
*0 AO 5O ID PAYTCRN ANALYSIS AND flECOSIITION CORP ROtC N Y n• 9/2
HISs—ORDER LANSUASE EXTENSION S FOR CONCURRENT P*OCCSSINS. CU)
DEC 77 N N CCCICT. C A LANDAUER. i N NORRIS F30602—76—C—035$

UNCLASSIFIED RAOC—t*—77—3fl Nt

___ _
__ .1

‘U L _

II

f ______

111122
_____ L

I~ 11111201. 1 ~~:

IIIII~
~HII ‘ ~ flhIIa~ iiii~

M ~()(~~ F~IS (l 1L J ~ I I

‘,1 I

H
RADC-TR-77-394
Final Technical Report
December 1977

HIGH-ORDER LANGUAGE EXTENSIONS FOR CONCURRENT
PROCESSING

~~~~~~ Mr . Michael N. Condict
Dr. Christopbsr A. Landsuer
Dr. John )l. Morris

Pattern Analysi , and Recognition Corporation
% . ~

.0..

I. ~~~

____  —

Approved tsr public raise ..; distribution ~rnl1ait .d.

f : : D DC

ROME AM DEV~ OPMENT CENTER
Mr Force Spasms Commend
O.~ffis Mr P..~ Sass, P~ w YM 13441

B



This report has been revieved by the RADC Inforeation Office (0!) and i.
releasable to the National Technical Inforsation Service (NTIS). At NTIS it
will be releasable to the general public , including foreign nations.

RADC—TR— 77—394 has been reviewed and is approved for publication .

APPROVED: 
~~~~~~~

ARMAJR) A. VITO
Project Engineer

APPROVED: /9QS
ALAN R. BARFUM , Assistan t Chief
Inforsa tion Sciences Division

FOR THE C(~~IANDER : ~~ / ~7

fJom ~~. auss
(I’ Acting Chief , Plan. Office

If your address has chang ed or if you wish to be rsaoved fron tb~~RADC sailing
list , or if the addres see is no lnng.r~~~~ toy.d by your organizat ion, pl ase
not ify RADC (ISCA) Griffis. API NY 13441. This vii]. assist us in saistaining
a curren t sailing list.

Do”!t r~’~~~
’this copy . . ____ in or ~55~~oy.~~~’

______ •

_ ~~~~~~~~

!1NI~LA SSTFT~~n
SECU RIT Y C LASSIFI CA TIOI . OF THIS PAGE (5?.... DoE. dGffi .d)

READ INS1’RUCTION SEPORT DOCUMENTATION PAGE BEFORE COWPLE TIN G FORM

~~~~~~~~~ 
GOVT ACC ESSION NO 3. RECIpIENT’S CATALOG NUMBER

3.,b.iId.)  5. TYPE OF REPORT S PERIOD COVERED

(
~~~ 

GUAG E
~~~~~~

IONS FOR ~~~ chniCal~IS~~~L~
S. PERFORMING ORG. REPORT NU •ER

_____________________________________________ 
N/A
S. CONTRACT OR GRANT7 AUTHOR .

N. Cdndi ct, 1
~~~~~~~ M~~~orriL~~~~~~~J 

iS ___
76

~

c

~~

3s8j

~~~~

J
Christopher A _______

I. PERFORMING ORGANIZATION NAM E AND A OOR ESS l~ °POGRAM ELEM ENT . PROJECT , TASK
~~I’~~~~ I WORK UNIT NUMBERS

Pattern Analysis and Recognition Corporation
228 Liberty Plaza 

~~~~~499Rome NY 13440 ___________________________
II. CONTROLLING OFFICE NAME AND ADDRESS I! REPORT

Gr iff iss AFB NY 13441 T. ~~~~~~~~~~~~~~

Rome Air Development Center (ISCA) Dect~~~

14. MONITORING AGENCY NAME S ADDRESS(II ddfl.,.nE f,o.r Cont,otIInS OfV i ~ .) IS SEC URITY CLAS

‘INCLASS IFIED
Same _______________________________

IS.. DECLASSIFICATION. DOWNGRADING
SCHEDULE

__ N/A
IS. DISTRIBUTION STATEMENT (of tAd . R.po,t) i:~ i:~ c
Approved for public release; distribution unlimited. t.E?1 J?fl~ifLi F

FEB 16 1978

l7. DISTRIBUTION STATEMEN T (of ffi• ab.I,.ct .nI .,.d Sn Stock 20, dl dlfI.,.MI Ito., R.po,t) j ti L~Same B
IS. SUPPLEMENTARY NOTES

RADC Project Engineer: Armand A. Vito (ISCA)

IS KEY WORDS (Co.,CIno. on ,•t•,i. add. dl n.c... ~~y id ddontIl~’ by block non.b.t)

High—Order Language
Concurrent Operations

\
Concurrent Processing
Concurrent Prograimning
JOVIAL
~O. A B STRACT (C0oOSO... on t..• ,•• add. gi ~~~~~~~~ ..d Sdantdly by block ma.b.t)

This report describes extensions to the JOVIAL computer language which will per-
mit the JOVIAL progra~~er to exploit the characteristics of advanced computer
eq uipment capable of concurrent non—sequential processing . Major sections of
the rep ort include a mathematical model of the processor , a detailed glossary of
speci alized terms used in concurren t processing , and specifica tions for the
language extensions . Other sections includ e essential background material and
conclusions derived from their research.

II OBS OLETE
UNCLASSIFIED1473 ‘DI T ON OF ‘ NOV SI
_

SI~~alRItY CLASSIFICATION OP YPISS PAGE (5?.p.i DoE. L’I...d)

___- -. -._ _ _- _ _ _ _ _

TAB LE OF CONTENTS

Sect ion Page

1. Introduction 1—1

2. Chronological Report 2-1

3. Development of the Definitions 3-1

3.1. Research Sources and Conflicting Usages 3—1

3.2. Self-Consistency and Ambiguity 3-2

4. Some Considerations in the Design of the Language Exten-
sions 4—].

4.1. Simplicity and Clarity Considerations 4-1

4.2. Reliability Considerations 4-3

4.3. Implementation Considerations 4-7

4.4. Suggested Implementation Strategies 4—8

5. A Formal Model of Concurrent Processes 5-1

5.1. Motivations 5—1

5.2. Numbers 5—2

5.3. The Machine 5—4

5.4. Representation 5-8

6. Definitions of some Terms in Concurrent Processing . . 6-1

6.1. Guide to the Definitions 6—1

6.2. Definition of some Terms in Concurrent Processing 6-2

7. The Proposed Extensions 7-1
i~ -

,

7.1. Primitive Constructs 7—1 ~ 0
1-i

7.1.1. Start 7—1 —
7, 1.2. Stop 7—3

~~~~~~~~ *0

l$ImIVflu!AVMUEY ~ f$
~~ AVAIL Nd,’~ SP~Cij~iiiI AH I o n I

a.. -
~ ~

.,.—.
~~~——-———~~

—.. - .

7.1.3. Lock • 7—4

7.1.4. Unlock 7-5

7.1.5. Pause 7—5

7.1.6. Resume 7—6

7.1.7. Await 7—7

7.1.8. Shared Variables 7-7

7.1.9. Process Variable 7—9

7.1.10. Alive (Standard Function) 7-10

7.1.11. Dormant (Standard Function) 7-10

7.1.12. Priority (Standard Function) 7-11

7.1.13. Authority (Standard Function) 7-li

7.1.14. Free (Standard Function) 7-il

7.1.15. Available (Standard Function) 7-12

7.1.16. Clock (Standard Function) 7-12

7.2. High Level Constructs 7-12

7.2.1. Concurrent Compound Statement 7-13

7.2.2. Conditional Critical Region 7—14

7.2.3. Semaphore Operations (Standard Functions) 7-16

7.2.4. Concurrent for Loop 7—16

7.2.5. Queue 7—18

7.2.6. Oldest, Newest 7—20

7. 2 • 7. Drop , Extend 7—20

7.2.8. Insert, Remove (Standard Functions) . 7—21

7.2.9. Full, Empty (Standard Functions) . 7—22

7.2.10. Le~.~~’-h (Standard Function) 7—23

H 8. Conc.~usions and Reconvnendations. . . 8-1

iv

1 .
- .-~~ . ~~~~~~~

--
~~~ 

-
~~~~ 

.
~~~
- .



EVA LUATIO N

The RADC System Architectu re Evaluation Facility (SAEF) is a computer

emulation facility to assist in the evaluation of hardware/software/firmware

tradeoffs. An i ntegral part of SAEF is the concept of concurrent processing .

Concurrent processing has a greater abilit y to process real-time , high

data rate Air Force probl ems . However , it is very diff icult to program

wi th present day serial High-Order Languages (HOL), including the Air

Force coninand and control HOL, JOVIAL .

The objective of this effort is to devel op JOVIAL language

extensions to allow progran ning of concurrent processing activities

including the proper synchronization of these activities.

The concept developed in this contract is the first step toward

the HOL capabilities for describi ng concurrent processes.

ARMAND A. VITO
Project Engineer

v

__ _ __

~ 

-m



SECTION 3.

INTRODUCTION

This report describes extensions to the JOV IAL computer language wh ich

will permit the JOVIAL programmer to exploit the charactei’istics of advanced

computer equipment capable of concurrent (non-sequential ) processing. Major

sections of the report include a mathematical model of the processor (Section

5), a detailed glossary of specialized terms used in concurrent processing

(Section 6), and specifications for the language extensions (Section 7).

Other sections include essential background material and conclusions derived

from this research.

The JOVIAL computer language was developed for the Air Force as a tool to

aid command and control system development. Based on ALGOL 58, JOVIAL has the

following characteristics :

1. As a general purpose language, JOVIAL may be used for scientif ic and

engineering problems involving numeric computation, for business

problems involving large data files, for logically complex problems

involving symbolic data , and for other problems involving a balance

between data storage and program execution time.

2. JOVIAL is readable and concise, utilizing self-explanatory English

words and the familiar notations of algebra and logic. Since

1-1

______ ________ - 
______ .___ _.•_—~

r_—- 
~

.-

~~~~~~~

- - — .

comments may be intermixed with program instructions, a JOVIAL

program may serve as its own documentation .

3. Because of its ALGOL—like block structure, JOVIAL permits the

subordination of detail without loss of detail; the general outlines

of the program may be easily grasped by the reader.

4. JOVIAL is easily learned by programming personnel, permitting the

rapid training of new staff.

5. The language is relatively machine-independent, reducing the time

required for transfer of programs to new equipment or operating

systems.

Computer languages such as JOVIAL are intended for sequential execution .

Only one process is assumed to be active at any time, and control passes in

sequential fashion from one instruction to the next. Although modern compilers

are capable of modifying the order in which instructions are actually executed ,

the JOVIAL programmer can always proceed as if statements were to be executed

in sequence.

The development of more advanced computer hardware has, however, made it

desirable to extend JOVIAL to permit its use with concurrent processors.

