (d1/2f) + (r 1/ 2 f ) ( d 1/2f)  cos

(3.19)
which may be approximated to give

[(r1 + d1)
2 

+ 2r 1d1 cos ~~~ 
- (3.20)

(4f +r 1 + d 1)

We t~,erefore have

h(r1,41) d~(d1u~ 
- 2cr)

+ ri[d~ts cos - t,~) + 2d1(d1u5 
- 2cr ) cos

+ r~[(dit cos + d 1u5 
- 2cr ) + d 1t5 cos (y5 

- 2+~~

+ r~t5 cos (i~ - ~ ) . (3.21) 
- 

-

We note in (3.21) that the parameter e~ appears only at three places .
The first term containing 

~ 
is a constant in r1 and merely introduces a

constant phase factor in the radiation integral without contributing to
distortion. The second term, linear in r1, also contains e~

. However ,
this exponential factor only contains cos and sin q

~ types of terms,
and hence can be straightforwardly combined with the Fourier transform
kernel -exp[jkn cos (y 5 

- •~)1 to derive the direction of the shifted beam .
We show this explicitly in the next section. Meanwhile, we remark here
that because of its special form the linear term in r1 does not introduce
any distortion terms either; therefore, we turn our attention to the
quadratic term in r1. It is evident that the first term inside the bracket
is independent of 

~~~ whereas the second term has a cyclical variation
along the azimuthal direction . Consequently, the distortion in h(r1,~1)
as a function of c~ is minimized by enforcing the condition

d 1t5 cos + d 1u5 
- 2c

~ 
0 (3.22a )
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or
c

~~ 
= (1/2)[d 1t5 cos + d 1u5] (3.22b )

which can be further simpl i fied to give

= d1u5 (3.23)

by recognizing that t~ cos 
~ 

u5. Comparison of (3.23) with (3.18) shows
that the two expressions differ by a factor of two. We now show that
(3.23) implies that the optimum plane of displacement of the feed is
approximately the plane normal to the line OP where P is the point on the
surface of the reflector whose projection in the focal plane coincides wi th
the ori gin (x = d1, r1 

= 0) of the projected aperture.

Along this plane C7n and cxn satisfy (see Fig. 5)

~zn sin (
~ 

— o ’(d1)j d1/f1 (3.24)
= — — ________

n cos N — a (d 1)] 1 - (d1/2f)
2

Ezn = 

- (~~~~~2 
d1u (3.25)

for f/D in the range 0.25 < (f/D) < 1,

since typically (d1/2f)
2 < {1/ [8(f/D)J}2

for an offset reflector.
OfIi.t

The result shown in (3.25), though
simple , is quite important from a

i • d
~ ~~~~~~~~~~~~ practical point of view . In the past,

the choice of the optimum scan plane

~ has been based on experimental trials
and a systematic derivation of the

— equation for the plane has not been

. available. Before closing this sec-
Fig. 5. Geometry of optimum plane

for feed displacement. tion we add the remark that for the
syninetric case, d1 = 0; hence, the op-
timum scan plane reduces to the focal
plane c2 = 0.
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3.4 Series Development of the Radiation Integral
We now return to (3.16) and exami ne the possibility of developing a

series expansion for this radiation integra l in the same manner as was
done for the symmetric case. We note first of all that in the absence
of the first exponential factor exp(-jkz(1 - cos a)] the integral (3.16)
would reduce to a Fourier transform form and could therefore be efficiently
evaluated by any number of available methods. Next, we recall that this
factor was also present in the symmetric case and that we were able to
handle it by using the recursion relations of the Jacobi polynomials

because the z(r,4) for the symmetric reflector assumed a very special form,
viz., quadratic in r and i ndependent of 4. The apparent difficulty in
using the same procedure for the offset case stems from the fact that z is
now a function of both the integration variables r1 and •~

, and the
recursion relationships of the Jacobi polynomials cannot be directly used
to efficiently evaluate the coefficients of the Jacobi polynomial series
for the higher-order terms of the exponential series derived from the

expansion of exp[-jkz(1 - cos a)]. It is extremely fortu i tous, however ,
that certain manipulations of the integrand in (3.16) allow us to retain
all of the advantages of the Jacobi polynomial series without any penalty
whatsoever . We proceed now to elaborate on this point in the following
paragraphs.

As a first step we explicitly write

cos ez r 1141 
p cos a

_ r2~~ 4f
2 + + 2n ld l c05 4l 4f2 

32— 4f — 4f ( . 6)

for the offset parabola. Thus

d2 -4f2 r d
z(r 1,~ 1)(1 - cos a) = (1 - cos a) + cos 

~ 
(1 - cos a)

+ 
~~3 

( 1 - cos a) • (3.27 )

We now note the following features of the three terms appearing in the
r.h.s. of (3.27). The first term is i ndependent of the integration
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variables and depends only on the observation angle a. The second term
has a special form in that it is linear in r1 and has a cos variation .
Finally, the last term is quadratic in r1 and independent of •~. We will

- 
- 

- 

soon make advantageous use of these properties of the first exponent In
(3.16).

Turning now to the second exponent in (3.16), we wr ite

B1r1t5 cos ( ‘~ — = B1r1(u5 cos + v s in

= r1[(8 1u5 + C
~
) cos + (01v5 + C

~
) s in

- ri[C
~ 

cos + Cv s in 4 11 (3.28)

where Cu~ Cv are constants yet to be specified .

Finally, we rewrite the term rir1 cos (a - •~
) in the last exponent as

cos (a — •~
) = r1[r~ cos a cos + y-~ 5j f l  a sin •~

]
= r1[(u + u5) cos + (v + v5) s in 4~] - (3.29)

Using (3.27), (3.28) and (3.29), we can now combi ne cer ta in terms from the
various exponents in (3.16) that contain the factors r1 cos and
r1 s in  P p respectively. We choose to co l lec t

r1 cos 4
~ 

terms

~~ ( 1 - cos a) + C + (u +

sin 411 terms

(Cv + (v + vs))

from the various exponents and introduce a new pair of observation van-
ab les and a

1 
via the definition s

n 1 cos a1 = -~~~ (1- c os e ) + C + ( u + u )  (3.29a )

si n = C~, + (v + v5 ) (3.29b )
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hence, - -

r1[r~1 cos a1 C05 + sin a
1 

s in 4~] = r1~1 cos (a
1 

- 41j ) - (3.30)

Usi ng (3.27) through (3.30) in (3.16), we can rewr ite

-2 ik.[(d1-4f2)/4fJ.(1-cose) j(L -L
a E1(u ,v) e e a a

1 2n ( .
~~~ jkn scos(a -41

