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PREFACE

This report presents the results of a study on pulse applications
and parameter identification for the U.S. Navy medium-weight shock machine.
G.J. 0'Hara was project manager for the Naval Research Laboratory.

_i;g;_§gfjord was principal investigator for Agbabian Associates and was

author of this report.

R.0. Belsheim, NRL (now with NKF Engineering) furnished technical
information in the loading effects of equipment on structural motions.
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investigations on parameter identification.
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PULSE APPLICATIONS AND PARAMETER IDENTIFICATION
FOR U.S. NAVY MEDIUM-WEIGHT SHOCK MACHINE

SECTION 1

INTRODUCT ION

1.1 BACKGROUND

The U.S. Navy medium-weight shock machine has played a paramount
role over the past 30 years in the hardening of shipboard equipment to shock
loads. Shock loading of shipboard equipment originates from depth charges,
conventional and nuclear bombs, torpedoes, and missiles. Supplementing the
shock machines, shock barges were subsequently placed into service by which
equipment mounted in the barges were subjected to underwater detonations.

The combination of the shock test machines and the shock barge
has proved singularly effective in the upgrading and qualification of equipment
to specified hardness levels in a broad sense. However, rapid changes in
naval warfare require more refined test/analyses and continuous improvements
thereof. These improvements are necessary to meet the ever-increasing threats
caused by technical change, particularly those due to the improving detection
and accuracy of offensive weapons systems. Balanced hardness in a naval
weapons system is becoming a more critical requirement to enhance survivability
and operability, both during and after an attack.

Failures and malfunctions of both equipment and structure closely
correlate to threat time-histories. This correlation motivates the continuing
need for test simulation ever more closely approximating threat environments.
The invention and development of a high-force output mechanical pulse generator
(Refs. 1, 2) showed considerable promise in inducing structural motions simu-
lating those motions induced by threats. The use of a mechanical-force pulse
generator with the U.S. Navy medium-weight shock machine should extend test
machine applications and provide for a more flexible transient shock capability.

Another critical area in need of development is an accurate
description of the structural load paths between input threat and the mounting

locations of operational and weapons-system equipment. With an adequate
Note: Manuscript submitted November 7, 1977,




structural description, the motions at equipment mounting generated by an
attack may be predicted and the structural path can be analyzed for methods
mitigating shock transmission. Obtaining the appropriate transmitted shock
time-histories at the mounting points of equipment permits hardening of the
equipment. One of the better and more practical descriptions of the structural
load paths is impedance and mobility. The severity of postulated attacks
will range from linear into varying degrees of the nonlinear regions such
that high-force-level impedance measurements are required. The high-force
levels are required for impedance measurements in a quasi-linear sense or
for the formation of nonlinear functionals. Electrodynamic shakers are
available with high-force outputs, and the mechanical force pulse generator

discussed in the previous paragraph may also be used.

Impedance measurements may be used to extract the normal modes,.
damping, and resonant frequencies of a structure. Another approach to handling
impedance measurements is the conversion from their nonparametric form to
parametric form. In this latter procedure, parameters are identified for each
structural path measured, and represent a coupled and distributed system.
Representation of impedance in parametric form provides additional opportu-

nities for design changes or modifications for shock transmission mitigation.

1.2 SCOPE

“YThe scope of this study covers the following two objectives:

® Provide the design for a mechanical-force pulse generator,
specify associated hydraulic power unit and cpntrols, and
provide pulse-train profiles and mandrelss The force-pulse
system will be designed for use with the U.S. Navy medium-

weight shock machines and for use in measurements of impedance.

® 5’Perform an exploratory parametric identification study of
U.S. Navy medium-weight shock machine, test article, and impact
loads using NRL-furnished data.p Determine equivalent system
model and associated parametorsqx
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SECTION 2

MECHANICAL FORCE-PULSE GENERATOR

2.1 REQUIREMENTS

Transient shock tests on equipment and systems to simulate the
motions induced by a conventional explosive or nuclear attack are largely
limited to single-axis test machines. Further limitations exist in the size
and weight of equipment that can be tested. Simulating multiaxis loading
on large equipment with many degrees of freedom represents a difficult problem,
as it is impractical to generate continuously varying forces of sufficient
magnitude. This problem becomes extremely difficult or impossible where
in-place or field tests are required. On the other hand, short duration
forces of large magnitudes over a wide frequency range can be generated by
mechanical pulse generators. Since a discrete number of pulses superficialiy
presents an appearance quite different from a continuous excitation signal,
it becomes necessary to select the pulses in such a way that the resulting
vibration of the structure matches as closely as possible the response (e.g.,
diéplacement, velocity, or acceleration) produced by the continuous force,
as determined by an appropriate error criterion. This approach is shown
in-Figure 1.