“Concurrent” and other specialized terms used in this report are defined in

Section 6. Here, eoncurrent processing is taken to include computer operations

which have one or more of the following characteristics:

1-2

_ _ _ _ _ __ _ _ _ _ - - — - __o
17~

_
- -

1. Two or more processes may be active during the same time span.

Thus, unlike sequential processing, in which each process follows in

a well-defined order, concurrent processing permits several pro-

cesses to be executing at once.

2. In one form of concurrent processing, several identical processes

may be parformed in parallel, on different data items. Such array

processing might, for example, simultaneously multiply corresponding

pairs of entries in two vectors.

3. A sequence of operations might be performed on many data items in

pipeline fashion; when the first operation has been performed on a

data item , it is passed along to the second operation, while the

first operation is performed on the second data item, and so on for

all processes and data.

4. Content-addressable computer storage permits the simultaneous

search of many memory addresses for a specific data item, the loca-

tion of which is not known in advance.

The goal of the research reported here has been the design of extensions

to the JOVIAL language to permit the programmer to specify concurrent opera-

tions , of which the four examp es given above are typical. In this way, the

JOVIAL prograimner can take advantage of concurrent processing hardware, without

the need for the use of specialized, machine-dependent languages. The ease of

programming in a higher-level language, and the relative machine-independence

1-3

_ _ _ _ _ _
_ _ _ _ _

~~~~~~~~~~~~ 

_ _



of the JOVIAL language , can thus be used in a context which exploits available

concurrency in various implementations .

This final report documents the project and presents the language design.

In addition to this irtroductory section, the report includes the fol1ow~ng

sections :

Section 2 of this report contains a chronological narrative of the

project development .

In Section 3, criteria for the development of definitions of terms are

discussed.

Section 4 describes the manner in which the proposed language extensions

for concurrent programming were developed.

Section 5 presents a formal model of concurrent processes, to provide the

conceptual basis for development of the language.

Section 6 contains definitions of essential terms in concurrent processing.

In Section 7, detailed proposed extens ions to JOVIAL for concurrent

processing are presented.

Section 8 provides conclusions derived from the project.

Section 9 consists of a Bibliography of works consulted .

_ _ _ _ _ _ _-. . 

~~~~~~~ 14 ~~~~~~~~~~~~~~

. .

~~~~



SECTION 2

CHRONOLOGICAL REPORT

This section reviews the research that was undertaken during this pro-

ject, which extended from July 1976 through August 1977. This chronological

survey serves to place the project in historical perspective.

The initial two weeks of the contract period were spent in reviewing

articles and books by authorities in the field of concurrent processing, drawn

from the Bibliography included ~it the end of this report. The purpose of this

review was to obtain data concerning accepted use of terms in concurrent

processing.

A tentative list of words and proposed definitions was then compiled ,

consisting of all those relevant words which were used by several different

authors, other words considered useful or important, and all words specified

in the Statement of Work. The list included only terms relevant to concurrent

processing and not dependent on particular types of hardware.

The proposed list was thoroughly reviewed and discus~èd by PAR ’ s tech-

nical staff with experience of interest in concurrent processing. The purpose

of this review was to propose new terms and/or revised definitions. The

discussion included persons with a variety of technical backgrounds, in order

to introduce diverse viewpoints and to produce broadly acceptable definitions.

2-1



Following discussion wi th  RADC , some of the proposed de f in i t i ons  were revised

by adding explanatory notes and examples , and some new terms were added.

Next , a set of tenta t ive  language structures, which had been deve1ope’~

for PAR’ s initial proposal, were reviewed with regard to convenience , clarity ,

and power . Several additional structures were considered .

Potential advantages and disadvantages in the use of the JOVIAL 1angu~?e

as the basis for the proposed language design were also reviewed with RADC .

On the basis of this discussion , it was decided that JOVIAL would be used as

the base language.

By October 1976, we were ready to study a large set of concurrent func-

tions , including semaphores , process control , conditiona l waits , communication ,

and others, in order to be able to select a consistent and powerful subset of

primitive operations. The problems which might arise through the use of these

functions were analyzed to determine whether they are intrinsic to the func-

tion or can be avoided by proper constraints on the use of the functions.

Finally, the feasibi.iity of implementing these functions on today ’s machines

and operating systems was discussed by the project team and other interested

personnel.

The JOVIAL J73 dialect was studied to determine the types of syntactical

extensions which would be consistent with the rest of the language, without

introducing ambiguity into the language. Precise syntax and semantics were

developed for some of the concurrent processing primitives , and additional

2—2

~ 

.~~ ~~—~~~~~~~--. _ _ _ _ _ _ _

~~~~~~~~~~~~~~~~~

.
— . - . -

. .

high level ~ :s -tions were developed and analyzed for convenience , power , and

reliabilit y.

To provide conceptual foundations for the language design , a formal

r n i t h ~~ il . ical model of a concurrent processing system was developed. This is

irten ~ ed t~~ serve as the Lasis for more precise definitions of most of the

t e rm s in concurrent ;r o c e s sin g which were heretofore only informally described .

It also allowed a ~t t r awareness o~ the properties and complexities involved

in concurrent processing.

~3v Fehruary 3.9~~7 , th e hasic outlines of the pro~ osed language had been

comp~ ted . From this point forward , the malor goal was that of testing exist-

irw st r s c t sr es for consi~ t. ncy and cors~ leteness , and revi . c~w iny a fd i t i o nal

f e a t u r e s for ~ossiJ~le i n c l u s i o n . The research apuroach , w h i ch re liec h e a v i ly

sn regular discussions among rr ~ect sembors and other intere te ; ersonnel ,

meant that a f~~ir1 y large nu nL~ r of ~ersons were involve f in tf~ urolect as

c r i t iss ~nd sources of ad f i t isnal ideas . Th ese discussions were cont i nued

throu ’h t-’ ru l~~ 7.

heta L ; of the f or’ al cor.surrer t p O c e s S in g sash m e were wor’~ ed Out • A

small language for programming this abstract machine was desisned , and inve -

i o ns were f e g s n ts f e t e rm i n e how well the machine models the .~ cr t ant

is ~ ec ts of resent-day cohc Irrent computers and op erat inF. systems .

:d. . proposed language * ‘x t e r s ions were under constant review dur ing t h i s

r~~~iod. Feliability considerations arose in the analysis of the pro~c ;e f

2-3

r

_ _ _ _ _ _ _ -- _ -—----

extensions. It was found that the re is a clear trade-off between increased

power and safety from mistakes or misuse.

During May 1977, the design of test methods for determining the quality

of the concurrent extensions was begun. These tests attempt to measure the

user acceptability of the extensions (in terms of convenience , power and

clarity) and to measure their reliability (the likelihood that the programmer

will use them correctly).

The power of the formal concurrent processing machine was studied by

using it to describe other machines. It appeared that some modifications of

it would be necessary in order to model concisely all of the proposed concur-

rent functions.

By September 1977, final revisions of the definitions of concurrent

processing terms were completed , reflecting insights gained from the study of

the mathematical model. The syntax and semantics of some of the proposed

extension s were modified after tests showed them to be inadequate in some

respects. New constructs and standard function s were defined . Finally,

conclusions and recommendations based on results of this project were deve l-

oped . The next few sections of this report will document the research in more

detail .

2—4

.~

SECTION 3

DEVELOPMENT OF THE DEFINITI ONS

3.1. RESEARCH SOURCES AND CONFLICTING USAGES

One of the major stumbling blocks to advancement in the understanding of

concurrent (parallel) processing has been the multiple and conflicting usage

of many of the new terms in the field. This is understandable in an area of

knowledge which is expanding so rapidly , but it hardly contributes to lucid

communications between researchers. In our efforts to improve the situation

with a set of precise definitions for a carefully chosen set of terms, we made

several difficult decisions regarding the accepted usage, as seen in the

literature, of some of these terms. For example , we found the phrase “asso-

ciative processing” to be used to mean what we have called “concurrent proces-

sing” and also to mean “array processing.” The phrase “parallel processing”

has been used to mean any of “order-independent processes,” “concurrent

processing,” “multiprocessing but not multiprogramming,” and several other

types of processing . Our definitions of terms appear in Section 6, and the

Bibliography (Section 9) details some of the sources referred to in construc-

ting the list.

The main guideline we followed in resolving conflicts was to attempt to

identify the important concepts in the area of concurrent processing, regard-

less of the names used to refer to such concepts , and to identify concepts

which were important but had not heretofore been given generally accepted

WI
_ _

_ _ _

~~

—

~

--

~~~~~~

•
.

~~~~~~~~~~~~~

~—

names. In the latter Cases, we attempted to choose a meaningful name from

non-technical English. Finally, where all existing names in use for a certain

concept seemed equally bad choices, because of misuse or lack of mnemonic

quality , we chose a new name from non-technical English.

3.2. SELF-CONSISTENCY AND AMBIGUITY

Limits of precision in the English language have made it impossible to

eliminate completely ambiguity in the definitions, but we have tried to limit

such ambiguities by first defining , as clearly as possible and with several

examples, a set of basic concepts, which could then be used to define pre-

cisely all the other more complicated terms. Thus, if these first definitions

are well understood, or at least taken on faith , the definitions of the others

should be just as well understood. The basic concepts include: resource,

program, process, initiate, terminate, processor.

Equally important and desirable is the consistency of the definitions;

that is, they must not contradict one another. One of the reasons that the

formal model was developed (see Section 5) , was to provide a tool for defining

the terms even more precisely (in terms of the operation of the model), and to

ensure that the definitions were consistent. While the potential of the model

has not yet been fully realized in this area, it did guide us in revising

several of the definitions to remove inconsistencies and to clarify their

application .

3—2

_ _ _ _ _
-- - -

SECTION L4

SOME CONSIDERATIONS IN THE DESIGN OF THE LANGUAGE EXTENSIONS

4.1. SIMPLICITY AND CLARITY CONSIDERATIONS

The literature abounds with proposals for new language structures with

which to do concurrent processing. It is therefore easy for a language

designer to fall into the trap of attempting to include all of them in his

concurrent programming language. This can result in a mishmash of alternative

ways of doing the same thing , with no clear choice between them. As with the

definitions of terms (see Section 3) we avoided this pitfall by selecting the

most basic, minimum set of structures , from which all other structures can be

defined . Of the published alternative proposals , we chose as the basic set

those which were most easily understood and had the least complicated syntax

and semantics. Reliability of use was not of prime concern for these struc-

tures since they are intended to be used only when the more restricted , high-

level constructs are not powerful enough.

The same requirements for simplicity and ease of use were also adhered to

in the choice of the high-level constructs. Since they are equivalent to

combinations of the basic constructs, their semantics can be described pre-

cisely by means of a transformation rule, showing how one construct in any

valid program can be changed into another , without changing the semantics of

the program. To be a little more lucid , while less formal, we have, instead ,

shown two equivalent program fragments as examples, one using the high-level

J 4_ ~~

— .—
~~~~~~~

-— --
~~~~~~~~~~~~~~~

-
~~~~~~~~

--——-. . -

~~~~~~
~.

construct and the other using a combination of basic constructs. It is

believed that the examples are general enough to define the equivalence rela-

tion for all cases. The examples do not necessarily show the proposed way of

implementing the high level structures, but rather the simplest way of illus-

trating their meaning. The complete syntax and semantics of the proposed

extensions are found in Section 7. In the following subsections we justify

some specific choices which were made among several alternative constructs.

