

Add 000/05 NRL Memorandum Report 3666

Biodeterioration of Membrane Separators for Use in an Oil Pollution Prevention System

1

M. E. MAY and R. A. NEIHOF

Marine Biology and Biochemistry Branch Ocean Sciences Division

December 1977

DDC 2012UUU FEB 17 1978 տկ B

NAVAL RESEARCH LABORATORY Washington, D.C.

Approved for public release; distribution unlimited.

MR

REPORT DOCUMENTATION PAG	E READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER 2. GO	VT ACCESSION NOT RECIPIENT'S CATALOG NUMBER
NRL Memorandum Report 3666	(T)
LLTL E. (and Submitty)	TTPE OF REPORT & PERIOD COVERED
BIODETERIORATION OF MEMBRANE SEPAR.	ATORS FOR Final report, on an NRL .
USE IN AN OIL POLLUSTION PREVENTION	N SYSTEM
	. PERFORMING ONG. REPORT NUMBER
AUTHOR()	8. CONTRACT OR GRANT NUMBER(4)
W. P. /Way and P. A. Alathan	(14) NRL-MR-3666
M. E./May and R. A. Neihof	
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
and the mean being manifestion in and	Contract Private and the Strategy of the second state of the
Naval Research Laboratory	NRL Problem G04-05 Project WR 4-0836
Washington, D.C. 20375	
I. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Naval Ship Research and Developmen	t Center December 277
Annapolis, Maryland 21402	58 IZ 59P.
A. MONITORING AGENCY NAME & ADDRESS(II dillorent from	Controlling Office) 15. SECURITY CLASS. (6 this conort)
(18) SBIE	Unclassified
	TE. DECLASSIFICATION/DOWNCRADING
(19) AD-EØDD.	105 SCREDULE
6. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distr	ibution unlimited.
Approved for public refease, alour	
	D FEB 17 1978
7. DISTRIBUTION STATEMENT (of the abstract entered in Block	ck 20, If different from Report)
	UUSUSUV
	UUSUSU V
	B
8. SUPPLEMENTARY NOTES	B
8. SUPPLEMENTARY NOTES	B
8. SUPPLEMENTARY NOTES	B
. KEY WORDS (Continue on reverse elde if necessary and iden Membrane separators Neoprene	illy by block number) Scanning electron microscope
Membrane separators Neoprene 0il Nitrile rubbe	((fy by block number) Scanning electron microscope er Microorganisms
Membrane separators Neoprene 0il Nitrile rubbe Fuel Pollution pre	((fy by block number) Scanning electron microscope er Microorganisms evention Fungi Sulfate-
Membrane separators Neoprene Oil Nitrile rubbe Fuel Pollution pre Ballast water Biodeteriorat	((fy by block number) Scanning electron microscope er Microorganisms evention Fungi Sulfate- tion Yeast reducers
Membrane separators Neoprene Oil Nitrile rubbe Fuel Pollution pre Ballast water Biodeteriorat	((fy by block number) Scanning electron microscope er Microorganisms evention Fungi Sulfate- tion Yeast reducers
Membrane separators Neoprene Oil Nitrile rubbe Fuel Pollution pre Ballast water Biodeteriorat Epichlorhydrin Rubber deteri ABSTRACT (Continue on reverse eide if necessary and identi-	(Ify by block number) Scanning electron microscope er Microorganisms evention Fungi Sulfate- tion Yeast reducers oration Bacteria Nylon
Membrane separators Neoprene Oil Nitrile rubbe Fuel Pollution pre Ballast water Biodeteriorat Epichlorhydrin Rubber deteri V ABSTRACT (Continue on reverse eide if necessary and identity Prototype membrane materials	(Ify by block number) Scanning electron microscope er Microorganisms evention Fungi Sulfate- tion Yeast reducers coration Bacteria Nylon Ify by block number) for possible use as separators of
Membrane separators Neoprene Oil Nitrile rubbe Fuel Pollution pre Ballast water Biodeteriorat Epichlorhydrin Rubber deteri ABSTRACT (Continue on reverse elde II necessary and Identi Prototype membrane materials ballast water and oil in cargo tar	(Ify by block number) Scanning electron microscope er Microorganisms evention Fungi Sulfate- tion Yeast reducers oration Bacteria Nylon ify by block number) for possible use as separators of taks of oilers and tanker ships (in a
Membrane separators Neoprene Oil Nitrile rubbe Fuel Pollution pre Ballast water Biodeteriorat Epichlorhydrin Rubber deteri ABSTRACT (Continue on reverse elde II necessary and Identi Prototype membrane materials ballast water and oil in cargo tar	"If by block number) Scanning electron microscope er Microorganisms evention Fungi Sulfate- tion Yeast reducers oration Bacteria Nylon if by block number) for possible use as separators of hks of oilers and tanker ships (in a system, MOPPS) have been evaluated
Membrane separators Neoprene Oil Nitrile rubbe Fuel Pollution pre Ballast water Biodeteriorat <u>Epichlorhydrin Rubber deteri</u> ABSTRACT (Continue on reverse side if necessary and identi Prototype membrane materials ballast water and oil in cargo tan membrane oil pollution prevention for their resistance to microbial	"'(y by block number) Scanning electron microscope er Microorganisms evention Fungi Sulfate- tion Yeast reducers oration Bacteria Nylon (for possible use as separators of hks of oilers and tanker ships (in a system, MOPPS) have been evaluated deterioration. Fabric reinforced
Membrane separators Neoprene Oil Nitrile rubbe Fuel Pollution pre Ballast water Biodeteriorat Epichlorhydrin Rubber deteri ABSTRACT (Continue on reverse side II necessary and identi Prototype membrane materials ballast water and oil in cargo tan membrane oil pollution prevention	"'(y by block number) Scanning electron microscope er Microorganisms evention Fungi Sulfate- tion Yeast reducers oration Bacteria Nylon (for possible use as separators of hks of oilers and tanker ships (in a system, MOPPS) have been evaluated deterioration. Fabric reinforced were tested: neoprene/nylon
Membrane separators Neoprene Oil Nitrile rubbe Fuel Pollution pre Ballast water Biodeteriorat <u>Epichlorhydrin Rubber deteri</u> ABSTRACT (Continue on reverse elde il necessary and identi Prototype membrane materials ballast water and oil in cargo tan membrane oil pollution prevention for their resistance to microbial elastomer composites of two types fabric/nitrile and Hydrin/nylon fa	"'(y by block number) Scanning electron microscope er Microorganisms evention Fungi Sulfate- tion Yeast reducers oration Bacteria Nylon (for possible use as separators of hks of oilers and tanker ships (in a system, MOPPS) have been evaluated deterioration. Fabric reinforced were tested: neoprene/nylon
Membrane separators Neoprene Oil Nitrile rubbe Fuel Pollution pre Ballast water Biodeteriorat Epichlorhydrin Rubber deteri ABSTRACT (Continue on reverse elde il necessary and identi ABSTRACT (Continue on reverse elde il necessary and identi Prototype membrane materials ballast water and oil in cargo tan membrane oil pollution prevention for their resistance to microbial elastomer composites of two types fabric/nitrile and Hydrin/nylon fa	illy by block number) Scanning electron microscope er Microorganisms evention Fungi Sulfate- tion Yeast reducers coration Bacteria Nylon ify by block number) for possible use as separators of hks of oilers and tanker ships (in a system, MOPPS) have been evaluated deterioration. Fabric reinforced were tested: neoprene/nylon abric/Hydrin. Samples with cold and s
Membrane separators Neoprene Oil Nitrile rubbe Fuel Pollution pre Ballast water Biodeteriorat <u>Epichlorhydrin Rubber deteri</u> ABSTRACT (Continue on reverse elde il necessary and identi Prototype membrane materials ballast water and oil in cargo tan membrane oil pollution prevention for their resistance to microbial elastomer composites of two types fabric/nitrile and Hydrin/nylon fa	"'(y by block number) Scanning electron microscope er Microorganisms evention Fungi Sulfate- tion Yeast reducers oration Bacteria Nylon (for possible use as separators of hks of oilers and tanker ships (in a system, MOPPS) have been evaluated deterioration. Fabric reinforced were tested: neoprene/nylon
A KEY WORDS (Continue on reverse side if necessary and ident Membrane separators Neoprene Oil Nitrile rubbe Fuel Pollution pre Ballast water Biodeteriorat <u>Epichlorhydrin Rubber deteri</u> ABSTRACT (Continue on reverse side if necessary and ident Prototype membrane materials ballast water and oil in cargo tan membrane oil pollution prevention for their resistance to microbial elastomer composites of two types fabric/nitrile and Hydrin/nylon fa D 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601	(Ify by block number) Scanning electron microscope ar Microorganisms evention Fungi Sulfate- cion Yeast reducers oration Bacteria Nylon ify by block number) for possible use as separators of nks of oilers and tanker ships (in a system, MOPPS) have been evaluated deterioration. Fabric reinforced were tested: neoprene/nylon abric/Hydrin. Samples with cold and .
Membrane separators Neoprene Oil Nitrile rubbe Fuel Pollution pre Ballast water Biodeteriorat Epichlorhydrin Rubber deteri ABSTRACT (Continue on reverse side if necessary and identi Prototype membrane materials ballast water and oil in cargo tan membrane oil pollution prevention for their resistance to microbial elastomer composites of two types fabric/nitrile and Hydrin/nylon fa	illy by block number) Scanning electron microscope er Microorganisms evention Fungi Sulfate- tion Yeast reducers coration Bacteria Nylon ify by block number) for possible use as separators of hks of oilers and tanker ships (in a system, MOPPS) have been evaluated deterioration. Fabric reinforced were tested: neoprene/nylon abric/Hydrin. Samples with cold and s

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

20. Abstract (continued)

hot-formed seams were also tested. Following exposure in systems inoculated with microorganisms commonly associated with fuels for periods up to one year, membrane specimens were inspected visually and by light and electron microscopy and also subjected to standard physical tests. The changes observed appeared to be due to oil and water exposure rather than to microbial deterioration. Although the neoprene/nylon/ nitrile membrane appeared a promising choice for further performance evaluations, it is essential that pinholes and open cut edges at seams be minimized if extensive diffusion of water and oil into the fabric and the accompanying weakening of the fabric-elastomer bond are to be avoided. Numerous microscopic cracks were noted in the exposed Hydrin surfaces indicating that the formulation of this rubber should be reevaluated if it is to be retained as a possible backup membrane candidate.

ii

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

CONTENTS

DODUCATON

INTRODUCTION	1	
MATERIALS AND METHODS	2	
Membranes	2	
Fuels		
Microorganisms	2	
Agar Plate Tests	3	
Two-Phase Test Units	3	
Membrane Separated Two-Compartment Test Units	4	
Soil Burial Tests	5	
Scanning Electron Microscopy	5	
DEGULAR AND DEGULARIAN	~	
RESULTS AND DISCUSSION	6	
Agar Plate Tests	6	
Two-Phase Test Units	6	
Membrane Separated Two-Compartment Test Units	8	
Soil Burial Tests	8	
Scanning Electron Microscopy	9	
SUMMARY	9	
ACKNOWLEDGMENTS	10	
REFERENCES	11	
REFERENCES	11	
FIGURES	13	
TABLES	24	
APPENDIX A	46	
APPENDIX B	48	
APPENDIX C	49	
	49	

NTIS	for White Section
DDC	Bull Section
UNANNOUT	NCED C
JUSTIFICA	TION
BY	TION / AVAILABILITY CODES
DISTRIBU	TICN/AVAILABILITY CODES
DISTRIBU	TION/AVAILABILITY CODES
DISTRIBU	TION/AVAILABILITY CODES

BIODETERIORATION OF MEMBRANE SEPARATORS FOR USE IN AN OIL POLLUTION PREVENTION SYSTEM

FINAL REPORT

INTRODUCTION

The background and objectives of the Membrane Oil Pollution Prevention System (MOPPS) for installation in the cargo tanks of oilers and tanker ships have been presented in detail elsewhere (1,2,3). Briefly described the system proposes to separate ballast water from oil or fuel in the tanks by a flexible membrane bag or diaphragm. A major source of marine pollution from oil entrained in discharged ballast water and tank washings would thus be eliminated. An improvement in the quality of the oil carried could also be expected because emulsification of water in the oil would be greatly reduced and the conditions known to lead to growth of fungal mats, fuel-souring bacteria, and to the profileration of particulate matter would be denied.

A major part of the MOPPS program has been devoted to selection of membrane materials and installation configurations which would provide maximum service life and operational efficiency (3). In addition to having adequate strength, flexibility and abrasion resistance, the membrane should also be resistant to deterioration by the microorganisms present in the tanks. This is a realistic consideration because elastomeric and plastic materials are known to support the growth of microorganisms (4,5,6) and the existence of thriving cultures of fungi, yeasts, and bacteria in fuel tanks is well documented (7,8,9,10).