It is important to note that the method of Figure 1 requires that
the criterion response to the continuous input be known, which generally would
not be true in practice. To accomplish this objective, the approach proposed
here assumes that: (1) a mathematical model or impedance measurements of the
system under study are known and (2) the inputs of interest (e.g., explosive
or nuclear blast) are given. Under these conditions the ''criterion response'

can be calculated and used to obtain the pulse train for the simulated test.

In general, the response-time history .of a test article under simu-
lated test should show a reasonable approximation to the expected environmental

phenomena for meaningful hardness/vulnerability evaluation. To accomplish

i
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the desired response motion, a computer algorithm is used for the optimum
selection of a finite number of pulse heights, duration, and onset times to

accomplish this objective.

The basic criterion used is the integral squared error between the
reference and simulated response, evaluated at a sufficient number of points
within the system under test to characterize it as completely as possible.
Given the error criterion, the pulse occurrence times, pulse widths, and the
pulse amplitudes are selected by a systematic search algorithm such that the

error is minimized.

Application of the pulse generator for impedance measurements
requires a different form of the pulse train. Use of the pulse generator in
this manner requires a sufficiently long pulse train duration (T) to provide
the required frequency resolution (f = %0 and force levels sufficient to
provide favorable signal-to-noise ratios over the frequency range of interest.
Generally, configuration of the pulse train is optimized to generate an
approximately flat Fourier magnitude spectrum. Studies have also shown that
diagnostic pulse trains can be generated that approximate (in a transient
sense) sine wave bursts, chirp, and random effects. Both chirp and random

are particularly useful in developing functionals for nonlinear systems.

The pulse generator inherently possesses several desirable features
for transient load application with large systems when tested in place and/or

in the field. These features include:

] High force output
® Wide frequency band from static
® Portability
° Ganged operations
° Design simplicity
@ Reliability
3
5
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2.2 PRINCIPLE OF OPERATION

The concept of a mechanical pulse generator simply turns a device
for energy absorption around to obtain the desired force profiles as a useful
output (Ref. 3). By drawing a metal bar or mandrel through a cutting tool
(or vice versa) with suitable motive power (air pressure, hydraulic pressure,
explosive force, electric, mechanical), a series or a set of force-time
histories may be generated. Reaction at the attach point of the device trans-
mits a force output to a test article. Figure 2 illustrates the device with
motive power for operation supplied by the stored energy in a pneumatic
cylinder. Figure 3 is an example of a force-pulse time history as output

from the device. The device may be started or stopped by a variety of devices.

Forces may be generated singly and in series as for one cutting
head or in parallel with multiple cutting heads. A single large cutting tool
may be used if economic. Cutting of metal may be groove cuts, i.e., the work
is wider than the tool width; or single cut, i.e., the tool is wider than the
work. The cutting tool may have a wide variety of shapes to suit the force
waveform output requirement needed. Large forces may be generated from this
device and the force required to cut metal is largely independent of rate
(velocity). The force is a function of volume of chips cut (depth, width, and
length of cut) and the specific energy of cutting. The energy absorbed in

metal cutting is given by (Ref. 3)

FI = lwty (1)

where

F = Force of cutting, Ib
1 = Length of cut, in.

w = Width of cut, in.

t = Depth of cut, in.

u = Specific energy of cutting, in-lb/cu in.
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The values of specific energy of cutting for mild steel and aluminum are
5
3 x 00

or strain gage may be incorporated in series with the device to provide force-

in.-1b/cu in. and 1.5 x 10S in.-1b/cu in., respectively. A load cell

time history readout as the device is operated.

Metal-cutting information from the Metals Handbook (Ref. 4) generally
supports the foregoing information. Higher rake angles (to 20 deg) on the
cutting tool tend to reduce cutting force and data scatter. At low cutting

speeds aluminum is rate sensitive, with the cutting force changing somewhat

exponentially between 40 ips to 100 ips. It is relatively constant at higher
speeds. Nominal power requirements for cutting various metals are given as
follows:

Magnesium 0.10 hp/in.s/min

Al uminum 0.15 hp/in.3/min

Copper alloys 0.25 hp/in.3/min

Steels 0.80 hp/in.3/min

These values may change considerably with hardness and alloy

content. Calibration is required for each mandrel material selected.

2.3 PULSE DEVICES

Several pulse devices have been constructed and successfully
operated. The original experimental system is shown in Figures 4 and 5
(Ref. 1). The device in Figure 6 was used to simulate response motions in

large equipment induced by a nuclear attack (Refs. 5, 6, 7).