1. Brinch Hansen’s critical regions (see ACQUIRE statement) were used

instead of monitors (procedures containing data together with pro-

cedures for accessing the data , and enforcing mutually exclusive

access to the data) , because critical reg ions seem more flexible and

thus easier to use. Also, it is relatively easy to obtain monitors

through the use of critical regions , by placing the body of each of

several procedures in a critical region on the same shared variable.

2. The concept of locking and unlocking (see LOCK, UNLOCK) shared

variables was chosen over semaphores because it is easier to see

d irectly how it can be used to provide mutually exclusive use of a

variable. Actually, locking a variable is equivalent (except for

the feature of multiple locks - see Reliability) to doing a wait

semaphore operation on a semaphore (initialized to 1) devoted to

enforcing exclusive access to that variable . Similarly , unlocking

the variable is equivalent to a signal operation on the semaphore .

As seen in Section 7 , in the definitions of semaphore functions, it

is trivial to define them using LOCK and UNLOCK on integers.

4-2

I
3. The START statement , with the code of one process appearing inside

the code of its parent process, was chosen instead of the separately

declared processes of Brinch Hansen’s Concurrent PASCAL and the

tasks of PL/I. It is not clear why the statements to be executed by

one process should be required to be physically distant from the

statements of the parent process, especially if they are quite

simple . It was felt that this detracts from readability of programs

more than it would improve modularity. The “fork” operation , pro-

posed by others, is even more basic than the START statement, but

was deemed too easy to misuse (see Subsection 4.2.).

4. QUEUEs consisting of a bounded number of similar components were

defined to be as much like TABLEs as possible, to facilitate famil-

iarity and avoid a proliferation of syntax rules. Again, simplicity

dictated defining a minimum number of queue operations, with others

constructed as standard functions from these.

4.2. RELIABILITY CONSIDERATIONS

Although all of the proposed extensions have legitimate uses for certain

tasks, it must be kept in mind that the primitive constructs (especially LOCK,

UNLOCK and START) are just that -- primitive. Their use should be reserved

for performing functions which cannot easily or efficiently be performed with

the more restricted concurrent processing constructs. Some of the possible
4

pitfalls and the manner in which they are avoided by the use of high-level

constructs are outlined below :

I
__

_ l
~

_ 3

1. The statements most likely to cause deadlock , or other errors if

improperly used , are the LOCK and UNLOCK statements. Forgetting to

lock a variable before use and then unlocking it , or locking it and

then failing to release it to other processes , can cause obvious

problems. The ACQUIRE statement was designed to ensure that all

locks and unlocks are matched properly. Less obvious is the dead-

lock caused by waiting (see AWAIT) for a change in a condition of a

variable which is locked by the waiting process. Finally , deadlock

can be caused by the interaction of two processes both attempting to

lock two or more variables. If process P holds variable A and

attempts to lock B , but process Q already holds B and is attempting

to lock A , neither one will ever complete execution of their LOCK

statements. This is the reason the LOCK statement was defined with

a list of variables , instead of just one. The list will always be

processed according to some pre-defined ordering of all variables

(probably address order). Thus , deadlock cannot occur from this

cause unless nested LOCKS are used.

3. One of the constructs that has been proposed by others to initiate

new processes is the fork statement , which usually initiates a new

process in the same state as the original except that they are each

given some way to discover whether they are the parent process or

the child process. Neither process is confined to any section of

th. program, and the parent-child relationship is obscured. Also ,

if the processes fail to “separate,” by discovering which of the two

processes they are and acting on that information , they may produce

- i___ _____ ii____ —T
_ _ _ _

non-deterministic results. The START statement was designed 1o

overcome these d i f f icul t ies by restricting the new process to exe-

cuting a separate block of statements , w5th an automatic termination

when it reaches the end of the bloc). In this way, the new process

can be seen to be nothing more than an invocation of the block , but

one in which the invoker does not wait for the block to be comp leted.

The START statement , however , is not entirely free of reliability

problems. Just as wi th the use of a fork statement, we cannot be

sure how many processes can be active at any given statement ,

because we do not know when they f in i sh , and have not synchronized

them . The concurrent compound statement (see COBECIN , CO END) or

concurrent FOR loop is usually powerful enough to replace the use of

the START statement and is less prone to error, because a single

sequential process enters the statement and a single process (the

same one) leaves the statement at the bottom. In fact, if the

processes inside the concurrent COBEGIN or FOR statement operate on

disjoint sets of variables and are otherwise order independent , the

statements are equivalent to their sequential counterparts.

4. It was found difficult to make safe and generally useful rules to

determine which processes may control the execution of other pro-

cesses (see PAUSE , RESUME , STOP). Many concurrent processing

implementations state by definition that a process can control

another if it has hi gher “priority.” Also , higher priority pro-

cesses will execute faster and wait less for resources to become

4-5

_ _ _ _ _ _ _ _ _ _ _ _ — -~r

available. But it seems to be a confusion to have control permis-

sion and speed - two independent concepts - depend on the same

attribute of processes. To illustrate the problem with this

approach consider the following two examples :

a. A system-accounting process could be initiated to gather sta-

tistics about another process, or to restrict the process in

some way. It should be a low-priority process so as not to

place much of a computing burden on the system, since it is

pure “overhead” ; but the monitored process, which is of higher

priority , should not be allowed to abort the accounting pro-

cess , for security reasons.

b. A process performing a task with strict timing constraints

(such as reading a fast magnetic disk) might need high priority

to operate correctly, but the lower priority process which

requested it may legitimately want to abort it when the latter

discovers that the former is in error, especially if the high-

priority process is expected to be lengthy or expensive.

Another approach to the problem of control permission is to allow a parent

process to control execution of its child processes (and possibly further

descendants), hut not vice versa. This rule also falls down under certain

circumstances. For instance , in a concurrent data base management system, a

user process might initiate a system process to do an update on the data base,

then decide the transaction was a mistake and wish to abort the update process.

4-6

A

However , premature termination of the process could leave the data base in an

inconsistent state and so cannot be allowed.

For these reasons, it was deemed necessary to allow a process, when

initiating another , to specify control permission by means of an “authority”

value , an attribute of all processes (see START , process variable). In order

for one process to control the execution of another process, it must have

greater or equal authority . Note that a system process may protect itself

from being controlled by the user process which initiated it, if it is always

required to be called indirectly from another system process , which will

initiate it with a high authority.

IMPLEMENTATION CONSIDERATIONS

Although this project did not require implementation of the language

extensions , it would be irresponsible for a language designer glibly to def ine

operations which can be imp lemented , on most machines , only at great cost and

with gross inefficiencies. So, for each proposed language feature , we out-

lined possible implementation schemes on various kinds of machines . The

machines considered included :

1. Array processors .

2. Processor networks (with or without shared memory).

3. Multiprogrammed operating systems on sequential computers (with or

without control of interrupts).