This study was undertaken to determine the susceptibility to deterioration of candidate membrane separator materials exposed to a variety of microorganisms selected from those typically growing in hydrocarbon fuel storage tanks under both aerobic and anerobic conditions. It appeared advisable to include an evaluation of membrane seams since membrane installations of the size envisioned in MOPPS could not be made in one piece. The use of crude oil as well as different commonly used distillate fuels in the test systems was also considered necessary.

Unfortunately, it is not possible to perform accelerated exposures of biodeterioration on materials in the same way accelerated physical tests are carried out because living organisms have relatively limited ranges of conditions for growth. The only recourse is to expose the materials under investigation to active cultures of organisms under the most favorable conditions for their growth and to run the tests for as long as possible.

Note: Manuscript submitted November 18, 1977.

MATERIALS AND METHODS

Membranes:

The membrane materials used consisted of two layers of various synthetic rubbers with a nylon fabric between:

- Chemivic/nylon cloth/Chemivic (Goodyear). Thickness 1.75 mm (0.069 in.).
- 2. Neoprene/nylon fabric with unidirectional thread/nitrile (Uniroyal Sealdrum material). Thickness 3.89 mm (0.153 in.).
- Neoprene/nylon fabric with unidirectional thread/nitrile (Uniroyal) Thickness 3.56 mm (0.140 in.)
- 4. Neoprene/nylon cloth/nitrile (Uniroyal). Fabric 13 oz/yd² nylon 2x2 basketweave. Thickness 2.21 mm (0.87 in.).
- Hydrin/nylon cloth/Hydrin (Uniroyal). Fabric 13 oz/yd² nylon 2x2 basketweave. Thickness 1.78 mm (0.070 in.).

Samples of 1, 2 and 3 were used only in the early phases of the work before the proper candidate materials, 4 and 5 were received.

In much of the experimental work it appeared desirable to use rubber membrane samples which were initially sterile. Four methods of sterilization were tried in order to find one which caused the least change in the physical properties of the materials. These were autoclaving, ethylene oxide exposure, washing with hypochlorite, and washing with ethanol. The results of this study were reported by May and Neihof (11). Although there appeared to be no marked differences in the properties of the membranes due to the different sterilization methods, the hypochlorite method was chosen because if its known efficiency in killing surface-borne microorganisms and its convenience (12,13). While autoclaving is no doubt the best method of attaining complete sterility, however, it was felt that this might change the cure state of the rubber and perhaps alter the susceptibility of the rubbers to microbial attack.

Fuels:

The fuels studied were:

Marine Diesel (D.F.M.) Navy Distillate (N.D.) Mid-East Crude (M.E.C.)

It was necessary to sterilize the above fuels before use in the subsequent experiments. The fuels were autoclaved for 45 minutes at 121°C and oven-dried for 1 hour at 110°C. The Mid-East Crude showed a 3% weight loss. The others showed insignificant changes in weight.

JP-5

Microorganisms:

The microorganisms used in the aerobic studies are listed below.

Fungi:

Aureobasidium pullulans	279C
Trichoderma sp.	365
Aspergillus niger	386
Pencillum funiculosum	391
Chaetomium globosum	495
Cladosporium sp.	
Candida sp.	

Quartermaster Culture Collection

Isolates from JP-5 tank in NAS Lemoore, California

Bacteria:

Pseudomonas aeruginosa QMB 1468

Three isolates of naturally occurring marine bacteria.

Curtis Bay mixed culture - obtained from fuel tanks of naval ships being scrapped at Curtis Bay, Maryland. The inoculum consisted of a mixed culture of sulfate-reducers, other bacteria including a marine Pseudomonas, fungi and yeasts.

Anaerobic cultures

consisted of a mixed microbial population of sulfate-reducers and associated bacteria originally isolated from infected fuel tanks of an aircraft carrier. These organisms have been maintained in continuous culture (10). Actively growing subcultures were prepared in Sisler's medium, triple strength (Sisler's 3x) (10), for inoculation of the test units.

The formulae for the more complex growth media used for culture maintenance and viability evaluations are given in Appendix A.

Agar Plate Tests:

These tests were carried out to determine if the rubbers or the methods of sterilization were inhibitory to selected fungi and bacteria. Membrane specimens 1.27 cm x 12.7 cm $(\frac{1}{2}$ " x 5") were placed on the surfaces of agar plates and sprayed with an aqueous suspension of the fungal spores and bacteria listed above according to ASTM designators G 21-70 and G 22-67T (14,15).

Two-Phase Test Units:

A major portion of the program was carried out in one-half gallon glass containers simulating fuel tanks. Each contained a rubber membrane, enriched seawater inoculated with microorganisms and an overlayer of fuel oil. These containers were covered by metal screw caps with Teflon liners. Two kinds of systems were examined: aerobic in which the aqueous phase was equilibrated with air and anaerobic in which the aqueous phase was equilibrated with nitrogen. The enrichment of the sea water medium and the organisms in the inoculum also differed in the two systems as described below.

The apparatus for both aerobic and anaerobic systems was set up as follows: Into each pre-sterilized 1/2 gallon (1.89 1) jar was placed:

- 1 The "sterilized" candidate membrane 20.3 cm x 30.5 cm
 (8" x 12").
- 2 Two previously "sterilized" 20.3 cm x 2.54 cm (8" x 1") membrane strips (for seamless Hydrin and neoprene/nitrile).
- 3 One sterile cold rolled steel rod 0.318 cm x 14.0 cm $(1/8" \times 5\frac{1}{2}")$.
- 4 900 ml enriched seawater medium.
- 5 450 ml fuel.

The seawater medium for the aerobic system was prepared by filtering the needed amount of seawater using a Millipore Type HA filter (0.45_{\sqcup}) pore size). One part sterile distilled water was added to 1 part seawater and sterile peptone-yeast extract (Difco) was added to give a final concentration of 0.05% each of peptone and yeast extract.

The seawater medium for the anaerobic system consisted of 0.275% Trypticase Soy Broth extract (without dextrose) (BBL) in filtered seawater. This medium was deaerated by passing a stream of nitrogen through it for 20 min.

There was a total of 8 containers for each system, both inoculated and control for each fuel (JP-5, D.F.M., N.D., and Mid-East Crude). One exception was for the neoprene/nylon cloth/nitrile (No. 4) seamless which was studied using only D.F.M. and Mid-East Crude.

The test systems were shaken 15 seconds every hour on a rotary shaker. The systems were maintained at room temperature which varied between $22-30^{\circ}$ C and were covered with black cotton fabric to exclude light. Figure 1 shows the experimental set-up.

The systems were monitored weekly for the first month followed by once every 2 months to ascertain if the organisms were still viable. To monitor the anaerobic system, 1 ml of the water phase was withdrawn and cultured in Sisler's 3x medium at 26°C under mineral oil. The aerobic systems were monitored using Tryptone-yeast-glucose agar (Difco-Plate Count Agar) for the bacteria. The fungi were cultured on Cooke Rose Bengal Agar (Difco) with an addition of tetracycline hydrochloride at a level of 35 mg/l agar, to inhibit the growth of bacteria.

Membrane Separated Two-Compartment Test Units:

In order to approach the conditions that would be met in a ballast tank, test units were set up with Hydrin and neoprene/nitrile membranes (with and without seams) separating a seawater phase from an oil phase. Large glass desiccators were used to build this system (Figure 2). Figure 3 shows an assembled unit. Plexiglas rings with portholes and tubulations were used on each side of the membrane to allow complete filling and sample taking from each phase. Six units were set up using hot-seamed, cold-seamed, or seamless neoprene/nitrile or Hydrin. The offset in thickness produced by the overlap of the seamed sheets necessitated the making of 1 inch (2.54 cm) wide rubber gaskets from the same membrane material which fitted around the perimeter of the sheets in the non-seamed portion to make a leakproof junction between the flanges of the desiccator (Fig. 2). Sealing on the water side was done with General Electric RTV-102 white (silicone rubber) while the D.F.M. side was sealed with Sealit S-681 manufactured by Fisher Scientific Co. The units were set on a rack with magnetic stirrers underneath to provide periodic agitation.

The seawater side consisted of: 1 - 50% seawater filtered through a

- Millipore Type HA Filter
- (0.45µ size)
- 2 50% distilled water
- 3 0.1% peptone
- 4 0.1% yeast extract

The inoculum for the seawater phase (lower compartment) consisted of Curtis Bay mixed culture combined with the bacterial and fungal varieties listed above. The upper compartment of each unit was filled with Marine Diesel Fuel.

Soil Burial Tests:

Neoprene/nitrile and Hydrin (membrane samples 4 and 5) were subjected to soil burial testing. The test facility was located at the U.S. Army Natick Labs. The samples were cut in 12.7 cm x 20.3 cm (5" x 8"), 7.62 cm x 20.3 cm (3" x 8") and 2.54 cm x 15.2 cm (1" x 6") pieces and tested according to Method 5762, CCC-T-191b, 1953.

Scanning Electron Microscopy:

The membranes were examined for microflora using an AMR Model 1000 (American Metals Research Corp.) scanning electron microscope (SEM). Small retangular samples were cut from rubber specimens taking care not to disturb the surface. These were air dried, mounted on a SEM holder and gold plated before examination with the microscope.

Micrographs were also made of the rubber surfaces after they had been cleaned in various ways. All specimens were scrubbed with a brush in a "Sparkleen" (Fisher Scientific Co.) solution, rinsed several times in tap water and given a final rinse in distilled water. Membranes which still appeared to have a surface deposit were treated with benzene to remove any remaining fuel residue. Of these, a few were further treated with a dilute HCl solution to remove corrosion products deposited on the surface. In order to improve the visualization of surface cracks, samples 3 cm long and 0.5 cm wide were mounted in a bent configuration in an SEM holder which confined the ends of the specimen to a distance of 1.3 cm apart. The procedure resembled that used by Bascom in a study of rubber tearing under tension (16).

RESULTS AND DISCUSSION

Agar Plate Tests:

The inoculated rubber membranes on the agar plates were observed at 1, 2, and 6 week intervals. Any evidence of inhibition or stimulation of microbial growth on and around the rubber strips was noted and is given in Table 1. Moderate inhibition of growth was observed in the presence of the rubber specimens compared to a control with filter paper. There were no significant differences in inhibition among samples sterilized by different methods.

Two-Phase Test Units:

In the aerobic systems during the early phases of the work, using rubber samples 1, 2, and 3, (Materials and Methods) monitoring of the aqueous phase showed an initial logarithmic growth rate the first week after inoculation followed by a leveling off for about two months and then a gradual decline in the number of living organisms. The die-off was not complete, however, and viable organisms could always be found.

In anaerobic systems with neoprene/nitrile (unidirectional fabric) material, it was found that the sulfate-reducing bacteria did not survive one week under the D.F.M. and N.D., only one week under the JP-5, and 3 weeks under the Mid-East Crude. The sulfate-reducers grew well in all of the controls with no rubber. This led to experiments to determine whether inhibition and/or kill of the sulfate-reducers was caused by the method of rubber sterilization or by the rubber itself (11). Appendix B contains a summary of these results.

Since this problem occurred only in the neoprene/nitrile (unidirectional fabric) and not in the candidate membranes, it was necessary to revitalize the former system only. Revitalization consisted of siphoning the seawater out from under the fuel and replacing it with fresh deaerated seawater-Trypticase Soy Broth. A new inoculum of sulfatereducing bacteria was also added.

After 6 months incubation, one of the membrane states are selected from each of the sample bottles containing thes. The selected states and membranes were given a visual examination. The results of this examination. Surface deposite microscopically, and cultured on both Tryptose parts and Potato-dextrose agar plus yeast (PDA-1) in adhesion of seams or rubber to fabric and (becoming tender, roughened or losing surface)

Anaerobic test units were caltured for active sulfate-reducers on Sisler's 3x media, as well as for growth on TGY and PDA+Y. In certain cases, for example, Table 8b and 10b, there was little or no growth of aerobic organisms. This means that the culture media used did not select for the organisms present, and/or the dominant organisms present were anaerobic.

Photographs were taken of the membranes upon removal from the test units. Figure 4 shows the typical appearance of the membranes. The neoprene tended to swell causing the membranes to curl with the nitrile rubber on the concave side. There was also a heavy deposit across the center of the membranes at the position of the interface between the fuel and seawater.

Table 11 gives a summary of the results of the examinations for adhesion of seams and of rubber to fabric. The "fair to poor" adhesion of the neoprene to the fabric in the fuel phase appears to be one result of the "softening or tenderizing" of the neoprene by the fuel. Although the actual installation in a shipboard fuel tank would have the neoprene in the seawater compartment of a tank and the nitrile on the fuel side, there is enough wicking through seam edges and surface pin holes into the nylon fabric that adhesion could become a major problem unless this penetration is somehow eliminated.

In the Hydrin studies, the finish on the rubber was dulled and in some cases appeared roughened, but there was no "softening or tenderizing" as seen with the neoprene. The surfaces were further examined with the scanning electron microscope and these observations will be dealt with in a later section.