J)
= E2(u ,v) 1o1o ~~1(s ,4 1) - e~ e 1 1 

J

sds d~1 (3.31)

where
s = a r 1

-jkB 1[d 1u —2c ]f1 = f e  5 z 
-

—jka 1s 1[(8 U +C )cos4 1+(B 1v +C )s in4 1] -j L0X e  i s  U 5 V X e (3.32)
and

= L — Lo - La + 1a0 (3.33)

L = 
~~~~ (1 - cos a) = 

a1s ( - - - ~2) (3.34a )

L0 
= L(s ,u0,v0) (3.34b)

= 

~~~~~~~ 
(3. 4c)

Lao = 
~
5a~

tA0~
b
O) - (3.34d )

Comparison of (3.31) with (2.lla), (3.32) with (2.l lb) , (3.33) with
(2.9d) and (3.34) with (2.7) reveals an almost one-to-one correspondence
between the equations for the radiation integral for these two cases ,
provided that the observation coordinates (fl,cz) for the symmetric case are
replaced by (~1,a1) for the offset case and certain suitable proportion-
ality factors are introduced in defining E1 and E2.

It is evident that the processing of (3.31) can follow exactly the
same treatment as (2.11). That is , the function f1 (s ,41) can again be
expressed in terms of a two-dimensional Fourier series in s and in the
same manner as in (2.13) and the exponential series for (3.31) be obtained
by expanding exp (-ji~J as before. The eva l uation of E~

0
~(u ,v), as wel l  as
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of the higher-order terms of the series, viz., E~
1) , 42), etc., defined in

the same manner as In (2.19), (2.24), (2.25) and (2.26), also proceeds in
an identical manner with the use of the recursion relation for the Jacobi
polynomials for the higher-order terms. In short, all of the advantages
of the Jacobi polynomial method of evaluating the radiation integral are
maintained in the offset case without any penalty .

Before closing this section, it may be worthwhile to make some
coments on the new observation variables r~ , a

1 
defined in (3.29). We

note first of all that the origin of the observation coordinates , say,
u0, v0, may be fixed by letting C~ = (d1/2f)(1 

- cos eo) - (u0 + u5) and
C,,, = -(v + v5), since r11(u0,v0) then becomes identically zero. Typically,
though not necessarily, (u0,v0) are chosen to coincide with the beam
maximum , in which case

U
O

= U rn V
O

= V
m

Curn = (d1/2f)(1 
- cos a )  - 

~~ 
+ u5) (3.35a)

Cvm = _ (Vrn + v5) (3.35b)

and we have from (3.29)

d

~i 
cos a~ 

= 
~~
3. (cos a - cos em) + (u - Urn) (3.36a )

fl1 
sin a~ 

= v - vm (3.36b)

which are somewhat more convenient to use than (3.29a ) and (3.2gb).

In order to determine Urn and Vm for a given u5 (= e
~
/f), v5 (

~
it is necessary to know the beam deviation factors B

~ 
an d B,,,. The

beam deviation factors for an offset parabola can again be expressed
in terms of the primary feed pattern [7].

3.5 Steps for Numerical Computation and Illustrative Results
The steps for numerical computation of the secondary pattern for a

given primary pattern of the feed follow pretty much along the lines
described in Sec. 2.4.