4. Single user operating systems on sequential computers.

__________________________-

4-7

-

~~~~~~~~~~~



As a result of such considerations, several changes ..ere made to the

extensions, including :

1. Requiring certain variables to be declared SHARED .

2. Requiring all functions referenced in an AWAIT statement to be

“pure ,” so that their returned value depends only on their input

parameters .

3. Prohibiting a process from branching outside the confines of the

START statement which initiated it, except for procedure calls.

4.4. SUGGESTED IMPLEMENTATION STRATEGIES

Following are some notes on possible implementation methods for specific

concurrent constructs:

1. LOCK, UNLOCK. The difficulty of implementing these functions varies

greatly with the type of machine involved. But Dijkstra has shown

that , as long as reads and writes of shared memory can be performed

as indivisible actions (where the exclusion might be enforced by a

memory controller or other low-level hardware), then the functions

can be implemented , albeit not very efficiently. Moreover , they can

be implemented in a queued fashion without threat of indefinite

overtaking. The implementation is much simpler and faster if it is

possible to do an indivisible “test and set” operation on shared

4-8



variables. That is , the value of a shared variable may be copied to

local (unshared ) storage in a process , and then changed before any

other process can read it. While not many conventional computers

have such an instruction, it is possible to accomplish the same

thing if the machine can be temporarily “sequentialized” by turning

off its interrupt capability. The algorithm used with the “test and

set” operation involves incrementing an integer associated with a

particular shared variable immediately after copying it to a local

variable , then waiting for the local copy to become equal to another

shared integer which is incremented by processes as they release

(UNLOCK ) the shared variable.

2. START, STOP, PAUSE , RESUME . On some operating systems , these are

simply calls to the executive . An existing process may request a

fork-like operation, or may specify that a different program is to

be invoked as a concurrent process. On sequential machines without

this feature, a concurrent program could be translated into a se-

quential program with a built-in executive that simulates concur-

rency by successively executing parts of different logical pro-

cesses. This method is to be avoided , if possible , because the set

of routines which make up the executive will probably be quite

large, and will tend to duplicate the functions of the actual

system executive, resulting in confusion and complexity.

In networks of processors, it may be advisable for reasons of

simplicity to restrict each processor to performing one logical

4.. 9



process , placing an upper bound on the number of processes allowed

to be alive simultaneously . Then it is not clear whether starting a

new process has any meaning at all since a new processor cannot be

automatically mater ia l ized  to perform i t .  However , it mig ht be

useful  to define the stopp ing of a process as the execu tion of a

halt instruction on one of the processors, and to define the start

of a new process as the restart of one of the halted processors. If

processor t ime is inexpensive , PAUSE and RESUME could be defined in

terms of the execution of a “busy” wait loop.

3. Standard Functions. The standard functions which return information

about processes could look such information up in a list of active

processes , maintained by a controlling executive , or by the processes

themselves.

14 • AWAIT. This statement is the most difficult and costly of all to

implement , but is so powerful and useful that it was chosen over the

more limited “event-processing” which others have used as a synchro-

nization primitive . (Awaiting one of these events is like executing

an AWAIT statement where the logical formula is limited to being a

single logical variable , which must have been declared in a special

way, and whose value must be set with a special statement.) The

only reasonably efficient way to implement the AWAIT statement seems

to be to have a linked list associated with each variable declared

GHARE J , and containing the process identificat ions of all processes

.L.urrently awaiting a logical formula in which the shared variable is j
4-10



important. The head of the list could be a word of storage allo-

cated beside the sharod variable. Then every assignment to a shared

variable must be followed by a test to see if the list of waiting

processes is empty. (This probably requires only one or two machine

instructions.) If not empty , every process in the list must be

resumed so that it (or its executive) recalculates the value of its

logical formula and decides whether to continue or suspend again.

5. SHARED variables. The SHARED declaration was introduced to permit

the compiler to generate the extra data structures necessary with

such variables. (See implementation of AWAIT and LOCK.) These will

probably include a pointer to a linked list of processes waiting for

the value of the variable to change , and a pointer to a queue of

processes waiting for access to the variable or a pair of integers

by which processes enforce queued access themselves (as described in

LOCK implementation).

4—11



SECTION 5

A FORMAL MODEL OF CONCURRENT PROCESSES

5.1. MOTIVATIONS

This section describes a mathemat ical  model for inves t iga t ing  concurr~ n t

processing in computers. The purpose of the model was to give a firm mathe-

matical founda tion to a set of Englisri-language definitions of terms of im-

;ortance in concurrent processing. It is our hope that the in formal  def i—

ni t ions  are adequate , but we realize that another authority is needed ir~ the

inevitable cases ot amb igui ty.

The existing models o concurrent processing do r~ot incl ude all of the

features that are essential to a complete model. In particular , we insist

that the model be flexible enough to permit sooe data to be considered as

programs. This requirement tends to complicate the model , but it is balanced

by the further requirement that it be possible to imp lement a substantial

portion of the model on an ordinary (Von Neumann ) computer.

The model will be described in terms of a particular idealized r omp uter

called the OSMA machine , together with rules for definition and execution of

programs on the machine.

An OSMA machine contains a set of variables which completely describe its

State and situation. On an ordinary computer , these variables would include

5—1



all storage and all local or internal registers. The machine also has a set

of currently active processes, whose action can be enabled or disabled ac-

cording to conditions on some of the variables.

The action of a program can be described by a function from the set of

input values to a set of output values. Since we wish to include all parts of

an ordinary computer in a single OSMA machine, we will not speak directly of

input or output devices. We will therefore assume that there is a single set

of variables on which each process operates. This subset is contained in some

large set of variables belonging to the machine itself.

5.2. NUMBERS

Any digital computer deals with symbols, which have by historical con-

vention been associated with numerical quantities. Therefore, our machine

will have a fixed set of symbols, which act as possible values of variables.

We denote this set by N, and call the elements of N “numbers” (take note that

this term will be used only in this sense throughout this section). It

follows then that a process can be described by a function from one set of

values of variables to another.

The set of possible values of a variable in an ordinary computer is

finite, and the set of all finite sequences of such values is countably

infinite. For mathematical simplicity , we assume that the set N is countably

infinite, since it allows a single variable to contain the equivalent of a

full program.

5— 2



S

A major problem from the mathematical point of view is that programs are

self-referential.  Since the output of one program can be another program , it

mu st be possible for any program to be represented by a number (element of N ) .

Howev er , the set N N of all functions from N to N has cardinality

I N N
I >

for any set N with IN~ > 1. This fact implies that no matter what set of

nunbers is used (as long as there is more than one number ) , there are more

possible functions than there are function representations. Therefore , we can

only use a subset of all possible functions for our machine , and so we need to

define a suitable collection of functions. Fortunately,  such a collection

ex ists.

We will use the results from the theory of recursive functions in math-

ematical logic (see Hermes, Yasuhara in the Bibliography), the recursive

functions afford the best known candidate for the intuitive idea of effec-

tively computable functions . In addition , every computer has only a f ini i -~-

number of components , and any such machine can represent only recursive

funct ions .

For this exposition , we assume that N is the set of non-negative inte-

gers. This choice is compatible with the standard expositions of recursive

f unction theory , and with our choice of the size of N. It can be circumvented

(e.g., we might take N to be the set of all finite sequences of characters

5— 3



from a finite alphabet ) , but in this case the model would require some mod-

if icat ion .

Since the variable values must describe function definitions and not

functions, we must find a scheme for translating function definitions into

elements of N. It must also be assumed that the OSMA machine can interpret an

element of N as a program. The mechanism by which this interpretation is

performed need not be described. We need only to know that there is a way,

which will be clear when the translation in the other direction (i.e. from

prosrams to numbers) is shown to be one-to-one.

5.3. THE MACHINE

The configuration of an OSMA machine consists of variables and instruc-

tions.

There is a countable set V of variables, labeled by numbers, and a method

for aLlocating and freeing disjoint countable subsets of V. Also, every

running program has two kinds of variables , global and local. The global

variables are common to all programs, and the local variables are specific to

a single invocation of a program.

Specifically, the odd numbers might correspond to global variables , and

for each positive integer n , the nth set of local variables might consist of

those which correspond to numbers congruent to 2~’ (modulo 2’~~~) .

5-4



The instruction set I is a countable set of functions on sequences of

numbers of various lengths, and it is assumed that I contains all the primi-

tive recursive functions. (The precise definition of primitive recursive

functions can be found in Yasuhara.) All we need here is that this set in-

cludes most of the functions found in computer programs.

It is permissible for I to contain other functions which are not primi-

tive recursive. We will see an important example of such a function , the

oracle, later in this subsection.

The state of the OSMA machine is a specification of the values of its

variables. The state of a process is a specification of the values of its

global and local variables , and the number representing its program (i.e. its

static description).

If there is to be meaningful interaction between the components of a con-

current architecture , it must be possible for requests for resources to arrive

arbitrarily close together. In any actual device , such access implies and
r

requires some kind of arbitration to determine which request is granted and

which is refused.

In order to allow for multiple requests and arbitration , we have deter-

mined that an OSMA machine will have a sequential controller (i.e. instruction

decoder), so that exactly one instruction will he executed at any one time.

The OSMA machine is still a concurrent processor, since the instructions are

arbitrarily, and in most cases unpredictably , interleaved .

5—5



The machine language for an OSMA machine is, of course, the set N of

numbers , since we have already claimed that every program is to be a number.

In the rest of this section , we will describe the interpretation of programs

written in the OSMA machine language. We will also define the terms used to

describe the parts of OSMA machine language programs.

Each program uses the common set of global variables and a unique set of

local variables (each of these sets is countable). The program must know

which variables are local and which are global. Any system by which this

distinction is made is acceptable.

An OSMA machine language program is considered as a sequence of transi-

tion definitions. A function expression is an application of a function ft I

to an appropriate argument list of variables (either global or local). A

predicate expression is also a function expression , where the function values

are interpreted as truth values, zero for false and non-zero for true.

A transition definition is a triple consisting of a condition , an action ,

and an invocation. A condition is simply a predicate expressior used as a

gate for the action. An action is either a halt instruction (to cause the

process to terminate) or a finite nonempty sequence of assignments of the form

~~~~ where e is a function expression and d is an address expression, i.e. a

function expression whose value is used as a variable. By convention, the

halt instruction is the case of no assignments (thus the two actions may be

considered under one heading).

5—6

1r

The invocation part of a transition definite is considered to be null if

it is zero. If it is nonzero, it causes a new process to be invoked with a

unique set of local variables. The value of the invocation is a variable

reference , and the value of that variable is interpreted as a program. How-

ever, no subsequent change in the variable has any effect on the program that

is interpreted (it is as if the program is copied elsewhere for interpretation).

The OSMA Intermediate Source Language is a high-order language which

explicitly reflects the structure of a program , and its organization into the

type of hierarchy described above.

An oracle is a function which is designed to model an interactive ter-

minal. In particular, it is used as a function of a specific number k of

variables (considered as “displayed output”), although its value (considered

as “typed input”) need not be the same for two invocations , even if the argu-

ments are the same.

Each oracle must be in the original instruction set I, since it cannot be

given a definition as a primitive recursive function.

We describe the execution of programs on the OSMA machine . The machine

begins with an initial state and a finite collection of processes which are

active. At this point, the machine is ready to select an instruction.

5—7

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _I -

The selection and execution of instructions is always carried out in the

same way. For any state of the machine , zero or more of the active processes

have transition definitions for which the condition part is true. Such tran-

sition definitions are called enabled steps. It is quite possible for a

process to have more than one enabled step. If no step is enabled , then the

machine has reached a deadlock , and cannot proceed . This situation must be

considered an error condition .

If there are any enabled steps, then the instruction part of exactly one

of them is executed. As a result, the process containing the instruction may

halt (i.e. disappear from the set of active processes), or a change of the

current state may occur, as determined by a set of assignments in the instruc—

ti on.

In addition , if the invocation part of the instruction is nonzero, a new

process, whose static description is given by the specified program, is placed

in the set of active processes, with its local variables all set to zero. At

this point, the machine is ready for a new selection.

5.4. REPREDENTATION

It is our aim in this section to describe the representation of all of

our structures by numbers. The representation function will be described

recursively, and each kind of structure will be mapped in such a way that it

is uni quely determined by the representing number (given the type of structure) .

5—8

.. -~ . . T1
flI. ..

.
~. • : . . I. .~..~~I ~~~~~~~

-

Since the functions in I form a countable set, we begin by associating

with each f £ I a number If I s N.

The variables in a program are easily represented. The global variable v

is represented by an odd number Iv I cN , and the local variables are similarly
represented by even numbers.

In order to describe the representation of combinations of objects, we

need a way to represent the structure in terms of its parts. In particular ,

pairs of objects can be represented by a single number if we can find a “com-

bination” function: one that maps pairs of numbers uniquely to single numbers.

Most textbook descriptions of the recursive function theory describe such a

function on pairs, and a few have explicitly given the function ~ 2 below.

We have found a simple description for a collection of functions e
k

which

map k-tuples of numbers uniquely to numbers. Moreover, the function is in-

vertible. This fact means that every k-tuple of numbers can be mapped to a

unique single number, and also that every single number represents a unique k-

tuple of numbers (for a given k).

These functions (except for e
2
) have not appeared in an easily accessible

source, and we have not seen them elsewhere. We digress for a moment here to

describe these functions and some of their pro~erties.

5-9

We denote by N k the set of all k-tup les (x 1, 111 , X
k

) of numbers (i . e . x .~

N for 1 < i c k) . For k = 1, th is set is just N . Define e~ :N N to he the

identity map on N.

For k > 2, we will define functions

k
-* N

which are bijective (i.e. one-to-one and onto).

Note that a~(x) maps gx ,y) x ,y >0 , x + y = m} bijectively onto {O, 1,

., m~ , since the conditions on x,y are equivalent to 0 < x < m , y m - x.

Define 82
:N 2 ~ N by

x + y + 1
e 2 (x ,y) 2 + x ,

so that 62
maps {(x,y)Ix ,y > 0, x + y = m} bijectively onto the set

m + l m + 2
2 2

— 1 ,

so that
~2

maps {(x ,y)) x ,y > 0, x + y < n) bij ectively onto the set

{~ 1, ~~~~~ (
fl + 2) — i) .

_ _ _ _ _ _ _ _

A

It follows immediately that 82 is bijective.

Similarly, for k > 2, we define Ok :N
k

N by

Ok
(xl, . ..~~~ x.~) (n +

k
- 1
) +

k-l~~l’
. .,

where n Z(l < i < k)x.. It can be shown as above that 6
k is one-to-one and

onto.

Write N0 for the set containing the empty sequence , and N°° for the union

kN U(k > o) N ,

and define a function O : N ~ -~ N by taking 0 (0) 0 and for ~ > 1, nc

0 (n) = 2k~~ + 2k

Then it is clear that 8,,, is also a bijection.