The results of physical tests, tensile strength, modulus, ultimate elongation, tear strength, strain energy and elastomer-to-fabric bond as obtained by the Naval Ship Research and Development Center (DTNSRDC), Annapolis, are given in Tables I and II, Appendix C. According to an analysis of the data by DTNSRDC there were no significant differences between physical properties of the membrane materials exposed in the inoculated and uninoculated test units. There were obvious and expected differences between the physical properties of the original unexposed materials and those of the exposed materials due to the contact with oil and water. The adhesion of neoprene and nylon fabric, for example, is significantly less due to swelling and softening in the oils (Table 11). It should be kept in mind that the tensile properties are largely those of the nylon fabric and not the rubbers. Electron microscopic examination can give additional insight into the changes taking place in the elastomers (see below).

It should be pointed out that in no case were the uninoculated control test units entirely free of microbial contamination. It is very difficult, short of autoclaving, to sterilize the inner filaments of the fabric in the membranes. Where seawater and nutrients are absorbed into the fabric, microorganisms can proliferate. For this reason rigorous comparison of the properties of membranes exposed to microorganisms with those exposed to sterile oil and seawater alone

cannot be made.

Membrane-Separated, Two-Compartment Test Units:

In less than four weeks in the membrane-separated, two-compartment test units there was a rapid change to anaerobic conditions as noted by the generation of ferrous sulfide in the aqueous phase. Figure 3 shows the blackening inside the desiccators after one year.

Droplets of water or oil were observed on the rubber tabs of the seamed discs extending out of the desiccators as illustrated in the diagram in Figure 5a. This results from the outward diffusion of liquid entering the nylon fabric at the raw edge of the seam inside the units. A very small amount of seawater could also be seen in the fuel phases of the Hydrin, cold and hot seam samples. It is important to note this in any future considerations of membrane seam design because, unless engineered properly, there could be seepage (Fig. 5b). Possible solutions are illustrated in Figure 5c.

Upon dismantling the desiccators after one year of incubation, both the fuel and the seawater phases were tested for hydrogen sulfide production using lead acetate paper. Hydrogen sulfide was present in all the seawater phases (Table 12) and in the fuel phase of the Hydrin, seamless sample.

Active sulfate-reducers were present in all test units. Bacteria, yeasts and fungi were subcultured from the seamless neoprene/nitrile test unit; bacteria and yeast from the Hydrin, hot seam, test unit; and only bacteria from the remaining test units.

David Taylor Naval Ship Research and Development Center (Annapolis) tested these membranes for elastomer - fabric bond. Their results are given in Appendix C, Table III. When compared with the adhesion of the fabric to the elastomer in the untreated sample in Table II, there does not appear to be any differences. Unfortunately, the data are too limited to make any conclusive statements.

Soil Burial:

Upon removal of the candidate membranes after 9 months burial, both the neoprene/nitrile and Hydrin membranes appeared to have supported scattered sparse fungal growth. The neoprene/nitrile samples were somewhat curled while there were no noticeable changes in the Hydrin. Figure 6 shows the appearance of the membranes upon their receipt at NRL. These samples were sent to DTNSRDC in Annapolis for physical testing. The results of these tests are given in Appendix C, Table IV. It was noted that there was a slight increase in the apparent cure state of the rubber but no significant practical changes compared to the original material. This is a significant result since resistance to the wide variety of microorganisms present in soil may be taken as a good indication of low susceptibility of a material to biodeteriorative processes in general.

Scanning Electron Microscopy:

In the studies of the microflora on the rubber membranes, typical membranes were chosen and a series of scanning electron micrographs were made. Figures 7a and 7b show bacterial and fungal growth on Hydrin rubber (hot seam) inoculated with aerobic organisms in the seawater - JP-5 system, and cold seam Hydrin in an anaerobic system of seawater - N.D. Figure 7b shows a mass of bacteria at the interface of the fuel and seawater. This is the microscopic appearance of a "deposit at the interface" given as a visual description in Tables 2 -10. In Figure 7a fungal material can also be seen.

Figures 8a and 8b show the neoprene side of the neoprene/fabric/ nitrile membrane before and after exposure for one year in the Two-Phase System. The original and exposed Hydrin surfaces are shown in Figures 9a and 9b. It should be noted that the Hydrin membrane shows more extensive surface cracks and flakes than the neoprene. An analysis of the surface deposits on the Hydrin rubber was made using x-ray energy dispersive spectrometry. The analysis indicated zinc, lead and iron were present in the flakes.

Because the Hydrin showed this flaking and cracking, its surface was studied more extensively. Two series of micrographs were made of the original Hydrin and the Hydrin exposed to the seawater-fuel system after treatment with a dilute hydrochloric acid solution and with benzene. These micrographs are shown in Figures 10a, b, c and d. As can be seen in Figure 10b, treating the membrane with benzene did not remove the flakes. Further treatment with the dilute HCl solution removed the flakes and exposed underlying cracks which appeared to be in the rubber itself (Figure 10c). Thus it appeared that the flakes were a mixture of extracted rubber compounding ingredients and corrosion products from the steel strip in the test unit since they are at least partially metallic and were removed by dilute acid. A typical crack exposed in the rubber after benzene and HCl treatment is shown at higher magnification in Figure 10d. Under the slight tension produced by bending the specimen it can be seen that the crack penetrates deeply into the rubber. No such cracks were noted in the neoprene or nitrile surfaces.

SUMMARY

Prototype membrane materials for possible use as separators for ballast water and oil in cargo tanks of oilers and tanker ships (in a membrane oil pollution prevention system, MOPPS) have been evaluated for their resistance to microbial deterioration. The microbiological exposures consisted of (1) determination of inhibition or stimulation of growth of surface-deposited microorganisms, (2) one-year exposure in two-phase test units with different oil and seawater media inoculated with aerobic and anaerobic microorganisms, (3) one-year exposure in a membrane-separated, two-compartment system inoculated with a mixed microbial culture, and (4) soil burial. Two principal membrane materials were tested: one with a layer of neoprene and a layer of nitrile rubber with nylon fabric between and another with two layers of an epichlorhydrin rubber (Hydrin) with nylon fabric between. Specimens with overlap seams bonded by cold and hot-formed processes were also evaluated. The oils used in the various exposures were (1) Mid-East Crude, (2) Diesel Fuel Marine, (3) Navy Distillate and (4) JP-5 jet fuel. Following the exposures the membranes were inspected visually and by scanning electron microscopy. Specimens were subjected to various standard physical tests.

There was no evidence that the candidate membrane materials inhibited the growth of microorganisms on their surfaces. An observed deterioration of the neoprene-fabric bond could be attributed to exposure to the oil phase.

According to DTNSRDC there was no consistent evidence that the physical properties of the membranes suffered from microbiological deterioration. The deterioration which was observed appeared due to oil and water exposure rather than to the presence of microorganisms.

In the two-compartment systems it was found that both oil and water could diffuse considerable distances along the nylon fabric from a cut edge at a seam. This could lead to a weakened rubber/fabric bond and emphasizes a need to eliminate open edges and pinholes in the rubber surfaces during fabrication.

On exposed Hydrin rubber surfaces the presence of many fine cracks was observed with the scanning electron microscope. Although the rubber faces of the membranes contribute relatively little to the strength of the membrane it would appear likely that these cracks could easily grow into holes under the flexing conditions of an actual installation. The formulation of this rubber may thus need to be reevaluated if it should later be necessary to use it in a MOPPS installation. On the basis of information available at present it would appear that the neoprene/nylon/nitrile combination is the best choice for a candidate material.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the help of Robert Grunther and William Klemens of the Naval Ship Research and Development Center at Annapolis, Md. for the physical tests of the rubber membranes; Marvin Greenberger and Arthur Kaplan of the U.S. Army Natick Research and Development Command, Natick, Ma. for running the soil burial tests; and Robert L. Jones of NRL for assistance with the scanning electron microscope.

REFERENCES

- Sturm, G.W., and associates. "The Feasibility of Utilizing Elastomer Bags or Diaphragms in Ships' Double Bottoms to Separate the Ballast Water From the Fuel Oil", U.S. Maritime Administration, Research and Development Division, NTIS Report PB167181, March, 1964.
- Carmichael, A.D., Mansour, A.E., Rubin, L.S., Smith, S.L., Steller, M.E., and Boufounas, T., "The Isolation of Oil and Other Fluids in Tankers from Seawater Ballast Using Impermeable Membranes", Final Report No. 72-22, Project 723961, Dept. of Transportation, U.S. Coast Guard, December, 1972.
- Hochrein, A.A., Jr., Helm, J.D., and Thiruvengadam, A.P., "Evaluation of Membrane Oil Pollution Prevention System Research", Dept. Transportation, U.S. Coast Guard Report No. CG-D-175-75 Final, August, 1975.
- Brown, A.E., "Problems of Fungal Growth on Synthetic Resins, Plastics and Plasticizers", Modern Plastics <u>23</u>, 189 (1946).
- 5. Cundell, A.M., and Mulcock, A.P., "Microbiological Deterioration of Vulcanized Rubber", Int. Biodetn. Bull. 8, 119-125 (1972).
- Heap, W.M., and Morrell, S.H., "Microbiological Deterioration of Rubbers and Plastics", J. Appl. Chem. <u>18</u>, 189-193 (1968).
- Sheridan, J.E., and Soleros, J.J., "A Survey of Fungi in Jet Aircraft Fuel Systems in New Zealand", Int. Biodetn. Bull. <u>10</u>, 105-107 (1974).
- Rogers, M.R., and Kaplan, A.M., "A Survey of the Microbiological Contamination in a Military Distribution System", Dev. Ind. Microbiol. 6, 80-94 (1964).
- 9. Klemme, D.E., and Neihof, R.A., "Control of Marine Sulfate-Reducing Bacteria in Water-Displaced Fuel Storage Tanks", Naval Research Laboratory Memorandum Report No. 2069, December, 1969.
- Klemme, D.E., and Leonard, J.M., "Inhibitors for Marine Sulfate-Reducing Bacteria in Shipboard Fuel Storage Tanks", Naval Research Laboratory Memorandum Report No. 2324, August, 1971.
- 11. May, M.E. and Neihof, R.A., "Biodeterioration of Membrane Separators for Use in an Oil Pollution Prevention System, a Preliminary Report", Naval Research Laboratory Letter Report 8353-321:RAN:dk, 4 September, 1975.
- Brazis, A.R., Leslie, J.E., Kabler, D.W., and Woodward, R.L., "The Inactivation of Spores of Bacillus globigii and Bacillus anthracis by Free Available Chlorine", Appl. Microbiol. 6, 338-342 (1958).
- Fielding, G.H., Echols, W.H., and Neihof, R.A., "BW Decontamination with Hypochlorite, Part 1 - Exploratory Studies: Application to the Stop System", Naval Research Laboratory Report No. 6506, 28 February, 1967.

- Standard Recommended Practice for Determining Resistance of Synthetic Polymeric Materials to Fungi, ASTM Designation G21-70, 872-876 (1970).
- 15. Tentative Recommended Practice for Determining Resistance of Plastics to Bacteria, ASTM Designation G22-67T, 877-880 (1970).
- 16. Bascom, W.D., "Scanning Electron Microscopy of Rubber Tear", Naval Research Laboratory Memorandum Report No. 3478, April, 1977.

Fig. 1 - Two-phase test units on a rotary shaker

Fig. 3 – Membrane separated two-compartment test unit showing blackening caused by ferrous sulfide

(a) Cold seamed neoprene/nylon cloth/nitrile membranes in a JP-5 - sea water system

(b) Seamless neoprene/nylon fabric with unidirectional thread/ nitrile in a JP-5 - sea water system

Fig. 4 - Typical appearance of rubber membranes upon removal from the two-phase test units

(a) A separating membrane in a two-compartment test unit

(c) Possible fabrication of seams to avoid seepage along fabric in membrane

Fig. 5 — Diagrams depicting the outward diffusion of water or fuel through seam and fabric of rubber membranes

Fig. 6 – Typical appearance of neoprene/nitrile and Hydrin membranes upon removal after nine months soil burial

. .