Comparison of the predicted response (determined from impedance
measurements), pulse-simulated response, and measured response are provided
in Figure 7. This same pulse generator, which was also used to measure
transfer impedances (Ref. 8), has a nominal output force capacity to
10,000 1b. Another version in the form of drop shock tower is pictured in
Figure 8 and output data is given in Figure 9. Figure 9 data are from a

reinforced-concrete protective structure, flush buried to ground surface
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Fig. 4

- Experimental test for mechanical pulse generator




Fig. 5 — Cutting fixture with mandrel tool holder, right; bearing guide
plate on mandrel, center; and output plate, left
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Fig. 6

Pulse-test configuration for control room platform showing
one of four units required
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Fig. 8 — Medium-force pulse generator

mounted on EDC structure
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where the generator was configured for three 5000-1b pulses of 25 msec
durations each. This drop shock tower has the potential capacity to produce

pulse amplitudes up to 150,000 Ib.

2.4 NRL PULSE GENERATING SYSTEM

The NRL Pulse Generating System, Figure 10, was primarily designed
for laboratory use in conjunction with the medium-weight shock machine.
However, this system is inherently flexible and may be used in remote loca-
tions and on shipboard. A full technical and engineering description of this
system was provided to NRL in Report R-7710-3-4333, '"'Specification for
Evaluation of Impedance Analysis Techniques for Naval Applications,"

December 1976 by Agbabian Associates, El Segundo, Calif. Major design
change over previous versions was in reconfiguration so as to reduce the
weight below gage (load cell). Maximum capacity of this unit is 10,000 1b
force. To obtain maximum capacity, a dual cutter would be required, and

bottled compressed air would be needed in place of plant air.

The calibration mandrel for the system is drawn in Figure 11, and

its Fourier magnitude spectrum is given by Figure 12. A three-pulse mandrel
Fourier spectrum is shown in Figure 13 only to present the wide spectrum 4

that may be obtained.

The pulse-generator system is depicted in Figure 14. This system
operates from plant air to an air/hydraulic multiplier, thence to a hydraulic
drive to operate the pulser. Orifice flow control gives cutting velocities
from 20 in./sec to 136 in./sec.

Initial applications for this device are planned for the U.S. Navy
medium-weight shock machine, illustrated in Figure 15 with its impact hammer.
Single-pulse impact of this hammer is in the order of 1 msec. Whereas, for
example, the mandrel in Figure 11 generates 12 pulses of 0.8 msec each for a
total test record length of 76 msec at 120 in./sec cutter velocity or 12 pules
of 4.8 msec each for a test record of 456 msec at a 20 in./sec cutter speed.

This latter application is schematically shown in Figure 16.
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Fig. 15 — U.S. Navy high-impact shock machine for medium-weight equipment

with mounted test structure
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Fig. 16 — Shock machine anvil with and without test structure using
pulse-drive system
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SECTION 3

U.S. NAVY MEDIUM-WEIGHT SHOCK MACHINE
PARAMETER IDENTIFICATION

3.1 SHOCK MACHINE AND TEST ARTICLE

The vibration of a mounting base or element of structure is altered
when another structure is mounted thereto or a previously mounted structure
is replaced with a different component. Knowledge of the shock and vibration
environments at mounting locations within a naval vessel is a necessity for
the determination of hardness and survivability of equipment. This is a
continuing problem due to the continued changes in the state-of-the-art

resulting in the upgrade and substitution of equipment.

The environment at mounting points of equipment is given by the
following expression (Ref. 9):

Vi) = V(w) [f—iflz-—] (2)
22 33
where
V() = Complex velocity of mounting point without equipment
V'(w) = Complex velocity of mounting point with equipment attached

Z22 = Driving point impedance of mounting point

Z32 = Driving point impedance of equipment

When one equipment is to be exchanged for another equipment and
the original velocity at the equipment mounting interface is known, the
response with the substituted equipment may be predicted by (Ref. 9):

2,, *+1
Vi) = V() [22—272-%] (3)

where the parameters of Equation 3 are the same as in Equation 2, except 253

is the driving point impedance of the substituted equipment. H

23




Other forms of Equations 2 and 3 may be used and these basically
include the transfer impedance term from the input load points to the

equipment mounting locations.