The process by which is computed is fairly simple . Given k and n ,

we choose the largest integer m for which

m + k - 1
k

(t here is one , since m 0 gives 0 on the left), and then compute 4

5—11

(x , , . . . , xk ,)
~ k~ 1

1
~~ -

~~~~~~~

and finally

Xk 
m - E (1 < i < k-i) x.

For the case k 1, ¶~~
(x )  = x , so the inverses are also computed recursively.

The inverse of O i s  computed as follows: given n, if n = 0 , then 8,,, ~~(n)

= 0, the empty sequence. If n � 0, then there is a largest power of 2

dividing n, i.e. let k be the largest integer for which

k-i
2 divides n.

Then k >1 , and we compute

8~~~~(n) = 8
k~~

( ( n  -

using the recursive procedure for e
k
’.

We will use these functions to define a representation of programs by

numbers. This representation has, as a side effect, the representation of all

structural units of a program as numbers.

A function expression (or a predicate or an address expression ) e is an

application of a function f to a sequence of n~~O variables x1, . . . ,  x~. We

then write

5-12

a ‘tr 
I:



IeI 8
2
( ~~ ‘ 

8 (  lx~l , . . .  I x t  ) ).

~.n assignment is a pair d e, and we define

d e = °2~ ~~~ , l e t  ) .

An instruction a is a halt , or a f inite  sequence of r > 1 assignments , so we

write J a I =  0 f or a halt , and

l a l 0 ( (  I d . e. l 1 < i < r ) )
1 1. — —

for the sequence (d. ~
- e . Ii < i < r) of assignments.

A transition definition t has three parts: a condition c, an ir.struction

a, and an invocation v. We define

I t t  0
3
( I d  , t a t , l v i  ) .

Finally , a program p is a finite sequence (t
1 I i < i < r) of transition

definitions, and we define

Ip i e,,,(( ~~~ I l  ~ i ~ r)).

We assume that r > 1, so that ~ ~ 0 for a valid program .

5—13



We now claim that given the type of a struct ure , the integer representa-

tion uniquely determines the structure . The different structure types are:

program

t ransi t ion definition

instruction

assignment

function expression

variable

function

The result follows from the definitions , since at each stage of the

construction , where a function of O was used , its arguments could range

over all possibilities.

An OSMA machine language program (i .e .  an element of N ) can therefore be

interpreted (using a 8-function) as a sequence of transition definitions , each

of which is a triple ; each triple is interpreted as a condition , an instruc-

tion and an invocation ; etc . The interpretation is uniquely recoverable from

the value of the representation , given the type of structure, so that the

representation of each structure can be interpreted in a reasonable and con-

sistent fashion.

5—14



SECTION 6

DEFINITI ONS OF SOME TER1~S IN CONCURRENT PROCESSING

6.1. GUIDE TO THE DEFINITIONS

Throughout the definitions, the following conventions are used :

1. A word underlined in a definition is defined elsewhere.

2. The word or phrase which is being defined in a sentence is enclosed

in quote marks.

An attempt was made to order the definitions so that the most primitive con-

cepts, not definable completely in terms of other concepts , appear first, It

will be noted that several of these early definitions (variable, program,

process, processor) refer, circularly , to themselves. This seems unavoidable .

It is hoped that these terms are basic enough and their meanings well enough

agreed on that ambiguity is minimized.

The synonyms given are not claimed to be exactly the same in meaning as

the word being defined . They are , rather, words which others have used to

refer to similar concepts, and are included as an aid to the reader who may be

more familiar with one of them than the word chosen to appear at the left. In

most cases, this choice was governed by three criteria:

6—1

____________ 

(



1. The word was more widely or precisely used in the literature.

2. The word that corresponded most closely to its non-technical (“Webster”)

definition was often chosen for mnemonic reasons (e.g., concurrent

instead of parallel).

3. When no clear choice was apparent because all existing words in use

were equally bad choices, a new one was taken from non-technical

English that, hopefully, satisfied criterion 2.

6.2. DEFINITION OF SOME TERMS IN CONCURRENT PROCESSING

resolution In any consideration of processing, there are many conceptual

levels at which activity takes place. “Resolution” will be

defined here to be the smallest (or shortest) action that is to

be treated, for the purpose of discussion , as a single atomic

action .

Ex~~ples:

To the naive user of a computer program which is accepting and

executing commands of some sort, the smallest resolution known

is the execution of a single command. The author of the pro-

gram, however , is concerned with a lower level of resolution

when he constructs the program , namely the execution of single

statements , instructions , or procedures . Similarly , the

6-2 }
H~ 4 

_ _ _ _  _ _ _ _
• ?;_ — —



resolution with which the designer of the computer views the

same activity may extend down to the level of electronic sig-

nals in solid state circuits.

It is important to note that activity which appears to involve

several independent concurrent processes at one level of res-

olution can often be seen as parts of the same sequential

process at a more inclusive level of resolution. This does not

affect the need to treat the activity as separate processes at

the lower level. An example is viewing a multi-programmed

operating system on a sequential computer first at the user

program level, then at the level of single machine instruction

executions.

~yponyms: grain size

resource Those things upon which processes act and which are required by

processes to perform some desired function .

Examples:

In a computer system where the processes are invocations of

user programs , typical resources are mass-storage devices , such

as tapes , disks , etc. and input/output devices, such as CRT

terminals and line-printers. To a process consisting of a

6-3



functional unit of a computer, a resource might be a data bus

or an internal register. The resources of an abstract FORTRAN

process include its variables and the files upon which it acts.

rogram A sequential “program” consists of a set of rules which explain
instruct ion

how (i .e .  with what parameters ) , and in what order, to execute

instructions (and when to stop) from a known set of available

instructions. Each “instruction” is a program itself, when

viewed at a lower level of resolution.

Every program is defined with respect to a particular processor,

since each processor may have a different set of instructions

available.

Examples:

A FORTRAN program; micro-code in the control store of a micro-

programmed computer which controls the execution r~~ a single

machine instruction ; a flow chart ; a cook-book re~ i~ e.

Synonyms: algorithm , procedure

process A particular execution , from start to finish, of a program.

Every process is a series of unique events which by definition

occurs only once. Two processes from the same program are

6-4

T I~~ _~~_~



~~stin ct if they are initiated at different times or places , or

act on different resources, or are active on d i f f e ren t  Rrocessors.

dynonyms: task , job

processor That mechanism , whe ther physical or lo~-ical , which perform s (or

executes) a program (also called supporting a process).

Examples:

The concept of “processor ,” as wi th several other terms ,

depends on the choice of resolution . At one level , a sequen-

tial computer together with a multiprogramm ing, ti rre-sharing

operating syster night look like an (almost) ar~ itr~ir1 number

of identical processors to users at remote terminals. This

view is as appropriate , for purposes of most analyses , as the

view from the machine instruction level, where there appears to

be only one sequential processor . Other examples: the human

brain; the logic circuitry of a desk calculator ; an abstract

FORTRAN machine consisting of a FOPT~AN comp iler , an operating

system and comp uter , and a library of support subroutines which

allow FORTR AN programs to execute under the Operatinp ~v~;ter~.

Synonyms: Machine , programming language



advancing A process is said to be “advancing ” whenever it is alive and

not dormant. Nothing is implied about whether its supporting

processor is currently executing one of the instructiqns of its

program or has finished one instruction and not yet begun

another. All that is important is whether or not the process

is able ~~‘~‘ continue.

Example :

When viewing a multiprogramming , time-sliced system as a set of

identical processors with one or more available for each user

job, the jobs are said to be advancing even during those periods

of time when they could have used the CPU, but it was not

available until a later time-slice.

Synonyms: active , running executing

dormant A process is “dormant” whenever it is alive but not progressing

towards completion , because it is waiting for some resource to

become available or for some other condi’-ion to become true.

Example:

In a typical operating system , a job (process) might be dormant

becauce it is waiting fo” information to becon~ available at

the read/write head of a slow mass storage device.

6-6



Synonyms: waiting, paused , blocked , sleeping

order Two processes are “order independent” if, whenever there is a
in4~pendent

choice at a particular time of executing an instruction in

either one (i.e. they are both advancing), the final outcome

does not depend on which processor executes an instruction

first. Processes which act on disjoint resources, and which

therefore do not communicate in any way , are always order

independent.

cooperating Two processes, A and B , are “cooperat ng if A changes the

state of some resource (or creates the resource) after which B

executes instructions which depend on the state or existence of

that resource, and B effects A similarly. Processes must be

concurrent in order to cooperate.

Example:

If A and B are a user of a remote computer terminal and a

process in the computer , respectively, and if the process is

the invocation of a program which obeys some sort of types

commands, and , finally,  if the commands chosen by the user may

depend on the results of previous commands, then A and B are

cooperating processes.

6-7



lifetime The “l ifet ime” of a proces s is the time period from when it is
active
alive initiated until it terminates. A process is said to be “alive”

or “active” during its entire lifetime.

concurrent Two processes are “concurrent” if and only if their lifetimes

overlap (are not disjoint). In other words, concurrency re-

quires that there be some reriod of time during which both

processes have been initiated and neither has terminated.

resume A process “resumes” (or “resumes activity”) when it begins

advancing after  being dormant. One process is said to “resume”

another when an instruction in it directly causes the latter

process to resume activity.

asynchronous Two processes are “asynchronous” if their relative rate of

execut ion does not a f fec t  the outcome of either. Their order

of initiation and termination may, however, be important,

unlike order independent processes. It is common to say that

one process starts up another “asynchronous” process (i.e. the

two processes are asynchronous) if the first  process needs to

know only when the second is initiated and when it terminates.

Examp le:

If A and B are , respectively, a user job in ~ computer and a

device handler program which services such jobs , it is common

6-8



for A to request B t~ initiat~ ~ device o~er~ t~~ n.  Th en A

continues without waitir~ for compl et ion , de~ ending on B to

inform it when ~~ r)’erItion ~~ cor ~ l r t e . ndpr th~se ci r -

cumstances , A :rnd B ~~~ a ,rn~ hron oin procesner .

multi- A te:Pni ;ue ~or executing ~e ,er -d log i’ il :rocesses cor c ‘~~*~~ r
program:~in~

on one physical processor ~v interleaving their 
p x e c u t~~’m ,

although only one process may occupy the  ; roces ;ar at a ti”ie .

iti pro’r~nming is used tr~ incre~~ e efficiency in nult i -~ ser