(a) Fungal material on the surface of a Hydrin membrane after one year exposure in JP-5 - sea water test unit inoculated with selected aerobic microorganisms

(b) Masses of bacteria on a section of Hydrin membrane at the interface between Navy Distillate and sea water after one year exposure in an anaerobic test unit

Fig. 7 - SEM photographs of microbial growth on membrane surfaces

(a) Unexposed control

- (b) After one year exposure in a D.F.M. sea water test unit inoculated with an anaerobic culture of sulfate-reducers
 - Fig. 8 SEM photographs of the neoprene side of a bent neoprene/ nitrile rubber membrane after detergent cleaning

(a) Unexposed control

(b) After one year exposure in a N.D. - sea water test unit Fig. 9 - SEM photographs of a bent Hydrin membrane after detergent cleaning

(a) Unexposed control treated with benzene followed by a dilute HC1 solution

(b) Surface treated with benzene after one year exposure in a N.D. - sea water test unit

(c) Surface treated further with dilute HC1 solution, which dissolved the flakes, exposing small cracks

- (d) Higher magnification of one of the cracks
- Fig. 10 SEM photographs of a bent Hydrin membrane with different surface treatments

Code to Abbreviations - Tables 2a - 10b

D.F.M.	Diesel Fuel Marine
N.D.	Navy Distillate
M.E.C.	Mid-East Crude
I	Inoculated
с	Control, uninoculated
+	Growth on Sisler's triple strength medium
-	No growth on Sisler's triple strength medium

TABLE 1

Staniliaina	Neo	prene-N	itrile	Unir	oyal S	ealdrum
Sterilizing Method	Incuba	tion Ti	me (weeks)	Incuba	tion T	ime (weeks)
	1	2	6	1	2	6
Autoclave	2	2	1	1	2	1
Ethylene Oside	2	2	1	1	1	1
Hypochlorite	2	2	3	2	2	1
Ethanol	1	2	1	1	2	3
Scrub only	1	2	1	1	2	3
No treatment	1	2	1	1	2	3

Growth of Selected Fungi and Bacteria on and around Rubber Strips on Nutrient-Salts Agar Plates (Room Temperature)¹,²

¹Observed growth on specimens - Ratings: percent of total surface covered

None		0
Traces of growth	(<10%)	1
Light growth	(>10%;<30%)	2
Medium growth	(>30%;<60%)	3
Heavy growth	(>60%)	4

 $^2\mathrm{A}$ 1" sq. filter paper control gave a rating of 4.at 1,2 and 6 weeks.

Table 2a

Results of Visual Examination of Neoprene-Nitrile Strips (Undirectional Fabric) after Six Months Exposure to Seawater - Fuel. Aerobic Test Units.

Adhesion of rubber to fabric	Good	Good	Good	Good	Good	Good	Good	Good
Appearance of rubber r	No change	No change	No change	No change	No change	Neoprene in both phases tenderized	Neoprene softened, nitrile bleeds oil	No change
ce deposits Microscopic	Bacteria	Bacteria, coccoid and rod-shaped	ſ	I	Bacteria	Bacteria	Bacteria	1
Examination of surface deposits Macroscopic Microscop	Heavy white mainly on nitrile side	Heavy yellow on neoprene side	White on nitrile side	White on water end of nitrile	Small amount of white deposit on water end of nitrile	Yellow on nitrile	White deposit on nitrile side	No deposit
Test unit	I JP - 5	U	I	C C	I	C C	I	C

26

. .

Table 2bResults of Visual Examination of Neoprene-Nitrile Strips (Undirectional Fabric) After SixMonths Exposure to Seawater - Fuel. Anaerobic Test Units

Appearance Adhesion of rubber Surface deposits of rubber to fabric	Some on both No change Good sides	White on both No change Good sides	Some yellow on Neoprene tender Good water end of nitrile, thick and oil soaked in spots	White on both No change Good sides	White on water No change Good end of both sides	Thin in defined No change Good area	Some white deposit No change Good on both sides	
Test unit	I	C	I	C	I	C	I M.F.C	

Table 3a

Results of Visual Examination of Neoprene-Nitrile Membranes (Undirectional Fabric) After One Year Exposure to Seawater - Fuel. Aerobic Test Units

	Examination of	Examination of surface deposits		Appearance	Adhesion of
Test unit	Macroscopic	Microscopic	Cultures	of rubber	rubber to fabric
	Creamy gel at	Numerous	Bacteria,	Neoprene	Good
I	interface and	bacteria, and	fungi	tender	
-	on neoprene	emulsified oil			
C-Ar	Heavy, orange-	Many	White	Neoprene	Good
c	yellow on	bacteria	fungus	tender	
	nitrile				
	Creamy on	Bacteria,	Pseudomonas	Neoprene	Good
	neoprene strip	fungal debris		tender	
D.F.M	Slightly yellow	Very few	Pseudomonas	Neoprene	Good
c	on nitrile	organisms		tender	
		on slide			
	On both sides	Bacteria	Pseudomonas	Neoprene	Good
	in water phase			tender	
N.D.	Orange yellow	Many	Pseudomonas	Neoprene	Good
c	on nitrile	bacteria	heavy bacter-	tender	
			ial growth		
	Heavy tar at	Many	Pseudomonas	Neoprene	Good
I	oil-water and	bacteria (rods)		tender	
	oil-air				
M.E.C.	interface				
	Hard brown on	Bacteria	Trichoderma	Neoprene	Good
	nitrile water		other fungi,	tender	
2	end, tarry crude		Pseudomonas		
	at interface		ACTO ANA OF STOR	Above above	

Table 3b

Results of Visual Examination of Neoprene-Nitrile Membranes (Unidirectional Fabric) After One Year Exposure to Seawater - Fuel. Anaerobic Test Units

Test	Examination of surface deposits	surface deposi	ts	sulfate	Appearance	of rubber
unit	Macroscopic	Microscopic	Cultures	reducers	of rubber	to fabric
	Small amount on neo-	Bacteria	Pseudomonas		Neoprene	Good
1	prene and nitrile in		Bacteria with		tender	
•	water phase		red soluble			
1P-5			pigment, fungi			
	Creamy on neoprene in	Nume rous	Sparse growth,	1	Neoprene	Good
	water phase, less	bacteria	large motile		tender	
•	on nitrile		rods, Spirilla			
			& small rods			N. BRIDE
-	Heavy creamy on both	Bacteria	Pseudomonas		Neoprene	Good
N B U	sides in both phases				tender	
	Thick white jelly-like	Bacteria &	Pseudomonas	1	Neoprene	Good
c	on neoprene, white on	emulsified		A MI ROLLY	tender	
	water phase of nitrile	oil	No. 1 No. 1	deline the second		
	Buff colored on neo-	Numerous	Pseudomonas	1	Neoprene	Good
-	prene, at interface.	bacteria,			tender (not	
	Deposit on, nitrile	other			as much as	
U N	water phase	debris			JP-5 and DFM)	(W)
	Buff colored filmy	Some	Sparse bac-		Neoprene	Good
	on neoprene and water	bacteria,	teria, white	Spinst - Mar	tender	
C	phase of nitrile	unidentifi-	fungus			
		able debris	Contration of the set	•		
	Heavy tar at inter-	Bacteria	Bacteria (short		Neoprene	Good
-	face, white bacteria		motile rods)	ALL SCAL TON	tender	
•	layer between air		The second second second second	Andres all		
U a W	and nitrile					
	Some tar deposits	Bacteria	No growth - large	ı	Neoprene	Good
c	creamy bacteria		motile rods in close		tender	
2	-		negotiction with oil			

	0	
•		۴
	q	
		1
	4	2
1	-	5
	÷	•

Results of Visual Examination of Seamless Neoprene - Nitrile Rubber Membranes After One

	NET A TO STINSAU	Year Exposure to Seawater - Fuel.	Seawater - Fuel.	results of visual baumingtion of beamtess reopreme - withite Aubber Memoranes Aiter One Year Exposure to Seawater - Fuel. Aerobic Test Units	ranes Alter One
Test	Examination	Examination of surface deposits		Appearance	Adhesion of
unit	Macroscopic	Microscopic	Cultures	of rubber .	rubber to fabric
I D.F.M.	Large amount slime in air phase (jar leaked)	Bacteria, fungal material	P. aeruginosa Trichoderma	Curled heoprede tender, finish dulled on sea side	Fair, neoprene pulls away slightly in fuel phase
C	Small amount creamy film	Bacteria on section exposed to air	Bacteria `	Curled, not tender, finish slightly dulled	Fair, neoprene pulls away slightly in fuel phase
I g	Moderate amount, Bacteria tar-like	Bacteria	P. aeruginosa Bacteria	Curled, not tender, finish dulled	Fair, neoprene pulls away slightly in fuel phase
C	Small amount, tar-like	Few bacteria	Bacteria	Curled, not tender, finish dulled	Fair, neoprene pulls away slightly in fuel phase
P					

4					
e					
-					
P					
a					
F					

Results of Visual Examination of Seamless Neoprene - Nitrile Rubber Membranes After One Year Exposure to Seawater - Fuel. Anaerobic Test Units

	Examination	Examination of surface deposits	sits	Active sulfate	Appearance	Adhesion of
est unit	Test unit Macroscopic	Microscopic	Cultures	reducers	of rubber	rubber to fabric
IDEW	Heavy creamy	Emulsion of fuel, bacteria and seawater	Bacteria	+	Curled, neoprene tender, finish dulled	Fair, neoprene pulls away slightly from fabric
U U	Very little	Bacteria	Bacteria	,	Curled, neoprene slightly tender, finish dulled	Fair, neoprene pulls away on oil side
I M.E.C.	Moderate amount, tar-like	, Bacteria	Bacteria	+	Curled, not tender, finish slightly dulled	Fair, neoprene pulls away slightly on sea and oil sides
U	Moderate amount, tar-like	, Bacteria	Bacteria	1	Curled, not tender, finish slightly dulled	Fair, neoprene pulls away slightly on oil side

Table 5aResults of Visual Examination of Cold Seamed Neoprene - Nitrile Rubber Membranes After OneYear Exposure to Seawater - Fuel.Acrobic Test Units

×

Test	Examination of	Examination of surface deposits		Appearance	Adhesion of	Seam
unit	Macroscopic	Microscopic	Cultures	of rubber	rubber to fabric	adhesion
I JP-5	None	Bacteria	P. aeruginosa, Candida	Curled	Fair between fab- ric and neoprene in fuel	Good
о —	None	Bacteria	Pseudomonas sp. bacteria	Curled	Fair between fabric and neo- prene in fuel	Good
I D.F.M.	Very thin film	Bacteria	P. aeruginosa	Curled, neoprene slightly tender	Fair between fabric and neo- prene in fuel	Good
J	Thin film	Bacteria	Bacteria, yeast	Curled, neoprene slightly tender	Fair between fabric and neoprene in fuel	good
I N.D. – C	Creamy film in fuel phase Moderate orange deposit	Bacteria Bacteria	Bacteria Bacteria	Curled, neoprene tender Curled, neoprene tender	Poor between fabric and neo- prene in fuel Poor between fabric and neo- prene in fuel	Good
I M.E.C.		Bacteria	P. <u>aeruginosa</u> , bacteria	Curled, neoprene tender	Fair between fabric and neo- prene in fuel	Good
U	Tar deposit	Bacteria mostly along edge exposed to air	Pseudomonas sp. bacteria	Curled, neoprene tender	Fair between fabric and neoprene in fuel	Good

32

۰.

Table 5b Results of Visual Examination of Cold Seamed Neoprene- Nitrile Rubber Membranes After One

S
Unit
UL
Test
-
naerobic
ro
ae
An
÷
Fuel
F
1
er
/at
aw
to Seawater
to
T
ISO
Exposure
É
ear
Ye

33

.

Table 6a

Results of Visual Examination of Hot Seamed Neoprene - Nitrile Rubber Membranes After One Year Exposure to Seawater - Fuel. Aerobic Test Units

Test unit I JP-5		Tennan ane the th				
Test unit I	IOT BIT III DYT			Appearance	AULICATION 10 101	
I	Macroscopic	Microscopic	Cultures	of rubber	ber to fabric	adhes ion
	Small amount white in oil phase	Bacteria	P. aeruginosa	Curled, neoprene slightly tender	Poor in fuel phase	Neoprene lifted at seam edge
U	None	Few bacteria mostly along edge exposed to air	Bacteria	Curled, neoprene slightly tender	Neoprene pulls away in fuel phase	Good
I D.F.M.	None	Few bacteria	P. aeruginosa, Bacteria	Curled, neoprene slightly tender	Neoprene pulls away in water phase	Good
U	Creamy orange in fuel phase, white film in water phase	Orange deposit, debris, fuel and bacteria, film mainly bacteria	Bacteria	Curled neoprene slightly tender	Poor between fabric and neoprene in fuel	Neoprene lifted at seam edge
I N.D.	Very thin film	Bacteria	P. aeruginosa, Bacteria	Curled neoprene tender	Poor between fabric and neoprene in fuel	Neoprene lifted at seam edge
0	Very thin film	Few bacteria mostly along edge exposed to air(threads)	Bacteria on threads, none on immersed rubber	Curled neoprene tender	Poor between fabric and neoprene in fuel	Fair at seam edge between neoprene and fabric
I	Moderate tar deposit	Bacteria	<u>P. aeruginosa,</u> Bacteria	Slightly curled, neoprene tender	Poor between fabric and neoprene in fuel	Poor - seam bubbling and lifting between neoprene and fabric in fuel
C	Moderate tar deposit	Bacteria in tar deposit	Bacteria	Curled, neoprene tender	Fair in fuel phase	Fair in fuel phase

.