Some illustrative results of offset pattern computation are shown
in Fig. 6. Rapid convergence is achieved (see Fig. 6b) even when the beam
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Fig. 6a. Convergence test for offset parabola with focal feed.
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is considerably distorted as compared to the focal-feed pattern (Fig. 6a),
which of course converges even faster. Once again we mention that the
computation time for secondary patterns is much more rapid here as compared
to the conventional numerical integration or the spherical wave expansion
and that the relative advantage becomes even more apparent as the dish
size gets larger.

4.0 Contour Beam Synthesis Using Reflector Antennas

4.1 Introduction
Reflector antennas typically radiate narrow pencil beams and even

though some control over the shape of the radiation pattern can be
exercised by perturbing the reflector or subreflector shapes and their

contours , this step alone seldom offers the flexibility needed to closely
match the coverage to a given geographical area, e.g., the Eastern time

zone (ETZ) of the U.S.

A much more satisfactory approach to synthesizing contour beams
entails a superposition of a multitude of pencil beams generated by a
cluster of feeds whose complex excitation coefficients are adjusted to
obtain the desired secondary power pattern . In this section we address

ourselves to this probl em of designing cluster feeds for reflector
antennas with the objective of synthesizing contour bearns.*

Conventionally, the synthesis probl em is attacked via the so-called

spotli ghting technique in which the complex amplitude of the feed that
generates a beam falling wi thin the contour is set equal to 1, and
identically zero otherwise. Al though , generally speaking , this approach

is often quite satisfactory , it nevertheless suffers from the drawback that
there is very little control over the slope of the contour , sidelobe level ,

etc. Perhaps even more important is the fact that the method does not
take in to  account the effect of beam distortion with lateral displaceme nt

of the feed, which may be substantial even when the beam scan is only four
or f i v e  beamwidths.

Neither does the spotlighting method necessarily generate an optimum

or “best-fit” solution to the specified contour pattern , which is typically

a power pattern , since it attempts to approximate , at best, the specified
field pattern while arbitrarily assigning the phase distribution within the

* The material is based on a forthcoming paper [8]. - 1
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• contour to be uniform . Fortunately, however , the spotlighting techniques
can still be used to generate results that are very close to the “optimum ”
one — typically in an extremely efficient manner , providing the constituent

• beams remain relatively undistorted as these beams are scanned . Obviously,
this is not possible to achieve with a single feed unless the reflector is
shaped to reduce the scan distortion , a task that is not easily
accomplished , and in fact, no systematic means for doing it is available
at this time .

Nevertheless , as we show in Section 4.2, a cluster of seven feeds can
be synthesized for each scan position such that the beam dis tortion with
lateral displacement is substantiall y reduced. Superposition of these
composite beams using the sootlighting technique can then be emplojed to
synthesize a desired contour beam.

As mentioned earlier , the optimization approach has both the flexibil-
ity and capability to handle the general synthesis problem since it can
deal directly not only with the specified power pattern , but can also be
programmed to achieve some control over the ripp le , slope and sidelobes
associated wi th the contour. We discuss this method in Section 4.3 and
describe certain algori-t.~rns for extracting a numerica l solution to the
optimization problem. Finally, in Section 4.4, we present some examples
of application of both of these methods to the problem of synthesizing the

ETZ contour.

4.2 Synthesis of Cluster Feeds to Reduce Pattern Distortion
In this section we discuss two approaches for reducing the distortion

in the secondary pattern due to laterally displaced feeds. We begin with
the domi nant term for the radiation integra l , viz., E~

0
~(u,v), wh ich is

given by (see (2.l1 a~1

E0(u ,v) = d1 d . ‘ f
1

(s ,4 ’ )  exp [½ jkDsp cos (4’ — ,
~

)] . (4.1)

We restrict ourselves to the case of symmetric reflectors and remind the
reader that the derivation of (4.1) was given in Section 2. For conven i ence,

we repeat some of the pertinent definitions :
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s = r ’/a = 2r’/D (4.2a )
-

~ fl = ~~u - uM ) + (v - VM)~~ 
(4.2b)

a = tan~~ [(v - vM)/(u 
- U

N)] (4.2c)

u = s in 0 cos 41 , V = sin a sin 41 . (4.2d )

The location of the beam maximum is g iven  by uM~ 
V

M 
defined as

U = U
M 

= 
~~~~~~~ 

cos -

~~~~ 

(4.3a)

V = V
M 

= B
~~

(c/ f )  sin (4.3b)

where 
~~ 

B
~ 

are the beam deviation factors . The function F1 is derived
from the primary feed pattern , and the location of the feed was defined
in  (2.llb). It can be rewri t ten as

f1(5,4’) 
= P*(s) Q*(s ,4 I) f(s) (4.4)

where f(s) is associated with the illumination function of a focal feed
[see (2.4)1 and is assumed here to b2 circularly symmetric. The functions
P(s) and Q(s) are given by

p*(s) = exp [~ (½ ke (c/f) ~ ÷ - kf(1 - N)[1 - /1 - (Buc/f)
21)1

(4.5a )
Q*(5,4’) = exp{—j (~c COs (4’ - (4.5b)

where
r
_ _ _N = 
L4 f/Di 

(4.6a )