compu ter systems by allowing one icer ’~ ~ob ~ use the certr~ 1

processor while ntherr are waitir.~’ ~cr rlow ~~~;s-~~ or ire

resources to become read’.’.

Synonym: mu1tit ic )~ ing

multi- The simult~ r~ecu~ execution of programs on ,ewer&i~ ~~ ~~nsc.r:
processing

with some forn of communication ~etw*w~~ procesres. It is

usually used to divide jot’n logically or f’ c t  r:~ ii; and to

increase c~ r ;cjter ~c~w’~r.

array The simultaneous execution of a simple ~u~ n ’ of ~rct!u ct ioos
processing

by ceveral processors, with possibly different inputs and

outputs. The I/O can thought of as ~rr~ rc or .‘ectorr with

th
the i processor receiving the i ~ input and rcd 1cin~ the i

output . The processors are synchronized in that they are all

~LL



executing the same instruction in the sequence at any given

time, but with different data. Computers built to do array

processing at the machine instruction level (i.e. the instruc-

tions are single i~in~ instructions) have been called single-

instruction multidata machines (SIMD).

Syno~yT1:~ vector processing

pi~pe A “pipe” exists from one process, P, to a concurrent process,

Q, if P produces an output data sequence which is an input data

sequence for Q.

pipeline A “pipeline” is a sequence of pipes connecting several processes

.th . . . thso that output of the 1 process in input to the (i+l)

process in the pipeline.

Example:

The concept of a pipeline is useful to both hardware and soft-

ware engineers but for somewhat different reasons. A hardware

pipeline (e.g., between subsystems in a CPU) is usually the

result of decomposing a program, P, into an equivalent sequence

of progrars to be executed as pipelined processes. The pro-

gram , P (which may be , e .g . ,  execution of a single machine

instruction), usually needs to be performed many times. For

6-10

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  r



this reason, the component ; reprams are designed to re~ .~~.i ’ ~~~

to run concurrently ,  so that they can simultaneously he engared

in execution of different occurrences of P. This ir’:reases

component utilization and rate of execution of suc~:essive P’s,

calle ’ throughput .

A software pipeline may be used in the sane manner , but more

often it is the result of combining several independent pro-

grams rather than decomposing one . If a program ’s inpu t and

output are allowed to be directed through arbitrary pipes

(chosen before each execution of the program ) then processes

which have no knowledge of each other may be flexibly inter-

connected to form output filters , input preprocessors , message

buf fe r s , etc .

p ipeline The use of pipes to solve a problem .
rocessing

distributed The loose connection of several independent processors, each
processing

with its own storage, in order to allow tasks to be split off

for local execution and to allow them to draw on the combined

computational power of several processors (e.g., in the opera-

tion of a large multi-user computer center). It is a currently

popular alternative to centralized processing facilities that

require larger , more powerful , and more expensive n uper-computer.~.

It is a subset of multii rocessin.& involving ~.itt1e coinniunica-

tion and synchroni;~~tion of the processors.

6-11

- - - - --~~~~-~~~~~~~~~~~~~~~ —~~ 

- - _ _ _ _ _ _



associative The processing of data which is accessed by specifying content
processing

of words in memory (or parts of words) instead of locations.

associative t ~~ocesscr (usually involving a large amount of concurrent
process or

a c t i v i t y)  specifically designed to do associative processing.

process The control of the order in which processes advance relative to
synchroniza-
tion each other , in order to insure that interprocess communication

and resource utilization occur repeatably and do not depend on

what other processes may be alive in the system .

mutual The prohibition against two or more processes using a resource
exclusion

simultaneously. When one process begins to use the resour’-e,

all others requiring it must wait until  it is released.

S~~onym: lock-out

critical A “critical region” is a portion of a program requiring mutually
region

exclusive use of some resource in order to produce a repeatable

result. Each critical region is defined with respect to the

use of one resource. No two processes should be in regions of

their programs which are critical with respect to the same

resource at the same time.

6—12

_ _ _  
/T



deadlock Whe n each of a chain of processes is lornant, waitir for a

condi t ion which can only be caused by the next rro~ess in the

chain , and the last is similarly waiting for the f irst, then

the processes are “deadlocked. ” Also , any p~~cess wai tin~’ for

a deadlocked process is itself deadlocked. none of then will

progresc without outside intervention .

indefinite When several processes are waiting for exclusive use of a
overtaking

resource, and one or nr re may never be allowed to continue

because other :;rocesses always obtain the resource first , then

the waiting processes are said to he “indefinitely overtaken .”

concurrent The use of concurrent ~p~ocesses.
processing

~:.monyn: parallel processin~

co-routine Two or more cooperating processes are “co-routines” if their

periods of progress are mutually exclusive (i.e. only one

advances at a time , with the others dorm : i t) .

subroutine ~ subprocess , P. of a process, Q, is a “ subrout ine’ of ~ if

they are co-routines (i.e. Q becomes dormant when P is initii ted

and does not resume un t i l  P terminates).

6-13

(



Examp le:

If the executions of different procedures in a FORTRAN program

are viewed as d i f f eren t  processes , then , during a subroutine

call from Subroutine A to Subroutine B, we say that the process

executing B is a subroutine of the process executing A.

descendent A process, Q, is a “descendent” of a process, F, if Q is

initiated by P or by any other descendent of P.

Synonym: child process

task A “task” is a process together with all descendents of it.

Note that a task cotitains other tasks, unless it is a single

process.

sub-process A “sub-process” of a process, F, is a descendent of P whose

lifetime is surrounded by P’s (i.e. it starts after P and

terminates before P).

Example:

In the example given under asynchronous processes, B is a sub-

process (but not a subroutine) of A.

1~



suspend A process is said to “pause” or to “suspend” activity when it

stops advancing and becomes dormant. Similarly, one process

“suspends” or “blocks” another when it causes the latter

process to become dormant.

Synonym: block , pause

initiate A new process is “initiated” when a processor begirs to execute

a program.

Synonym: start , begin , birth

terminate A process “terminates” when its processor finishes executing

the program from which it was initiated.

Synonym: stop , finish , die

I6— 15

________________ 
___________ 

I

_ _ _  ~~ ..—-- --- .
.
- --, . - TThr~~~ 

—



SECTION 7

THE PROPOSED EXTENSIONS

7.1. PRIMITIVE CONSTRUCTS

The fol lowing constructs form the basis for the entire set of

concurrent processing operations. All other constructs can be described

precisely (see examples) by showing the basic constructs to which they

are equivalent . Therefore , it is important to understand the meaning of

these constructs before proceecing to the higher level ones.

7.1.1. Start

Syntax:

star t :s ta tement  : :=  START process:label; statement

process:label ::~ process:name

In i 1

process :name ::~ name

Semantics :

Execution of the “statement” is begun by a new process concurrent

with the process which executed the “start:statement”. The original

process continues execution immediately at the statement following the

7—1



“start :s tatement ” . If the “process:label” is not nil , the author i ty  and

~riority (see PROCESS VARIABLE ) of the new process are taken from the

declaration of “process:nane” . If it is nil or priority is not speci-

fied in the declaration , the new process will have equal priorit’z to the

one executing the “start:statement”. Similarly, if “process :label” is

nil , or authority is not specified in the declaration of “process:name’ ,

the new process will have lower authorit’, than the one executing the

“start:staterient ’. The identification of the new process is put in the

process variable “process :name” (see PROCESS VARIABLE) and may be used

to suspend , resume, or halt the new process. The new process terminates

when it finishes execution of the “statement” , is stopped with a STOP

statement , or attempts to branch to a location outside of the “statement” .

~t may, however , execute procedure calls. Any variables or procedures

which were available to the orig inal process are also available to the

new process. Any dynamically allocated variable will remain allocated

and available until all processes having access to it are terminated.

Implementation note : the above features of variable usage by concurrent

processes probably require that , for any procedure whose execution can

cause the initiation of new processes, its local variables cannot be

allocateti on a stack , since, in general, they will not be deallocated in

stack order . A more general dynamic storage allocation method must be

used .

7-2

. -

~

-

- -

~

-__ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Examples :

START CHILD ; START ;

BEGIN

P1;

P2 ;

N

7.1.:.

Syntax:

stop :statement ::~ STOP process :specifier ;

process :specif ier  : : process :variable

/nil

emantics:

A “stop:statement” causes execution of the process identified by

the “process:specifier” to terminate and the process is permanently

destroyed . If the “process:specifier” is nil, the process which executes

the “stop:statement” terminates. A “stop:statement” can appear at any

procedure nesting level. The “actual :output :params” of any procedure

whose call is still active in the process being termina.ted will not be

set. The process executing a “stop:statement” must have equal or greater



authority than the process being terminated , or this statement has no

action.

7.1.3. Lock

Syntax:

lock:statement ::~ LOCK variable :list

Seman tics:

The variables in the “variable :list” are locked so that no other

concurrent processes may access them , until they are unlocked using the

P’NLCC~ statement. Any other process which attempts to read , set, or

LOCK any of them will wait in a queue for access to the variable. All

variables locked to a process are automatically unlocked when it hal ts

or is aborted. If any of the variables in the “variable:list ” was

already locked by this process, an additional lock is placed on it. It

will not be released to other processes until as many UNLOCKs as LOCKs

have been performed on it by its owner process. When a “proce~ s:variable”

is locked , the process identified by it is “frozen” (not suspended) in

the state it was in at the time of being locked. Thus, if it was dormant,

it cannot be resumed ; if it was advancing, it cannot be suspended ; if it

did not exist (the “process :variable” did not correspond to any currently

alive process), the “process: variable” cann.: he used in a START

statement to initiate a new process. If any of these actions are

7-~4

A~ _ _ _  

_ _  

_ _



attempted while the “process :variable ” is locked by a different process

than the one issuing the action , the issuing process waits in a queue

for access to the process. When the “process:variable” is unlocked , the

attempted ciction is completed normally.

Examples :

LOCK A, B; LOCK X[I+5], Y;

7.l.~~. Unlock

Syntax :

unlock :statemen t : : UNLOCK variable:list

Semantics:

Sne lock is removed from each variable in the “variable:list” which

is currently held (LOCKed ) by the process performing the ‘N~ OCK. Then

any variable having zero locks on it is released , so that other concur-

rent processes may access it . All variables locked by a process are

unlocked implicitly when the process terminates.

7.l.~~. Pause

Syntax:

pause:statement : :~ PAUSE process :specifier;

7—5

---