Table 6bResults of Visual Examination of Hot Seamed Neoprene - Nitrile Rubber Membranes After OneYear Exposure to Seawater - Fuel.Anaerobic Test Units

Examination of surface depositsAdive aulfateAdivesionExamination of surface depositssulfateAppearanceof dubberCreamy filmBacteriaBacteriasulfateAppearanceof rubberVery littleNo bacteriaBacteriaBacteria-CurledGoodVery thinBacteriaBacteriaBacteria-CurledFairberVery thinFewBacteriaBacteria+CurledFairberCreamy filmDeserved+CurledFairberGoodCreamy filmFewBacteria+CurledFairberNoneNoneNo bacteriaNo growth-CurledFairberNoneNoneNoneNoneNoneFairberImbiNoneNoneNoneNoneNoneFairberFairberNoneNoneNoneNoneNoneFairberFairberNoneNoneNoneNoneNoneFairberFairberNoneNoneNoneNoneNoneFairberFairberNoneNoneNoneNoneNoneFairberFairberNoneNoneNoneNoneNoneFairberFairberNoneNoneNoneNoneNoneFairberFairberNoneNoneNoneNoneNoneFairberFairberNoneNoneNoneNoneNoneFairberFairber <tr< th=""><th></th><th></th><th>Year Exposure to Seawater - Fuel.</th><th>to seawate</th><th>er - ruer.</th><th>Anaerobic lest units</th><th>SULLO</th><th></th></tr<>			Year Exposure to Seawater - Fuel.	to seawate	er - ruer.	Anaerobic lest units	SULLO	
Examination of surface depositssulfateAppearanceof rubberCreamy filmBacteria+-CurledGoodVery littleNo bacteriaBacteria-CurledGoodVery littleNo bacteriaBacteria+CurledGoodVery thinFewBacteria+CurledGoodVery thinFewBacteria+CurledGoodVery thinFewBacteria+CurledFair berNoneObserved-tenderFair berfuelNoneNoneNo growth-CurledFair betweenNoneNoneNo growth-CurledFair betweenNoneNoneNo growth-CurledFair betweenNoneNoneNo growth-CurledFair betweenNoneNoneNo growth-CurledFair betweenNoneNoneNo functoriaBacteriaNoneNoneNoneNo functoriaFair betweenNoneNoneNoneNoneNoneNoneNoneNoneNone-NoneNoneNoneNoneNone-NoneNoneNoneNoneNoneNoneNoneNoneNoneNoneNoneNoneNone-NoneNoneNoneNone	Test				Active		Adhes ion	
Macroscopic Microscopic Cultures reducers of rubber to fabric 1 Creamy film Bacteria Bacteria Feducers of rubber to fabric Very little No bacteria Bacteria Bacteria Bacteria Cool Good 1 Very thin Few Bacteria Bacteria + Curled Good 1 Very thin Few Bacteria + Curled Fair be- 1 Very thin Few Bacteria + Curled Fair be- 1 Very thin Few Bacteria No growth - Curled Fair between 1 None No bacteria No growth - Curled Fair between 1 In fuel bacteria No bacteria neoprene fael in 1 In fuel bacteria No growth - Curled Fair between 1 In fuel bacteria No becteria neoprene fael	+:	Examination	of surface depos	sits	sulfate	Appearance	of rubber	Seam
Creamy film Bacteria + Curled Good Very little No bacteria Bacteria - Curled Good Very thin Few Bacteria + Curled Good Very thin Few Bacteria + Curled Fair be- Nore Very thin Few Bacteria + Curled Fair be- None None No bacteria No growth - Curled Fair between None None None No bacteria No growth - Curled Fair between None None None No bacteria No growth - Curled Fair between None None None No bacteria No bacteria Fair between None None None No bacteria - Curled Fair between None None No bacteria - Curled Fair between None None No bacteria - Curled Fair between None None No bacteri	11un	Macroscopic	Microscopic	Cultures	reducers	of rubber	to fabric	Adhesion
Very littleNo bacteriaBacteria-CurledGoodobservedobserved+Curled,Fair be-observedbacteria+Curled,Fair be-Very thinFewBacteria+Curled,Fair be-Very thinbacteriaBacteria+Curled,Fair be-NoneNo bacteriaNo growthCurled,Fair betweenNoneNo bacteriaNo growth-Curled,Fair betweenNoneNo bacteriaNo bacteriaNo bacteriaNo-Curled,Fair betweenNoneNo bacteriaNo bacteria-Curled,Fair betweenNoneNoneNo bacteriaCurled,Fair between-NoneNanyBacteriaCurled,Fair between-NoneNanyBacteriaCurled,Fair between-NoneNanyBacteriaCurled,Fair between-NoneNanyBacteriaCurled,Fair between-NoneNanyBacteriaCurled,Fair between-NoneNanyBacteriaCurled,Fair between-NoneNanyBacteriaCurled,Fair between-NoneNanyCurled,Fair between		Creamy film	Bacteria	Bacteria	+	Curled	Good	Good
or fungi observed. cor fungi observed. Rateria + Curled, Fair be- meoprene Very thin Few Bacteria + Curled, Fair be- meoprene Very thin Few Bacteria + Curled, Fair be- meoprene None or fungi - Curled, Fair between None or fungi - Curled, Fair between In fuel None - Curled, Fair between None or fungi - - Curled, Fair between None observed - - - - None Nany Bacteria - - - In fuel bacteria - - - - In fuel Many Bacteria - - - - In fuel parteria - - - - - In fuel bacteria - - - - -	JP-5 -	Very little	No bacteria	Bacteria	1	Curled	Good	Fair,
observed - curled, Fair be- neoprene Very thin Few Bacteria + Curled, Fair be- neoprene Very thin bacteria No growth + Curled, Fair be- neoprene None None No bacteria No growth - Curled, Fair between None No fungi - Curled, Fair between None No bacteria No growth - Curled, Fair between None or fungi - Curled, Fair between None None - Curled, Fair between None Nany Bacteria - Curled, Fair between Nany Bacteria - Curled, Fair between Phase - Curled, Fair Phase - Curled, Fair Posteria - Curled, <td< td=""><td>c</td><td></td><td>or fungi</td><td></td><td></td><td></td><td></td><td>slight</td></td<>	c		or fungi					slight
Very thinFewBacteria+Curled,Fair be- neoprenereamy filmbacteria+Curled,Fair be- tendercreamy filmbacteriaNogrowth-Curled,Fair ber fabric inNoneNoNoSrowed-Curled,Fair betweennoneNoSrowed-Curled,Fair betweennoneNoneNoBacteria-Curled,Fair betweennoneNoneNoBacteria-Curled,Fair betweennoneNoneNoBacteria-Curled,Fair betweennoneNoneNoBacteria-Curled,Fair betweennoneNanyBacteria-Curled,Fair betweennoneNanyBacteria-Curled,Fair betweennoneNanyBacteria-Curled,Fair betweennoneNanyBacteria-Curled,Fair betweennoneNenyBacteria-Curled,Fair betweennoneNenyBacteriaCurled,Fair betweennoneNenyBacteriaCurled,Fair betweennoneNenyBacteriaCurled,Fair betweennoneNenyBacteriaCurled,Fair betweennoneNenyNenyBacteriaCurled,noneNeny	د		observed					separation
Very thinFewBacteria+Curled,Fair be- tendercreamy filmbacteriaBacteria+Curled,Fair be- tendercreamy filmbacteriaNoneNobacteriaNoFair betweenNoneNoneNo bacteriaNoFair betweenfuelNoneNoneNoNoFair betweenfuelNoneNoNoFair betweenfuelNoneNoNoFair betweenfuelNoneNoNoFair betweenfuelNoneNoBacteria-Curled,Fair betweenIn fuelbacteria-Curled,Fair betweenIn fuelbacteria-Curled,Fair betweenIn fuelbacteria-Curled,Fair betweenNanyBacteria-Curled,Fair betweenIn fuelbacteria-Curled,Fair betweenNanyBacteria-Curled,Fair betweenNanyBacteria-Curled,Fair betweenNanyBacteria-Curled,Fair betweenInterfacefuelheavy, gummy atemulsion offuelInterfacefuel, bacteria+Curled,Fair betweenInterfacefuel, bacteriaCurled,Fair betweenInterfacefuel, bacteriaCurled,Fair betweenInterfacefuel, bacteriaCu								in corner
I creamy film bacteria neoprene tween neo- I creamy film bacteria No bacteria No bacteria no growth - curled, Fair between None None No bacteria No growth - Curled, Fair between None None No bacteria No growth - Curled, Fair between None None None No bacteria - Curled, Fair between None Nany Bacteria - Curled, Fair between Nany Many Bacteria - Curled, Fair between Nase - - -		Very thin	Few	Bacteria	+	Curled,	Fair be-	Fair,
NoneNo bacteriaNo growth-tenderprene andNoneNo bacteriaNo pacteriaNo parteriafabric inImage: Stress of tungior fungi-Curled,Fair betweenImage: Stress of tungiobserved-Curled,Fair betweenImage: Stress of tungi-Curled,Fair betweenImage: Stress of tungiCurled,Fair betweenImage: Stress of tungion of tenderCurled,Fair betweenImage: Stress of tungion of tender <td>I</td> <td>creamy film</td> <td>bacteria</td> <td></td> <td></td> <td>neoprene</td> <td>tween neo-</td> <td>slight</td>	I	creamy film	bacteria			neoprene	tween neo-	slight
NoneNoneNo bacteriaNo growth-fabric inNoneNo bacteriaNo growth-Curled,Fair betweenobservedobservedneopreneneopreneandin fuelbacteria-Curled,Fair betweenfin fuelbacteria-Curled,Fair betweenfuelbase-Curled,Fair betweenfuelbase-Curled,Fair betweenfuelbase-Curled,Fair betweenfuelbase-Curled,Fair betweenfuelbasebacteria-Curled,Fair betweenfuelphasebacteria-Curled,Fair betweenfuelphasebacteria-Curled,Fair betweenfuelphasebacteria+Curled,Fair betweenfuelwaseCurled,Fair betweeninterfacefuelCurled,Fair betweeninterfacefuelCurled,Fair betweenfacefuelCurled,Fair betweenfacefuelfacefuelfuelbasefuelinterfacefuelface- <td< td=""><td></td><td></td><td></td><td></td><td></td><td>tender</td><td>prene and</td><td>separation</td></td<>						tender	prene and	separation
NoneNo bacteriaNo growth-Curled,Fair betweenNoneNo bacteriaNo growth-Curled,Fair betweenobservedobservedneopreneneopreneandThin creamyManyBacteria-Curled,Fair betweenin fuelbacteria-Curled,Fair betweenphase-Curled,Fair betweenfuelcreamy inManyBacteria-Curled,Fair betweenfuelbacteriaCurled,Fair betweencreamy inManyBacteriaCurled,Fair betweenfuelbhasebacteriaCurled,Fair betweencreamy inManyBacteriaCurled,Fair betweenfuelphasebacteria+Curled,Fair betweenfuelphaseadderria+Curled,Fair betweenfareterfuelbacteria+Curled,Fair betweenfareterfuelbacteria+Curled,Fair betweenfareterfuelbacteriafuelfareterfuelbacteria+Curled,Fair betweenfareterfuelbacteria+Curled,Fair betweenfareterfuelbacteriafuelfareterfuelbacteriafuelfareterfuelbacteria </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>fabric in</td> <td>in corner</td>							fabric in	in corner
NoneNo bacteriaNo growth-Curled,Fair betweenor fungior fungineopreneneopreneandobservedobservedtenderfabric inThin creamyManyBacteria-Curled,Fair betweenin fuelbacteria-Curled,Fair betweenphase-Curled,Fair betweenfuelcreamy inManyBacteria-Curled,Fair betweenfuel phase-Curled,Fair betweenfuelcreamy inManyBacteriacurled,Fair betweenfuel phasebacteriaCurled,Fair betweencreamy inManyBacteriacurled,Fair betweencreamy inManyBacteria+Curled,Fair betweencreamy inNery heavy, Deposit is an Bacteria+Curled,Fair betweeninterfacefuel, bacteria+-curled,Fair betweenfaumy atemulsion of+-curled,Fair betweenfacefuel, bacteria+-curled,Fair betweenfacefuel, bacteriacurled,Fair betweenfacefuel, bacteria+-curled,Fair betweenfacefuel, bacteriacurled,Fair betweenfacefuelcurled,Fair betweenfacefuel							fuel	
C Or fungi neoprene neoprene neoprene neoprene neoprene nd I In fuel observed tender fabric in fuel I in fuel bacteria - Curled, Fair between I in fuel bacteria - Curled, Fair between I in fuel bacteria - Curled, Fair between Creamy in Many Bacteria - Curled, Fair between C Creamy in Many Bacteria - fuel C Creamy in Many Bacteria - fuel C Fuel phase bacteria - curled, Fair between C fuel phase bacteria + curled, Fair between I interface fuel, bacteria + curled, Fair between I interface fuel, bacteria + curled, Fair between C Heavy, gummy Deposit is an Bacteria - curled, Fair betwe	. F . M .	None	No bacteria	No growth	1	Curled,	Fair between	Neoprene
C observed tender fabric in I ThIn creamy Many Bacteria - Curled, Fair between I in fuel bacteria - Curled, Fair between I in fuel bacteria - Curled, Fair between I in fuel bacteria - Curled, Fair between Creamy in Many Bacteria - Curled, Fair between C fuel bhase bacteria - Curled, Fair between C fuel bhase bacteria - - Curled, Fair between C fuel phase bacteria + Curled, Fair between I fuel tender fuel fuel fuel - Very heavy, Deposit is an Bacteria + Curled, Fair between - I interface fuel, bacteria + - - - I interface fuel, bacteria - - - - -	c		or fungi			neoprene	neoprene and	separating
Thin creamyManyBacteria-fuelIin fuelbacteria-Curled,Fair betweenphasebacteria-curled,Fair betweencfuelbacteria-Curled,Fabric incfuel phasebacteriaCurled,Fair betweencfuel phasebacteriaCurled,Fair betweencfuel phasebacteriaCurled,Fair betweenrfuel phasebacteria+Curled,Fair betweenrfuel phasebacteria+Curled,Fair betweenrfuel phaseand water+Curled,Fair betweenrgummy atemulsion of+Curled,Fair betweenrinterfacefuel, bacteria+Curled,Fair betweenrfaevy, gummy Deposit is an Bacteria-Curled,Fair betweenrfacefuel and water-curled,Fair betweencfacefuel and water,curled,Fair betweenrobscit is an Bacteriacurled,Fair betweenrinterfacefuel and water,curled,Fair betweenrfacefuel and water,curled,Fair betweenrfacefuel and water,curled,fuelrfacefuel and water,<	د		observed			tender	fabric in	from fabric
IThin creamyManyBacteria-Curled,Fair betweenIin fuelbacteriaBacteria-curled,Fair betweenphaseA-Curled,Fair betweenfuelCCreamy inManyBacteria-Curled,Fair betweenCUel phasebacteria-Curled,Fair betweenCVery heavy,Deposit is an Bacteria-Curled,Fair betweenIWery heavy,Deposit is an Bacteria+Curled,Fair betweenIinterfacefuel, bacteria+Curled,Fair betweenIInterfacefuel, bacteria+Curled,Fair betweenIInterfacefuel, bacteria+Curled,Fair betweenIInterfacefuel, bacteria+Curled,Fair betweenIInterfacefuel, bacteria-Curled,Fair betweenIInterfacefuel, bacteriaCurled,Fair betweenIinterfacefuel and waterCurled,Fair betweenIadd waterCurled,Fair betweenIfacefuel and water,Curled,fuelIat interIfacefuel and water,Ifacefuel and water,I <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>fuel</td><td>in fuel</td></td<>							fuel	in fuel
I in fuel bacteria neoprene neoprene neoprene advic in phase in fuel bacteria - curled, Fair between c fuel bhase bacteria - curled, Fair between c fuel phase bacteria - curled, Fair between c fuel bacteria - curled, Fair between fuel r very heavy, Deposit is an Bacteria + curled, Fair between r weight - curled, Fair between neoprene and r interface fuel, bacteria + curled, Fair between r interface fuel, bacteria - curled, Fair between r interface fuel and water - curled, Fair between r and water - curled, Fair between r face fuel and water, - curled, fuel r at inter- enulsion of		Thin creamy	Many	Bacteria		Curled,	Fair between	Fair
$c \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	I	in fuel	bacteria			neoprene	neoprene and	slight
Creamy in Many Bacteria - fuel C fuel phase bacteria - Curled, Fair between C fuel phase bacteria - Curled, Fair between C wery heavy, bacteria - Curled, Fair between I wery heavy, beposit is an Bacteria + Curled, Fair between I interface fuel, bacteria + Curled, Fair between I interface fuel, bacteria + Curled, Fair between I interface fuel, bacteria + Curled, Fair between I interface fuel and water - Curled, Fair between I and water - Curled, Fair between I at inter- emulsion of - - fuel I at inter- emulsion of - - fuel I face fuel and water, - - fuel I face fuel and water,		phase				tender	fabric in	lifting at
Creamy inManyBacteria-Curled,Fair betweenfuel phasebacterianeopreneneopreneandfuel phasebacteria+Curled,Fair betweenvery heavy,Deposit is anBacteria+Curled,Fair betweenvery heavy,Deposit is anBacteria+Curled,Fair betweenneoprenefuel, bacteria+Curled,Fair betweenneovy, gummy atemulsion of+curled,Fair betweenheavy, gummy Deposit is anBacteria-Curled,Fair betweenad water-Curled,Fair betweenfuelat inter-emulsion ofCurled,Fair betweenfacefuel and water,curled,fabric inno bacteriano bacteriafuelnono bacteriano bacteriafuelne	N.D.						fuel	both edges
fuel phasebacterianeopreneneopreneandfueltenderfabric inVery heavy,Deposit is anBacteria+Curled,Fair betweenVery heavy,Deposit is anBacteria+Curled,Fair betweenNetrefacefuel, bacteria+Curled,Fair betweenInterfacefuel, bacteria-Curled,Fair betweenHeavy, gummyDeposit is anBacteria-Curled,Fair betweenat inter-emulsion of-Curled,Fair betweenfacefuel and water,-Curled,Fair betweenno bacteriano bacteria-fuelnono bacteriano bacteriatenderfuel		Creamy in	Many	Bacteria	•	Curled,	Fair between	Good
Very heavy,Deposit is an Bacteriatenderfabric inVery heavy,Deposit is an Bacteria+Curled,Fair betweengummy atemulsion of+curled,Fair betweeninterfacefuel, bacteria+curled,Fair betweenand waterand water-curled,Fair betweenHeavy, gummyDeposit is anBacteria-curled,Fair betweenat inter-emulsion of-curled,Fair betweenfacefuel and water,-copreneandno bacteriano bacteriatenderfuel		fuel phase	bacteria			neoprene	neoprene and	
Very heavy,Deposit is an Bacteria+Curled,Fair betweengummy atemulsion of+Curled,Fair betweengummy atemulsion ofneopreneneopreneandinterfacefuel, bacteriatenderfabric inand waterand water-Curled,Fair betweenHeavy, gummyDeposit is anBacteria-Curled,Fair betweenat inter-emulsion of-Curled,Fair betweenfacefuel and water,neopreneneopreneandno bacteriano bacteriatenderfuel	c					tender	fabric in	
Very heavy,Deposit is an Bacteria+Curled,Fair betweengummy atemulsion ofneopreneneopreneand weengummy atfuel, bacteriatenderfabric ininterfacefuel, bacteria-Curled,Fair betweenHeavy, gummyDeposit is anBacteria-Curled,Fair betweenat inter-emulsion of-Curled,fabric infacefuel and water,no bacteriatenderfabric in							fuel	
gummy atemulsion ofneopreneandinterfacefuel, bacteriatenderfabric inand waterand waterfuelfuelHeavy, gummyDeposit is anBacteria-Curled,Fair betweenat inter-emulsion ofemulsion oftenderfabric infacefuel and water,no bacteriatenderfuel		Very heavy,	Deposit is an	Bacteria	+	Curled,	Fair between	Good
interfacefuel, bacteriatenderfabric inand waterand waterfuelfuelHeavy, gummyDeposit is anBacteria-Curled,Fair betweenat inter-emulsion ofneopreneneopreneandfacefuel and water,no bacteriafuel		gummy at	emulsion of			neoprene	neoprene and	
and waterfuelHeavy, gummy Deposit is an Bacteria- Curled, Fair betweenat inter-emulsion offacefuel and water,no bacteriano bacteria	T	interface	fuel, bacteria			tender	fabric in	
Heavy, gummy Deposit is an Bacteria - Curled, Fair between at inter- emulsion of neoprene and face fuel and water, tender fabric in no bacteria fuel	M.E.C.		and water				fuel	
at inter- emulsion of neoprene face fuel and water, tender no bacteria		Heavy, gummy	Deposit is an	Bacteria	ı	Curled,	Fair between	Good
face fuel and water, tender no bacteria	c		emulsion of			neoprene	neoprene and	
	2		fuel and water			tender	fabric in	
			no bacteria				fuel	