= 
½ k5(f/D)~1[Bu + (1 + k , h1 ( 4 . 6 b )

= + 

~ 
- (4.6c)

Note that P and Q are distortion factors introduced by the displacemen t of
the feed, i.e. , due to nonzero E

x 
and

The secondary pattern , which can be calculated using the ~eries expan—

sion method described in Section 2.1, is found to have a distortion fo r  wide

angle scan. We have calculated the secondary pattern wi th the following

choice of parameters
34
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C = 50 A , f /C = 0.5 (4.7)

* 

f(s) = (-cos ~ 1) n 
= (~; N)n (4.8)

where N was defined in (4.6a) and cos 8’ is related to s by the equation
appearing underneath (2.10). The exponent n controls the edge taper of
the illumination , e.g., n = 2.2538 for a —10 dB taper.

The secondary pattern in dB is plotted in Fig. 7 as a function of kan.
We observe that the beamwidth is approximately 2 x 1.8 in the ka space and
that the sidelobes decrease monotonically from the -26 dB level of the

first one.

In Fig. 8 we have shown the
resul ts  for the secondary pattern
obta i ned wi th the feed displaced from

• the focus to c = 3A , = tan~~ (y5/u5)
= ~~~. We observe from Fig. 8 that the
beam becomes quite broad in the scan

_______ 

pl ane due to phase errors in the
‘° [ ANY O Pt~~J aperture. This error also creates

.
~ 

higher sidelobes , e.g., —13 dB for
the case shown . The effect on the

\
~~~~20.~~~~ ok 

pattern jr the plane orthogonal to
— 

the displacement of the feed is
.~ rather minimal .

We now address ourselves to the

____ - _____________________ problem of compensating for the phase
0 5 10 IS 20

error in the aperture introduced by
the displacement of the feed. For

Fig. 7. Secondary pattern of a this purpose , we consider an array
parabolic reflector due of seven feed elements distribu ted
to a focal feed.
D/x = 50 , f / C  = 0.5 in a hexagonal lattice shown in
(10 clB edge taper). Fig. 9. Our problem is to choose 

—

the excitation coefficients for the
seven feed elements such that the

35

4

L. 
-  

- - - - .~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— ------—--•-~ --- -~ -—- -- -~~--~———--~-—  ~~~~~~~~~~~~~~~~~~~~ - - _ _ _ _ _ _

0

4’f -
~~

-10 - ELEMENT 
—
~ if ,~

— -26 dB -

DISPLACED~~ /1 ~\ / SIDELOBE ,
= 3 X / \ :j ‘

~ \ / ELEMENT
~ -20 - I Y! ~~. ON - SINGLEi\ I N ,~‘\FOCUS ELEMENT

-30 - ~ I \ I •‘\ :~ ! ~ -

I ~~I r41 ‘I 1 1~~~~~~1 I  I I % ‘ t ~I 4~ I ’  ‘
~ 

t i  ‘~I ‘U ‘ Ii 7 ;~~ ~~ ,

-40 

“ ~~~ ~L ;~
‘

iii I Ii 1 ‘ 
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Fig. 8. Secondary pattern distortion due to a displaced feed. Parameters
same as in Fig. 7. Note on focus pattern shown in dotted line.

distortion factors are compensated
for as much as possible. The function
for the cluster of seven elements
takes the form

• 
f1(s ,4’) =

z 

~~~~~~~ 
where A(s ,41’) is the array factor

= 1 + 
~ ‘m exp~~Kd cos ~~~~~

‘ - (m+1)~~~m 2  L

(4. lOa)
and where

Fig. 9. Feed as a periodic array of ( /f~equilateral triangular K = k sin a ’ = ks/~2~~)[1 + N]~spacing. Elements 1 to 7 L )
form a typical cluster. (4.lOb)
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m = 2 ,3,4,... ,7 in (4a) are the comple- excitation coefficients of the
ring elements and without loss of generality , we have set the coefficient
of the center element equal to 1.

It is evident from (4.9) that to eliminate the distortion from f1 our
goal is to adjust A(s,4’) such that, ideafly,

A (s ,4’) = [P*Q*J~~ , P.Q = 0 < 5 < 1, 0 4’ < 2ir . (4.11)

Strictly speaking , it is not possible to achieve the condition enunciated
by (4.11) exactly since A has only twelve degrees of freedom. However ,

we can satisfy (4.11) approximatel y by matching the leading Fourier
coefficients of both sides of this equation. We discuss a method for
doing this in the following paragraphs .