~~~~~

--

~~~~~~~~~~~~~~~~~~~



Semantics:

The process identif ied by the “p ro ce~s:~ : sp e c if i e r ” (or the l’r ’~~” ;~;

executing the “pause :statement ” , if the “process:specifier” iu nil) i~;

suspended and will not advance to its next instruction until it H

resumed using the RESUME statement . The process executing the “p iuse :

statement” must have equal or greater authority than the l~roces~; ident i-

fied by the “process:speci f ie r ” or the s ta tement  li i:; no e t i o n .

7.1.6. Resume

Synta x:

resume:statemerit : :~ lL ~HMh procen~;:variah1~~;

Semantics:

The ~~u~~ende l ; r  ‘‘~~~
; ( ;ee ~A L J :  1 ) i den t  i t  I f t  hy the  ‘‘ j~~~~ ( ( ~~~

vari able” i~: resumed. I t  ( : i t  i I~~1er ex, c t i l  ion I ron t he poin t  where i i

was suspended . If it wa~. not nunp end ed , or i f  the r o e u r ;  ex~~~~ut i r ~~ t h ’

“resume :statement ” ~~~~ not have equal or ~‘r’~~ter author ity t)i iti the

process to be resumed , the statement h .in no action .

4 
_ _  

_ _
- 

_ _ _ _



7.1.7. Await

Syntax:

await:statement ::~ AWAIT logical:formula;

Semantics :

The process executing the “await:statement” is suspended until the

“logical : forinula ” becomes true , even if only momentarily. Of course,

the “logical:formula” is not guaranteed to remain true when the process

resumes. Execution continues with the following statement. Any functions

referenced in the “logical :formula ” must be “pure ” functions; that is ,

their return value depends only on the value of their input :parameters.

Any variable in the logical:forinula must be declared SHARED if a change

in its value is expected to cause resumption of the process.

7.1.8. Shared Variables

Syntax:

item:declaration ::~ shared:specifier followed by the standard

JOVIAL (J/73) item :declaration

table :declaration ::= shared :specifier followed by the standard

JOVIAL (J /73) table:declaration

shared:specifier ::: SHARE D

m i  1
7-7 

-- - - —--- - -- -

_______ 
/~



Seman~:ics:

Using the word “SHARED” in the declaration of a variable declares

that the variable may become available to more than one process and that

mutually exclusive use of the variable is to be enforced both automati-

cally and by the explicit use of the LOCK and UNLOCK statements. When-

ever a SHARED variable is used in an executable statement, the variable

will be automatically locked immediately before each reference and

unlocked immediately afterwards. This means that a shared variable

which is currently locked by another process cannot be accessed until

unlocked , even if the process attempting the access has not explicitly

locked it.

Variables which are not declared SHARED cannot be locked using the

LOCK statement. Both the LOCK and UNLOCK statements have no effect on

such variables. Also, no automatic enforcement of mutually exclusive

access is performed.

Any variable which appears in the logical:formula of an AWAIT

statement must be declared SHARED if a change in its value is expected

to cause the resumption of the process executing the AWAIT. If any such

variable is not declared SHARED , the process is not guaranteed to resume.

7—8 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


An actual:parameter in a procedure :call must be declared SHARED if

and only if the corresponding formal :parameter is decl i SHARED.

7.1.9. Process Variable

Syntax:

item :description ::= as in JOVIAL J/73 plus :

/ process : description

process:description : :~~ P priority:specifier

authority : specifier

pr ior i ty :speci f ier : : number

/ nil

author i ty :speci f ier : :~ , number

/ nil

formula ::~ as in JOVIAL J/73 plus :

/ process:variable

process:variable ::~ process :name

Semantics:

This kind of item declaration declares a variable which can hold a

process identification . When a process is initiated using the START

statement with a “process:variable”, some unique identification (probably

an integer) of the new process is stored in the “process :variable” (see

_ _

__ I ~~

START). Then the “process :variable” can be used to refer uniquely to

that process. The “priority :specif ier ” controls how quickly the process

will pass through queues while waiting for resources, and possibly the

rate at which it will execute instructions. The “authority:specifier”

defines which processes have permission to control the execution of one

another. Only a process of greater or equal authority may abort , suspend ,

or resume another. When one “process :variable” is assigned to another ,

they identify the same process until either one is changed .

7.1.10. Alive (standard fun tion)

Syntax: ALIVE (process:vari& le);

Semantics :

This logical function returns true if the process identified by

the “process :variable ” currently exists and false otherwise.

7.1.11. Dormant (standard function)

Syntax : DORMANT (process: variable);

Semantics:

This logical function returns true if the process identified by

the “process:variable ” exists and is dormant (suspended) and false

otherwise.
7-10

~ 1
_ _ _ _ _ _ __ _ _ -- _ _ _

7.1.12. Priority (~~t i n i i r d function)

Syntax : PRI (:rc :es~ :variable);

Semantics:

This function returns an integer equal to the priority of the

:~roce~~s identified by the “process :variable”.

7.1.13. Authorit:; (standard function)

Syntax: AUTH (process:variable);

~e~ant ics:

This function returns an integer equal to the authority of the

process identified by the “process:variable”.

7.l.1~ . Free (standard function)

Syntax: FREE (variable);

Semantics:

This logical function returns true if the “variable” is not locked

by any process, including the one issuing tH~ call.

-

. __1_±T TT~r~

7.l.1~ . A ’ -~ ila ble (s tandard func ior)

Syntax: AVAIL (variable);

Semant ics :

This logical function returns true if the “variable” is either

free, or is locked by the process issuing the call.

7.1.16. Clock (standard function)

Syntax: CLOCK C) ;

Semantics:

This function returns a real number equal to the elapsed tin e, in

seconds , since some fixed ;ast time .

7.2. HIGH LEVEL CONSTRUCTS

All of the following structures could be implemented using the preceding

constructs. (This may not , however , be the mont efficient method.) The

examples attempt to be general enough to show this relationship without any

ambiguity. They are NOT the suggested way of implementing the corstructs ,

but serve only to clarify the description of semantics.

7—12

_ _ _ _ _ - ~~~------- —~~ n

7 . 2 . 1. ‘ o n :u r r e nt - orn iound Statement

- t ~~t e nen t : :~~ label~ s ir p le : s ta tenent

/ label~ hITflT~I

compo und: statemen t+ label~ END

/ label~ COBEGIN

compound :statement+ labe1~ E~ D

n ntics:

The fj r-t two alternatives in the above rule are defined as in

standard 1VIAL (J/73).

When th~ third alternate construct is used , the programmer is

declarin~ that the statements in the “compound:statement” may be executed

in any order or simultaneously. If any variable is used by more than

one of the statements , it should not have its value changed by any of

them , except while locked (see LOCK). Faijure to adhere to this restric-

tion an ;r~ vent the program from producing repeatable results.

7—13

-

~

— -—-

Example:

COBEGIN START P1; Sl;

Sl; S2; . . .

COLN) means:

START Pn; Sn;

t i : IF A L I V E (P l) ; flOTh Ll;

Ln: IF ALIVE(Pri); GOTO hr.;

7 . 2 . 2 . Conditional Critical Pe~ ion

in ta x :

critical:region : : acquire:iin~ entry:condition ;

statement

acquire :list : : ACQUIRE variable:list

/ nil

en t r -y : c o n d i t i o n : :~ WHEN log ica l:formula

/ nil

Semantics:

Either the ‘ acquire:list ” or the “entry:condition ” must be speci-

fied. When the “logical :formula” becomes true , even momentarily,

7—lie

an atter~t t is made to lock all of the variables in the “variable:list ” .

If the “log ical : formula ” is still true when the LOCK succeeds , then the

“ statement ” is executed , a f te r which the variables are unlocked. If

the ‘ logical :formula” is not still true , however, the variables are

unlocked and the preceding actions are repeated . The variables which

make up the “log ical : formula ” are not locked unless they also appear in

the “acquire:list”, except that if the “acquire:list” is nil , every

variable in the formula is locked , which guarantees that it will remain

true during the execution of the “statement”. A nil “en try :condi tion ”

has the same effect as “WHEN TRUE” ; that is , the cri tical reg ion is

entered unconditionally .

Exa~ple:

ACQUIRE A ,B LOOP : SUCCESS FALSE;

WHEN X YiB; AWAIT X Y+B ;

ctatement LOCK A , B , X , Y ;

means : IF X Y+B;

BEGIN UNLOCK X , Y;

statement

SUCCESS = TRUE ;

END

ELSE ; UNLOCK X , V ;

tiN’ OCX A , B;

IF NOT SUCCESS; GOTO LOOP;

7-15

- -

7.2.3. Semaphore Operations (standard functions)

Syntax : W AIT (integer:variable);

S IGNAL (integer:variable) ;

Semantics:

These standard functions are defined as follows :

PROC WAIT (:SEMVAR); PROC SIGNAL (:SEMVAR);

BEGIN BEGIN

ITEM SEMVAR S; ITEM SEMVAR ;

ACQUIRE SEMVAR ACQUIRE SEMVAR;

WHEN SEMVAR 0; SEMVAR SEMVAR+1;

SEMVAR SEMVAR-l; END;

:ND ;

7.2.4. Concurrent fo r Loop

Syntax:

for:clause : := FOR concurrency:specifier

control:varjable : control:clause

concurrency :specifier ::~ ALL

/ nil

_ _ _ _ _ -

7-16

Semantics:

If the “concurrency:specif ier” is not ni l , it is assumed that all

of the iterations of the FOR ioop can be done in any order or concurrent-

ly. The calculation of replacement or increment values for the control

variable will be done sequentially, and a separate process will be

initiated to perform each iteration . However, each of these processes

will be given a separate , local copy of the control variable , so that

when it is replaced with its next value (which happens just after in-

itiating the process), the local control variable remains unaffe--t~~~.

Example :
—

FOR ALL I. I THEN NEW(I) “PR” is a TABLE of

WHILE I�X; process variables:

USE(I); means: T 0;

FOR I : 1 THEN N E W (I)

WHILE I�~:;

BEGIN ITEM

T = T + 1;

LCLI I;

START PR [T] ; US E (LCLI) ;

END ;

FOR T:T BY -l WHILE T =1;

AWAIT NOT ALIVE (PR [T]);

7-17

L.. _______ —_ — -— -~~~~~~~~~~~~~~~~~~~~~~~~~~ -—--

ii

7.2.5. Queue

Syntax :

queue : declaration :: ordinary : queue :declarat ion

/ specified queue : declaration

ordinary:queue:declaration ::= shared :specifier QUEUE queue:narne

que ue : organization : part

ordinary : entry : specifier

queue :organization :part : : allocation :specifier

queue : size : specifier

structure : specifier

packing : specifier

queue:size :specifier : : [integer]

specified:queue:declaration : := shared:specifier QUEUE queue :organi-
zat ion part

words: per: entry

specified:entry : shecifier

queue :nane :: name

~ueue:ref:function : : OLDEST (queue:specifier)

/ NEWEST (queue : spec i f i e r)

~ueue:specifier ::= queue :name / queue:itern:name

variable ::: same as in standard JOVIAL J /73 plus:

/ queue :ref: function

7-18

_____________________________ — 1~~
-

p
:emantics:

A QUEUE variable is an ordered , variable length sequence of entries

(which are just iiI.e TABLE entries), with the restriction that only

the most recent entry in the queue and the oldest entry in the queue can

be accessed (see OLDEST, NEWEST), and that only the oldest entry can be

removed from the queue (see DROP, EXTEND). Also , the number of entries

currently in the queue may be discovered by using standard functions

(see LEN~TH, FULL, EMPTY). The “queue :size:specifier” declares the

maximum number of entries allowed in the queue at the same time.

Note that a QUEUE declaration is much like a table declaration ,

exce;)t that access to the queue is substantially different . Because of

the automatic enforcement of first-in/first-out order, queues are es-

;e c ia l l ; usefu l for sending messages from one (or several) process(es)

to another (or several other) concurrent process(es ’. This kind of

isage is commonly known as “pipelining ”.

F.xamples:

QUEUE Ql [100] S; QUEUE Q2 [50]

BE GIN

ITEM FLD 1 U;

ITEM FLD2 S;

END;

7-19

7 . 2 . 6 . Oldest, Newest

Sy n t a x : OLDEST (queue :spec i f i e r) ;

NEWEST (queue : s p e c i f i e r) ;

Semantics :

These functions provide the only means of accessing the information

in QUEUE’s. They may appear in formulas or in the left side of assign-

ment statements , since they are defined as variables. The queue identi-

fied by the “queue :specifier” must not be empty (LENGTH = 0) when either

of these func tions is used , or an error results. The functions are used

on the left side of an assignment statement to define the value of the

oldest or newest entry (or part of an entry if using a “queue :item :name”)

in the queue identified by the “queue:specifier”. When used in formulas ,

they return the value of the oldest or newest entry (or part of an entry

if using a “queue:item:name ”) in the queue . Often , it will be more

convenient to use the standard functions INSERT and REMOVE instead of

OLDEST, !~EWE ST , DROP , and EXTEND .

7.2.7. Drop, ~xtend

~yritax: DROP (queue:name);

EXTEND (queue : name);

7-20

enantics:

These functions provide the only means of removing and adding

entriec to a ~tJ EYF . The of tTh DROP function removes the oldest entry

from e-~e :nane ” ~~ the en try is e f f ec tively destroyed. Subsequent

uses of the OLDEST function will no longer refer to this entry , hut to

what was previously the next- to-oldest entry . The LENGTH function wi l l

return a value one less than before. If , however , there are no entries

in “queue :name” when a DROP is attempted , an error results.

The EXTEND function is used to add a new entry to “queue:name ” .

Subsequent uses of the NEWEST function will now refer to the new entry .

The value of the queue entry is undef ined un til it is established using

th e ~ FW i:h T ~uni ct ion . The hFN~’TH function will return a value one greater

than before . If, however , “queue :name” is full when an EXTEND is attempt-

ed (number of entries equals the integer specified by the “queue:size :

specifier” in the declaration of “queue :name”) , an error results.

7.2.8. Insert, Remove (standard functions)

Syntax: INSERT (formula : queue:name);

1 h -/L : variable , queue :name);

7—21
.4

.
—

~ ~~~~~~
‘~~~~

Semantics :

The “formula ” and “variable” must be of the same type as the

entries of “queue :name”. These standard functions are defined loosely

as follows :

PROC INSERT (VAL:Q); PROC REMOVE (:VAR , Q);

BEGIN BEGIN

ITEM VAL . . . ; ITEM VAR . . . ;

QUEUE Q . . . ; QUEUE Q ...;

ACQUIRE Q ACQUIRE Q

WHEN NOT FULL(Q); WHEN NOT E MPTY (Q) ;

BEGIN BEGIN

EXTEND (Q) ; VAR = OLDEST(Q);

NEWEST (Q) = VAL; DROP (Q) ;

END END

END; END;

7.2.9. Full, Empty (standard functions)

Syntax: FULL (queue :name);

EMPTY (queue :name);

7-22

Semantics:

The logical function FULL returns true when the number of entries

in “queue :name” is equal to the integer used in the “queue:size :specifier”

in the declaration o~ “queue :name ” , and false otherwise. The logical

function EMPTY returns true when there are no entries in “queue :name ” ,

and false otherwise. All queues arc init ially empty .

7.2.lc . Length (standard function)

Syn tax : LENGTH (queue :name);

Semantics :

This function returns an integer equal to the number of entries

currently in the queue specified by “queue :name”. All queues are

initially of zero length.

7—23

SECTION 8

CONCLUSIONS AND RECOMMENDATIONS

In the development of extensions to JOVIAL for concurrent processing, we

have attempted to delve into one of the newest , least understood fields of

computer science , wi th the goal of making concurrent processing into a

u s e f u l tool for desi gning complex computer software, rather than a liability

which can introh’~ce non-determinacies and confusion even into simple programs.

This projec t has drawn heavily on the work of others , notably Brin ch

Hansen , Dijkstra , and Hoare, in addition to making several new I roposals for

concurrent language extensions . The set of de f in i t ions of concurrent pro-

cessing terms proposed here is, we believe , the most complete and precise

such list yet completed , although it may still fall somewhat short of the

ideal of complete freedom from amb igui ty . The def ini t ions were successfully

used in discussions concerning the design of the language extensions , and

proved to facilitate the communications of ideas by removing the necessity

for lengthy ex~~1anations of terminology .

The proposed language extensions should prove to he reliable and powerful

when they are actually implemented and tested empirically Since the real

test of the quality of a language is its acceptance by and usefulness to its

users, implementation and test of the language extensions will provide a

source of suggestions for revision and possible expansion of the design pre-

sented in this report. We therefore recommend the implementation of the

proposed language extensions for the puroose of further analysis and testing.

8— 1

Development and study of the mathematical model for concurrent process-

ing (Section 5 of this report) has been fruitful in impro’/ini~ the quality of

:oth the definitions and the language extensions , by simplifying and clarify-

ing essential concepts. Further development of the model will be helpful for

actual implementation of the language extensions. In addition , the model may

be used to describe complex parallel hardware in a precise and understandable

manner , and thus may assist in the design of a concurrent hardware description

language. For tht~se reasons, further study and development of the model is

proposed.

8-2

BIBL I- f l ~ A PH Y

An- h noon , J . P. , ‘‘h- 0’ram htz - - u t un -s nr Parallel }r0 ooir ig , ‘‘ C o m m u n i o i t icco

~ the A C M , Vol 8 , h 12 , pp 786-788 , l~ 65.

Baer , J . L. , “A u r - v y of home The o e t ic-31 Aspec t : - ; of M u l t i ; r c : ’ s s in 1~’ , ‘‘

A M homp ut ing Surve ;, M- in . 1973.

Basi l i , ‘. i c t : r R. and John C. Knigh t , “A Lur~~uaLe Desi~~r; for Vector Ma-

chines ,” SIGPL At N - ~~ices, pp 3 - ~~3 , M - o h 1975.

Br inch Hansen , Per , “ :oncurrent in ~r inning Concepts , ” A ~~ n: u t ng Sw-

vevo , pp 223~~2 . , Dec . l -1h3 .

‘‘The ~u l u of a M h t i pr o c i i m m i r ~~ Cooc 1 .~~ ,
‘ (c Scon - ; h.

A CM . Vol 13 , , pp 238-2 5u , 1970.

U1 ’r r i n g Sy ~~- n P r in c i p e:; , Pr -o t — H i l l , pp 55—131 , 1973.

“The Pu r - ; oe o~ - onc~ o r - ru PASCAL , ” SIG P I . / N N o t i c e s , pp 30 5—309 ,

June 1975.

- - - - - - h r i r i i r - J Mul~ i ;- x op,ramming , ’ Commun i ritions of the ACM , Vol 15 ,

7, pp 5 7 i , 1972.

Cof~ n~n , E .; . , M. h . Elp hi:k , -w i A. Shoshani , ‘ -i :tem Deadlocks ,” horn-

p u t in~ Su r v e y s , Vol 3 , No 3, pp 67—78 , 1971.

D i j ~
- t ra , E. W. , Coope n i t iri g he juent ial Procesun :, ; r i n t e d by Acad~ rn ic

P t , : . , New York .8.

“‘ l o t ion i a Probl .im in honcurrent Programming u t r i ,“ Communi—

c.ition .
~~~ t i e  ACM , Vol 8, No 1 , pp 569, 1965.