35

• •

Table 7a Results of Visual Examination of Hydrin Rubber Strips After Six Months Exposure to Seawater-

36

. .

Table 7b Results of Visual Examination of Hydrin Rubber Strips After Six Months Exposure to Seawater - Fuel. Anaerobic Test Units

		Seawater - Fuel	Seawater - Fuel. Anaerobic Test Units	st Units	
Test	Examination of surface deposits	rface deposits	Active sul-	Appearance	Adhesion of
unit	Macroscopic	Cultures	fate reducers	of rubber	rubber to fabric
I	No noticeable deposit	Fungus growth	÷	Some loss of sheen	Good
JP-5	Small amount of creamy accumu- lation	Very little, only 1 bacteria colony	I	Finish dulled	Good
I I I I I	No deposit	No growth	+	Minor loss of sheen	Good
D.F.M.	Very little	Thin slime. Slide shows Micrococcus	1	Finish dulled	Good
I	No deposit	Fungal colonies	+	Finish slightly dulled	Good
0	Creamy deposit	White fungus. Yellow bacteria on every spot rubber touched. Micrococcus	1	Finish dulled, roughened	Good
M.E.C.	No tar deposit	No growth	+	Finish dulled, sticky	Good
C	Heavy tar deposits	No growth	1	Finish dulled, sticky	Good

Table 8a Results of Visual Examination of Seamless Hydrin Rubber Membranes After One Year Exposure to Seawater - Fuel. Aerobic Test Units

Test unit	Examination	Examination of surface deposits		Appearance	Adhes ion of
	Macroscopic	MICroscopic	Cultures	of rubber	rubber to fabric
and a start	Moderate amount, rusty	Bacteria in deposit	<u>P. aeruginosa</u> bacteria	Finish dulled, slightly roughened	Good
	Heavy rusty fungal mat in water phase	Rusty deposit, mainly fungal mycelium	Pencillium sp. Dendryphiella sp. no bacteria	Finish dulled, roughened in water phase	Good
	Light rusty, fungal web	Bacteria Fungi	Bacteria, mainly P. aeruginosa Trichoderma	Finish dulled, roughened in water phase	Good
and the second s	Rusty deposit and fungal mat in water phase	No bacteria. Rusty debris attached to fungal mycelium	Fung i	Finish dulled, moderately roughened	Good
	Fungal web in fuel phase, small amount rusty deposit	Many bacteria, fungal web	P. aeruginosa Trichoderma fungi	Finish dulled, slightly roughened	Good
1	Rusty deposit in water phase	No bacteria or fungi	No growth	Very roughened in water phase, roughened in fuel phase	In Good
	Tar-like deposit	Bacteria	Bacteria, mainly P. <u>aeruginosa</u>	Finish dulled, slightly roughened	Good
	Tar-like deposit	Few bacteria	Bacteria, mainly P. aeruginosa	Finish dulled, slightly roughened	Good

38

. .

Table 8b Results of Visual Examination of Seamless Hydrin Rubber Membranes After One Year Exposure to Seawater - Fuel. Anaerobic Test Units