The problem of expressing the Fourier coefficients for the expansion
of A(s,9’) is simplified considerably if instead of working directly with

the unknown excitation coefficients , we introduce a new set of unknowns

via the equation

~ ~iq(m+1)~/3 , m = 2 ,3 ,4 , . . . , ? (4 .12)  L
q=O q

which is an orthogonal transformation of the ‘m • Substituting (4.12) into

(4.10) gives

5
A(s ,4’) = 1 + ~ B (s ,~ ’) (4.13a )

q=O q q

where

Bq(5~4’) = 

m~2 
exp~~Kd cos[4’ - (m + 1) fl+ jq(m + 1) . (4.13b )

Making use of the identities

e3xc0s8 
= 

m~O 
m~2)~~fl

m Jm(x)[e
Jmo + e~~~m8] (4.14a)

5 
~ 

(6, if n + q = 62.
exp j(q + n )  -

~~~
- =

~~~ (4.14b)
n=O otherwise
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in (4.13), we get

Bq(S~+’) = 6 
2.-~ 

(~)6i+q J62.+q(Kd) 
~J(6i1q)4 (4.15)

and eventually the Fourier series for A(s,4s ’)

= 1 + 
~~ ~~~ 

c2.(j)
62. J62.(Kd) cos 62.41’

+ 6 ~ (i)62.+1 J62.+l(Kd)(~l ~
j(6~~1)4’ 

+ 
~5 

e~~
6
~~1)4)

+ 6 
~ 

( j ) 6~~~2 J 6~~ 2 ( K d ) ~~~2 ~~~~~~~ + 
~4 

e~~~
6
~~~)0)

+ 6 
2 . -~ 

(~~) 6 2.+3 J6t÷3 ( K d )(~3 e
J(62.+3)4) 

-

At this point , we note that the product P.Q, which we are attempting to
approximately equate to A(s,4’), is an even function of ( c ~~’ - 

~M~’ 
whereas

the Fourier series given in (4.16) is not. In fact, it turns out that with
the limited number of degrees of freedom in our hands , it is not possible
to make the function A(s,cp ’) even in (a’ - for an arbitrary 

~~However , it is possible to enforce the condition of evenness to the five
Fourier coefficients of e 3

~~ for p = O ,±1 and ±2. We can show that this
is possible by imposing the two constraints

-j21
~1 S5 e M 

~2 =~~4 e (4.17)

which reduces the number of unknown coefficients from six to four. Denoting
these new unknowns Sq~ we relate them to ~q 

via

~~~= S 0 ‘ ~1
= 5 1 e , ~2 = S 2 e (4.18a )

- JY M53 = S 3 cos 3yM , ~~ = S 2 e , S5 = S 1 e . (4.18b )

38

~ 

__ - -—‘ --.~~~~ -• -- ~~- -~~~ - - - 

-

~~~~~~~~~

-

--~~~~~~~~ ---~~~~~~~ --- - - _~~~~~~~~_~~_ _ _~~_t ~~~~~ -~~_~~~---~~~~~~



r~ ~y’ ~
_ 

__..*.._— -~ -_ - 1___________ -- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~

We can also relate the Sq to the or igi na l unknowns as follows

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ S3 cos 3~~m + 1) ~~
- - , m = 2 ,3,...,7 . (4.19)

The Four ier ser ies for the array factor becomes

A (s ,4’) = 1 + 6S0 2.~~~ 
~ (j)

6&J (Kd) cos 62.4’

+ 12S1 ~ (~)62.+l J62.~1(Kd) cos [(62. + 1) 4’ -

(4.20)
+ 12S 2 2.~~~ 

(~~) 62.+2 J62.~2(K d) cos ((62. + 2) 
~~~

‘ - 2
~M

1

+ 6S3 2.~~~ 

(.)62.+3 J52.~3(Kd) cos [(62. + 3) 
~~

‘ - 3
~ M1

We note from (4.20) that only the cos (p(
~

’ - 

~M~
1 terms appear in the

series for p = 0, 1 and 2, thus ensuring the symmetry we were seeking in
A(s ,4’) up to these harmonics.

Next we turn to the problem of determining Sq by performing an
approximate matching of the array factor A to the distortion factor P . Q.
We show that by matching the appropriate Fourier coefficients of A and
P - Q we can derive closed form solutions for the coefficients Sq •

Let us first consider the case of 1M 
= 0. The function P . Q may be

written in a Fourier series

P - Q 
= P ( s )  z jflQ~(~) cos fl4 ’

with
Qn (S) = EnJn(~

C) . (4.21)

From (4.20) w~ can wr ite

A(s ,4’) Ed nA (S) cos n4’
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with 
-

A0(s) = 1 + 6S0J0(K d) , and (4.22a)

- - - Ar ( s)  = 12S
1~~62.1 Jn~~

t ) ~ n = 1,2 (4.22 b )