B-i

_ _ _ _ _ _ _  - _ _ _



BIBLIOGRAPHY ( Con t inued ) 

“The Structure of “THE” Multiprogramming System ,” Communications

of the ACM , Vol 11, No 5, pp 341~ 3146.

Erickson , David B. , “Array Processing on an Array Processor ,” SIGPLAN

Notices , pp 17_214 , March 1975.

Genuys , F. (edited by) Programming Languages, Academic Press, New York ,

1968.

Gosen , J.A., “Explici t Parallel Processor Description and -~‘ on t r o i  in
Programs f ’ ~ Multi and Un1 ; roe- so t- computoro ,” AFIPS 1961 Fall

Jo in t  ‘he puter  Conference . Spartan Books , pp 651-660 , 1966 .

Habermanri , ‘ l . A . ,  ‘Syri clur - ruization of Communicat ing Processes , ” Communica —

tiono: of the A° M , u i  15 , No 3 , pp 171— 176 , 1972.

Herm es, H . ,  Enumerab11it y~ Decidability, Computability, Springer-Verlag,

New York , 1969.

Hoare, C.A.P., “Towards A Theory of Parallel Programming,” In terna tioral

Seminal ou Op. Sys. Techniques , 1971. 

“M nit :i’s: An Operating System Structuring Concep t ,” Communications

of the A M ,  Vol 17 , No 10, pp 5~49 , l97~~.

H rnirig , J.J. and B . Randell , “Process Structuring,” omputing fur ;’vo .

Vol 5 , N; 1, pp 5-30, 1973.

Kane, J. and S. Yau , “Concurrent Software Fault Detection ,” IEEE Trans-

action :; on :;of t w n  Lngineering, SE—i , N 1, pp 87—99 , 1975.

B-2

(



BIBLIOGRAPHY (Con t inued )

Lamport , L . ,  “Tbe Parallel Execut ion  of DO Loops , ” Corn r iuun ica t i ons  of the

ACM , pp 83-93 , Feb 1974 . 

“On Programming Parallel - ‘nm ; ute r s ,” S 1-~ Pl AN S t  i c r 0 , pp 25—33 ,

March 1975.

Lioto rl , M i - h ard J . ,  “Reduc t ion : A Method of Proving Proper t i eu  of

Parallel Programs , ” Communicat ions of t b  ACM , pp 7 t 7 - 7 2l , Dec 1975.

Loren , Harold , Parallelism in Hardwar e and h~~ t w i t ’: F e , i t  and A; ; ar ent

Concurrency, Prentice-Hall , 1972.

N o t t h  , N. , ‘‘A S t o  on Pt ‘ u5 r ar : L  St  r u :  t or ’:: for Parallel Proceso.inh,’’

Commun;c - itions of the A C M ,  Vol 9 , No 5 , pp 320-321 , 1966.

Opler , A. , “ F r - oooe iu r ’  hr i -nt - I L an hu -ih e  :t :item nts to Facili tate Parallel

Progr amminh , ” C-:r rmi: h - i t  L u  of  tb: ACM , Vol 8, 5 5 , pp 306—307 , 1965.

Pr - erro r , : .  , “ M u l  t i: r o ~ r imming  Coord ina t ion , ” AC M ompu t  ing Surveys, pp

2 1— 4 5 , M i r c l i  1975.

Sin t z o f  I , M. and A.  1:ir; Lamuweerde , “ : u ; - t r ’ uc~ i n C  Cor r ect and Efficient

Concur’r’rt I n - h r - in ., ” SI CPL A N Not ices ,  pp 319—327 , June 1975.

Teslen , L. C .,  “A L ii ;~ u i i ’ .’ Des iCn for Concurrent Processes ,” AFIPS l~ibd

Spring I n t e n - r ot i o r i i l  Comp . n u t  er r ; ’ - , AFIPS l i e s , pp 4 0 2 — 4 0 8 , 1968 .

Thurber , Y. J .  and L.D. Wa l d , “A’ : : j c i at iv :  and Parallel Procer’sors ,”

ACM :o~pu t in~ Surveys, pp 215—255 , Dec 1975.

B-3



BIBLIOGRAPHY (hontirnued)

Y a s u h i r i , A . ,  Recursive Funct ion Theory and Log ic, Academic Press , New

York , 1971.

B-~

________  
- —~ ____  ~~