hase, led hase, ened hase, led hase, oughened	Test	Examinati	Examination of surface deposits	osits	Active	Appearance	Adhesion of
Slight at interface, interface, interface,Many bacteria colony+ Finish dulled in water phase, roughenedCreamy orange at interfaceBacteriaNo growth+ Finish dulled0Iridescent in at interfaceFew bacteriaNo growth+ Finish dulled0Iridescent in tool opositFew bacteriaNo growth+ Finish dulled0Iridescent in tool opositFew bacteriaNo growth+ Finish dulled0No deposit- growth- Finish dulled0No depositNo deposit- Finish dulled0No deposit- growth+ Finish dulled0No deposit- growth- Finish dulled0No deposit- growth- Finish dulled0No deposit- growth- Finish dulled0No deposit- growth+ Finish dulled0Intue lost- growth+ Finish dulled0- growth- growth+ Finish dulled0- growth- growth- Finish dulled0- growth- growth- Finish dulled0- growth- growth- Finish dulled<	nit	Macroscopic	Microscopic	Cultures	reducers	of rubber	rubber to fabric
interface, iridescent in fuel phase,colonyin water phase, roughenedCreamy orange fuel phase,BacteriaNo growth-Finish dulledGCreamy orange at interfaceBacteriaNo growth+Finish dulledGIridescent in fuel phase,Few bacteriaNo growth+Finish dulledGIridescent in tuel phase,Few bacteriaNo growth+Finish dulledGIridescent in tuel phaseBacteriaNo growth-Finish dulledGNo deposit; in fuel phaseMany bacteriaNo growth+Finish dulledGItel phaseItel phase-Finish dulledGGGItel phaseItel phase-Finish dulledFFFItel phaseItel phase-Finish dulledFFFItel phaseItel phase-FFFFFItel phaseItel phase-FFFFFFItel phase-FFFFFFF<		Slight at	Many bacteria	One bacterial	+	Finish dulled	Good
Iridescent inroughenedfuel phasefuel phaseCreamy orangeBacteriaNo growthat interfacer interfaceIridescent inFew bacteriaNo growthItuel phase-Finish dulledfuel phasefuel ph	I	interface,		colony		in water phase,	
Creamy orangeBacteriaNo growth-Finish dulledOat interfaceIridescent inFew bacteriaNo growth+Finish dulledOfuel phase,no depositvery roughened-rin water phase,Ono depositBacteriaNo growth-Finish dulled,Ituel phaseBacteriaNo growth-Finish dulled,Ono deposit;Many bacteriaNo growth+Finish dulledIno deposit;Many bacteriaNo growth+Finish dullednullescent infuel phase-Finish dulledInull lost-Finish dulled-Finish dullednull lost-finish dulled-Finish dulledcover - highly-Finish dulledto air-finish dulledto air-finishto air-finishto airfinish-to airto air<	L N	iridescent in fuel phase				roughened	
Iridescent inFew bacteriaNo growth+Finish dulledGfuel phase,no deposit-Finish dulled,	5 0	Creamy orange at interface	Bacteria	No growth		Finish dulled	Good
Creamy orange in fuel phaseBacteriaNo growth-Finish dulled, slightly roughenedNo deposit; iridescent in fuel phaseMany bacteriaNo growth+Finish dulledNo deposit; iridescent in 	I	Iridescent in fuel phase, no deposit	Few bacteria	No growth	+	Finish dulled in water phase, very roughened	Good
No deposit;Many bacteriaNo growth+Finish dullediridescent in fuel phase+Finish dulled-Rusty deposit,Many bacteriaBacteria-Finish dulledRusty deposit,Many bacteriaBacteria-Finish dulledRusty deposit,Many bacteriaBacteria+Finish dulledRusty deposit,Tar-like onFew bacteriaNo growth+Finish dulledTar-like onFew bacteriaNo growth+Finish dulled+Tar-like onFew bacteriaNo growth-Finish dulled+to air-Finish dulled+Finish dulled+to air-Few bacteriaNo growth-Finish dulled+to air-Few bacteriaNo growth-Finish dulled+to air-Few bacteriaFew bacteriaFew bacteria+Finish dulled+For air-Few bacteriaFew bacteriaFew bacteria+Finish dulled+For airFew bacteriaFew bacteriaFew bacteria+Finish dulledFo	C	Creamy orange in fuel phase	Bacteria	No growth	I	Finish dulled, slightly roughened	Good
Rusty deposit, (unit lost (unit lost cover - highly-Finish dulled(unit lost (unit lost contaminated)-Finish dulledTar-like on edge exposed to airFew bacteria stowthNo growth stowth+Finish dulled in water phase, slightly roughenedTar-like on to airFew bacteria stowthNo growth stowth+Finish dulled in water phase, slightly roughenedTar-like on edge exposed to airFew bacteria 	-	No deposit; iridescent in fuel phase	Many bacteria	No growth	+	Finish dulled	Good
Tar-like onFew bacteriaNo growth+Finish dullededge exposed+sin water phase,to airslightly roughenedTar-like onFew bacteriaNo growthedge exposed-Finish dulled inedge exposed-slightly roughenedto air-slightly roughened		Rusty deposit, (unit lost cover - highly comtaminated)	Many bacteria	Bacteria		Finish dulled	Good
Tar-like onFew bacteriaNo growth-Finish dulled inedge exposedwater phase,to airslightly roughened		Tar-like on edge exposed to air	Few bacteria	No growth	+	Finish dulled in water phase, slightly roughene	Good
	U	Tar-like on edge exposed to air	Few bacteria	No growth	1	Finish dulled in water phase, slightly roughene	Good

39

• •

Table 9a Results of Visual Examination of Cold Seamed Hydrin Rubber Membranes After One Year Exposure to Seawater - Fuel. Aerobic Test Units

Test	Examination	Examination of surface deposits	osits	Appearance	of rubber	Seam
unit	Macroscopic	Microscopic	Cultures	of rubber	to fabric	adhes ion
I IP-5	Light rusty film in water phase	Bacteria	P. aeruginosa bacteria Candida sp.	Slightly roughened	Good	Good
· ·	Small amount rusty deposit	Bacteria at interface	Bacteria	No change	Good	Good
I D.F.M.	Rusty film in water phase	Bacteria	Bacteria, mainly P. aeruginosa Trichoderma Fungi	No change	Good	Fair, slight separation
U	Slight creamy film in water phase	Bacteria	Bacteria	Slightly roughened	Good	Good
I N.D.	Very little	Few bacteria	Bacteria, mainly P. <u>aeruginosa</u> . Trichoderma Fungi	Slightly roughened	Good	Fair, slight separation
U	Slime on edge exposed to air	Few bacteria	Bacteria	Roughened in water phase	Good	Fair, slight separation
I M.F.C.	Moderate amount, tarry	Few bacteria	Bacteria, mainly P. <u>aeruginosa</u>	Roughened	Good	Fair, slight separation
U	Small amount, tarry	Few bacteria	Bacteria	Roughened	Good	Fair, slight separation

Table 9b Results of Visual Examination of Cold Seamed Hydrin Rubber Membranes After One Year Exposure to Seawater-Fuel. Anaerobic Test Units

ic Microscopic Cultures reducers t Bacteria Bacteria + hase Bacteria Bacteria - unt, Deposit Bacteria - almost Bacteria - bacteria Fungus - t bacteria Pseudomonas, + hase Bacteria Bacteria - the Rew Bacteria - the Seudomonas, + bacteria Colonies + Few Bacteria - the Bacteria Bacterial - the Bacteria Bacteria - Bacteria Bacteria - the Bacteria Bacteria - the Bacteria Bacteria - Bacteria Bacteria - the Bacteria - Bacteria Bacteria - Bacteria - Bacter	Test	Examinatio	Examination of surface deposits	leposits	Active sulfate	Appearance	Adhesion of rubber	Seam
None,Bacteria+iridescentin fuel phaseBacteria+in fuel phaseEmail amount,DepositBacteria-Small amount,DepositBacteriaSmall amount,DepositBacteriaSmall amount,DepositBacteriaSmall amount,DepositBacteriaSmall amount,DepositBacteriaFungus-iridescentBacteriaFungusin fuel phaseBacteriaPseudomonas,+None,BacteriaLittle-skimbacteriaEseudomonas,+in fuel phaseInterfaceNone,BacteriaLittle-in fuel phaseSaudomonas,+in fuel phaseSaudomonas,+in fuel phaseSaudomonas,+interfacebacteriaInterfacesmallFewBacteriayeastsmallFewBacteriayeaststar-likebacteriayeasttar-likeBacteriayeasttar-likeBacteriayeasttar-likeFewBacteriatar-likeFewBacteriatar-likeFewFewtar-likeFewFewtar-likeFewFewtar-likeFewtar-likeFewtar-likeFewtar-likeFew<	it	Macroscopic	Microscopic	Cultures	reducers	of rubber	to fabric	adhesion
Small amount, DepositBacteria-creamy inalmostbacteria-fuel phasetotallybacteriaFungusnone,BacteriaFungus-none,BacteriaFungus-niridescentBacteriaFungus-niridescentBacteriaFungus-niridescentBacteriaFungus-niridescentBacteriaFungus-niridescentBacteriaEseudomonas.+niridescentBacteriaLittle-infuel phaseDacteriaSeudomonas.+ninfuel phaseCreamyBacteriaLittleninfuel phaseDacteriaFeudomonas.+skimBacteriaLittle-ninferfaceColonies+ninterfaceSaallFewsamount,bacteriayeast+tar-likeBacteriayeast+	I	None, iridescent in fuel phase	Bacteria	Bacteria	÷	Finish dulled in water phase, roughened	Good	Good
None, Bacteria Fungus - iridescent in fuel phase Bacteria - Very little Few Bacteria - Very little Few Bacteria - very little in fuel phase - Creamy Bacteria Little - Creamy Bacteria Growth,two interface - toclonies + None Few Bacterial - Colonies + None Few Bacterial - Small Few Bacteria, - Small Few Bacteria, -	U	Small amount, creamy in fuel phase	Deposit almost totally bacteria	Bacteria	1	Finish dulled, roughened	Good	Good
Very littleFewBacteria-skimbacteriaBacteriaNone,BacteriaPseudomonas,+iridescentbacteriabast-in fuel phaseLittleCreamyBacteriaLittle-deposit atBacteriaLittle-interfacecolonies+NoneFewPseudomonas,+bacteriayeast-smallFewBacteria,-amount,bacteriayeast+	I F.M.	None, iridescent in fuel phase	Bacteria	Fungus	1	Finish dulled in water phase, roughened	Good	Good
None,BacteriaPseudomonas,+iridescentyeast+in fuel phaseyeast-CreamyBacteriaLittle-CreamyBacteriagrowth,two-deposit atbacterialinterfacecolonies+NoneFewPseudomonas,+SmallFewBacteria,-smount,bacteriayeast-tar-liketar-likeyeast-	0	Very little skim	Few bacteria	Bacteria	1	Finish dulled, roughened	Good	Good
CreamyBacteriaLittle-deposit atBacteriagrowth,two-interfacebacterialcolonies+NoneFewPseudomonas,+NoneFewyeast-SmallFewBacteria,-amount,bacteriayeast-tar-liketar-likebacteria-		None, iridescent in fuel phase	Bacteria	Pseudomonas, yeast	+	Finish dulled in water phase, roughened	Good	Good
NoneFewPseudomonas,+bacteriayeast-SmallFewBacteria,-amount,bacteriayeast-	C	Creamy deposit at interface	Bacteria	Little growth,two bacterial colonies	1	Finish dulled, roughened	Good	Good
Small Few Bacteria, - amount, bacteria yeast tar-like	I E.C.		Few bacteria	Pseudomonas, yeast	+	Finish dulled, roughened	Good	Good
	0		Few bacteria	Bacteria, yeast	1	Finish dulled, roughened	Good	Good

Table 10a Results of Visual Examination of Hot Seamed Hydrin Rubber Membranes After One Year Exposure to Seawater - Fuel. Aerobic Test Units

Test	Examin	Examination of surface deposits	osits	Appearance	of rubber	Seam
unit	Macroscopic	Microscopic	Cultures	of rubber	to fabric	adhesion
	Heavy rusty	Fungal mat and	P. aeruginosa,	Slightly	Good	Good
-	in both	bacteria in	bacteria,	roughened		
JP-5	phases	both phases	<u>Trichoderma</u> , <u>Yeasts</u>			
	Rusty mainly	Deposit, mainly	Pink yeast,	No change	Good	Good
c	in water	bacteria	Cladosporium sp.			
	phase					
	Creamy film	Fungal mycelium	P. aeruginosa	No change	Good	Good
-	at interface,	and many	in bacteria.			
	fungal web	bacteria in	Trichoderma			
Μ.	D.F.M. in fuel phase	both phases	fungi			
	Rusty at	Bacteria	Bacteria	No change	Good	Good
,	interface					
-	Very little,	Fungal mycelium,	P. aeruginosa,	No change	Good	Good
N.D.	filmy	bacteria	bacteria			
	Creamy film	Bacteria	Bacteria	Slightly	Good	Good
5	in fuel			roughened in		
	phase			fuel phase		
	Moderate	Few bacteria,	Bacteria mainly	No change	Good	Good
-	tarry	few fungal	P. aeruginosa			
5	M.E.C. deposit	fragments				
c	Small	Bacteria	Bacteria	No change	Good	Good
د						

Table 10b Results of Visual Examination of Hot Seamed Hydrin Rubber Membrances After One Year Exposure to Seawater - Fuel. Anaerobic Test Units

E	Examination	Examination of surface deposits	ts	Active sulfate	Appearance	Adhesion of rubber	Seam
unit	Macroscopic	Microscopic	Cultures	reducers	of rubber	to fabric	adhesion
	Small amount	Bacteria	No growth	+	Finish dulled in water phase	Good	Good
I	interface,				slightly		
	iridescent in				roughened		
JP-5 -	fuel phase						
	Creamy yellow	Bacteria	No growth	•	Finish dulled	Fair 1n	Good
	at interface	mycelial			in water phase,	water	
,		Iragments			sligntly roughened	phase	
	Small amount	Many tiny	No growth	+	Finish dulled		
I	black,	bacteria in			in water phase	Good	Good
	iridescent in	black					
D.F.M.	fuel phase	deposit					
	Small amount	Many bacteria	No growth	•	Finish dulled,	Good	Good
	creamy yellow	in deposit			slightly		
C					roughened in		
					water phase		
	None,	Bacteria	No growth	+	Finish dulled,	Good	Good
I	iridescent				slightly		
	in fuel				roughened in		
N.D.	phase				water phase		
	Yellow	Deposit is an	No growth	•	Finish dulled,	Good	Good
C	deposit in	emulsion of			slightly		
	water phase	bacteria			roughened in		
		and fuel			water phase		
	Small amount	Few	No growth	+	Finish dulled,	Good	Good
I	tar-like	bacteria			slightly		
M.E.C.					roughened		
	Small amount	Very few	No growth	,	Finish dulled,	Good	Good
C	tar-like	bacteria			slightly		
					I OUBIICITED		I

TABLE 11

Summary of Results of Adhesion of Rubber to Fabric and Seam Adhesion

	1	Neoprene - Nitrile	Hydrin
	of rubber abric	Fair to poor for neoprene to fabric in fuel phase of all systems Good for nitrile to fabric	Good in all systems
Seam	Cold seam	Good in all systems	Good in all systems
adhesion	Hot seam	Some lifting of neoprene from fabric where seam edges not well sealed	Slight separation in aerobic systems Anaerobic systems good

TABLE 12

.