Equating the Fourier coefficients we get

An (s) = P(s) 
~~~~ 

, for 0 < s < 1 an d n = 0,1,2 (4.23)

It is evident , once aga in, that with only four unknown coefficients it is
impossible to satisfy (4.23) for all s. The best we can hope for is a

*minimization type of sol ution , e.g., one that minimizes the error ~ defined
by

r l
= 

J 

sds W ( s )  
~~ IA n( s)  — P ( s )  Qn’~~I 2 

. (4.24)
0 n=O

In general , we might expect (4.24) to lead to a 4 x 4 matrix equation
to be solved for Sq~ Fortunately, however, it is possible to diagonalize
the resulting equation , enabling one to extract the solution without the
need for matrix i nversion. To develop this diagonaliz ed form, we fi rst
write~~ as

3
(4.25)

q=O q

where

= J (sds) W(s)  
~ 

+ 6SOJ6n (Kd) - P(s) J 6~( 8c ) I 2 (4. 26a)

and

= (sds)  W ( s )  
~ 

I6SqJ6n+q (Kd) - P( s )  
~6n +q~~~~

1 (4.26b)

q = 1,2,3

O , n = 0
6 =/n )~o , n~~ 0

* Not to be confused with ~ In Sec. 2.
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We note that 
~q 

depends only on one S, viz.0 Sq * Thus the individual Sq ’S
can be determined by minimizing the corresponding ~q

1 5 one at a time . B~’
requiring

- : 
. ~ %~= o  , ~-~-~- = o  (4.27 )

q q

where Sq = S~ - jS~, we can derive the closed-form solutions

(s ds) W( s ) 
~6n 

)[P(s) 
~6n~~~ 

-

0 
= n— 

2 
— (4.28a)

6 I sds W(s) 
~ 

[J 6n(~~1)1JO n=Q

(sds) W(s) P(s) [J6n+q(~~ J6fl+q~~~~
Sq 

= n— 
2 

• (4.28b)
6 j sds W ( s )  

~ ‘~6n+ (Kd))
0 n=-c’ q

q = 1 ,2,3

Equation (4.28) represents the soluti on for Sq we were seeking . We can of
course determine the 1M ’

~ 
from (4.19) once Sq are known .

The general i zation of the solution to an arbitrary 
~M w i ll  now be

discussed . First, if = n-~/6, where n is a positive or negative integer ,
the entire procedure described above for = 0 goes right through without
change. For 1M ~ nir/6, it is no longer possible to match all of the
•-harmonics but only p = 0, ±1 and ±2 because we do not have a sufficient
number of degrees of freedom. Once this fact is accepted , the resulting
equations and the solutions for Sq remain unchanged from (4.26).

4.3 Illustrative Results of Cluster and Contour Beam Synthesis
At this point it will be worthwhile to illustrate the synthesis of a

single cluster that reduces the distortion in the secondary pattern caused
by the lateral displacement of the feed. We refer, once aga i n, to the
pattern shown in Fig. 9. We also plot the corresponding “equiva l ent
a per ture ” distribution [see 2.4] whose Fourier transform gives the
secondary pattern under the so-cal l ed “smal l angle approx imation”
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[see Ref. 3]. We plot this distribution In Fig. 10 for three different
azimuthal directions , viz., 41’ = 00, g~0 (same as _9Q0

) and 1800. It is
evident that the phase error is quite large in the 41’ = 00 and 1800

directions. We point out that the error in the phase is the departure from I
the linear taper which only shifts the direction of the beam. The cluster
excitation coefficients that minimize the phase error are found from (4.8)
and (4.19) and are given by

S0 = (7.4676 + j 0.7144) io
_2

S = (9.8688 + j 1.2031) x io 2
1 

2 (4.29)
S2 = (1.0088 + j  0.1170) 1O~

S3 = (0.0709 + j 0.0099) io~
2

and

‘2 
= -0.1032 - j 0.0147

13 = 17 
= -0.0334 - j  0.0060 I~ (4.30 )

14 
= 16 

= 0. 1626 + j 0.0179
1

5 
= 0.2929 + j 0.0336 

J

it is interesting to compare the com-

0 pensated and uncompensated phase
distribution in order to assess the

4 

)....
~~ 

) degree of improvement achieved by using
‘\ ~i ±’o”\/ ~ 

a cluster feed as opposed to a single
\ j~~~ 

0~~~ one.
\.~ / ‘  ~• — ‘I ~~

~? -. We have plotted the compensated
le 

1’~!I1 case in Fig. 11 which should be corn-

• - -
~~~~ 

- I • •~~
- - pared with the original phase distri —

butlon shown in Fig. 10. The following
features may be noted from Fig. 11.

• . The amplitude taper has increased from
Fig. 10. Equivalent aperture dis-

tribution for a single -10 dB to -14 dB in the 4’ = 0 and
feed who.e center el e- 1800 plane and to -12 dB in the
ment is displaced 3A in
the —x direction. 41’ = 90 plane. The improvement in

the phase error is notable in the
range 0 < 5 < 0.8, where the amplitude
distribution Is relatively significant.
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In Fig. 12 we plot the compensated

secondary pattern which should be corn-
pared to the corresponding uncompensa-
ted pattern in Fig. 8. Al though the
compensated pattern does not by any

4 • 
means reproduce the on-focus feed
pattern , it nevertheless reduces the

1~ ...~A\ ~~~~~~~~~~~~~~~~~~~~~~~ ~ 
distortion in the secondary pattern
quite noticeably.