A practical application of the above was conducted in 1960 (Ref. 10)
using the medium-weight shock machine. Impedance measurements were made
on the anvil and upon a test structure as sketched in Figure 17. The output
impedance of the anvil for both magnitude and phase is in Figure 18 and the
input impedance for the test article is given in Figure 19. The anvil and
test article were struck with the hammer as shown in the configuration of
Figure 15. The velocity response from this test is plotted in Figure 20 in
the form of a velocity shock spectrum. A similar test was conducted upon
the anvil only and the resultinn data was modified by Equation 2 to predict
the motion of the anvil if the test article was attached thereto. This
prediction is also plotted in Figure 20. While the shapes of the two curves
are in general conformity, the predicted amplitudes exceed actual up to a
factor of nearly 2. Several areas have been considered to account for the
above difference and the most probable one is the extremely low level of
force used to measure the impedance of the components. As discussed in
Section 1 of this report, a sufficient measurement force is required in a
quasi~linear sense to obtain suitable values of damping (material, joints,

aerodynamic).

An alternative means of measurement of a system is with and without
ioad. Complex subtraction of these measurements using Equation 2 yields
the input impedance of the load. An example of this procedure is given in
Figure 21. This example is particularly interesting due to the extremely
large impedance mismatch between the base structure and the spring isolator-

supported load that was detected by the impedance measurements.

The foregoing tests on the shock machine are planned to be repeated
using updated techniques of measurement and data processing. Recent experi-

ence indicates that very useful results will be obtained by which accurate
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predictions can be made on the veiocity effects of loading a structure with
new and changed equipment. Once th.s procedure is established, application

to operating weapons systems may be initiated.

3.2 PARAMETER IDENTIFICATION

3.2.1 PROCEDURE

Impedance measurements discussed previously are nonparametric and
may not often be .in a form most convenient to understand the shock and

vibration transmission path or means to reduce transmissions.

In the parametric identification approach, the mathematical struc-
ture of the model is postulated, but its parameters are not. Most of the
work done so far in structural system identification has been considered
from the parameter estimation approach. The identification task in the
parametric model approach eventually reduces to a search in parameter space
where system parameters are iterated repeatedly until values are obtained
that meet a specified error criterion. Among the techniques used in this
approach are gradient or random search methods. For a satisfactory model,
once the parameters have been identified, methods can be devised for
appropriate insertion loss to mitigate shock transmission. Extending
parameter identification to nonlinear systems, a series of impedance measure-
ments at different force levels are obtained. This approach provides a group
of nonparametric impedance curves from which parameters are identified.

From the parameters obtained, functional relations are set forth in the model
as for nonlinear springs and damping to provide an approximate model of the

nonlinear transmission path.

Random search algorithms for parameter optimization have been
widely applied and documented (Refs. 11 to 17). They have the advantage of
(1) leading to global solutions of nonlinear systems, (b) guaranteed con-

vergence, and (3) ease of computer implementation. On the negative side,
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random search algorithms may converge very slowly, particularly in criterion
surfaces of high dimensionality. The basic algorithm for minimization of a

criterion function J(a), where o = (al, a dy gm)T is a vector of

’
unknown parameters, proceeds as follows: (l? An initial parameter value go
is estimated and J(go) is evaluated; (2) trial points ai €2,, where Qu
is the given permissible region in the m-dimensional parameter space, are
selected from an appropriate probability density function defined over Q ;
(3) a successful point ai+1 is one for which J(gi+]) < J(gi). The '
sequence J(gi) _thus converges to a local minimum. Rather than using '‘pure
random search,'' most algorithms are based on a ''random creep'' procedure in
which exploratory steps are confined to a hypersphere centered about the
latest successful point ai. However, convergence by such procedures may

be extremely slow, since no allowance is made for variations in the nature

of the criterion function surface as the search progresses towards a minimum.

Several procedures have been tried in the past to circumvent slow
convergence. The addition of a bias vector to each iteration causes the
search to favor successful directions (Ref. 14). Restriction of the search
to a directed hypercone has also been proposed (Ref. 16). However, such
schemes are highly directional and lose some of the flexibility of the random
search procedure, as in the case of narrow ''canyons'' or ''ridges' in the
criterion function surface. Rastrigin (Ref. 11) has compared a random
search where each step is random in direction but fixed in length (fixed-
step-size random search), with a fixed-step-size gradient search, and showed
that under certain conditions the random search is superior. It is intui-
tively evident, however, that one would obtain even better performance if the
step size of the random search procedure were optimized at each step of the
iteration. |f the steps are too small, the average improvement per step will
also be small and convergence time will be lengthened. |f the steps are
too large, they may overshoot the minimum; and the probability of improvement
will again be too small. Hence, some method of adapting the step size to the

local behavior of J(a') is indicated.
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Schumer and Steiglitz (Ref. 15) have tested one approach to adaptive
step size random search. They use a fixed-step-size algorithm, where the
trial vector Aqi is of length % and distributed uniformly over the hyper-
sphere of radius ¢ whose center is at the latest successful parameter
value ai. A random step of size £ and an incremental step of size (1 + a),
where 0 < a < 1 are taken in the same direction. The step size that produces
the larger improvement is used as the nominal length £ for the next iteration.
If no improvement occurs, & is incrementally reduced. Thus, the algorithm

is capable of adapting its step size as a function of the search.