,

Observations on the membrane separated two-compartment test units after one year's incubation

Sample	Hydrogen Seawater phase	Hydrogen sulfide awater Fuel ase phase	Seawater in fuel phase	Sulfate- reducers	Cultures of 0.1 ml seawater on spread plates***
Hydrin no seam	+	+	I	+	Bacteria
Hydrin cold seam	+	1	*1	* *	Bacteria
Hydrin hot seam	+	1	+1	+	Bacteria Yeasts
Neoprene/nitrile no seam	+	1	1	+	Bacteria Yeasts Fungi
Neoprene/nitrile cold seam	+	ı	ı	+	Bacteria
Neoprene/nitrile hot seam	+	ł	I	+	Bacteria

-

Small amount Sisler's 3X media took one month to blacken in sample; all other samples blackened in one week Media used consisted of PDA+Y, TYG, Marine Agar (Difco 2216) * * *

APPENDIX A

Formulae of Media

1. Cooke Rose Bengal Agar:*

Soytone	5.0 g.
Dextrose	10.0 g.
Monopotassium phosphate	1.0 g.
Magnesium sulfate	0.5 g.
Agar	20.0 g.
Rose Bengal	0.035 g.
Distilled water 1	000.0 ml.

2. Marine Agar: Bacto-Marine Agar 2216, manufactured by DIFCO Laboratories, prepared according the method of Zobell*

Bacto-Peptone	5.0 g.
Bacto-yeast extract	1.0 g.
Ferric citrate	0.1 g.
Sodium chloride	19.45 g.
Magnesium chloride	8.8 g.
Sodium sulfate	3.24 g.
Calcium chloride	1.8 g.
Potassium chloride	0.55 g.
Sodium bicarbonate	0.16 g.
Potassium bromide	0.08 g.
Strontium chloride	0.034 g.
Boric acid	0.022 g.
Sodium silicate	0.004 g.
Sodium fluoride	0.0024 g
Ammonium nitrate	0.0016 g
Disodium phosphate	0.008 g.
Bacto-Agar	15.0 g.
Distilled water	1000.0 ml.

3. PDA+Y: Bacto-Potato Dextrose Agar*

	Potatoes, Infusion f	from 200	g.
	Bacto-Dextrose	20	g.
	Bacto-Agar	15	g.
	Distilled water	1000	ml.
The above	is modified with the	addition of	
		-	

Yeast	extract	5	g.
Agar		5	g.

4. Sisler's 3x Medium - Triple Strength Sisler's Medium (10).

Seawater, filtered	1000.g.
DIFCO Agar	3.g.
DIFCO Neopeptone	3. g.
Magnesium sulfate	0.6 g.
Ammonium sulfate	3.0 g.
Sodium sulfite	0.3 g.
Ascorbic acid	0.3 g.
Dipotassium phosphate	0.6 g.
Ferrous ammonium sulfate	0.3 g.
Calcium lactate	10.5 g.

Dissolve agar in seawater by heating, then add remaining ingredients in the order listed. Dispense in 16×125 mm. Screw top test tubes to a height of 75 mm. and autoclave at 15 lb for 15 min. Cool to 50° C; invert tubes repeatedly until solidified; overlay with sterile mineral oil.

5. Trypticase Soy Agar (TSA) - Soybean - Casein Digest Agar, manufactured by BBL, Div. Becton, Dickinson and Co., Cockeysville, Maryland.

Trypticase peptone	15.0 g.
Phytone peptone	5.0 g.
Sodium chloride	5.0 g.
Agar	15.0 g.
Distilled water	1000.0 ml.

6. Tryptone Yeast Glucose Agar (TYG) - Bacto-Plate Count Agar*

Bacto-Yeast Extract	2.5	g.
Bacto-Tryptone	5.0	g.
Bacto-Dextrose (glucose)	1.0	g.
Bacto-Agar	15.0	g.
Distlled water	1000.0	ml.

^{*}As presented in DIFCO Supplementary Literature, DIFCO Laboratories, Detroit, Michigan (1966).

APPENDIX B

Summary of Early Results on Microbial Inhibition by Neoprene/Nitrile Membranes

During early experiments with a neoprene/nitrile membrane material (sample No. 3 described under Materials and Methods), it was found that some substance leached from the membranes caused considerable inhibition of growth and early die-off of inocula of sulfate-reducing bacteria. The inhibitory substance could not be traced to the method of sterilizing the membrane nor was it due to any of a number of compounding ingredients deemed likely prospects for producing microbial inhibition. The inhibitory substance was not found in any of the subsequently received materials (samples Nos. 4 and 5) nor was it present in Hydrin rubber. Thus the inhibition seems likely to be due to some ingredient or reaction product produced by the curing process which is not always present in neoprene or nitrile formulations. A more detailed description of the methods and results of this part of the investigation may be found in Reference 11.

APPENDIX C.

The tables in this appendix consist of physical tests done at the Naval Ship Research and Development Center (DTNSRDC) in Annapolis, Maryland.

Abbreviations used in these tables are as follows:

- C = Control I = Inoculated DFM = Marine Diesel Fuel ND = Navy Distillate
- MEC = Mid-East Crude Oil
- PIW = Pounds per inch width

TABLE I

Tensile Properties of Reinforced Elastomers

					TO COTATONOTA OTTONOT								
						Tensile	Tensile (ASTM D751)	(121)			FI	ear (AS	Tear (ASTM D751)
Description	011	Force	Force at 10% Elong.(PIW)		Force at 30% Elong.(PIW)	Ultimat (PI	ce Force (W)	Ultimat (%	e Elong.	Energy (1b	Ultimate Force Ultimate Elong. Energy to2Break (PIW) (%) (1b in ²)	(qt)	(9
Neoprene/Nitrile (original Un properties)	le Untreated	pa	06	450		850		50		175	2	8	85
Hydrin (original properties)	Untreated	pa	80	440		910		50		195	3	105	2
		C	I	c	I	C	I	C	I	c	I	υ	I
Hydrin	DFM	105	100	515	515	780	875	40	40	130	160	80	70
No Seam Aerobic	JP-5	100	95	545	470	096	655	45	40	195	130	75	70
	QN	100	100	485	550	890	010	45	40	170	170	100	70
	MEC	100	115	515	520	855	855	40	40	160	160	10	60
Hydrin	DFM	100	350	580	600	880	840	40	40	145	225	1	1
No Seam	JP-5	160	450	200	600	940	006	45	40	205	1	1	1
	ND	140	120	200	740	920	840	40	40	165	150	1	1
	MEC	120		600		940		45	1	190	1	1	1
Hydrin	DFM	120	120	580	820	860	006	40	40	130	150	1	1
No Seam Aerobic	JP-5	140	160	620	700	880	820	40	35	160	120	1	1
	ND	140	140	600	640	800	006	35	40	110	150	1	1
	MEC	120	120	580	600	800	880	40	40	130	140	1	1

(1 of 2)

50

• •

Description	011	Force Elong	Force at 10% Elong.(PIW)	Force Elong	Force at 30% Elong.(PIW)	Ultimat (Pl	mate Force (PIW)	Ultima (9	Ultimate Force Ultimate Elong. Energy to2Break (PIW) (%) (1b in ²)	Energy t (1b in	to2Break in)	0	(1b)
		U	I	D	I	U	I	C	I	U	I	υ	I
Hydrin	DFM	110	130	525	640	935	995	45	45	185	205	06	100
No Seam	JP-5	105	120	560	615	965	980	40	45	220	190	60	06
	QN	120	100	580	535	875	870	40	40	170	155	80	65
	MEC	110	110	515	500	905	765	45	40	175	140	100	06
Hydrin	DFM	140	120	600	600	800	820	40	35	115	135		1
No Seam	JP-5	140	120	600	580	800	820	40	40	120	140	1	١
	UN	140	120	620	540	800	860	40	45	135	160	1	۱
	MEC	140	65	680	580	820	940	40	45	120	190	ł	ł
Hydrin	DFM	120	140	720	640	980	850	40	40	180	150	1	1
No Seam	JP-5	160	140	200	600	1000	860	45	40	200	165	1	1
	ND	140	140	620	600	840	840	40	40	145	140	ł	1
	MEC	160	140	660	600	980	880	45	40	200	165	I	1
Neoprene/	DFM	40	40	180	160	700	670	65	70	210	180	75	75
Nitrile No Seam Aerobic	MEC	40	40	190	160	680	680	65	70	190	215	75	75
Neoprene/	DFM	160	140	500	620	680	660	43	33	198	126	75	75
Nitrile No Seam Angerobic	MEC	200	140	600	470	980	580	43	33	246	130	75	75

TABLE I (Con't)

51

TABLE IIa

Adhesion of Fabric to Elastomer Peel (180⁰) Test (ASTM D751)

		VITANINA	Autil Attent on ut then to not county	
Exposure description	011	Hot Seam	Cold Seam	Seamless
Untreated (original properties)		σ	9	1
Aerobic control	DFM	9	4	1
	JP-5	4	9	1
	QN	ß	9	1
	MEC	7	5	1
Aerobic inoculated	DFM	4	5	1
	JP-5	. 11	ũ	1
	R	4	80	1
	MEC	8	5	1
Angerobic control	DFM	9	L _	1
	JP-5	10	9	1
	R	Q	80	1
	MEC	7	10	1
Anaerobic inoculated	DFM	4	9	1
	JP-5	10	10	1
	UD	7	9	1
	MEC	4	7	1

TABLE IIb

Adhesion of Fabric to Elastomer Peel (180⁰) Test (ASTM D751)

		Nitrile	Nitrile to fabric (PIW)	Adhesion of PIW)		Neoprene to fabric (PIW)	ic (PIW)
Exposure description	0il	Hot Seam	Cold Seam	Seamless	Hot Seam	Cold Seam	Seamless
Untreated (original properties)		19	1	1	6	1	1
Aerobic control	DFM	15	11	17	ю	4	4
	JP-5	25	10	1	5	4	1
	QN	20	13	1	5	4	1
	MEC	24	5	17	Q	Q	4
Aerobic inoculated	DFM	20	13	14	4	4	4
	JP-5	20	20	1	9	9	1
	QN	30	11	1	4	2	1
	MEC	15	12	1	10	5	1
Anaerobic control	DFM	22		14	4	1	۳ ۳
	JP-5	20	1	1	9	1	1
	QN	16	ł	1	4	1	1
	MEC	20	1	15	4	1	4
Anaerobic inoculated	DFM	15	1	17	10	1	4
	JP-5	20	1	1	5	1	1
	QN	20	1	1	13	1	۱
	MEC	17	1	18	5	1	4

TABLE III

Adhesion of Fabric to Elastomer Membrane Separated Two-Compartment System Tests Made Only on Side Facing Oil (DFM)

	Type of Separa	ation (PIW)
Seam type	Nitrile to fabric	Hydrin to fabric
Hot	30	15
Cold	21	5

TABLE IV

Material Properties Before & After Soil Burial * Tensile & Tear Properties

and Elastomer to Fabric Bond ASTM D 751-69 (Strip Method at 12"/min.)

Materials

Elàstomer	Hydr	Hydrin/Nylon Cloth/Hydrin	Cloth/H	ydrin	Neopre	ene/Ny1	Neoprene/Nylon Cloth/Nitrile	/Nitrile	
Orientation	Bef	Before Warp Fill	Af	After Warp Fill	Before Warp Fi	Before Warp Fill	Af Warp	After Warp Fill	
			•						1
Tensile Strength (PIW)	971	562	846	663	897	585	096	1	
Modulus 10% (PIW)	189	45	172	53	153	35	165	1	
Modulus 30% (PIW)	859	236	630	215	651	165	618	•	
Ultimate Elongation (%)	35	49	41	68	39	99	42	•	
Tear Strength (lbs.)	137	108	77	1	80	60	68	•	
Strain Energy (in.lbs./in ²)	161	106	193	184	163	158	212	•	
Elastomer to Fabric Bond lbs./in width)	Hydrin before,	Hydrin before/after			Neoprene before/after	ene fter	Nitrile before/after	le after	1
	7.6	7.6/13.0			14.2/23.0	0	6.5/7.7	2	

* Method No 5762, CCC-T-191b, 153. Exposure Time = 9 Mo.