____ The sidelobe level in the a 180
-
~

I “~
_1 -~~ direction is reduced from -13 dB to

- os  0 ø~ -17 dB and the shape of the pattern
improves in the a = 00 plane.
Numerical experiments have been

Fig. 11. Equivalent aperture dis- carried out by varying the parameter
tribution for a cluster AM and the weight function W(s) of
feed whose center ele- “ . . . .
ment is displaced 3A in the minimizat ion integral; the basic
the -x direction , findings are that the method works as

(a) (b) (c)

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _ _

Fig. 12. Compensated secondary pattern with a cluster feed synthesized
using equivalent aperture method analytical solution .
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well as with an arbitrary AM and that varying the weight function has
relatively little effect on the results .

Having derived the cluster coefficients , we can use them for synthe-
s i z ing contour beams i n a rel atively stra ightforwa rd manner if we
choose to use the spotlighting method for synthesizing the contour ‘

covera ge. In thi s method, one merel y uses a sampling of the specified
contour pattern in the secondary to determine the excitation coefficients
of the individual cluster. Note that in this procedure an implicit
assumption is made on the behavior of the phase of the secondary pattern
which is not specified . Consequently, we do not expect the results thus
derived to necessarily be optimum in the sense of a “best-fit” criterion
imposed on the specifi ed power pattern. However , the cluster spotlighting
method is not only extremely efficient , but the result obtained via the
use of this approach often are close to optimum. For this reason the
results derived via the spotlighting technique can also serve as good
starting points for other iterative techniques.

In Fig. 13 we show the ETZ contour as viewed from a synchronous
orbiting satellite located at the
equator and at the longitude of
112° W. The scale for this figure

___________-  is in kau and kay with D/A = a/2x
= 151.05. A reflector of this size

f lAM MA.IM* -

I produces a beam of -3 dB beamwidth
as depicted in the inset in Fig. 13
when the primary feed is described by

~ 
.{

~- “ -~ (4.8) with n - 2.254 that gives a
•
/ 

-10 dB edge taper. Recall that an

L~~L on—focus feed illuminating this
- reflector generates a secondary

-~ .~ pattern with a -26 dB sidelobe.

An equilateral triangular lattice

Fig. 13. Eastern Time Zone - of beams is superimposed in Fig. 13

synchronous satellite showing the l ocations of the centers —

vi~~ fr~m e9ua~or at of the spotlighting beams. The
o = 151.05A . separation distance between the feed
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elements, which is a design parameter for the system, is chosen to be 1 ,

which produces a -6 dB intersection level between adjacent beams. Such an
— - arrangement assures minimum ripple magnitude when well-formed beams are

added in space.

For the size of the reflector chosen for the example, only nine
clusters can be positioned such that their main peaks fall inside the
contour which spans about 20 as viewed from the synchronous orbit. A
total of 26 beams are associated with these nine clusters .

The resul ting contour beam realized with the nine-cluster feeds is
— shown in Fig. 15 and the desi red power pattern of the contour is pl otted