The algorithm used for the medium-weight shock machine is another
approach to the determination of the optimal step size (Ref. 18). Rather
than a fixed-length step, steps used are random in both length and direction.
Hence, the adaptation described below is based on the selection of the
optimal variance of the step-size distribution as the search progresses.
Large variances are desirable in the early, exploratory portions of a search.
However, in the vicinity of a local optimum, a smaller value of the standard

deviation, 0, will decrease the probability of overshoot.

The algorithm for the adaptive random search consists of alternating
sequences of a global random seavch with a fixed value for the step size

variance followed by searches for the locally optimal o.

Figure 22 illustrates the adaptive algorithm whereby a very wide-
range search selects the standard deviation best step size (¢) for the
coarseness of the increments used, followed by a sequential precision search
of finer increments. As the rate of convergence decreases, a new precision
search is made, but directed towards a smaller step size. At selected
iteration intervals, the wide-range search is reintroduced to prevent

convergence to local minima.

The adaptive random search method was used to determine a pulse

train (composed of 8 pulses) whose response spectrum matches a criterion
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Fig. 22 — Adaptive step size search, both wide range and precision, for
rapid convergence of cost function

33

e —




response spectrum as closely as possible over a given frequency range

Cain L0 Since each i1adividual pulse in the train Is characterized

! independent parameters (amplitude, a3 duration, di; fnitiation time, ti)'
total of 24 parameters are needed to define the 8 pulses of the desired
irain. Note that the response spectrum of a pulse train is a nonlinear

function of the pulse parameters.,

Figure 23 shows that superior results are obtained by using the

adaptive features of the random search method. While both cases (a) and (b)

started with the same standard deviation, o = 0.1, in the case (a) the

est
search was conducted for 2000 steps with fixeu o. When the search for the
Lest standard deviation, o is conducted at a rate of iteration frequency =

P

SG0, the values of Obest were found to change from 0.1 initially to 0.01

cv o iteration = 500, and 0.001 at iteration = 1000.

't is worth noting that the search for the optimum solution of this

problem was performed without benefit of knowing the answer in advance.

3.2.2 PRELIMINARY STUDIES i Ce—

A preliminary study was conducted on the shock machine anvil and
test article (Fig. 15) given the objective function (shock spectrum) of
Fiqure 20. Major difficulty occurred in a poor description of the pulse
input from the hammer. A 1 msec rectangular pulse was finally specified
and held fixed during all subsequent computations. Shock spectrum objective
functions also pose costly computer operations as each pafameter iteration
involves conversion of trial model time-histories into shock spectra until

convargence s obtained.

The results of the preliminary parametric study showed (for the
four-degrez-of-freedom model chosen to represent the distributed system)
reasonable results. Parameters for the model are listed in Table 1 and the
sheck response spactrum is given in Figure 24, Results of the spectrum may

be compared to Figure 20.
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TABLE 1.

Mass
NO.

=W N

MODEL PARAMETERS OF ANVIL AND TEST ARTICLE
(Input impulse of 1 msec duration)

Mass

Sslugs)

136.
3.39
8.78
3.96

Damping,
ib-sec Spring Rate,
ft 1b/ft
1550. 18.2 x 106
3.31 10.9 x 106
79. 35.9 x 10°
128. 6.9 x 106

In view of the above, the better procedure is to use the impedance functions

in the form of impulse functions as objectives. This approach eliminates

the large uncertainties of the input pulse and reduces costs by eliminating

shock spectra computations.
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P.Oes BOX 631
VICKSBURG MS 39180
ATTN J STRANGE
ATTN W FLATHAU
ATTN TECH LIB (UNCL ONLY)
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AF INSTITUTE OF TECHNOLOGYs» AU
WRIGHT PATTERSON AFBs OH 45433
ATTN LIB AFIT BLDG 640 AREA B(UNCL ONLY)

NKF ENGINEERING ASSOCIATES, INC.
8720 GEORGIA AVENUE
SILVER SPRING. MD. 20910

ATTN DR. R.O. BELSHEIM

M&T CO.

2130 ARCH STREET

PHILADELPHIA, PA. 19103
ATTN B. McNAIGHT
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