in Fig. 14. The entire design can be carried out using only a few
seconds of computer time when the cluster superposition method is used.
The field calculation , even at nearly ten thousand or so observation
points , can be carried out in a rapid manner using the series approach
described in Section 2. It is evident from Fig. 15 that the resolution
achieved from the use of a 150 A diameter dish is not sufficient to
accurately follow the contour. Increased resolution can be obtained by

~~~~~~~~~~~~~~~~~~~~~~
- -

Fig. 14. ETZ ObjeCtI ye po~e~ pattern Fig. 15. ETZ contour power2patternunc 10 I 0 ‘ - func tion E(u ,v)I -

ka = iTO/A = itl5I.05. ka = w151.O5.
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using a larger dish; we show in Fig. 16 the results for a 302.1 A dish.
Note that the diagrams have been scaled by the radius a , which is now
twi ce as large compared to the one in the last example. The number of
clusters that are accommodated within the contour now increases to 32 and
the associated number of single beams is 63. The resolution of the
synthesized contour pattern is substantially improved . It should be
pointed out , however , that beam distortion puts a severe limit on the
maximum achievable resolution and one cannot expect continuous improvement
with an increase of reflector size. Al though not apparent at first sight ,
the increase in computation time due to the increase in the number of
beams is very little. This is a significan t advantage of the cluster
synthesis approach developed in this section.

4.4 Gradient Optimization Method
In the last section , we discussed a procedure for synthesizing a

contour beam using a spotlighting technique to determine the excitation
coefficients of a set of cluster feeds. The tactic employed in this
approach was to closely approximate an ideal “equivalent aperture distri-
bution ” with that produced by each cluster by varying the relative
amplitudes and phases of the individual elements of the cluster . In
following this procedure , an implicit assumption is made that a close
approximation to the ideal distribution in the “equivalent aperture”
will produce a relat ively distortionless secondary (field) pattern .
However , no convenient quantitative correlation between the “goodness”
of the distribution in the equivalent aperture ,..nd the lack of distortion
in the secondary power pattern can be readily established . One can ,
therefore, choose to work directly with the secondary power pattern and
seek to approximate the same using some type of minimization procedure .
To this end one can define a performance i ndex ~ given by

U
2 

v~
= 

J 

du J dv ~(u,v) IIE (u ,v) I - IE 0(u ,v) 1 2 1 , (4.31)
u 1 v 1 L..

where cJ(u,v) is a weighting function , E(u ,v) is calculated from (4.1) and
is the desired (real) power pattern which can be taken to be the

undistorted pattern for a symmetric feed . The region of integration in
(4.31) should be taken to be an area in the (u,v) space which is large
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— enough to cover the range of interest in the secondary pattern space. Any
-: number of available optimization schemes can be employed to minimize ~ and

derive the solution for the excitation coefficients Im ’S that implicitly
appear in (4.31) through the expression for E(u ,v). The numerical results
for 1m ’

~ 
obta i ned from an optima l solution of (4.31) are g iven by

1 ? 
-L ~16 - j 0.0734

1
3 

= T 7 = -0.0250 + j 0.0141 (4.32)
14 ~6 

0.2034 - j 0.0290 —

I~- = O.a833 - j 0.1771

which should be compared with the one derived by working with the
“equivalent aperture” method and given in (4.30). The secondary pattern
for this choice for ‘m ’s is plotted in Fig. 17. We note that at least for
this example the optimal solution is not significantly superior to the
secondary pattern derived earlier using the “equivalent aperture ” method .
However , the computer time required for deriving the optimal solution is
considerably higher than that necessary to extract the cluster coefficients

• using the procedure outlined in Section 4.3. We also mention that the
solution for derived from the ‘equivalent aperture ” approach can serve
as an excelle’-it initial guess in the gradient optimization program.
Finally, it is possible to employ the optimization approach to synthesize
the entire contour beam directly, rather than just the constitutent cluster
beams. It is not difficult to see, however , that the time involved in
deriving an optima l solution directl y for the entire contour can be very
large and that there is the increased risk of converg ing to a false minimum .

Al though we have not discussed the algorithmic details of optimi zation
procedures , we mention that a number of optimization subroutines are usu— 

—

ally available in a typical computer program library . More scphisticated
procedures for minimization techniques , such as the minimax procedure ,
may be found in [9]. An application of this method to the contour beam
synthesis problem has been discussed in [10].
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Fig. 17. Compensated secondary pattern of a clus ter feed synthes ’~ 1 using
the optimi zation approach.
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Appendix I.

Beam Deviation Factors for
Symmetri c Reflec tors (Para bol ic)

The beam deviation factors Bu~ 
By are defined by

u v
= B

~ 
= (A.1.1)

5 v=O S~~.0

where we recall that UM and vM are the direction cosines of the beam
maximum and u5 and are given by u5 

= 

~x’~ 
an d v5 = c~/f. The beam

deviation factors are generally i ndependent [11] of the feed displacement ,
at least when u5 an d v5 are not very large . It is also fortuitous that
these parameters, which are essentially constants , can be found directly
from the primary pattern of the feed centered at the focal point by using

j
i 

(1  - cos o ’)[3H~ + E~] ~~ ds
B = - (A. 1.2)

j (1 - cos e ’)[3H~ + E~~] s
3

where E~ and H~ are the E-plane and H-plane patterns of the feed. The
other constant B

~ 
can also be derived from (A.1.2) by simply interchanging

E with H -p p

I
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L Appendix II.

A Method for Computing
the “Equival ent Aperture ” Distribution

We will now briefly outline a method for computing the “equ ivalen t
aperture” distribution for a given feed whose primary pattern is known.
Let the feed pattern be spec i fied in the (o ’,~ ’) coordinate system
(Fig. 1) as

—j kp

~feed 
e [Ô’  E

0 , + 6’ E
~~

s ] - (A .2 .1)

Assuming that the E- and H-plane patterns of the feed can be smoothly
interpolated , we obtain for a nominally 9-polarized feed

~~ 
E~(e ’) sin ~~

‘ , E~~, —H~(e ’) cos •‘ , (A.2.2)

so that

= - ~—L~~ (1 - cos e ’) 
(~~

-Hp + E~) s in ~~
‘ cos

+ 9[H~ cos2 q ’ + E~ s-in 2 4,] + ~[ctn 4- s in  4, ’ E
~1) 

. (A.2.3)

Each rectangular component of ~ can now be rel ated to a corresponding
component of the surface current.
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